

LAMPIRAN 1

Sampling Error

Salah satu permasalahan dari suatu taksiran parameter populasi adalah adanya ketidakakuratan dari taksiran parameter populasi yang biasa disebut dengan sampling error. Dengan kata lain, sampling error adalah maksimum nilai mutlak selisih nilai taksiran dengan nilai parameter yang ditaksirnya.

Misal θ adalah parameter populasi

 $\hat{\theta}$ adalah taksiran dari θ

Error taksiran = $\left|\hat{\theta} - \theta\right|$ diinginkan sekecil mungkin. Misalkan B adalah suatu batas dimana $\left|\hat{\theta} - \theta\right| < B$.

Jika dipilih tingkat signifikansi α , maka akan dicari batas B sehingga $P\Big(\Big|\hat{\theta}-\theta\Big| < B\Big) = 1-\alpha \ .$

$$P(|\hat{\theta} - \theta| < B) = 1 - \alpha$$

$$P(-B < \hat{\theta} - \theta < B) = 1 - \alpha$$

$$P(\hat{\theta} - B < \theta < \hat{\theta} + B) = 1 - \alpha$$

dimana $(\hat{\theta} - B, \ \hat{\theta} + B)$ disebut interval kepercayaan $(1-\alpha)$ untuk θ .

 $\hat{\theta}$ – B disebut Lower Confidence Limit (LCL)

 $\hat{\theta}$ + B disebut Upper Confidence Limit (UCL)

Jika $\hat{\theta}$ berdistribusi normal dengan mean θ dan variansi $\sigma_{\hat{\theta}}^2$, maka $Z = \frac{\hat{\theta} - \theta}{\sigma_{\hat{\theta}}} \square N(0,1)$. Jika α adalah tingkat signifikansi, maka dapat dicari $Z_{\alpha/2}$ sedemikian sehingga:

$$P\left(-z_{\alpha/2} < Z < z_{\alpha/2}\right) = 1 - \alpha$$

$$P\left(-z_{\alpha/2} < \frac{\hat{\theta} - \theta}{\sigma_{\hat{\theta}}} < z_{\alpha/2}\right) = 1 - \alpha$$

$$P\left(-z_{\alpha/2}\sigma_{\hat{\theta}} < \hat{\theta} - \theta < z_{\alpha/2}\sigma_{\hat{\theta}}\right) = 1 - \alpha$$

$$P\left(\hat{\theta} - z_{\alpha/2}\sigma_{\hat{\theta}} < \theta < \hat{\theta} + z_{\alpha/2}\sigma_{\hat{\theta}}\right) = 1 - \alpha$$

Sehingga diperoleh $B(\hat{\theta}) = z_{\alpha/2}\sigma_{\hat{\theta}}$, dimana $z_{\alpha/2}$ merupakan nilai dari tabel N(0,1). Jika $1-\alpha=0.95$, maka diperoleh $z_{\alpha/2}\approx 2$. Sehingga, bound on the error estimation = sampling error = $B(\hat{\theta}) = 2\sigma_{\hat{\theta}}$.

Sampling error diatas masih bergantung pada nilai $\sigma_{\hat{\theta}}$ yang belum diketahui dengan demikian $\sigma_{\hat{\theta}}^2 = \mathrm{var}\big(\hat{\theta}\big)$ akan ditaksir dengan $\hat{\sigma}_{\hat{\theta}}^2 = \overline{\mathrm{var}}\big(\hat{\theta}\big)$. Sehingga didapat sampling error adalah: $\hat{B}\big(\hat{\theta}\big) = 2\hat{\sigma}_{\hat{\theta}}$.

LAMPIRAN 2

Double Ekspektasi

Teorema 2.3.2

Jika X_1 dan X_2 adalah variabel random jenis diskrit, maka dapat dibuktikan bahwa:

$$E[E(X_2 \mid X_1)] = E(X_2).$$

Bukti:

Misalkan X_1 dan X_2 variabel random dengan p.d.f bersama $f(x_1, x_2)$.

P.d.f marginal dari X_1 adalah $f_1(x_1) = \sum_{x_2} f(x_1, x_2)$

P.d.f marginal dari X_2 adalah $f_2(x_2) = \sum_{x_1} f(x_1, x_2)$

$$E(X_{2}) = \sum_{x_{1}} \sum_{x_{2}} x_{2} f(x_{1}, x_{2})$$

$$= \sum_{x_{1}} \left(\sum_{x_{2}} x_{2} \frac{f(x_{1}, x_{2})}{f_{1}(x_{1})} \right) f_{1}(x_{1})$$

$$= \sum_{x_{1}} \left(\sum_{x_{2}} x_{2} f(x_{2} | x_{1}) \right) f_{1}(x_{1})$$

$$= \sum_{x_1} E(X_2 \mid x_1) f_1(x_1)$$
$$= E[E(X_2 \mid x_1)]$$

Dengan demikian terbukti bahwa jika X_1 dan X_2 adalah variabel random jenis diskrit, maka $E[E(X_2 | X_1)] = E(X_2)$.

