BAB IV

ANALISIS DATA

4.1 DATA

Data yang digunakan dalam tugas akhir ini adalah data eksplorasi kandungan cadangan bauksit di daerah penambangan bauksit di Mempawah pada blok AIII-h5 sebanyak 18 titik eksplorasi. Kegiatan eksplorasi bauksit di daerah Mempawah meliputi kegiatan pengukuran *grid* 69 km dan pengukuran topografi 104 ha.

Data terdiri dari titik koordinat lokasi eksplorasi (dalam meter) dan kandungan cadangan kandungan bauksit pada lokasi tersebut dalam satuan wet metric ton (Wmt). Data dapat dilihat pada tabel dibawah ini:

Tabel 4.1 Data Koordinat Lokasi Titik Sampel (meter) dan Kandungan Cadangan kandungan bauksit (Wmt) di Daerah Penambangan Bauksit Mempawah Kalimantan.

Eastco	Northco	Kandungan
(meter)	(meter)	Cadangan
		(Wmt)
299199,847	10048750,1	10525,503
299149,849	10048749,9	10224,75586
299254,342	10048749,4	11791,2567
299200,356	10048850,1	12283,04087
299199,869	10048800,1	8733,294891
299236,813	10048802	8600,067081
299199,911	10048900,1	7667,213286
299299,942	10048700,1	11838,87968
299250,366	10048849,7	10329,78227
299149,885	10048799,9	10507,18616
299350,069	10048699,9	12702,53762
299149,937	10048700	12769,31932
299200,048	10048700	11049,25824

299250,098	10048700	13393,80113
299399,913	10048650,1	10705,8757
299250,028	10048649,9	13835,43752
299399,922	10048600,1	10162,67279
299400,097	10048700	10300,05448

4.2 ASUMSI

Data yang dipergunakan diasumsikan memenuhi asumsi-asumsi sebagai berikut:

- 1. Data sampel memenuhi asumsi stasioner orde dua
- 2. Residual dari taksiran berdistribusi normal

4.3 PERMASALAHAN

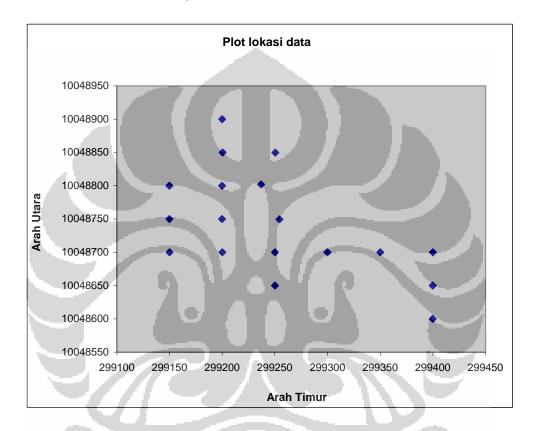
Mencari taksiran besarnya kandungan cadangan bauksit di lokasi yang tidak tersampel menggunakan metode penaksiran *ordinary kriging* dengan semivariogram anisotropik.

4.4 PENGOLAHAN DATA

Pengolahan data pada tugas akhir ini menggunakan bantuan software Microsoft Excel, Matlab7, SPSS 13.0 dan Surfer8. Langkah-langkah dalam pengolahan datanya adalah sebagai berikut:

Langkah 1. Membuat Statistik Deskriptif.

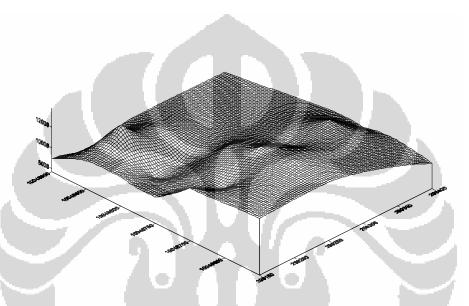
Untuk memperoleh gambaran data secara umum, dibuat statistik deskriptif dari data kandungan cadangan bauksit yang terdiri dari nilai ratarata, variansi, standar deviasi, median, nilai minimum, nilai maksimum, dan range.

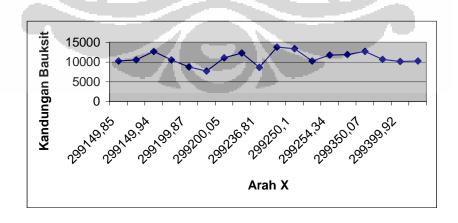

Tabel 4.2 Tabel Statistik Deskriptif Data Kandungan Cadangan Bauksit

1	N Valid		18
			10
	Missing		0
Į	Mean		10967,77
١	Median		10615,69
	Std. Deviation		1672,612
ı	Variance		2797630
	Range	1/4	6168,22
	Minimum	1/	7667,21
	Maximum	11	13835,44

