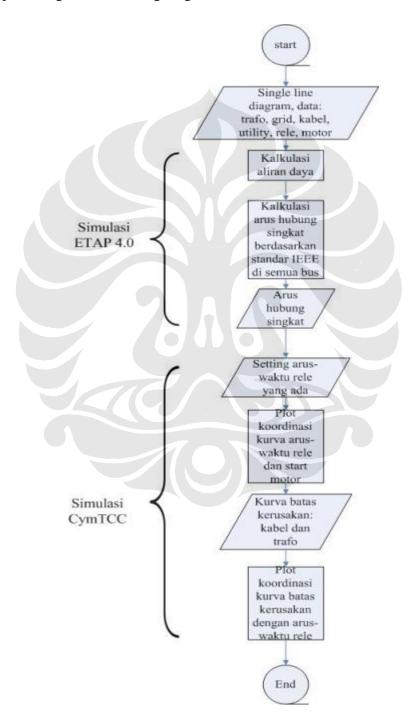
BAB III

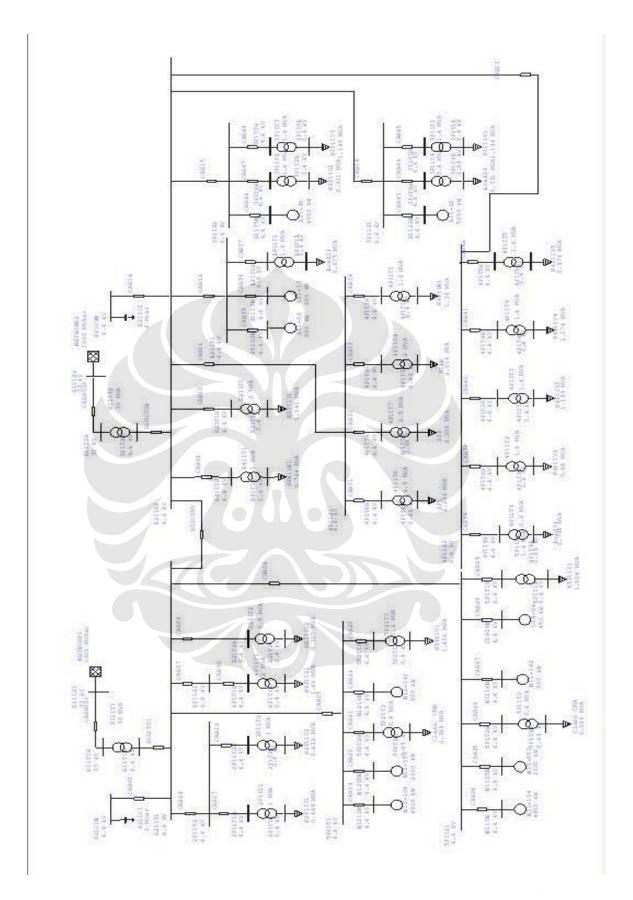
SKEMA DAN SIMULASI KOORDINASI RELE ARUS LEBIH DAN RELE GANGGUAN TANAH SEBAGAI PENGAMAN MOTOR INDUKSI, KABEL DAN TRAFO PADA PLANT XI DI PT INDOCEMENT

3.1 **Umum**


Dalam simulasi koordinasi rele arus lebih dan rele gangguan tanah ini digunakan acuan dalam standar ANSI/IEEE. Perancangan sistem proteksi dilakukan pada sisi 33 kV ke arah beban. Untuk memudahkan perhitungan digunakan sistem satuan per unit dengan base MVA sebesar 30 MVA dan base tegangan yang digunakan sesuai dengan tegangannya masing-masing. Perhitungan dilakukan dengan:

- 1) Perhitungan aliran daya yang masuk dan keluar dari satu bus penyulang (feeder bus) untuk mengetahui arus beban maksimum
- 2) Perhitungan arus hubung singkat maksimum untuk setiap lokasi gangguan yaitu :
 - a) Gangguan pada sisi tegangan 33 kV
 - b) Gangguan pada sisi 6.6 kV
- 3) Perhitungan setting arus dan waktu kerja rele dari kondisi arus pembangkitan maksimum sampai minimum dan juga penentuan jenis karakteristik rele yang digunakan
- Gambar kurva karakteristik rele arus lebih dan rele gangguan tanah untuk perancangan koordinasinya dengan kurva start motor, kurva batas kerusakan kabel dan trafo

Algoritma yang merepresentasikan perhitungan seperti diatas dan Diagram satu garis yang digunakan untuk simulasi adalah dapat dilihat masing-masing seperti pada gambar 3.1 dan 3.2.


