
Chapter 4

Robot Control System

This chapter explained a detailed description of Robot Control System. The system
consists of six implemented subsystems: Build-Map Subsystem,Odo-Map Subsys-
tem, Command Subsystem, Add-Image Subsystem, Movement and Check-Region
Subsystem . They are described into three parts: Description, Implementation, and
Testing.

4.1 Build-Map Subsystem

Build-Map subsystem produces an image based on information it gets from sensors.
This implemented subsystem is described in the following subsections.

4.1.1 Build-Map Subsystem Description

The main task of this subsystem is to produce an image, based on values received
in its input ports. This subsystem is intended to receive a distance measurement
values, as its input, from infrared range sensors.

Build-Map subsystem, as illustrated in Figure 4.1, has 9 input ports and 1 output
ports. All input ports are double data type and the output port is an image data
type.

Figure 4.1: Build-Map Subsystem Diagram

Thirteen sensors are used in this subsystem and each sensor has its own mounting
position (x- and y-values) and pointing direction (yaw-value) properties, as shown
Figure 4.2. The sensors used, are assumed to have same height (z-value) and zero
pitch value. Roll value is not taken into account because it does not a�ect the
distance measurement. The properties of thirteen sensors used in this subsystem are
given in Table 4.1.

13

Composing robot..., Yan maraden, FT UI, 2009

CHAPTER 4. ROBOT CONTROL SYSTEM 14

Figure 4.2: Pointing Direction of Scorpion Sensor

Table 4.1: Sensor Con�guration Properties [Evolution, 2004e]

No. Sensor's Name x-value y-value yaw-value

1. IR_bn_n 0.0 4.9 0.000
2. IR_bn_ene -9.2 12.6 -1.134
3. IR_bn_ne -6.4 9.2 -0.611
4. IR_tw_nne -17.3 1.6 -0.175
5. IR_te_nne 16.9 -6.5 -0.262
6. IR_bn_wnw 9.2 12.6 1.134
7. IR_bn_nw 6.4 9.2 0.611
8. IR_te_nnw 17.3 1.6 0.175
9. IR_tw_nnw -16.9 -6.5 0.262
10. IR_bw_s -6.9 -7.7 3.054
11. IR_be_s 6.9 -7.7 -3.054
12. IR_bs_w -1.9 -17.2 1.571
13. IR_bs_e 1.9 -17.2 -1.571

4.1.2 Build-Map Implementation

Build-Map subsystem is implemented, based on matrix rotation and translation in 2D
environment. It needs a distance measurement value and three constant properties
(x-value, y-value, yaw-value) from each sensor, as shown in Table 4.1.

First step of the procedure used in this subsystem, as illustrated in Figure 4.3, is
to obtain the distance to an obstacle, and treat it as a value in y-axis:

Xobstacle =
[

0
distance

]
(4.1)

And then, the coordinate of an obstacle is rotated based on orientation property of

Composing robot..., Yan maraden, FT UI, 2009

CHAPTER 4. ROBOT CONTROL SYSTEM 15

Figure 4.3: (1) Obstacle-Sensor Distance, (2) Rotation, (3) Translation

a sensor, by multiplying with the rotation matrix:

Xrotated = XT
obstacle

[
cos yaw − sin yaw
sin yaw cos yaw

]
︸ ︷︷ ︸

rotation matrix

(4.2)

Finally, the real position of an obstacle in the image is calculated by adding the
sensor's position properties:

Xreal = Xrotated +
[
xsensor

ysensor

]
︸ ︷︷ ︸

sensor position

(4.3)

This procedure is applied to all thirteen sensors according to its own sensor
reading and sensor properties. At the end, the results of the real obstacle coordinate
are combined into a single output image. Everything behind the obstacle (from
sensor point of view) is considered as an extension of that obstacle and marked as
white area (pixels).

During experiment, maximum reading of each sensor is approximately around 70
cm. This is the reason why the size of the image output is set to 200×200 pixels. It
is to represent 200×200 cm2 area in the real world. Color format of image used in
this subsystem is an 8-bit grayscale. The size and color format of this image are also
used in other subsytem. An output example of this subsystem is shown in Figure
4.4. Bright pixels indicates the presence of an obstacle and dark pixels indicates the
absence of an obstacle.

Figure 4.4: Build-Map Output Example

Composing robot..., Yan maraden, FT UI, 2009

CHAPTER 4. ROBOT CONTROL SYSTEM 16

4.1.3 Build-Map Subsystem Testing

Build-Map subsystem testing is performed, based on con�guration shown in Figure
4.5. In this testing con�guration, the constant is set to a certain value and connected
to only one input port at a time. The other twelve sensors are connected to in�nite
constant. The output of the subsystem will be displayed by Image Display as soon
as the result is available in the output port.

Figure 4.5: Build-Map Subsystem Testing Con�guration

The subsystem is tested by applying several constant values to each input port,
one at a time, to simulate the presence of an obstacle from each sensor. In this
case, the constant values are set to 10, 50 and 80. Table 4.2 shows the calculated
coordinate of an obstacle with a distance of 10 cm, 50 cm, and 80 cm, based on each
sensor mounting and pointing properties. Figure 4.6 shows the output of Build-Map
subsystem testing for sensor IR_bn_n (above) and IR_bw_s (below). It also shows
that, every pixels behind the obstacle from sensor's point of view are also marked as
an extension of an obstacle, represented by bright pixels. Bright circle in the middle
of the image is not counted as an obstacle, it used to indicate the center of the robot.

Table 4.2: Build-Map Subsystem Testing Result

No. Sensor's Name
Coordinate of a distance

10 cm 50 cm 80 cm

1. IR_bn_n (0,14) (0,54) (0,84)
2. IR_bn_ene (0,17) (36,34) (63,46)
3. IR_bn_ne (-1,18) (22,50) (39,75)
4. IR_tw_nne (-16,11) (-9,51) (-4,80)
5. IR_te_nne (18,4) (28,43) (36,72)
6. IR_bn_wnw (-1,17) (-37,34) (-64,46)
7. IR_bn_nw (0,18) (-23,50) (-40,75)
8. IR_te_nnw (15,11) (8,51) (3,80)
9. IR_tw_nnw (-19,4) (-29,43) (-37,72)
10. IR_bw_s (-7,-16) (-11,-56) (-13,-86)
11. IR_be_s (6,-16) (10,-56) (12,-86)
12. IR_bs_w (-11,-17) (-51,-17) (-81,-17)
13. IR_bs_e (10,-17) (50,-17) (80,-17)

4.2 Odo-Map Subsystem

Odo-Map subsystem uses previous information (previous obstacle map) to improve
current Build-Map subsystem output by incorporating odometry information of robot
movement. Its purpose is to re�ne the output of Build-Map subsystem, and it is an

Composing robot..., Yan maraden, FT UI, 2009

CHAPTER 4. ROBOT CONTROL SYSTEM 17

Figure 4.6: Testing Result for IR_bn_n (above) and IR_bw_s (below)

optional subsystem. This implemented subsystem is described in the following sub-
sections.

4.2.1 Odo-Map Subsystem Description

The main task of this subsystem is to combine previous map and current map of
Build-Map subsystem output, by incorporating odometry information of the robot
movement. This subsystem produces a more detailed map image, by preserving
previously mapped obstacle in its current output.

Figure 4.7: Odo-Map Subsystem Diagram

Odo-Map subsystem, as illustrated in Figure 4.7, has 4 input ports, 1 output port
and 1 parameter. One of the input ports is an image data type, and it is intended
to be connected with Build-Map subsystem output. The other three input ports are
double data type. These ports receives movement information of the robot (current
x-position, current y-position and current heading) from Odometry. The output port
is image data type, which provides a more detailed map to Check-Region subsytem.
Parameter scaling used in this subsystem is a double data type, and takes value from
0 to 1. This parameter is used as a grayscale multiplier of previously received image.

