BAB 4 MODELISASI KOMPUTASI dan PEMBAHASAN

4.1. Pemodelan dalam EFD Tools

Pemodelan komputasi menggunakan paket simulasi *EFD Lab.8* yang terintegrasi pada tools *CAD Solid Works*, di mana proses modelling mengikuti prosedur pemodelan numerik secara umum sebagai berikut :

4.1.1. Pre Processor

Bagian ini merupakan bagian awal pemodelan yang terdiri atas pemodelan solid geometri, kondisi batas operasional sistem dan pembentukan *grid* (*meshing*). Dari masing-masing pemodelan tersebut, berikut ini adalah hasil yang diperoleh :

4.1.1.1. Solid Modelling

Geometri kanal aliran model paralel dibentuk di tools AutoCad yang disimpan dalam format file acis. Melalui paket simulasi EFD file tersebut diimport pada menu open file dan diperoleh hasil seperti pada gambar

Gambar 4.1. Domain Komputasi Kanal Paralel dan Serpentine

4.1.1.2. Boundary Conditions

Model geometri yang sudah dibuat selanjutnya diberikan definisi untuk memasukkan parameter *inlet* dan *outlet* aliran. Hal ini dapat dilakukan dengan menggunakan menu *Create Lids* pada sisi-sisi batas tersebut. Dipilih penampang bidang tempat sisi batas berada seperti berikut ini :

Gambar 4.2. Pembentukan Geometri Lids di Sisi Inlet dan outlet

Setelah itu adalah proses penentuan sistem simulasi yang dilakukan melalui menu *Wizard* untuk memberikan definisi antara lain : aliran *internal flow, steady state* dan fluida gas hidrogen dan oksigen.

Analysis type Consider closed cavities Navigator Internal Image: Exclude cavities without flow conditions Mavigator Exclude cavities without flow conditions Image: Consider closed cavities without flow conditions	
Physical Features Value Heat conduction in solids	
General Settings Fluids Path © Gases © Liquids © Initial condition Reference	ns
Project Fluids Default Fluid Hydrogen (Gases) Replace Flow Characteristic Value Flow type Laminar and Turbulent High Mach number flow Humidity OK Apply Cancel Help	

Gambar 4.3. Pendefinisian Sistem Model

4.1.1.3. Pemodelan Sel Volume Hingga (Meshing)

Dalam tahap pembentukan *grid/mesh* dimulai dari pemodelan secara otomatis, dengan tujuan untuk mengetahui distribusi mesh awal, kemudian memeriksa pendefinisian untuk cell yang berada di dalam batas domain fluid. Sehingga

diharapkan meshing yang terbentuk sudah memenuhi domain kalkulasi yang akan dimodelkan.