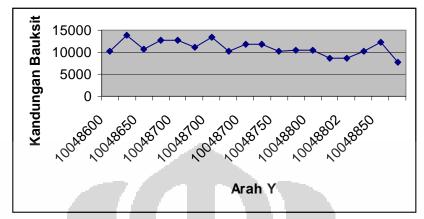
Banyaknya jumlah titik eksplorasi bauksit yang digunakan sebagai sampel sebanyak 18, rata-rata kandungan bauksit sebesar 10967.77 Wmt dengan standar deviasi sebesar 1672 dan variansinya 2797630. Median atau nilai tengah kandungan bauksitnya sebesar 10615 Wmt dengan nilai terkecil 7667 Wmt dan terbesar 13835 Wmt. Range dari data kandungan bauksit sebesar 6168.

Langkah 2. Membuat Plot Data Sampel.


Plot lokasi data sampel dibuat berdasarkan titik koordinat.


Gambar 4.1 Plot data kandungan cadangan bauksit dalam koordinat utara dan timur

Langkah 3. Pengujian Asumsi Stasioner Orde Dua.


Pengujian asumsi stasioner orde dua dilakukan dengan mengamati plot dari data.

Gambar 4.2 Plot tiga dimensi dari data kandungan cadangan bauksit

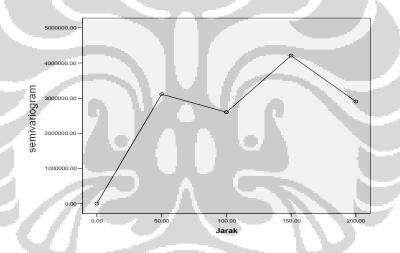
Gambar 4.3 Plot kandungan cadangan bauksit terhadap arah sumbu X

Gambar 4.4 Plot kandungan cadangan bauksit terhadap arah sumbu Y

Dengan mengamati ketiga plot di atas dapat disimpulkan bahwa data tidak memiliki *trend* atau pola (berkisar pada mean data) dan tidak terdapat fluktuasi, sehingga data diasumsikan memenuhi stasioner orde dua.

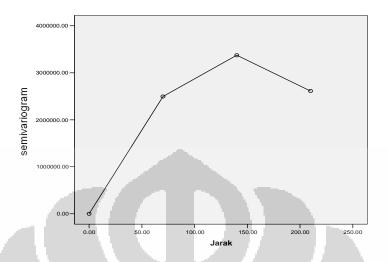
Langkah 4. Perhitungan Semivariogram Eksperimental.

Pada tahap ini akan dihitung semivariogram eksperimental dari empat arah. Empat arah yang dipilih adalah arah utara-selatan, timurlaut-baratdaya, barat-timur, dan tenggara-baratlaut. Toleransi jarak yang digunakan adalah h/10, sedangkan toleransi arahnya adalah $\pm 22.5^{\circ}$. Pada setiap arah kemudian dihitung semivariogram eksperimental untuk setiap kelas jarak.

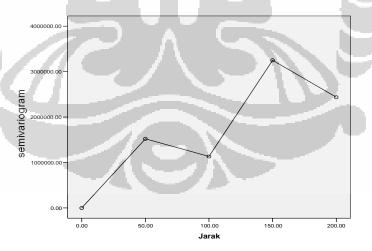

Semivariogram eksperimental dihitung berdasarkan definisi sebagai berikut:

$$\hat{\gamma}(h) = \frac{1}{2|N(h)|} \sum_{i=1}^{N(h)} [z(s_i + h) - z(s_i)]^2$$

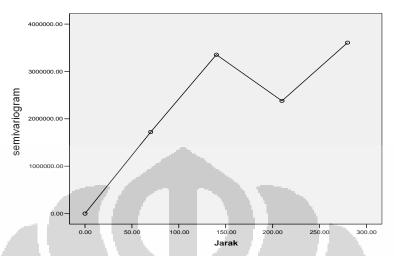
Tabel 4.3 Hasil Perhitungan Semivariogram Eksperimental


		ı Utara-Selatan (0°±22.5°)				Arah Barat-Timur (90°±22,5°)			Arah Tenggara-Baratlaut (135°±22.5°)						
Kelas	h	Semivariogram Eksperimental		Kelas	h	Semivariogram Eksperimental	N(h)	Kelas	h	Semivariogram Eksperimental	N(h)	Kelas	h	Semivariogram Eksperimental	
1	0	0	18	1	0	0	18	1	0	0	18	1	0	0	18
2	50	3112248	12	2	70	2496556	7	2	50	1521347	10	2	70	1721865	9
3	100	2597723	8	3	140	3372448	2	3	100	1132672	6	3	140	3352851	4
4	150	4210988	4	4	210	2612834	. 2	4	150	3248190	4	4	210	2378228	3
5	200	2903918	2				h.	5	200	2435812	2	5	280	3607298	3

Berdasarkan hasil perhitungan semivariogram eksperimental pada tabel 4.3, dapat dibuat grafik semivariogram eksperimental.

