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CHAPTER III 

THE PROOF OF INEQUALITIES 

 

In this Chapter, the main purpose is to prove four theorems about Hardy-Littlewood-

Pólya Inequality and then gives some examples of their application. We will begin with 

Classical Hardy-Littlewood-Pólya Majorization Inequality and then prove its Riemann 

form; furthermore the extended inequality from [1] will be stated together with its 

Riemann form. 

 

3.1 The Classical Hardy-Littlewood- Pólya Majorization Inequality and its Riemann  

       Integral Form 

Before we state the inequality, we need to introduce some knowledge about 

majorization theory. This concept has been studied several times in the past through 

study of matrices, vector and stochastic process by some mathematicians such as 

Karamata, Muirhead, G. Hardy, J.E. Littlewood & G.Pólya. We first give the definition of 

majorization for decreasing arrangement array and extend the definition for arbitrary 

array. 

Definition 3.3.1 

Let , , ,  and , , ,  be any array of real numbers such that 

 and  for 1. . 1. We say that   majorizes  (abbreviated  ) 

if and only if  
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                                              1,2, , 1 

And  

. 

Let , , ,  and , , ,  be any array of real numbers. Let  

and  be rearrangement of  and  respectively in decreasing order, 

then  if  , , , , , , .        

There are many summation involved when working with majorization inequality, 

therefore we need a formula concerning to the sum. One of them is a well-known 

formula due to Abel, the Abel summation formula, or summation by part. This is an 

analog form of integration by part for summation.  

Theorem 3.1.1 (Abel Summation Formula) 

If   and  are two sequences, define  

    for   1 

and 0 then for any 1  we have 
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Proof: 

Since  for any 1, we have 

 

                                     

      

and thus   

 

as desired.  

The proof of Hardy-Littlewood- Pólya Majorization Inequality will be established by first 

proving the following lemma.  

Lemma 3.1.1 Let  1 and    be two nonincreasing sequences of real numbers. 

Define                  

,  

, .
 

If  is convex function then the sequence  1 is a nonincreasing sequence. 
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Proof: 

Let  be a convex function, for any two nonincreasing sequences 1 and    the 

following cases may occur: 

I.  and   . 

II.  , 1   and  1 1. 

III.  , 1   and  . 

IV.  , 1   and  1 1 . 

V.  , 1      and   1 1. 

VI.  , 1    and   1 1. 

Case I:  Since   and  1 1 then  1 1, by Theorem  

             2.1.6.  

Case II:  Since  1  then for , 1 , we can apply Galvani’s lemma 

1

1

1

1
 

and since 1 then for  , we have 

1

1

1 1

1 1
1 

so  1. 

Case III: Let  0 , then 1  and  , and we have 

1

1

1

1
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Since  1 1 then 

1

1

1 1

1 1
1 

So 

1 

As 0  we have   

lim
0

1  

Case IV:  Suppose that  1 1, then  , which is a contradiction. So 

we should have  . 

Since 1 we have 1. Take  0 such that  1 then  

  1

1

1 1

1 1
 

As 0  we have  . 

Case V:   Since  1  then for   1 

1

1

1

1
 

 

since   1 and  1    then 1  so for sufficiently small  0 we have 

1  and hence 
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1

1

1 1

1 1
 

so 

1 1

1 1
 

as 0  we conclude that  1 1.  

Case vi) since     and 1  then  1 so for sufficiently small 0 we 

have 1  and hence since  1 1 we have 

1

1

1

1

1 1

1 1
 

 As 0  we have  1 1 as well . 

The Hardy-Littlewood- Pólya Majorization Inequality has several forms. The classical 

form which will be given here, is the simplest from the others which also can be found in 

[3], and this classical inequality also founded independently by Karamata, thereby some 

literatures state it as Karamata Inequality.   

Theorem 3.1.2 (The Classical Hardy-Littlewood- Pólya Majorization Inequality) 

Let :  be a convex function, and suppose that , , ,  and 

, , ,  such that  , and then we have 

                                                              3.1.1  
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Proof: 

Without loss of generality, it is enough for us to prove the theorem when  and  are 

replaced by    and   respectively, since  

                                  and           

Define the sequence  by 

,  

,
 

Since  1 and  are nonincreasing, then  also nonincreasing by lemma 3.1.1. 

