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CHAPTER II 

BASIC THEORIES 
 
 
 
 

In this chapter, we present basic theories used throughout the skripsi. 

First, we present definitions and basic concepts of multiple sequence 

alignment (MSA) to give a brief view of an MSA problem. The aim of an MSA 

is to determine the best alignments. Criteria of a best alignment depend on 

the purpose of the alignment itself. We present scoring scheme as a tool to 

score every possible alignments. With the help of scoring scheme, we can 

determine the best alignments based on the purpose of the alignment. 

However, finding the best alignments is not straightforward. The MSA 

problem is solved with integer linear programming. The integer linear 

programming (ILP) model is derived from the graph representation of the 

MSA problem. Hence, we also present definitions and basic concepts in 

graph theory, graph representation of an MSA problem, and definitions and 

basic concepts in integer linear programming. Solving an ILP model requires 

a different approach than solving a linear programming model since the 

solution of an ILP model needs to be integer. We devise a program to 

generate and solve the ILP model of an MSA problem using MATLAB 

R2008a. MATLAB R2008a has a function to solve a binary ILP problem using 

branch-and-bound method. Hence, we present the branch-and-bound method 

at the end of chapter II. 
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2.1. DEFINITIONS AND BASIC CONCEPTS OF MSA 
 
 
 
 Sequence alignment is a process of adjusting sequences so that they 

are in proper relative position. In general, sequence alignment has the 

following properties (see Althaus E. et al. [1]; Kececioglu J.D. et al. [4]): 

- The length of each of the aligned sequence must be the same after an 

alignment. 

- Each of the aligned sequence before and after an alignment is 

identical if gap(s) is (or are) ignored. 

In bioinformatics, sequence alignment is a way of arranging the 

primary sequences of DNA, RNA, or protein to identify regions of similarity 

that may be a consequence of functional, structural, or evolutionary 

relationships between the sequences. Multiple sequence alignment (MSA) 

is a sequence alignment of more than two sequences (Sequence alignment 

of two sequences is called pairwise sequence alignment). MSA is often 

used to identify conserved regions across a group of sequences 

hypothesized to be evolutionarily related. We mainly discuss MSA of DNA 

sequences in the skripsi. DNA (deoxyribonucleic acid) sequences are 

associated with four alphabet letter: A (adenine), C (cytosine), G (guanine), 

and T (thymine) each of the alphabets stands for the nucleic acid of DNA. 

During the course of evolution, residues of the sequences that evolve from a 

common ancestor may have undergone substitutions (when residues are 
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replaced by other residues), insertions (when new residues appear in a 

sequence in addition to the existing ones), or deletions (when some residue 

disappear). 

1s : 1
1s 1

2s " 1
js " 1

ls
2s : 2

1s 2
2s " 2

js " 2
ls

# # #  #  #
is : 1

is 2
is " i

js " i
ls

# # #  # % #
ks : 1

ks 2
ks " k

js " k
ls

Fig. 2.1. Alignment set S . 

Let S = {s1, s2, …, sk} be a set of k strings over a DNA alphabet  

A = {A, C, G, T} and let A  = A ∪  {−} where ‘−’ (dash) is a symbol that 

represents gap. An alignment of S is a set S  = { }…1 2,  ,  ,  ks s s  of strings 

over alphabet A  where all the strings in S  have the same length and if the 

dash is ignored, string is  is identical to string si. The length of string s is the 

number of characters that are in string s, denoted by s . String s consists of 

characters sj, j = 1, 2, …, s . All strings is S∈  in an alignment can be 

represented as an array of k rows and l columns where row i corresponds to 

string is . Characters of distinct strings in S are said to be aligned under S  if 

they are placed on the same column of the alignment array. Figure 2.1 

illustrates a general form of an alignment set S  of k sequences. Alignment 

set S  consists of strings is , i = 1, 2, …, k. Every string is  consists of 
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characters i
js , j = 1, 2, …, l. Character m

js  and n
js , m, n = 1, 2, …, k; m ≠ n , 

is aligned under alignment S  on column j. A character from si and a 

character from sj are a match if both characters are the same and they are 

put (aligned) under the same column j, i.e. m
js  = n

js . A character from si and a 

character from sj are a mismatch if both characters are not the same and 

they are put (aligned) under the same column j, i.e. m
js  ≠ n

js . To give a better 

understanding about array representation of an alignment, consider an MSA 

problem consisting of three very short DNA sequences given in Example 2.1: 

Example 2.1. 

 Given sequences s1, s2, and s3. 

 s1: A G C   
s2: T G C C A 
s3: A T C A  

Some possible alignments of Example 2.1 are given in Figure 2.2. From 

Figure 2.2 (a), character 1
1s  (alphabet A from s1) and character 3

1s  (alphabet 

A from s3) is a match and character 1
1s  (alphabet A from s1) and character 2

1s  

(alphabet T from s2) is a mismatch. Character 2
4s  (alphabet C from s2) and 

character 3
4s (dash symbol) is also a mismatch where 3

4s  is a gap inserted in 

s3. A glance of Figure 2.2, the number of inserted dash symbols increases 

from alignment Figure 2.2 (a) to alignment Figure 2.2 (d). 