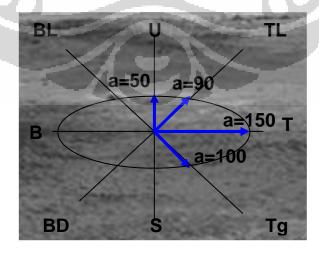

Gambar 4.5 Grafik Semivariogram Eksperimental Arah Utara-Selatan

Setelah grafik dari semivariogram eksperimental untuk arah Utara-Selatan diplot (lihat gambar 4.5) maka kemudian akan ditaksir nilai parameternya. Berdasar grafik semivariogram eksperimental arah Utara-Selatan dipilih range sama dengan 50 dan sill dipilih sama dengan variansi dari data yaitu 1672² (2797630).

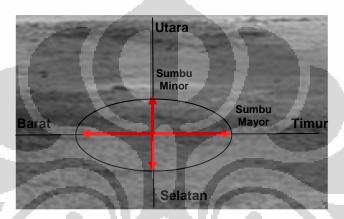

Gambar 4.6 Grafik Semivariogram Eksperimental Arah Timurlaut-Baratdaya

Berdasar grafik semivariogram eksperimental arah Timurlaut-Baratdaya (lihat gambar 4.6) dipilih range sama dengan 90 dan sill dipilih sama dengan variansi dari data yaitu 1672².

Gambar 4.7 Grafik Semivariogram Eksperimental Arah Barat-Timur


Berdasar grafik semivariogram eksperimental arah Barat-Timur (lihat gambar 4.7) dipilih range sama dengan 150 dan sill dipilih sama dengan variansi dari data yaitu 1672².

Gambar 4.8 Grafik Semivariogram Eksperimental Arah Tenggara-Baratlaut


Berdasar grafik semivariogram eksperimental arah Tenggara-Baratlaut (lihat gambar 4.8) dipilih range sama dengan 100 dan sill dipilih sama dengan variansi dari data yaitu 1672².

Setelah parameter range dari masing-masing arah ditaksir maka dapat dilihat diagram mawar untuk mengamati panjang masing-masing range dari tiap arah sehingga nanti dapat ditentukan sumbu anisotropiknya.

Gambar 4.9 Diagram mawar yang menunjukkan range terpanjang pada arah barat-timur dan range terpendek pada arah utara selatan

Dari gambar 4.9 dapat dilihat bahwa range terpanjang ada pada arah barattimur dan range terpendeknya ada pada arah utara-selatan. Kemudian dapat
ditentukan sumbu anisotropiknya yang terdiri dari sumbu mayor yaitu pada
arah barat timur dan sumbu minor pada arah utara-selatan.

Gambar 4.10 Sumbu mayor anisotropik yaitu pada arah barat-timur dan sumbu minor anisotropik adalah arah utara-selatan

Langkah 5. Menentukan Model Semivariogram

Pada tahap ini akan dipilih fungsi yang akan dijadikan model semivariogram. Fungsi yang dipilih sebagai model semivariogram adalah model *spherical*, model eksponensial, dan model *gaussian*. Pertama akan ditentukan dahulu model dari masing-masing arah pada sumbu anisotropik.

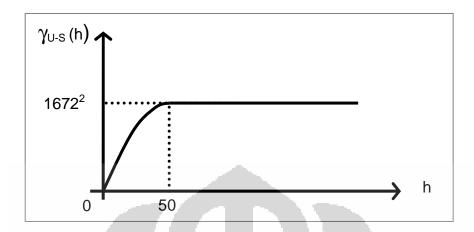
1. Model spherical

a. Arah Barat-Timur

Untuk arah Barat-Timur memiliki nilai range sama dengan 150 dan sill dipilih sama dengan variansi dari data, yaitu 1672² sehingga modelnya menjadi:

$$\gamma_{B-T}(h) = 1672^{2} \left(\frac{3 |h|}{300} - \frac{|h|^{3}}{150^{3}} \right) \qquad |h| < 150$$

$$= 1672^{2} \qquad |h| \ge 150$$


$$1672^{2} \qquad \qquad h$$

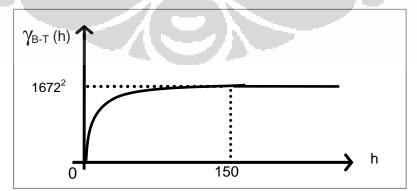
Gambar 4.11 Grafik Semivariogram model spherical untuk Arah Barat-Timur

b. Arah Utara-Selatan

Untuk arah Utara-Selatan memiliki nilai range sama dengan 50 dan sill dipilih sama dengan variansi dari data, yaitu 1672² sehingga modelnya menjadi:

$$\gamma_{U-S}(h) = 1672^2 \left(\frac{3|h|}{100} - \frac{|h|^3}{50^3} \right)$$
 $|h| < 50$
= 1672^2 $|h| \ge 50$

