
5

CHAPTER II

BASIC THEORIES

In this chapter, we present basic theories used throughout the skripsi.

First, we present definitions and basic concepts of multiple sequence

alignment (MSA) to give a brief view of an MSA problem. The aim of an MSA

is to determine the best alignments. Criteria of a best alignment depend on

the purpose of the alignment itself. We present scoring scheme as a tool to

score every possible alignments. With the help of scoring scheme, we can

determine the best alignments based on the purpose of the alignment.

However, finding the best alignments is not straightforward. The MSA

problem is solved with integer linear programming. The integer linear

programming (ILP) model is derived from the graph representation of the

MSA problem. Hence, we also present definitions and basic concepts in

graph theory, graph representation of an MSA problem, and definitions and

basic concepts in integer linear programming. Solving an ILP model requires

a different approach than solving a linear programming model since the

solution of an ILP model needs to be integer. We devise a program to

generate and solve the ILP model of an MSA problem using MATLAB

R2008a. MATLAB R2008a has a function to solve a binary ILP problem using

branch-and-bound method. Hence, we present the branch-and-bound method

at the end of chapter II.

Solving Multiple..., Pudiahwai Anton Wibowo, FMIPA UI, 2008

6

2.1. DEFINITIONS AND BASIC CONCEPTS OF MSA

 Sequence alignment is a process of adjusting sequences so that they

are in proper relative position. In general, sequence alignment has the

following properties (see Althaus E. et al. [1]; Kececioglu J.D. et al. [4]):

- The length of each of the aligned sequence must be the same after an

alignment.

- Each of the aligned sequence before and after an alignment is

identical if gap(s) is (or are) ignored.

In bioinformatics, sequence alignment is a way of arranging the

primary sequences of DNA, RNA, or protein to identify regions of similarity

that may be a consequence of functional, structural, or evolutionary

relationships between the sequences. Multiple sequence alignment (MSA)

is a sequence alignment of more than two sequences (Sequence alignment

of two sequences is called pairwise sequence alignment). MSA is often

used to identify conserved regions across a group of sequences

hypothesized to be evolutionarily related. We mainly discuss MSA of DNA

sequences in the skripsi. DNA (deoxyribonucleic acid) sequences are

associated with four alphabet letter: A (adenine), C (cytosine), G (guanine),

and T (thymine) each of the alphabets stands for the nucleic acid of DNA.

During the course of evolution, residues of the sequences that evolve from a

common ancestor may have undergone substitutions (when residues are

Solving Multiple..., Pudiahwai Anton Wibowo, FMIPA UI, 2008

7

replaced by other residues), insertions (when new residues appear in a

sequence in addition to the existing ones), or deletions (when some residue

disappear).

1s : 1
1s 1

2s " 1
js " 1

ls
2s : 2

1s 2
2s " 2

js " 2
ls

#
is : 1

is 2
is " i

js " i
ls

%
ks : 1

ks 2
ks " k

js " k
ls

Fig. 2.1. Alignment set S .

Let S = {s1, s2, …, sk} be a set of k strings over a DNA alphabet

A = {A, C, G, T} and let A = A ∪ {−} where ‘−’ (dash) is a symbol that

represents gap. An alignment of S is a set S = { }…1 2, , , ks s s of strings

over alphabet A where all the strings in S have the same length and if the

dash is ignored, string is is identical to string si. The length of string s is the

number of characters that are in string s, denoted by s . String s consists of

characters sj, j = 1, 2, …, s . All strings is S∈ in an alignment can be

represented as an array of k rows and l columns where row i corresponds to

string is . Characters of distinct strings in S are said to be aligned under S if

they are placed on the same column of the alignment array. Figure 2.1

illustrates a general form of an alignment set S of k sequences. Alignment

set S consists of strings is , i = 1, 2, …, k. Every string is consists of

Solving Multiple..., Pudiahwai Anton Wibowo, FMIPA UI, 2008

8

characters i
js , j = 1, 2, …, l. Character m

js and n
js , m, n = 1, 2, …, k; m ≠ n ,

is aligned under alignment S on column j. A character from si and a

character from sj are a match if both characters are the same and they are

put (aligned) under the same column j, i.e. m
js = n

js . A character from si and a

character from sj are a mismatch if both characters are not the same and

they are put (aligned) under the same column j, i.e. m
js ≠ n

js . To give a better

understanding about array representation of an alignment, consider an MSA

problem consisting of three very short DNA sequences given in Example 2.1:

Example 2.1.

 Given sequences s1, s2, and s3.

 s1: A G C
s2: T G C C A
s3: A T C A

Some possible alignments of Example 2.1 are given in Figure 2.2. From

Figure 2.2 (a), character 1
1s (alphabet A from s1) and character 3

1s (alphabet

A from s3) is a match and character 1
1s (alphabet A from s1) and character 2

1s

(alphabet T from s2) is a mismatch. Character 2
4s (alphabet C from s2) and

character 3
4s (dash symbol) is also a mismatch where 3

4s is a gap inserted in

s3. A glance of Figure 2.2, the number of inserted dash symbols increases

from alignment Figure 2.2 (a) to alignment Figure 2.2 (d).