Composing robot..., Yan maraden, FT UI, 2009

CHAPTER 4. ROBOT CONTROL SYSTEM 18

4.2.2 Odo-Map Implementation

The implementation of this subsystem is based on combining previously received
image with newly received image into a single image. An adjustment to previously
received image need to be made before the combination take place, by rotating
and translating all pixels according to current odometry information (x-position,
y-position and heading).

Rotating and translating procedure in this implementation is similar to Build-
Map implementation procedure. In this case, the procedure is implemented to shift
every pixel to another coordinate according to its odometry information. The pro-
cedure is described by the following equation:[

x
y

]
=
[

cos θ sin θ
− sin θ cos θ

]
︸ ︷︷ ︸

rotation matrix

[
x′

y′

]
+
[
xc

yc

]
(4.4)

where θ is the heading of the robot, and (xc, yc) is the center of rotation of the robot.
Every pixel intensity I(x′, y′) is shifted to I(x, y) based on current odometry

information of the robot (x-position, y-position and heading), as illustrated in 4.8.

Figure 4.8: Odo-Map Subsystem Image Rotation Illustration

Once the previous image is being adjusted, Odo-Map subsystem combines the
grayscale intensity information of this image with the current image based on per-
element maximum intensity between two images, as described by:

I(x, y)output = max(scaling × I(x, y)previous, I(x, y)current) (4.5)

Grayscale value of previous image is multiplied by scaling parameter. This multipli-
cation makes the previous image fades away every cycle, if the scaling value is below
1.

4.2.3 Odo-Map Subsystem Testing

Odo-Map subsystem testing is performed, based on con�guration shown in Figure
4.9. Load Image is used to simulate input image sent by Build-Map subsystem. There
are three pairs Constants and Addition to simulate the increment of robot movement.
The �rst pair is used to simulate y-position (cm), second pair to simulate x-position

Composing robot..., Yan maraden, FT UI, 2009

CHAPTER 4. ROBOT CONTROL SYSTEM 19

Figure 4.9: Odo-Map Testing Con�guration

(cm), and third pair to simulate the current heading (rad) of the robot. The result
of a re�ned map of obstacle is displayed by Image Display.

The subsystem is tested by using images from Figure 4.10(1) as input for test
#1 through #3. Figure 4.10(2) is used for test #4 through #6. Values of constants
in every testing are shown in Table 4.3. In the �rst test, Constant1 is set to 20,
to simulate movement in y-axis. Second test, Constant2 is set to 20, to simulate
movement in x-axis. Third test, Constant1 and Constant2 are set to 20, to simulate
diagonal movement. Fourth test, Constant 3 is set to 0.785 (or 45◦), to simulate
rotational movement. Constants in �fth and sixth test is set to simulate combination
of all movements.

Table 4.3: Constant Value for Odo-Map Testing

Test Constant 1 Constant 2 Constant 3
No. y-axis (cm) x-axis (cm) heading (rad)

1. 20 0 0
2. 0 20 0
3. 20 20 0
4. 0 0 0.785
5. 15 15 0.25
6. 15 15 -0.25

The results of Odo-Map subsystem testing are shown in Figure 4.11. It is shown
in 4.11(1), that the previous image is shifted downward if y-position of the robot
moving forward. In Figure 4.11(2) is shown, that changes in x-position of the robot
does not shift the previous image leftward nor rightward, but forward or backward,
depends on its current heading orientation. This is because the robot can only move
forward or backward, and sideways movement is not possible. The e�ect of changes
in both x-position and y-position is shown in Figure 4.11(3), the distance of each
circle is increased as the result of resultant of x- and y-position. Pure full rota-
tion movement is shown in Figure 4.11(4). Counter-clockwise movement shifted the
previous image in clockwise direction, and clockwise movement shifted previous im-
age in counter-clockwise direction. Results of movement combination using di�erent
heading direction are shows in Figure 4.11(5) and (6).

The e�ect of scaling parameter can also be seen in the results. In this subsystem
testing, the scaling value is set to 0.8, this means the previous image gets darker

Composing robot..., Yan maraden, FT UI, 2009

CHAPTER 4. ROBOT CONTROL SYSTEM 20

Figure 4.10: Odo-Map Testing Input

Figure 4.11: Odo-Map Testing Output Results

(fades away) every cycle. And eventually, the previous images will be disappeared
after 24 cycles.

4.3 Check-Region Subsystem

Check-Region subsystem is used, to check the presence of an obstacle within speci�c
region. This implemented subsystem is described in the following subsections.

4.3.1 Check-Region Subsystem Description

The main task of this subsystem is to check an input image for the presence of bright
pixels, calculate the sum of pixels within a speci�c region and determine density of
that region. A subsystem is assigned to check a region in an image, to determine
whether that region is empty or not. Therefore, in order to check multiple regions in
an image, more than one subsystem can be used to perform multiple regions checking.

Composing robot..., Yan maraden, FT UI, 2009

CHAPTER 4. ROBOT CONTROL SYSTEM 21

Figure 4.12: Check-Region Subsystem Diagram

Check-Region subsystem, as illustrated in Figure 4.12, has two ports (input and
output) and 4 parameters. The input port is an image data type and the output port
is a double data type. All parameters used in this subsystem are also double data
type. These parameters are used to draw a rectangular mask region in an image.

4.3.2 Check-Region Implementation

The implementation of this subsystem is based on masking mechanism, applied to
an image input. In this subsystem, the mask shape used is a rectangular and it has
bright value of grayscale, in this case, the value is 255. The size and location of a mask
in an input image are speci�ed by two coordinate points, A (rect_x1,rect_y1) and
B (rect_x2, rect_y2), as illustrated in Figure 4.13(a). These parameters (rect_x1,
rect_y1, rect_x2, rect_y2) are required by the subsystem in its process, to be able
to generate a mask image.

The masking mechanism in this subsystem is using pixel-by-pixel or element-
by-element multiplication between the input image and the generated mask image,
which is described by matrix operation:

[
A
]
.∗
[
B
]

=

a11 · b11 a12 · b12 . . . a1j · b1j

a21 · b21 a12 · b22 . . . a2j · b2j
...

...
. . .

...
ai1 · bi1 ai2 · bi2 . . . aij · bij

 (4.6)

In this case, matrix A is the input image and matrix B is the mask image. The
result of this operation is a masked image, which shows only pixels inside the mask
region of the source image.

Figure 4.13(b) shows the interested region in an image, when a mask is applied
to Figure 4.4. It shows only bright pixels inside the mask region, and pixels outside
the region are all black, because it was multiplied by zero. Therefore, the density of
the interested region can be calculated based on the amount of bright pixel wihtin
the region.

A density of a region are required by Command subsystem, in order the subsystem
to be able to determine whether the interested region is empty or not. The equation
to obtain the region density is de�ned by:

region_density =

∑
x

∑
y I(x, y)∑

x

∑
y 255

(4.7)

Region density value is the output of Check-Region subsystem and the range interval
of this output is [0 , 1]. Output value from Check-Region subsystem can be further
enumerated into two categories depends on some threshold value. For example, it

Composing robot..., Yan maraden, FT UI, 2009

CHAPTER 4. ROBOT CONTROL SYSTEM 22

Figure 4.13: Mask Image (a) and Interested Masked Region(b)

can be categorized as `empty' if the value is in interval [0 , 0.1] and `not empty' if
the value is in interval (0.1 , 1]. This kind of enumeration is used by Command
subsystem, to determine what action should be taken, based on the region density
value.