Initial Mesh		? 🛛
Basic Mesh Solid/Fluid Interface Refining Cells Narrow Chann	els	
Number of cells		ОК
Number of cells per <u>X</u> :	30	Cancel
Number of cells per <u>Y</u> :	30	<u>H</u> elp
Number of cells per Z'	1	
Control intervals	Potio	
X1 -0.00706096907 t 0.0771985714 m 30	Agd Plane	
Y1 0.0004313 m 0.0692687 m 30 Z1 0.000639938153 0.000959958769 1	1 <u>E</u> dit Plane	
	Delete Plane	
Reset Automatic settings Show basic mesh		
Initial Mesh		? 🗙
Initial Mesh Automatic Settings		2
Initial Mesh Automatic Settings Level of initial mesh		
Initial Mesh Automatic Settings Level of initial mesh 1 2 3 4 5	5 7 8	OK Cancel
Initial Mesh Automatic Settings Level of initial mesh 1 2 3 4 5		OK Cancel Help
Initial Mesh Automatic Settings Level of initial mesh 1 2 3 4 5 		OK Cancel Help
Initial Mesh Automatic Settings Level of initial mesh 1 2 3 4 5 1	5 7 8	OK Cancel Help
Initial Mesh Automatic Settings Level of initial mesh 1 2 3 4 5 Minimum gap size Minimum gap size Minimum gap size refers to the feature dimension	6 7 8	OK Cancel Help
Initial Mesh Automatic Settings Level of initial mesh 1 2 3 4 5 Minimum gap size Minimum gap size Minimum gap size refers to the feature dimension Minimum gap size:	5 7 8	OK Cancel Help
Initial Mesh Automatic Settings Level of initial mesh 1 2 3 4 5 1 1 2 3 4 1 1 2 3 5 1	5 7 8	OK Cancel Help
Initial Mesh Automatic Settings Level of initial mesh 1 2 3 4 5 Minimum gap size Minimum gap size Minimum gap size refers to the reature dimension Minimum gap size	6 7 8	OK Cancel <u>H</u> elp
Initial Mesh Automatic Settings Level of initial mesh 1 2 3 4 5 Minimum gap size Minimum gap size Minimum gap size refers to the feature dimension Minimum gap size: Minimum wall thickness		Cancel Help
Initial Mesh Automatic Settings Level of initial mesh 1 2 3 4 5 1 4 5 1 6 7 1 7 7 1 7 7 1 7		OK Cancel Help
Initial Mesh Automatic Settings Level of initial mesh 1 2 3 4 5 Minimum gap size Minimum gap size Minimum gap size refers to the reature dimension Minimum gap size: Minimum wall thickness Minimum wall thickness Minimum wall thickness Minimum wall thickness	6 7 8	○K Cancel <u>H</u> elp
Initial Mesh Automatic Settings Level of initial mesh 1 2 3 4 5 1 2 3 4 5 Minimum gap size Minimum gap size 1 1 1 1 Minimum gap size Minimum gap size 1		○K Cancel Help
Initial Mesh Automatic Settings Level of initial mesh 1 2 3 4 5 1 2 3 4 5 Minimum gap size Minimum gap size Minimum gap size Minimum gap size tefors to the feature dimension Minimum gap size: Minimum gap size: Iminimum gap size: Minimum gap size: Iminimum gap size: Minimum gap size: Iminimum gap size: Minimum wall thickness Iminimum wall thickness Minimum wall thickness refers to the feature dimension Iminimum wall thickness: Iminimum wall thickness: Iminimum gap size tefors to the feature dimension Minimum wall thickness: Iminimum gap size tefors to the feature dimension Minimum wall thickness: Iminimum gap size tefors to the feature dimension Minimum gap size: Iminimum gap size tefors to the feature dimension Minimum wall thickness: Iminimum gap size tefors to the feature dimension Minimum gap size: Iminimum gap size tefors to the feature dimension Minimum gap size tefors to the feature dimension Iminimum gap size tefors to the feature dimension	e 7 8	OK Cancel Help
Initial Mesh Automatic Settings Level of initial mesh 1 2 2 3 4 5 Minimum gap size Manual specification of the minimum gap size Minimum gap size Minimum gap size Minimum gap size Minimum wall thickness	s, r,	OK Cancel Help

Gambar 4.4. Fitur Pendefinisian Manual dan Automatic Mesh untuk Kanal Paralel dan Serpentine

4.1.1.4. Optimasi Mesh (Mesh Dependency Test)

CFD merupakan sebuah metode analisis fenomena fisik melalui pendekatan metode numerik dengan teknik volume hingga. Sistem analisa model yang dikenal dengan domain harus dapat mewakilkan sistem yang sebenarnya melalui pendefinisian grid yang sesuai. Namun pemilihan jumlah grid yang terlalu banyak akan menyebabkan langkah simulasi menjadi tidak efisien, perhitungan menjadi lama. Oleh karena itu dalam pembahasan ini juga disampaikan pengaruh jumlah grid untuk perhitungan numerik yang optimal, yang diberikan dalam data gambar berikut ini :

Gb 4.5. Hasil Simulasi Dengan Level Initial Mesh=3

Gb. 4.7. Hasil Simulasi Dengan Level Initial Mesh=5

Gb. 4.9. Hasil Simulasi Dengan Level Initial Mesh Optimum =6

Berdasarkan modelling mesh yang dibentuk, hasil perhitungan iterasi dalam bentuk distribusi tekanan menunjukkan hasil yang optimal pada gambar terakhir, tekanan terbagi menurut profil kanal yaitu :

Tekanan di sisi inlet merupakan tekanan maksimum disebabkan terdapat perubahan penampang aliran yang mengecil sehingga terjadi perubahan energi tekanan menjadi energi kinetik (meningkatnya distribusi tekanan statik dekat sisi inlet). Sedangkan di sisi outlet merupakan tekanan minimum atau meningkatnya tekanan dinamik aliran gas.

