Yth, Bapak / Ibu / Karyawan / Karyawati

Kantor Imigrasi Klas I Khusus Soekarno Hatta,

 Di Jakarta
Hal : Permohonan Partisipasi Untuk Mengisi Kuesioner

Bersama ini, dengan hormat, kami sampaikan angket (kuesioner) untuk penelitian yang berjudul "Faktor-Faktor Penyebab Munculnya Kesenjangan Penyelenggaraan Pelayanan Izin Tinggal Terbatas Bagi Warga Negara Asing Di Kantor Imigrasi Klas I Khusus Soekarno - Hatta." Kuesioner ini merupakan bagian dari proses penyusunan tesis yang menjadi salah satu syarat untuk menyelesaikan program pasca sarjana di Fisip Universitas Indonesia.

Untuk keperluan tersebut saya mohon Bapak / Ibu dapat memberi tanggapan dengan menjawab seluruh pertanyaan. Petunjuk pengisian / jawaban kuesioner tersaji bersama lampiran kuesioner.

Kuesioner ini tidak ada kaitan dengan pekerjaan dan jabatan karena ditujukan untuk keperluan ilmiah, sehingga tidak perlu mencantumkan nama. Kerahasiaan Bapak / Ibu sebagai responden terjamin.

Atas perhatian dan partisipasi bapak / ibu pada penelitian ini diucapkan terimakasih dan penghargaan setinggi-tingginya.

Hormat Kami,
R.A FATIMAH

Peneliti

KUESIONER

A. IDENTITAS RESPONDEN (PEGAWAI PELAYANAN DI KANTOR IMIGRASI KLAS I KHUSUS SOEKARNO-HATTA)

Berilah Tanda Silang (X) Pada Jawaban Yang Sesuai.

PENDIDIKAN TERAKHIR		
1	SLTP	
2	SLTA	
3	D3	
4	S1	
5	S2	
6	S3	
2	MASA KERJA	
1	$0-5$ tahun	
2	$6-10$ tahun	
3	$11-15$ tahun	
5	$15-20$ tahun	

Mohon diisi kursus atau pelatihan yang pernah diikuti.

	PELATIHAN ATAU DIKLAT YANG PERNAH DIIKUTI	LAMANYA
1		
2		
3		
4		
5		

B. PERNYATAAN RESPONDEN (PEGAWAI PELAY ANAN DI KANTOR IMIGRASI KLAS I KHUSUS SOEKARNO-HATTA)

Petunjuk : berikut ini sejumlah peryataan yang dimaksudkan untuk mengukur persepsi anda tentang operasional pelayanan Izin tinggal terbatas (KITAS) di Kantor Imigrasi Klas I Khusus Soekarno Hatta. Mohon tandai tingkat yang anda setujui atau tidak anda setujui dengan melingkari satu dari lima angka disebelah kanan pernyataan. Bila anda sangat tidak setuju (STS) lingkari 1, lingkari angka 2 bila anda tidak setuju (TS), lingkari 3 bila anda raguragu (RR), lingkari 4 bila anda setuju (S), lingkari 5 bila anda sangat setuju(SS).

PERTANY AAN / PERNY ATAAN	STS	TS	RR	S	SS
KERJASAMA TIM (TEAM WORK)					
1 Pegawai merasa menjadi bagian dari tim dalam pelayanan di Kantor Imigrasi.		2	3	4	5
Setiap pegawai dalam Kantor Imigrasi selalu 2 memberi dukungan kepada tim dalam melayani pemohon.	1	2	3	4	5
Setiap pegawai selalu merasa bertanggung-jawab 3 untuk membantu rekan sejawat melakukan tugas mereka dengan baik.	1	2	3	4	5
Selama ini tidak timbul hambatan pada proses 4 pekerjaan yang memerlukan kerjasama antar pegawai.	1	2	3	4	5
5 Pegawai merasa menjadi salah satu anggota yang penting dari Kantor Imigrasi.		2		4	5
KESESUAIAN PEGAWAI-PEKERJAAN (EMPLOYEE-JOB FIT)					
6 Para pegawai sudah memahami perincian tugastugas yang harus dikerjakan.		2	3	4	5
7 Kantor Imigrasi menugaskan para pegawai yang memenuhi syarat untuk melaksanakan tugasnya.	1	2	3	4	5
8 Selama ini, tugas-tugas yang dikerjakan sesuai dengan pengetahuan yang telah dimiliki pegawai	1	2	3	4	5
$9 \quad$ Selama ini, tugas-tugas yang dikerjakan sesuai dengan ketrampilan yang telah dimiliki pegawai	1	2	3	4	5
Pegawai merasa nyaman dalam pekerjaannya karena selalu mampu melaksanakan pekerjaan dengan baik.	1	2	3	4	5

KESESUAIAN TEKNOLOGI - PEKERJAAN (TECHNOLOGY-JOB FIT)					
Pegawai telah diberikan peralatan dan 11 perlengkapan yang diperlukan pegawai untuk menjalankan tugas.	1	2	3	4	5
Alat yang telah diterapkan dalam sistem pelayanan 12 di Kantor Imigrasi selalu dapat diandalkan (selalu berfungsi dengan normal).	1	2	3	4	5
Alat yang dipergunakan mudah dioperasikan 13 pegawai sehingga tidak ada hambatan pelayanan karena penggunaan teknologi.	1	2	3	4	5
Sudah ada solusi yang baku agar pemohon tidak 14 dirugikan apabila timbul permasalahan pada alat yang dipergunakan.	1	2	3	4	5
KONTROL YANG DIPERSEPSIKAN (PERCEIVED CONTROL)					
Selama ini, pegawai memerlukan banyak waktu 15 dalam memecahkan masalah kerja dengan sedikit pengawasan.	1	2	3	4	5
Selama ini pegawai memiliki kewenangan yang 16 mencukupi dalam pekerjaan untuk memuaskan kebutuhan pemohon.	1	2	3	4	5
Kadang-kadang pegawai merasa kehilangan 17 kontrol atas pekerjaannya karena terlalu banyak permintaan pelayanan dari pemohon pada waktu yang bersamaan.		2	3	4	5
Selama ini, salah satu kesulitan dalam kerja 18 adalah kadang-kadang harus bergantung pada pekerjaan pegawai lain dalam melayani pemohon.	1	2	3	4	5
Selama ini para pegawai sangat menjaga batas 19 kewenangan kerja antar pegawai.	1	2	3	4	5
SISTEM KONTROL PENGAWASAN (SUPERVISORY CONTROL SYSTEM)					
Penilaian kinerja oleh atasan langsung yang berlaku selama ini, termasuk menilai dalam hal 20 bagaimana pegawai berinteraksi dengan pemohon.	1	2	3	4	5
Selama ini, pegawai yang melakukan pelayanan 21 yang lebih baik untuk melayani pemohon tidak memperoleh insentif yang lebih besar.	1	2	3	4	5
Selama ini, pegawai yang berkinerja terbaik dalam 22 pelayanan lebih dihargai daripada pegawai yang lain.	1	2	3	4	5

KONFLIK PERAN (ROLE CONFLICT)					
Selama ini, jumlah pekerjaan dokumen/administrasi yang ada menyulitkan pegawai untuk memberikan pelayanan yang cepat pada pemohon.	1	2	3	4	5
Selama ini, Kantor Imigrasi memberikan penekanan yang sangat besar pada sisi 24 penegakan hukum/prosedur, sehingga sulit memberikan pelayanan pada pemohon dengan sepatutnya.	1	2	3	4	5
Selama ini, apa yang diinginkan pemohon untuk 25 dikerjakan pegawai, biasanya sama dengan yang dikehendaki pimpinan untuk dikerjakan.	1	2	3	4	5
26 Selama ini, setiap pegawai memiliki batasan tugas dan tanggungjawab yang jelas.	1	2	3	4	5
KERANCUAN PERAN (ROLE AMBIGUITY)					
Pegawai telah menerima informasi yang 27 mencukupi dari para pimpinan tentang tata cara menjalankan tugas.	1	2	3	4	5
Selama ini pegawai sering merasa tidak mengerti 28 tata cara pelayanan yang ditawarkan oleh Kantor Imigrasi.	1	2	3	4	5
Selama ini, pegawai dapat mengikuti perubahan- 29 perubahan dalam kantor yang mempengaruhi tatacara menjalankan pekerjaan.	1	2	3	4	5
Selama ini, pegawai merasa belum cukup dilatih 30 dalam hal bagaimana berinteraksi secara efektif dengan para pemohon.	1		3	4	5
Selama ini, pegawai tidak yakin aspek-aspek 31 pekerjaan yang mana yang paling ditekankan oleh atasan langsung dalam mengevaluasi kinerja.	1	2	3	4	5

PEDOMAN WAWANCARA

1. Bagaimana suka duka yang Bapak/Ibu alami selama bertugas, dalam memberikan pelayanan KITAS?
a. Bagaimana pandangan Bapak/Ibu mengenai kerjasama tim yang telah terbentuk, apakah telah efektif untuk kesuksesan pelayanan?
b. Bagaimana pendapat Bapak/ Ibu, apakah latar belakang pengetahuan, pendidikan dan ketrampilan yang dimiliki pegawai telah efektif untuk mensukseskan pelayanan?
c. Bagaimana pendapat Bapak/Ibu tentang pendidikan dan pelatihan dari kantor untuk pegawai?
d. Bagaimana pendapat Bapak/Ibu tentang kehandalan alat yang dipergunakan dalam pelayanan, dan kemampuan pegawai untuk mengoperasikan alat-alat tersebut?
e. Bagaimana pendapat Bapak/Ibu mengenai struktur/pendelegasian kewenangan yang berlaku, apakah telah efektif untuk mensukseskan pelayanan?
f. Bagaimana pendapat Bapak/Ibu, tentang tugas-tugas yang saling bertolak belakang, misalnya pada satu sisi, petugas harus dapat memberikan kemudahan pelayanan, namun pada sisi lain petugas harus menegakkan hukum?
g. Bagaimana pendapat Bapak/Ibu tentang batasan tugas dan kewenangan yang berlaku, apakah telah efektif untuk mensukseskan pelayanan?
h. Bagaimana pendapat Bapak/Ibu tentang insentif atau penghargaan pada pegawai yang berkinerja baik?
2. Bagaimana saran Bapak/Ibu agar dapat dilakukan perbaikan pelayanan, dengan mempertimbangkan keterbatasan kewenangan dan sistem yang berlaku?

LAMPIRAN

A. Karakteristik Responden

Statistics

		pendidikan	masakerja	PTKAIM	KURSUSLAIN
N	Valid	73	73	73	73
	Missing	0	0	0	0

Tingkat Pendidikan Responden

				Cumulative Percent	
Valid	Frequency	Percent	Valid Percent	(
	SMA	28	38.4	38.4	38.4
	3 D3	15	20.5	20.5	58.9
	4 S1	23	31.5	31.5	90.4
	S S2	7	9.6	9.6	100.0
	Total	73	100.0	100.0	

Masa Kerja Responden

				Valid Percent	Cumulative Percent
Valid	1 0-5 TAHUN	Frequency	Percent	26.0	26.0
	2 6-10 TAHUN	18	24.7	24.7	50.7
	3 11-15 TAHUN	8	11.0	11.0	61.6
	4 16-20 TAHUN	5	6.8	6.8	68.5
	5 DIATAS 21 TAHUN	23	31.5	31.5	100.0
	Total	73	100.0	100.0	

Pendidikan Non Teknis Atau PTK / AIM Responden

					Cumulative Percent
Valid	0 NON PTK / AIM	Frequency	Percent	Valid Percent	67.1
	1 PTK/AIM	24	67.1	67.1	67.1
	Total	73	100.0	32.9	100.0

Jumlah Pelatihan /Kursus Lain Yang Pernah Diikuti Responden

					Cumulative Percent
Valid	0 TIDAK PERNAH	36	49.3	49.3	49.3
	1 1 KALI	17	23.3	23.3	72.6
	2 2 KALI	10	13.7	13.7	86.3
3 3 KALI	9	12.3	12.3	98.6	
	4 4 KALI	0	0	0	98.6
	5 5 KALI	1	1.4	1.4	100.0
	Total	73	100.0	100.0	

B. RELIABILITAS DAN VALIDITAS INSTRUMEN

1. Reliabilitas

Scale: ALL VARIABELS

Case Processing Summary

		N	$\%$
Cases	Valid	20	100.0
	Excluded		0
	a)	.0	
	Total	20	100.0

a Listwise deletion based on all variables in the procedure.