Solving Multiple..., Pudiahwai Anton Wibowo, FMIPA UI, 2008

9

1s : A G − C −
2s : T G C C A
3s : A T C − A

(a)

1s : A − G − C −
2s : − T G C C A
3s : A T − C − A

(b)

1s : A − G C − −
2s : − T G C C A
3s : A T − − C A

(c)

1s : − − − − − A G C
2s : T G C C A − − −
3s : − − − − A T C A

(d)

Fig. 2.2. Possible alignments of Example 2.1.

 It is obvious that there are many alignments of an MSA. The problem

then becomes how to determine the best alignment. In biology, justification of

good or bad alignment criteria is obtained through qualitative approach.

However, if we want to compute an alignment, such criteria cannot be used.

A set of scores obtained through quantitative approach called scoring scheme

is used as a criteria of a good or a bad alignment. The alignments that have

the best score by definition are the optimal alignments (It is possible that

there are more than one such alignment). We will introduce scoring scheme

of an alignment on the following subchapter.

2.2. SCORING SCHEME OF AN ALIGNMENT

Scoring scheme is used to score any alignment of the MSA problem.

We can distinguish among different alignments by examining their scores. We

can make our own scoring scheme according to our own preferences (the

Solving Multiple..., Pudiahwai Anton Wibowo, FMIPA UI, 2008

10

preferences must not violate any alignment criteria) or obtain it through

biological or statistical observation. A simple scoring scheme assumes

independence among columns in an alignment and set the total score of the

alignment to be equal to the sum of the scores of each column (see Isaev A.

[3]). Such scheme only needs to specify the score of a match and a

mismatch. A mismatch includes mismatch between the DNA alphabets and

mismatch between the DNA alphabet and the inserted gap. The former is

referred as a mismatch score and the latter is referred as a gap penalty.

We can make a simple scoring scheme; say +2 for a match, −1 for a

mismatch, and 0 for a gap penalty. First, we apply the scoring scheme to

alignment (a) in Figure 2.2. From the first column (j = 1), 1
1s ≠ 2

1s (A ≠ T, a

mismatch), 1
1s = 3

1s (A = A, a match), and 2
1s ≠ 3

1s (T ≠ A, a mismatch). The

sum of the scores of the first column is −1 + 2 − 1 = 0. From the second

column (j = 2), 1
2s = 2

2s (G = G, a match), 1
2s ≠ 3

2s (G ≠ T, a mismatch), and

2
2s ≠ 3

2s (G ≠ T, a mismatch). The sum of the scores of the second column is

2 – 1 – 1 = 0. From the third column (j = 3), 1
3s ≠ 2

3s (‘−‘ ≠ C, a gap penalty),

1
3s ≠ 3

3s (‘−‘ ≠ C, a gap penalty), and 2
3s = 3

3s (C = C, a match). The sum of

the scores of the third column is 0 + 0 + 2 = 2. From the fourth column (j = 4),

1
4s = 2

4s (C = C, a match), 1
4s ≠ 3

4s (C ≠ ‘−‘, a gap penalty), and 2
4s ≠ 3

4s (C ≠

‘−‘, a gap penalty). The sum of the scores of the fourth column is 2 + 0 + 0 =

2. From the fifth column (j = 5), 1
5s ≠ 2

5s (‘−‘ ≠ A, a gap penalty), 1
5s ≠ 3

5s (‘−‘ ≠

Solving Multiple..., Pudiahwai Anton Wibowo, FMIPA UI, 2008

11

A, a gap penalty), and 2
5s = 3

5s (A = A, a match). The sum of the scores of

the fifth column is 0 + 0 + 2 = 2. The total score of alignment (a) in Figure 2.2

is the sum of the scores of each column (j = 1, 2, …, 5): 0 + 0 + 2 + 2 + 2 = 6.

If we apply the scoring scheme to the rest of the alignments in Figure 2.2,

alignment (b), (c), and (d) will have the total score of 12, 12, and −1

respectively. Notice that alignment (b) and (c) have the same total score.

However, according to Althaus E. et al. [2], “a single longer gap is more likely

to arise in reality since it might be caused by a single mutational event”.

Additionally, the length of the gap should have a smaller impact to the score

than the number of gaps. We can achieve this by using convex gap cost

functions such as a + b log l where a and b are arbitrary numbers and l is the

length of the gap. We can also use an affine gap costs of the form a + bl.

In alignment (b) Figure 2.2, 1s has three gaps: 1
2s , 1

4s , and 1
6s , 2s has

one gap: 2
1s , and 3s has two gaps: 3

3s and 3
5s . In alignment (c) Figure 2.2,

1s has two gaps: 1
2s and { 1

5s , 1
6s } (both dash symbol 1

5s and 1
6s are

considered as a single but long gap), 2s has one gap: 2
1s , and 3s has one

gap: { 3
3s , 3

4s }. Alignment (b) and (c) have 6 and 4 gaps in total respectively.

Hence, alignment (c) should be scored better than alignment (b).

