BAB II

KONSEP DAN DEFINISI

Pada bab ini akan dijelaskan konsep dan definisi-definisi yang digunakan dalam metode pada penelitian ini.

2.1 DATA TRANSAKSI

Misalkan $X = \{X_1, X_2, X_3, ..., X_M\}$ adalah himpunan semua produk yang dijual oleh suatu swalayan. Di mana X_j adalah produk (*item*) ke -j. Untuk suatu transaksi ke-i nilai dari X_j adalah :

 $x_{ij} = 1$, jika *item* ke-j dibeli pada transaksi ke-i $x_{ij} = 0$, jika *item* ke-j tidak dibeli pada transaksi ke-i

dengan i = 1, 2, ..., N dan j = 1, 2, ..., M

Sehingga untuk suatu database transaksi dapat ditabulasikan dalam bentuk sebagai berikut :

ltem Transaksi	X_{1}	X_2		$X_{\scriptscriptstyle M}$
1	<i>x</i> ₁₁	<i>x</i> ₁₂	K	X_{1M}
2	<i>x</i> ₂₁	x ₂₂	K	<i>X</i> _{2<i>M</i>}
N	N	N		N
N	x_{N1}	X_{N2}	K	x_{NM}

Tabel 2.1. Format Data Transaksi

Contoh 1: $X = \{X_1, X_2, X_3\}$

$$X_1$$
 = Roti , X_2 = Keju X_3 = Susu

Jika transaksi 1 memuat *item* Roti dan keju tetapi tidak memuat susu, maka nilai $x_{11}=1, \ x_{12}=1, \ x_{13}=0.$

Misal $X=\{X_1,X_2,X_3,...,X_M\}$ adalah himpunan semua item-item yang diamati dan $A\subseteq X$, $B\subseteq X$ serta $A\cap B=\varnothing$, A dan B saling lepas (mutually exlusive), $A=\{X_1,X_2,...,X_p\}$, $B=(X_1,X_2,...,X_q\}$, $p\neq q$, $p,q\in \mathbb{Z}$. Aturan asosiasi berbentuk "jika A maka B". Intepretasinya adalah "jika seorang membeli item yang ada di A maka ia akan membeli item yang ada di B". Dari contoh 1, misalnya $A=\{X_1,X_2\}$, $B=\{X_3\}$, maka aturannya "jika seorang pelanggan membeli roti dan keju, maka ia akan membeli susu".

2.2 DEFINISI

Berikut ini adalah definisi-definisi yang perlu diketahui dalam metode kaidah asosiasi

Definisi 1

Itemset adalah himpunan dari item-item yang terbeli pada suatu transaksi.

Contoh: {susu, roti}, {roti}, {susu roti keju}

Definisi 2

k-itemset adalah itemset yang memiliki kardinalitas k.

contoh: {susu, roti, keju} = 3-itemset

{roti, keju}=2-itemset

Misalkan $X = \{X_1, X_2, X_3, ..., X_M\}$ himpunan dari *item* dan

 $A = \{X_1, X_2, X_3, \dots, X_n\} \text{ adalah sebuah k-} itemset, } A \subseteq X, k \le M.$

 $\{X_1,X_2,X_3,X_4,X_5\}=1$, jika semua *item* yang ada di himpunan tersebut terjual pada trasaksi ke-i

=0, jika paling tidak satu $item\,\mathrm{dari}\,\,\mathrm{himpunan}\,\,\mathrm{tersebut}\,\,\mathrm{tidak}\,\,\mathrm{terjual}\,\,\mathrm{pada}\,\,\mathrm{transaksi}\,\,\mathrm{ke-i}$

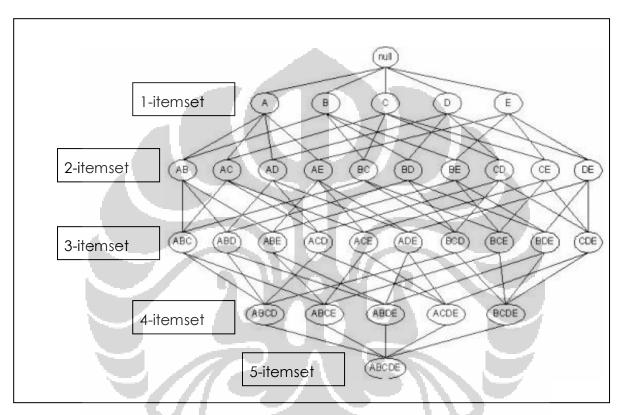
$$\{X_4, X_4, X_3, X_4, \dots, X_5\} = \prod_{a \in \lambda} x_{ia}; \quad \lambda = \{\text{indeks pada A}\}$$