Reliability Statistics

Cronbach's Alpha	N of Items
.938	31

Item-Total Statistics					
	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Cronbach's Alpha if Item Deleted	
TW1	97.550	268.787	.579	.936	
TW2	97.750	275.987	.664	.935	
TW3	97.700	274.537	.626	.935	
TW4	98.400	279.726	.397	.938	
TW5	97.700	275.379	.459	.938	
EJF1	97.550	272.050	.743	.934	
EJF2	98.200	273.853	.649	.935	
EJF3	98.200	271.537	.683	.935	
EJF4	98.200	273.537	.556	.936	
EJF5	97.650	268.134	.852	.933	
TJF1	97.700	274.432	.629	.935	
TJF2	98.100	282.305	.496	.937	
TJF3	97.950	270.787	.799	.934	
TJF4	97.850	280.766	.526	.936	
PC1X	98.700	277.695	.461	.937	
PC2	97.900	268.305	.737	.934	
PC3X	98.900	281.042	.517	.937	
PC4X	98.400	275.621	.469	.937	
PC5	98.000	272.632	.690	.935	
SCS1	97.750	272.303	.744	.934	
SCS2X	98.750	285.145	.458	.937	
SCS3	98.250	279.987	.402	.938	
RC1X	98.500	279.316	.413	.938	
RC2X	98.500	278.579	.412	.938	
RC3	98.500	281.105	.409	.938	
RC4	98.200	278.695	.488	.937	
RA1	97.500	282.684	.720	.936	
RA2X	98.300	283.274	.427	.937	
RA3	97.500	277.842	.659	.935	
RA4X	98.250	276.724	.567	.936	
RA5X	98.100	282.621	.399	.938	

Scale Statistics

Mean	Variance	Std. Deviation	N of Items
101.350	294.766	17.1687	31

2. Validitas

Factor Analysis Team Work

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure of Sampling		
Adequacy.		.527
Bartlett's Test of	Approx. Chi-Square	32.430
Sphericity	df	10
	Sig.	.000

Communalities

	Initial	Extraction
TW1	1.000	.560
TW2	1.000	.602
TW3	1.000	.767
TW4	1.000	.893
TW5	1.000	.829

Extraction Method: Principal Component Analysis.
Total Variance Explained

	Initial Eigenvalues			Extraction Sums of Squared Loadings		
Component	Total	\% of Variance	Cumulative \%	Total	\% of Variance	Cumulative \%
1	2.564	51.278	51.278	2.564	51.278	51.278
2	1.088	21.752	73.030	1.088	21.752	73.030
3	.667	13.341	86.371			
4	.543	10.854	97.224			
5	.139	2.776	100.000			

Extraction Method: Principal Component Analysis.
Component Matrix(a)

	Component	
	1	2
TW1	.690	.290
TW2	.770	.095
TW3	.864	-.143
TW4	.125	.936
TW5	.856	-.312

Extraction Method: Principal Component Analysis.
a 2 components extracted.

Factor Analysis Employee-Job Fit

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure of Sampling		
Adequacy.		.723
Bartlett's Test of	Approx. Chi-Square	48.925
Sphericity	df	10
	Sig.	.000

Communalities

	Initial	Extraction
EJF1	1.000	.514
EJF2	1.000	.751
EJF3	1.000	.663
EJF4	1.000	.500
EJF5	1.000	.805

Extraction Method: Principal Component Analysis.

Total Variance Explained

Component	Initial Eigenvalues			Extraction Sums of Squared Loadings		
	Total	\% of Variance	Cumulative \%	Total	\% of Variance	Cumulative \%
1	3.234	64.680	64.680	3.234	64.680	64.680
2	. 907	18.137	\% 82.817			
3	. 450	9.008	91.825			
4	. 257	5.135	96.960			
5	. 152	3.040	100.000			

Extraction Method: Principal Component Analysis.
Component Matrix(a)

	Componen t
	1
EJF1	.717
EJF2	.867
EJF3	.814
EJF4	.707
EJF5	.897

Extraction Method: Principal Component Analysis.
a 1 components extracted.

Factor Analysis Technology-Job Fit

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure of Sampling		
Adequacy.		.699
Bartlett's Test of	Approx. Chi-Square	21.665
Sphericity	df	6
	Sig.	.001

Communalities

	Initial	Extraction
TJF1	1.000	.499
TJF2	1.000	.734
TJF3	1.000	.751
TJF4	1.000	.394

Extraction Method: Principal Component Analysis.

Total Variance Explained

	Initial Eigenvalues			Extraction Sums of Squared Loadings		
Component	Total	\% of Variance	Cumulative \%	Total	\% of Variance	Cumulative \%
1	2.378	59.461	59.461	2.378	59.461	59.461
2	.740	18.503	77.964			
3	.634	15.853	93.817			
4	.247	6.183	100.000			

Extraction Method: Principal Component Analysis.

Component Matrix(a)

	Componen t
	1
TJF1	.706
TJF2	.857
TJF3	.867
TJF4	.627

Extraction Method: Principal Component Analysis.
a 1 components extracted.

Factor Analysis Perceived Control

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure of Sampling Adequacy.		
		.552
Bartlett's Test of	Approx. Chi-Square	20.041
Sphericity	df	10
	Sig.	.029

Communalities

	Initial	Extraction
PC1	1.000	.282
PC2	1.000	.744
PC3	1.000	.568
PC4	1.000	.254
PC5	1.000	.471

Extraction Method: Principal Component Analysis.

Total Variance Explained

	Initial Eigenvalues			Extraction Sums of Squared Loadings		
Component	Total	\% of Variance	Cumulative \%	Total	\% of Variance	Cumulative \%
1	2.319	46.371	46.371	2.319	46.371	46.371
2	.912	18.239	64.610			
3	.848	16.969	81.579			
4	.676	13.529	95.108			
5	.245	4.892	100.000			

Extraction Method: Principal Component Analysis.
Component Matrix(a)

	Componen t
PC1	.531
PC2	.863
PC3	.753
PC4	.504
PC5	.686

Extraction Method: Principal Component Analysis.
a 1 components extracted.

Factor Analysis Supervisory Control System

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure of Sampling Adequacy.		
Bartlett's Test of	Approx. Chi-Square	.610
Sphericity	df	4.466
	Sig.	3

Communalities

	Initial	Extraction
SCS1	1.000	.604
SCS2	1.000	.564
SCS3	1.000	.436

Extraction Method: Principal Component Analysis.

Total Variance Explained

	Initial Eigenvalues			Extraction Sums of Squared Loadings		
Component	Total	\% of Variance	Cumulative \%	Total	\% of Variance	Cumulative \%
1	1.604	53.476	53.476	1.604	53.476	53.476
2	.778	25.942	79.418			
3	.617	20.582	100.000			

Extraction Method: Principal Component Analysis.

Component Matrix(a)

	Componen t
	1
SCS1	.777
SCS2	.751
SCS3	.661

Extraction Method: Principal Component Analysis.
a 1 components extracted.

Factor Analysis Role Conflict

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure of Sampling		
Adequacy.		.511
Bartlett's Test of	Approx. Chi-Square	11.415
Sphericity	df	6
	Sig.	.076

Communalities

	Initial	Extraction
RC1	1.000	.758
RC2	1.000	.662
RC3	1.000	.765
RC4	1.000	.822

Extraction Method: Principal Component Analysis.

Total Variance Explained

	Initial Eigenvalues			Extraction Sums of Squared Loadings		
Component	Total		\% of Variance	Cumulative \%	Total	\% of Variance
Cumulative \%						
1	1.797	44.935	44.935	1.797	44.935	44.935
2	1.209	30.225	75.160	1.209	30.225	75.160
3	.612	15.296	90.456			
4	.382	9.544	100.000			

Extraction Method: Principal Component Analysis.

Component Matrix(a)

	Component	
	1	2
RC1	-.485	.722
RC2	-.638	.505
RC3	.807	.338
RC4	.710	.564

Extraction Method: Principal Component Analysis.
a 2 components extracted.

Factor Analysis Role Ambiguity

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure of Sampling Adequacy.		
		.563
Bartlett's Test of	Approx. Chi-Square	19.834
Sphericity	df	10
	Sig.	.031

Communalities

	Initial	Extraction
RA1	1.000	.789
RA2	1.000	.394
RA3	1.000	.635
RA4	1.000	.692
RA5	1.000	.824

Extraction Method: Principal Component Analysis.

Total Variance Explained

	Initial Eigenvalues			Extraction Sums of Squared Loadings									
	Total								\% of Variance	Cumulative \%	Total	\% of Variance	Cumulative \%
1	2.252	45.031	45.031	2.252	45.031	45.031							
2	1.081	21.629	66.660	1.081	21.629	66.660							
3	.863	17.255	83.914										
4	.539	10.772	94.687										
5	.266	5.313	100.000										

Extraction Method: Principal Component Analysis.

Component Matrix(a)

	Component	
	1	2
RA1	.823	-.334
RA2	.477	-.409
RA3	.735	.307
RA4	.830	-.053
RA5	.343	.840

Extraction Method: Principal Component Analysis.
a 2 components extracted.

Crosstabs
pendidikan * TW1
Crosstab

Chi-Square Tests

Chi-Square Tests			
	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	$10.670^{\text {a }}$	12	.557
Likelihood Ratio	10.010	12	.615
Linear-by-Linear Association	.419	1	.517
N of Valid Cases	73		

a. 15 cells (75.0\%) have expected count less than 5 . The minimum expected count is .10

pendidikan * TW2

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	18.503^{a}		12
Likelihood Ratio	17.199		12

a. 16 cells (80.0%) have expected count less than 5 . The minimum expected count is .10 .

pendidikan * TW3

Crosstab

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	16.418^{a}	12	.173
Likelihood Ratio	13.186	12	.356
Linear-by-Linear Association	1.524	1	.217
N of Valid Cases	73		

a. 17 cells (85.0%) have expected count less than 5 . The minimum expected count is .10 .

pendidikan * TW4

Crosstab

Total	Count	4	11	14	42	2	73
	\% within pendidikan	5.5\%	15.1\%	19.2\%	57.5\%	2.7\%	100.0\%
	\% within TW4	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%

Chi-Square Tests

Chi-Square Tests			
	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	12.579^{a}	12	.400
Likelihood Ratio	14.770	12	.254
Linear-by-Linear Association	2.097	1	.148
N of Valid Cases	73		

a. 16 cells (80.0%) have expected count less than 5 . The minimum expected count is .19 .

pendidikan * TW5

Crosstab								
			TW5					Total
			1	2	3	4	5	
pendidikan	2	Count \% within pendidikan \% within TW5	$\begin{array}{r} 0 \\ .0 \% \\ .0 \% \end{array}$	1 3.6% 33.3%	$\begin{array}{r} 2 \\ 7.1 \% \\ 20.0 \% \end{array}$	$\begin{array}{r} 20 \\ 71.4 \% \\ 45.5 \% \end{array}$	$\begin{array}{r} 5 \\ 17.9 \% \\ 41.7 \% \end{array}$	$\begin{array}{r} 28 \\ 100.0 \% \\ 38.4 \% \end{array}$
	3	Count \% within pendidikan \% within TW5	0 $.0 \%$ $.0 \%$	$\begin{array}{r} 0 \\ .0 \% \\ .0 \% \end{array}$	$\begin{array}{r} 4 \\ 26.7 \% \\ 40.0 \% \end{array}$	$\begin{array}{r} 7 \\ \hline 46.7 \% \\ 15.9 \% \end{array}$	$\begin{array}{r} 4 \\ 26.7 \% \\ 33.3 \% \end{array}$	$\begin{array}{r} 15 \\ 100.0 \% \\ 20.5 \% \end{array}$
	4	Count \% within pendidikan \% within TW5	3 13.0% 75.0%	$\begin{array}{r} \hline 2 \\ 8.7 \% \\ 66.7 \% \end{array}$	$\begin{array}{r} \hline 4 \\ 17.4 \% \\ 40.0 \% \end{array}$	$\begin{array}{r} \hline 12 \\ 52.2 \% \\ 27.3 \% \end{array}$	$\begin{array}{r} 2 \\ 8.7 \% \\ 16.7 \% \end{array}$	$\begin{array}{r} 23 \\ 100.0 \% \\ 31.5 \% \end{array}$
	5	Count \% within pendidikan \% within TW5	14.3\% 25.0\%	0 $.0 \%$ $.0 \%$	0 $.0 \%$ $.0 \%$	5 71.4% 11.4%	1 14.3% 8.3%	$\begin{array}{r} 7 \\ 100.0 \% \\ 9.6 \% \end{array}$
Total		Count \% within pendidikan \% within TW5	$\begin{array}{r} 4 \\ 5.5 \% \\ 100.0 \% \end{array}$	$\begin{array}{r} 3 \\ 4.1 \% \\ 100.0 \% \end{array}$	$\begin{array}{r} 10 \\ 13.7 \% \\ 100.0 \% \end{array}$	$\begin{array}{r} 44 \\ 60.3 \% \\ 100.0 \% \end{array}$	$\begin{array}{r} 12 \\ 16.4 \% \\ 100.0 \% \end{array}$	$\begin{array}{r} 73 \\ 100.0 \% \\ 100.0 \% \end{array}$