 We can solve the MSA problem by using various methods such as

dynamic programming (e.g. Needleman-Wunsch algortihm, see Isaev A. [3])

and heuristic (e.g. FASTA, see Isaev A. [3]). A method has been proposed by

Solving Multiple..., Pudiahwai Anton Wibowo, FMIPA UI, 2008

12

Althaus E. et al. [1] to solve the MSA problem which is based on ILP. The ILP

model is derived from a graph representation of the MSA problem. Before we

discuss about the graph representation of the MSA problem further, we will

introduce some definitions and basic concept in graph theory on the following

subchapter.

2.3. DEFINITIONS AND BASIC CONCEPTS IN GRAPH THEORY

A graph G(V, E, A) consists of V, a nonempty set of vertices, E, a set

of unordered pairs of distinct elements of V called edges, and A, a set of

directed edges called arcs (see Rosen K.H. [7]). Two vertices u and v in a

graph G are called adjacent (or neighbors) in G if e = {u, v} is an edge of

graph G. Edge e is called incident with vertices u and v. Vertices u and v are

called endpoints of edge e. Two edges e1 and e2 are called multiple (or

parallel) edges if both edges are incident to the same endpoints. Vertex u is

said to be adjacent to vertex v (or vertex v is said to be adjacent from vertex

u) if a = (u, v) is an arc of graph G. In this case, vertex u is called initial

vertex of arc a and vertex v is called terminal (or end) vertex of arc a. An

arc is called loop if the arc has the same initial and end vertex. Graph

H = (W, F, B) is a subgraph graph G = (V, E, A) if W ⊆ V, F ⊆ E, and

B ⊆ A. Graph H is a spanning subgraph graph G if W = V.

Solving Multiple..., Pudiahwai Anton Wibowo, FMIPA UI, 2008

13

A graph G is called a simple graph if it contains no arcs, multiple

edges, and loops. G is called a directed graph if it contains arcs and (or)

loops but no multiple edges. Walk of length k is a sequence v1, u1, v2, u2, v2,

…, vk, uk, vk+1 of vertices and edge(s) or arc(s) such that all ui are only edges

{vi, vi+1} or arcs (vi, vi+1), i = 1, 2, …, k. Mixed walk of length k is a sequence

v1, u1, v2, u2, v2, …, vk, uk, vk+1 of vertices, edge(s), and arc(s) such that the

sequence contains both arc and edge, ui can either be an edge {vi, vi+1} or an

arc (vi, vi+1). Path is a walk that does not traverse the same vertex more than

once, i.e. vi = vj if and only if i = j, i, j = 1, 2, …, k + 1. Mixed path is a mixed

walk that does not traverse the same vertex more than once. Cycle is a path

that begins and ends at the same vertex. Mixed cycle is a mixed path that

begins and ends at the same vertex.

A simple graph G is called bipartite if its vertex set V can be

partitioned into two disjoint sets V1 and V2 such that no edge in graph G

connects either two vertices in V1 or two vertices in V2. Complete bipartite

graph Km,n is a graph that its vertex set partitioned into two subsets V1 of m

vertices and V2 of n vertices such that there is an edge between two vertices

if and only if one vertex is in the first subset and the other vertex is in the

second subset. Complete k-partite graph ()1 2, , , kn n nK … is a graph that has its

vertex set partitioned into subsets V1 of n1 vertices, V2 of n2 vertices, …, and

Vk of nk vertices such that there is an edge between two vertices if and only if

one vertex is in the first subset and the other vertex is in the second subset.

Solving Multiple..., Pudiahwai Anton Wibowo, FMIPA UI, 2008

14

Figure 2.3 illustrates some graph examples. Graph G on Figure 2.3 (a) is a

directed graph with 5 vertices, 6 edges, and 4 arcs. Graph H2 and H3 on

Figure 2.3 (c) and (d) are subgraphs of graph G. Graph H1 on Figure 2.3 (b)

is a spanning subgraph of graph G. Graph H2 is a cycle and also a bipartite

graph with disjoint vertex sets of {v1, v2} and {v4, v5}. Graph H3 is a mixed

cycle.

v1 v2 v3

v4 v5

e1 e4

e2 e5

e6

a1

a2

a3

a4

e3

(a) Graph G

v1 v2

v4 v5

e1 e4

e2

e3

(c) Graph H2

v1 v2

v4 v5

e2

a1

a2

e3

(d) Graph H3

v1 v2 v3

v4 v5

e1 e4

a1

a2

a3

a4

(b) Graph H1

Fig. 2.3. Graph examples.

Now that we have discussed about graph theory, we will present the

steps of constructing a graph representation of the MSA problem.

Solving Multiple..., Pudiahwai Anton Wibowo, FMIPA UI, 2008

15

2.4. GRAPH REPRESENTATION OF THE MSA PROBLEM

MSA problem is represented as a graph, each character i
js ,

i = 1, 2, …, k; j = 1, 2, …, is ,is represented as node i
jv . Vi denotes the set of

all nodes corresponding to characters in si.

Fig. 2.4. Alignment graph of Example 2.1.