4.3.3 Check-Region Subsystem Testing

Check-Region subsystem testing is performed, based on con�guration shown in Fig-
ure 4.14. Image used as input, in this testing, is taken from Figure 4.15. The image is
loaded by Load Image and send it to Check-Region input port. The input image has
equal amount of black and white pixels. Half part of the image is black (grayscale
value is 0) and the other half part is white (grayscale value is 255). Input Collector
is used to display subsystem output, region density, as soon as the value is available.

Figure 4.14: Check-Region Subsystem Testing Con�guration

The subsystem is tested by applying di�erent sets of parameters, which determine
the size and location of a mask region. There are six sets of parameters, as shown in
Table 4.4. All sets of parameters represented mask regions with the same size. The
size of this mask region in the image is 60 × 30 pixels. The location of the mask
region is set di�erently for each set of parameters.

The results of this testing are shown in Figure 4.16. In the results, locations of
the mask region are illustrated by yellow grid boxes. It can be seen in the image
that portion of bright pixels which is covered by the mask. Figure 4.16(1) showed
that the applied mask did not cover any bright pixels of image input from Figure
4.15. Figure 4.16(1) showed that the mask covered some bright pixels. Figure 4.16(3)
showed that half of the mask region covered bright pixels. The more bright pixels
are covered by the mask region, the larger is the value of region density, as can be
seen in Figure 4.16(3), (4), and (5).

Composing robot..., Yan maraden, FT UI, 2009

CHAPTER 4. ROBOT CONTROL SYSTEM 23

Figure 4.15: Check-Region Subsystem Testing Input Example

Table 4.4: Check-Region Subsystem Testing Parameters and Output

Test Point A Point B output
No. rect_x1 rect_y1 rect_x2 rect_y2 (region density)

1. -100 50 -41 21 0
2. -50 50 9 21 0.16667
3. -30 50 29 21 0.5
4. -20 50 39 21 0.66667
5. -10 50 49 21 0.83333
6. 40 50 99 21 1

Figure 4.16: Check-Region Subsystem Testing Results

4.4 Command Subsystem

Command subsystem is used, to generate a speci�c command, and give the com-
mand with some weighting value based on region density value. This implemented
subsystem is described in the following subsections.

Composing robot..., Yan maraden, FT UI, 2009

CHAPTER 4. ROBOT CONTROL SYSTEM 24

4.4.1 Command Subsystem Description

The main task of this subsystem is to generate a speci�c command to its output port
if the value (region density) in its input port satis�es some condition (threshold).
This speci�c command contains information about angular and linear movement of
the robot (angular and linear velocity), which is embedded into an image. One
subsystem is used to generate one command. Therefore, more than one Command
subsystem is needed, in order to perform multiple command combination.

Figure 4.17: Command Subsystem Diagram

Command subsystem, as illustrated in Figure 4.17, has two ports (input and
output) and 6 parameters. The input port is a double data type and the output port
is an image data type. Parameter smoothing and switching are boolean data type
and the other four parameters(point_x, point_y, point_size and empty_threshold)
used in this subsystem are double data type.

4.4.2 Command Implementation

The implementation of this subsystem is based on embedding information about
angular and linear velocity into an image. This information is represented by a circle
drawn into image, as illustrated in Figure 4.18. Location of each circle in Cartesian
coordinate is determined by parameter point_x and point_y.

Figure 4.18: Graph Command Implementation

Six graphical command examples in Figure 4.18 can be translated into linguistic
commands and a linguistic command can also be translated to a graphical command.

Composing robot..., Yan maraden, FT UI, 2009

CHAPTER 4. ROBOT CONTROL SYSTEM 25

It can be translated when to `move forward' or `move backward' when there is only a
linear component, and to `turn counter-clockwise (CCW)' or `turn clockwise (CW)'
when there is only an angular component involved. Combination of both movement
is used to translate a graphic command, when the command is consisted of linear and
angular component, i.e command(5) and command(6). All six graphical commands
in the �gure can be translated as follow:

1. Move forward fast.

2. Move backward slowly.

3. Turn clockwise (CW) moderately.

4. Stop!

5. Turn counter-clockwise (CCW) fast while moving forward moderately.

6. Move backward fast while turning clockwise slowly.

These commands will be sent to output port as an image if the parameter switch-
ing is `true' and the value it received in the input port is less than or equal to thresh-
old value (`empty') , else it will send a blank image. By changing the parameter
switching to `false', the subsystem will send the given command to output port if the
value it received is larger than threshold (`not empty'). The Command subsystem
function is similar to IF-THEN-ELSE statement with CASE scheme, as described in
following pseudocode:

Case true
If region is `empty'

Then send the command with some weighting value
Else send nothing

Case false
If region is `not empty'

Then send the command with some weighting value
Else send nothing

The weighting of a command mentioned in above pseudocode, can be regulated
manually through the changing of radius of the circle (parameter point_size). There-
fore, a larger circle is more important and has more in�uence e�ect than a smaller
circle. A command weighting mechanism also depends on its grayscale color. The
grayscale value of a command is determined by the value of region density received
in the input port. The distribution of grayscale percentage of a region density is
based on sigmoid curve function, de�ned by:

f(x) =
1

1 + e−x
(4.8)

Then, the function is modi�ed based on two density categories, `empty' or `not
empty'. In this implementation, `empty' is de�ned as value of region density in
interval [0, threshold] and `not empty' as value of region density in interval (threshold,
1]. Equation to calculate the percentage of grayscale value of an `empty' region
density is de�ned by:

f1(x) = 1− 1
1 + e−(10 x

threshold
−5)

(4.9)

Composing robot..., Yan maraden, FT UI, 2009

CHAPTER 4. ROBOT CONTROL SYSTEM 26

and for a `not empty' region density, is de�ned by:

f2(x) =
1

1 + e−(10x−threshold
1−threshold

−5)
(4.10)

Curves for both equation to determine the grayscale value of a command are shown
in Figure 4.19. Shape of each curve depends on the value of the threshold.

Figure 4.19: Regiond Density - Grayscale Percentage Relation

4.4.3 Command Test

Command subsystem testing is performed, based on con�guration shown in Figure
4.20. Constant is used to simulate the density of a region from Check-Region subsys-
tem. Output of Command subsystem will be displayed by Image Display. Parameter
threshold, in this testing, is set to 0.1. This means, that region density less or equal
0.1 will be considered as `empty' and region density greater than 0.1 as `not empty'.

Figure 4.20: Command Subsystem Testing Con�guration

The subsystem is tested by applying several sets of parameters, in order to test
Command subsystem. Sets of parameters in this testing is given in Table 4.5. Pa-
rameter switching is set to `true' in testing #1 through testing #3 and set to `false'
in testing #4 through testing #6. Parameter smoothing set to `true' only in testing
#2 and #4. For the other testings, parameter smoothing is set to `false'.

The testing results for all sets of parameters are shown in Figure 4.21. The
grayscale value of a circle is calculated based on the value of region density it received
in the input port. For a region density less or equal 0.1, the calculation is given by
equation 4.8 and for greater than 0.1, the calculation is given by equation 4.9. Figure
4.21(2) and (4) show the result, when a circle is smoothed using Gaussian blur.