Gambar 4.12 Grafik Semivariogram model spherical untuk Arah Utara-Selatan

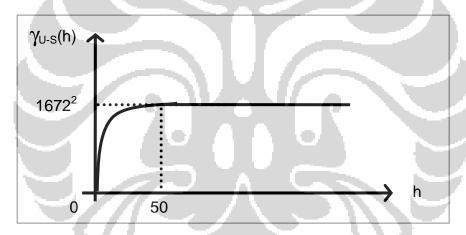

2. Model eksponensial

a. Arah Barat-Timur

Untuk arah Barat-Timur memiliki nilai range sama dengan 150 dan sill dipilih sama dengan variansi dari data, yaitu 1672² sehingga modelnya menjadi:

$$\gamma_{B-T}(h) = 1672^2 \left(1 - \exp\left(\frac{-|h|}{150}\right) \right) \qquad |h| < 150$$

$$= 1672^2 \qquad |h| \ge 150$$


Gambar 4.13 Grafik Semivariogram model eksponensial untuk Arah Barat-Timur

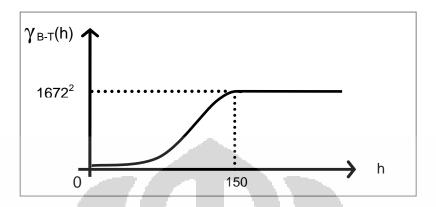
b. Arah Utara-Selatan

Untuk arah Utara-Selatan memiliki nilai range sama dengan 50 dan sill dipilih sama dengan variansi dari data, yaitu 1672² sehingga modelnya menjadi:

$$\gamma_{U-S}(h) = 1672^2 \left(1 - \exp\left(\frac{-|h|}{50}\right) \right)$$
 $|h| < 50$

$$= 1672^2$$
 $|h| \ge 50$

Gambar 4.14 Grafik Semivariogram model eksponensial untuk Arah Utara-Selatan

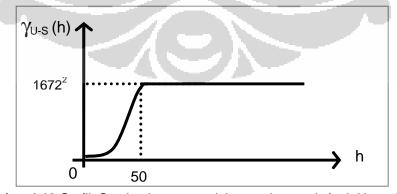

3. Model gaussian

a. Arah Barat-Timur

Untuk arah Barat-Timur memiliki nilai range sama dengan 150 dan sill dipilih sama dengan variansi dari data, yaitu 1672² sehingga modelnya menjadi:

$$\gamma_{B-T}(h) = 1672^2 \left(1 - \exp\left(\frac{-|h|^2}{22500}\right) \right) \qquad |h| < 150$$

$$= 1672^2 \qquad |h| \ge 150$$



Gambar 4.15 Grafik Semivariogram model gaussian untuk Arah Barat-Timur

b. Arah Utara-Selatan

Untuk arah Utara-Selatan memiliki nilai range sama dengan 50 dan sill dipilih sama dengan variansi dari data, yaitu 1672² sehingga modelnya menjadi:

$$\gamma_{U-S}(h) = 1672^2 \left(1 - \exp\left(\frac{-|h|^2}{2500}\right) \right)$$
 $|h| < 50$
= 1672^2 $|h| \ge 50$

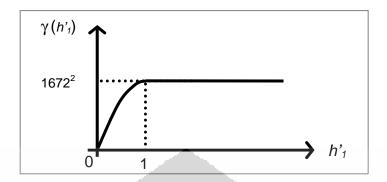
Gambar 4.16 Grafik Semivariogram model *gaussian* untuk Arah Utara-Selatan

Setelah menentukan pilihan model semivariogram dari masing-masing arah pada sumbu anisotropik kemudian dilakukan transformasi jarak agar dapat diperoleh satu model yang konsisten untuk semua arah atau yang disebut dengan model isotropik ekivalen. Model isotropik ekivalen ini kemudian akan digunakan dalam persamaan kriging dalam melakukan penaksiran. Jarak hasil transformasi yang digunakan adalah sebagai berikut

$$h_{1}' = \sqrt{\left(\frac{h_{\text{minor}}}{a_{\text{min}}}\right)^{2} + \left(\frac{h_{\text{mayor}}}{a_{\text{max}}}\right)^{2}}$$

$$= \sqrt{\left(\frac{\cos(\theta)h_{x} + \sin(\theta)h_{y}}{a_{\text{min}}}\right)^{2} + \left(\frac{\cos(\theta)h_{y} - \sin(\theta)h_{x}}{a_{\text{max}}}\right)^{2}}$$