4.1.1.6. Goals Perhitungan Pressure Drop

Untuk memudahkan dalam mengetahui optimasi model, pertimbangan dapat dilakukan melalui pemantauan atau pengamatan proses perhitungan iterasi melalui angka hasil perhitungan. Salah satu fitur yang dapat dimanfaatkan adalah melalui pendefinisian goals sebagai fitur tambahan bagi pemodelan. Goals ditentukan oleh perhitungan jatuh tekanan atau pressure drop aliran antara sisi inlet dan outlet. Hal ini dilakukan dengan pertama kali mendefinisikan area perhitungan pada sisi permukaan (*surface*), sesuai dengan parameter tekanan rata-rata (*average*). Dan melalui hasil yang ditampilkan dalam program macro di MS Excell, di setiap mesh yang diberikan akan dihasilkan tabel hasil jatuh tekanan.

Tabel 4.1. Tabulasi Goal Hasil Perhitungan Kanal Paralel

Kanal Paralel O2 inlet tek.SLDASM [Level Mesh 3]

Goal Name	Unit	Value	Averaged Value	Minimum Value	Maximum Value	Progress [%]	Use In Convergence	Delta	Criteria
SG Av Static Pressure 1	[Pa]	108218	108218	108218	108218	100	Yes	0	0,55075191
SG Av Static Pressure 2	[Pa]	108170,7668	108174,6962	108170,7668	108178,2051	100	Yes	7,438313349	131,6750936
Equation Goal 1	[Pa]	47,233169	43,30375601	39,79485565	47,233169	100	Yes	7,438313349	131,6750936

Iterations: 52

Analysis interval: 26

Kanal Paralel O2 inlet tek.SLDASM [Level Mesh 4]

Goal Name	Unit	Value	Averaged Value	Minimum Value	Maximum Value	Progress [%]	Use In Convergence	Delta	Criteria
SG Av Static Pressure 1	[Pa]	108218	108218	108218	108218	100	Yes	0	3,674400672
SG Av Static Pressure 2	[Pa]	126192,9937	123381,6477	121017,4816	126192,9937	2,7	Yes	4091,228958	114,3465984
Equation Goal 1	[Pa]	-17974,99374	-1 <u>5</u> 163,64773	-17974,99374	-12799,48157	2,7	Yes	4091,228958	114,3270329

Iterations: 240 Analysis interval: 30

Kanal Paralel O2 inlet tek.SLDASM [Kanal O2 inlet tekanan]

Goal Name	Unit	Value	Averaged Value	Minimum Value	Maximum Value	Progress [%]	Use In Convergence	Delta	Criteria
SG Av Static Pressure 1	[Pa]	108218	108218	108218	108218	100	Yes	0	1,729487399
SG Av Static Pressure 2	[Pa]	108176,9711	108179,9174	108176,9711	108185,2425	100	Yes	8,271400821	124,3908196
Equation Goal 1	[Pa]	41,02894824	38,08260227	32,75754742	41,02894824	100	Yes	8,271400821	124,3908196

Iterations: 72 Analysis interval: 36

Dari hasil perhitungan jatuh tekanan maka pemilihan mesh yang optimal diambil pada level inital mesh = 5 dengan angka jatuh tekanan berada pada nilai 38 Pa (tebal domain 0,4 mm) atau 85 Pa (kedalaman 1 mm).