We start by introducing a graph that represents all the possible

alignment of the characters i
js called an alignment graph. Alignment of

character 1

1

i
js from 1is and character 2

2

i
js from 2is is represented as edge

e = { }1 2

1 2
,i i

j jv v , i1, i2 = 1, 2, …, k; i1 ≠ i2; j1 = 1, 2, …, 1is ; j2 = 1, 2, …, 2is . Such

an edge is called alignment edge. 1 2,i iE denotes the set of all alignment

edges e = { }1 2

1 2
,i i

j jv v of the alignment graph. Graph G = (V, E) is an alignment

Solving Multiple..., Pudiahwai Anton Wibowo, FMIPA UI, 2008

16

graph where V = {V1 , V2 , …, Vk} and E is the set of all the alignment edge.

The alignment graph of Example 2.1 is given in Figure 2.4. We can see in

Figure 2.4 that alignment graph of k -sequence MSA problem is a complete k-

partite graph.

Fig 2.5. Extended alignment graph of Example 2.1.

However, alignment graph does not represent order of the characters.

According to the property of an alignment, the order of the characters of each

sequence must be the same before and after the alignment. Hence, we

introduce extended alignment graph, an alignment graph that also contains

the ordering information of the characters of each sequence. Ordering of

characters i
js within the same string si is represented as arc ap = ()+1,i i

j jv v ,

Solving Multiple..., Pudiahwai Anton Wibowo, FMIPA UI, 2008

17

 i = 1, 2, …, k; j = 1, 2, ..., is − 1, which means that the characters are

ordered from the left to the right. Such arc is called position arc. Ap denotes

the set of all position arcs ap = ()+1,i i
j jv v . Graph G = (V, E, Ap) is an extended

alignment graph where V = {V1 , V2 , …, Vk}, E is the set of all the alignment

edge and Ap is the set of all the position arc. The extended alignment graph

of Example 2.1 is given in Figure 2.5. We can see in Figure 2.5 that the order

of each sequence is still preserved by the position arc in the extended

alignment graph.

1,2
gA

1,3
gA
2,1
gA
2,3
gA
3,1
gA
3,2
gA

Fig. 2.6. Gapped extended alignment graph of Example 2.1.

Extended alignment graph preserves the ordering information of the

sequences but it does not represent the possibility of aligning character(s) to

Solving Multiple..., Pudiahwai Anton Wibowo, FMIPA UI, 2008

18

gap. Hence, we introduce the gapped extended alignment graph, an

extended alignment graph that also represents the possibility of aligning

character(s) to gap. Each character 1i
js from 1is that is not aligned to a

character from 2is is aligned to a gap inserted in 2is , i1, i2 = 1, 2, …, k; i1 ≠ i2;

j = 1, 2, …, 1is . It is also possible that a substring say 1

1

i
js to 1

2

i
js ,

j1, j2 = 1, 2, …, 1is , of si1 is aligned to a (single longer) gap inserted in 2is .

Hence, for each substring 1

1

i
js to 1

2

i
js of 1is that are aligned to a gap inserted in

2is , there is an arc ag = () 2
1 1

1 2
,

ii i
j jv v . Such an arc is called gap arc. Substring

1

1

i
js to 1

2

i
js of 1is are said to be spanned by gap arc () 2

1 1

1 2
,

ii i
j jv v . 1 2,i i

gA denotes the

set of all gap arcs ag = () 2
1 1

1 2
,

ii i
j jv v , j1, j2 = 1, 2, …, 1is . There is also another

definition for gap arcs that is 1 2,i i
gA (j1 ↔ j2). 1 2,i i

gA (j1 ↔ j2) :=

(){ }2
1 1

1 2, : ,
ii i

p qv v p j q j≤ ≥ denote the subset of arcs in 1 2,i i
gA that spans

character 1

1

i
js , …, 1

2

i
js , i1, i2 = 1, 2, …, k; i1 ≠ i2; j1, j2 = 1, 2, …, 1is . Graph

G = (V, E, A) is a gapped extended alignment graph where

V = {V1 , V2 , …, Vk}, E is the set of all the alignment edge, Ag is the set of all

the gap arc, and A = {Ap ∪ Ag}. The gapped extended alignment graph of

Example 2.1 is given in Figure 2.6. Notice that the gap arc is not represented

as an arc but as an edge in the gapped extended alignment graph. It is

Solving Multiple..., Pudiahwai Anton Wibowo, FMIPA UI, 2008

19

represented as an edge because gap arc () 2
1 1

1 2
,

ii i
j jv v is the same as gap arc

() 2
1 1

2 1
,

ii i
j jv v , i1, i2 = 1, 2, …, k; i1 ≠ i2; j1, j2 = 1, 2, …, 1is . Rather than

representing gap arc (),
ji i

l mv v as two different arcs, it is represented as a

single edge (an edge is in fact a two way arc). In Figure 2.6, 2,1
gA (2 ↔ 3)

denotes the set of gap arcs { ()12 2
1 3,v v , ()12 2

1 4,v v , ()12 2
1 5,v v , ()12 2

2 3,v v , ()12 2
2 4,v v ,

()12 2
2 5,v v }.