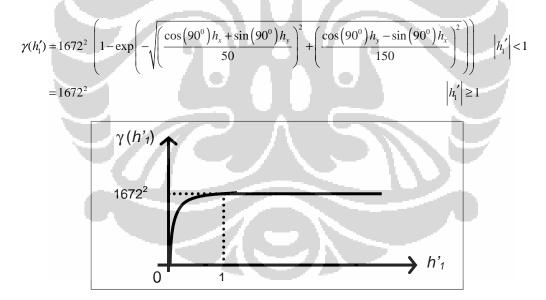
$$= \sqrt{\left(\frac{\cos(90^{\circ})h_{x} + \sin(90^{\circ})h_{y}}{50}\right)^{2} + \left(\frac{\cos(90^{\circ})h_{y} - \sin(90^{\circ})h_{x}}{150}\right)^{2}}$$


Setelah didapat transformasi jaraknya, maka sekarang akan ditentukan model isotropik ekivalennya dari masing-masing model semivariogram yang telah dipilih yaitu, model spherical, eksponensial, dan gaussian.

1. Model spherical

Model isotropik ekivalen untuk model *spherical* adalah sebagai berikut:

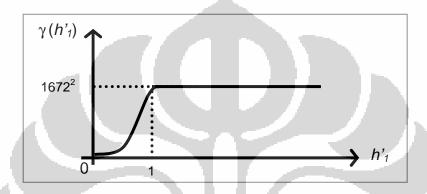
$$\gamma(h_{1}') = \frac{1672^{2}}{2} \left(3\sqrt{\left(\frac{\cos\left(90^{\circ}\right)h_{x} + \sin\left(90^{\circ}\right)h_{y}}{50}\right)^{2} + \left(\frac{\cos\left(90^{\circ}\right)h_{y} - \sin\left(90^{\circ}\right)h_{x}}{150}\right)^{2}} - \left(\sqrt{\left(\frac{\cos\left(90^{\circ}\right)h_{x} + \sin\left(90^{\circ}\right)h_{y}}{50}\right)^{2} + \left(\frac{\cos\left(90^{\circ}\right)h_{y} - \sin\left(90^{\circ}\right)h_{x}}{150}\right)^{2}}\right)^{3} \right) \left|h_{1}'\right| < 1$$


$$= 1672^{2}$$

Gambar 4.17 Grafik Semivariogram isotropik ekivalen model spherical

2. Model eksponensial

Model isotropik ekivalen untuk model eksponensial*nya* adalah sebagai berikut:


Gambar 4.18 Grafik Semivariogram isotropik ekivalen model eksponensial

3. Model gaussian

Model isotropik ekivalen untuk model *gaussiannya* adalah sebagai berikut:

$$\gamma(h_{1}') = 1672^{2} \left(1 - \exp\left(-\left(\left(\frac{\cos(90^{0}) h_{x} + \sin(90^{0}) h_{y}}{50} \right)^{2} + \left(\frac{\cos(90^{0}) h_{y} - \sin(90^{0}) h_{x}}{150} \right)^{2} \right) \right) \right) \quad \left| h_{1}' \right| < 1$$

$$= 1672^{2} \quad \left| h_{1}' \right| \ge 1$$

Gambar 4.19 Grafik Semivariogram isotropik ekivalen model gaussian

Kemudian terhadap ketiga model di atas akan dilakukan validasi silang untuk mengetahui model mana yang cocok atau dapat dipakai dalam persamaan kriging dalam melakukan penaksiran.

Langkah 6. Pengujian Model Semivariogram

Validasi silang digunakan untuk menguji model semivariogram. Pada tabel berikut ditampilkan nilai sebenarnya, nilai taksiran, dan nilai residual terbakunya dari masing-masing titik eksplorasi yang tersampel.