Solving Multiple..., Pudiahwai Anton Wibowo, FMIPA UI, 2008

 
 
 

 



9 

 

 

 

 
1s : A G − C −
2s : T G C C A
3s : A T C − A

(a) 

1s : A − G − C −
2s : − T G C C A
3s : A T − C − A

(b) 

1s : A − G C − − 
2s : − T G C C A 
3s : A T − − C A 

(c) 

1s : − − − − − A G C
2s : T G C C A − − −
3s : − − − − A T C A

(d)

Fig. 2.2. Possible alignments of Example 2.1. 

 It is obvious that there are many alignments of an MSA. The problem 

then becomes how to determine the best alignment. In biology, justification of 

good or bad alignment criteria is obtained through qualitative approach. 

However, if we want to compute an alignment, such criteria cannot be used. 

A set of scores obtained through quantitative approach called scoring scheme 

is used as a criteria of a good or a bad alignment. The alignments that have 

the best score by definition are the optimal alignments (It is possible that 

there are more than one such alignment). We will introduce scoring scheme 

of an alignment on the following subchapter. 

 
 
 
2.2. SCORING SCHEME OF AN ALIGNMENT 
 
 
 

Scoring scheme is used to score any alignment of the MSA problem. 

We can distinguish among different alignments by examining their scores. We 

can make our own scoring scheme according to our own preferences (the 
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preferences must not violate any alignment criteria) or obtain it through 

biological or statistical observation. A simple scoring scheme assumes 

independence among columns in an alignment and set the total score of the 

alignment to be equal to the sum of the scores of each column (see Isaev A. 

[3]). Such scheme only needs to specify the score of a match and a 

mismatch. A mismatch includes mismatch between the DNA alphabets and 

mismatch between the DNA alphabet and the inserted gap. The former is 

referred as a mismatch score and the latter is referred as a gap penalty. 

We can make a simple scoring scheme; say +2 for a match, −1 for a 

mismatch, and 0 for a gap penalty. First, we apply the scoring scheme to 

alignment (a) in Figure 2.2. From the first column (j = 1), 1
1s  ≠ 2

1s  (A ≠ T, a 

mismatch),  1
1s  = 3

1s  (A = A, a match), and 2
1s  ≠ 3

1s  (T ≠ A, a mismatch). The 

sum of the scores of the first column is −1 + 2 − 1 = 0. From the second 

column (j = 2), 1
2s  = 2

2s  (G = G, a match), 1
2s  ≠ 3

2s  (G ≠ T, a mismatch), and 

2
2s  ≠ 3

2s  (G ≠ T, a mismatch). The sum of the scores of the second column is 

2 – 1 – 1 = 0. From the third column (j = 3), 1
3s  ≠ 2

3s  (‘−‘ ≠ C, a gap penalty),  

1
3s  ≠ 3

3s (‘−‘ ≠ C, a gap penalty), and 2
3s  = 3

3s  (C = C, a match). The sum of 

the scores of the third column is 0 + 0 + 2 = 2. From the fourth column (j = 4),  

1
4s  = 2

4s  (C = C, a match), 1
4s  ≠ 3

4s (C ≠ ‘−‘, a gap penalty), and 2
4s  ≠ 3

4s (C ≠ 

‘−‘, a gap penalty). The sum of the scores of the fourth column is 2 + 0 + 0 = 

2. From the fifth column (j = 5), 1
5s  ≠ 2

5s  (‘−‘ ≠ A, a gap penalty),  1
5s  ≠ 3

5s (‘−‘ ≠ 
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A, a gap penalty), and 2
5s  = 3

5s  (A = A, a match). The sum of the scores of 

the fifth column is 0 + 0 + 2 = 2. The total score of alignment (a) in Figure 2.2 

is the sum of the scores of each column (j = 1, 2, …, 5): 0 + 0 + 2 + 2 + 2 = 6. 

If we apply the scoring scheme to the rest of the alignments in Figure 2.2, 

alignment (b), (c), and (d) will have the total score of 12, 12, and −1 

respectively. Notice that alignment (b) and (c) have the same total score. 

However, according to Althaus E. et al. [2], “a single longer gap is more likely 

to arise in reality since it might be caused by a single mutational event”. 

Additionally, the length of the gap should have a smaller impact to the score 

than the number of gaps. We can achieve this by using convex gap cost 

functions such as a + b log l where a and b are arbitrary numbers and l is the 

length of the gap. We can also use an affine gap costs of the form a + bl. 

In alignment (b) Figure 2.2, 1s  has three gaps: 1
2s , 1

4s , and 1
6s , 2s  has 

one gap: 2
1s , and 3s  has two gaps: 3

3s  and 3
5s . In alignment (c) Figure 2.2, 

1s  has two gaps: 1
2s  and { 1

5s , 1
6s } (both dash symbol 1

5s  and 1
6s  are 

considered as a single but long gap), 2s  has one gap: 2
1s , and 3s  has one 

gap: { 3
3s , 3

4s }. Alignment (b) and (c) have 6 and 4 gaps in total respectively. 