3.2 Perhitungan arus hubung singkat maksimum

Perhitungan arus hubung singkat ini dilakukan dengan perhitungan impedansi tiap-tiap elemen listrik. Impedansi yang dihitung merupakan impedansi dari sumber arus hubung singkat ke titik gangguan. Hal - hal yang harus diperhatikan dalam perhitungan arus hubung singkat adalah:

Gambar 3.1 Diagram alir proses koordinasi rele

57

Gambar 3.2 Diagram satu garis PT Indocement

- a. Sumber dari hubung singkat yaitu generator, motor sinkron dan motor induksi. Trafo bukan merupakan sumber dari arus hubung singkat ketika terjadi gangguan, trafo hanya menyalurkan arus yang melewatinya apabila bebannya motor. Pada simulasi ini yang merupakan sumber arus hubung singkat ketika terjadi gangguan adalah jala-jala sistem tenaga listrik dan kumpulan motor induksi pada masing-masing cabang.
- b. Untuk tegangan sistem di atas 6 kV, maka impedansi dari bus, trafo arus, pemutus tenaga dapat diabaikan

Langkah-langkah perhitungan arus hubung singkat sebagai berikut :

- 1. Penentuan spesifikasi peralatan yang ada
- 2. Penentuan impedansi masing-masing peralatan dalam satuan per unit
- 3. Perhitungan impedansi hubung singkat dari sumber-sumber yang mengontribusi arus hubung singkat
- 4. Penentuan titik gangguan hubung singkat dengan tempat yang spesifik terhadap kemungkinan terjadinya hubung singkat. Penentuan titik gangguan ini menentukan letak alat proteksi yang akan diterapkan dan kapasitasnya
- 5. Hasil perhitungan arus Gangguan hubung singkat yang terjadi selama 10 milidetik (0.5 cycle) digunakan untuk menganalisa unjuk kerja rele pengaman seketika (instantenous) sedangkan arus gangguan hubung singkat yang terjadi selama 600 milidetik (30 cycle) digunakan untuk menganalisa unjuk kerja rele pengaman arus lebih waktu terbalik (inverse)

Tabel 3.1 Hasil perhitungan arus hubung singkat dari sumber jala-jala listrik 1 dengan waktu gangguan $0.5~{\rm cycle}$

Jala-Jala Listrik 1					
	Macam Gangguan (dalam kA (rms))				
Nama Bus	Tegangan (kV)	Tegangan (kV) 3 Fasa L-G L-L L-L-G			
2P11T1H	6.6	17.255	4.960	14.951	15.334
2P11T2H	6.6	64.178	21.296	55.736	56.383

2P1152	6.6	71.633	24.596	62.238	63.332
5P1T1H	6.6	100.541	40.920	87.668	93.113
5P1T2H	6.6	84.752	34.486	73.784	76.240
5P2T1H	6.6	96.569	37.999	84.174	88.878
5P2T2H	6.6	95.491	37.337	83.227	88.035
5P11S1	6.6	117.456	57.695	102.556	112.715
5P2151	6.6	117.659	58.123	102.728	112.988
6P1T1H	6.6	28.976	8.807	25.118	25.717
6P11S1	6.6	30.825	9.429	26.723	27.343
D1404N	6.6	19.556	7.580	16.954	17.863
E21T2H	6.6	128.546	75.646	112.097	123.153
E21151	6.6	165.365	228.711	144.567	237.043
E11T1H	33	32.916	14.229	28.706	32.287
N110N	6.6	100.746	40.247	87.904	93.786
N1105N	6.6	83.450	28.683	72.722	76.194
N1116N	6.6	53.716	20.642	46.672	47.659
N1205N	6.6	81.633	27.685	71.129	74.409
N1210N	6.6	103.181	42.433	90.033	96.401
N1216N	6.6	79.028	27.217	68.807	71.478

Tabel 3.2 Hasil perhitungan arus hubung singkat dari sumber jala-jala listrik 2 dengan waktu gangguan 0.5 cycle

