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CHAPTER II 

FUNDAMENTAL THEORIES 

 

In this chapter, we will study about functions concerning with their convexity properties. 

We first begin with convex function which is the key role to state the Classical Hardy-

Littlewood-Pólya Majorization Inequality. We will also give the definition of two functions 

that are relatively convex to each other.  The definition of relative convexity given here 

is taken form [1], but the first known study of relative convexity was due to George 

Pólya [2].      

2.1 The Theories of Convex Functions 

One of the elementary function in mathematics is convex functions, the definition of 

convex function merely states that any two points  ,  and ,  on the curve of 

convex function must lie below the line joining the two given points. We give the formal 

definition below. 

Definition 2.1.1 

Let   be a convex set. The function :  is convex if and only if for any two 

points ,  and 0,1  the condition 

1 1                              2.1.1  

is satisfied. 
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Throughout the following discussion, we will use the term “  is a convex function” to 

refer that  is a convex function defined on the subset  of real number unless stated 

otherwise. 

This typical class of functions has many interesting properties and often found in any 

branch of mathematics as well as in the operation research, mathematics for finance 

and science management. We shall derive some properties of convex function on this 

chapter for our further purpose that is to give a rigorous development of the famous 

inequalities due to G.H Hardy, J.E Littlewood and G.Pólya1  and moreover its 

generalization. 

By Definition 2.1.1, if 0,1  and  then the equality occurs only when  is 

linear that is  for constants  and  . This observation is useful to 

determine the equality case of some inequalities involving convex function; this will be 

stated in the following theorem. 

Theorem 2.1.1  

Let   be fixed real numbers, and  is a convex function. for any 0,1  the 

equality   

1 1  

hold if and only if  is a linear function on  , .   

 

 

                                                            
1 Also founded independently by Karimata.   
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Proof:   

First we prove that the equality implies  is linear. For the sake of contradiction, 

suppose that   is not linear in ,  and for any 0,1  we have 

1 1 . 

For any point ,  we can write 1  where  and since 

,  it follows that  0,1 . So for any ,  we have                                               

                               1  

           1  

             

            

             .   

But then  has a form of  with  and  that is 

 a linear function. For the converse, suppose that  is a linear function and has the 

form  then for any 0,1  

1 1  

                                       1  

                                       1  

and the theorem is established . 
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Our next consideration is the property of convex functions concerning on the slope of 

the lines joining any two of the three given points on the convex function. The theorem 

that will be stated next comes from a geometric observation of the graph of convex 

function. Since it contributes many useful applications on deriving many properties of 

convex function, it is often referred as lemma. 

Theorem 2.1.2 (The Three Chords Lemma) 

Let   be a convex function and  1 3 2  be any points on the domain of  then we 

have 

3 1

3 1

2 1

2 1

2 3

2 3
                                            2.1.2   

Proof: 

Notice that 3 1 1 2 where  and from the condition 1 3 2 we 

have  0,1 . By the definition of convex function we have 

1 1    

     .                                                               2.1.3  

By adding –  to the both sides of (2.1.3) we have  

. 

By dividing both sides with 3 1 0 we have  
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3 1

3

2 1

2 1
.                                                 2.1.4  

Hence if both sides of (2.1.3) are added with  we have 

1
. 

By dividing both sides with 3 2 0 we have 

3 1

3 2

2 1

2 1
.                                                      2.1.5  

The inequalities (2.1.4) and (2.1.5) give  

3 1

3 1

2 1

2 1

2 3

2 3
.                                       

Theorem 2.1.2 has a corollary, which will come into the consideration since it will be 

used frequently. This corollary states that convex functions possess an increased slope 

property.      

Corollary 2.1.1 (Galvani’s Lemma) Let  be a convex function on ,  and 

, then for any , / ,  the following inequality is true   

                                                              2.1.6  

And if we have the equality in (2.1.6) then  is linear. 

Proof: 

Since  , / , , the proof will be constructed by examining three cases,   

Case I.  If  then by the three chords lemma we have (the first inequality) 
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Case II. If   then by the three chords lemma we have (the second inequality) 

 

Case III.  If    then by the three chords lemma we have (the second inequality) 

 

thus the inequality has been proved.  For the equality case, suppose that  

 

for any  , . Then we have  . This 

equivalent with  

.                                          2.1.7  

Equation 2.1.7 is also true for  , , and then  is linear for any  , .  

The Galvani’s lemma often rephrase as follow 

Corollary 2.1.2 For any fixed ,   the function  

; ,                                                 2.1.8  

is nondecreasing when  , . 
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Proof: 

To prove the rephrase version, let ;  be the function defined in 2.1.8. Let  and  

be two points on ,  which are different from  and satisfy  , since 

, / , , by Galvani’s lemma  

 

which is equivalent to ; ;  for any     . 

Although there are some discussions about discontinuous convex functions in [2], we 

shall not discuss this class of convex function, it is irrelevant with the definition of 

convex function given here2.  However, the convex function always continuous on 

closed interval as stated in the theorem below. 

Theorem 2.1.3 

If  is a convex function on  , , then  is continuous on each closed subinterval 

of  , .  

Proof: 

Let  , , , for any two different points , ,  since  ,   and , 

by Galvani’s lemma we have 

 

since  and  we have by Galvani’s lemma 

                                                            
2 Hardy, Littlewood and Pólya gave different definition of convex function in [2] 
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since  and  by applying Galvani’s lemma again we have 

 

finally since  and  the Galvani’s lemma gives 

 

by the four previous inequalities, we have established the inequality  

. 

