BAB IV

METODA PENGAMBILAN dan PENGOLAHAN DATA

4.1 METODA PENGAMBILAN DATA

Proses pengambilan data mengetahui fenomena *microbubble* yang terjadi setelah keluar dari *test section* diambil berdasarkan hasil yang didapat dari *test section* dengan cara mengatur frekuensi dari inverter untuk mendapatkan kecepatan dan bilangan Reynolds yang tinggi, sehingga ukuran *microbubble* dengan ukuran 200 mikron^[1] dapat tercapai. Proses percobaan dilakukan pada enam interval dari 30 Hz s.d 40 Hz pada interval, antara lain :

•	30 Hz	-	36 Hz
•	32 Hz	•	38 Hz
4	34 Hz	-	40 Hz

Data yang pertama diambil adalah data debit air terhadap Frekuensi dengan bantuan *stopwatch* dan inverter, kemudian untuk mendapatkan data tekanan, digunakan alat manometer air raksa dan *pressure gauge*. Angka-angka yang didapat dari pembacaan alat telah dikonversi kedalam satuan SI (Standar Internasioal).

4.2 METODA PENGOLAHAN dan ANALISA DATA

4.2.1 Pengambilan Data

Adapun tahapan-tahapan pengambilan data yang dilakukan antara lain :

- 1. Menyalakan *inverter* dan mengatur frekuensi yang diinginkan, *setup* pencahayaan, manometer raksa dan .
- 2. Memastikan kondisi percobaan stabil seperti aliran air, sehingga data yang diambil valid.
- 3. Mengambil data dengan mencatat waktu dengan bantuan *stopwatch* untuk debit.
- 4. Mengambil data tekanan dengan mencatat hasil yang ditampilkan oleh manometer dan *pressure gauge*.

- 5. Untuk menangkap hasil percobaan, digunakan satu buah kamera CANON EOS 300D.
- 6. Pengambilan data baik tekanan dan debit, dilakukan sebanyak 30 kali.
- 7. Mengulangi tahapan pengambilan data nomor 1 hingga nomor 6 sesuai dengan variasi frekuensi *inverter* selanjutnya. Dan setiap pengambilan data visualisasi, air yang terdapat dalam MBG harus dikuras terlebih dahulu, agar kotoran tidak tersangkut di *Test Section* atau mengganggu proses visualisasi.

4.2.2 Pengolahan Gambar Micro-bubbles Dengan ImageJ

Gambar *Micro-bubbles* yang dihasilkan pada percobaan, diproses dengan menggunakan *image processor* yaitu ImageJ^[5]. ImageJ membantu untuk mengukur ukuran *bubbles* yang dihasilkan oleh *test section* pada tiap-tiap percobaan. Adapun metoda pengolahan data menggunakan ImageJ, adalah :

• Open membuka file :

Aktifkan *software* ImageJ, kemudian klik Open untuk membuka file gambar yang akan diukur, misal : MBG 40 Hz.jpg

ImageJ		
ile Edit Image	Process Analy	ze Plugins Window Help
New	• A.	🔍 🖑 🎤 🛞 Dey Stik Lutj 🖉 🔏 🕭
Open	Ctrl+O	
OperwNext (Ctrl+Shift+O	
Open Samples		
Open Recent		
Import		
Close	Ctrl+W	
Save	Ctrl+S	
Save As		
Revert	Ctrl+R	
Page Setup	7	
Print	Ctrl+P	

Gambar 4.1 Tahap Open file

• Mengatur Skala pada Gambar

Tahap selanjutnya, adalah mengatur skala pada gambar terhadap software ImageJ. Pada contoh ini proses skala acuan dilakukan terhadap penggaris, dengan ketelitian 1 mm. Caranya adalah membuat garis lurus terhadap gambar, kemudian klik *Analyze*; *Set Scale*. Pada windows *set scale* masukkan parameter di *know distance* = 1 mm; dan 1 mm di kolom

unit of *length*. Klik di kolom *Global* untuk mengatur skala tersebut menjadi *default* ukuran.

Gambar 4.2 ImageJ : Pengaturan Skala Ukuran

Memperjelas Gambar Microbubbles

Proses memperjelas gambar Microbubbles terdiri dari :

• Find Edges

Perintah ini berfungsi untuk memisahkan atau membatasi bagian yang akan dianalisa. Klik *Process* > *Find Edges*

Gambar 4.3 ImageJ : Find Edges

• Proses *Smooth*

Tahap selanjutnya adala mempertajam hasil dari *find edges* dengan perintah *Process* > *Smooth*

Gambar 4.4 ImageJ : Smooth

• Changes to 8-bit

Merubah gambar menjadi *grayscale* agar hasil sortir gambar semakin jelas. Klik *Image* > 8-*bit*