Hence, alignment (c) should be scored better than alignment (b). 

 We can solve the MSA problem by using various methods such as 

dynamic programming (e.g. Needleman-Wunsch algortihm, see Isaev A. [3]) 

and heuristic (e.g. FASTA, see Isaev A. [3]). A method has been proposed by 
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Althaus E. et al. [1] to solve the MSA problem which is based on ILP. The ILP 

model is derived from a graph representation of the MSA problem. Before we 

discuss about the graph representation of the MSA problem further, we will 

introduce some definitions and basic concept in graph theory on the following 

subchapter. 

 
 
 
2.3. DEFINITIONS AND BASIC CONCEPTS IN GRAPH THEORY 
 
 
 

A graph G(V, E, A) consists of V, a nonempty set of vertices, E, a set 

of unordered pairs of distinct elements of V called edges, and A, a set of 

directed edges called arcs (see Rosen K.H. [7]). Two vertices u and v in a 

graph G are called adjacent (or neighbors) in G if e = {u, v} is an edge of 

graph G. Edge e is called incident with vertices u and v. Vertices u and v are 

called endpoints of edge e. Two edges e1 and e2 are called multiple (or 

parallel) edges if both edges are incident to the same endpoints. Vertex u is 

said to be adjacent to vertex v (or vertex v is said to be adjacent from vertex 

u) if a = (u, v) is an arc of graph G. In this case, vertex u is called initial 

vertex of arc a and vertex v is called terminal (or end) vertex of arc a. An 

arc is called loop if the arc has the same initial and end vertex. Graph  

H = (W, F, B) is a subgraph graph G = (V, E, A) if W ⊆  V, F ⊆  E, and  

B ⊆  A. Graph H is a spanning subgraph graph G if W = V. 

Solving Multiple..., Pudiahwai Anton Wibowo, FMIPA UI, 2008

 
 
 

 



13 

 

 

 

A graph G is called a simple graph if it contains no arcs, multiple 

edges, and loops. G is called a directed graph if it contains arcs and (or) 

loops but no multiple edges. Walk of length k is a sequence v1, u1, v2, u2, v2, 

…, vk, uk, vk+1 of vertices and edge(s) or arc(s) such that all ui are only edges 

{vi, vi+1} or arcs (vi, vi+1), i = 1, 2, …, k. Mixed walk of length k is a sequence 

v1, u1, v2, u2, v2, …, vk, uk, vk+1 of vertices, edge(s), and arc(s) such that the 

sequence contains both arc and edge, ui can either be an edge {vi, vi+1} or an 

arc (vi, vi+1). Path is a walk that does not traverse the same vertex more than 

once, i.e. vi = vj if and only if i = j, i, j = 1, 2, …, k + 1. Mixed path is a mixed 

walk that does not traverse the same vertex more than once. Cycle is a path 

that begins and ends at the same vertex. Mixed cycle is a mixed path that 

begins and ends at the same vertex. 

A simple graph G is called bipartite if its vertex set V can be 

partitioned into two disjoint sets V1 and V2 such that no edge in graph G 

connects either two vertices in V1 or two vertices in V2. Complete bipartite 

graph Km,n is a graph that its vertex set partitioned into two subsets V1 of m 

vertices and V2 of n vertices such that there is an edge between two vertices 

if and only if one vertex is in the first subset and the other vertex is in the 

second subset. Complete k-partite graph ( )1 2, , , kn n nK …  is a graph that has its 

vertex set partitioned into subsets V1 of n1 vertices, V2 of n2 vertices, …, and 

Vk of nk vertices such that there is an edge between two vertices if and only if 

one vertex is in the first subset and the other vertex is in the second subset. 
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Figure 2.3 illustrates some graph examples. Graph G on Figure 2.3 (a) is a 

directed graph with 5 vertices, 6 edges, and 4 arcs. Graph H2 and H3 on 

Figure 2.3 (c) and (d) are subgraphs of graph G. Graph H1 on Figure 2.3 (b) 

is a spanning subgraph of graph G. Graph H2 is a cycle and also a bipartite 

graph with disjoint vertex sets of {v1, v2} and {v4, v5}. Graph H3 is a mixed 

cycle. 

 

v1 v2 v3

v4 v5

e1 e4

e2 e5

e6

a1

a2

a3

a4

e3

(a) Graph G

v1 v2

v4 v5

e1 e4

e2

e3

(c) Graph H2

v1 v2

v4 v5

e2

a1

a2

e3

(d) Graph H3

v1 v2 v3

v4 v5

e1 e4

a1

a2

a3

a4

(b) Graph H1  

Fig. 2.3. Graph examples. 

Now that we have discussed about graph theory, we will present the 

steps of constructing a graph representation of the MSA problem. 
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2.4. GRAPH REPRESENTATION OF THE MSA PROBLEM 
 
 
 

MSA problem is represented as a graph, each character i
js ,  

i = 1, 2, …, k; j = 1, 2, …, is ,is represented as node i
jv . Vi denotes the set of 

all nodes corresponding to characters in si. 

 

Fig. 2.4. Alignment graph of Example 2.1. 