By referring explanation about Figure 4.18, the results can be translated into
linguistic command, such as `move forward', `move backward', `turn ccw', `turn cw',

Composing robot..., Yan maraden, FT UI, 2009

CHAPTER 4. ROBOT CONTROL SYSTEM 27

Table 4.5: Command Subsystem Testing Parameters

Test Circle Coordinate Priority Constant Value
No. (point_x) (point_y) (point_size) (region density)

1. 0 75 10 0.02
2. 0 -25 15 0.05
3. 75 0 10 0.06
4. 0 0 40 0.08
5. -50 50 20 0.55
6. -25 0 20 0.45

`stop' and `move forward while turn clockwise'. Command `move forward' and 'stop'
has the brightest grayscale color. This means, these command are more important
and has more e�ect than any other command. Size of a circle has e�ect in a command
weighting, as seen in the result, that command `stop' is the largest. The e�ect of
this weighting is explained in the next section (Add-Image Subsystem).

Figure 4.21: Command Subsystem Testing Result

4.5 Add-Image Subsystem

Add-Image subsystem is used to combine command images from Command subsys-
tems into a single command image. The implemented subsystem is described in the
following subsections.

4.5.1 Add-Image Subsystem Description

The main task of this subsystem is to combine several command images it received
in input port and send the result to its output port. Number of received image in

Composing robot..., Yan maraden, FT UI, 2009

CHAPTER 4. ROBOT CONTROL SYSTEM 28

its input ports is not limited, therefore, more than one command images can be sent
to the Add-Image subsystem input ports to be combined.

Figure 4.22: Add-Image Subsystem

Add-Image subsystem, as illustrated in Figure 4.22, has two ports (input and
output) and one parameter. Input and output port are images data type. Parameter
scaling used in this subsystem is double data type.

4.5.2 Add-Image Implementation

The implementation of this subsystem is based on adding multiple image into a single
image. The subsystem will add all the incoming images and send it to its output
port. The addition procedure is described by equation:

[
A
]

+
[
B
]

=

a11 + b11 a12 + b12 . . . a1j + b1j

a21 + b21 a12 + b22 . . . a2j + b2j
...

...
. . .

...
ai1 + bi1 ai2 + tbi2 . . . aij + bij

 (4.11)

In this case, matrixA andB are the image inputs, which have the same size (200×200
pixels) and color format (grayscale).

Figure 4.23: Move Forward(a), Turn CW(b), and Result (c)

Figure 4.23 shows an example of graph command addition, between command
`move forward' (a) and `turn clockwise' (b). In a linguistic manner, the combination
of these two command is described as `move forward and turn clockwise', but the
exact quantity of the combination need to be calculated, by determining the centroid
of the combined command, which will be explained in the next section (Movement
Subsystem).

In this subsystem. parameter scaling is used to scale down grayscale value of every
command image before the addition process. Every input image will be multiplied

Composing robot..., Yan maraden, FT UI, 2009

CHAPTER 4. ROBOT CONTROL SYSTEM 29

by the scaling factor:

scaling

255
[
A
]

+
scaling

255
[
B
]

+ . . . (4.12)

If the scaling is not used, every addition element which exceeded 255, will be con-
sidered as a grayscale value of 255 (white).

4.5.3 Add-Image Subsystem Testing

Add-Image subsystem testing is performed, based on con�guration shown in Figure
4.24. Load Image is used to simulate incoming images at the input port, by loading a
prede�ned command image. The result of command image combination is displayed
by Image Display.

Figure 4.24: Add-Image Testing Con�guration

The subsystem is tested by loading several sets of command images into Add-
Image subsystem input port. Command image inputs for this testing, are taken from
Figure 4.21. The sets of command images used to test the subsystem are given in
Table 4.6. Testing #1 through #3 are addition of 2 command images; testing #4
and #5 are the addition of 3 command images; and the last testing is the addition
of 5 command images.

Table 4.6: Adding Commands from Figure 4.21

Test
Adding Figure 4.21

Scaling
No. Value

1. (1) + (2) 255
2. (1) + (3) 255
3. (5) + (6) 10
4. (4) + (5) + (6) 20
5. (1) + (2) + (4) 255
6. (1) + (2) + (4) + (5) + (6) 50

The results of Add-Image subsystem testing are shown in Figure 4.25. Parameter
scaling is useful when there are overlapping command images, as can be seen in
Figure 4.25(4) and (6). When the parameter scalling is not used, scalling = 255,
the overlapping command most likely will cannot be distinguished, unless there are
di�erences in their grayscale value. As can be seen in Figure 4.25(5), which is the
addition of 3 command images, one of the command almost cannot be distinguished
from other command.

Composing robot..., Yan maraden, FT UI, 2009

CHAPTER 4. ROBOT CONTROL SYSTEM 30

Figure 4.25: Add-Image Addition Result

4.6 Movement Subsystem

Movement subsystem is used to calculate the centroid of a combined command image,
and controls angular and linear movement of the robot. The implemented subsystem
is described in the following subsections.

4.6.1 Movement Subsystem Description

The main task of this subsystem is to calculate centroid of an image, convert the
value into angular and linear velocity scales, and then send the results to its output
ports. The outputs of this subsystem are angular and linear velocity values, which
regulates the movement of the robot.

Figure 4.26: Movement Subsystem

Movement subsytem, as illustrated in Figure 4.26, has 1 input port and 2 output
ports. The input is an image data type and the outputs are double data. This
subsystem has no parameter.

4.6.2 Movement Implementation

The implementation of this subsystem is based on the calculation of image moments
to determine its centroid. Equation of raw moments of an image, Mij , is de�ned by:

Composing robot..., Yan maraden, FT UI, 2009

CHAPTER 4. ROBOT CONTROL SYSTEM 31

Mij =
∑

x

∑
y

xiyjI(x, y) (4.13)

In a grayscale image, pixel intensity I(x, y) value varies from 1 to 255. Centroid of
an image, (x̄, ȳ), can be calculated based on its moments, de�ned by:

x̄ =
M10

M00
(4.14)

ȳ =
M01

M00
(4.15)

The centroid value (x̄, ȳ) has to be scaled down to limit the maximum velocity.
Maximum value for angular velocity is 1 (radian per second) and maximum value
for linear velocity is 20 (cm per second). The scalings are de�ned by:

angular_velocity =
ȳ

100
× 1 rad/s (4.16)

linear_velocity =
x̄

100
× 20 cm/s (4.17)

These value directly control the movement of the robot. Positive value of angular
velocity makes the robot turn counter-clockwise, and negative value makes the robot
turn clockwise. Positive value of linear velocity makes the robot move forward, and
negative value makes the robot move backward.

4.6.3 Movement Test

The Movement subsystem is performed, based on con�guration shown in Figure 4.27.
Image input is loaded by Load Image and the ouput of this subsystem is displayed
by Input Collector.

Figure 4.27: Movement Subsystem Testing Con�guration

The subsystem is tested by using images from Figure 4.25 as its input, to deter-
mine the image centroid. The results of the subsystem testing are given in Table
4.7, which show coordinate of image centroid, and the value of angular and linear
velocity. Figure 4.28 shows the location of the centroid in input image. It can be
seen in the result, that a larger circle has the most e�ect in centroid calculation. It
drags the centroid of the image near to its own center, as can be seen in Figure 4.28
(4), (5), and (6). It also shows that a cicrle with greater grayscale value will have
more in�uence e�ect int the centroid calculation, as can be seen in Figure 4.28 (1),
(2), and (3).

Composing robot..., Yan maraden, FT UI, 2009

CHAPTER 4. ROBOT CONTROL SYSTEM 32

Table 4.7: Testing Result By Using Figure 4.25 As Input

Image Centroid Coordinate Output
No. x̄ ȳ angular vel. linear vel.

