CHAPTER Il
THE PROOF OF INEQUALITIES

In this Chapter, the main purpose is to prove four theorems about Hardy-Littlewood-
Pdlya Inequality and then gives some examples of their application. We will begin with
Classical Hardy-Littlewood-Pélya Majorization Inequality and then prove its Riemann
form; furthermore the extended inequality from [1] will be stated together with its

Riemann form.

3.1 The Classical Hardy-Littlewood- Pdlya Majorization Inequality and its Riemann

Integral Form

Before we state the inequality, we need to introduce some knowledge about
majorization theory. This concept has been studied several times in the past through
study of matrices, vector and stochastic process by some mathematicians such as
Karamata, Muirhead, G. Hardy, J.E. Littlewood & G.Pdlya. We first give the definition of
majorization for decreasing arrangement array and extend the definition for arbitrary

array.

Definition 3.3.1

Let x = (x4, %5,+, %) and y = (y4,¥,, -+, ¥,) be any array of real numbers such that
X; = Xi3z1 and y; = y;.4 fori = 1..n — 1. We say that x majorizes y (abbreviated x > y)

if and only if

19
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And
n n
z Xi = z Yi-
i=1 =

Let u = (xq,x5,-+,x,) and v = (y1, ¥, -+, ¥) be any array of real numbers. Let {x;}}-,
and {y;}i-, be rearrangement of {x;}*; and {y;}/-, respectively in decreasing order,

then u > v if (x1, %35, -, x5) > (V1,V5,*, Vn)-

There are many summation involved when working with majorization inequality,
therefore we need a formula concerning to the sum. One of them is a well-known
formula due to Abel, the Abel summation formula, or summation by part. This is an

analog form of integration by part for summation.
Theorem 3.1.1 (Abel Summation Formula)

If{a;}}=, and {b;}}-, are two sequences, define
m
Amzz:ak for m=>1

k=1

and A, = 0 then for any 1 < p < q we have

q
Z akbk = Ak(bk - bk+1) + Aqbq - Ap—lbp
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Proof:

Since a,,, = A,, — A,,—, forany m > 1, we have

q q q
Z agby = Z(Ak — Ag_1)by = Z Aby — Z Aj_1by
k=p k=p

k=p k=p

q q-1
3 Ayby — Z Agbyiq
k=p k=p-1
q—-1 q—-1
- z Akbk + Aqbq 3 Z Akbk+1 + Ap—lbp
k=p k=p
and thus
q q-1
z by = Z Aw(bi = byar) + Agby — Ay_1b,
k=p k=p
as desired.m

The proof of Hardy-Littlewood- Polya Majorization Inequality will be established by first

proving the following lemma.

Lemma 3.1.1 Let {x;}\-, and {y; }|=, be two nonincreasing sequences of real numbers.

Define
f(xﬁ'—ifCVJ
Zi = Xi _yl' '

f+(xi)r Xi = yi'

X; ¢yi

If f is convex function then the sequence {z;}|-; iS a nonincreasing sequence.
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Proof:

Let f be a convex function, for any two nonincreasing sequences {x;}; and {y; }i-, the

following cases may occur:

l. y;=x;and yiq = Xiyq.
Il. Y, #F X, X FY, andy, . #F X
Ny, =x;, x40 # Yy, and Y1 # Xipq.

V. V=%, X1 =Y, and y, . # Xiyq

i+1
V. Y #F X, Xip1 =Y and y,. = Xigq.

l

VI. Y, F X, Xit1 = Y, and Vie1 = Xit1-

Case l: Sincey,=x; and y, , =x; thenz = f;r(xi) > f'+(xl-+1) = Z;+1, by Theorem

2.1.6.

