CHAPTER II

FUNDAMENTAL THEORIES

In this chapter, we will study about functions concerning with their convexity properties.
We first begin with convex function which is the key role to state the Classical Hardy-
Littlewood-Pdlya Majorization Inequality. We will also give the definition of two functions
that are relatively convex to each other. The definition of relative convexity given here
is taken form [1], but the first known study of relative convexity was due to George

Pélya [2].

2.1 The Theories of Convex Functions

One of the elementary function in mathematics is convex functions, the definition of
convex function merely states that any two points (x,,y;) and (x,,y,) on the curve of
convex function must lie below the line joining the two given points. We give the formal

definition below.

Definition 2.1.1

Let X c R be a convex set. The function f: X — R is convex if and only if for any two

points x;,x, € X and 4 € [0,1] the condition

fQxy + (1= Dxz) < Af (x1) + (1 = Df (x2) (2.1.1)

is satisfied.
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Throughout the following discussion, we will use the term “f is a convex function” to
refer that f is a convex function defined on the subset X of real number unless stated

otherwise.

This typical class of functions has many interesting properties and often found in any
branch of mathematics as well as in the operation research, mathematics for finance
and science management. We shall derive some properties of convex function on this
chapter for our further purpose that is to give a rigorous development of the famous
inequalities due to G.H Hardy, J.E Littlewood and G.Pélya’ and moreover its

generalization.

By Definition 2.1.1, if 4 # {0,1} and x; # x, then the equality occurs only when f is
linear that is f(x) = ax + b for constants a and b. This observation is useful to
determine the equality case of some inequalities involving convex function; this will be

stated in the following theorem.
Theorem 2.1.1

Let x; < x, be fixed real numbers, and f is a convex function. for any A € (0,1) the
equality

fQxy + (1= Dxz) = Af (x1) + (1 = Df (x2)

hold if and only if f is a linear function on (x4, x,).

! Also founded independently by Karimata.
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Proof:

First we prove that the equality implies f is linear. For the sake of contradiction,
suppose that f is not linear in (x4, x,) and for any 1 € (0,1) we have

fxg + (1= Dxz) = Af (x1) + (1 = Df (x2).

For any point x € (x;,x,) we can write x = Ax; + (1 — 1)x, where 1 = =2~ and since

X2—X1

x € (x4, x,) it follows that 1 € (0,1). So for any x € (x;,x,) we have
fG) =f(Ax; + (1 — Dxy)
= Af (x1) + (1 = Df (xz)

Xy — X X —x
= (Z0)re + () )
r f(xz) — f ()
= <W> (x —x1) + f(x1)

_ <f(x2) - f(x1)>x " <x2f(x1) = xlf(x2)>.

X2 —Xq Xy =X

But then f has a form of f(x) = ax + b with @ = LE2SED g jy = X/ C)70T(X2) 4o g

Xy—=Xq X2—X1
f alinear function. For the converse, suppose that f is a linear function and has the

form f(x) = ax + b then forany 1 € (0,1)

fAx; + (A —Dxy) =a(Ax; + (1 —A)xy) + b
= Alax; +b) + (1 — )(ax, + b)

=Af () + (1 = Df (x2)

and the theorem is establishedm.
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Our next consideration is the property of convex functions concerning on the slope of
the lines joining any two of the three given points on the convex function. The theorem
that will be stated next comes from a geometric observation of the graph of convex
function. Since it contributes many useful applications on deriving many properties of

convex function, it is often referred as lemma.
Theorem 2.1.2 (The Three Chords Lemma)

Let f be a convex function and x,; < x3 < x, be any points on the domain of f then we

have

flxz) — f(x1) LJO) = fx) _ fOxa) = fxs)

X3 — X1 X2 — X1 X2 — X3

(2.1.2)

Proof:

Notice that x; = Ax; + (1 — D)x, where 2 = 2222 and from the condition x; < x3 < x, we

X2—X1

have 4 € (0,1). By the definition of convex function we have

flrz) = fAx, + (1 = Dxz) S Af (x1) + (1 = 2)f (x2)

xZ - X3 X3
f(xy) +
X2 — X1 X2

oy
- fxy) - (2.1.3)

By adding - f(x;) to the both sides of (2.1.3) we have

(23 —x)f (x2) — (%3 — x1)f(x1)-

Xy — X1

fx3) — fx1) <

By dividing both sides with x3 — x; > 0 we have
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f(x3) — f(x1) < fxz) — f(xl)_

e P (2.1.4)

Hence if both sides of (2.1.3) are added with —f(x,) we have

(x3 = x2)f (x3) — (x3 — xz)f(xﬂ.