🛓 ImageJ							
File Edit	Image Process	Analyze	Plugins	Window	Help		
	Туре		→ 🗸 8	-bit	2	1 3	>>
Wand (traci	Adjust		• 1	6-bit			
▲ HZ 40	Show Info	C	trl+l	bit Color			
33.08x44.31	Properties	Ctrl+Shif	ft+P				
	Color		•	GB Color			
	Stacks		۱ F	GB Stack			
	Crop	Ctrl+Shit	ft+X H	ISB Stack			
	Duplicate	Ctrl+Shif	t+D				Sec. Sec.
	Rename						
i "	Scale	Ctr	1+E				
	Rotate		· · ·				
	Zoom		• 🕅				
	Lookup Tables		• []			1	
						an an	
					ndet er		
		·					
10 - 10 - 20		20					

Gambar 4.5 ImageJ : Changes to 8-bit

• Binary

Tahap terakhir sebelum melakukan pengukuran adalah dengan perintah *Binary* (*Automatic Threshold*) yang berfungsi untuk memperjelas, visualisasi gambar (*bubbles*) yang akan diamati dan diukur. Klik *Process* > *Binary* > *Make Binary*

🛓 ImageJ				
File Edit Image	Process Analyze	Plugins	Window	Help
	Smooth	Ctr	I+Shift+S	TO 8 8 >>
Angle tool	Sharpen			
📕 ALT 1 38 HZ.JPG	Find Edges			
65.82x43.88 mm (3072	Enhance Contras	t		
	Noise		•	
	Shadows)	
A Star Star	Binary		•	Make Binary
States &	Math		,	Convert to Mask
a	FFT		•	Find Maxima
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Filters		•	Frode
	Image Calculator			Dilate
	Subtract Backgro	und		Open
	Repeat Command	1 Ctr	I+Shift+R	Close-
The second				Options
				Outline
and the second	13			Fill Holes
	N R.a			Skeletonize
				Distance Map
				Ultimate Points
				Watershed

Gambar 4.6 ImageJ : Proses *Binary*

Dari proses ini, akan didapat kelompok *Micro-bubbles* yang terdapat di frame. Kelompok *Micro-bubbles* tersebut akan diukur dan menggunakan fasilitas dari Image-J.

• Rectangle

Perintah *Rectangle* berfungsi untuk membatasi area pengukuran, sebesar luas *Rectangle* yang dibuat. Dimana area *Rectangle* dibuat dengan *Width* = 20 pixel dan *Heigth* = 20 pixel.

Gambar 4.7 ImageJ : Proses Rectangle

Analyze Particles

Dari kotak (*Rectangles*) yang dibuat, lakukan proses pengukuran microbubbles pada gambar dengan perintah analyze particles. Klik Analyze > Analyze Particles.

Gambar 4.8 ImageJ : Proses Analyze Particles

Pada *Window Analyze Particles* pilih beberapa pilihan seperti tertera pada gambar untuk menghasilkan hasil pengukuran.

• Hasil Akhir

Hasil pengukuran akan menampilkan dua buah *window*, yang pertama memperlihatkan hasil pengukuran seluruh area yang diukur, hasil yang lain menunjukan nilai *average* (rata – rata) dari seluruh *microbubbles* yang diukur.

🛓 ImageJ	🛓 R	esults						
File Edit Ima	File	Edit Font		no.				
DOGO		Area	Mean	Min	Max	XStart	YStart	-
	446	0.011	255	255	255	719	741	
	447	0.010	255	255	255	940	741	
🛓 HZ 40.JPG (3	448	7.39645E-4	255	255	255	658	742	1
59.08x44.31 mm (3	449	3.698225E-4	255	255	255	971	742	
	450	7.39645E-4	255	255	255	813	743	
	451	0.001	255	255	255	649	744	-
	1		777					•
and the second	3		* * *		· * ·			
S 85 8		Summar	y Font	_			2	
[[a] A] = [A] A]	. 6-3	C File Eult	Font		-1.0			0
		Silce	Coun		ai Area	A LAVELS	ige size	Are: -
	21	HZ 40.JPG	466	1.4:	20	0.003		2.8
		ier -						
		-						
	74							
a an an ar	1.1							
1. 1. 1. 1. 1.	1	e -						
12.								
	÷.,•.,							-
*		A 4	~					•
			1		1. 1. 1.	1.1		. *

Gambar 4.9 ImageJ : Hasil Akhir Pengukuran (Average diameter)

4.2.3 Pengolahan Data

Proses pengolahan data yang dilakukan dalam MBG adalah mengambil data – data yang didapat dari parameter seperti dibawah ini, antara lain :

- 1. Frekuensi terhadap bilangan Re.
- 2. Re terhadap Tekanan.
- 3. Re terhadap Diameter *bubble*.
- 4. Distribusi diameter Micro-bubbles.