Case Il. Since x;4q < x; then for y. & {x;, x;4+1}, we can apply Galvani’'s lemma

5 = f&x) — () < fCei) — f(y) - fv) = f(xi1)

i =
Xi—Y; Xiv1 = Y; Vi~ Xi+1
l L

and since y,, , < ythen fory; ., # x;,;, we have

f(yl) _f(xi+1) = f(yi+1) _f(xi+1) _

Vi~ Xit1 yi+1 — Xit1

Zit1

SO0Z; = Zjy1.
Case lll: Lete > 0, then x;;; <x; + e andy, < x; + €, and we have

fxi+e)—f) S fxiv) — f) _ fO) = fCir)

xi+e)—y, — X1V, Vi~ Xit1
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Since y,.; < x;;1 then

f(yl) _f(xi+1) > f(yi+1) _f(xi+1) _

Vi ™ Xit1 Yipr — Xit1 Zi+1
So
fitO=fO) )
x+e) -y, = i+1
As € - 01 we have
=10 = ST

Case IV: Suppose thatx;; <y, ,, theny; = x;;; <y;;1, Whichis a contradiction. So

we should have x;.1 > y;,1-

Since x; > x;;; we have x; >y, ,. Take € > 0 such that x; +e>y, , then

f(xi+6) _f(yl) >f(yi+1) _f(yl) =f(xi+1) _f(yH_l)
te) -y, VY Xit1 = Vipq

As e » 0" we have z; > z;, .

Case V: Since x;41 < x;thenfory, #x;44

_ fx)—f) S fxiv) — f) _ f,) = fxip)

Xi—Y, Xy~ Y; Y, — Xit1

i

sincey, #x1and y, ., <y, theny, <y, so forsufficiently small ¢ > 0 we have

Y+, T €<y,and hence
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f(yl) _f(xi+1) > f(yH.l + E) _f(yH_l)

Yi— X1 (Vi TE) X

SO

_fOD—fO) _ figy +€) — f(xi)
Xi =Y, - (yl'+1+6)_xi+1

i
as € » 0% we conclude that z; = f!(xi+1) = Zi41.

Case vi) since x; #y; and x; = x;.1 then x; > x;41 so for sufficiently small e > 0 we

have x; > x;.1 + € and hence since y, = x;11 =y, ; We have

i+1

— f(xi) _f(yl) > f(xi+1 + 6) _f(yl) | | f(yl) _f(xi+1 + 6) - f(yi+1) _f(xi+1 + 6)
xi—y, — (Xgrte) -y, Y, — (Xip1+€) Vie1 — &g+ €)

i

As € » 0" we have z; > f{(x;+1) = zi41 @s wellm.

The Hardy-Littlewood- Pdlya Majorization Inequality has several forms. The classical
form which will be given here, is the simplest from the others which also can be found in
[3], and this classical inequality also founded independently by Karamata, thereby some

literatures state it as Karamata Inequality.
Theorem 3.1.2 (The Classical Hardy-Littlewood- Pdlya Majorization Inequality)

Let f: X — R be a convex function, and suppose that x = (xq,x3,**+,x,) and 'y =

(y1,¥2, -, ¥n) Such that x > y, and then we have

Zn:f(xi) = Zn:f(yl') (3.1.1)
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Proof:
Without loss of generality, it is enough for us to prove the theorem when x and y are

replaced by x* and y* respectively, since

Zn:f(x?)=if(xz) and if(yi*)=if(yi)

i=1

Define the sequence {z;}}-.; by

fOG) =) ¥y
e e
Z; = i — Y

*

Since {x;}"-; and {y;}/., are nonincreasing, then z; also nonincreasing by lemma 3.1.1.

Notice that by Abel Summation Formula, for 4,, = I, x; — y; and 4, = 0 we have

n

D Fa - if(yj) = zn:(xi‘ ~¥;) 7
i=1 1

n-1
= z Ai(z; = Zi41) + Az, — Agzq
i=1

n—1
= Z Ai(zi — Zi+1) + Anzy
i=1

Let Uy =X x; and V), = Zj’;lyj’f fork = 1,2,---,n, we have 4,, = U,, — V,, then the above

equation can be written in the form

n n n—1
D FCD =Y FOD =) =2 ) U= V) +2Un = Vi) (312)
i=1 i=1 i=1
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The condition x > y can be viewed as U; > V; and U, = V,. And since z; — z;;,1 = 0 we

have

zn:f(x?) - if(y:) >0
i=1 i=1

which is equivalent to

i 6 = Z o) .
i=1 i=1

The inequality in Theorem 3.1.2 can be extended to Riemann integral analog form,
which also will be proved here. Before we proceed to prove the integral form, we first

prove the following lemmas:

Lemma 3.1.2 Let ¢: [a, b] — X be a continuous function, then for any [c,d] < [a, b]

with ¢ # d, there exist & € [c,d] such that fcd pt)dt = (d —c)e ().
Proof:

Since ¢ is continuous on [a, b], it is also continuous on [c,d] c [a, b] thus ¢ attains its
maximum and minimum on [c, d] say mingecq; @ (¢) = @(x;) and maxepc,q @(t) = @(x3)
where x4, x, € [c,d] and we have ¢(x;) < ¢(t) < ¢(x,) fort € [c,d], integrating from ¢

to d we have
d
(@=pGn) < | 9@ < [@- G
c
Equivalently, because ¢ # d we have
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o) < (722) [ ot < ot

And by continuity of ¢, the Intermediate Value Theorem guaranties that there exist

¢ € [x41,x2] € [c,d] such that (&) = (ﬁ) fcd @ (t)dt, and the lemma is proved. m

Lemma 3.1.3. Let ¢, ¢:[a,b] - X are continuous and monotone decreasing functions

on [a, b] and satisfies:

i) S e(t)dt = [ ¢(0)dt for any x € [a, b]

i) J)edt= [} p()dt

Letx, =a+ (b_a)k, then there exist the sequences cy € [x;_,, x| and dy € [x,_1, xi]
such that

((p(cl); (P(CZ)' ) (p(cn)) > ((p(dl)r ¢(d2); ) ¢(dn))
Proof:

By the lemma 3.1.2, since ¢ is continuous there exist ¢, € [x;_1, x;] such that

[ 000 = e = xeote0 = () oe

Xk—1
Similarly there exist d; € [x;_1, xx] such that
Yk b—a
[ 00 = = xe00@0 = (22) o).

Xk—-1

From condition (i) and since x, = a we have form =1,2,---,n—1
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Yo@r= ) [ ez () [ Tewar= Y @0, (3..4)
k=1 ¢ a k=1

Moreover, for m = n from condition (ii) and since x,, = b we have

> o0 = (72 [ oeox = (7o) [ecoar =Y scap. (315)
k=1 “ a k=1

By definition of majorization since both ¢ and ¢ are decreasing, (3.1.4) and (3.1.5) is

(p(c1), p(c2),+, p(c)) > (¢(d1), p(dp), -+, p(dy))

We now attempt to prove the Riemann Integral analog form of Theorem 3.1.2. This
analog version replaces the array in Theorem 3.1.2 by monotone continuous function
and gives us an idea of majorization of two functions, which will be presented by integral

inequality.

Theorem 3.1.3 (The Riemann form of Hardy-Littlewood-Polya Majorization
inequality)
Let ¢, ¢:[a,b] - X are continuous, onto and monotone decreasing functions on [a, b]

and satisfies:

i) [P ot)dt = [ ¢(t)dt for any x € [a, b]

i) [ ewmdt =[] ¢p(t)dt.
If f is a convex function, then

b b
| Flow)de= [ roenae
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Proof:

Since i) and ii) are satisfied then by lemma 3.1.3, there exist sequences {c; };-, and
{dy}r=1 such that

((p(Cl), fp(cz), T (P(Cn)) > (d)(dl)! d)(dz)! Y d)(dn))

From the convexity of f, by Theorem 3.1.2 we have
Z flp(er) = Z f(o(dy) (3.1.6)
k=1 k=1

Multiplying both sides of equation 3.1.6 by b%a , we have

Eﬁwm»( e E EFWMM(

(b—a)k
n

) (3.1.7)

each ¢y, dy € [xy—q1, %] With x, = a + . We know that both ¢ and ¢ are continuous

functions that map closed interval [a, b] onto X, thus X is also a closed interval, and

hence by Theorem 2.1.3 since f is convex then f is continuous. Thus fe¢ and f o ¢

are also continuous, hence they are Riemann integrable, thus both limits

1m0 Xy £(9(ci) (=2) and Lm0 S £((ci)) (=) exist and equal to their

correspond integral and inequality 3.1.6 becomes

b b
[ ro@yde= [ @ .
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3.2 The Extension of Hardy-Littlewood- Polya Majorization Inequality and Its

Integral Riemann Form.

