
Chapter 2

Theoretical Backgrounds

In this chapter, theoretical backgrounds, to support implementation of robot control
system, are presented. There are three main theoretical backgrounds: Fuzzy Logic,
Transformation Matrix, and ERSP Robot Scorpion.

2.1 Fuzzy Logic

Fuzzy logic system was �rst proposed by an American professor, Lot� A. Zadeh,
in [Zadeh, 1965]. Zadeh showed that fuzzy logic unlike classical logic can realize
values between false (0) and true (1). Basically, he transformed the crisp set into the
continuous set. Fuzzy sets thus have movable boundaries, i.e., the elements of such
sets not only represent true or false values but also represent the degree of truth or
degree of falseness for each input.

Fuzzy logic is the part of arti�cial intelligence or machine learning which inter-
prets a human's actions. Computers can interpret only true or false values but a
human being can reason the degree of truth or degree of falseness. Fuzzy models
interpret the human actions and are also called intelligent systems.

2.1.1 Fuzzy Sets

Unlike classical set theory that classi�es the elements of the set into crisp set, fuzzy
set has an ability to classify elements into a continuous set using the concept of
degree of membership. The characteristic function or membership function not only
gives 0 or 1 but can also give values between 0 and 1.

Consider the outside ambient temperature. Classical set theory can only classify
the temperature as hot or cold (i.e., either 1 or 0). It cannot interpret the temperature
between 20 ◦F and 100 ◦F. In other words, the characteristic function for the classical
logic is given by:

µ(x) =
{

1 if x ≥ 50◦F classi�es as hot
0 if x < 50◦F classi�es as cold

(2.1)

The boundary 50 ◦F is taken because classical logic cannot interpret intermediate
values. On the other hand, fuzzy logic solves the above problem with a membership
function as given by:

µ(x) =


0 if x < 20◦F

x−20
80 if 20◦F ≤ x ≥ 100◦F

1 if x > 50◦F
(2.2)

3

Composing robot..., Yan maraden, FT UI, 2009

CHAPTER 2. THEORETICAL BACKGROUNDS 4

A graph of the membership function for the fuzzy temperature variable is shown
in Figure 2.1. The degree of coldness is taken as the complement of the degree of
hotness.

Figure 2.1: Fuzzy Sets Membership

2.1.2 Fuzzy Rule

Fuzzy rules are linguistic IF-THEN- constructions that have the general form `IF
A THEN B' where A and B are (collections of) propositions containing linguistic
variables. A is called the premise and B is the consequence of the rule. In e�ect,
the use of linguistic variables and fuzzy IF-THEN- rules exploits the tolerance for
imprecision and uncertainty. In this respect, fuzzy logic mimics the crucial ability
of the human mind to summarize data and focus on decision-relevant information.
The fuzzy rule is written as:

If <fuzzy proposition> then <fuzzy proposition>

A fuzzy proposition can be an atomic or compound sentence. For example, `Tem-
perature is hot' is an atomic fuzzy proposition. `Temperature is hot and humidity is
low' is a compound fuzzy proposition.

In fuzzy rule, the linguistic proposition is derived from human perception, an
assessment of a physical condition that is not measured with precision, but is assigned
an intuitive value. For examples, temperature measured by a temperature transducer
can be classi�ed as `cold', `warm' and `hot'. These classi�cations depend entirely on
human perception. Perception from one human being to another human being might
be di�erent, thus these are called fuzzy human perception. A fuzzy rule system,
incorporating above proposition example, can be de�ned as:

If temperature is cold then turn on heater

If temperature is hot then turn o� heater

If temperature is warm then do nothing

It can be easily determined, based on human perception, that objective of above
example system is to maintain the room temperature to be at `warm' condition.