Akibat 2.3.2

Jika X_1 dan X_2 adalah variabel random, maka dapat dibuktikan bahwa:

$$V(X_2) = EV(X_2|X_1) + VE(X_2|X_1).$$

Bukti:

$$V(X_2) = E(X_2^2) - \left[E(X_2)\right]^2$$

Berdasarkan pembuktian pada teorema 2.3.2, diperoleh:

$$V(X_{2}) = EE(X_{2}^{2}|x_{1}) - EE(X_{2}|x_{1})EE(X_{2}|x_{1})$$

$$= EE(X_{2}^{2}|x_{1}) + E[E(X_{2}|x_{1})E(X_{2}|x_{1})] - E[E(X_{2}|x_{1})E(X_{2}|x_{1})] - EE(X_{2}|x_{1})EE(X_{2}|x_{1})$$

$$= \left\{ EE(X_{2}^{2}|x_{1}) - E[E(X_{2}|x_{1})E(X_{2}|x_{1})] \right\} +$$

$$\left\{ E[E(X_{2}|x_{1})E(X_{2}|x_{1})] - EE(X_{2}|x_{1})EE(X_{2}|x_{1}) \right\}$$

$$= \left\{ EE(X_{2}^{2}|x_{1}) - E[(E(X_{2}|x_{1}))^{2}] \right\} + \left\{ E[(E(X_{2}|x_{1}))^{2}] - [EE(X_{2}|x_{1})]^{2} \right\}$$

$$= E\left\{ [E(X_{2}^{2}|x_{1}) - [E(X_{2}|x_{1})]^{2}] \right\} + \left\{ E[(E(X_{2}|x_{1}))^{2}] - [E[E(X_{2}|x_{1})]^{2}] \right\}$$

$$= EV(X_{2}|x_{1}) + VE(X_{2}|x_{1})$$

Dengan demikian terbukti bahwa jika X_1 dan X_2 adalah variabel random, maka $V(X_2) = EV(X_2|x_1) + VE(X_2|x_1)$.

LAMPIRAN 3

Kamus Notasi

Notasi	Pengertian
k ₁	suatu bilangan yang = 1
k ₂	suatu bilangan yang > 1
N	ukuran keseluruhan populasi, dengan $N = N_1 + N_2$
N ₁	ukuran populasi yang memberikan respon
N_2	ukuran populasi yang tidak memberikan respon
n'	ukuran sampel tahap pertama, dengan $\vec{n} = \vec{n_1} + \vec{n_2}$
n_1	ukuran sampel yang memberikan respon
$n_{\scriptscriptstyle 1}$	ukuran sampel yang diambil dari n_1 , dengan $n_1 = n_1$
n_2	ukuran sampel yang tidak memberikan respon
n_2	ukuran sampel yang diambil dari n_2 , dengan $n_2 = \frac{1}{k_2} n_2$
p_1	proporsi populasi yang memberikan respon dan menjawab "setuju",
	dengan $p_1 = \frac{\sum_{i=1}^{N_1} u_{1i}}{N_1}$

Notasi	Pengertian
p_2	proporsi populasi yang menjawab "setuju" tetapi tidak memberikan
	respon pada tahap pertama, dengan $p_2 = \frac{\sum_{i=1}^{N_2} u_{2i}}{N_2}$
$\hat{\mathcal{p}}_1$	taksiran proporsi populasi yang memberikan respon dan menjawab "setuju", dengan $\hat{p}_1 = \frac{\sum_{i=1}^{n_1} y_{1i}}{n_1}$
$\hat{oldsymbol{ ho}}_{\!\scriptscriptstyle 2}$	taksiran proporsi populasi yang menjawab "setuju" tetapi tidak
	memberikan respon pada tahap pertama, dengan $\hat{p}_2 = \frac{\sum\limits_{i=1}^{n_2} y_{2i}}{n_2}$
<i>W</i> ₁	proporsi populasi yang memberikan respon, dengan $W_1 = \frac{N_1}{N}$
W ₂	proporsi populasi yang tidak memberikan respon, dengan $W_2 = \frac{N_2}{N}$
W ₁	proporsi sampel yang memberikan respon, dengan $w_1 = \frac{n_1}{n_1}$
<i>W</i> ₂	proporsi sampel yang tidak memberikan respon, dengan $w_2 = \frac{n_2}{n}$