1. -0.00254942 21.1063 -2.54942e-005 4.22127
2. 16.6433 58.342 0.166433 11.6684
3. -42.3837 34.835 -0.423837 6.96699
4. -6.88728 5.51369 -0.0688728 1.10274
5. 0.000935116 3.94386 9.35116e-006 0.788771
6. -6.20652 7.15113 -0.0620652 1.43023

Figure 4.28: Movement Subsystem Testing Results

Composing robot..., Yan maraden, FT UI, 2009

Chapter 5

Composite System Experiment

This chapter explains the application of Robot Control System in several experi-
ments. The experiments were conducted by implementing rules and their combina-
tions to produce a meaningful movement. The experiments are described into three
sections: �rst section of this chapter describes experiments to produce simple move-
ments, enhancement of simple movements is described in the second section, and last
section of this chapter describes experiments to produce a more complex movements.

Figure 5.1: Con�guration of Mask Regions

Throughout this chapter, size and location of all mask used in the rule statement
and system con�guration are de�ned in Figure 5.1. There are nine mask regions with
di�erent size and location, from A1 to A9. The mask con�guration setup is speci�c
for experiments in this chapter, but other mask con�guration is possible to use.

5.1 Simple Movement

A simple movement of Scorpion Robot can be controlled by using only one single rule.
There are at least eight simple movements: forward, backward, clockwise rotation,
counter-clockwise rotation, clockwise forward, counter-clockwise forward, clockwise
backward and counter-clockwise backward.

System con�guration to produce simple movement only need one Check-Region
subsystem and one Command subsystem, as illustrated in Figure 5.2. This simple
rule con�guration represents one IF-THEN statement. Check-Region subsystem is
assigned to determine the existence of an obstacle within one of nine mask region

33

Composing robot..., Yan maraden, FT UI, 2009

CHAPTER 5. COMPOSITE SYSTEM EXPERIMENT 34

Figure 5.2: One Rule System Con�guration

shown in Figure 5.1. Command subsystem produces one simple movement command
if the condition about certain mask region density is satis�ed. Default function of
Command subsystem is to asserts `a region is empty'. By changing the parameter
switching to `false', the function of Command subsystem will change to assert `a
region is not empty'.

5.1.1 Forward Movement

Behavior of forward movement of the robot is shown by this experiment. The exper-
iment of forward movement is described as follows.

Objective

The objective of this experiment was to make the robot move forward if there is no
obstacle in front of the robot.

Rule System Con�guration

A rule statement, to control the forward movement of a robot if there is no obstacle
within A7 region, was de�ned by:

If A7 region is empty then move forward (5.1)

The rule was created by setting parameters of Command subsystem (point_x,
point_y, point_size, switching) to draw a sized 10 circle at coordinate (0,30) in a
`case true' scheme (by default, the Command subsystem was in a `case true' scheme,
indicated by `true' value of switching parameter, refer to 4.4.2).

Result

The behavior of robot movement was based on whether A7 region is empty or not
empty. The system sent `move forward' command when there was no obstacle within
A7 region. This `move forward' command, as shown in Figure 5.3(1), made the
robot moves forward. When there was an obstacle within A7 region, the `move
forward' command was not send out, instead, a 'blank' command (completely black
image) was sent out. This 'blank' command made the robot stop its movement.
The behavior of robot movement, in this experiment, is illustrated in Figure 5.3(2).
Bright image of the robot shows the initial starting position of the robot, and darker
image of the robot shows the latest position of the robot.

5.1.2 Backward Movement

Behavior of backward movement of the robot is shown by this experiment. The
experiment of backward movement is described as follows.

Composing robot..., Yan maraden, FT UI, 2009

CHAPTER 5. COMPOSITE SYSTEM EXPERIMENT 35

Figure 5.3: Forward Movement Command

Objective

The objective of this experiment was to make the robot move backward if there is
no obstacle at the back of the robot.

Rule System Con�guration

A rule statement, to control the backward movement of a robot if there is no obstacle
within A6 region, was de�ned by:

If A6 region is empty then move backward (5.2)

The rule was created by setting parameters of Command subsystem to draw a
sized 5 circle at coordinate (0,-20) in a `case true' scheme.

Result

The behavior of robot movement was based on whether A6 region is empty or not
empty. The system sent `move backward' command when there was no obstacle
within A6 region. This `move backward' command, as shown in Figure 5.4(1), made
the robot moves backward. When there was an obstacle within A6 region, the `move
backward' command was not send out, instead, a 'blank' command was sent out,
and the robot stopped its movement. The behavior of robot movement, in this
experiment, is illustrated in Figure 5.4(2).

Figure 5.4: Backward Movement Command

Composing robot..., Yan maraden, FT UI, 2009

CHAPTER 5. COMPOSITE SYSTEM EXPERIMENT 36

5.1.3 Clockwise Rotation Movement

Behavior of clockwise rotation of the robot is shown by this experiment. The exper-
iment of clockwise rotation is described as follows.

Objective

The objective of this experiment was to make the robot rotate clockwise is there is
an obstacle in front of the robot.

Rule System Con�guration

A rule statement, to control the clockwise rotation of a robot if there is an obstacle
within A1 region, was de�ned by:

If A1 region is not empty then rotate clockwise (5.3)

This pure rotation rule was created by setting parameters of Command subsystem
to draw a sized 10 circle at coordinate (-30,0) in a `case false' scheme.

Result

The behavior of robot rotation was based on whether A1 region is empty or not
empty. The system sent `rotate clockwise' command when there was an obstacle
within A1 region. This `rotate clockwise' command, as shown in Figure 5.5(1), made
the robot rotate clockwise. When there was no obstacle within A1 region, the `rotate
clockwise' command was not send out, instead, a 'blank' command was sent out, and
the robot stopped its rotation. The behavior of robot rotation, in this experiment,
is illustrated in Figure 5.5(2).

Figure 5.5: Clockwise Rotation Command

5.1.4 Counter-Clockwise Rotation

Behavior of counter-clockwise rotation of the robot is shown by this experiment. The
experiment of clockwise rotation is described as follows.

Objective

The objective of this experiment was to make the robot rotate counter-clockwise if
there is an obstacle in front of the robot.

Composing robot..., Yan maraden, FT UI, 2009

CHAPTER 5. COMPOSITE SYSTEM EXPERIMENT 37

Rule System Con�guration

A rule statement, to control the counter-clockwise rotation of a robot if there is an
obstacle within A1 region, was de�ned by:

If A1 region is not empty then rotate counter-clockwise (5.4)

This pure rotation rule was created by setting parameters of Command subsystem
to draw a sized 10 circle at coordinate (30,0) in a `case false' scheme.

Result

The behavior of robot rotation was based on whether A1 region is empty or not
empty. The system sent `rotate counter-clockwise' command when there was an
obstacle within A1 region. This `rotate counter-clockwise' command, as shown in
Figure 5.6(1), made the robot rotate counter-clockwise. When there was no obstacle
within A1 region, the `rotate counter-clockwise' command was not send out, instead,
a 'blank' command was sent out, and the robot stopped its rotation. The behavior
of robot rotation, in this experiment, is illustrated in Figure 5.6(2).

Figure 5.6: Counter-Clockwise Rotation Command

5.1.5 Forward-Right Movement

Behavior of forward-right movement of the robot is shown by this experiment. The
experiment of forward-right movement is described as follows.

Objective

The objective of this experiment was to make the robot move forward and slightly
to the right if there is an obstacle at front-right side of the robot.

Rule System Con�guration

A rule statement, to control the forward-right movement of a robot if there is an
obstacle within A2 region, was de�ned by:

If A2 region is not empty then move forward-right (5.5)

The rule was created by setting parameters of Command subsystem to draw a
sized 10 circle at coordinate (-25,30) in a `case false' scheme.