2.1.3 Defuzzi�cation Technique

The input to the fuzzy system is a scalar value that is fuzzi�ed. The set of rules is
applied to the fuzzi�ed input. The output of each rule is fuzzy. These fuzzy outputs

Composing robot..., Yan maraden, FT UI, 2009

CHAPTER 2. THEORETICAL BACKGROUNDS 5

need to be converted into a scalar output quantity so that the nature of the action
to be performed can be determined by the system. The process of converting the
fuzzy output is called defuzzi�cation. Before an output is defuzzi�ed all the fuzzy
outputs of the system are aggregated with an union operator. The union is the max
of the set of given membership functions and can be expressed as:

µA =
⋃
i

(
µi(x)

)
(2.3)

There are many defuzzi�cation techniques but primarily only three of them are
in common use. These defuzzi�cation techniques are discussed below in detail.

Maximum Defuzzi�cation

Figure 2.2: Maximum Defuzzi�cation

This method gives the output with the highest membership function. This de-
fuzzi�cation technique is very fast but is only accurate for peaked output. This
technique is given by algebraic expression as:

µ(x∗)A ≥ µ(x) for all x ε X (2.4)

where x* is the defuzzi�ed value. This is shown graphically in Figure 2.2.

Centroid Defuzzi�cation

This method is also known as center of gravity or center of area defuzzi�cation. This
technique was developed by Sugeno in 1985. This is the most commonly used tech-
nique and is very accurate. The centroid defuzzi�cation technique can be expressed
as:

x∗ =
∫
µi(x)x dx∫
µi(x) dx

(2.5)

where x* is the defuzzi�ed output, µi(x) is the aggregated membership function and
x is the output variable.

Weighted Average Defuzzi�cation

In this method the output is obtained by the weighted average of the each output of
the set of rules stored in the knowledge base of the system. The weighted average

Composing robot..., Yan maraden, FT UI, 2009

CHAPTER 2. THEORETICAL BACKGROUNDS 6

defuzzi�cation technique can be expressed as:

x∗ =
∑n

i=1m
iwi∑n

i=1m
i

(2.6)

where x* is the defuzzi�ed output, mi is the membership of the output of each rule,
and wi is the weight associated with each rule.

2.2 Transformation Matrix

There are several common transformations used in computer graphics. This section
discusses geometric transformations: translation, scaling, and rotation.

2.2.1 Translation

Translation involves moving the element from one location to another. In the case
of a point, the operation would be

x′ = x+ dx

y′ = y + dy (2.7)

where (x′, y′) are the coordinates of the translated point, (x, y) are the coordinates
of the original point, and (dx, dy) are the movements in the x and y directions. In
matrix notation this can be represented as

P ′ = P + T (2.8)

[
x′

y′

]
=
[
x
y

]
+
[
dx

dy

]
(2.9)

where T is the translation matrix.
Any geometric element can be translated in space by applying Equation 2.9 to

each point that de�nes the element. For a line, the transformation matrix would be
applied to its two end points.

2.2.2 Scaling

Scaling of an element is used to enlarge it or reduce its size. The scaling need not
necessarily be done equally in the x and y directions. For example, a circle could be
transformed into an ellipse by using unequal x and y scaling factors.

The points of an element can be scaled by the scaling matrix as follows:

P ′ = S × P (2.10)

[
x′

y′

]
=
[
sx 0
0 sy

] [
x
y

]
(2.11)

This would produce an alteration in the size of the element by the factor sx in
the x-direction and by the factor sy in the y direction. It also has the e�ect of
repositioning the element with respect to the Cartesian system origin. If the scaling
factors are less than 1, the size of the element is reduced and it is moved closer to the
origin. If the scaling factors are larger than 1, the element is enlarged and removed
farther from the origin.

Composing robot..., Yan maraden, FT UI, 2009

CHAPTER 2. THEORETICAL BACKGROUNDS 7

2.2.3 Rotation

In this transformation, the points of an object are rotated about the origin by an
angle 0. For a positive angle, this rotation is in the counterclockwise direction. This
accomplishes rotation of the object by the same angle, but it also moves the object.
In matrix notation, the procedure would be as follows:

P ′ = R× P (2.12)

[
x′

y′

]
=
[
cosα − sinα
sinα cosα

] [
x
y

]
(2.13)

where positive angle rotates the coordinates in counter-clockwise direction and neg-
ative angle rotates the coordinates in clockwise direction.