Gapped extended alignment graph is the graph representation of the

MSA problem. Now, we have to find a subgraph from the gapped extended

alignment graph that fulfills the alignment properties. We call this subgraph as

a gapped trace. The MSA problem becomes a graph problem (or gapped

trace problem) which is to find gapped trace, a spanning subgraph of the

gapped extended alignment graph that corresponds to an alignment of the

MSA problem. A gapped trace consists of the set of all vertices and position

arcs in the gapped extended alignment graph and sets of realized alignment

edges and gap arcs. An alignment edge e = { }1 2

1 2
,i i

j jv v is said to be realized by

an alignment if characters 1

1

i
js and 2

2

i
js are put in the same column in

alignment array. A gap arc ag = () 2
1 1

1 2
,

ii i
j jv v is realized by an alignment if the

Solving Multiple..., Pudiahwai Anton Wibowo, FMIPA UI, 2008

20

substring 1

1

i
js to 2

2

i
js of 1is is not aligned to any character in 2is , whereas both

1

1 1
i
js − (if j1 > 1) and 1

2 1
i
js + (if j2 < 1is) are aligned with some characters in 2is .

A

T

G C

G C C A

A T

{ }1 2
1 1,v v

{ }2 3
1 1,v v

{ }1 3
2 2,v v

{ }1 2
2 2,v v

{ }2 3
2 2,v v

{ }2 3
3 3,v v

{ }1 2
3 4,v v

{ }2 3
5 4,v v

()12 2
3 3,v v ()12 2

5 5,v v

()31 1
3 3,v v

()13 3
3 4,v v

()32 2
4 4,v v

s1

s2

s3C A
(a)

1s : A G − C −
2s : T G C C A
3s : A T C − A

(b)

Fig 2.7. Gapped trace of Figure 2.7 that corresponds to alignment (a) of Figure 2.2.

By studying the properties of an alignment presented in subchapter

2.1, the following are gapped trace properties (see Althaus E. et al. [1];

Reinert K. [5]):

1. For each pair of strings, each node is either incident to exactly one

alignment edge or spanned by exactly one gap arc.

2. There must not be a critical mixed cycle in the gapped trace.

3. There cannot be a pair of conflicting gap arcs for any pair of strings.

Solving Multiple..., Pudiahwai Anton Wibowo, FMIPA UI, 2008

21

4. Whenever two alignment edges incident to the same node are

realized, say { }1 2

1 2
,i i

l lv v and { }32

2 3
, ii

l lv v , by transitivity, alignment edge

{ }31

1 3
, ii

l lv v must be realized too.

We give an example of a gapped trace in Figure 2.7. Gapped trace in Figure

2.7 (a) realizes nine alignment edges and five gap arcs. Figure 2.7 (a) is the

gapped trace that represents alignment Figure 2.7 (b). For a better

understanding, we give a brief explanation upon the gapped trace properties.

First, for each pair of strings, each node is either incident to exactly

one alignment edge or spanned by exactly one gap arc. I.e. each node is

either incident to exactly one alignment edge or spanned by exactly one gap

arc for each pair of string since for each pair of string ms and ns , character

m
js can only be aligned to character n

js under alignment S on column j, m,

n = 1, 2, …, k; m ≠ n, j = 1, 2, …, l.

Second, there must not be a critical mixed cycle in the subgraph. A

mixed cycle in a gapped extended alignment graph represents a contradictory

ordering in the alignment called crossing. A mixed cycle C is called critical if

for all i, 1 ≤ i ≤ k, all vertices in C ∩ Si occur consecutively in C. Informally

this means that a critical mixed cycle visits (enters and leaves) each

sequences at most once. The difference between a mixed and a critical

mixed cycle can be seen in Figure 2.8. Figure 2.8 (a) and (b) are subsets of

gapped extended alignment graph Figure 2.6 that have a mixed cycle. Figure

Solving Multiple..., Pudiahwai Anton Wibowo, FMIPA UI, 2008

22

2.8 (c) and (d) are subsets of gapped trace Figure 2.8 (a) and (b) that forms

the mixed cycle. Mixed cycle (c) is not critical since s2 is visited more than

once in mixed cycle (b). Mixed cycle (d) is critical because each sequence is

visited exactly once in mixed cycle (d). Both mixed cycle (c) and (d)

represents a contradictory ordering in the alignment. Figure 2.9 illustrates

contradictory ordering. Figure 2.9 (a), (b), (c), (d) illustrates the steps of

representing mixed cycle Figure 2.8 (c) into the array representation. Figure

2.9 (a) shows that characters 1
1s , 1

2s , and 1
3s are placed consecutively in

different columns in the same row. Figure 2.9 (b) shows that character 1
3s is

aligned to character 2
1s . Figure 2.9 (c) shows that character 2

1s is aligned to

character 3
1s . Figure 2.9 (d) shows that character 3

2s is aligned to character

2
3s , characters 2

1s , 2
2s , and 2

3s are placed consecutively in different columns

in the same row, and character 3
2s is moved to the column where character

2
3s is placed. Figure 2.9 (d) clearly shows the contradictory ordering where

character 2
3s is supposed to be aligned with character. Figure 2.9 (e), (f), (g),

(h) illustrates the steps of representing mixed cycle Figure 2.8 (d) into the

array representation. Figure 2.9 (e) shows that characters 1
1s , 1

2s , and 1
3s are

placed consecutively in different columns in the same row. Figure 2.9 (f)

shows that character 1
3s is aligned to character 2

1s . Figure 2.9 (g) shows that

characters 2
1s , 2

2s , and 2
3s are placed consecutively in different columns in the

Solving Multiple..., Pudiahwai Anton Wibowo, FMIPA UI, 2008

23

same row. Figure 2.9 (h) shows that character 2
3s is aligned to character 3

1s .