Chi-Square Tests
Value df Asymp. Sig. (2-sided) Pearson Chi-Square 15.038^{a} 12 Likelihood Ratio 17.786 .239 Linear-by-Linear Association 4.518 .122 N of Valid Cases 73 .034

a. 17 cells (85.0%) have expected count less than 5 . The minimum expected count is .29 .

pendidikan * EJF1

Crosstab

		\% within EJF1	.0\%	14.3\%	20.0\%	21.7\%	22.2\%	20.5\%
	4	Count	$\begin{array}{r} 0 \\ .0 \% \\ .0 \% \end{array}$	$\begin{array}{\|r} \hline 4 \\ 17.4 \% \\ 57.1 \% \end{array}$	$\begin{array}{r} 6 \\ 26.1 \% \\ 60.0 \% \end{array}$	$\begin{array}{r} 10 \\ 43.5 \% \\ 21.7 \% \end{array}$	$\begin{array}{r} 3 \\ 13.0 \% \\ 33.3 \% \end{array}$	
		\% within pendidikan						23$100.0 \%$$31.5 \%$
		\% within EJF1						
	5	Count	$\begin{array}{r} \hline 1 \\ 14.3 \% \\ 100.0 \% \end{array}$	$\begin{array}{r} 0 \\ .0 \% \\ .0 \% \end{array}$	$\begin{array}{r} 0 \\ .0 \% \\ .0 \% \end{array}$	5$71.4 \%$$10.9 \%$	$\begin{array}{r} 1 \\ 14.3 \% \\ 11.1 \% \end{array}$	7$100.0 \%$$9.6 \%$
		\% within pendidikan						
		\% within EJF1						
Total		Count	$\begin{array}{r} 1 \\ 1.4 \% \\ 100.0 \% \end{array}$	$\begin{array}{r} 7 \\ 9.6 \% \\ 100.0 \% \end{array}$	$\begin{array}{r} \hline 10 \\ 13.7 \% \\ 100.0 \% \end{array}$	$\begin{array}{r} \hline 46 \\ 63.0 \% \\ 100.0 \% \end{array}$	9$12.3 \%$$100.0 \%$	73$100.0 \%$$100.0 \%$
		\% within pendidikan						
		\% within EJF1						

Chi-Square Tests					
	Value	df	Asymp. Sig. (2-sided)		
Pearson Chi-Square	18.528^{a}	12	.101		
Likelihood Ratio	14.940	12	.245		
Linear-by-Linear Association	1.715	1	.190		
N of Valid Cases	73				a. 17 cells (85.0\%) have expected count less than 5. The minimum expected count is .10.
:---					

pendidikan * EJF2

Crosstab

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	17.655°	12	.127
Likelihood Ratio	18.787		12
Linear-by-Linear Association	.715		1

N of Valid Cases

pendidikan * EJF3

Crosstab

pendidikan	2	Count \% within pendidikan \% within EJF3	1 3.6% 33.3%	3 10.7% 20.0%	7 25.0% 41.2%	15 53.6% 44.1%	2 7.1% 50.0%	28 100.0% 38.4%
	3	Count \% within pendidikan \% within EJF3	0 $.0 \%$ $.0 \%$	20.0\% ${ }^{3}$ 20.0\%	4 26.7% 23.5%	7 46.7% 20.6%	1 6.7% 25.0%	15 100.0% 20.5%
	4	Count \% within pendidikan \% within EJF3	1 4.3% 33.3%	9 39.1% 60.0%	5 21.7% 29.4%	7 30.4% 20.6%	1 4.3% 25.0%	23 100.0% 31.5%
	5	Count \% within pendidikan \% within EJF3	1 14.3% 33.3%	0 $.0 \%$ $.0 \%$	1 14.3% 5.9%	5 71.4% 14.7%	0 $.0 \%$ $.0 \%$	7 100.0% 9.6%
Total		Count \% within pendidikan \% within EJF3	3 4.1% 100.0%	15 20.5% 100.0%	17 23.3% 100.0%	34 46.6% 100.0%	4 5.5% 100.0%	73 100.0% 100.0%

Chi-Square Tests			
	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	12.529^{a}	12	.404
Likelihood Ratio	13.796	12	.314
Linear-by-Linear Association	2.065	1	.151
N of Valid Cases	73		

a. 14 cells (70.0%) have expected count less than 5 . The minimum expected count is .29 .

pendidikan * EJF4

a. 13 cells (65.0%) have expected count less than 5 . The minimum expected count is .19 .
pendidikan * EJF5
Crosstab

Chi-Square Tests			
	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	10.638^{a}	12	.560
Likelihood Ratio	13.240	12	.352
Linear-by-Linear Association	.033	1	.856
N of Valid Cases	73		

a. 17 cells (85.0%) have expected count less than 5 . The minimum expected count is .29 .

pendidikan * TJF1

Crosstab

Chi-Square Tests
 Value df Asymp. Sig. (2-sided) Pearson Chi-Square 7.752^{a} 12 Likelihood Ratio 7.964 12 $\quad .804$

a. 17 cells (85.0%) have expected count less than 5 . The minimum expected count is .19 .
pendidikan * TJF2
Crosstab

Chi-Square Tests						
	Value	df	Asymp. Sig. (2-sided)			
Pearson Chi-Square	$9.333^{\text {a }}$	12	.674			
Likelihood Ratio	9.716	12	.641			
Linear-by-Linear Association	.014	1	.904			
N of Valid Cases	73					

a. 13 cells (65.0%) have expected count less than 5 . The minimum expected count is .19 .

pendidikan * TJF3

Crosstab

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	$15.754^{\text {a }}$		12
Likelihood Ratio	12.959		12

a. 14 cells (70.0%) have expected count less than 5 . The minimum expected count is .10 .

pendidikan * TJF4

Crosstab

			TJF4					Total		
			1	2	3	4	5			
pendidikan	2	Count \% within pendidikan \% within TJF4	0 $.0 \%$ $.0 \%$	6 21.4% 42.9%	10 35.7% 43.5%	10 35.7% 34.5%	2 7.1% 33.3%	$\begin{array}{r} 28 \\ 100.0 \% \\ 38.4 \% \end{array}$		
	3	Count \% within pendidikan \% within TJF4	$\begin{array}{r} 1 \\ 6.7 \% \\ 100.0 \% \end{array}$	$\begin{array}{r} 2 \\ 13.3 \% \\ 14.3 \% \end{array}$	$\begin{array}{r} 3 \\ 20.0 \% \\ 13.0 \% \end{array}$	$\begin{array}{r} 8 \\ 53.3 \% \\ 27.6 \% \end{array}$	$\begin{array}{r} 1 \\ 6.7 \% \\ 16.7 \% \end{array}$	$\begin{array}{r} 15 \\ 100.0 \% \\ 20.5 \% \end{array}$		
	4	Count \% within pendidikan \% within TJF4	$\begin{array}{\|r\|} \hline 0 \\ .0 \% \\ \hline .0 \% \end{array}$	$\begin{array}{r} \hline 6 \\ 26.1 \% \\ 42.9 \% \end{array}$	$\begin{array}{r} \hline 7 \\ 30.4 \% \\ 30.4 \% \end{array}$	$\begin{array}{r} 9 \\ 39.1 \% \\ 31.0 \% \end{array}$	$\begin{array}{r} 1 \\ 4.3 \% \\ 16.7 \% \end{array}$	$\begin{array}{r} 23 \\ 100.0 \% \\ 31.5 \% \end{array}$		
	5	Count \% within pendidikan \% within TJF4	0 $.0 \%$ $.0 \%$	$\begin{array}{r} \hline 0 \\ .0 \% \\ .0 \% \end{array}$	$\begin{array}{r} 3 \\ 42.9 \% \\ 13.0 \% \end{array}$	$\begin{array}{\|r\|} \hline 2 \\ 28.6 \% \\ 6.9 \% \end{array}$	$\begin{array}{r} \hline 2 \\ 28.6 \% \\ 33.3 \% \end{array}$	$\begin{array}{r} 7 \\ 100.0 \% \\ 9.6 \% \end{array}$		
Total		Count \% within pendidikan \% within TJF4	$\begin{array}{r} 1 \\ 1.4 \% \\ 100.0 \% \end{array}$	\|r	r	r $\begin{array}{r}14 \\ 19.2 \% \\ 100.0 \%\end{array}$	23 31.5% 100.0%	29 39.7% 100.0%	6 8.2% 100.0%	$\begin{array}{r} 73 \\ 100.0 \% \\ 100.0 \% \end{array}$

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	12.269^{9}	12	.424
Likelihood Ratio	11.599	12	.478
Linear-by-Linear Association	.518	1	.471
N of Valid Cases	73		

a. 14 cells (70.0%) have expected count less than 5 . The minimum expected count is .10 .

pendidikan * PC1X

Crosstab

			PC1X					Total
			1	2	3	4	5	
pendidikan	2	Count	1	12	10	$\begin{array}{r} 5 \\ 17.9 \% \\ 55.6 \% \end{array}$	$\begin{array}{r} 0 \\ .0 \% \\ .0 \% \\ \hline \end{array}$	
		\% within pendidikan	3.6\%	42.9\%	35.7\%			$\begin{array}{r} 28 \\ 100.0 \% \\ 38.4 \% \end{array}$
		\% within PC1X	25.0\%	35.3\%	40.0\%			
	3					$\begin{array}{r} 3 \\ 20.0 \% \\ 33.3 \% \end{array}$	$\begin{array}{r} 0 \\ .0 \% \\ .0 \% \end{array}$	$\begin{array}{r} 15 \\ 100.0 \% \\ 20.5 \% \end{array}$
		\% within pendidikan	.0\%	46.7\%	33.3\%			
		\% within PC1X	.0\%	20.6\%	20.0\%			
	4	Count	2	11	9	0	1	23
		\% within pendidikan	8.7\%	47.8\%	39.1\%	.0\%	4.3\%	100.0\%
		\% within PC1X	50.0\%	32.4\%	36.0\%	.0\%	100.0\%	31.5\%
	5	Count	1	4	1	1	0	7
		\% within pendidikan	14.3\%	57.1\%	14.3\%	14.3\%	. 0%	100.0\%

	\% within PC1X	25.0\%	11.8\%	4.0\%	11.1\%	.0\%	9.6\%
Total	Count	4	34	25	9	1	73
	\% within pendidikan	5.5\%	46.6\%	34.2\%	12.3\%	1.4\%	100.0\%
	\% within PC1X	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%

Chi-Square Tests
Value df Asymp. Sig. (2-sided) Pearson Chi-Square 10.129^{a} 12 .605 Likelihood Ratio 13.589 12 .328 Linear-by-Linear Association 1.922 1 N of Valid Cases 73 .166

a. 14 cells (70.0%) have expected count less than 5 . The minimum expected count is .10

pendidikan * PC2

Crosstab

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	15.049^{a}	12	.239
Likelihood Ratio	11.111	12	.519
Linear-by-Linear Association	.684	1	.408
N of Valid Cases	73		

a. 15 cells (75.0%) have expected count less than 5 . The minimum expected count is .10 .

pendidikan * PC3X

Crosstab								
			PC3X					Total
			1	2	3	4	5	
pendidikan	2	Count	1	15		6	1	28
		\% within pendidikan	3.6\%	53.6\%	17.9%	21.4\%	3.6%	100.0\%
		\% within PC3X	16.7\%	37.5\%	41.7\%	42.9%	100.0\%	38.4\%
	3	Count	2	9	$\begin{array}{r} \hline 2 \\ 13.3 \% \\ 16.7 \% \end{array}$	$\begin{array}{r} \hline 2 \\ 13.3 \% \\ 14.3 \% \end{array}$	$\begin{array}{r\|} \hline 0 \\ .0 \% \\ .0 \% \\ \hline \end{array}$	$\begin{array}{r} 15 \\ 100.0 \% \\ 20.5 \% \end{array}$
		\% within pendidikan	13.3\%	60.0\%				
		\% within PC3X	33.3\%	22.5\%				
	4	Count	2	10	5	6	0	23

		$\%$ within pendidikan \% within PC3X	$\begin{gathered} 8.7 \% \\ 33.3 \% \end{gathered}$	$\begin{gathered} 43.5 \% \\ 25.0 \% \end{gathered}$	$\begin{aligned} & 21.7 \% \\ & 41.7 \% \end{aligned}$	$\begin{aligned} & 26.1 \% \\ & 42.9 \% \end{aligned}$.0\%	$\begin{array}{r} 100.0 \% \\ 31.5 \% \end{array}$
	5	Count	1	6	0	0	0	7
		\% within pendidikan	14.3\%	85.7\%	. 0%	. 0%	.0\%	100.0\%
		\% within PC3X	16.7\%	15.0\%	. 0%	. 0%	.0\%	9.6\%
Total		Count	6	40	12	14	1	73
		\% within pendidikan	8.2\%	54.8\%	16.4\%	19.2\%	1.4\%	100.0\%
		\% within PC3X	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	$8.903^{\text {a }}$	12	.711
Likelihood Ratio	11.570	12	.481
Linear-by-Linear Association	1.605	1	.205
N of Valid Cases	73		

a. 16 cells (80.0%) have expected count less than 5 . The minimum expected count is .10 .