Jala-Jala Listrik 2					
		Macam Gangguan (dalam kA (rms))			
Nama	Tegangan				L - L -
Bus	(kV)	3 Fasa	L-G	L-L	G
3P1T1H	6.6	96.233	40.629	83.839	88.016
3P1T2H	6.6	111.872	52.802	97.528	105.461
3P1T3H	6.6	104.651	48.608	91.169	96.429
3P1T4H	6.6	92.382	40.123	80.448	83.854
3P11S1	6.6	122.918	66.526	107.325	119.708
3P11S2	6.6	134.910	88.903	117.810	136.511
4P1T2H	6.6	80.578	30.194	70.052	72.610
4P1T3H	6.6	79.809	29.800	69.380	71.840
4P1T4H	6.6	84.179	32.106	73.202	76.246
4P1T5H	6.6	83.359	31.660	72.484	75.413
4P1T9H	6.6	76.719	29.800	66.672	68.633
4P1T6H	6.6	115.170	56.651	100.366	109.726
4P1T7H	6.6	114.949	56.157	100.171	109.493
4P1T8H	6.6	105.770	46.360	92.111	98.536
4P1T1H	6.6	106.696	47.797	92.919	99.062

4P11S1	6.6	135.957	92.673	118.641	138.506
4P11S2	6.6	106.785	47.924	93.016	100.916
E21T1H	6.6	112.122	53.689	97.665	103.631
E41T1H	6.6	123.248	67.407	107.438	116.462
E1128N	6.6	107.740	47.585	94.043	101.936
E1135N	6.6	119.896	60.241	104.640	114.492
E21152	6.6	165.351	228.694	144.556	237.026
E11T2H	33	32.919	14.250	28.709	32.296
LP1T1H	6.6	83.137	29.601	72.337	75.763
LP1151	6.6	99.328	40.880	86.526	92.919
S5108N	6.6	41.557	15.175	36.070	36.945
S5113N	6.6	39.671	14.513	34.429	35.339

Tabel 3.3 Hasil perhitungan arus hubung singkat dari sumber jala-jala listrik 1 dengan waktu gangguan 30 cycle

Jala-Jala Listrik 1					
	Macam Gangguan (dalam kA (rms))				
Nama	Tegangan				L - L -
Bus	(kV)	3 Fasa	L-G	L-L	G
2P11T1H	6.6	17.140	4.952	14.844	15.215
2P11T2H	6.6	62.174	21.138	53.844	54.662
2P1152	6.6	69.073	24.384	59.819	61.119
5P1T1H	6.6	93.329	40.088	80.826	86.466
5P1T2H	6.6	79.816	33.907	69.123	71.895
5P2T1H	6.6	90.028	37.296	77.967	82.875
5P2T2H	6.6	89.096	36.666	77.160	82.167
5P11S1	6.6	107.669	56.028	93.244	103.522
5P2151	6.6	107.988	56.462	93.520	103.909
6P1T1H	6.6	28.636	8.780	24.799	25.365
6P11S1	6.6	30.436	9.399	26.359	26.941
D1404N	6.6	19.220	7.546	16.645	17.556
E21T2H	6.6	119.552	73.490	103.535	115.160
E21151	6.6	150.410	207.863	130.259	218.618
E11T1H	33	30.651	14.020	26.544	30.140
N110N	6.6	92.915	39.355	80.467	86.451
N1105N	6.6	77.932	28.222	67.491	71.064
N1116N	6.6	51.683	20.414	44.759	45.664
N1205N	6.6	76.385	27.257	66.151	69.529
N1210N	6.6	95.194	41.473	82.440	88.921
N1216N	6.6	74.479	26.841	64.501	67.326

Tabel 3.4 Hasil perhitungan arus hubung singkat dari sumber jala-jala listrik 2 dengan waktu gangguan 30 cycle