Figure 2.9 (h) clearly shows the contradictory ordering where character 3
1s is

supposed to be aligned with character 1
1s . Critical mixed cycle is indeed a

mixed cycle and it has been guaranteed that a gapped trace contains a mixed

cycle if and only if it contains a critical mixed cycle (see Reinert K. [6]).

A

T

G C

G C C A

C AA T

s1

s2

s3

{ }1 2
3 1,v v

{ }2 3
3 2,v v

{ }1 3
1 1,v v

A

T

G C

G C C A

C AA T

s1

s2

s3

{ }1 2
1 3,v v{ }1 2

3 1,v v

{ }2 3
1 1,v v { }2 3

3 2,v v

A

TA

T

C G

C

(b) (d)

A

TG

C

A G

C

(a) (c)

s1

s2

s2

s1

s1s3

s3

s1

s3

s2

s1

s1s2

s2

Fig. 2.8. Examples of a mixed cycle and a critical mixed cycle.

Solving Multiple..., Pudiahwai Anton Wibowo, FMIPA UI, 2008

24

1s : A G C
(a)

1s : A G C
2s : T

(b)

1s : A G C
2s : T
3s : A T

(c)

1s : A G C
2s : T G C
3s : A T

(d)

1s : A G C
(e)

1s : A G C
2s : T

(f)

1s : A G C
2s : T G C

(g)

1s : A G C
2s : T G C
3s : A

(h)

Fig. 2.9. Contradictory ordering of mixed cycle Figure 2.8 (c) and (d).

Third, there cannot be a pair of conflicting gap arcs for a given pair of

strings. Gap arcs are said to be conflict by definition if the substrings

spanned by the gap arcs overlap or even touch each other. We give an

illustration of overlapping and touching gap arcs in Figure 2.10. Figure 2.10

(a) and (b) illustrate examples of overlapping gap arcs. In Figure 2.10 (a), gap

arc ()13 3
1 2,v v spans from characters 3

1s and 3
2s , gap arc ()13 3

2 3,v v spans from

characters 3
2s and 3

3s (notice that gap arcs ()13 3
1 2,v v and ()13 3

2 3,v v overlapped

each other in spanning character 3
2s), and gap arc ()13 3

3 4,v v spans from

characters 3
3s and 3

4s , i.e. substring 3
1s to 3

4s is aligned to gaps inserted in s1.

By definition of gap arc, gap arcs ()13 3
1 2,v v , ()13 3

2 3,v v , and ()13 3
3 4,v v must be

Solving Multiple..., Pudiahwai Anton Wibowo, FMIPA UI, 2008

25

replaced by gap arc ()13 3
1 4,v v . Figure 2.10 (c) and (d) illustrate examples of

touching gap arcs. In Figure 2.10 (c), gap arc ()13 3
1 1,v v spans character 3

1s ,

gap arc ()13 3
2 2,v v spans character 3

2s (notice that gap arcs ()13 3
1 1,v v and

()13 3
2 2,v v touched each other), gap arc ()13 3

3 3,v v spans character 3
3s , and gap

arc ()13 3
4 4,v v spans characters 3

4s , i.e. substring 3
1s to 3

4s is aligned to gaps

inserted in s1. By definition of gap arc, gap arcs ()13 3
1 1,v v , ()13 3

2 2,v v , ()13 3
3 3,v v ,

and ()13 3
4 4,v v must be replaced by gap arc ()13 3

1 4,v v . Conflict shown in Figure

2.10 (a), (b), (c) and (d) should be represented by Figure 2.10 (e).

Gap arc of set

Position arc of set Ap

3,1
gA

s3

s3

s3

s3

CT s3

(a) (c)

(b) (d)

(e)

C AA T

C AA T

A

C AA T

AA

CTA

Fig. 2.10. Example of overlapping gap arcs of set 3,1
gA .

Last, whenever two alignment edges incident to the same node are

realized, say { }1 2

1 2
,i i

l lv v and { }32

2 3
, ii

l lv v , by transitivity, alignment edge { }31

1 3
, ii

l lv v

must be realized too. From the alignment properties, all characters i
js ,

Solving Multiple..., Pudiahwai Anton Wibowo, FMIPA UI, 2008

26

i = 1, 2, …, k, are aligned on the same column j under alignment S . It means

that if a character 1

1

i
js is aligned to character 2

2

i
js and character 2

2

i
js is aligned

to character 3

3

i
js , 1 ≤ ir ≤ k; 1 ≤ jr ≤ ris ; r = 1, 2, 3, then character 1

1

i
js is also

aligned to character 3

3

i
js , i.e. we can say that transitivity holds in the array

representation of alignment. For an example, say we realize alignment edges

{ }1 2
3 5,v v and { }2 3

5 1,v v . Then by transitivity, alignment edge { }1 3
3 1,v v must be

realize too. The illustration is given in Figure 2.11. Notice that the alignment

edges { }1 2
3 5,v v , { }2 3

5 1,v v , and { }1 3
3 1,v v in Figure 2.11 form a cycle. For more

detail and further explanation about gapped trace see Reinert K. [6].