4.2.4 Analisa Data

Analisa data yang pertama dilakukan adalah menentukan nilai debit air terhadap frekuensi yang dihasilkan inverter, hal ini perlu dilakukan karena keterbatasan flow meter untuk membaca skala pada frekuensi tinggi. Data yang tertera dibawah adalah data dengan nilai rata-rata dari 30 proses pencatatan yang dilakukan, yaitu :

NO	FREKUENSI (Hz)	DEBIT (10 ⁻⁴) [m ³ /s]	KEC. Rata- rata Ū ₁ (m/s)	Reynold No. (10 ³)
1	30	6.35	0.997	35.00
2	32	6.53	1.060	37.23
3	34	7.06	1.147	40.25
4	36	7.76	1.259	44.20
5	38	8.11	1.316	46.22
6	40	8.68	1.408	49.45

Tabel 4.1 Frekuensi vs Bilangan Re

Grafik.4.1 Frekuensi (Hz) vs $\text{Re}(10^3)$

Dari Grafik 4.1 di atas, dapat disimpulkan bahwa kecepatan dari fluida (air) berbanding lurus terhadap kenaikan nilai frekuensi dari Inverter. Dimana semakin besar nilai frekuensi pada inverter, maka nilai bilangan Re akan semakin besar.

Data yang selanjutnya ditampilkan adalah nilai tekanan terhadap pengaruh bilangan Reynolds, seperti terlihat pada Tabel. 4.2.

Tabel 4.2 Bilangan Re vs Tekanan

NO	Reynold No. (10 ³)	IP₃-P₁I (10 ³) [Pa]
1	35.00	-27.50
2	37.23	-29.06
3	40.25	-33.98
4	44.20	-40.97
5	46.22	-44.79
6	49.45	-51.28

Grafik 4.2 Bilangan Re vs Pressure Drop

Hasil dari Grafik 4.2 memberikan penjelasan bahwa nilai tekanan akan berbanding lurus terhadap naiknya nilai bilangan Re dari aliran fluida.

Selanjutnya data yang diambil adalah diameter *bubble* yang dihasilkan pada tiap – tiap bilangan Re yang terjadi pada percobaan, seperti dibawah ini :

NO	Reynold No.	DIAMETER RATA-RATA
	(10 ³)	(μ m)
1	35.00	137.190
2	37.23	103.996
3	40.25	99.091
4	44.20	95.966
5	46.22	94.110
6	49.45	86.069

Tabel 4.3 Bilangan Re vs Diameter Bubbles

Grafik 4.3 Bilangan Re vs Diameter rata-rata bubbles

Dari Grafik dan tabel diatas dapat diambil kesimpulan bahwa, bilangan Re berbanding terbalik terhadap ukuran diameter *bubble*. Semakin besar nilai bilangan Re, maka ukuran diameter *bubble* lebih kecil. Adapun nilai diameter *bubble* pada frekuensi 40 Hz adalah 0,086 mm (*Average* diameter).

Grafik 4.4 Distribusi Jumlah Diameter Microbubbles

Terakhir adalah data yang ditampilkan pada Grafik 4.5 dapat dilihat bahwa distribusi diameter *Microbubbles* yang terkecil adalah pada KELAS 1, yaitu di interval 0,02 s.d 0,1 mm dengan nilai frekuensi terbanyak. Distribusi diameter *Microbubbles* dengan ukuran terbesar yaitu pada interval 0,47 s.d 0,55 adalah pada KELAS 6 dengan nilai frekuensi terkecil. Detail data untuk distribusi diameter *bubbles*, dapat dilihat pada Lampiran.

4.2.5 Hasil Data Visualisasi *Microbubble*

Hasil visualisasi *microbubble* diambil dengan menggunakan kamera SLR digital CANON EOS 300 D 6,3 Megapixel. Visualisasi dilakukan dengan metoda fotografi yang kemudian diolah dengan media *software* desain yaitu ImageJ^[5], menggunakan metoda *scaling image* (gambar) terhadap ketelitian penggaris pada hasil foto. Dari foto – foto tersebut, dapat dilihat bahwa gelembung yang dihasilkan oleh MBG cukup baik. Adapun hasil visualisasi *microbubble* padat tiap – tiap bilangan Reynolds antara lain :

a. Visualisasi *microbubble* pada bilangan Reynolds 35.10^3 .

Gambar.4.10 *Microbubble* pada bilangan Reynolds 35. 10³

b. Visualisasi foto *microbubble* pada bilangan Reynolds $37,23.10^3$.

Gambar. 4.2 *Microbubble* pada bilangan Reynolds
 $37,\!23$. 10^3

c. Visualisasi foto *microbubble* pada bilangan Reynolds $40,25 \cdot 10^3$.

Gambar.4.3 *Microbubble* pada bilangan Reynolds $40,25 \cdot 10^3$

d. Visualisasi foto *microbubble* pada bilangan Reynolds $44,20 \cdot 10^3$.

Gambar. 4.4 $\it Microbubble$ pada bilangan Reynolds
 44,20 . 10^3

e. Visualisasi foto *microbubble* pada bilangan Reynolds $46,22 \cdot 10^3$.

Gambar.4.5 *Microbubble* pada bilangan Reynolds $46,22 \cdot 10^3$

f. Visualisasi foto *microbubble* pada bilangan Reynolds $49,45 \cdot 10^3$.

Gambar.4.6 $\it Microbubble$ pada bilangan Reynolds 49,45 . 10^3