Jala-Jala Listrik 2					
		Macam Gangguan (dalam kA (rms))			
Nama	Tegangan				L - L -
Bus	(kV)	3 Fasa	L-G	L - L	G
3P1T1H	6.6	90.645	39.943	78.501	83.010
3P1T2H	6.6	104.592	51.722	90.580	98.844
3P1T3H	6.6	98.446	47.691	85.257	90.949
3P1T4H	6.6	87.352	39.462	75.649	79.439
3P11S1	6.6	113.548	64.634	98.335	110.933
3P11S2	6.6	124.249	85.703	107.603	126.538
4P1T2H	6.6	77.226	29.881	66.880	69.682
4P1T3H	6.6	76.530	29.495	66.277	68.979
4P1T4H	6.6	80.476	31.751	69.694	72.993
4P1T5H	6.6	79.737	31.316	69.054	72.235
4P1T9H	6.6	73.796	29.500	63.910	66.138
4P1T6H	6.6	107.868	55.498	93.416	103.088
4P1T7H	6.6	107.682	55.032	93.256	102.891
4P1T8H	6.6	99.690	45.601	86.334	93.075
4P1T1H	6.6	100.537	46.979	87.068	93.563
4P11S1	6.6	125.749	89.455	108.902	129.063
4P11S2	6.6	100.483	47.114	87.020	95.165
E21T1H	6.6	105.391	52.633	91.271	97.706
E41T1H	6.6	115.022	65.713	99.612	109.177
E1128N	6.6	100.021	46.548	86.621	94.679
E1135N	6.6	111.145	58.712	96.254	106.372
E21152	6.6	150.410	207.863	130.259	218.619
E11T2H	33	30.656	14.040	26.549	30.150
LP1T1H	6.6	79.015	29.258	68.429	72.033
LP1151	6.6	93.353	40.220	80.846	87.427
S5108N	6.6	40.508	15.069	35.081	35.923
S5113N	6.6	38.718	14.416	33.530	34.409

Pada tabel 3.1 dan 3.2 di atas bus penyulang motor induksi seperti N110N, N1105N, N1116N, N1205N, N1210N, N1216N, D1404N, E1128N, E1135N, S5108N, dan S5113N menghasilkan arus hubung singkat yang bervariasi tergantung dari kapasitas daya terpasang (bus penyulang menghasilkan arus

hubung singkat yang besar apabila motor induksi memiliki daya yang besar pula) tetapi nilainya lebih besar daripada arus hubung singkat yang terjadi dengan waktu gangguan 600 milidetik (30 cycle) (seperti terlihat pada tabel 3.3 dan 3.4) karena pengaruh adanya kontribusi arus motor induksi saat terjadinya gangguan hubung singkat hanya terjadi pada periode subperalihan hubung singkat generator atau 10 milidetik (0.5 cycle). Sedangkan bus penyulang lain yang merupakan bus penyulang trafo dan bus penyulang cabang menghasilkan arus hubung singkat yang bervariasi pula tergantung kapasitas beban yang terhubung.

3.3 Perhitungan setting arus dan waktu kerja rele arus lebih dan rele gangguan tanah

Dalam perhitungan setting arus dan waktu kerja rele ini haruslah mendapatkan sistem koordinasi pengaman yang selektif. Hal ini berarti bahwa hanya rele yang paling dekat dengan gangguan yang bekerja. Apabila rele yang terdekat akibat sesuatu hal tidak bekerja maka rele cadangan harus bekerja. Hal ini dimungkinkan dengan menerapkan waktu interval masing-masing rele.

Acuan dalam perhitungan pengaturan rele adalah:

- Penentuan karakteristik rele dimulai dari bagian yang paling dekat dengan beban (bagian hilir). Rele yang terletak pada bagian ini harus mempunyai penyetelan waktu yang paling singkat
- 2. Pemilihan karakteristik rele didasarkan pada letak rele tersebut, untuk rele yang berada paling hilir harus mempunyai karakteristik yang cepat dalam merespon adanya arus gangguan hubung singkat. Untuk sistem radial biasanya digunakan rele dengan karakteristik extremely inverse agar ketika ada gangguan maka waktu rele bekerja merupakan kuadrat arusnya sehingga bagian yang terganggu dapat secepatnya dipisahkan. Selanjutnya pemilihan kurva karakteristik tergantung dari hasil perhitungan dan koordinasi relenya.
- 3. Pemilihan faktor pengali waktu pada kurva rele (Time Multiplier Setting/TMS) dengan memilih TMS yang terkecil untuk bagian yang