Tabel 4.4 Hasil validasi silang

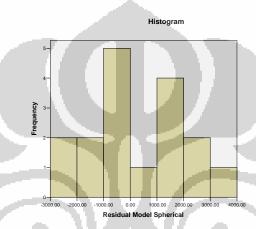
	Nilai Sebenarnya	Model S	pherical	Model Eks	ponensial	Model Gaussian		
Sampel	Kandungan	Nilai	******		Nilai	Residual		
	Bauksit	Taksiran	<u>Terbaku</u>	Taksiran	<u>Terbaku</u>	Taksiran	<u>Terbaku</u>	
{Z(S ₂) Z(S ₁)}	10224,75	10526	-0, <u>12</u> 4679248	10526	-0,211775044	10526	-0,570873602	
${Z(S_3) Z(S_1), Z(S_2)}$	11791,25	10486	0,525865195	10480	0,91363573	107 48	1,865945269	
$\{Z(S_4) \ Z(S_1),,\ Z(S_3))\}$	12283,04		0,375493085	10950	0,320442308	11961	0,084378766	
$\{Z(S_5) \ Z(S_1),,\ Z(S_4)\}$	8733,29	11431	-0,941149177	11519	-0,89884809	12087	-1,10348447	
$\{Z(S_6) \ Z(S_1),,\ Z(S_5)\}$	8600,06	9462,1	-0,705491448	9756,6	-3,18080308	9304,1	-5,0833213	
$\{Z(S_7) \ Z(S_1),\ldots,\ Z(S_6)\}$	7667,21	10590	-1,167528162	10883	-1,214835103	13225	-53,13374761	
$\{Z(S_8) \ Z(S_1),\ldots,\ Z(S_7)\}$	11838,87	10009	0,782631196	10158	0,692485478	6034,7	5,023080917	
$\{Z(S_9) \ Z(S_1),,\ Z(S_8)\}$	10329,78	11331	-0,704935577	11219	-1,022326972	12734	-1,444583308	
$\{Z(S_{10}) \ Z(S_1),,\ Z(S_9)\}$	10507,18	9558,4	0,670421142	9185,8	1,435346513	6860,3	1,54515719	
$\{Z(S_{11}) \ Z(S_{1}),,\ Z(S_{10})\}$	12702,53	11103	1,139672248	11103	1,139672248	11744	2,559492657	
$\{Z(S_{12}) \ Z(S_1),,\ Z(S_{11})\}$	12769,31	10465	1,074070103	10350	1,51871312	13522	-0,59276264	
$\{Z(S_{13}) \ Z(S_1),,\ Z(S_{14})\}$	11049,25	11812	-0,593949541	12.688	-3,726972936	9725,1	3,382247765	
$\{Z(S_{14}) \ Z(S_{1}),,\ Z(S_{15})\}$	13393,8	10992	2,63910865	12897	3,732531931	9570,4	18,35525684	
$\{Z(S_{15}) \ Z(S_1),,\ Z(S_{14})\}$	10705,87	10823	-0,05653538	13.048	-0,757186732	11462	-0,351230955	
$\{Z(S_{16}) \ Z(S_1),,\ Z(S_{15})\}$	13835,43	10810	1,4908737	11745	1,146509077	11123	1,631929487	
$\{Z(S_{17}) \ Z(S_1),,\ Z(S_{16})\}$	10162,67	11102	-0,470865708	12750	-1,01499745	11602	-0,695462891	
$\{Z(S_{18}) \ Z(S_{1}),,\ Z(S_{17})\}$	10300,05	11798	-1,13999239	10779	-0,400593844	13670	-10,65091656	
		Total	2,793008691	Total	-1,529002846	Total	-39,17889444	
		Rata-rata	0,164294629	Rata-rata	-0,089941344	Rata-rata	-2,30464085	

1. Model spherical

Pertama, akan dilakukan pengujian asumsi residual berdistribusi normal.

Pengujian kenormalan akan dilakukan dengan uji Shapiro Wilks

 H_0 : residual dari model semivariogram berdistribusi normal


 H_1 : residual dari model semivariogram tidak berdistribusi normal

Dipilih nilai $\alpha = 0.05$

Aturan keputusan

 H_0 ditolak jika $\hat{\alpha} < \alpha$

Dengan menggunakan software SPSS didapatkan output sebagai berikut:

Gambar 4.20 Diagram batang residual model spherical vs frekuensi

Tabel 4.5 Tabel Pengujian Kenormalan Residual Model Spherical

Tests of Normality

	Koln	nogorov-Smir	nov ^a	Shapiro-Wilk			
	Statistic	df	Sig.	Statistic	df	Sig.	
Residual Model Spherical	,141	17	,200*	,953	17	,501	

^{*} This is a lower bound of the true significance.

Berdasarkan output di atas didapatkan nilai $\hat{\alpha}$ =0.501.

Karena nilai $\hat{\alpha}$ >0.05 maka H₀ diterima. Sehingga dapat disimpulkan bahwa residual dari model *spherical* berdistribusi normal. Selanjutnya akan dilakukan validasi silang untuk menguji apakah model semivariogram cocok

a. Lilliefors Significance Correction

dengan keadaan data spasial yang dimiliki. Statistik uji yang digunakan adalah statistik uji Q_1 .

Uji Hipotesis

H₀ : model semivariogram cocok

H₁ : model semivariogram tidak cocok

Aturan keputusan dengan tingkat signifikansi $\hat{\alpha} = 0.05$

$$H_0$$
 ditolak jika $|Q_1| > \frac{2}{\sqrt{n-1}}$

Dari hasil perhitungan didapatkan |Q₁|=0,164

Dengan nilai
$$\frac{2}{\sqrt{n-1}}$$
 =0.485 sehingga $|Q_1| < \frac{2}{\sqrt{n-1}}$

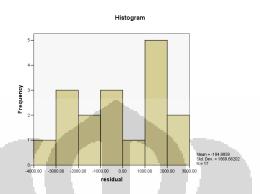
Kesimpulan model *spherical* dapat digunakan atau valid untuk data kandungan bauksit di Mempawah.