pendidikan * PC4X

Crosstab

	Chi-Square Tests		
	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	17.349^{a}	12	.137
Likelihood Ratio	14.682	12	.259
Linear-by-Linear Association	.042	1	.837
N of Valid Cases	73		

a. 15 cells (75.0%) have expected count less than 5 . The minimum expected count is .29 .

pendidikan * PC5

Crosstab

pendidikan	2	Count \% within pendidikan \% within PC5	0 $.0 \%$ $.0 \%$	25.0\% $\begin{array}{r}7 \\ 70.0 \%\end{array}$	8 28.6% 38.1%	10 35.7% 28.6%		$\begin{array}{r} 28 \\ 100.0 \% \\ 38.4 \% \end{array}$
	3	Count \% within pendidikan \% within PC5	0 $.0 \%$ $.0 \%$	1 6.7% 10.0%	[$\begin{array}{r}6 \\ 40.0 \% \\ 28.6 \%\end{array}$	6 40.0% 17.1%	$\begin{array}{r} 2 \\ 13.3 \% \\ 33.3 \% \end{array}$	$\begin{array}{r} 15 \\ 100.0 \% \\ 20.5 \% \end{array}$
	4	Count \% within pendidikan \% within PC5	0 $.0 \%$ $.0 \%$	2 8.7% 20.0%	7 30.4% 33.3%	$\begin{array}{r} 13 \\ 56.5 \% \\ 37.1 \% \end{array}$	$\begin{array}{r} 1 \\ 4.3 \% \\ 16.7 \% \end{array}$	$\begin{array}{r} 23 \\ 100.0 \% \\ 31.5 \% \end{array}$
	5	Count \% within pendidikan \% within PC5	1 14.3% 100.0%	0 $.0 \%$ $.0 \%$	0 $.0 \%$ $.0 \%$	6 85.7% 17.1%	0 $.0 \%$ $.0 \%$	7 100.0% 9.6%
Total		Count \% within pendidikan \% within PC5	1 1.4% 100.0%	10 13.7% 100.0%	21 28.8% 100.0%	35 47.9% 100.0%	$\begin{array}{r} \hline 6 \\ 8.2 \% \\ 100.0 \% \end{array}$	$\begin{array}{r} \hline 73 \\ 100.0 \% \\ 100.0 \% \end{array}$

Chi-Square Tests			
	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	$21.845^{\text {a }}$	12	.039
Likelihood Ratio	19.927	12	.068
Linear-by-Linear Association	.971	1	.324
N of Valid Cases	73		

a. 15 cells (75.0%) have expected count less than 5 . The minimum expected count is .10 .
pendidikan * SCS1

Crosstab

a. 15 cells (75.0%) have expected count less than 5 . The minimum expected count is .10 .
pendidikan*SCS2X

Crosstab

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	23.325^{a}		12
Likelihood Ratio	23.570	12	.025
Linear-by-Linear Association	1.839		.023
N of Valid Cases	73		.175

a. 15 cells (75.0%) have expected count less than 5 . The minimum expected count is .10 .
pendidikan * SCS3

Crosstab

			SCS3					Total
			1	2	3	4	5	
pendidikan	2	Count	0	9	10	$\begin{array}{r} 9 \\ 32.1 \% \\ 64.3 \% \end{array}$	$\begin{array}{r} 0 \\ .0 \% \\ .0 \% \end{array}$	28
		\% within pendidikan	. 0%	32.1\%	35.7\%			$100.0 \%$$38.4 \%$
		\% within SCS3	. 0%	37.5\%	31.2\%			
	3	Count		4		$\begin{array}{r} 2 \\ 13.3 \% \\ 14.3 \% \end{array}$	$\begin{array}{r} \hline 1 \\ 6.7 \% \\ 50.0 \% \end{array}$	$\begin{array}{r} \hline 15 \\ 100.0 \% \\ 20.5 \% \\ \hline \end{array}$
		\% within pendidikan	.0\%	26.7\%	53.3\%			
		\% within SCS3	. 0%	16.7\%	25.0\%			
	4	Count		10		3$13.0 \%$$21.4 \%$	1	23$100.0 \%$$31.5 \%$
		\% within pendidikan	. 0%	43.5\%	39.1\%		4.3\%	
		\% within SCS3	. 0%	41.7\%	28.1\%		50.0\%	
	5	Count	1	1		$\begin{array}{r} 0 \\ .0 \% \end{array}$	0	7
		\% within pendidikan	14.3\%	14.3\%	71.4\%		. 0%	100.0\%

Faktor-faktor penyebab..., Raden Ayu Fatimah, FISIP UI, 2009

	\% within SCS3	100.0\%	4.2\%	15.6\%	. 0%	.0\%	9.6\%
Total	Count	1	24	32	14	2	73
	\% within pendidikan	1.4\%	32.9\%	43.8\%	19.2\%	2.7\%	100.0\%
	\% within SCS3	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%

Chi-Square Tests
Value df Asymp. Sig. (2-sided) Pearson Chi-Square 19.729^{a} 12 .072 Likelihood Ratio 16.640 12 .164 Linear-by-Linear Association 1.887 170 N of Valid Cases 73 .170

a. 14 cells (70.0%) have expected count less than 5 . The minimum expected count is .10 .

pendidikan * RC1X

Crosstab

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	$4.135^{\text {a }}$	9	.902
Likelihood Ratio	4.334	9	.888
Linear-by-Linear Association	.025	1	.874
N of Valid Cases	73		

a. 9 cells (56.3%) have expected count less than 5 . The minimum expected count is .77 .

pendidikan * RC2X

Crosstab

			RC2X					Total
			1	2	3	4	5	
pendidikan	2	Count						28

		\% within pendidikan \% within RC2X	$\begin{gathered} 3.6 \% \\ 14.3 \% \end{gathered}$	$\begin{gathered} 28.6 \% \\ 34.8 \% \end{gathered}$	$\begin{aligned} & 32.1 \% \\ & 52.9 \% \end{aligned}$	$\begin{aligned} & 32.1 \% \\ & 36.0 \% \end{aligned}$	$\begin{array}{r} 3.6 \% \\ 100.0 \% \end{array}$	$\begin{array}{r} 100.0 \% \\ 38.4 \% \end{array}$
	3	Count	2	5	2	6	0	15
		\% within pendidikan	13.3\%	33.3\%	13.3\%	40.0\%	.0\%	100.0\%
		\% within RC2X	28.6\%	21.7\%	11.8\%	24.0\%	. 0%	20.5\%
	4	Count	4	8	4	7	0	23
		\% within pendidikan	17.4\%	34.8\%	17.4\%	30.4\%	.0\%	100.0\%
		\% within RC2X	57.1\%	34.8\%	23.5\%	28.0\%	.0\%	31.5\%
	5	Count	0	2	2	3	0	7
		\% within pendidikan	.0\%	28.6\%	28.6\%	42.9\%	.0\%	100.0\%
		\% within RC2X	. 0%	8.7\%	11.8\%	12.0\%	. 0%	9.6\%
Total		Count	7	23	17	25	1	73
		\% within pendidikan	9.6\%	31.5\%	23.3\%	34.2\%	1.4\%	100.0\%
		\% within RC2X	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%

	Chi-Square Tests		
	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	$7.644^{\text {a }}$	12	.812
Likelihood Ratio	8.681	12	.730
Linear-by-Linear Association	.538	1	.463
N of Valid Cases	73		.

a. 13 cells (65.0%) have expected count less than 5 . The minimum expected count is .10 .

pendidikan * RC3

Crosstab

			RC3					Total
			1	2	3	4	5	
pendidikan	2	Count \% within pendidikan \% within RC3	1 3.6% 50.0%	5 17.9% 27.8%	9	$\begin{array}{r} 11 \\ 39.3 \% \\ 45.8 \% \end{array}$	$\begin{array}{r} \hline 2 \\ 7.1 \% \\ 50.0 \% \end{array}$	
					32.1\%			$\begin{array}{r} 28 \\ 100.0 \% \\ 38.4 \% \end{array}$
					36.0\%			
	3	Count		$\begin{array}{r} 3 \\ 20.0 \% \\ 16.7 \% \end{array}$	5	7 46.7% 29.2%	0	$\begin{array}{r} \hline 15 \\ 100.0 \% \\ 20.5 \% \\ \hline \end{array}$
		\% within pendidikan	. 0%		33.3%		. 0%	
		\% within RC3	.0\%		20.0\%		.0\%	
	4	Count	0	7		4$17.4 \%$$16.7 \%$	$\begin{array}{r} 2 \\ 8.7 \% \\ 50.0 \% \end{array}$	$\begin{array}{r} 23 \\ 100.0 \% \\ 31.5 \% \end{array}$
		\% within pendidikan	.0\%	30.4\%	43.5%			
		\% within RC3	.0\%	38.9\%				
	5	Count	1	3		2$28.6 \%$$8.3 \%$	$\begin{array}{r} 0 \\ .0 \% \\ .0 \% \end{array}$	$\begin{array}{r} 7 \\ 100.0 \% \\ 9.6 \% \end{array}$
		\% within pendidikan	14.3\%	42.9\%	14.3\%			
		\% within RC3	50.0\%	16.7\%	4.0\%			
Total		Count	2	18	25	24$32.9 \%$$100.0 \%$	4$5.5 \%$$100.0 \%$	73$100.0 \%$$100.0 \%$
		\% within pendidikan	2.7\%	24.7\%	34.2\%			
		\% within RC3	100.0\%	100.0\%	100.0\%			

Chi-Square Tests				
	Value	df	Asymp. Sig. (2-sided)	
Pearson Chi-Square	$12.569^{\text {a }}$	12	.401	
Likelihood Ratio	13.301	12	.348	
Linear-by-Linear Association	2.897	1	.089	

Chi-Square Tests			
	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	$12.569^{\text {a }}$	12	. 401
Likelihood Ratio	13.301	12	. 348
Linear-by-Linear Association	2.897	1	. 089
N of Valid Cases	73		

a. 13 cells (65.0%) have expected count less than 5 . The minimum expected count is .19

pendidikan * RC4

Crosstab

			RC4					Total
			1	2	3	4	5	
pendidikan	2	Count \% within pendidikan \% within RC4	2 7.1% 66.7%	$\begin{array}{r} 1 \\ 3.6 \% \\ 12.5 \% \end{array}$	5 17.9% 31.2%	$\begin{array}{r} 18 \\ 64.3 \% \\ 42.9 \% \end{array}$	2 7.1% 50.0%	$\begin{array}{r} 28 \\ 100.0 \% \\ 38.4 \% \end{array}$
	3	Count \% within pendidikan \% within RC4	$\begin{array}{r} 0 \\ .0 \% \\ .0 \% \end{array}$	$\begin{array}{r} \hline 1 \\ 6.7 \% \\ 12.5 \% \end{array}$	$\begin{array}{r} 5 \\ 33.3 \% \\ 31.2 \% \end{array}$	8 53.3% 19.0%	1 6.7% 25.0%	$\begin{array}{r} 15 \\ 100.0 \% \\ 20.5 \% \end{array}$
	4	Count \% within pendidikan \% within RC4	$\begin{array}{r} 1 \\ 4.3 \% \\ 33.3 \% \end{array}$	4 17.4% 50.0%	4 17.4% 25.0%	$\begin{array}{r} 13 \\ 56.5 \% \\ 31.0 \% \end{array}$	1 4.3% 25.0%	23 100.0% 31.5%
	5	Count \% within pendidikan \% within RC4		$\begin{array}{r} 2 \\ 28.6 \% \\ 25.0 \% \end{array}$	$\begin{array}{r} 2 \\ 28.6 \% \\ 12.5 \% \end{array}$	3 42.9% 7.1%	0	7 100.0% 9.6%
Total		Count \% within pendidikan \% within RC4	3 4.1% 100.0%	8 11.0% 100.0%	16 21.9% 100.0%	42 57.5% 100.0%	4 5.5% 100.0%	73 100.0% 100.0%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	8.641^{a}	12	.733
Likelihood Ratio	9.511	12	.659
Linear-by-Linear Association	1.672		1

a. 15 cells (75.0%) have expected count less than 5 . The minimum expected count is .29 .

pendidikan * RA1

Crosstab

		\% within pendidikan \% within RA1	.0\%	$\begin{array}{r} 8.7 \% \\ 50.0 \% \end{array}$	8.7\% 16.7\%	$\begin{gathered} 73.9 \% \\ 34.7 \% \end{gathered}$	$\begin{array}{r} 8.7 \% \\ 33.3 \% \end{array}$	$\begin{array}{r} 100.0 \% \\ 31.5 \% \end{array}$
	5	Count	0	0	1	5	1	7
		\% within pendidikan	.0\%	.0\%	14.3\%	71.4\%	14.3\%	100.0\%
		\% within RA1	.0\%	.0\%	8.3\%	10.2\%	16.7\%	9.6\%
Total		Count	2	4	12	49	6	73
		\% within pendidikan	2.7\%	5.5\%	16.4\%	67.1\%	8.2\%	100.0\%
		\% within RA1	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%