We start by introducing a graph that represents all the possible 

alignment of the characters i
js  called an alignment graph. Alignment of 

character 1

1

i
js  from 1is  and character 2

2

i
js  from 2is  is represented as edge  

e = { }1 2

1 2
,i i

j jv v , i1, i2 = 1, 2, …, k; i1 ≠ i2; j1 = 1, 2, …, 1is ; j2 = 1, 2, …, 2is . Such 

an edge is called alignment edge. 1 2,i iE  denotes the set of all alignment 

edges e = { }1 2

1 2
,i i

j jv v  of the alignment graph. Graph G = (V, E) is an alignment 
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graph where V = {V1 , V2  , …, Vk} and E is the set of all the alignment edge. 

The alignment graph of Example 2.1 is given in Figure 2.4. We can see in 

Figure 2.4 that alignment graph of k -sequence MSA problem is a complete k-

partite graph. 

 

Fig 2.5. Extended alignment graph of Example 2.1. 

However, alignment graph does not represent order of the characters. 

According to the property of an alignment, the order of the characters of each 

sequence must be the same before and after the alignment. Hence, we 

introduce extended alignment graph, an alignment graph that also contains 

the ordering information of the characters of each sequence. Ordering of 

characters i
js  within the same string si is represented as arc ap = ( )+1,i i

j jv v , 
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 i = 1, 2, …, k; j = 1, 2, ..., is  − 1, which means that the characters are 

ordered from the left to the right. Such arc is called position arc. Ap denotes 

the set of all position arcs ap = ( )+1,i i
j jv v . Graph G = (V, E, Ap) is an extended 

alignment graph where V = {V1 , V2  , …, Vk}, E is the set of all the alignment 

edge and Ap is the set of all the position arc. The extended alignment graph 

of Example 2.1 is given in Figure 2.5. We can see in Figure 2.5 that the order 

of each sequence is still preserved by the position arc in the extended 

alignment graph. 

1,2
gA

1,3
gA
2,1
gA
2,3
gA
3,1
gA
3,2
gA  

Fig. 2.6. Gapped extended alignment graph of Example 2.1. 

Extended alignment graph preserves the ordering information of the 

sequences but it does not represent the possibility of aligning character(s) to 
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gap. Hence, we introduce the gapped extended alignment graph, an 

extended alignment graph that also represents the possibility of aligning 

character(s) to gap. Each character 1i
js  from 1is  that is not aligned to a 

character from 2is  is aligned to a gap inserted in 2is , i1, i2 = 1, 2, …, k; i1 ≠ i2;  

j = 1, 2, …, 1is . It is also possible that a substring say 1

1

i
js  to 1

2

i
js ,  

j1, j2 = 1, 2, …, 1is , of si1 is aligned to a (single longer) gap inserted in 2is . 

Hence, for each substring 1

1

i
js  to 1

2

i
js  of 1is  that are aligned to a gap inserted in 

2is , there is an arc ag = ( ) 2
1 1

1 2
,

ii i
j jv v . Such an arc is called gap arc. Substring 

1

1

i
js  to 1

2

i
js  of 1is  are said to be spanned by gap arc ( ) 2

1 1

1 2
,

ii i
j jv v . 1 2,i i

gA  denotes the 

set of all gap arcs ag = ( ) 2
1 1

1 2
,

ii i
j jv v , j1, j2 = 1, 2, …, 1is . There is also another 

definition for gap arcs that is 1 2,i i
gA (j1 ↔ j2). 1 2,i i

gA (j1 ↔ j2) := 

( ){ }2
1 1

1 2, : ,
ii i

p qv v p j q j≤ ≥  denote the subset of arcs in 1 2,i i
gA  that spans 

character 1

1

i
js , …, 1

2

i
js , i1, i2 = 1, 2, …, k; i1 ≠ i2; j1, j2 = 1, 2, …, 1is . Graph  

G = (V, E, A) is a gapped extended alignment graph where  

V = {V1 , V2  , …, Vk}, E is the set of all the alignment edge, Ag is the set of all 

the gap arc, and A = {Ap ∪  Ag}. The gapped extended alignment graph of 

Example 2.1 is given in Figure 2.6. Notice that the gap arc is not represented 

as an arc but as an edge in the gapped extended alignment graph. It is 
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represented as an edge because gap arc ( ) 2
1 1

1 2
,

ii i
j jv v  is the same as gap arc 

( ) 2
1 1

2 1
,

ii i
j jv v , i1, i2 = 1, 2, …, k; i1 ≠ i2; j1, j2 = 1, 2, …, 1is . Rather than 

representing gap arc ( ),
ji i

l mv v  as two different arcs, it is represented as a 

single edge (an edge is in fact a two way arc). In Figure 2.6, 2,1
gA (2 ↔ 3) 

denotes the set of gap arcs { ( )12 2
1 3,v v , ( )12 2

1 4,v v , ( )12 2
1 5,v v , ( )12 2

2 3,v v , ( )12 2
2 4,v v , 

( )12 2
2 5,v v }. 