2. Model eksponensial

Akan dilakukan pengujian asumsi residual berdistribusi normal.

Pengujian kenormalan akan dilakukan dengan uji Shapiro Wilks

 H_0 : residual dari model semivariogram berdistribusi normal


 H_1 : residual dari model semivariogram tidak berdistribusi normal

Dipilih nilai α =0.05

Aturan keputusan

 H_0 ditolak jika $\hat{\alpha} < \alpha$

Dengan menggunakan software SPSS didapatkan output sebagai berikut:

Gambar 4.21 Diagram batang residual model eksponensial vs frekuensi

Tabel 4.6 Tabel Pengujian Kenormalan Residual Model eksponensial

Tests of Normality

	Koln	nogorov-Smir	nov ^a	Shapiro-Wilk		
	Statistic	df	Sig.	Statistic	df	Sig.
residual	,200	_17	,069	,923	17	,166

a. Lilliefors Significance Correction

Berdasarkan output di atas didapatkan nilai $\hat{\alpha} = 0.166$.

Karena nilai $\hat{\alpha}$ >0.05 maka H₀ diterima. Sehingga dapat disimpulkan bahwa residual dari model eksponensial berdistribusi normal. Selanjutnya akan dilakukan validasi silang untuk menguji apakah model semivariogram cocok dengan keadaan data spasial yang dimiliki. Statistik uji yang digunakan adalah statistik uji Q₁.

Uji Hipotesis

H₀ : model semivariogram cocok

H₁: model semivariogram tidak cocok

Aturan keputusan dengan tingkat signifikansi $\hat{\alpha} = 0.05$

$$H_0$$
 ditolak jika $|Q_1| > \frac{2}{\sqrt{n-1}}$

Dari hasil perhitungan didapatkan $|Q_1| = 0.089$

Dengan nilai
$$\frac{2}{\sqrt{n-1}}$$
=0.485 sehingga $|Q_1| < \frac{2}{\sqrt{n-1}}$

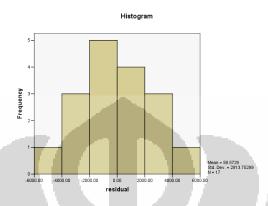
Kesimpulan model eksponensial dapat digunakan atau valid untuk data kandungan bauksit di Mempawah.

3. Model gaussian

Akan dilakukan pengujian asumsi residual berdistribusi normal.

Pengujian kenormalan akan dilakukan dengan uji Shapiro Wilks

H₀ : residual dari model semivariogram berdistribusi normal


H₁ : residual dari model semivariogram tidak berdistribusi normal

Dipilih nilai $\alpha = 0.05$

Aturan keputusan

 H_0 ditolak jika $\hat{\alpha} < \alpha$

Dengan menggunakan software SPSS didapatkan output sebagai berikut:

Gambar 4.22 Diagram batang residual model gaussian vs frekuensi

Tabel 4.7 Tabel Pengujian Kenormalan Residual Model gaussian

Tests of Normality

	Koln	nogorov-Smir	nov ^a	Shapiro-Wilk			
	Statistic	df	Sig.	Statistic	df	Sig.	
residual	,097	17	,200*	,986	17	,993	

^{*} This is a lower bound of the true significance.

Berdasarkan output di atas didapatkan nilai $\hat{\alpha} = 0.993$.

Karena nilai $\hat{\alpha}$ >0.05 maka H₀ diterima. Sehingga dapat disimpulkan bahwa residual dari model *gaussian* berdistribusi normal. Selanjutnya akan dilakukan validasi silang untuk menguji apakah model semivariogram cocok dengan keadaan data spasial yang dimiliki. Statistik uji yang digunakan adalah statistik uji Q₁.

a. Lilliefors Significance Correction

Uji Hipotesis

H₀: model semivariogram cocok

H₁ : model semivariogram tidak cocok

Aturan keputusan dengan kepercayaan 95%

$$H_0$$
 ditolak jika $|Q_1| > \frac{2}{\sqrt{n-1}}$

Dari hasil perhitungan didapatkan |Q₁|= 2,304

Dengan nilai
$$\frac{2}{\sqrt{n-1}}$$
 =0.485 sehingga $|Q_1| > \frac{2}{\sqrt{n-1}}$

Kesimpulan model *gaussian* tidak dapat digunakan atau tidak valid untuk data kandungan bauksit di Mempawah.