The next inequality that will be proved in this section is the generalization of Theorem
3.1.2 which makes use the relative convexity as a bridge of generalization. This

generalization is the result of C.P. Nisculescu and F. Popovici on their joint paper’.
Theorem 3.2.1 (The Generalization Of Hardy Littlewood Majorization Inequality)

Let f,g: X — R be two functions such that g < f and let xi,x5,*, Xp, V1, V2, "+, Yy @re in

X. If for any real weights p,,p,, -, p,, all three conditions below is satisfied:

i) gxy) == glxy)and g(y) = = g(ym)
if) Yh=1Pk9(xk) = Xi=1Pkg (Vi) forallr =1,---,n

i) Xk=1Pkd k) = Lk=1Pk9d k)

then

Zn: Pief () 2 zn: Pref k)
k=1 k=1

Proof:

We proceed by induction, for n = 1 the result is immediate. Now suppose that the
theorem is true for every n = 1,2,---,m — 1 where m is a natural number, to complete
the induction we wish to prove it forn = m. If g(x;) = g(y;) for some index i, then by

lemma 2.2.1 f(x;) = f(y;), this would reduce the terms of the sum

®See [1] for reference.
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zn: Prf (xXx) — zn: Prf k)
k=1 k=1

to a sum with fewer terms, that is to say

Zn: Prf (xx) — zn: Pif k) = Zn: Prf (xx) — Zn: Prf k)
k=1 k=1 k=1 k=1

k=+i k+i

then we can apply the induction hypothesis to conclude that

D nef =) Bef ) 2 0
k=1 k=1

k+#i k#i

and the theorem is proved for this case.

Suppose that g(x;) # g(y;) forany i, then we can write

D B @) =) pf @) = ) pelF G0 = FOr)
k=1 k=1 k=1

fla) = f(yk)>

= ;pk(g(xk) D) ( e T

We apply Abel summation formula as in Theorem 3.1.4 for a;, = pr(g(xx) — 9(Vx)),

_ Fx)—f k)

= -9’ P~ 1 and q = n we conclude that the sum will equal to

k

n—1

§ (f(xk) ~ fO) ) - f(yk+1)> (i (g — m,»)

£i\g() =g 9(isr) = 90sn)

+(zpi(g<xi>-g<yi>>) (L) =t
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which is by condition iii) it reduces to

n-—1

§ <f(xk> O _ Gt = f(yk+1)> (i pi(gCe) - g<y~>)>.
i=1

£i\g() =g 9Csn) = 9O0ksn)

The proof will be complete if we can prove that the latest sum is nonnegative. Since by

condition ii) we always have ¥, p;(g(x) — g(3:)) = 0 then we only need to prove that

fOa) — fF) > f 1) = f Vks1)
90) = gi) — 9*xks1) = 9 Wk+1)

If g(x) = g(xy41) for some index k then by lemma 2.2.1 f(x;) = f(xr41), by condition

i) we have g(x;41) < g(xr). Thus by lemma 2.2.2

fOe1) = k1) _ f k1) — f (ps1)
I&ri1) = 9ks1)  9Wk+1) — 9(Kks1)

B f i) — f (kea1)
~ 9k — g(ke1)

@) — fO)
9(xis1) — gi)

_ fGa) =)
9x) — g

The case g(yx) = g(¥x+1) can be handled similarly.