	Chi-Square Tests		
	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	6.292^{a}	12	.901
Likelihood Ratio	8.493	12	.745
Linear-by-Linear Association	.831	1	.362
N of Valid Cases	73		

a. 17 cells (85.0%) have expected count less than 5 . The minimum expected count is .19

pendidikan * RA2X

Crosstab

a. 12 cells (60.0\%) have expected count less than 5. The minimum expected count is 29 .
pendidikan * RA3

			RA3				Total
			2	3	4	5	
pendidikan	2	Count \% within pendidikan \% within RA3	1 3.6% 16.7%	4 14.3% 44.4%	22 78.6% 41.5%	$\begin{array}{r} 1 \\ 3.6 \% \\ 20.0 \% \end{array}$	$\begin{array}{r} 28 \\ 100.0 \% \\ 38.4 \% \end{array}$
	3	Count \% within pendidikan \% within RA3	1 6.7% 16.7%	1 6.7% 11.1%	10 66.7% 18.9%	3 20.0% 60.0%	$\begin{array}{r} 15 \\ 100.0 \% \\ 20.5 \% \end{array}$
	4	Count \% within pendidikan \% within RA3	3 13.0% 50.0%	4 17.4% 44.4%	16 69.6% 30.2%	0 $.0 \%$ $.0 \%$	$\begin{array}{r} 23 \\ 100.0 \% \\ 31.5 \% \end{array}$
	5	Count \% within pendidikan \% within RA3	1 14.3% 16.7%	0 $.0 \%$ $.0 \%$	5 71.4% 9.4%	rer $\begin{array}{r}1 \\ 14.3 \% \\ 20.0 \%\end{array}$	7 100.0% 9.6%
Total		Count \% within pendidikan \% within RA3	6 8.2% 100.0%	9 12.3% 100.0%	53 72.6% 100.0%	5 6.8% 100.0%	73 100.0% 100.0%

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	$10.171^{\text {a }}$	9	.337
Likelihood Ratio	11.329	9	.254
Linear-by-Linear Association	.677	1	.411
N of Valid Cases	73		

a. 12 cells (75.0\%) have expected count less than 5 . The minimum expected count is .48
pendidikan * RA4X

Crosstab

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	11.323^{a}		12
Likelihood Ratio	10.950		12

a. 13 cells (65.0%) have expected count less than 5 . The minimum expected count is .10 .

pendidikan * RA5X

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	5.010^{a}	9	.833
Likelihood Ratio	6.338	9	.706
Linear-by-Linear Association	.444	1	.505
N of Valid Cases	73		

a. 9 cells (56.3%) have expected count less than 5 . The minimum expected count is .48 .

masakerja * TW1

Crosstab

			TW1					Total
			1	2	3	4	5	
masakerja	1	Count	1	0		$\begin{array}{r} 14 \\ 73.7 \% \\ 28.0 \% \end{array}$	$\begin{array}{r} \hline 4 \\ 21.1 \% \\ 22.2 \% \end{array}$	19
		\% within masakerja	5.3\%	.0\%	.0\%			100.0\% 26.0\%
		\% within TW1	33.3\%	.0\%	.0\%			
	2	Count	0	0	1	12	5	18
		\% within masakerja	.0\%	.0\%	5.6\%	66.7\%	27.8\%	100.0\%
		\% within TW1	.0\%	.0\%	100.0\%	24.0\%	27.8\%	24.7\%
	3	Count	1	0	0	5	2	8
		\% within masakerja	12.5\%	.0\%	.0\%	62.5\%	25.0\%	100.0\%

		\% within TW1	33.3\%	.0\%	.0\%	10.0\%	11.1\%	11.0\%
	4	Count	0	0	0	5	0	5
		\% within masakerja	. 0%	.0\%	.0\%	100.0\%	.0\%	100.0\%
		\% within TW1	.0\%	.0\%	.0\%	10.0\%	.0\%	6.8\%
	5	Count	1	1	0	14	7	23
		\% within masakerja	4.3\%	4.3\%	.0\%	60.9\%	30.4\%	100.0\%
		\% within TW1	33.3\%	100.0\%	.0\%	28.0\%	38.9\%	31.5\%
Total		Count	3	1	1	50	18	73
		\% within masakerja	4.1\%	1.4\%	1.4\%	68.5\%	24.7\%	100.0\%
		\% within TW1	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%

| Chi-Square Tests |
| :--- | ---: | ---: | ---: |
| Value df Asymp. Sig. (2-sided)
 Pearson Chi-Square 10.371^{a} 16 .847
 Likelihood Ratio 11.833 16 .755
 Linear-by-Linear Association .019 1 .890
 N of Valid Cases 73 |
| a. 20 cells (80.0\%) have expected count less than 5. The minimum expected count is .07. |

masakerja * TW2

Crosstab

Chi-Square Tests			
	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	$16.939^{\text {a }}$		16
Likelihood Ratio	14.120		16

Chi-Square Tests							
	Value	df	Asymp. Sig. (2-sided)				
Pearson Chi-Square	16.939^{a}	16	.390				
Likelihood Ratio	14.120	16	.590				
Linear-by-Linear Association	.160	1	.689				

a. 21 cells (84.0%) have expected count less than 5 . The minimum expected count is .07 .

masakerja * TW3

Crosstab

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	$14.031^{\text {a }}$		16
Likelihood Ratio	10.919	16	.596
Linear-by-Linear Association	.028		1

a. 21 cells (84.0%) have expected count less than 5 . The minimum expected count is .07 .

masakerja * TW4

Crosstab

			TW4					Total
			1	2	3	4	5	
masakerja	1	Count	$\begin{array}{r} 0 \\ .0 \% \\ .0 \% \end{array}$	$\begin{array}{r} 2 \\ 10.5 \% \\ 18.2 \% \end{array}$	$\begin{array}{r} 4 \\ 21.1 \% \\ 28.6 \% \end{array}$	$\begin{array}{r} 13 \\ 68.4 \% \\ 31.0 \% \end{array}$	0$.0 \%$$.0 \%$	19
		\% within masakerja						$\begin{array}{r} 100.0 \% \\ 26.0 \% \end{array}$
		\% within TW4						
	2	Count	0	5	2	10	1	18
		\% within masakerja	.0\%	27.8\%	11.1\%	55.6\%	5.6\%	100.0\%

		\% within TW4	.0\%	45.5\%	14.3\%	23.8\%	50.0\%	24.7\%
	3	Count	1	1	1	5		$\begin{array}{\|r\|r\|} \hline 0 & 8 \\ \% & 100.0 \% \\ \% & 11.0 \% \end{array}$
		\% within masakerja	12.5\%	12.5\%	12.5\%	62.5\%	.0\%	
		\% within TW4	25.0\%	9.1\%	7.1\%	11.9\%	.0\%	
	4	Count	0	0	0	4	1	5
		\% within masakerja	.0\%	.0\%	.0\%	80.0\%	20.0\%	100.0\%
		\% within TW4	.0\%	.0\%	. 0%	9.5\%	50.0\%	6.8\%
	5	Count	3	3	7	10	0	23
		\% within masakerja	13.0\%	13.0\%	30.4\%	43.5\%	.0\%	100.0\%
		\% within TW4	75.0\%	27.3\%	50.0\%	23.8\%	. 0%	31.5\%
Total		Count	4	11	14	42	2	73
		\% within masakerja	5.5\%	15.1\%	19.2\%	57.5\%	2.7\%	100.0\%
		\% within TW4	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%

a. 22 cells (88.0%) have expected count less than 5 . The minimum expected count is .14

masakerja * TW5

Crosstab

a. 22 cells (88.0%) have expected count less than 5 . The minimum expected count is .21 .

masakerja * EJF1

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	16.161^{a}	16	.442
Likelihood Ratio	13.993	16	.599
Linear-by-Linear Association	.383	1	.536
N of Valid Cases	73		

a. 21 cells (84.0%) have expected count less than 5 . The minimum expected count is .07 .

masakerja * EJF2

Crosstab

			EJF2					Total
			1	2	3	4	5	
masakerja	1	Count	0	3	6	9	1	19
		\% within masakerja	.0\%	15.8\%	31.6\%	47.4\%	5.3\%	100.0\%
		\% within EJF2	. 0%	30.0\%	46.2\%	21.4\%	16.7\%	26.0\%
	2	Count	0	3	2	11	2	18
		\% within masakerja	.0\%	16.7\%	11.1\%	61.1\%	11.1\%	100.0\%
		\% within EJF2	.0\%	30.0\%	15.4\%	26.2\%	33.3\%	24.7\%
	3	Count	1	0	0	7	0	8

Faktor-faktor penyebab..., Raden Ayu Fatimah, FISIP UI, 2009

		\% within masakerja \% within EJF2	12.5\%	.0\%	.0\%	87.5\% 16.7\%	.0\%	100.0% 11.0%
	4		0	0	1	3	1	5
		\% within masakerja	.0\%	.0\%	20.0\%	60.0\%	20.0\%	100.0\%
		\% within EJF2	.0\%	. 0%	7.7\%	7.1\%	16.7\%	6.8\%
	5	Count		4	4	12	2	23
		\% within masakerja	4.3\%	17.4\%	17.4\%	52.2\%	8.7\%	100.0\%
		\% within EJF2	50.0\%	40.0\%	30.8\%	28.6\%	33.3\%	31.5\%
Total		Count	2	10	13	42	6	73
		\% within masakerja	2.7\%	13.7\%	17.8\%	57.5\%	8.2\%	100.0\%
		\% within EJF2	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%

Chi-Square Tests					
	Value	df	Asymp. Sig. (2-sided)		
Pearson Chi-Square	13.896^{a}	16	.606		
Likelihood Ratio	16.847	16	.396		
Linear-by-Linear Association	.000	1	.984		
N of Valid Cases	73				a. 22 cells (88.0\%) have expected count less than 5. The minimum expected count is .14.
:---					

masakerja * EJF3

Crosstab

Chi-Square Tests			
	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	$18.013^{\text {a }}$	16	. 323
Likelihood Ratio	21.913	16	. 146
Linear-by-Linear Association	. 105	1	. 746

a. 21 cells (84.0%) have expected count less than 5 . The minimum expected count is .21 .
masakerja * EJF4

Crosstab								
			EJF4					Total
			1	2	3	4	5	
masakerja	1	Count \% within masakerja \% within EJF4	0 $.0 \%$ $.0 \%$	$\begin{array}{r} 4 \\ 21.1 \% \\ 25.0 \% \end{array}$	8 42.1% 38.1%	6 31.6% 23.1%	$\begin{array}{r} \hline 1 \\ 5.3 \% \\ 12.5 \% \end{array}$	$\begin{array}{r} 19 \\ 100.0 \% \\ 26.0 \% \end{array}$
	2	Count \% within masakerja \% within EJF4	$\begin{array}{r} 1 \\ 5.6 \% \\ 50.0 \% \end{array}$	$\begin{array}{r} \hline 5 \\ 27.8 \% \\ 31.2 \% \end{array}$	$\begin{array}{r\|} \hline 3 \\ 16.7 \% \\ 14.3 \% \end{array}$	$\begin{array}{r} \hline 7 \\ 38.9 \% \\ 26.9 \% \end{array}$	$\begin{array}{r} \hline 2 \\ 11.1 \% \\ 25.0 \% \end{array}$	$\begin{array}{r} \hline 18 \\ 100.0 \% \\ 24.7 \% \end{array}$
	3	Count \% within masakerja \% within EJF4	$\begin{array}{r} 1 \\ 12.5 \% \\ 50.0 \% \end{array}$	$\begin{array}{r} 0 \\ .0 \% \\ .0 \% \end{array}$	$\begin{array}{r} 1 \\ \hline 12.5 \% \\ \hline 4.8 \% \end{array}$	$\begin{array}{r} 4 \\ 50.0 \% \\ 15.4 \% \end{array}$	$\begin{array}{r} 2 \\ 25.0 \% \\ 25.0 \% \end{array}$	$\begin{array}{r} 8 \\ 100.0 \% \\ 11.0 \% \end{array}$
	4	Count \% within masakerja \% within EJF4		$\begin{array}{r} 0 \\ .0 \% \\ .0 \% \end{array}$	r $\begin{array}{r}2 \\ 40.0 \% \\ 9.5 \%\end{array}$	$\begin{array}{r} 2 \\ 40.0 \% \\ 7.7 \% \\ \hline \end{array}$	$\begin{array}{r} 1 \\ 20.0 \% \\ 12.5 \% \end{array}$	$\begin{array}{r} 5 \\ 100.0 \% \\ 6.8 \% \end{array}$
	5	Count \% within masakerja \% within EJF4	0 $.0 \%$ $.0 \%$	7 30.4% 43.8%	7 30.4% 33.3%	7 30.4% 26.9%	2 8.7% 25.0%	$\begin{array}{r} 23 \\ 100.0 \% \\ 31.5 \% \end{array}$
Total		Count \% within masakerja \% within EJF4	2 2.7% 100.0%	$\begin{array}{r} \hline 16 \\ 21.9 \% \\ 100.0 \% \end{array}$	$\begin{array}{r} 21 \\ 28.8 \% \\ 100.0 \% \end{array}$	$\begin{array}{r} 26 \\ 35.6 \% \\ 100.0 \% \end{array}$	$\begin{array}{r} \hline 8 \\ 11.0 \% \\ 100.0 \% \end{array}$	$\begin{array}{r} \hline 73 \\ 100.0 \% \\ 100.0 \% \end{array}$