Notice that by Abel Summation Formula, for ∑  and 0 we have 

111
 

                                          0 1 

                                              1

1

1
 

Let ∑ 1  and  ∑ 1  for  1,2, , , we have   then the above 

equation can be written in the form 

11
1  

1

1
                           3.1.2  
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The condition  can be viewed as   and  . And since 1 0 we 

have 

11
0 

which is equivalent to 

11
                                                                           . 

 

The inequality in Theorem 3.1.2 can be extended to Riemann integral analog form, 

which also will be proved here. Before we proceed to prove the integral form, we first 

prove the following lemmas: 

Lemma 3.1.2 Let : ,  be a continuous function, then for any , ,  

with  , there exist ,  such that  . 

Proof:  

Since  is continuous on , , it is also continuous on , ,  thus  attains its 

maximum and minimum on ,  say min ,  and max ,  

where , ,  and we have   for , , integrating from  

to  we have 

. 

Equivalently, because  we have 
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1
. 

And by continuity of  , the Intermediate Value Theorem guaranties that there exist 

, ,  such that , and the lemma is proved.  

Lemma 3.1.3.  Let  , : ,  are continuous and monotone decreasing functions 

on ,  and satisfies:  

i)  for any ,  

ii)  

Let  , then there exist the sequences ,  and ,  

such that 

1 , 2 , , 1 , , ,  

Proof: 

By the lemma 3.1.2, since  is continuous there exist ,  such that 

. 

Similarly there exist  ,  such that 

. 

From condition (i) and since   we have for 1,2, , 1 
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.                       3.1.4   

Moreover, for  from condition (ii) and since  we have 

.                              3.1.5   

By definition of majorization since both  and  are decreasing, (3.1.4) and (3.1.5) is 

1 , 2 , , 1 , , ,        

We now attempt to prove the Riemann Integral analog form of Theorem 3.1.2. This 

analog version replaces the array in Theorem 3.1.2 by monotone continuous function 

and gives us an idea of majorization of two functions, which will be presented by integral 

inequality. 

Theorem 3.1.3 (The Riemann form of Hardy-Littlewood-Pólya Majorization 

inequality)  

Let  , : ,  are continuous, onto and monotone decreasing functions on ,  

and satisfies:  

i)  for any ,  

ii) . 

If  is a convex function, then  
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Proof: 

Since i) and ii) are satisfied then by lemma 3.1.3, there exist sequences  and 

 such that 

, , , , , , . 

From the convexity of  , by Theorem 3.1.2 we have 

                                                        3.1.6    

Multiplying both sides of equation 3.1.6 by   , we have 

                                  3.1.7   

each  , ,  with  . We know that both  and  are continuous 

functions that map closed interval  ,  onto  , thus  is also a closed interval, and 

hence by Theorem 2.1.3 since  is convex then  is continuous. Thus   and   

are also continuous, hence they are Riemann integrable, thus both limits 

lim ∑    and lim ∑    exist and equal to their 

correspond integral and inequality 3.1.6 becomes 
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3.2 The Extension of Hardy-Littlewood- Pólya Majorization Inequality and Its 

Integral Riemann Form.  

The next inequality that will be proved in this section is the generalization of Theorem 

3.1.2 which makes use the relative convexity as a bridge of generalization.  This 

generalization is the result of C.P. Nisculescu and F. Popovici on their joint paper3. 

Theorem 3.2.1 (The Generalization Of Hardy Littlewood Majorization Inequality) 

Let , :  be two functions such that  and let  , , , , , , ,  are in 

. If for any real weights , , ,  all three conditions below is satisfied: 

i)  and  

ii) ∑ ∑  for all 1, ,  

iii) ∑ ∑  

then  

 

Proof: 

We proceed by induction, for 1 the result is immediate. Now suppose that the 

theorem is true for every 1,2, , 1 where  is a natural number, to complete 

the induction we wish to prove it for  . If  for some index  , then by 

lemma 2.2.1  , this would reduce the terms of the sum  

                                                            
3 See [1] for reference. 
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to a sum with fewer terms, that is to say 

 

then we can apply the induction hypothesis to conclude that  

0 

and the theorem is proved for this case. 

Suppose that  for any  , then we can write  

 

          

We apply Abel summation formula as in Theorem 3.1.4 for  , 

  , 1 and  we conclude that the sum will equal to  
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which is by condition iii) it reduces to 

. 

The proof will be complete if we can prove that the latest sum is nonnegative. Since by 

condition ii) we always have ∑ 0 then we only need to prove that 

. 