Xy — Xq

flxs) = fxz) <

By dividing both sides with x3 — x, < 0 we have

f(x3) — f(x1) > flxz) — f(xl)_

X3 — X X2 —Xq

(2.1.5)

The inequalities (2.1.4) and (2.1.5) give

flx3) = fx1) < fx) = f(x1) < fx) — f(x3)

X3 — X1 X2 — X1 Xy — X3

Theorem 2.1.2 has a corollary, which will come into the consideration since it will be
used frequently. This corollary states that convex functions possess an increased slope

property.

Corollary 2.1.1 (Galvani’'s Lemma) Let f be a convex function on [a,b] anda < ¢ <

d < b, then for any x € [a, b]/{c, d} the following inequality is true

O = f() _ f) = f()

c—X - d—x

(2.1.6)

And if we have the equality in (2.1.6) then f is linear.

Proof:

Since x € [a, b]/{c, d}, the proof will be constructed by examining three cases,

Case l. If x < ¢ < d then by the three chords lemma we have (the first inequality)
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fO @) _fd) = f(0)

c—Xx - d—x

Case ll. If ¢ < x < d then by the three chords lemma we have (the second inequality)

fO-fG) _f&)—flo) _f(d—f(x)

c—Xx X—C - d—x

Case lll. If ¢ <d < x then by the three chords lemma we have (the second inequality)

f@=f0) _fo)=f(d) _f0) = f(e) _ f(© —f(x)

d—x x—d - X—cC cC—Xx

thus the inequality has been proved. For the equality case, suppose that

fD=f() _fl©—f&)

d—x cC—X

forany x ¢ {c,d}. Then we have f(d)c — f(d)x — f(x)c = f(c)d — f(c)x — f(x)d. This

equivalent with

~(f@d)=f(c) fle)d = f(d)c

fx) = ( T c i - . (2.1.7)
Equation 2.1.7 is also true for x € {c,d}, and then f is linear for any x € [a,b]m.
The Galvani’s lemma often rephrase as follow
Corollary 2.1.2 For any fixed t, € [a, b] the function

t)—f(t
Y(t;ty) = w t#t, (2.1.8)
—tlo

is nondecreasing whent € [a, b].
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Proof:

To prove the rephrase version, let ¥ (t; t,) be the function defined in 2.1.8. Let t; and ¢,
be two points on [a, b] which are different from t, and satisfya < t; < t, < b, since t, €

[a, b]/{t;,t,}, by Galvani’s lemma

f(8) — ft) _ flt2) = f(t)

t1 T tO B tz - tO
which is equivalent to Y (ty;ty) < Y(tyty) foranyt; <t, m .

Although there are some discussions about discontinuous convex functions in [2], we
shall not discuss this class of convex function, it is irrelevant with the definition of

/ . 2 . o
convex function given here”. However, the convex function always continuous on

closed interval as stated in the theorem below.
Theorem 2.1.3

If f is a convex function on (a, b), then f is continuous on each closed subinterval

of (a, b).
Proof:

Let [c,d] < (a, b), for any two different points x,y € (¢,d) sincec # a,x # cand a < x,

by Galvani’'s lemma we have

fla) = fle) _f) = f(e)

a—c¢ X —C

since ¢ < y and x # y we have by Galvani’s lemma

? Hardy, Littlewood and Pélya gave different definition of convex function in [2]
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fG)—fl) _f&)-fO)

X—cC X—y
since x < b and b # y by applying Galvani’s lemma again we have

fGO—fG) _f®) —fO)
x—y b—vy

finally since y < d and b # d the Galvani’'s lemma gives

fO)—fO) _fO)—fB) _fd)=fB) _fb) = f(d)
b—-y  y—-b ~— d-b = b-d

by the four previous inequalities, we have established the inequality

F@) ~ £©) _fC)=FO) _ f(b) = F(d)
a—-c ~  x-y ~ b—-d

is bounded when x,y € (c,d), if

Thus for any x,y € (¢, d) with x # y the slope f—(x)_f](y)

xX—

we allow x, y € [c,d] the slope will remain bounded there since f(c) and f(d) are

defined. We conclude that the slope

f(x,i:fy—) is bounded for x, y € [c,d] thus there exist

real number M > 0 such that

f)—f)
x—y

<M= |f(x) - f()| < Mlx—y| forany x,y € [c,d]

or |[f(x) — f(y)| < M|x —y| for all x,y € [c,d]. We have characterized f as a Lipsitcz

function and hence continuous m.
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Theorem 2.1.4