Sedangkan untuk kanal serpentine hasil tabel perhitungan goal pressure drop adalah sebagai berikut :

Tabel 4.2. Tabulasi Goal Hasil Perhitungan Kanal Serpentine

Kanal Serpent O2.SLDASM [Lvel Mesh 3]

Goal Name	Unit	Value	Averaged Value	Minimum Value	Maximum Value	Progress [%]	Use In Convergence	Delta	Criteria
SG Av Static Pressure 1	[Pa]	107978,4201	107994,8617	107978,4201	108007,4452	100	Yes	29,02517504	82,51354391
SG Av Static Pressure 2	[Pa]	108218	108218,0298	108212,2664	108221,641	100	Yes	1,979692805	2,263525905
Equation Goal 1	[Pa]	239,5799316	223,1680351	205,6346362	239,5799316	100	Yes	33,94529534	82,51354391

Iterations: 60

Analysis interval: 26

Kanal Serpent O2.SLDASM [Level mesh 4]

Goal Name	Unit	Value	Averaged Value	Minimum Value	Maximum Value	Progress [%]	Use In Convergence	Delta	Criteria
SG Av Static Pressure 1	[Pa]	108090,917	108118,5371	108084,3012	108159,6885	100	Yes	75,3873021	156,0519116
SG Av Static Pressure 2	[Pa]	108210,8576	108217,3993	108203,3518	108232,6482	100	Yes	6,161987551	7,442141969
Equation Goal 1	[Pa]	119,9405973	98,86225465	54,93790286	140,1436774	100	Yes	85,20577449	156,2452582

Iterations: 59

Analysis interval: 30

Kanal Serpent O2.SLDASM [Level Mesh 5]

Goal Name	Unit	Value	Averaged Value	Minimum Value	Maximum Value	Progress [%]	Use In Convergence	Delta	Criteria
SG Av Static Pressure 1	[Pa]	107977,6629	107993,373	107977,2585	108017,6019	100	Yes	40,34339058	72,74334302
SG Av Static Pressure 2	[Pa]	108213,4136	108218,1261	108208,5688	108227,4312	100	Yes	4,266602364	5,327919723
Equation Goal 1	[Pa]	235,7507099	224,7530302	200,3980702	250,1362388	100	Yes	49,73816856	73,02518636

Iterations: 73 Analysis interval: 37

Sehingga optimasi mesh dipilih pada pembentukan mesh otomatis pada

level 5.

Gambar 4.10. Meshing Optimum Fluid Domain Pada Kanal Paralel dan Serpentine

Untuk pemodelan distribusi massa spesies pendefinisian model sistem adalah sebagai berikut : Solid modelling terbangun oleh susunan 1 kanal gas reaktan yang tergabung dengan sebuah media difusi (*porous medium*) dan lapisan katalis sebagai batas penghantaran aliran gas spesies. Karena bentuk domain fluid dan solid relatif proporsional maka meshing dilakukan dengan pilihan automatic meshing dengan level initial mesh dari

🖪 Engineering Database		? 🗙		2
File Edit View Units Help			5 /2	
			5 🎢 🗣 🖄 👹 🖬 😪 🚥 🔹 🕨 🔛	
Database tree:	Items Item Properties Tables and Curves		Items Item Properties Tables and Curves	
	Property	Value	Isotrop0.4	
Custom - Visualization Para	Name Comments	isotrop0.4	Pressure drop vs. flowrate	
i E Fans ⊞	Porosity Permeability type	0.4 Isotropic	Mass flow rate Pressure difference 200	Pa Pressure difference
	Resistance calculation formula Pressure dram vs. flowrate	Pressure Drop, Flowrate, Dimensions Mass Flow Rate	1.1e-005 kg/s 2000 Pa 1660	8.87
Grading Pre-Defined Grading User Defined	Length	0.0002 m	133	3.33
Assem5_DPmdot.9	Use calibration viscosity		100	0.00
	Heat conductivity of porous matrix		666	3.67
🗄 🚰 Units			333	333
			0.	00 kg/s 0 3.7e-006 7.3e-006 1.1e-005 1.8e-006 5.5e-006 2.2e-006
		and mark		Mass flow rate
			Reset	
<				SI (m-kg-s)
\Assem5_DPmdot.SLDASM\Default (2)	Isotrop0.4	SI (m-kg-s)	3 hingga batas opti	mal.
	PIGN	Pla		
			A A A A	
		le l		
		N		-

Gambar 4.11. Model Sistem Simulasi Distribusi Spesies

4.1.1. Solver

Bagian ini adalah tahap perhitungan numerik persamaan differensial yang mengatur fenomena transport momentum dan massa. Untuk mengetahui konvergensi iterasi perhitungan, maka perlu didefinisikan variabel hasil perhitungan yang dinyatakan dalam fitur *Insert Global Goals* dalam EFD-tree. Sebagai goals dalam perhitungan simulasi ini adalah static pressure dan mass fraction dari spesies gas hidrogen dan oksigen. Evolusi nilai iterasi dapat dilihat melalui monitoring di menu eksekusi Run sebagai berikut :