2.3 ERSP Scorpion Robot

The Evolution Robotics Software Platform (ERSP) is a Software Development Kit
(SDK) that provides many implementations in a wide range robotics system, which
are useful for vision, navigation and system development. ERSP and Scorpion Robot
were used throughout the development and implementation in this thesis.

This section provides only some selected information of ERSP and Scorpion
Robot, to give some overview explanation about the implementation in the next
chapters. Refer to ERSP documentations for a complete insight about the soft-
ware and the robot. The ERSP documentation consists of the following four doc-
uments: Getting Started [Evolution, 2004b], Tutorials [Evolution, 2004c], User's
Guide [Evolution, 2004d], and API Documentation [Evolution, 2004a]. Documen-
tation about the Scorpion Robot can be found in [Evolution, 2004e].

2.3.1 ERSP Architecture

The ERSP Architecture consists of three layers that can be used to run a collec-
tion of operations, from a simple task such as making the robot move forward, to
complex tasks such as following a certain object in some environment. These lay-
ers are Hardware Abstraction Layer (HAL), Behavior Execution Layer (BEL), and
Task Execution Layer (TEL). The system architecture is modular, with well-de�ned
interfaces between its layers and software modules.

Hardware Abstraction Layer

The Hardware Abstraction Layer (HAL) is the lowest layer of the architecture, which
provides interface between software applications and the robotics hardware resource.
The HAL drivers are responsible on the robot's interactions between physical world
and operating system (OS). Physical input from real world is received through in-
frared range sensors, bump sensors and cameras. The HAL is also able to interact
with physical world, by changing its current state through e�ectors, for example,
turning on only the left motor to make a rotation.

The HAL provides a way of interaction between a particular hardware device
with other resources. A resource is a physical device that connects the software
with the external environment. Through a resource, a robot or a software is aware
of physical world and enables to interact with it. Resources include sensors and
actuators, motors, cameras, infrared range sensors, bump sensors, or a battery.

Composing robot..., Yan maraden, FT UI, 2009

CHAPTER 2. THEORETICAL BACKGROUNDS 8

Behavior Execution Layer

The Behavior Execution Layer (BEL) is the next layer of the architecture, on top of
the HAL. This middle layer communicates with drivers and sensors through the HAL.
Autonomous robotics system, built in this thesis, was using the Behavior Execution
Layer of ERSP as its framework. The BEL is used, in order to acquire sensory
input from the HAL, make a decision based on the input it received, and take an
appropriate action.

The basic principle of BEL implementation is the behavior, which is de�ned as a
block of computational unit that maps its inputs to its outputs. Behaviors provided
by BEL of ERSP, cover a variety of the robot's functions, from driving sensors
and actuators to mathematical operators, vision algorithms, and state machines.
Behaviors are highly reactive and suitable for critical control loops.

Figure 2.3: A Generic Behavior [Evolution, 2004d]

Behavior inputs and outputs are de�ned as ports. In Figure 2.3, the ports in a
behavior are represented by a small rectangular. The ports on the left side of the
behavior are de�ned as inputs, and the ports on the right side of the behavior are
de�ned as outputs. Each output port can have connections to one or more input
ports, represented by a line between ports. Each port has its own data type, data
size, and semantic type, indicating the data structure that passing through that
port. Connection between ports can only be done if they have a matching types.
For example, a sensor measurement from IR sensors cannot be connected to a port
expecting an image data type.

Interconnected behaviors form behavior networks. Behaviors in the network are
executed sequentially by ERSP at the same rate, for every prede�ned interval (invo-
cation). Behavior execution, in sequential mode, occurs in two stages: the behavior
receives and waits data from all its input connections, and then it computes and
pushes its output.