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	14.847^{a}	16	.536
Likelihood Ratio	17.282	16	.368
Linear-by-Linear Association	.011	1	.915
N of Valid Cases	73		

a. 18 cells (72.0%) have expected count less than 5 . The minimum expected count is .14 .

masakerja * EJF5

Faktor-faktor penyebab..., Raden Ayu Fatimah, FISIP UI, 2009

		\% within masakerja \% within EJF5	.0\%	$\begin{gathered} 16.7 \% \\ 37.5 \% \end{gathered}$	$\begin{gathered} 16.7 \% \\ 27.3 \% \end{gathered}$	$\begin{gathered} 55.6 \% \\ 23.3 \% \end{gathered}$	$\begin{aligned} & 11.1 \% \\ & 25.0 \% \end{aligned}$	$\begin{array}{r} 100.0 \% \\ 24.7 \% \end{array}$
	3	Count	1	0	1	4	2	8
		\% within masakerja	12.5\%	.0\%	12.5\%	50.0\%	25.0\%	100.0\%
		\% within EJF5	33.3\%	.0\%	9.1\%	9.3\%	25.0\%	11.0\%
	4	Count	0	1	2	1	1	5
		\% within masakerja	.0\%	20.0\%	40.0\%	20.0\%	20.0\%	100.0\%
		\% within EJF5	.0\%	12.5\%	18.2\%	2.3\%	12.5\%	6.8\%
	5	Count	2	3	2	15	1	23
		\% within masakerja	8.7\%	13.0\%	8.7\%	65.2\%	4.3\%	100.0\%
		\% within EJF5	66.7\%	37.5\%	18.2\%	34.9\%	12.5\%	31.5\%
Total		Count	3	8	11	43	8	73
		\% within masakerja	4.1\%	11.0\%	15.1\%	58.9\%	11.0\%	100.0\%
		\% within EJF5	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%

Chi-Square Tests			
\begin{tabular}{\|l	r	r	r
\hline			
\end{tabular}			
Pearson Chi-Square	Value	df	Asymp. Sig. (2-sided)
Likelihood Ratio	14.074^{a}	16	.593
Linear-by-Linear Association	15.591	16	.482
N of Valid Cases	1.803	1	.179

a. 22 cells (88.0%) have expected count less than 5 . The minimum expected count is .21 .

masakerja * TJF1

Crosstab

Chi-Square Tests
\square

Pearson Chi-Square	14.817^{a}	16	.538
Likelihood Ratio	15.814	16	.466
Linear-by-Linear Association	1.144	1	.285
N of Valid Cases	73		

a. 22 cells (88.0\%) have expected count less than 5 . The minimum expected count is .14 .

masakerja * TJF2

Crosstab

			TJF2					Total
			1	2	3	4	5	
masakerja	1	Count \% within masakerja \% within TJF2	0 $.0 \%$ $.0 \%$	5 26.3% 35.7%	7 36.8% 25.9%	6 31.6% 23.1%	$\begin{array}{r} 1 \\ 5.3 \% \\ 25.0 \% \end{array}$	$\begin{array}{r} 19 \\ 100.0 \% \\ 26.0 \% \end{array}$
	2	Count \% within masakerja \% within TJF2	$\begin{array}{r} 1 \\ 5.6 \% \\ 50.0 \% \end{array}$	$\begin{array}{r} \hline 3 \\ 16.7 \% \\ 21.4 \% \end{array}$	$\begin{array}{r} 6 \\ 33.3 \% \\ 22.2 \% \end{array}$	6 33.3% 23.1%	$\begin{array}{\|r} \hline 2 \\ 11.1 \% \\ 50.0 \% \end{array}$	$\begin{array}{r} \hline 18 \\ 100.0 \% \\ 24.7 \% \end{array}$
	3	Count \% within masakerja \% within TJF2	$\begin{array}{r} 1 \\ 12.5 \% \\ 50.0 \% \end{array}$	$\begin{array}{r} \hline 2 \\ 25.0 \% \\ 14.3 \% \end{array}$	$\begin{array}{r} 2 \\ 25.0 \% \\ 7.4 \% \\ \hline \end{array}$	$\begin{array}{r} 2 \\ 25.0 \% \\ 7.7 \% \end{array}$	$\begin{array}{r} 1 \\ 12.5 \% \\ 25.0 \% \end{array}$	$\begin{array}{r} 8 \\ 100.0 \% \\ 11.0 \% \end{array}$
	4	Count \% within masakerja \% within TJF2	0 $.0 \%$ $.0 \%$	$\begin{array}{r} 0 \\ .0 \% \\ .0 \% \end{array}$	$\begin{array}{r} 2 \\ 40.0 \% \\ 7.4 \% \end{array}$	3 60.0% 11.5%	0	$\begin{array}{r} 5 \\ 100.0 \% \\ 6.8 \% \end{array}$
	5	Count \% within masakerja \% within TJF2	$\begin{array}{r} 0 \\ .0 \% \\ .0 \% \end{array}$	4 17.4% 28.6%	$\begin{array}{r} 10 \\ 43.5 \% \\ 37.0 \% \end{array}$	$\begin{array}{r} 9 \\ 39.1 \% \\ 34.6 \% \end{array}$	0 $.0 \%$ $.0 \%$	$\begin{array}{r} 23 \\ 100.0 \% \\ 31.5 \% \end{array}$
Total		Count \% within masakerja \% within TJF2	$\begin{array}{r} 2 \\ 2.7 \% \\ 100.0 \% \end{array}$	$\begin{array}{r} 14 \\ 19.2 \% \\ 100.0 \% \end{array}$	$\begin{array}{r} \hline 27 \\ 37.0 \% \\ 100.0 \% \end{array}$	$\begin{array}{r} \hline 26 \\ 35.6 \% \\ 100.0 \% \end{array}$	$\begin{array}{r} \hline 4 \\ 5.5 \% \\ 100.0 \% \end{array}$	$\begin{array}{r} \hline 73 \\ 100.0 \% \\ 100.0 \% \end{array}$

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	$11.521^{\text {a }}$		16
Likelihood Ratio	13.293	16	.776
Linear-by-Linear Association	.060		1

a. 19 cells (76.0%) have expected count less than 5 . The minimum expected count is .14

masakerja * TJF3

Crosstab

	3	Count \% within masakerja \% within TJF3	1 12.5% 100.0%	\%	3 37.5% 13.0%	3 37.5% 9.1%	1 12.5% 50.0%	8 100.0% 11.0%
	4	Count	0	1	2	2	0	5
		\% within masakerja	. 0%	20.0\%	40.0\%	40.0\%	.0\%	100.0\%
		\% within TJF3	. 0%	7.1\%	8.7\%	6.1\%	.0\%	6.8\%
	5	Count	0	6	9	8	0	23
		\% within masakerja	. 0%	26.1\%	39.1\%	34.8\%	.0\%	100.0\%
		\% within TJF3	. 0%	42.9\%	39.1\%	24.2\%	.0\%	31.5\%
Total		Count	1	14	23	33	2	73
		\% within masakerja	1.4\%	19.2\%	31.5\%	45.2\%	2.7\%	100.0\%
		\% within TJF3	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%

a. 19 cells (76.0\%) have expected count less than 5 . The minimum expected count is .07 .
masakerja * TJF4

Crosstab

Chi-Square Tests							
	Value	df	Asymp. Sig. (2-sided)				
Pearson Chi-Square	13.052^{a}		16				
Likelihood Ratio	16.452		16				

masakerja * PC1X

Crosstab

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	15.875^{2}	16	.462
Likelihood Ratio	14.442	16	.566
Linear-by-Linear Association	.027	1	.870
N of Valid Cases	73		

a. 19 cells (76.0%) have expected count less than 5 . The minimum expected count is .07 .

masakerja * PC2

Crosstab

Faktor-faktor penyebab..., Raden Ayu Fatimah, FISIP UI, 2009

		\% within PC2	100.0\%	.0\%	11.1\%	9.3\%	25.0\%	11.0\%
	4	Count	0	0	2	3		5 100.0% 6.8%
		\% within masakerja	.0\%	.0\%	40.0\%	60.0\%	.0\%	
		\% within PC2	.0\%	.0\%	11.1\%	7.0\%	.0\%	
	5	Count	0	4	6	12	1	23
		\% within masakerja	.0\%	17.4\%	26.1\%	52.2\%	4.3\%	100.0\%
		\% within PC2	.0\%	57.1\%	33.3\%	27.9\%	25.0\%	31.5\%
Total		Count	1	7	18	43	4	73
		\% within masakerja	1.4\%	9.6\%	24.7\%	58.9\%	5.5\%	100.0\%
		\% within PC2	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%

Chi-Square Tests			
	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	13.528^{a}	16	.634
Likelihood Ratio	10.869	16	.817
Linear-by-Linear Association	1.419	1	.234
N of Valid Cases	73		

a. 21 cells (84.0%) have expected count less than 5 . The minimum expected count is .07 .
masakerja * PC3X

Crosstab

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	$9.684^{\text {a }}$		16
Likelihood Ratio	10.187		16

Chi-Square Tests			
	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	$9.684^{\text {a }}$	16	. 883
Likelihood Ratio	10.187	16	. 857
Linear-by-Linear Association	. 013	1	. 911

a. 22 cells (88.0%) have expected count less than 5 . The minimum expected count is .07 .

masakerja * PC4X

Crosstab

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	$12.392^{\text {a }}$		16
Likelihood Ratio	12.446		16

a. 21 cells (84.0%) have expected count less than 5 . The minimum expected count is .21 .

masakerja * PC5

		\% within PC5	.0\%	30.0\%	23.8\%	22.9\%	33.3\%	24.7\%
	3	Count	1	0	3	3	1	8
		\% within masakerja	12.5\%	. 0%	37.5\%	37.5\%	12.5\%	100.0\%
		\% within PC5	100.0\%	.0\%	14.3\%	8.6\%	16.7\%	11.0\%
	4	Count	0	1	1	3	0	5
		\% within masakerja	.0\%	20.0\%	20.0\%	60.0\%	.0\%	100.0\%
		\% within PC5	.0\%	10.0\%	4.8\%	8.6\%	. 0%	6.8\%
	5	Count	0	4	5	13	1	23
		\% within masakerja	.0\%	17.4\%	21.7\%	56.5\%	4.3\%	100.0\%
		\% within PC5	.0\%	40.0\%	23.8\%	37.1\%	16.7\%	31.5\%
Total		Count	1	10	21	35	6	73
		\% within masakerja	1.4\%	13.7\%	28.8\%	47.9\%	8.2\%	100.0\%
		\% within PC5	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%

Chi-Square Tests			
	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	13.210^{a}	16	.657
Likelihood Ratio	11.007	16	.809
Linear-by-Linear Association	.046	1	.831
N of Valid Cases	73		

a. 19 cells (76.0%) have expected count less than 5 . The minimum expected count is .07

masakerja * SCS1

Crosstab

a. 21 cells (84.0%) have expected count less than 5 . The minimum expected count is .07 .

masakerja * SCS2X

Crosstab								
			SCS2X					Total
			1	2	3	4	5	
masakerja	1			9		2	0	19
		\% within masakerja	26.3\%	47.4\%	15.8\%	10.5\%	.0\%	100.0\%
		\% within SCS2X	62.5\%	22.5\%	14.3\%	66.7\%	. 0%	26.0\%
	2	Count					0	18
		\% within masakerja	.0\%	66.7\%	27.8\%	5.6\%	.0\%	100.0\%
		\% within SCS2X	.0\%	30.0\%	23.8\%	33.3\%	.0\%	24.7\%
	3	Count		3	2	0	1	8
		\% within masakerja	25.0\%	37.5\%	25.0\%	. 0%	12.5\%	100.0\%
		\% within SCS2X	25.0\%	7.5\%	9.5\%		100.0\%	11.0\%
	4	Count				0	0	5
		\% within masakerja	.0\%	60.0\%	40.0\%	.0\%	.0\%	100.0\%
		\% within SCS2X	. 0%	7.5\%	9.5\%	. 0%	.0\%	6.8\%
	5						0	23
		\% within masakerja	4.3\%	56.5\%	39.1\%	. 0%	.0\%	100.0\%
		\% within SCS2X		32.5\%	42.9\%	. 0%	.0\%	31.5\%
Total		Count	8	40	21	3	1	73
		\% within masakerja	11.0\%	54.8\%	28.8\%	4.1\%	1.4\%	100.0\%
		\% within SCS2X	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	$23.930^{\text {a }}$	16	.091
Likelihood Ratio	22.504	16	.128
Linear-by-Linear Association	.630	1	.427
N of Valid Cases	73		

a. 19 cells (76.0%) have expected count less than 5 . The minimum expected count is .07 .