If  for some index  then by lemma 2.2.1  , by condition 

i) we have  . Thus by lemma 2.2.2  

                                                                     

                                                                          

                                                                               

.                                                                             

The case  can be handled similarly. 

If  and  then by i) we have  and 

, we consider two cases : 

Case I:   . By lemma 2.2.2  
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Case II: ,  then   and also by lemma 

2.2.1 we have , so by lemma 2.2.2 

 

Hence the theorem is proved. 

Our final result is the Riemann Integral form of Theorem 3.2.1. 

Theorem 3.2.2 (The Riemann Form of Generalization of Hardy-Littlewood- Pólya 

Majorization Inequality)  

Let , :  be two functions such that  and let , : ,  are continuous 

functions such that  and  are Riemann Integrable and  and   are 

continuous nonincreasing functions. If : ,  is continuous function such that all 

two conditions below are satisfied: 

i)  for all ,  

ii)   

then  
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 Proof: 

Since  and  are continuous and  is also continuous then by lemma 3.1.3 

there exist sequences , ,  where    such that 

, , , ,  

Thus by definition of Majorization we have: 

i) ∑ ∑  , for 1,2, , 1 

ii) ∑ ∑  

Since we have  , and   and  are continuous, by Theorem 3.1.5  

 

Each  , ,  with  , and since   and  are Riemann 

integrable and  is continuous,  and   are Riemann 

Integrable, thus both limits lim ∑    and 

lim ∑    exist and equal to their correspond integral and 

hence 

                                                       . 
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3.3 Some Examples of Well-known Inequalities and nontrivial Inequalities 

Now we will provide some applications of Theorem 3.1.2 and Theorem 3.2.1. Some 

examples provided here are already available in literatures usually with different proof. 

Example 3.3.1 (The Arithmetic-Geometric Mean Inequality) 

Let , . ,  be nonnegative real numbers then   

 

Proof: 

Without loss of generality, we may assume that 0, since when 

some  equal zero then the inequality is obvious. The array , , ,   majorizes 

, , ,  with . We use the Classical Hardy-Littlewood- Pólya 

Inequality with convex function ln  on 0,∞  and yields 

ln ln ln ln . 

Which is equivalent to  

ln ln . 

This simplify to 

. 
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Example 3.3.2 (Power Mean Inequality) 

Let  and  be positive real numbers such that  then for any nonnegative real 

numbers , , ,  we have   

 

Proof: 

Without loss of generality we may assume that . Let  and 

  for all 0  where  then by Definition 2.2.1   . Let   

and  
 
  then we have: 

i)   

ii) ∑ ∑  for 1,2, , 1 

iii) ∑ ∑ . 

Thus by extended Hardy-Littlewood-Pólya Inequality we have 

/ / /

 

Let  then we have  
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Example 3.3.3 (Jensen Inequality)  

Let  be a real valued convex function defined in interval , for any real numbers  

0,1  where 1,2, ,  satisfies ∑ 1 and , , ,  are all in  then 

 

Proof: 

Without loss of generality we may assume that . For any positive 

rational numbers , , ,  such that 1, let   where , , 

and let  , then we have  is an positive integer for all . 

The array , , ,
 

, , ,
 

, , , , ,
   

 majorize the array , , ,  

with ∑   . Since  is convex, we can apply Classical Hardy-Littlewood- Pólya 

Inequality 

     

 

 

. 

Which is equivalent to 

. 

Thus for any positive rational numbers  such that 1 we have 
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It remains to prove the assertion for positive real numbers   such that 

1. For any real numbers  there exist rational sequences  that converges to  

and 1. Applying the inequality for rational numbers we have 

 

Taking limit as ∞ , since lim  and  is continuous we have  

 

The next example, although has a trivial geometric interpretation, but its analytic proof is 

not easy. 

Example 3.3.4 (The Comparison of Arc Length) 

Let : ,  and : ,  be a convex and continuously differentiable function 

such that  for all , , 0 and , then at interval 

,  the arc length of  is less than or equal to the arc length of T. 

Proof: 

Since  and  is continuously differentiable and 0, then  

   and        
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The condition  and  is equivalent to   

                       and  .  

This mean since  and  are convex then –  and –  are decreasing. Thus  and  

satisfies the hypothesis of Riemann form of Classical Hardy-Littlewood- Pólya Inequality 

By using the convex function √1   in Riemann form of classical Hardy-

Littlewood- Pólya Inequality we have 

1 1  

The left-hand side is the arc length of  in interval ,  and the right-hand side is the 

arc length of  in interval , . 
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