- paling hilir, sedangkan untuk daerah selanjutnya tergantung dari perhitungan dan koordinasi rele.
- 4. Waktu interval antar rele digunakan 0.4 dengan anggapan bahwa waktu overshoot, pembukaan pemutus tenaga, faktor kesalahan dan faktor keamanan telah diperhitungkan waktunya.
- 5. Sistem proteksi harus tetap stabil pada kondisi operasi normal terberat yang timbul. Kondisi operasi normal yang terberat yang diperhitungkan dalam analisa unjuk kerja sistem proteksi adalah pengasutan (start) motor induksi. Dalam studi ini nilai arus start diklasifikasikan dalam start tegangan penuh dan start dengan tegangan dikurangi. Dimana start tegangan penuh = 7 x In_{motor} dan start tegangan dikurangi = 4.5 x In_{motor}. Untuk memastikan bahwa sistem proteksi akan tetap stabil pada operasi start motor, maka untuk analisa unjuk kerja dipilih arus start dengan tegangan penuh. Setting arus rele arus lebih harus lebih besar daripada arus start dengan tegangan penuh. Selisih waktu kerja rele pada waktu start dengan waktu start motor adalah 2 detik untuk motor dengan waktu start 5-10 detik dan 5 detik untuk motor dengan waktu start 40-50 detik.
- 6. Di mana setting pada rele arus lebih pada masing-masing penyulang adalah sebesar :

$$1.3I_{load} < I_{set} < 0.8I_{short min}$$
 (3.1)

 $I_{\it short min}$ adalah arus gangguan minimum pada gangguan fasa.

7. Persamaan kurva-kurva karakteristik rele arus lebih untuk mendapatkan waktu kerja rele menurut standar ANSI/IEEE adalah :

$$t = \left(\frac{A}{M^p - 1} + B\right). TMS \tag{3.2}$$

M adalah perkalian dari arus primer terhadap setting arus (MTVC – Multiple of Tap Value current). Sedangkan untuk konstanta A, B dan p untuk masing-masing karakteristik di atas dapat dilihat pada table berikut:

Karakteristik B Short Time Inverse 0,019 0,113 0,04 0,113 0,02 Moderately Inverse 0,052 Inverse 8,93 0,179 2,09 Very Inverse 0,492 18,92 Exteremely Inverse 28,08 0,13 Long Time Inverse 2,09 5,61 2,18

Tabel 3.5 Konstanta karakteristik rele arus lebih menurut standard ANSI/IEEE

untuk menghitung waktu setting perlu diperhatikan ketentuan sebagai berikut :

$$t_{sett} < t_{breakdown}$$
 (3.3)

Di mana $t_{breakdown}$ dihitung berdasarkan arus gangguan hubung singkat maksimum gangguan fasa. Di mana komponen dari sistem akan rusak akibat gangguan maksimum selama waktu tersebut kurang dari waktu kerja rele. Untuk menghitung $t_{breakdown}$ digunakan persamaan :

$$\left(\frac{I}{1000A}\right)^2 t = K \log_{10}\left(\frac{T_2 + \lambda}{T_1 + \lambda}\right)$$
(3.4)

Di mana:

I = arus gangguan (A).

t = durasi gangguan (detik).

A = luas penampang kabel (Kcmil).

T2 = temperatur konduktor ketika terjadi gangguan $({}^{0}C)$.

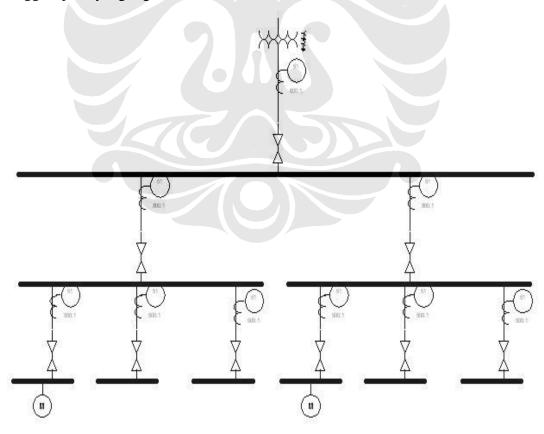
T1 = temperatur konduktor sebelum terjadi gangguan (⁰C).

 λ = temperatur dugaan ketika konduktor memiliki resistensi nol, 0 C di bawah nol (lihat tabel 4.6).