If f is a convex function on (a, b), then the right- and left-hand derivatives of f exist at

each point of (a, b).
Proof:

By Galvani’s lemma, for any t, € (a, b) the function ¥ (t; t,) = f—(tz_f(to) is
—to
nondecreasing on variable t, thus when t - t, its left- and right-hand limit exist, finite

and
lim (5 t) = fu(to) and  lim (& to) = f-(to)
v —{

thus both £, (ty) and £.(t,) exist.
Theorem 2.1.5

If f is a convex function on (a, b), then at each point of (a, b) the right-hand derivatives
is greater than or equal to left-hand derivatives of f.
proof:

Lett, € (a,b), then x < t, < y for some x,y € (a, b). As before, define Y(t; t,) =

f—(t)_:(t") , then by Galvani’s lemma we have ¥ (x; t;) < Y(y; t,). By theorem 2.1.4 the

t—to
left-hand derivative exists, so when x — t; (since x < t,) we will have f_(t,) < Y (y; ty).
Furthermore, the right-hand derivative exists, and when y — t§ (since t, < y) we will

have f (t,) < fi(t,) as desired m.
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Theorem 2.1.6

If f is a convex function on (a, b), then the left- and right-hand derivatives of f are

monotone increasing functions.
Proof

Suppose that t;, t, € (a, b) such thatt; < t,, then by Galvani’s lemma for any x such

that x < t; <t, we have

f(x)—f(h)sf(x)—f(tz)

Since as x — t;, we also have x - t;, the above inequality becomes £ (t,) < f_(t,).
Similarly, by the same method we have f,(t,) < f.(t,), thus f_ and f, are monotone

functions m.
Theorem 2.1.7

If f is a convex function on (a, b), then at each point in (a, b) the left-hand derivative of f
is less than or equal to its right-hand derivative and they are equal to each other except

on a countable set.
Proof:

Suppose that h > 0 and t < x < t + h then by Galvani’'s lemma we have

f - fe+h) fO-f+h) fE+h)—fEO)

x—(+h) = —h h (@17)
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, if we suppose that £ to be

Letting x > (t + h)~ we have f'(t + h) > w

continuous at t, then lim,_,,+ f_(t + h) = f.(t) and since lim,_,,+

f+R)—f (1) '
e ORT

have

f2@®) = fi ().

By Theorem 2.1.5 we also have £ (t) < f.(t), so the equality f'(t) = £, (t) holds if f
continuous on t. Since f. monotone, it can only have countable discontinuities, so the

left- and hand-side derivatives are equal except on a countable set m.

2.2 Relative Convexity

As our purpose is to generalize inequality concerning to convex functions, it should be
quite natural to generalize the concept of convexity of the functions to relative convexity.
The study of relative convexity can be trace back to George Pdlya, and some of its
properties are available in [1] which their proofs shall be reviewed again here. The

motivation of relative convexity comes from the following observation,
Theorem 2.2.1

The function f is convex on X if and only if for any x,,x,,x3 € X and x; < x3 < x, we

have

1 % f(x)
x3 f(x3)]=0 (2.2.1)

1 x f(x2)

—_
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Proof:

If any two of x;,x, and x5 are equal to each other, then we have equality in (2.2.1) and
the theorem is trivially proved. Suppose that x,, x, and x5 are different from each other,

then by the three chords lemma since x; < x3 < x, we have

fxs) = /(1) < f(xa) — ffxl) = (22 — x1)f (x3) + (x5 — x2) f (x1) < (x5 — x1)f(x2)

X3 —Xq Xyp — X

f(xz)—f(xl)Sf(xz)—f(xS):)(
3

Xy — %1 pap— x1 — x3)f (x2) + (g — %) f (x3) < (2 — x3)f (x1)
Adding up the two inequalities we have
(xz — x3)f (1) + Oz = ) f (x2) + (g — x2)f (x3) = 0 (2.2.2)

That is equivalent to equation (2.2.1).