Thus for any , ,  with  the slope  is bounded when  , , , if 

we allow , ,  the slope will remain bounded there since  and  are 

defined. We conclude that the slope   is bounded for , ,  thus there exist 

real number 0 such that   

| | | |  for any  , ,  

or | | | | for all  , , . We have characterized  as a Lipsitcz 

function and hence continuous  . 
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Theorem 2.1.4 

If  is a convex function on  , , then the right- and left-hand derivatives of  exist at 

each point of  , .  

Proof:  

By Galvani’s lemma, for any  ,  the function ;  is 

nondecreasing on variable , thus when  its left- and right-hand limit exist, finite 

and 

lim ; ′   and     lim ; ′  

thus both ′  and ′  exist. 

Theorem 2.1.5 

If  is a convex function on  , , then at each point of  ,  the right-hand derivatives 

is greater than or equal to left-hand derivatives of . 

proof:  

Let  , , then  for some , , . As before, define  ;

 , then by Galvani’s lemma we have  ; ; . By theorem 2.1.4 the 

left-hand derivative exists, so when  (since  ) we will have  ′ ; .  

Furthermore, the right-hand derivative exists, and when   (since  ) we will 

have   ′  as desired  . 
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Theorem 2.1.6 

If  is a convex function on  , , then the left- and right-hand derivatives of  are 

monotone increasing functions.  

Proof 

Suppose that , ,  such that  , then by Galvani’s lemma for any  such 

that   we have 

 

Since as  , we also have  , the above inequality becomes  ′ ′ . 

Similarly, by the same method we have  ′ ′ , thus ′  and ′  are monotone 

functions  .  

Theorem 2.1.7 

If  is a convex function on  , , then at each point in ,  the left-hand derivative of  

is less than or equal to its right-hand derivative and they are equal to each other except 

on a countable set. 

Proof: 

Suppose that 0 and  then by Galvani’s lemma we have 

.                    2.1.7   
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Letting  we have  ′ , if we suppose that ′  to be 

continuous at  , then lim ′ ′  and since lim ′   we 

have 

′ ′ . 

By Theorem 2.1.5 we also have  ′ ′ , so the equality ′ ′  holds if ′  

continuous on  . Since ′  monotone, it can only have countable discontinuities, so the 

left- and hand-side derivatives are equal except on a countable set .   

 

2.2 Relative Convexity 

As our purpose is to generalize inequality concerning to convex functions, it should be 

quite natural to generalize the concept of convexity of the functions to relative convexity. 

The study of relative convexity can be trace back to George Pólya, and some of its 

properties are available in [1] which their proofs shall be reviewed again here. The 

motivation of relative convexity comes from the following observation,  

Theorem 2.2.1 

The function  is convex on  if and only if for any , ,  and  we 

have   

1
1
1

0                                                           2.2.1  
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Proof:  

If any two of ,   and  are equal to each other, then we have equality in (2.2.1) and 

the theorem is trivially proved. Suppose that ,  and  are different from each other, 

then by the three chords lemma since   we have 

3 1

3 1

2 1

2 1
 

2 1

2 1

2 3

2 3
 

Adding up the two inequalities we have 

0                                 2.2.2  

That is equivalent to equation (2.2.1). 

Now suppose that for any   (2.2.1) holds, then (2.2.2) also holds. We can 

write  1  and substituting this to equation (2.2.2) yields 

1 1  

This is equivalent to equation (2.1.1). Thus  is convex . 

Theorem 2.2.1 motivates the definition of relative convexity that is to say that a function 

 is convex with respect to the other nonconstant function of the same domain. This 

definition includes usual convexity as a special case by Theorem 2.2.1. 
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Definition 2.2.1 

Let :  and let  be a nonconstant function which has the same domain with  . We 

say that  is convex with respect to  (abbreviated,  ) if and only if 

,
1
1
1

0                                              2.2.3  

For , ,  and  . 

Corollary 2.2.1 

The function  is convex if and only if  where  is identity function. 

Proof: 

Suppose that  is convex, if   then  , hence by 

Theorem 2.2.1  , 0, thus we have    . Now suppose that  then by 

definition , 0 for  and hence by Theorem 2.2.1  convex. 

Lemma 2.2.1 

Let , :  are functions where  is nonconstant such that  , if  

then  . 

Proof: 

Since  is nonconstant, there exist  such that  . Then we have 

two cases  

Case I:   then  
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0
1
1
1

, 

 this yield  . And also we have 

0
1
1
1

, 

and this yields  , thus we have  . 

Case II:   then 

0
1
1
1

, 

this yield  . And also we have  

0
1
1
1

, 

Which yields  , and hence    .  

The next lemma is a generalization of Galvani’s lemma for relative convexity. 

Lemma 2.2.2 

If  then for any , ,  with  and  , , we have 

                                                         2.2.4  
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Proof: 

Notice that inequality (2.2.4) can written in the equivalent form 

0                          2.2.5  

To continue the proof we consider three cases: 

Case I.  If  then  

0
1
1
1

 

which is equivalent to (2.2.5) and the inequality is verified for this case. Thus we have 

proved 

 

for  . 

Case II. If   then  

0
1
1
1

 

which is (2.2.5) and the inequality is verified for this case. Thus we have proved 

 

for  . 
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Case III.  If    then by Case I, for   we have 

 

and then by Case II for   we have 

. 

thus,  

 

and the proof is complete. 
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