Gapped extended alignment graph is the graph representation of the 

MSA problem. Now, we have to find a subgraph from the gapped extended 

alignment graph that fulfills the alignment properties. We call this subgraph as 

a gapped trace. The MSA problem becomes a graph problem (or gapped 

trace problem) which is to find gapped trace, a spanning subgraph of the 

gapped extended alignment graph that corresponds to an alignment of the 

MSA problem. A gapped trace consists of the set of all vertices and position 

arcs in the gapped extended alignment graph and sets of realized alignment 

edges and gap arcs. An alignment edge e = { }1 2

1 2
,i i

j jv v  is said to be realized by 

an alignment if characters 1

1

i
js  and 2

2

i
js  are put in the same column in 

alignment array. A gap arc ag = ( ) 2
1 1

1 2
,

ii i
j jv v  is realized by an alignment if the 
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substring 1

1

i
js  to 2

2

i
js  of 1is  is not aligned to any character in 2is , whereas both 

1

1 1
i
js −  (if j1 > 1) and 1

2 1
i
js + (if j2 < 1is ) are aligned with some characters in 2is . 

A

T

G C

G C C A

A T

{ }1 2
1 1,v v

{ }2 3
1 1,v v

{ }1 3
2 2,v v

{ }1 2
2 2,v v

{ }2 3
2 2,v v

{ }2 3
3 3,v v

{ }1 2
3 4,v v

{ }2 3
5 4,v v

( )12 2
3 3,v v ( )12 2

5 5,v v

( )31 1
3 3,v v

( )13 3
3 4,v v

( )32 2
4 4,v v

s1

s2

s3C A  
(a) 

1s : A G − C −
2s : T G C C A
3s : A T C − A

(b) 

Fig 2.7. Gapped trace of Figure 2.7 that corresponds to alignment (a) of Figure 2.2. 

By studying the properties of an alignment presented in subchapter 

2.1, the following are gapped trace properties (see Althaus E. et al. [1]; 

Reinert K. [5]): 

1. For each pair of strings, each node is either incident to exactly one 

alignment edge or spanned by exactly one gap arc. 

2. There must not be a critical mixed cycle in the gapped trace. 

3. There cannot be a pair of conflicting gap arcs for any pair of strings. 
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4. Whenever two alignment edges incident to the same node are 

realized, say { }1 2

1 2
,i i

l lv v  and { }32

2 3
, ii

l lv v , by transitivity, alignment edge 

{ }31

1 3
, ii

l lv v  must be realized too. 

We give an example of a gapped trace in Figure 2.7. Gapped trace in Figure 

2.7 (a) realizes nine alignment edges and five gap arcs. Figure 2.7 (a) is the 

gapped trace that represents alignment Figure 2.7 (b). For a better 

understanding, we give a brief explanation upon the gapped trace properties. 

First, for each pair of strings, each node is either incident to exactly 

one alignment edge or spanned by exactly one gap arc. I.e. each node is 

either incident to exactly one alignment edge or spanned by exactly one gap 

arc for each pair of string since for each pair of string ms  and ns , character 

m
js  can only be aligned to character n

js  under alignment S  on column j, m,  

n = 1, 2, …, k; m ≠ n, j = 1, 2, …, l. 

Second, there must not be a critical mixed cycle in the subgraph. A 

mixed cycle in a gapped extended alignment graph represents a contradictory 

ordering in the alignment called crossing. A mixed cycle C is called critical if 

for all i, 1 ≤ i ≤ k, all vertices in C ∩  Si occur consecutively in C. Informally 

this means that a critical mixed cycle visits (enters and leaves) each 

sequences at most once. The difference between a mixed and a critical 

mixed cycle can be seen in Figure 2.8. Figure 2.8 (a) and (b) are subsets of 

gapped extended alignment graph Figure 2.6 that have a mixed cycle. Figure 
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2.8 (c) and (d) are subsets of gapped trace Figure 2.8 (a) and (b) that forms 

the mixed cycle. Mixed cycle (c) is not critical since s2 is visited more than 

once in mixed cycle (b). Mixed cycle (d) is critical because each sequence is 

visited exactly once in mixed cycle (d). Both mixed cycle (c) and (d) 

represents a contradictory ordering in the alignment. Figure 2.9 illustrates 

contradictory ordering. Figure 2.9 (a), (b), (c), (d) illustrates the steps of 

representing mixed cycle Figure 2.8 (c) into the array representation. Figure 

2.9 (a) shows that characters 1
1s , 1

2s , and 1
3s  are placed consecutively in 

different columns in the same row. Figure 2.9 (b) shows that character 1
3s  is 

aligned to character 2
1s . Figure 2.9 (c) shows that character 2

1s  is aligned to 

character 3
1s . Figure 2.9 (d) shows that character 3

2s  is aligned to character 

2
3s , characters 2

1s , 2
2s , and 2

3s  are placed consecutively in different columns 

in the same row, and character 3
2s  is moved to the column where character 

2
3s  is placed. Figure 2.9 (d) clearly shows the contradictory ordering where 

character 2
3s  is supposed to be aligned with character. Figure 2.9 (e), (f), (g), 

(h) illustrates the steps of representing mixed cycle Figure 2.8 (d) into the 

array representation. Figure 2.9 (e) shows that characters 1
1s , 1

2s , and 1
3s  are 

placed consecutively in different columns in the same row. Figure 2.9 (f) 

shows that character 1
3s  is aligned to character 2

1s . Figure 2.9 (g) shows that 

characters 2
1s , 2

2s , and 2
3s  are placed consecutively in different columns in the 
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same row. Figure 2.9 (h) shows that character 2
3s  is aligned to character 3

1s . 