Now suppose that for any x; < x3 < x, (2.2.1) holds, then (2.2.2) also holds. We can

write x; = Ax; + (1 — A)x, and substituting this to equation (2.2.2) yields
(2 = x)DAf () + (e = ) (A — Df(x2) = (1 — x%2)f (Axqg + (1 — Dxy)
This is equivalent to equation (2.1.1). Thus f is convex m.

Theorem 2.2.1 motivates the definition of relative convexity that is to say that a function
f is convex with respect to the other nonconstant function of the same domain. This

definition includes usual convexity as a special case by Theorem 2.2.1.
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Definition 2.2.1

Let f: X - R and let g be a nonconstant function which has the same domain with f. We

say that f is convex with respect to g (abbreviated, g < f) if and only if

1 g f®)
D(f,.g9)=|1 g(» fO|=0 (2.2.3)
1 9@ f[f@

Forx,y,z€ X and g(x) < g(y) < g9(2).

Corollary 2.2.1

The function f is convex if and only if id < f where id is identity function.

Proof:

Suppose that f is convex, if x; < x3 < x, thenid(x;) < id(x;) < id(x,), hence by
Theorem 2.2.1 D(f,id) > 0, thus we have id < f. Now suppose that id < f then by

definition D(f,id) = 0 for x; < x3 < x, and hence by Theorem 2.2.1 f convex.

Lemma 2.2.1

Let f,g: X — R are functions where g is nonconstant such thatg < f, if g(x) = g(y)

then f(x) = f(y).
Proof:

Since g is nonconstant, there exist z € X such that g(x) = g(y) # g(z). Then we have

two cases

Case l: g(x) =g(y) < g(2) then
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1 gx) fx)
1 gx) f»
1 9@ [f@

0<

this yield f(x) = f(y). And also we have

1 g0 O
1 g0») f®)
1 9@ f(2

0<

and this yields f(y) = f(x), thus we have f(x) = f(¥).

Case ll: g(z) < g(x) = g(y) then

1 g2 f(=)
1.gl) fx)
T g fO)

0=

this yield f(y) = f(x). And also we have

1 9@ [f@
190 fO
1 90 fX®

0<

Which yields f(x) > f(y), and hence f(x) = f(y) m.

The next lemma is a generalization of Galvani’s lemma for relative convexity.

Lemma 2.2.2

= (9(@) = g@)(F ) - ),

= (9@ - gM)FO» - f()),

= (9@) —g@)F») =),

= (9() — 9@)(f(x) — f (),

16

If g < f then for any a,u, v € dom(f) with g(u) < g(v) and g(a) ¢ {g(w), g(v)}, we have

fW-f@ _f0)-f@
gw) —g@ = gw) - g(a)
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Proof:
Notice that inequality (2.2.4) can written in the equivalent form
(9w - g@)(fW) - f(@) = (g(») = g(@))(f(w) = f(a)) 2 0 (2.2.5)
To continue the proof we consider three cases:
Casel. If g(a) < g(u) < g(v) then

1 gla) f(a)
1 g f(w
1 g) f()

0<

= (g = g@)(f() ~ f(@) = (g) — g(@)(f W) - f(@))

which is equivalent to (2.2.5) and the inequality is verified for this case. Thus we have

proved

f@ - f(a) . f) = f(a)
gw)—ga) ~ gw) —g(a)

forg(a) < gw) < g(v).

Case ll. If g(u) < g(v) < g(a) then

T gw fw
1 gw) f()
1 g(@ f(a)

0<

= (9w - g@)(f®) - f(@) - (9(») = g(@)(fW) - f(a))

which is (2.2.5) and the inequality is verified for this case. Thus we have proved

f - f@ _ f@—f(a)
gw) —g(@ = g) - g(a)

forg(w) < g() < g(@).
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Casellll. If g(u) < g(a) < g(v) then by Case |, for g(u) < g(a) < g(v) we have

fla) — f(w) < f)—-fw
gla)—gw) ~— g) —gw)

and then by Case Il for g(u) < g(a) < g(v) we have

fW - f@ _f@-f)
gw) —g() = gla) —g)

thus,

fla) = f(u) <f(v)—f(u) _fW-f) <f(a)—f(v)
g@—-—gw  gw) —gu) g -gw  gla—gw)

and the proof is complete.
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