masakerja * SCS3

Crosstab

			SCS3					Total
			1	2	3	4	5	
masakerja	1	Count	0	6	8	4	1	19
		\% within masakerja	.0\%	31.6\%	42.1\%	21.1\%	5.3\%	100.0\%
		\% within SCS3	.0\%	25.0\%	25.0\%	28.6\%	50.0\%	26.0\%
	2	Count				3	0	18
		\% within masakerja	. 0%	38.9\%	44.4\%	16.7\%	.0\%	100.0\%
		\% within SCS3	. 0%	29.2\%	25.0\%	21.4\%	.0\%	24.7\%
	3	Count	1	3	2	2	0	8

Faktor-faktor penyebab..., Raden Ayu Fatimah, FISIP UI, 2009

		\% within masakerja \% within SCS3	$\begin{array}{r} 12.5 \% \\ 100.0 \% \end{array}$	$\begin{gathered} 37.5 \% \\ 12.5 \% \end{gathered}$	$\begin{array}{r} 25.0 \% \\ 6.2 \% \end{array}$	$\begin{gathered} 25.0 \% \\ 14.3 \% \end{gathered}$	$\begin{gathered} .0 \% \\ .0 \% \end{gathered}$	$\begin{array}{r} 100.0 \% \\ 11.0 \% \end{array}$
	4	Count	0	1	3	1	0	5
		\% within masakerja	.0\%	20.0\%	60.0\%	20.0\%	.0\%	100.0\%
		\% within SCS3	.0\%	4.2\%	9.4\%	7.1\%	.0\%	6.8\%
	5	Count	0	7	11	4	1	23
		\% within masakerja	. 0%	30.4\%	47.8\%	17.4\%	4.3\%	100.0\%
		\% within SCS3	. 0%	29.2\%	34.4\%	28.6\%	50.0\%	31.5\%
Total		Count	1	24	32	14	2	73
		\% within masakerja	1.4\%	32.9\%	43.8\%	19.2\%	2.7\%	100.0\%
		\% within SCS3	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%

Chi-Square Tests			
	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	11.506^{a}	16	.777
Likelihood Ratio	8.630	16	.928
Linear-by-Linear Association	.016	1	.899
N of Valid Cases	73		

a. 19 cells (76.0\%) have expected count less than 5. The minimum expected count is .07.
a. 19 cells (76.0%) have expected count less than 5 . The minimum expected count is .07
masakerja * RC1X

Crosstab

Chi-Square Tests			
	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	8.762^{a}	12	.723
Likelihood Ratio	9.229	12	.683
Linear-by-Linear Association	.473	1	.492

a. 13 cells (65.0%) have expected count less than 5 . The minimum expected count is .55 .

masakerja * RC2X

Crosstab

			RC2X					Total
			1	2	3	4	5	
masakerja	1	Count \% within masakerja \% within RC2X	3 15.8% 42.9%	$\begin{array}{r} 7 \\ 36.8 \% \\ 30.4 \% \end{array}$		$\begin{array}{r} \hline 5 \\ 26.3 \% \\ 20.0 \% \end{array}$	$\begin{array}{r} 0 \\ .0 \% \\ .0 \% \end{array}$	$\begin{array}{r} 19 \\ 100.0 \% \\ 26.0 \% \end{array}$
	2	Count \% within masakerja \% within RC2X	$\begin{array}{r} 1 \\ 5.6 \% \\ 14.3 \% \end{array}$	$\begin{array}{r} \hline 5 \\ 27.8 \% \\ 21.7 \% \end{array}$	$\begin{array}{r} \hline 3 \\ 16.7 \% \\ 17.6 \% \end{array}$	$\begin{array}{r} \hline 8 \\ 44.4 \% \\ 32.0 \% \end{array}$	$\begin{array}{r} 1 \\ 5.6 \% \\ 100.0 \% \end{array}$	$\begin{array}{r} 18 \\ 100.0 \% \\ 24.7 \% \end{array}$
	3	Count \% within masakerja \% within RC2X	$\begin{array}{r} \hline 1 \\ 12.5 \% \\ 14.3 \% \end{array}$	$\begin{array}{r} \hline 2 \\ 25.0 \% \\ 8.7 \% \end{array}$	$\begin{array}{r\|} \hline 2 \\ 25.0 \% \\ 11.8 \% \end{array}$	$\begin{array}{r} \hline 3 \\ 37.5 \% \\ 12.0 \% \end{array}$	$\begin{array}{r} \hline 0 \\ .0 \% \\ .0 \% \end{array}$	$\begin{array}{r} \hline 8 \\ 100.0 \% \\ 11.0 \% \end{array}$
	4	Count \% within masakerja \% within RC2X		$\begin{array}{r} 3 \\ 60.0 \% \\ 13.0 \% \end{array}$	0 $.0 \%$ $.0 \%$	$\begin{array}{r} 2 \\ 40.0 \% \\ 8.0 \% \\ \hline \end{array}$	$\begin{array}{r} 0 \\ .0 \% \\ .0 \% \end{array}$	$\begin{array}{r} 5 \\ 100.0 \% \\ 6.8 \% \end{array}$
	5	Count \% within masakerja \% within RC2X	$\begin{array}{r} 2 \\ 8.7 \% \\ 28.6 \% \end{array}$	6 26.1% 26.1%	8 34.8% 47.1%	7 30.4% 28.0%	0 $.0 \%$ $.0 \%$	$\begin{array}{r} 23 \\ 100.0 \% \\ 31.5 \% \end{array}$
Total		Count \% within masakerja \% within RC2X	$\begin{array}{r} 7 \\ 9.6 \% \\ 100.0 \% \end{array}$	$\begin{array}{r} 23 \\ 31.5 \% \\ 100.0 \% \end{array}$	$\begin{array}{r} \hline 17 \\ 23.3 \% \\ 100.0 \% \end{array}$	$\begin{array}{r} 25 \\ 34.2 \% \\ 100.0 \% \end{array}$	$\begin{array}{r} 1 \\ 1.4 \% \\ 100.0 \% \end{array}$	$\begin{array}{r} 73 \\ 100.0 \% \\ 100.0 \% \end{array}$

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	10.479^{a}	16	.840
Likelihood Ratio	11.383		16

a. 18 cells (72.0%) have expected count less than 5 . The minimum expected count is .07 .

masakerja * RC3

Faktor-faktor penyebab..., Raden Ayu Fatimah, FISIP UI, 2009

		\% within masakerja \% within RC3	$\begin{array}{r} 5.6 \% \\ 50.0 \% \end{array}$	$\begin{aligned} & 22.2 \% \\ & 22.2 \% \end{aligned}$	$\begin{aligned} & 38.9 \% \\ & 28.0 \% \end{aligned}$	$\begin{gathered} 22.2 \% \\ 16.7 \% \end{gathered}$	$\begin{aligned} & 11.1 \% \\ & 50.0 \% \end{aligned}$	$\begin{array}{r} 100.0 \% \\ 24.7 \% \end{array}$
	3	Count		1	4	2	0	8
		\% within masakerja	12.5\%	12.5\%	50.0\%	25.0\%	.0\%	100.0\%
		\% within RC3	50.0\%	5.6\%	16.0\%	8.3\%	.0\%	11.0\%
	4	Count	0	2	1	1	1	5
		\% within masakerja	.0\%	40.0\%	20.0\%	20.0\%	20.0\%	100.0\%
		\% within RC3	.0\%	11.1\%	4.0\%	4.2\%	25.0\%	6.8\%
	5	Count	0	7	8	7	1	23
		\% within masakerja	.0\%	30.4\%	34.8\%	30.4\%	4.3\%	100.0\%
		\% within RC3	.0\%	38.9\%	32.0\%	29.2\%	25.0\%	31.5\%
Total		Count	2	18	25	24	4	73
		\% within masakerja	2.7\%	24.7\%	34.2\%	32.9\%	5.5\%	100.0\%
		\% within RC3	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%

Chi-Square Tests			
	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	15.163^{a}	16	.513
Likelihood Ratio	15.285	16	.504
Linear-by-Linear Association	.404	1	.525
N of Valid Cases	73		

a. 18 cells (72.0%) have expected count less than 5 . The minimum expected count is .14 .
masakerja * RC4

Crosstab

Chi-Square Tests
\square

Pearson Chi-Square	18.809^{a}	16	.279
Likelihood Ratio	20.758	16	.188
Linear-by-Linear Association	5.844	1	.016
N of Valid Cases	73		

a. 21 cells (84.0%) have expected count less than 5 . The minimum expected count is .21 .

masakerja * RA1

Crosstab

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	$12.458^{\text {a }}$		16
Likelihood Ratio	14.336	16	.712
Linear-by-Linear Association	.329		1

a. 21 cells (84.0%) have expected count less than 5 . The minimum expected count is .14

masakerja * RA2X

Crosstab

			RA2X					Total
			1	2	3	4	5	
masakerja	1	Count	0	2	$\begin{array}{r} 7 \\ 36.8 \% \\ 28.0 \% \end{array}$	9$47.4 \%$$36.0 \%$	$\begin{array}{r} \hline 1 \\ 5.3 \% \\ 33.3 \% \end{array}$	19
		\% within masakerja	.0\%	10.5\%				100.0\%26.0\%
		\% within RA2X	.0\%	12.5\%				
	2	Count	2	6	4	5	1	18
		\% within masakerja	11.1\%	33.3\%	22.2\%	27.8\%	5.6\%	100.0\%
		\% within RA2X	50.0\%	37.5\%	16.0\%	20.0\%	33.3\%	24.7\%

	3	Count \% within masakerja \% within RA2X	($\begin{array}{r}1 \\ 12.5 \% \\ 25.0 \%\end{array}$	3 37.5% 18.8%	1 12.5% 4.0%	3 37.5% 12.0%	0 $.0 \%$ $.0 \%$	8 100.0% 11.0%
	4	Count	1	2	1	1	0	5
		\% within masakerja	20.0\%	40.0\%	20.0\%	20.0\%	.0\%	100.0\%
		\% within RA2X	25.0\%	12.5\%	4.0\%	4.0\%	.0\%	6.8\%
	5	Count	0	3	12	7	1	23
		\% within masakerja	.0\%	13.0\%	52.2\%	30.4\%	4.3\%	100.0\%
		\% within RA2X	.0\%	18.8\%	48.0\%	28.0\%	33.3\%	31.5\%
Total		Count	4	16	25	25	3	73
		\% within masakerja	5.5\%	21.9\%	34.2\%	34.2\%	4.1\%	100.0\%
		\% within RA2X	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%

| | Chi-Square Tests |
| :--- | ---: | ---: | ---: |
|
 Value df Asymp. Sig. (2-sided)
 Pearson Chi-Square 17.282^{a} 16 .368
 Likelihood Ratio 19.026 16 .267
 Linear-by-Linear Association .168 1 .682
 N of Valid Cases 73 | |

a. 18 cells (72.0%) have expected count less than 5 . The minimum expected count is .21 .
masakerja * RA3

Crosstab

Chi-Square Tests						
	Value	df	Asymp. Sig. (2-sided)			
Pearson Chi-Square	6.279^{a}	12	.901			
Likelihood Ratio	9.138	12	.691			

a. 16 cells (80.0%) have expected count less than 5 . The minimum expected count is .34

masakerja * RA4X

Crosstab

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	16.334^{a}	16	.430
Likelihood Ratio	17.088	16	.380
Linear-by-Linear Association	.494	1	.482
N of Valid Cases	73		

a. 18 cells (72.0%) have expected count less than 5 . The minimum expected count is .07

masakerja * RA5X

Faktor-faktor penyebab..., Raden Ayu Fatimah, FISIP UI, 2009

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	11.813^{a}	12	.461
Likelihood Ratio	12.076	12	.440
Linear-by-Linear Association	.005	1	.944
N of Valid Cases	73		

a. 12 cells (60.0\%) have expected count less than 5. The minimum expected count is 34.

PTKAIM * TW1

Crosstab

Chi-Square Tests			
	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	5.374^{a}	4	.251
Likelihood Ratio	5.424	4	.246
Linear-by-Linear Association	1.350	1	.245
N of Valid Cases	73		

a. 6 cells (60.0%) have expected count less than 5 . The minimum expected count is .29 .