Gambar 4.12. Iterasi perhitungan numerik

Perubahan nilai iterasi perhitungan tergantung pada nilai masukan awal yang dinamakan *guess value*, sementara plot kontur tekanan juga dapat diamati di dalam solver perhitungan. Hal ini lebih memberi kemudahan untuk mengetahui profil distribusi aliran gas di dalam reaktan, yang menunjukkan graduasi tekanan statik sepanjang kanal saluran mulai dari sisi masuk hingga sisi keluar.

4.1.2. Post Processor

Hasil simulasi dapat diamati pada bagian post processor melalui menu Cut Plot dengan memilih parameter static pressure dan mass fraction. Hal ini untuk membantu dalam menganalisis karakteristik aliran gas reaktan di dalam kanal sel tunam.

Gambar 4.13. Distribusi Tekanan Statik dan Kecepatan Kanal Paralel

Gambar 4.14. Distribusi Tekanan Statik dan Kecepatan Kanal Serpentine

Gambar 4.15. Distribusi Tekanan Statik Pada lapisan Difusi Gas

Gambar 4.16. Distribusi Kecepatan dan Fraksi Massa Spesies Sisi Upstream

Gambar 4.17. Distribusi Kecepatan dan Fraksi Massa Spesies Sisi Downstream

4.1.Analisa Distribusi Gas Reaktan

4.1.1. Karakteristik Aliran dalam Kanal Paralel

Simulasi distribusi aliran gas reaktan di dalam kanal saluran fuel cell, secara umum memberikan hasil perhitungan pendekatan yang sudah memadai. Hal ini ditunjukkan oleh pola aliran distribusi momentum melalui distribusi tekanan dan kecepatan di sepanjang kanal. Distribusi tersebar menurun dari sisi inlet menuju sisi outlet.

Seperti telah diberikan pada gambar 4.13, dalam kanal saluran tipe paralel tekanan statik maksimum terdapat pada kanal utama sisi inlet, kemudian terbagi menyebar pada kanal di tengah dan kanal distribusi ke bawah. Tingginya tekanan statik di daerah ini akibat perubahan dimensi penampang aliran yang mengecil. Untuk kecepatan aliran gas reaktan pada kanal di bagian tengah merupakan daerah kecepatan rendah, kecepatan lebih tinggi terjadi pada kanal yang terletak di bagian keliling pelat. Menurunnya tekanan juga terjadi akibat adanya aliran lawan (resirkulasi) pada percabangan kanal seperti diberikan pada gambar berikut :

Gambar 4.18. Resirkulasi Aliran pada Kanal Cabang

4.1.2. Karakteristik Aliran dalam Kanal Serpentine

Dapat diamati pada hasil simulasi di gambar 4.14 bahwa pola distribusi tekanan dalam kanal serpentine menunjukkan pola graduasi yang sama di setiap kanal aliran, yang berkurang secara gradual dari sisi masuk ke sisi keluar. Dari plot vektor kecepatan terdapat hasil bahwa kecepatan aliran mengalami perlambatan pada kanal di daerah belokan, di mana di sudut belokan kecepatan berkurang.

Gambar 4.19. Profil aliran dalam kanal Serpentine

4.1.3. Karakteristik Aliran Transport Massa

Dengan idealisasi bahwa kedua gas reaktan adalah merupakan gas reaktan murni yang terdiri dari gas hidrogen dan oksigen, maka hasil simulasi distribusi fraksi massa menunjukkan kanal dengan tekanan statik yang lebih tinggi dan kecepatan yang lebih rendah mempunyai distribusi konsentrasi yang lebih besar. Keadaan ini disebabkan ada sebagian energi total aliran yang terserap melalui lapisan difusi yang menyebabkan menurunnya energi total

(bulk) aliran gas, seperti diberikan dalam gambar berikut:

Gambar 4.20. Distribusi Momentum dan Massa di Sekitar Membran Difusi

4.1.4. Verifikasi Rugi Tekanan (Pressure Drop)

Untuk mengetahui akurasi pemodelan maka berikut ini diberikan hasil perhitungan secara manual berdasarkan korelasi perhitungan rugi tekanan di dalam kanal saluran berdasarkan persamaan (3-1) dalam tabel perhitungan MS Excell :

Data Proses				٦
Massflow total	0,04 kg/jA			
per kanal	0,04 kg/jA			
	1,11111E-05 kg/sA			
kecepatan	75,37964961 m/s	kemir	ingan kanal masuk	
u	53,3014614 m/s		45 derajat	
v	53,3014614 m/s		45 derajat	
Propertis Hidrogen	0.004.00 1-4-2			
rno	0,08189 kg/m3			
mnu	8,41E-06 kg/ms			
Dimensi kanal				
lehar rata?	1.8 mm	0.0018 m		
luas penampang mas	2.6 mm2	0,0010 11		
luas penampang min	1 mm2	0.000001 m2		
Vena contracta Cc	0.384615385	0,000001		
kecepatan penamp min	135,6833693 m/s			
tinggi	1 mm	0,001 m		
luas	1,8 mm2	0,0000018 m2		
vol tot	1,02E-06 m3			
vol header	13 mm3	0,00000013 m3		
panjang	5,66E+02 mm	5,66E-01 m		
	per kanal	5,66E-01 m		
jumlah kanal	1			
Eaktor korugian gosokan				
f	1 84E-02			
Reynold	4,84E-02 1 32E+03			
Reynold	1,521,05			
Pressure drop	3,6658E+03	total		
	3,5429E+03 Pa	rugi gesekan		
	1,2294E+02 Pa	rugi penyempitan		
Hasil Simulasi	1231 Da			
Tekanan make	4204 rd 107257 Do			
Tekanan min	111591 Pa			
	111351.10			

Tabel 4.3. Perhitungan Verifikasi Rugi Tekanan Kanal Paralel

Data Prose	es			
Massflow	total	0,04 kg/jA		
	per kanal	0,008 kg/jA		
		2,22222E-06 kg/sA		
Propertis I	Hidrogen			
rho		0,08189 kg/m3		
mhu		8,41E-06 kg/ms		
kecepatan	normal	2,71E+01 m/s	sudut masuk	0 deg
arah x		0,00E+00 m/s		
arah y		2,71E+01 m/s		
Dimensi ka	anal			
lebar		1 mm	1,00E-03 m	
tinggi		1 mm	1,00E-03 m	
luas		1 mm2	1,00E-06 m2	
vol tot		8,21E-07 m3		
vol header		0 mm3	0,00E+00 m3	
panjang		8,21E+02 mm	8,21E-01 m	
		per kanal	1,64E-01 m	
jumlah kar	nal	5		
		-		
Faktor rug	i gesekan			
	f	2,42E-01		
Reynold		2,64E+02		
Pressure	ron	6 00E+03	total	
i ressure u		1 20E±03	kanal	
		1,201+03	L Karlar	
Hasil Simu	lasi	5483 Pa		
Tekanan m	naks	108127 Pa		
Tekanan m	nin	113610 Pa		
i ekunun n		11301011		

Tabel 4.4. Perhitungan Verifikasi Rugi Tekanan Kanal Serpentine

Dari kedua tabel hasil perhitungan di atas terdapat sebuah selisih perhitungan kurang lebih sekitar 600 Pa. Hal ini disebabkan oleh kemungkinan perbedaan nilai propertis gas hidrogen. Dalam paket simulasi nilai tersebut tidak dapat dilihat secara langsung nilai eksak propertis gas. Kemungkinan kedua perbedaan ini terjadi karena kurang rapatnya sel volume hingga yang didefinisikan terutama meshing di dalam kanal serpentine. Konsekuensinya perlu dilakukan proses refinement namun akan menyebabkan memory komputer menjadi semakin bertambah.

4.2.5. Verifikasi Densitas Arus

Dalam memasukkan kondisi batas pemodelan sebagai nilai masukan untuk proses perhitungan perhitungan iterasi, ditetapkan nilai tekanan kerja operasi sebesar 108218 Pa dan laju massa 1,1.¹⁰⁻⁵ kg/detik (untuk H₂) dan $0,55.10^{-5}$ kg/det (O₂) sebagai nilai pada sisi inlet dan outlet. Besarnya laju massa tersebut ditentukan melalui hubungan arus dan fluks reaktan dalam hukum Faraday.