Langkah 7. Pemilihan Model Semivariogram yang Terbaik

Berdasarkan pengujian validasi silang, didapat bahwa model semivariogram yang valid untuk data kandungan bauksit di Mempawah adalah model spherical dan model eksponensial. Selanjutnya ingin diketahui model mana yang terbaik diantara kedua model tersebut. Dilakukan dengan membandingkan nilai Q_1 untuk masing-masing model semivariogram. Hasil perbandingannya dapat dilihat pada tabel di bawah ini:

Tabel 4.8 Tabel perbandingan nilai Q_1

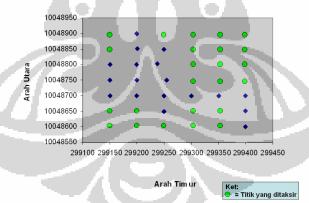
Q ₁				
Model Spherical	Model Eksponensial			
0.1642	0.0899			

Berdasarkan tabel di atas, dapat dilihat bahwa model eksponensial memiliki nilai Q_1 lebih mendekati nol dari pada model *spherical*. Karena Q_1 merupakan rata-rata dari residual terbaku dan nilai Q_1 model eksponensial lebih mendekati nol maka dipilih model eksponensial yang lebih baik, yaitu:

$$\gamma(h_{1}') = 1672^{2} \left(1 - \exp\left(-\sqrt{\left(\frac{\cos\left(90^{\circ}\right)h_{x} + \sin\left(90^{\circ}\right)h_{y}}{50} \right)^{2}} + \left(\frac{\cos\left(90^{\circ}\right)h_{y} - \sin\left(90^{\circ}\right)h_{x}}{150} \right)^{2} \right) \right) \quad \left| h_{1}' \right| < 1672^{2}$$

$$= 1672^{2} \quad \left| h_{1}' \right| \ge 1$$

Selanjutnya model semivariogram ini akan digunakan untuk menaksir kandungan cadangan bauksit di titik yang tidak tersampel menggunakan sistem persamaan *ordinary kriging*


$$\begin{bmatrix} \gamma(0) & \gamma_{12}(h_1') & \dots & \gamma_{1n}(h_1') & 1 \\ \gamma_{21}(h_1') & \gamma(0) & . & . & 1 \\ . & . & . & . & . & . \\ \gamma_{n1}(h_1') & . & . & \gamma(0) & 1 \\ 1 & 1 & \dots & 1 & 0 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ . \\ \lambda_n \\ -m \end{bmatrix} = \begin{bmatrix} \gamma_{01}(h_1') \\ \gamma_{02}(h_1') \\ . \\ \gamma_{0n}(h_1') \\ 1 \end{bmatrix}$$

Dari sistem persamaan *ordinary kriging* akan diperoleh nilai-nilai $\lambda_1,\lambda_2,.....,\lambda_n \text{ yang akan dipakai menaksir nilai kandungan bauksit di titik yang tidak tersampel, yaitu <math>\hat{z}(s_0)=\sum_{i=1}^n\lambda_i\hat{z}(s_i)$.

4.5 Penaksiran Kandungan Cadangan Bauksit di Titik yang Tidak Tersampel

1. Plot Titik yang akan Ditaksir

Penaksiran pada titik yang tidak tersampel dilakukan pada 24 titik. Plot titik-titik yang akan ditaksir dapat dilihat pada gambar 4.23 di bawah.

Gambar 4.23 Plot titik-titik yang tidak tersampel yang akan ditaksir

2. Hasil Penaksiran

Hasil penaksiran dari 24 titik yang tidak tersampel dapat dilihat pada tabel 4.9 di bawah.

Tabel 4.9 Tabel hasil penaksiran kandungan cadangan bauksit di titik yang tidak tersampel yang terdiri dari data koordinat (meter) dan taksiran kandungan (Wmt)

No.	Eastco (X)	Northco (Y)	Taksiran Kandungan
1	299150	10048600	10928
2	299150	10048650	12571
3	299150	_10048850	12763
4	299150	10048900	9589
5	299200	10048600	10922
6	299200	10048650	12220
7.	299250	10048600	11826
8	299250	10048900	9593
9	299300	10048600	10535
10	299300	10048650	12813
11	299300	10048750	8432
12	299300	10048800	9095
13	299300	10048850	11399
14	299300	10048900	9254
15	299350	10048600	10379
16	299350	10048650	12702
17	299350	10048750	11263
18	299350	10048800	9392
19	299350	10048850	11265
20	299350	10048900	10928
21	299400	10048750	11168
22	299400	10048800	10928
23	299400	10048850	10031
24	299400	10048900	10928

Dari hasil penaksiran di 24 titik yang tidak tersampel diketahui bahwa hasil taksiran paling besar berada pada titik koordinat (299150 m, 10048850 m), (299300 m, 10048650 m), dan (299350 m, 10048650 m) dengan taksiran nilai kandungan bauksitnya adalah 12763 Wmt, 12813 Wmt, dan 12702 Wmt.