A

T

G C

G C C C

C AA T

s1

s2

s3

{ }1 2
3 5,v v{ }1 3

3 1,v v

{ }2 3
5 1,v v

Fig. 2.11. Example of transitivity.

 As discussed in subchapter 2.2, scoring scheme is used to score any

possible alignment of the MSA problem. Since the MSA problem becomes a

gapped trace problem, scoring alignments becomes scoring gapped traces.

For scoring gapped traces, each alignment edge and gap arc is assigned a

weight that corresponds to the benefit (or cost depending on the purpose of

the alignment) of realizing the edge or arc. Let we and wa denote the weight of

alignment edge e ∈ E and gap arc a ∈ Ag. With the weight and the gapped

Solving Multiple..., Pudiahwai Anton Wibowo, FMIPA UI, 2008

27

trace properties altogether, we can formulize the general ILP model of the

MSA problem. The ILP model along with the detail explanation will be

presented in the next chapter. But before we advance to the next chapter, we

present definitions and basic concepts in integer linear programming first and

then the branch-and-bound method.

2.5. DEFINITIONS AND BASIC CONCEPTS IN INTEGER LINEAR

PROGRAMMING

Linear programming is a mathematical technique that selects the

best course of action from a set of feasible alternatives (see Wu N. and

Coppins R. [8]). It is linear because the relationships among the variables

involved are linear. Typical linear programming problem is to optimize an

objective function subject to a series of linear restriction (constraints). An

optimal solution of a linear program includes set(s) of values for the variables

(the solution does not need to be unique) that optimize(s) the corresponding

value of the objective function. We can form the standard linear program in

symbols as follow:

Optimize
=

= + + + = ∑…1 1 2 2
1

n

n n j j
j

f c x c x c x c x

Solving Multiple..., Pudiahwai Anton Wibowo, FMIPA UI, 2008

28

subject to

+ + + ≤

+ + + ≤

…
…

11 1 12 2 1 1

21 1 22 2 2 2

n n

n n

a x a x a x b
a x a x a x b

#
+ + + ≤…1 1 2 2m m mn n ma x a x a x b

Or

=

≤∑
1

n

ij j i
j

a x b , i = 1, 2, …, m; j = 1, 2, …, n

x1, x2, …, xn ≥ 0

where x1, x2, …, xn are the decision variables, f is the objective function, c1,

c2, …, cn are the coefficients of decision variables in the objective function,

ai1, ai2, …, ain are the coefficients of decision variables in the i-th constraint,

and bi are the constant of the i-th constraint. We can also write the standard

linear program form with vector notation as follow:

Optimize f = c’x

subject to

Ax ≤ b
x ≥ 0

where c, x, 0 are n × 1 vectors, A is an m × n matrix, and b is an m × 1

vector.

There are many situations which require the decision variables to have

integer values. Problems that arise from such situations are referred as

integer programming problems. One special integer programming problem

is integer linear programming problem, a linear programming problem with

an additional integer value constraint. Among integer programming problems,

Solving Multiple..., Pudiahwai Anton Wibowo, FMIPA UI, 2008

29

there is a special class in which the values of the variables are restricted to

values 1 or 0 (binary). It is referred as binary integer linear programming

problems.

In this skripsi, we also construct a program that can generate and

solve the ILP model of any given MSA problem using MATLAB R2008a. We

utilize a function in MATLAB R2008a to solve a binary ILP problem which is

based on the branch-and-bound method. Hence, we introduce the branch-

and-bound method.

2.6. THE BRANCH-AND-BOUND METHOD

Basically, branch-and-bound method refers to a search procedure,

i.e. a sequential division of the set of possible solutions to an integer

programming problem into subsets. Bounds on the value of the objective

function and feasibility criteria are used to limit the search for each subset.

The most important property of branch-and-bound is its ability to enumerate

the majority of the possible solutions of the integer programming problem

implicitly. The number of solutions is finite when the values of the variables

are bounded. The more solutions that can be enumerated implicitly, the

quicker the optimal solution is identified. This is important for integer

programming problems which exhibit explosive growth in the number or

possible solutions as the number of variables increases. As an example, a

Solving Multiple..., Pudiahwai Anton Wibowo, FMIPA UI, 2008

30

binary integer programming problem of three variables has 23 = 8 possible

solutions of which not all may be feasible. A binary integer programming

problem of ten and thirty variables has 210 = 1,024 and 230 = 1,073,741,824

possible solutions respectively.

The model derived from the graph representation of an MSA problem

is a binary ILP model. We know that a binary ILP problem with n variables

would have 2n possible solutions. To solve the problem, a modified general

branch-and-bound method is used. The method is referred as implicit

enumeration (Wu N. and Coppins R. [8]). The term implicit enumeration

implies that (hopefully) many of the possible 2n solutions will be discarded by

various feasibility tests and bound without requiring explicit enumeration.