If 9(xi) # g(xics1) @nd g(yi) # g(Vie+1) then by i) we have g(x;) > g(x41) and

I > g(Vr+1), We consider two cases :

Case I: g(xx) # g(¥k+1)- By lemma 2.2.2
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fad) — fF) > fOern) — fF )
9x) —g) — gGke) — g

_ f k) = f(Xk+1) - f Wrs1) — f(Xk41)
I — 9xkr1) — k1) — 9(Xks1)

Case Il: g(xx) = g(i+1), then g(yi) > 9(Vk+1) = g9(xx) > g(xx4+1) and also by lemma

2.2.1 we have f(x;) = f(yx+1), SO by lemma 2.2.2

fC) = (k) | f ) — f(xx) > f 1) = F(xg) _ fCes1) — fFVrs1)
9e) =g 9 —9Ca) — gla) —90a)  gCgs1) — 9ir1)

Hence the theorem is proved.
Ouir final result is the Riemann Integral form of Theorem 3.2.1.

Theorem 3.2.2 (The Riemann Form of Generalization of Hardy-Littlewood- Pdlya

Majorization Inequality)

Let f,g: X — R be two functions such that g < f and let ¢, ¢:[a,b] —» X are continuous
functions such that f o ¢ and f o ¢ are Riemann Integrable and g o ¢ and g o ¢ are
continuous nonincreasing functions. If w: [a, b] = R is continuous function such that all

two conditions below are satisfied:

i) JZw®g@@)dt = [T w(t)g(p(t))dt for all x € [a, b]

i) fyw©gp©)dt = [ w®g(p()dt

then

b b
f w(Of (B(©)de > f w(Of (@(D)dt
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Proof:

Since g o ¢ and g o ¢ are continuous and w is also continuous then by lemma 3.1.3

(b—a)k
n

there exist sequences ¢y, dy, € [x;_1,xx] Where x, =a + such that

(wlc)(g o p)(e), -, wlcn)(g ° $)(cn)) > (w(d)(g ° 9)(dy), -, w(dy)(g o )(dn))
Thus by definition of Majorization we have:

) XiZiwledg@(c)) = Xl wld)gle(dy)) , form =12, ,n—1

ii) iz wle)g(@d(c)) = Xy wldg(e(dy)

Since we have g < f, and g o ¢ and g o ¢ are continuous, by Theorem 3.1.5

D wef @) = ) wldf (@(d)
k=1 k=1

(b—a)k

Each Ck» dk € [xk_]_, xk] with X = a + n

, and since f o ¢ and f o ¢ are Riemann
integrable and w is continuous, w(t)(f o ¢)(t) and w(t)(f o ¢)(t) are Riemann

Integrable, thus both limits lim,, ., Xz, w(ci)f (@(c) (=2) and

lim,, o Xh=1 w(dy)f(P(dy)) (b_Ta) exist and equal to their correspond integral and

hence

b b
f w(OF($(©)dt > f w(O)f (p(0)dt .
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3.3 Some Examples of Well-known Inequalities and nontrivial Inequalities

Now we will provide some applications of Theorem 3.1.2 and Theorem 3.2.1. Some

examples provided here are already available in literatures usually with different proof.

Example 3.3.1 (The Arithmetic-Geometric Mean Inequality)

Let x,,x,.-++, x, be nonnegative real numbers then

x1+x2+"‘+xn
Z nﬁxlxz“'xn
n

Proof:

Without loss of generality, we may assume that x; = x, = --- = x,, > 0, since when

some x; equal zero then the inequality is obvious. The array (x;, x,, -+, x,,) majorizes

V1, Vo, V) With yp = w We use the Classical Hardy-Littlewood- Pdlya

Inequality with convex function f(x) = —Inx on (0, o) and yields
X +x; ++x
—lnxl—lnxz—---—lnxnZn[—ln( 5 Zn n)]

Which is equivalent to

x1+x2+"'+xn
ln< -

1
) > In(x x5 -+ X7

This simplify to

x1 +x2+"'+xn

> [ X1Xp - Xy
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Example 3.3.2 (Power Mean Inequality)

Let b and a be positive real numbers such that b > a then for any nonnegative real

numbers u, u,, -, u, we have

b\/ui’+u§+---+u,’;>‘l\/uf‘+u‘2"+---+uﬁ
n P n

Proof:

Without loss of generality we may assume that u;, > u, = - > u,,. Let g(x) = x% and

f(x) = xP forall x € R* U {0} where b > a then by Definition 2.2.1 g < f. Let x; = u?

o
%} then we have:

i) g <x§> =g <x§> =2y <x§l>

1 1
i) =19 <Xf) =2z 9 (3@-“) form=12,-+,n-1

1 1
i) =g <xi“> =Yg <y{‘>-

Thus by extended Hardy-Littlewood-Pdélya Inequality we have

and y; =[

b
x4 X . [x1 +x, 4 Xy ]a

n n

Let x; = uf then we have

b\/ui’+u§+---+u,’;>‘l\/uf‘+u‘2"+---+uﬁ
n B n
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Example 3.3.3 (Jensen Inequality)
Let f be a real valued convex function defined in interval I, for any real numbers

A; €10,1] where i = 1,2,---,n satisfies Y.} A; = 1 and x4, x,,---, x, are all in I then

ilif(xi) > f (zn: Ai%)

Proof:

Without loss of generality we may assume that x; = x, = - > x,,. For any positive

rational numbers ry, 1y, -, 1, suchthatry + 1, + -4+ 1, =1, letr; =% where q;,p; €N,

4

and let N = q,q, - q,, , then we have Nr; is an positive integer for all i.

The array (xq, xq, ", X1, X, Xp, ** Xp , ***, Xn, Xn, **+, X ) Majorize the array (y4, vz, ", Yn)

Nrq times Nr, times N1y, times
. Z?:l Nrix; . . o . P
with y,, = == Since f is convex, we can apply Classical Hardy-Littlewood- Pdlya
Inequality
Nty times Nrytimes Nrptimes

(FO) + -+ fle)) + (Fe) + -+ fx)) + -+ (F ) + -+ f(x)

> Nf ((NT1)X1 + (er);\flz + et (Nrn)xn>

= Nf(rixg + x5 + -+ 1x).
Which is equivalent to
N7 f(x;) + Nrof(xp) + -+ N1y f () = Nf(rix; + 1% + -+ 4+ 1,%5).

Thus for any positive rational numbers r; such thatr; +r, + -+ 7, = 1 we have
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rf () +rof () + -+ 15, f () = frixg + X + -+ 1xp)

It remains to prove the assertion for positive real numbers A; suchthatA, + 1, +--- +

A, = 1. For any real numbers A; there exist rational sequences rl.(k) that converges to 4;

() ()

andr’ +r, ()

+ -+ 1,7’ = 1. Applying the inequality for rational numbers we have

k k k k k k
O f(x) + 1O f () 4+ -+ 10 F () = f(rl( )3 +r2( o )xn)

Taking limit as k — oo, since limy_,, ri(k) = A; and f is continuous we have

n n
YA = f (Z Aixi)
i=1 i=1
The next example, although has a trivial geometric interpretation, but its analytic proof is
not easy.

Example 3.3.4 (The Comparison of Arc Length)

Let S:[a,b] » R and T:[a,b] — R be a convex and continuously differentiable function
such that S(t) < T(t) forall t € [a,b], S(a) =T(a) = 0 and S(b) = T(b), then at interval

[a, b] the arc length of S is less than or equal to the arc length of T.
Proof:

Since S and T is continuously differentiable and S(a) = T(a) = 0, then

S(t) = ftS’(x)dx and T(t) = ftT’(x)dx

a a
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The condition S(t) < T(t) and S(b) = T(b) is equivalent to
[(=T"())dx < [(=S'(x))dx and [ (=S'(x)dx) = [, (~T'(x))dx.

This mean since S and T are convex then - S’ and - T’ are decreasing. Thus S and T

satisfies the hypothesis of Riemann form of Classical Hardy-Littlewood- Pdlya Inequality

By using the convex function f(x) = v1 + x? in Riemann form of classical Hardy-

Littlewood- Pdlya Inequality we have

LbJ1+(—5'(t))2 dtSLbJ1+(—T’(t))2dt

The left-hand side is the arc length of S in interval [a, b] and the right-hand side is the

arc length of T in interval [a, b].
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