Figure 2.9 (h) clearly shows the contradictory ordering where character 3
1s  is 

supposed to be aligned with character 1
1s . Critical mixed cycle is indeed a 

mixed cycle and it has been guaranteed that a gapped trace contains a mixed 

cycle if and only if it contains a critical mixed cycle (see Reinert K. [6]).  

A

T

G C

G C C A

C AA T

s1

s2

s3

{ }1 2
3 1,v v

{ }2 3
3 2,v v

{ }1 3
1 1,v v

A

T

G C

G C C A

C AA T

s1

s2

s3

{ }1 2
1 3,v v{ }1 2

3 1,v v

{ }2 3
1 1,v v { }2 3

3 2,v v

A

TA

T

C G

C

(b) (d)

A

TG

C

A G

C

(a) (c)

s1

s2

s2

s1

s1s3

s3

s1

s3

s2

s1

s1s2

s2

 

Fig. 2.8. Examples of a mixed cycle and a critical mixed cycle. 
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1s : A G C 
(a) 

1s : A G C 
2s :   T 

(b) 

1s : A G C  
2s :   T  
3s :   A T 

(c) 

1s : A G C   
2s :   T G C 
3s :   A  T 

(d) 

1s : A G C 
(e) 

1s : A G C 
2s :   T 

(f) 

 
1s : A G C   
2s :   T G C 

(g) 

1s : A G C   
2s :   T G C 
3s :     A 

(h) 

Fig. 2.9. Contradictory ordering of mixed cycle Figure 2.8 (c) and (d). 

Third, there cannot be a pair of conflicting gap arcs for a given pair of 

strings. Gap arcs are said to be conflict by definition if the substrings 

spanned by the gap arcs overlap or even touch each other. We give an 

illustration of overlapping and touching gap arcs in Figure 2.10. Figure 2.10 

(a) and (b) illustrate examples of overlapping gap arcs. In Figure 2.10 (a), gap 

arc ( )13 3
1 2,v v  spans from characters 3

1s  and 3
2s  , gap arc ( )13 3

2 3,v v  spans from 

characters 3
2s  and 3

3s  (notice that gap arcs ( )13 3
1 2,v v  and ( )13 3

2 3,v v  overlapped 

each other in spanning character 3
2s ), and gap arc ( )13 3

3 4,v v  spans from 

characters 3
3s  and 3

4s , i.e. substring 3
1s  to 3

4s  is aligned to gaps inserted in s1. 

By definition of gap arc, gap arcs ( )13 3
1 2,v v , ( )13 3

2 3,v v , and ( )13 3
3 4,v v  must be 
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replaced by gap arc ( )13 3
1 4,v v . Figure 2.10 (c) and (d) illustrate examples of 

touching gap arcs. In Figure 2.10 (c), gap arc ( )13 3
1 1,v v  spans character 3

1s , 

gap arc ( )13 3
2 2,v v  spans character 3

2s  (notice that gap arcs ( )13 3
1 1,v v  and 

( )13 3
2 2,v v  touched each other), gap arc ( )13 3

3 3,v v  spans character 3
3s , and gap 

arc ( )13 3
4 4,v v  spans characters 3

4s , i.e. substring 3
1s  to 3

4s  is aligned to gaps 

inserted in s1. By definition of gap arc, gap arcs ( )13 3
1 1,v v , ( )13 3

2 2,v v , ( )13 3
3 3,v v , 

and ( )13 3
4 4,v v  must be replaced by gap arc ( )13 3

1 4,v v . Conflict shown in Figure 

2.10 (a), (b), (c) and (d) should be represented by Figure 2.10 (e). 

 

Gap arc of set

Position arc of set Ap

3,1
gA

s3

s3

s3

s3

CT s3

(a) (c)

(b) (d)

(e)

C AA T

C AA T

A

C AA T

AA

CTA

 

Fig. 2.10. Example of overlapping gap arcs of set 3,1
gA . 

Last, whenever two alignment edges incident to the same node are 

realized, say { }1 2

1 2
,i i

l lv v  and { }32

2 3
, ii

l lv v , by transitivity, alignment edge { }31

1 3
, ii

l lv v  

must be realized too. From the alignment properties, all characters i
js ,  
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i = 1, 2, …, k, are aligned on the same column j under alignment S . It means 

that if a character 1

1

i
js  is aligned to character 2

2

i
js  and character 2

2

i
js  is aligned 

to character 3

3

i
js , 1 ≤ ir ≤ k; 1 ≤ jr ≤ ris ; r = 1, 2, 3, then character 1

1

i
js  is also 

aligned to character 3

3

i
js , i.e. we can say that transitivity holds in the array 

representation of alignment. For an example, say we realize alignment edges 

{ }1 2
3 5,v v  and { }2 3

5 1,v v . Then by transitivity, alignment edge { }1 3
3 1,v v  must be 

realize too. The illustration is given in Figure 2.11. Notice that the alignment 

edges { }1 2
3 5,v v , { }2 3

5 1,v v , and { }1 3
3 1,v v in Figure 2.11 form a cycle. For more 

detail and further explanation about gapped trace see Reinert K. [6]. 

