
 34

CHAPTER IV

IMPLEMENTATION OF DIALIGN ALGORITHM

In this chapter we present the program implementation and simulation

of DIALIGN algorithm in producing optimal alignments from a pair of DNA

sequences. Program implementation of DIALIGN algorithm to find optimal

sequence alignment will be discussed in section 4.1 and the program

simulation will be discussed in section 4.2.

4.1 IMPLEMENTATION

The program is implemented in MATLAB 7.0.1. Some functions used

in this program are dialign, backtrack, and dispalign (complete listing of the

program see Appendix 1). Dialign is the main function of DIALIGN algorithm

while backtrack and dispalign functions will be called in this dialign function.

Backtrack function is utilized to trace all alignment paths which compose

optimal alignments. Dispalign function is useful to find which residues that are

to be aligned to gaps and to display the optimal alignments.

As an input, DIALIGN requires two sequences. Since we discuss about

DNA sequence alignment, the input must be a string of DNA alphabet (C, G,

T, A) and contains no spaces. The sequence input is saved in a text file

Pairwise Sequence..., Inayah, FMIPA UI, 2008

35

whose names could be entered by user. This file saves two DNA sequences.

The program will produce optimal alignments as an output.

The program is called by typing “dialign” in MATLAB’s command

window. When it is run, user will be asked to type the path of the input file that

already saved the DNA sequences. The program will stop if it obtains all

possible optimal alignments and display these alignments in MATLAB’s

command window.

Having the DNA strings, the program will construct possible diagonals

from those strings and calculate weights of these diagonals based on match

probabilities. After that, the program computes a matrice of alignment scores.

Every number of matches, σ(Di,j) and scores is saved in a cell which later will

be utilized in backtracking process. The process of backtracking is called

recursively in a backtrack function and saves the result in a cell. Next, the

program calls dispalign function to display the alignments.

This program traces all alignment paths and resulting all optimal

alignments. Here is an example of using the program to find alignment from

example 3.1.

Example 4.1

 We use sequences in example 3.1, it is a sequence with length of

three which is going to be compared to a sequence with length of two. We

type dialign in MATLAB’s command window and press enter, then it will

appear a window-like as in Figure 4.1. In this example we use sequences

Pairwise Sequence..., Inayah, FMIPA UI, 2008

36

from example 3.1 which is saved in C:\Users\User\Documents\skripsi

quw\dialign\sequen.txt. So, when the program asks user to type the path of

input file we paste C:\Users\User\Documents\skripsi quw\dialign\sequen.txt in

MATLAB’s command window and press enter, then it will process the string

input. Sequences that already saved in sequen.txt is recognized as two

strings. The program is provided in appendix one.

 In Figure 4.1, it can be seen that sequences which are to be compared

are CTG and CG. Figure 4.2 shows us the input display. In Figure 4.3, we see

that the program is able to align a pair of sequence from example 3.1 in

3.1x10-2 seconds and the only one optimal sequence alignment is exactly

identical to the result in example 3.4.

Figue 4.1 Content of sequen.txt

Figure 4.2 Input display for example 3.1

Pairwise Sequence..., Inayah, FMIPA UI, 2008

37

Figure 4.3 Output display for example 3.1

 The program is succeeded in finding optimal alignment from a pair of

sequence in example 3.1. Next section will discuss about simulation of the

program of another sequences.

4.2 SIMULATION

As experiments, we try seven samples taken at random with length of

a sequence not more than 100. The resulted optimal alignment of sample 1

up to sample 3 will be discussed, the remaining samples can be seen in

Appendix 2. The number of optimal alignments and running time of each

samples is given in Table 4.1.

Pairwise Sequence..., Inayah, FMIPA UI, 2008

38

Figure 4.4 Output display for sequen1

 The first experiment (sequen1) is sequences with length of 62 and 27.

From these sequences, we get two optimal alignments in 2.884 seconds.

Figure 4.4 shows us the resulted optimal alignments for sequences in

sequen1. We’ve already discussed about the sequence alignment properties

in chapter two and alignments in figure 4.4 satisfy the two properties stated by

[ACL+ 02].

 Sequen2 consists of sequences with length of 45 and 63. In this

second experiment, we obtain six optimal alignments in 155.8 seconds. The

program takes much more time to solve alignment problem in sequen2 than

in sequen1 because of the number of constructed diagonals which need

much time in calculating weights and scores. Figure 4.5 shows us the output

for sequences in sequen2.

Pairwise Sequence..., Inayah, FMIPA UI, 2008

39

Figure 4.5 Output display for sequen2

In the third experiment, we compare a sequence with length of 88 to a

sequence with length of 34. It produces twelve optimal alignments in 17.953

seconds. In Figure 4.6, we see the resulted optimal alignments for sequences

in sequen3. The output display for sequen4 up to sequen7 is provided in

Appendix 2.

Pairwise Sequence..., Inayah, FMIPA UI, 2008

40

Figure 4.6 Output display for sequen3

Pairwise Sequence..., Inayah, FMIPA UI, 2008

41

Table 4.1 stores seven samples of sequences taken at random. In

Table 4.1, first coloumn corresponds to the input file names which consist of

two sequences at each, second coloumn represents each length of the

sequences, next coloumn is a coloumn of the number of optimal alignments

obtained, and the last coloumn exhibits running time of the program’s

performance.

Table 4.1 The number of optimal alignment and running time of the seven

samples taken at random

Input File Length Number of
Alignment

Running Time

sequen1 1 62 2 2.884
2 27

sequen2 1 45 6 1.558 x102
2 63

sequen3 1 88 12 17.953
2 34

sequen4 1 20 24 7.5x10-1
2 50

sequen5 1 24 24 1.094
2 65

sequen6 1 92 24 2.672
2 31

sequen7 1 62 64 5.676x102
2 79

From Table 4.1, it can be seen that the program performs excellent on

short sequences. From those seven samples, the optimal alignments

obtained are reasonable and it can be done in a short time. There is no

pattern formed from the number of optimal alignment and running time of the

Pairwise Sequence..., Inayah, FMIPA UI, 2008

42

program. According to Table 4.1, we see that the number of alignment does

not depend on the length of sequences but depends on the content of

sequences whereas running time of the program is effected by the length of

sequences and the number of optimal alignment.

Pairwise Sequence..., Inayah, FMIPA UI, 2008