Definisi 3

Sebuah *itemset* A dikatakan *superset* dari *itemset* B bila setiap anggota dari B adalah anggota A juga. Sebaliknya B adalah *subset* dari A Contoh: $A = \{X_1, X_2, X_3\}$, maka A *superset* dari *itemset-itemset* berikut:

$$\{X_{1},X_{2}\},\{X_{1},X_{3}\},\{X_{2},X_{3}\},\{X_{1}\},\{X_{2}\},\{X_{3}\}$$

Definifisi 4


Itemset frequency adalah jumlah transaksi yang berisi itemset tertentu Misal A adalah itemset dan $\lambda = \{ \text{ integer pada A} \}$, maka:

Itemset frequency (A) =
$$\sum_{i=1}^{N} \prod_{a \in \lambda} x_{ia}$$
 (1)

Itemset frequency dapat juga diartikan berapa kali item-item yang ada pada itemset tersebut terbeli secara bersamaan dalam suatu observasi.

Itemset dibentuk dari join antar item yang diamati. Untuk lebih jelasnya dapat dijelaskan pada Gambar 2.1 :

Misalkan ada lima buah *item* A, B, C, D, E, maka *itemset* yang terbentuk adalah

Gambar 2.1. Kemungkinan Itemset yang Terbentuk dari Lima Item

Jadi, untuk item sebanyak M, itemset yang terbentuk adalah sebanyak

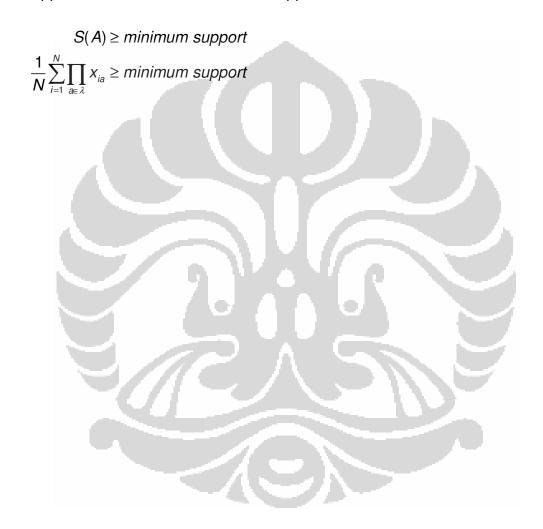
$$C_1^M + C_2^M + C_3^M + ... + C_M^M = \sum_{i=1}^M C_i^M$$
.

Definifisi 5

Support dari suatu itemset A adalah proporsi dari kejadian semua item di himpunan A terbeli secara bersamaan. Dirumuskan dengan

$$S(A) = \frac{itemset \ frequency(A)}{total \ transaksi}$$

$$= \frac{1}{N} \sum_{i=1}^{N} \prod_{a \in \lambda} x_{ia}$$
(2)


Dalam pemrosesannya, penelitian ini bertujuan untuk memilih *itemset* yang sering dibeli oleh pelanggan (*itemset* yang *frequent*) dari sebanyak $\sum_{i=1}^{M} C_{i}^{M} \text{ itemset} \text{ yang terbentuk. Oleh karena hal tersebut, diperlukan suatu indikator untuk membedakan antara$ *itemset*yang*frequent*dan tidak. Indikator yang dimaksud adalah*minimum support*.

Definifisi 6

Minimum support adalah support minimum yang dicapai suatu itemset yang frequent. Nilai dari minimum support diberikan oleh pihak manajemen minimarket. Nilai dari minimum support berbeda untuk tiap minimarket atau supermarket

Definifisi 7

Suatu *itemset* A dikatakan *frequent* jika dan hanya jika memiliki support lebih besar dari *minimum support*.