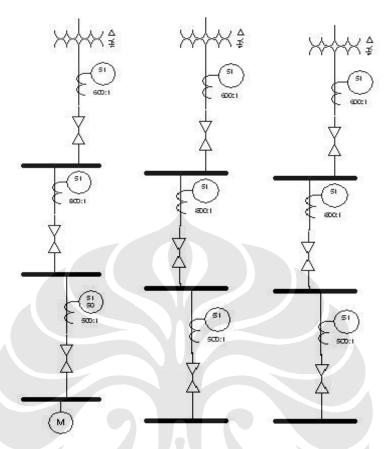
K = konstanta konduktor.

Tabel 3.6 Data termal konduktor untuk batas kekuatan pada kondisi gangguan

Material konduktor	λ, ⁰ C	K
Tembaga (97%)	234.0	0.0289
Aluminium(62.1%)	228.1	0.0126
6201 (52.5%)	228.1	0.0107


Baja	180.0	0.00327

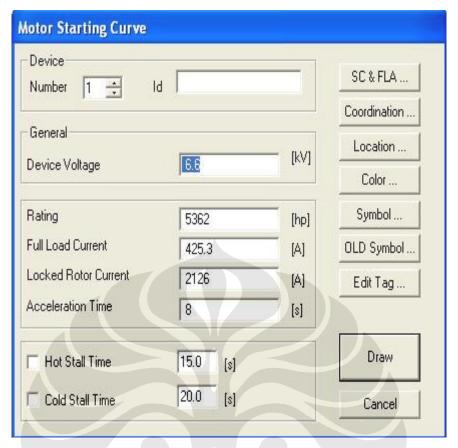
Untuk kabel XLPE dengan temperatur normal 50° c maka didapatkan persamaan: $I^{2}t = (54.45 \text{ x A})^{2}$ (3.5)


Pada setting rele gangguan tanah cara yang sama dilakukan seperti proses di atas hanya saja arus gangguan yang menjadi acuan adalah arus gangguan hubung singkat ke tanah.

Pada gambar 3.3 dan 3.4 dibawah dapat terlihat bahwa rele arus lebih di penyulang motor dikoordinasikan dengan rele arus lebih di penyulang kumpulan motor (motor control center) dan rele arus lebih di keluaran (outgoing) trafo serta dikoordinasikan pula dengan kurva start motor, kurva ketahanan kabel dari arus hubung singkat, dan kurva ketahanan trafo sehingga tujuan koordinasi yang menghasilkan selektivitas antar peralatan proteksi dapat tercapai dengan baik.

Pada skripsi ini disimulasikan koordinasi rele arus lebih pada masing-masing cabang penyulang motor dengan rele arus lebih pada level tegangan yang lebih tinggi seperti yang digambarkan di bawah ini.

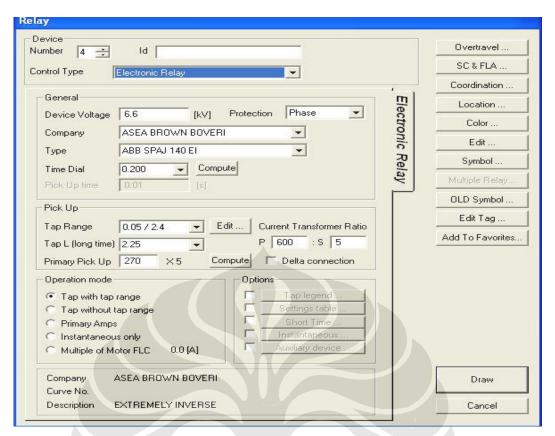
Gambar 3.3 Diagram satu garis pada penyulang motor dengan kapasitas total arus hubung singkat terbesar dan kapasitas daya motor induksi terbesar

