DESAIN SISTEM PENDINGIN DENGAN SISTEM ADSORPSI UNTUK KAPAL NELAYAN MENGGUNAKAN KARBON AKTIF

SKRIPSI

Oleh
NURKHOLIS JAYASWABOWO
04 02 02 049 8

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS INDONESIA GANJIL 2006/2007

DESAIN SISTEM PENDINGIN DENGAN SISTEM ADSORPSI UNTUK KAPAL NELAYAN MENGGUNAKAN KARBON AKTIF

SKRIPSI

Oleh
NURKHOLIS JAYASWABOWO
04 02 02 049 8

SKRIPSI INI DIAJUKAN UNTUK MELENGKAPI SEBAGIAN PERSYARATAN MENJADI SARJANA TEKNIK

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS INDONESIA GANJIL 2006/2007

PERNYATAAN KEASLIAN SKRIPSI

Saya menyatakan dengan sesungguhnya bahwa skripsi dengan judul :

DESAIN SISTEM PENDINGIN DENGAN SISTEM ADSORPSI UNTUK KAPAL NELAYAN MENGGUNAKAN KARBON AKTIF

yang dibuat untuk melengkapi sebagian persyaratan menjadi Sarjana Teknik pada Program Studi Teknik Mesin Departemen Teknik Mesin Fakultas Teknik Universitas Indonesia, sejauh yang saya ketahui bukan merupakan tiruan atau duplikasi dari skripsi yang sudah dipublikasikan dan atau pernah dipakai untuk mendapatkan gelar kesarjanaan di lingkungan Universitas Indonesia maupun di Perguruan Tinggi atau Instansi manapun, kecuali bagian yang sumber informasinya dicantumkan sebagaimana mestinya. Skripsi ini dibuat bersama saudara Budiyono dengan skripsi yang berjudul "Analisa Pembuatan Sistem Pendingin Dengan Sistem Adsorpsi Untuk Kapal Nelayan Menggunakan Karbon Aktif" dan saudara Tatang Hendrarachmawan dengan skripsi yang berjudul "Proses Pembuatan Sistem Pendingin Dengan Sistem Adsorpsi Untuk Kapal Nelayan Menggunakan Karbon Aktif" sehingga terdapat kata-kata atau kalimat-kalimat yang sama.

Depok, 11 Januari 2007

Nurkholis Jayaswabowo NPM 04 02 02 049 8

PENGESAHAN

Skripsi dengan judul:

DESAIN SISTEM PENDINGIN DENGAN SISTEM ADSORPSI UNTUK KAPAL NELAYAN MENGGUNAKAN KARBON AKTIF

dibuat untuk melengkapi sebagian persyaratan menjadi Sarjana Teknik pada Program Studi Teknik Mesin Departemen Teknik Mesin Fakultas Teknik Universitas Indonesia. Skripsi ini telah diujikan pada sidang ujian skripsi pada tanggal 4 Januari 2006 dan dinyatakan memenuhi syarat/sah sebagai skripsi pada Departemen Teknik Mesin Fakultas Teknik Universitas Indonesia.

Depok, 11 Januari 2007 Dosen Pembimbing

<u>Dr-Ing.Ir. Nasruddin MEng</u> NIP 132 142 259

UCAPAN TERIMA KASIH

Penulis mengucapkan terima kasih kepada:

Dr-Ing. Ir. Nasruddin MEng

selaku dosen pembimbing yang telah bersedia meluangkan waktu untuk memberi pengarahan, diskusi dan bimbingan serta persetujuan sehingga skripsi ini dapat selesai dengan baik.