A

T

G C

G C C C

C AA T

s1

s2

s3

{ }1 2
3 5,v v{ }1 3

3 1,v v

{ }2 3
5 1,v v

 

Fig. 2.11. Example of transitivity. 

 As discussed in subchapter 2.2, scoring scheme is used to score any 

possible alignment of the MSA problem. Since the MSA problem becomes a 

gapped trace problem, scoring alignments becomes scoring gapped traces. 

For scoring gapped traces, each alignment edge and gap arc is assigned a 

weight that corresponds to the benefit (or cost depending on the purpose of 

the alignment) of realizing the edge or arc. Let we and wa denote the weight of 

alignment edge e ∈ E and gap arc a ∈ Ag. With the weight and the gapped 
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trace properties altogether, we can formulize the general ILP model of the 

MSA problem. The ILP model along with the detail explanation will be 

presented in the next chapter. But before we advance to the next chapter, we 

present definitions and basic concepts in integer linear programming first and 

then the branch-and-bound method. 

 
 
 
2.5. DEFINITIONS AND BASIC CONCEPTS IN INTEGER LINEAR 

PROGRAMMING 
 
 
 

Linear programming is a mathematical technique that selects the 

best course of action from a set of feasible alternatives (see Wu N. and 

Coppins R. [8]). It is linear because the relationships among the variables 

involved are linear. Typical linear programming problem is to optimize an 

objective function subject to a series of linear restriction (constraints). An 

optimal solution of a linear program includes set(s) of values for the variables 

(the solution does not need to be unique) that optimize(s) the corresponding 

value of the objective function.  We can form the standard linear program in 

symbols as follow: 

Optimize 
=

= + + + = ∑…1 1 2 2
1

n

n n j j
j

f c x c x c x c x  

 

 

Solving Multiple..., Pudiahwai Anton Wibowo, FMIPA UI, 2008

 
 
 

 



28 

 

subject to 

+ + + ≤

+ + + ≤

…
…

11 1 12 2 1 1

21 1 22 2 2 2

n n

n n

a x a x a x b
a x a x a x b

 

#
+ + + ≤…1 1 2 2m m mn n ma x a x a x b  

Or 

=

≤∑
1

n

ij j i
j

a x b , i = 1, 2, …, m; j = 1, 2, …, n 

x1, x2, …, xn ≥ 0 

where x1, x2, …, xn are the decision variables, f is the objective function, c1, 

c2, …, cn are the coefficients of decision variables in the objective function, 

ai1, ai2, …, ain are the coefficients of decision variables in the i-th constraint, 

and bi are the constant of the i-th constraint. We can also write the standard 

linear program form with vector notation as follow: 

Optimize  f = c’x   

subject to   

Ax ≤ b 
x ≥ 0 

where c, x, 0 are n × 1 vectors, A is an m × n matrix, and b is an m × 1 

vector. 

There are many situations which require the decision variables to have 

integer values. Problems that arise from such situations are referred as 

integer programming problems. One special integer programming problem 

is integer linear programming problem, a linear programming problem with 

an additional integer value constraint. Among integer programming problems, 
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there is a special class in which the values of the variables are restricted to 

values 1 or 0 (binary). It is referred as binary integer linear programming 

problems. 

In this skripsi, we also construct a program that can generate and 

solve the ILP model of any given MSA problem using MATLAB R2008a. We 

utilize a function in MATLAB R2008a to solve a binary ILP problem which is 

based on the branch-and-bound method. Hence, we introduce the branch-

and-bound method. 

 
 
 

2.6. THE BRANCH-AND-BOUND METHOD 
 
 
 

Basically, branch-and-bound method refers to a search procedure, 

i.e. a sequential division of the set of possible solutions to an integer 

programming problem into subsets. Bounds on the value of the objective 

function and feasibility criteria are used to limit the search for each subset. 

The most important property of branch-and-bound is its ability to enumerate 

the majority of the possible solutions of the integer programming problem 

implicitly. The number of solutions is finite when the values of the variables 

are bounded. The more solutions that can be enumerated implicitly, the 

quicker the optimal solution is identified. This is important for integer 

programming problems which exhibit explosive growth in the number or 

possible solutions as the number of variables increases. As an example, a 
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binary integer programming problem of three variables has 23 = 8 possible 

solutions of which not all may be feasible. A binary integer programming 

problem of ten and thirty variables has 210 = 1,024 and 230 = 1,073,741,824 

possible solutions respectively. 