Composing robot..., Yan maraden, FT UI, 2009

CHAPTER 5. COMPOSITE SYSTEM EXPERIMENT 38

Result

The behavior of robot movement was based on whether A2 region is empty or not
empty. The system sent `move forward-right' command when there was an obstacle
within A2 region. This `move forward-right' command, as shown in Figure 5.7(1),
made the robot move forward with slightly to the right. When there was no obstacle
within A2 region, the `move forward-right' command was not send out, instead, a
'blank' command was sent out, and the robot stopped its movement. The behavior
of robot movement, in this experiment, is illustrated in Figure 5.7(2).

Figure 5.7: Forward-Right Movement Command

5.1.6 Forward-Left Movement

Behavior of forward-left movement of the robot is shown by this experiment. The
experiment of forward-left movement is described as follows.

Objective

The objective of this experiment was to make the robot move forward and slightly
to the left if there is an obstacle at front-left side of the robot.

Rule System Con�guration

A rule statement, to control the forward-left movement of a robot if there is an
obstacle within A3 region, was de�ned by:

If A3 region is not empty then move forward-left (5.6)

The rule was created by setting parameters of Command subsystem to draw a
sized 10 circle at coordinate (25,30) in a `case false' scheme.

Result

The behavior of robot movement was based on whether A3 region is empty or not
empty. The system sent `move forward-left' command when there was an obstacle
within A3 region. This `move forward-left' command, as shown in Figure 5.8(1),
made the robot move forward with slightly to the right. When there was no obstacle
within A2 region, the `move forward-right' command was not send out, instead, a
'blank' command was sent out, and the robot stopped its movement. The behavior
of robot movement, in this experiment, is illustrated in Figure 5.8(2).

Composing robot..., Yan maraden, FT UI, 2009

CHAPTER 5. COMPOSITE SYSTEM EXPERIMENT 39

Figure 5.8: Forward-Left Movement Command

5.1.7 Backward-Right Movement

Behavior of backward-right movement of the robot is shown by this experiment. The
experiment of backward-right movement is described as follows.

Objective

The objective of this experiment was to make the robot move backward and slightly
to the right if there is an obstacle in front of the robot.

Rule System Con�guration

A rule statement, to control the backward-right movement of a robot if there is an
obstacle within A1 region, was de�ned by:

If A1 region is not empty then move backward-right (5.7)

The rule was created by setting parameters of Command subsystem to draw a
sized 10 circle at coordinate (25,30) in a `case false' scheme.

Result

The behavior of robot movement was based on whether A1 region is empty or not
empty. The system sent `move backward-right' command when there was an obstacle
within A1 region. This `move backward-right' command, as shown in Figure 5.9(1),
made the robot move backward with slightly to the right. When there was no obstacle
within A1 region, the `move backward-right' command was not send out, instead, a
'blank' command was sent out, and the robot stopped its movement. The behavior
of robot movement, in this experiment, is illustrated in Figure 5.9(2).

5.1.8 Backward-Left Movement

Behavior of backward-left movement of the robot is shown by this experiment. The
experiment of backward-left movement is described as follows.

Objective

The objective of this experiment was to make the robot move backward and slightly
to the left if there is an obstacle in front of the robot.

Composing robot..., Yan maraden, FT UI, 2009

CHAPTER 5. COMPOSITE SYSTEM EXPERIMENT 40

Figure 5.9: Backward-Right Movement Command

Rule System Con�guration

A rule statement, to control the backward-left movement of a robot if there is an
obstacle within A1 region, was de�ned by:

If A1 region is not empty then move backward-left (5.8)

The rule was created by setting parameters of Command subsystem to draw a
sized 10 circle at coordinate (-25,30) in a `case false' scheme.

Result

The behavior of robot movement was based on whether A1 region is empty or not
empty. The system sent `move backward-left' command when there was an obstacle
within A1 region. This `move backward-left' command, as shown in Figure 5.10(1),
made the robot move backward with slightly to the left. When there was no obstacle
within A1 region, the `move backward-left' command was not send out, instead, a
'blank' command was sent out, and the robot stopped its movement. The behavior
of robot movement, in this experiment, is illustrated in Figure 5.10(2).

Figure 5.10: Backward-Left Movement Command

5.2 Enhanced Movement

An additional rule was added, in order to enhance the behavior of simple movement,
thus the system con�guration comprised two rules. Con�guration of a system with

Composing robot..., Yan maraden, FT UI, 2009

CHAPTER 5. COMPOSITE SYSTEM EXPERIMENT 41

two rule is illustrated in Figure 5.11(1). System con�guration in Figure 5.11(2) was
used, when both rules are checking the same region, thus, only one Check-Region
subsystem was needed.

Figure 5.11: Two Rule System Con�guration

Basically, the purpose of this enhancement was to make the robot avoid obsta-
cle while moving forward. Therefore, there are, at least 6 combination of `forward
movement' with other movement, described in this sections: combination `move for-
ward' and `move forward-right', combination `move forward' and `move forward-left',
combination `move forward' and `move backward-left', combination `move forward'
and `move backward-right', combination `move forward' and `rotate clockwise', and
combination `move forward' and `rotate counter-clockwise'.

5.2.1 Combination With Forward-Right

Behavior of forward movement enhancement, by adding forward-right movement,
was shown by this experiment. The experiment of this enhancement is described as
follows.

Objective

The objective of this experiment was to make the robot, while moving forward, avoid
an obstacle around its front-left, by moving slightly to the right.

Rule System Con�guration

In this system con�guration, `move forward' command was enhanced by `move
forward-right' command. The rules statement to control the movement combina-
tion is de�ned by:

If A1 region is empty then move forward

If A2 region is not empty then move forward-right (5.9)

These rules were created, by setting parameters of Command subsystems to draw
`move forward' command (circle at coordinate (0,30) with size of 10) in a `case true'
scheme and `move forward-right' command (circle at coordinate (-40,30) with size of
10) in a `case false' scheme, as illustrated in Figure 5.12(1) and (2) respectively.

Result

The behavior of robot movement was based on the presence of an obstacle within
A1 and A2 regions. The system sent `move forward' command when there was

Composing robot..., Yan maraden, FT UI, 2009

CHAPTER 5. COMPOSITE SYSTEM EXPERIMENT 42

no obstacle within A1 regions, and sent `move forward-right' command when there
was an obstacle within A2 region. The robot kept moving forward after avoided
an obstacle around its front-left by moving forward with slightly to the right. The
behavior of robot movement, in this experiment, is illustrated in Figure 5.12(3).

Figure 5.12: Combination with Forward-Right Movement

5.2.2 Combination With Forward-Left

Behavior of forward movement enhancement, by adding forward-left movement, was
shown by this experiment. The experiment of this enhancement is described as
follows.

Objective

The objective of this experiment was to make the robot, while moving forward, avoid
an obstacle around its front-right, by moving slightly to the left.

Rule System Con�guration

In this system con�guration, `move forward' command was enhanced by `move
forward-left' command. The rules statement to control the movement combination
is de�ned by:

If A1 region is empty then move forward

If A3 region is not empty then move forward-left (5.10)

These rules were created, by setting parameters of Command subsystems to draw
`move forward' command (circle at coordinate (0,30) with size of 10) in a `case true'
scheme and `move forward-left' command (a sized 10 circle at coordinate (40,30)
with size of 10) in a `case false' scheme, as illustrated in Figure 5.13(1) and (2)
respectively.