DAFTAR ISI

	Halaman
PERNYATAAN KEASLIAN SKRIPSI	iii
PENGESAHAN	iv
UCAPAN TERIMA KASIH	V
DAFTAR ISI	viii
DAFTAR GAMBAR	X
DAFTAR TABEL	xi
DAFTAR SIMBOL	xii
DAFTAR LAMPIRAN	xiii
DAD I DENDAHHI HAN	1
BAB I PENDAHULUAN	1
1.1 LATAR BELAKANG	1
1.2 PERMASALAHAN	2
1.3 RUANG LINGKUP	2
1.4 TUJUAN PENELITIAN	2
1.5 METODOLOGI PENELITIAN	3
1.6 SISTEMATIKA PENULISAN	3
BAB II DASAR TEORI	5
2.1 TEORI SISTEM REFRIGERASI ADSORPSI	5
2.1.1 Teori Umum Adsorpsi	5
2.1.2 Parameter Unjuk Kerja	7
2.1.3 Proses Adsorpsi	8
2.1.4 Proses Desorpsi	9
2.1.5 Panas/Kalor	9
2.1.6 Kalor Spesifik	10
2.1.7 Perhitungan Kuantitas Energi	10
2.1.8 Kalor Sensibel Dan Kalor Laten	11
2.1.9 Tekanan Dan Temperatur Saturasi	12
2.1.10 COP	12
2.2 KARBON AKTIF	12
2.2.1 Sekilas Karbon Aktif	12
2.2.2 Penggunaan Karbon Aktif	14
2.2.3 Bahan Karbon Aktif	15
2.2.4 Proses Pembuatan Karbon Aktif	16
2.2.5 Sifat Adsorpsi Karbon Aktif	18
•	
BAB III DESAIN SISTEM REFRIGERASI ADSORPSI	21
3.1 SISTEM REFRIGERASI ADSORPSI	21
3.2 ADSORBER	22
3.3 KONDENSER	27
3.4 EVAPORATOR	30
2.5 DED AT ATAM DENIDIRING	21

3.5.1 Pompa Air	31
3.5.2 Pemanas Air	31
3.5.3 Pemipaan	31
BAB IV KESIMPULAN DAN SARAN	32
4.1 KESIMPULAN	32
4.2 SARAN	32
DAFTAR ACUAN	34
DAFTAR PUSTAKA	35
LAMPIRAN	36

DAFTAR GAMBAR

		Halaman
Gambar 2.1	Siklus dasar refrigerasi adsorpsi	6
Gambar 2.2	Siklus pendingin adsorpsi dalam clapeyron diagram	7
Gambar 2.3	Adsorpsi	8
Gambar 2.4	Desorpsi	9
Gambar 2.5	Bentuk granular dari karbon aktif	14
Gambar 2.6	Karbon kelapa	14
Gambar 2.7	Karbon aktif	14
Gambar 2.8	Penampang buah kelapa sawit	16
Gambar 3.1	Skema sistem refrigerasi adsorpsi	21
Gambar 3.2	Desain sistem refrigerasi adsorpsi	22
Gambar 3.3	Adsorben	25
Gambar 3.4	Adsorber	26
Gambar 3.5	Shell adsorber	26
Gambar 3.6	Pipe hub adsorber	27
Gambar 3.7	Kondenser	28
Gambar 3.8	Shell kondenser	28
Gambar 3.9	Pipe hub kondenser	29
Gambar 3.10	Fin kondenser	29
Gambar 3.11	Evaporator	30
Gambar 3.12	Penampung methanol (evaporator)	30

DAFTAR TABEL

		Halaman
Tabel 2.1	Penggunaan karbon aktif	15
Tabel 3.1	Karakteristik tempurung kelapa	22

DAFTAR SIMBOL

\boldsymbol{A}	Konstanta persamaan Clausius-Clapeyron
ab	Koeffisien difusi thermal adsorben (m2/s)
af	Koeffisien difusi thermal fluida (m2/s)
B	Ukuran poros adsorben (m)
Cpa	Specific heat adsorben (kJ/kg·K)
Cpf	Specific heat fluida (kJ/kg·k)
Cpl	Specific heat refrigeran (kJ/kg·K)
Cp	Specific heat air (kJ/kg·K)
COI	Koefisien Prestasi
D	Parameter Adsorpsi
h	Panjang tube (m)
ha	Panas dari Adsorpsi (kJ/kg)
hd	Panas desorpsi (kJ/kg)
k	Parameter karakteristik adsorpsi
K	Parameter karakteristik adsorpsi untuk persamaan D-A
Le	Kalor laten evaporasi (kJ/kg)
Ma	Massa adsorben (kg)
M	Massa air (kg)
Pc	Tekanan kondenser (Pa)
Pe	Tekanan evaporator (Pa)

DAFTAR LAMPIRAN

		Halaman
Lampiran 1	Methanol Properties	36
Lampiran 2	Grafik Saturated Methanol	38
Lampiran 3	Gambar Model Alat	39
Lampiran 4	Gambar Alat	45
Lampiran 5	Pengujian Mutu Karbon Aktif	49
Lampiran 6	Guntner Standar Untuk Heat Exchanger	50
Lampiran 7	PVC Properties	53