The model derived from the graph representation of an MSA problem 

is a binary ILP model. We know that a binary ILP problem with n variables 

would have 2n possible solutions. To solve the problem, a modified general 

branch-and-bound method is used. The method is referred as implicit 

enumeration (Wu N. and Coppins R. [8]). The term implicit enumeration 

implies that (hopefully) many of the possible 2n solutions will be discarded by 

various feasibility tests and bound without requiring explicit enumeration. 

We introduce some terminology for the implicit enumeration. Suppose 

we have assigned values to some of but not all the variables. The solution 

obtained from the assigned values is called a partial solution. The variables 

that are assigned values in a partial solution are said to be fixed, while the 

remaining variables are said to be free. A completion is made by assigning a 

specific set of values to the free variables. 

Suppose we have a partial solution at some stage of the solving 

process. We can generate an upper bound on the optimal value if the 

objective function for all possible completions by letting each free variable be 

1. The upper bound is 

fixed variables free variables
u j j jf c x c= +∑ ∑ . 
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The feasibility is checked by using a similar approach that is by rewriting each 

constraint as 

fixed variables free variables
ij j i ij ja x b a x≤ −∑ ∑  for i = 1, 2, …, m. 

A constraint can be satisfied only if 

( )
fixed variables free variables

min ,0ij i ij ja b a x≤ −∑ ∑  

i.e. only if the free variables have sufficient negative coefficients. Thus we can 

eliminate the completion whenever 

( )
fixed variables free variables

min ,0ij i ij ja b a x> −∑ ∑ . 

The steps of the implicit enumeration are summarized as follow (Wu N. and 

Coppins R. [8]): 

Step 1 Generate a lower bound 1
Lf  by using any feasible solution. If none is 

obvious, set 1
Lf  = −∞ . All variables are free. 

Step 2 Select a free variable (say xk) and use it to generate the separation xk 

= 0 and xk = 1. Move xk to the set of fixed variables on each branch of 

the separation. 

Step 3 For each new partial solution generated by the separation, compute 

the upper bound fu of the objective function over all completions. 
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Step 4 Select the most recently created partial solution. It is eliminated when 

(1) fu < fL, or (2) there are no feasible completions, or (3) there are no 

free variables, or (4) the upper bound calculation generates a feasible 

completion. In this case if fu > fL, replace fL with the value fu and store 

the values of the variables as the new incumbent solution. When a 

solution has been eliminated, go to step 4, unless there are no 

remaining partial solutions. 

Step 5 If there are no remaining partial solutions, stop. The current incumbent 

solution is optimal. Otherwise, go to step 2. 

By applying the steps of the implicit enumeration to a binary ILP problem, we 

will obtain a tree that represents the branch-and-bound process of finding 

solution of the problem. 

Consider the following binary ILP maximizing problem of four 

variables: 

Example 2.2 

 Max 1 2 3 46 3 2f x x x x= + + +  
 subject to 1 2 3 43 2 5 1x x x x− − + ≤ −  
  1 2 3 42 2 2 0x x x x− + + − ≤  
  2 3 42 1x x x− + ≤  
  1 2 3 4, , , 0 or 1x x x x =  

By applying the steps of the implicit enumeration, we obtain the tree 

representation of the branch-and-bound process of finding solution for 

Example 2.2 which is given in Figure 2.12. 
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1 ( )

1

2
1 2 3 47 1, 0

L

L

f

f x x x x

= −∞

= = = = =

2 3

4 5

6 7

x2 = 1x2 = 0

x4 = 0 x4 = 1

x3 = 0 x3 = 1

fu = 6 fu = 12

fu = 12fu = 10

fu = 10fu = 7
(feasible) (infeasible)

(infeasible)

fu < fL

 

Fig. 2.12. Branch-and-bound tree for Example 2.2 

 First, we set 1
Lf  = −∞  at node 1 since there is no obvious feasible 

solution. All variables are free. Next, we use the x2 to generate the separation 

x2 = 0 (node 2) and x2 = 1 (node 3). At each node we fix x2. At node 3, fu = 12 

> 1
Lf . By checking the feasibility upon the constraints of Example 2.2 (x2 = 1), 

the completion remains feasible as long as x4 = 0. Next, we use x4 to 

generate the separation x4 = 0 (node 4) and x4 = 1 (node 5). At each node we 

fix x4. By checking the feasibility upon the constraints of Example 2.2 (x2 = 1 

and x4 = 0), the completion remains feasible as long as x3 = 0. Next, we use 

x3 to generate the separation x3 = 0 (node 6) and x3 = 1 (node 7). At each 

node we fix x3. By checking the feasibility upon the constraints of Example 

2.2 (x2 = 1, x3 = 0, and x4 = 0), the feasible completion is x1 = 1 with fu = 7. 

Solving Multiple..., Pudiahwai Anton Wibowo, FMIPA UI, 2008

 
 
 

 



34 

 

Since this is a completion and fu > 1
Lf , we set 2

Lf  = fu = 7 and store x1 = 1, x2 = 

1, x3 = 0, and x4 = 0 as the incumbent. At node 2, fu = 6 < 2
Lf . Hence, node 2 

is eliminated. Since there are no remaining partial solutions, the current 

incumbent (x1 = 1, x2 = 1, x3 = 0, and x4 = 0) is optimal, with f = 7. 
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