A behavior, in a network, operates in cycle manner. This means, every behavior
will be executed in every given time interval. A behavior, which has received all
necessary inputs must be executed �rst, if not, that behavior must wait until all
necessary inputs received. Accordingly, ERSP uses a partial ordering so where be-
havior A is connected to behavior B, A executes before B. After behavior B received
necessary input from behavior A, then B may run its execution.

Further, throughout this thesis, term of `subsystem' is used to express `behavior'
and `system' to express `network'.

Composing robot..., Yan maraden, FT UI, 2009

CHAPTER 2. THEORETICAL BACKGROUNDS 9

Task Execution Layer

The Task Execution Layer (TEL) is the top layer of the architecture. It provides
a task-oriented method of programming an autonomous robot. By sequencing and
combining certain tasks, a �exible plan for a robot to execute can be created, by
writing the code in a classical procedural style. Tasks are useful to express a high-level
execution knowledge and to coordinate multiple behavior actions, while behavior are
suitable for creating robust repetitive actions. For example:

1. A robot using vision to follow an object with a certain color is best written as
behavior.

2. A sequential robot actions such as moving forward 20 inches, taking a picture,
rotating clockwise 1.57 radian, moving forward 10 inches, and then taking a
picture again, is best written as a task.

2.3.2 Coordinate System

This subsection provides some convention de�nition about several di�erent coor-
dinate systems, which are used by ERSP and implemented in this thesis. There
are three coordinate systems that are useful to mention in this subsection: Robot
Coordinate System, Global Coordinate System, and Mapping Coordinate System.

Robot Coordinate System

Evolution Robotics Software Platform (ERSP) uses the standard robot coordinate
system to describe the position and orientation of robot's actuators and sensors.
This standard coordinate system is always used to de�ne the robot's incremental of
relative motion from the starting point where the robot is turned on. The origin
of the system is located at the �oor level, directly below the center of the drive
wheelbase. Assume that the robot is traveling on �at surface and facing North.
The positive x-axis extends in North direction. The positive y-axis extends in West
direction and the positive z-axis is straight up, perpendicular to the �oor surface.
Figure 2.4 shows this coordinate system.

Figure 2.4: Robot's Coordinate System[Evolution, 2004b]

Composing robot..., Yan maraden, FT UI, 2009

CHAPTER 2. THEORETICAL BACKGROUNDS 10

Global Coordinate System

Position and orientation can also be speci�ed in the global coordinate system. The
robot coordinate system and the global coordinate system are the same, when the
�rst time the robot is turned on. The position of the robot in both reference frame
coordinate system is (0,0,0). The �rst two numbers are position of the robot in (x,y)
and the third number is the orientation, or the heading of the robot, in radian. The
orientation angle, the positive angle of the robot is measured from the positive x-axis
in counter clockwise direction.

In the robot coordinate system, the position of the robot is always (0,0,0). The
global coordinate system is �xed to a particular starting point on the �oor, as the
robot is turned on. This particular point is always �xed all the time until the robot
is turned o�.

ERSP keeps track of the position of the robot, whenever the robot moves, in
the global coordinate system through its wheel odometry information. The current
position of the robot determined by ERSP, is based on the reference point (0,0,0), a
starting point when the robot is turned on.

Mapping Coordinate System

Another coordinate system that is important to mention is the mapping coordinate
system. This coordinate system is used, in the implementation, in the next chapter,
to describe the position of obstacles from the robot's origin. The robot's origin, in the
mapping coordinate system, is always (0,0). The origin of the mapping coordinate
system is always at the center of the mapping image, as illustrated in Figure 2.5.
The orientation of the mapping coordinate system always follows the orientation of
the robot.

Figure 2.5: Mapping Coordinate System

Assumption of that the robot moves on a �at surface and the robot facing North,
are also used in this mapping coordinates. The positive y-axis extends in the North
direction. The positive x-axis extends in the East direction. These de�nition di�er
from robot coordinate system used by ERSP.

Composing robot..., Yan maraden, FT UI, 2009