Result

The behavior of robot movement was based on the presence of an obstacle within
A1 and A3 regions. The system sent `move forward' command when there was no
obstacle within A1 regions, and sent `move forward-left' command when there was an
obstacle within A3 region. The robot kept moving forward after avoided an obstacle
around its front-right by moving forward with slightly to the left. The behavior of
robot movement, in this experiment, is illustrated in Figure 5.13(3).

Composing robot..., Yan maraden, FT UI, 2009

CHAPTER 5. COMPOSITE SYSTEM EXPERIMENT 43

Figure 5.13: Combination With Forward-Left Movement

5.2.3 Combination With Backward-Left

Behavior of forward movement enhancement, by adding backward-left movement,
was shown by this experiment. The experiment of this enhancement is described as
follows.

Objective

The objective of this experiment was to make the robot, while moving forward, avoid
an obstacle in front of it, by moving backward with slightly to the left.

Rule System Con�guration

In this system con�guration, `move forward' command was enhanced by `move
backward-left' command. The rules statement to control the movement combina-
tion is de�ned by:

If A1 region is empty then move forward

If A1 region is not empty then move backward-left (5.11)

The rules checked the same region, thus con�guration of two rules system in
5.11(2) was used. These two rule were rede�ned as a single rule statement:

If A1 region is empty then move forward else move backward-left (5.12)

The rule was created, by setting parameters of Command subsystems to draw
`move forward' command (circle at coordinate (0,30) with size of 10) in a `case true'
scheme and `move backward-left' command (a sized 10 circle at coordinate (-60,30)
with size of 10) in a `case false' scheme, as illustrated in Figure 5.14(1) and (2)
respectively.

Result

The behavior of robot movement was based on whether A1 region is empty or not
empty. The system sent `move forward' command when there was no obstacle within
A1 regions, otherwise `move forward-left' command were sent when there was an ob-
stacle. When encountered with an obstacle while moving forward, the robot avoided
the obstacle in front of it, by moving backward with slightly to the left, and then con-
tinued to move forward if there was no obstacle. The behavior of robot movement,
in this experiment, is illustrated in Figure 5.14(3).

Composing robot..., Yan maraden, FT UI, 2009

CHAPTER 5. COMPOSITE SYSTEM EXPERIMENT 44

Figure 5.14: Combination with Backward-Left Movement

5.2.4 Combination With Backward-Right

Behavior of forward movement enhancement, by adding backward-right, movement
was shown by this experiment. The experiment of this enhancement is described as
follows.

Objective

The objective of this experiment was to make the robot, while moving forward, avoid
an obstacle in front of it, by moving backward with slightly to the right.

Rule System Con�guration

In this system con�guration, `move forward' command was enhanced by `move
backward-right' command. The rules statement to control the movement combi-
nation is de�ned by:

If A1 region is empty then move forward

If A1 region is not empty then move backward-right (5.13)

The rules checked the same region, thus con�guration of two rules system in
5.11(2) was used. These two rule were rede�ned as a single rule statement:

If A1 region is empty then move forward else move backward-right (5.14)

The rule was created, by setting parameters of Command subsystems to draw
`move forward' command (circle at coordinate (0,30) with size of 10) in a `case true'
scheme and `move backward-right' command (a sized 10 circle at coordinate (60,30)
with size of 10) in a `case false' scheme, as illustrated in Figure 5.15(1) and (2)
respectively.

Result

The behavior of robot movement was based on whether A1 region is empty or not
empty. The system sent `move forward' command when there was no obstacle within
A1 regions, otherwise `move forward-right' command were sent when there was an ob-
stacle. When encountered with an obstacle while moving forward, the robot avoided
the obstacle in front of it, by moving backward with slightly to the right, and then
continued to move forward if there was no obstacle. The behavior of robot movement,
in this experiment, is illustrated in Figure 5.15(3).

Composing robot..., Yan maraden, FT UI, 2009

CHAPTER 5. COMPOSITE SYSTEM EXPERIMENT 45

Figure 5.15: Combination with Backward-Right Movement

5.2.5 Combination With Clockwise

Behavior of forward movement enhancement, by adding clockwise rotation, was
shown by this experiment. The experiment of this enhancement is described as
follows.

Objective

The objective of this experiment was to make the robot, while moving forward, avoid
an obstacle in front of it, by rotating in clockwise direction.

Rule System Con�guration

In this system con�guration, `move forward' command was enhanced by `rotate clock-
wise' command. The rules statement to control the movement combination is de�ned
by:

If A1 region is empty then move forward

If A1 region is not empty then rotate clockwise (5.15)

The rules checked the same region, thus con�guration of two rules system in
5.11(2) was used. These two rule were rede�ned as a single rule statement:

If A1 region is empty then move forward else rotate clockwise (5.16)

The rule was created, by setting parameters of Command subsystems to draw
`move forward' command (circle at coordinate (0,30) with size of 10) in a `case true'
scheme and `rotate clockwise' command (a sized 10 circle at coordinate (-85,0) with
size of 10) in a `case false' scheme, as illustrated in Figure 5.16(1) and (2) respectively.

Result

The behavior of robot movement was based on whether A1 region is empty or not
empty. The system sent `move forward' command when there was no obstacle within
A1 regions, otherwise `rotate clockwise' command were sent when there was an ob-
stacle. When encountered with an obstacle while moving forward, the robot avoided
the obstacle in front of it, by rotating in clockwise direction, and then continued to
move forward if there was no obstacle. The behavior of robot movement, in this
experiment, is illustrated in Figure 5.16(3).

Composing robot..., Yan maraden, FT UI, 2009

CHAPTER 5. COMPOSITE SYSTEM EXPERIMENT 46

Figure 5.16: Combination with Clockwise Rotation

5.2.6 Combination With Counter-Clockwise

Behavior of forward movement enhancement, by adding counter-clockwise rotation,
was shown by this experiment. The experiment of this enhancement is described as
follows.

Objective

The objective of this experiment was to make the robot, while moving forward, avoid
an obstacle in front of it, by rotating in clockwise direction.

Rule System Con�guration

In this system con�guration, `move forward' command was enhanced by `rotate
counter-clockwise' command. The rules statement to control the movement com-
bination is de�ned by:

If A1 region is empty then move forward

If A1 region is not empty then rotate counter-clockwise (5.17)

The rules checked the same region, thus con�guration of two rules system in
5.11(2) was used. These two rule were rede�ned as a single rule statement:

If A1 region is empty then move forward else rotate counter-cw (5.18)

The rule was created, by setting parameters of Command subsystems to draw
`move forward' command (circle at coordinate (0,30) with size of 10) in a `case
true' scheme and `rotate counter-clockwise' command (a sized 10 circle at coordinate
(85,0) with size of 10) in a `case false' scheme, as illustrated in Figure 5.17(1) and
(2) respectively.

Result

The behavior of robot movement was based on whether A1 region is empty or not
empty. The system sent `move forward' command when there was no obstacle within
A1 regions, otherwise `rotate counter-clockwise' command were sent when there was
an obstacle. When encountered with an obstacle while moving forward, the robot
avoided the obstacle in front of it, by rotating in counter-clockwise direction, and
then continued to move forward if there was no obstacle. The behavior of robot
movement, in this experiment, is illustrated in Figure 5.17(3).

Composing robot..., Yan maraden, FT UI, 2009

CHAPTER 5. COMPOSITE SYSTEM EXPERIMENT 47

Figure 5.17: Combination with Counter-Clockwise Rotation

5.3 Complex Movement

In this section, several experiments, which were using more than two rule to control
the movement of the robot, are presented. The purpose of these experiments was
to see the behavior of the robot, which were controlled by several sets of rules, in a
narrow dead-end alley, as illustrated in Figure 5.18. The e�ects of replacing some
initial rules with other rules and the e�ect of adding a rule to a set of rules were
shown by these experiments.