Hasil simulasi yang telah diperoleh selanjutnya akan diperbandingkan dengan perhitungan analitis hukum Faraday, bersama dengan hukum gas ideal yang menunjukkan fungsi volume molar (volume/mol) dari tekanan pada temperatur tetap.

Pada keadaan tekanan 108218 Pa temperatur 60 °C, besarnya volume molar adalah 25,6 liter/mol sedangkan untuk arus 1 ampere jumlah fluks reaktan hidrogen yang diperlukan $5,12.10^{-6}$ mol. Dari pemodelan diperoleh besarnya tekanan rata-rata curah (bulk) sebesar 1,08 atm atau terdapat selisih 0,06 atm lebih besar dibandingkan pada kondisi tekanan awal 108218 Pa (1,06 atm).

Secara lengkap berikut ini diberikan hasil perbandingan densitas arus analitis dengan densitas arus hasil analisa pemodelan :

Hukum Faraday : (densitas arus dan mol)

i = ______ n.F. N

Hukum Gas Ideal (volume molar dan tekanan dengan T konstan)

N.R _{univ} .T

V/N = R_{univ}.T/P

Data dan Perhitungan

Manual

Manaal								
	i	n	F	Ν	Runiv	Т	Р	V
	(ampere/cm2)	(elektron)	(C/mol.e)	(mol)	(L.atm/mol.K)	(°K)	(atm)	(L)
	1	2	96485	▲5,18215E-06	0,0821	333,15	1,057591	0,000134022

Anoda

Simulasi							
P _{sim}	T _{sim}	R _{univ}	V	N	n	F	i
(atm)	(°K)	(L.atm/mol.K)	(L)	(mol)	(elektron)	(C/mol.e)	(ampere/cm2)
1,078494942	333,15	0,0821	0,000134022	5,28458E-06	2	96485	1,019765611

Volume Molar

P	1,068029	atm
Т	333,15	K
Runiv	0,0821	liter.atm/mol.K
V/N	25,60944	L/mol

Nilai Tekanan Rata-rata lokal (Bulk Average)

Local parameters						
Parameter	Minimum	Maximum	Average	Bulk Average	Surface area [m^2]	
Pressure [Pa]	72599,8	138435	107070	106837	0,00043502	
Temperature [K]	333,012	334,076	333,201	333,198	0,00043502	
Density [kg/m^3]	0,0825623	0,189542	0,143575	0,144487	0,00043502	
Velocity [m/s]	0,00148298	147,698	0,222424	5,23666	0,00043502	
X-component of Ve	-3,74047	1,98046	0,00171822	-0,0672449	0,00043502	
Y-component of Ve	-3,41653	2,74168	0,000325748	0,00399084	0,00043502	
Z-component of Ve	-30,1666	147,681	-0,0977631	3,28936	0,00043502	
Mach Number []	1,4314E-06	0,135682	0,000218516	0,00507745	0,00043502	
Fluid Temperature	333,012	334,076	333,201	333,198	0,00043502	

Local parameters

Parameter	Minimum	Maximum	Average	Bulk Average	Surface area [m^2]		
Pressure [Pa]	87038,7	424332	108786	111720	0,00259929		
Temperature [K]	320,581	340,758	333,083	333,025	0,00259929		
Density [kg/m^3]	0,0853876	0,572226	0,148359	0,152518	0,00259929		
Velocity [m/s]	0,00056902	16,6885	0,0472553	0,194508	0,00259929		
X-component of Ve	-7,01265	16,6884	6,38143E-05	-0,00642013	0,00259929		
Y-component of Ve	-1,09981	0,257316	-0,000343652	-0,00405717	0,00259929		
Z-component of Ve	-0,554637	0,538524	-0,00196644	-0,0126595	0,00259929		
Mach Number []	5,625E-07	0,0165715	4,66542E-05	0,000192179	0,00259929		
Fluid Temperature	320,581	340,758	333,083	333,025	0,00259929		