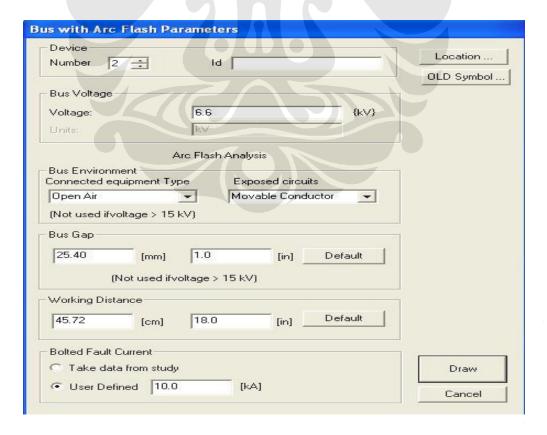


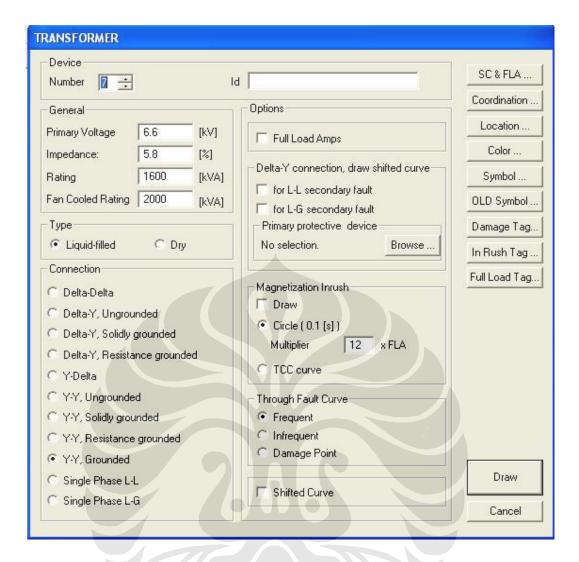
Gambar 3.4 Koordinasi rele arus lebih dari bagian hilir/penyulang motor sampai ke bagian hulu/penyulang keluaran(outgoing) trafo

3.4 Gambar kurva karakteristik rele arus lebih dan rele gangguan tanah

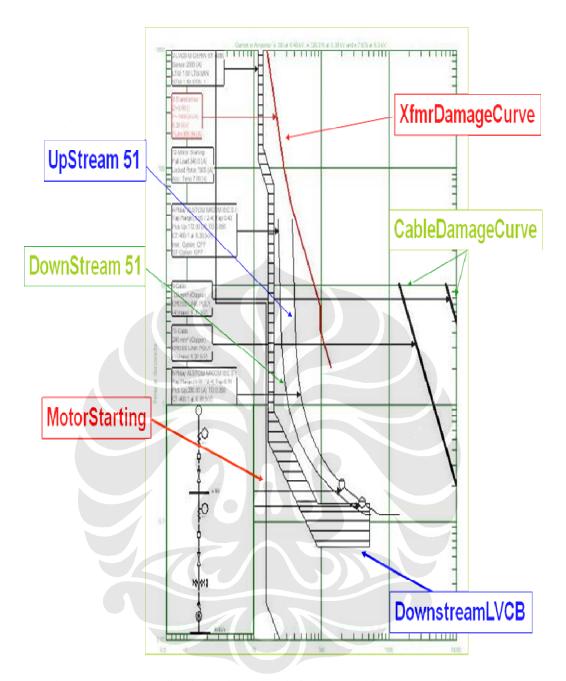
Untuk mensimulasikan koordinasi rele arus lebih seperti diatas maka digunakanlah software yang bernama CymTCC. Prosedur untuk menjalankan simulasi di CymTCC sebagai berikut :


 Setelah diagram garis tunggal dengan kapasitas total arus hubung singkat terbesar pada penyulang kumpulan motor (motor control center) dibuat, selanjutnya masukkan nilai dari parameter-parameter yang ada di kurva start motor, kurva ketahanan kabel, kurva ketahanan trafo, rele proteksi dan semua bus yang ada.


Gambar 3.5 karakteristik start motor


Gambar 3.6 karakteristik kerusakan kabel

Gambar 3.7 karakteristik rele



Gambar 3.8 karakteristik bus

Gambar 3.9 karakteristik trafo

2. Jalankan simulasi dan dapatkan hasilnya baik pada kertas kurva arus dan waktu (Time Current Curve) maupun laporan yang berbentuk rangkuman konfigurasi setting dari semua peralatan proteksi dan juga koordinasinya satu sama lain. Gambar 3.10 adalah contoh kurva karakteristik arus dan waktu pada kertas logaritmis. Kurva karakteristik rele arus lebih dan rele gangguan tanah tidak hanya berkoordinasi satu sama lain (tergantung letak rele apakah di bagian hulu atau bagian hilir) tetapi juga berkoordinasi dengan kurva pengasutan (start motor), kurva kerusakan kabel (cable damage curve), dan kurva kerusakan trafo (trafo damage curve).

Gambar 3.10 Kurva koordinasi arus dan waktu dari rele arus lebih, pengaman kabel, pengaman motor induksi, dan pengaman trafo