Figure 5.18: Dead-End Alley Obstacles Con�guration

5.3.1 Experiment 1 - Navigating With Normal Speed

Behavior of complex robot movement, by using initial set of rules, was shown by this
experiment. The experiment of this complex movement is described as follows.

Objective

The objective of this experiment was to make the robot enter and then come out
from a narrow dead-end alley without hitting the obstacle.

Composing robot..., Yan maraden, FT UI, 2009

CHAPTER 5. COMPOSITE SYSTEM EXPERIMENT 48

Rule System Con�guration

In this experiment, the initial set of rules to control the movement of the robot with
the given obstacle (as illustrated in Figure 5.18) is de�ned by:

If A1 region is empty then move forward

If A8 region is empty then move forward

If A2 region is not empty then rotate clockwise

If A3 region is not empty then rotate counter-clockwise (5.19)

Con�guration to construct a system for these rules is illustrated in Figure 5.19.
Regions of the masks used in these rules can be seen in Figure 5.1. Parameters of
each command used in the rules are given in Table 5.1. The purpose of the second
forward in the rules is to speed up the �rst forward command if there is no obstacle
within A8 region.

Figure 5.19: Con�guration of Complex Rule System 1

Table 5.1: Command Parameters in Experiment 1

No. Command Circle Coordinate Circle Size Case Scheme

1. Forward 1 (0,30) 10 true
2. Forward 2 (0,70) 5 true
3. Clockwise (-40,0) 10 false
4. Counter-cw (40,0) 10 false

Result

Experiment with this set of rules showed that the robot immediately moved as there
were no obstacle in front of it. The robot moved from left to right and from right to
left, for several times. This is because, the robot always tried to avoid obstacle at
one side by rotating to the other side. For example, when the position of the robot
was closer to the left side obstacle then moved to the right side, and the other way
around, it moved to the left side when the position of the robot was closer to the left
side obstacle.

Composing robot..., Yan maraden, FT UI, 2009

CHAPTER 5. COMPOSITE SYSTEM EXPERIMENT 49

Figure 5.20: Robot Movement Behavior in Experiment 1

The behavior of the robot in this experiment is illustrated in Figure 5.20. The
illustration of robot movement path does not depict the exact movement of the robot,
because the path taken by the robot varied for every run. Basically, it depended on
the initial position and heading of the robot.

5.3.2 Experiment 2 - Navigating With Faster Speed

Behavior of complex robot movement, by replacing several rules, was shown by this
experiment. The experiment of this complex movement is described as follows.

Objective

The objective of this experiment was to make the robot enter and then come out
from a narrow dead-end alley without hitting the obstacle, with a faster movement.

Rule System Con�guration

In this experiment, some of initial rules to control the movement of the robot were
replaced with other similar rules. Command `rotate clockwise' and `rotate counter-
clockwise' were replaced with command `move forward-right' and `move forward-left'
respectively. The new set of rules is de�ned by:

If A1 region is empty then move forward

If A8 region is empty then move forward

If A2 region is not empty then move forward-right

If A3 region is not empty then move forward-left (5.20)

System con�guration in this experiment was the same with con�guration in Ex-
periment 1. The were four rules to control the movement of the robot. The di�erences
were in the last two rules. The new commands had more forward linear velocity than
the previous commands in Experiment 1. This new system con�guration was illus-
trated in Figure 5.21. Parameters of each command used in the new rules were given
in Table 5.2.

Composing robot..., Yan maraden, FT UI, 2009

CHAPTER 5. COMPOSITE SYSTEM EXPERIMENT 50

Figure 5.21: Con�guration of Complex Rule System 2

Table 5.2: Command Parameters in Experiment 2

No. Command Circle Coordinate Circle Size Case Scheme

1. Forward 1 (0,30) 10 true
2. Forward 2 (0,70) 5 true
3. Forward-Right (-40,30) 10 false
4. Forward-Left (40,30) 10 false

Result

Movement of the robot in this experiment had the same behavior with the previous
experiment. The robot immediately moves forward when were no obstacle in front of
it. In this experiment, the robot also moved from left to right and from right to left,
for several times. But the frequency of side-to-side movement was much less than
in experiment 1. This is because, the new set of rules in this experiment produced
more forward linear velocity than in previous experiment. The behavior of the robot
in this experiment is illustrated in Figure 5.22. The illustration does not depict the
detailed movement of the robot, because it only shows the generalization movement
of the robot.

Figure 5.22: Robot Movement Behavior in Experiment 2

Composing robot..., Yan maraden, FT UI, 2009

CHAPTER 5. COMPOSITE SYSTEM EXPERIMENT 51

5.3.3 Experiment 3 - Solving Problem With Corners

Figure 5.23: Problem With Corners in Experiment 1 and 2

In experiment 1 and experiment 2, there were problem when the robot headed
toward the corner, as illustrated in Figure 5.23. The robot did not stop, it continued
to move toward the corner. While heading toward the corner, the robot detected the
same amount of obstacle in its right and left side, thus the set of rule in those exper-
iment produced the forward movement as its resultant of two commands. Therefore
the current set of rules needed an additional rule to solve this problem. Behavior
of complex robot movement, by adding a rule, was shown by this experiment. The
experiment of this complex movement is described as follows.

Objective

The objective of this experiment was to make the robot enter and then come out
from a narrow dead-end alley without hitting the obstacle, with a faster movement,
additionally, to �x the problem in experiment 1 and 2, when the robot headed toward
the corner.

Rule System Con�guration

This problem was �xed by adding one additional rule to control the backward move-
ment of the robot, when there was an obstacle in front of the robot. The new set of
rules to �x the problem is de�ned by:

If A1 region is empty then move forward

If A8 region is empty then move forward

If A2 region is not empty then move forward-right

If A3 region is not empty then move forward-left

If A1 region is not empty then move backward (5.21)

In this system con�guration, there were �ve rules to control the movement of the
robot. The purpose of additional rule was to compensate the forward movement, in
case, the robot moved toward the corner. As can be seen in Table 5.3, the linear
velocity of backward command was 50% of full throttle and the size of the circle
was 50% larger than `forward-left' or `forward-right' commands. The new system
con�guration, to deal with corners problem, is illustrated in Figure 5.24.

Composing robot..., Yan maraden, FT UI, 2009

CHAPTER 5. COMPOSITE SYSTEM EXPERIMENT 52

Figure 5.24: Con�guration of Complex Rule System 3

Table 5.3: Command Parameters in Experiment 3

No. Command Circle Coordinate Circle Size Case Scheme

1. Forward 1 (0,30) 10 true
2. Forward 2 (0,70) 5 true
3. Forward-Right (-40,30) 10 false
4. Forward-Left (40,30) 10 false
5. Backward (0,-50) 15 false

Result

Movement of the robot in this experiment had the same behavior with the previous
experiments. The robot immediately moved forward when were no obstacle in front
of it. In this experiment, the robot also moved from left to right and from right to left,
for several times. In this experiment, the problem with corner in experiment 1 and
2 was solved, by using additional backward rules. When headed toward the corner,
the robot did not continue its forward movement, instead, the `backward' command
was triggered. This `backward' command reduced the forward velocity of the robot,
and eventually, resulted a small amount of backward velocity. The robot also made a
rotational movement while moving backward. Therefore, the robot started to moved
forward again when there was no obstacle in front of it.

Composing robot..., Yan maraden, FT UI, 2009