We introduce some terminology for the implicit enumeration. Suppose

we have assigned values to some of but not all the variables. The solution

obtained from the assigned values is called a partial solution. The variables

that are assigned values in a partial solution are said to be fixed, while the

remaining variables are said to be free. A completion is made by assigning a

specific set of values to the free variables.

Suppose we have a partial solution at some stage of the solving

process. We can generate an upper bound on the optimal value if the

objective function for all possible completions by letting each free variable be

1. The upper bound is

fixed variables free variables
u j j jf c x c= +∑ ∑ .

Solving Multiple..., Pudiahwai Anton Wibowo, FMIPA UI, 2008

31

The feasibility is checked by using a similar approach that is by rewriting each

constraint as

fixed variables free variables
ij j i ij ja x b a x≤ −∑ ∑ for i = 1, 2, …, m.

A constraint can be satisfied only if

()
fixed variables free variables

min ,0ij i ij ja b a x≤ −∑ ∑

i.e. only if the free variables have sufficient negative coefficients. Thus we can

eliminate the completion whenever

()
fixed variables free variables

min ,0ij i ij ja b a x> −∑ ∑ .

The steps of the implicit enumeration are summarized as follow (Wu N. and

Coppins R. [8]):

Step 1 Generate a lower bound 1
Lf by using any feasible solution. If none is

obvious, set 1
Lf = −∞ . All variables are free.

Step 2 Select a free variable (say xk) and use it to generate the separation xk

= 0 and xk = 1. Move xk to the set of fixed variables on each branch of

the separation.

Step 3 For each new partial solution generated by the separation, compute

the upper bound fu of the objective function over all completions.

Solving Multiple..., Pudiahwai Anton Wibowo, FMIPA UI, 2008

32

Step 4 Select the most recently created partial solution. It is eliminated when

(1) fu < fL, or (2) there are no feasible completions, or (3) there are no

free variables, or (4) the upper bound calculation generates a feasible

completion. In this case if fu > fL, replace fL with the value fu and store

the values of the variables as the new incumbent solution. When a

solution has been eliminated, go to step 4, unless there are no

remaining partial solutions.

Step 5 If there are no remaining partial solutions, stop. The current incumbent

solution is optimal. Otherwise, go to step 2.

By applying the steps of the implicit enumeration to a binary ILP problem, we

will obtain a tree that represents the branch-and-bound process of finding

solution of the problem.

Consider the following binary ILP maximizing problem of four

variables:

Example 2.2

 Max 1 2 3 46 3 2f x x x x= + + +
 subject to 1 2 3 43 2 5 1x x x x− − + ≤ −
 1 2 3 42 2 2 0x x x x− + + − ≤
 2 3 42 1x x x− + ≤
 1 2 3 4, , , 0 or 1x x x x =

By applying the steps of the implicit enumeration, we obtain the tree

representation of the branch-and-bound process of finding solution for

Example 2.2 which is given in Figure 2.12.

Solving Multiple..., Pudiahwai Anton Wibowo, FMIPA UI, 2008

33

1 ()

1

2
1 2 3 47 1, 0

L

L

f

f x x x x

= −∞

= = = = =

2 3

4 5

6 7

x2 = 1x2 = 0

x4 = 0 x4 = 1

x3 = 0 x3 = 1

fu = 6 fu = 12

fu = 12fu = 10

fu = 10fu = 7
(feasible) (infeasible)

(infeasible)

fu < fL

Fig. 2.12. Branch-and-bound tree for Example 2.2

 First, we set 1
Lf = −∞ at node 1 since there is no obvious feasible

solution. All variables are free. Next, we use the x2 to generate the separation

x2 = 0 (node 2) and x2 = 1 (node 3). At each node we fix x2. At node 3, fu = 12

> 1
Lf . By checking the feasibility upon the constraints of Example 2.2 (x2 = 1),

the completion remains feasible as long as x4 = 0. Next, we use x4 to

generate the separation x4 = 0 (node 4) and x4 = 1 (node 5). At each node we

fix x4. By checking the feasibility upon the constraints of Example 2.2 (x2 = 1

and x4 = 0), the completion remains feasible as long as x3 = 0. Next, we use

x3 to generate the separation x3 = 0 (node 6) and x3 = 1 (node 7). At each

node we fix x3. By checking the feasibility upon the constraints of Example

2.2 (x2 = 1, x3 = 0, and x4 = 0), the feasible completion is x1 = 1 with fu = 7.

Solving Multiple..., Pudiahwai Anton Wibowo, FMIPA UI, 2008

34

Since this is a completion and fu > 1
Lf , we set 2

Lf = fu = 7 and store x1 = 1, x2 =

1, x3 = 0, and x4 = 0 as the incumbent. At node 2, fu = 6 < 2
Lf . Hence, node 2

is eliminated. Since there are no remaining partial solutions, the current

incumbent (x1 = 1, x2 = 1, x3 = 0, and x4 = 0) is optimal, with f = 7.

Solving Multiple..., Pudiahwai Anton Wibowo, FMIPA UI, 2008