PTKAIM * TW2

		\% within PTKAIM \% within TW2	.0\%	1.9% 100.0%	9.6% 62.5%	76.9\%	$\begin{aligned} & 11.5 \% \\ & 85.7 \% \end{aligned}$	$\begin{array}{r} 100.0 \% \\ 71.2 \% \end{array}$
	1	Count	1	0	3	16	1	21
		\% within PTKAIM	4.8\%	.0\%	14.3\%	76.2\%	4.8\%	100.0\%
		\% within TW2	100.0\%	.0\%	37.5\%	28.6\%	14.3\%	28.8\%
Total		Count	1	1	8	56	7	73
		\% within PTKAIM	1.4\%	1.4\%	11.0\%	76.7\%	9.6\%	100.0\%
		\% within TW2	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%

Chi-Square Tests			
	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	$3.895^{\text {a }}$	4	.420
Likelihood Ratio	4.275	4	.370
Linear-by-Linear Association	1.876	1	.171
N of Valid Cases	73		4

a. 7 cells (70.0%) have expected count less than 5 . The minimum expected count is .29

PTKAIM * TW3

Crosstab

			TW3					Total
				2	3	4	5	
PTKAIM	0	Count		 5.8% 75.0%	10$19.2 \%$$90.9 \%$	$\begin{array}{r} 31 \\ 59.6 \% \\ 66.0 \% \end{array}$	1 8 15.4% 80.0%	
		\% within PTKAIM	.0\%					52$100.0 \%$$71.2 \%$
		\% within TW3	.0\%					
	1	Count	$\begin{array}{r} 1 \\ 4.8 \% \\ 100.0 \% \end{array}$	1	1 4.8% 9.1%	$\begin{array}{r} 16 \\ 76.2 \% \\ 34.0 \% \end{array}$	2 9.5% 20.0%	$\begin{array}{r} 21 \\ 100.0 \% \\ 28.8 \% \end{array}$
		\% within PTKAIM		4.8\%				
		\% within TW3		25.0\%				
Total		Count	$\begin{array}{r\|} \hline 1 \\ 1.4 \% \\ 100.0 \% \\ \hline \end{array}$	1 4 5.5% 100.0%	11	47	10	73
		\% within PTKAIM			15.1\%	64.4\%	13.7\%	100.0\%
		\% within TW3			100.0\%	100.0\%	100.0\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	5.596^{a}	4	.231
Likelihood Ratio	6.115	4	.191
Linear-by-Linear Association	.033	1	.856
N of Valid Cases	73		

a. 6 cells (60.0%) have expected count less than 5 . The minimum expected count is .29 .

PTKAIM * TW4

Crosstab

			TW4					Total
			1	2	3	4	5	
PTKAIM	0	Count	1	9	11	29	2	52
		\% within PTKAIM	1.9\%	17.3\%	21.2\%	55.8\%	3.8\%	100.0\%
		\% within TW4	25.0\%	81.8\%	78.6\%	69.0\%	100.0\%	71.2\%

| Chi-Square Tests |
| :--- | ---: | ---: | ---: |
| Value df Asymp. Sig. (2-sided)
 Pearson Chi-Square 6.047^{a} 4 .196
 Likelihood Ratio 6.157 4 .188
 Linear-by-Linear Association .550 1 .458
 N of Valid Cases 73 |

a. 6 cells (60.0%) have expected count less than 5 . The minimum expected count is .58 .

PTKAIM * TW5

Crosstab

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	2.646^{a}		4
Likelihood Ratio	2.446		4

a. 6 cells (60.0%) have expected count less than 5 . The minimum expected count is .86 .

PTKAIM * EJF1

Crosstab

			EJF1					Total
			1	2	3	4	5	
PTKAIM	0	Count	0	$\begin{array}{r} 5 \\ 9.6 \% \\ 71.4 \% \end{array}$	$\begin{array}{r} 7 \\ 13.5 \% \\ 70.0 \% \end{array}$	$\begin{array}{r} \hline 33 \\ 63.5 \% \\ 71.7 \% \end{array}$	$\begin{array}{r} \hline 7 \\ 13.5 \% \\ 77.8 \% \end{array}$	$\begin{array}{r} \hline 52 \\ 100.0 \% \\ 71.2 \% \end{array}$
		\% within PTKAIM	. 0%					
		\% within EJF1	.0\%					
	1	Count	1	2	3	13	2	21
		\% within PTKAIM	4.8\%	9.5\%	14.3\%	61.9\%	9.5\%	100.0\%

	\% within EJF1	100.0\%	28.6\%	30.0\%	28.3\%	22.2\%	28.8\%
Total	Count	1	7	10	46	9	73
	\% within PTKAIM	1.4\%	9.6\%	13.7\%	63.0\%	12.3\%	100.0\%
	\% within EJF1	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%

Chi-Square Tests			
	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	$2.678{ }^{\text {a }}$	4	. 613
Likelihood Ratio	2.703	4	. 609
Linear-by-Linear Association	. 743	1	. 389
N of Valid Cases	73		

a. 6 cells (60.0%) have expected count less than 5 . The minimum expected count is .29 .

PTKAIM * EJF2

Crosstab

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	10.712^{a}	4	.030
Likelihood Ratio	10.620	4	.031
Linear-by-Linear Association	2.351	1	.125
N of Valid Cases	73		

a. 6 cells (60.0%) have expected count less than 5 . The minimum expected count is .58 .

PTKAIM * EJF3

\% within PTKAIM	4.1\%	20.5\%	23.3\%	46.6\%	5.5\%	100.0\%
\% within EJF3	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%

Chi-Square Tests			
\begin{tabular}{\|l	r	r	r
\hline			
\end{tabular}			
Pearson Chi-Square	Value	df	Asymp. Sig. (2-sided)
Likelihood Ratio	3.737^{a}	4	.443
Linear-by-Linear Association	3.449	4	.486
N of Valid Cases	2.475	1	.116

a. 6 cells (60.0%) have expected count less than 5 . The minimum expected count is .86 .

PTKAIM * EJF4

Chi-Square Tests

Chi-Square Tests						
	Value	df	Asymp. Sig. (2-sided)			
Pearson Chi-Square	4.201^{a}	4	.379			
Likelihood Ratio	4.065	4	.397			
Linear-by-Linear Association	.113	1	.737			
N of Valid Cases	73					

a. 4 cells (40.0%) have expected count less than 5 . The minimum expected count is .58 .

PTKAIM * EJF5

Chi-Square Tests			
	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	2.860^{a}		4
Likelihood Ratio	2.660		4
Linear-by-Linear Association	.271		1

a. 5 cells (50.0%) have expected count less than 5 . The minimum expected count is .86 .

PTKAIM * TJF1

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	1.958^{a}	4	.743
Likelihood Ratio	2.098	4	.718
Linear-by-Linear Association	.317		1

a. 5 cells (50.0%) have expected count less than 5 . The minimum expected count is .58 .

PTKAIM * TJF2

Chi-Square Tests					
	Value	df	Asymp. Sig. (2-sided)		
Pearson Chi-Square	5.350^{a}		4		
Likelihood Ratio	5.729		4		
Linear-by-Linear Association	.204		1		

a. 5 cells (50.0%) have expected count less than 5 . The minimum expected count is .58 .

PTKAIM * TJF3

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	$6.131^{\text {a }}$. 190
Likelihood Ratio	6.748		. 150
Linear-by-Linear Association	1.484		. 223
N of Valid Cases	73		

a. 5 cells (50.0%) have expected count less than 5 . The minimum expected count is .29 .

PTKAIM * TJF4

Crosstab

			TJF4					Total
			1	2	3	4	5	
PTKAIM	0	Count	$\begin{array}{r} 1 \\ 1.9 \% \\ 100.0 \% \end{array}$	8$15.4 \%$$57.1 \%$	$\begin{array}{r} 18 \\ 34.6 \% \\ 78.3 \% \end{array}$	$\begin{array}{r} 22 \\ 42.3 \% \\ 75.9 \% \end{array}$	$\begin{array}{\|r\|} \hline 3 \\ 5.8 \% \\ 50.0 \% \end{array}$	$\begin{array}{r} \hline 52 \\ 100.0 \% \\ 71.2 \% \end{array}$
		\% within PTKAIM						
		\% within TJF4						
	1	Count	0	6	5	7	3	21
		\% within PTKAIM	.0\%	28.6\%	23.8\%	33.3\%	14.3\%	100.0\%
		\% within TJF4	.0\%	42.9\%	21.7\%	24.1\%	50.0\%	28.8\%
Total		Count	1	14	23	29	6	73
		\% within PTKAIM	1.4\%	19.2\%	31.5\%	39.7\%	8.2\%	100.0\%
		\% within TJF4	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%

Chi-Square Tests
\square

Pearson Chi-Square	3.938^{a}	4	.414
Likelihood Ratio	4.029	4	.402
Linear-by-Linear Association	.003	1	.958
N of Valid Cases	73		

a. 5 cells (50.0%) have expected count less than 5 . The minimum expected count is .29 .

PTKAIM * PC1X

Crosstab

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	$7.211^{\text {a }}$	9.609	4
Likelihood Ratio	1.609	4	.125
Linear-by-Linear Association	73	1	.048
N of Valid Cases		.205	

a. 5 cells (50.0%) have expected count less than 5 . The minimum expected count is .29 .

PTKAIM * PC2

Crosstab

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	$4.469^{\text {a }}$		4
Likelihood Ratio	4.504	4	.346
		342	

a. 6 cells (60.0%) have expected count less than 5 . The minimum expected count is .29 .

PTKAIM * PC3X

Crosstab

			PC3X					Total
			1	2	3	4	5	
PTKAIM	0	Count	$\begin{array}{r} 3 \\ 5.8 \% \\ 50.0 \% \end{array}$	$\begin{array}{r} 26 \\ 50.0 \% \\ 65.0 \% \end{array}$	$\begin{array}{r} 9 \\ 17.3 \% \\ 75.0 \% \end{array}$	$\begin{array}{r} 13 \\ 25.0 \% \\ 92.9 \% \end{array}$	$\begin{array}{r} 1 \\ 1.9 \% \\ 100.0 \% \end{array}$	52
		\% within PTKAIM						100.0\%71.2%
		\% within PC3X						
	1	Count	3	$\begin{array}{r} 14 \\ 66.7 \% \\ 35.0 \% \end{array}$	$\begin{array}{r} \hline 3 \\ 14.3 \% \\ 25.0 \% \\ \hline \end{array}$	$\begin{array}{r} 1 \\ 4.8 \% \\ 7.1 \% \end{array}$	$\begin{array}{r} 0 \\ .0 \% \\ .0 \% \end{array}$	$\begin{array}{r} 21 \\ 100.0 \% \\ 28.8 \% \end{array}$
		\% within PTKAIM	14.3\%					
		\% within PC3X	50.0\%					
Total		Count	6	$\begin{array}{r} 40 \\ 54.8 \% \\ 100.0 \% \end{array}$	$\begin{array}{r} 12 \\ 16.4 \% \\ 100.0 \% \end{array}$	$\begin{array}{r} 14 \\ 19.2 \% \\ 100.0 \% \end{array}$	$\begin{array}{r} \hline 1 \\ 1.4 \% \\ 100.0 \% \\ \hline \end{array}$	$\begin{array}{r} \hline 73 \\ 100.0 \% \\ 100.0 \% \\ \hline \end{array}$
		\% within PTKAIM	8.2\%					
		\% within PC3X	100.0\%					

Chi-Square Tests

Chi-Square Tests							
	Value	df	Asymp. Sig. (2-sided)				
Pearson Chi-Square	5.760^{2}	4	.218				
Likelihood Ratio	6.793	4	.147				
Linear-by-Linear Association	5.598		1				

a. 6 cells (60.0%) have expected count less than 5 . The minimum expected count is .29 .

PTKAIM * PC4X

Crosstab

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	$12.048^{\text {a }}$		4
Likelihood Ratio	13.533		4
Linear-by-Linear Association	.171		1

Chi-Square Tests				
	Value	df	Asymp. Sig. (2-sided)	
Pearson Chi-Square	12.048^{a}		4	
13.533	4	.017		
Likelihood Ratio	.171		1	

a. 6 cells (60.0%) have expected count less than 5 . The minimum expected count is .86 .

PTKAIM * PC5

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	$7.584^{\text {a }}$	4.857	4

a. 5 cells (50.0%) have expected count less than 5 . The minimum expected count is 29 .

PTKAIM * SCS1

Crosstab

Likelihood Ratio	4.791	4				
Linear-by-Linear Association	1.372	1	.309			
N of Valid Cases	73			$	$.242
:---						

a. 5 cells (50.0%) have expected count less than 5 . The minimum expected count is .29

PTKAIM * SCS2X

Crosstab								
			scs2X					Total
			1	2	3	4	5	
PTKAIM	0	Count	3	30	16	2	1	52$100.0 \%$$71.2 \%$
		\% within PTKAIM	5.8\%	57.7\%	30.8\%	3.8\%	1.9\%	
		\% within SCS2X	37.5\%	75.0\%	76.2\%	66.7\%	100.0\%	
	1	Count	5	10	5	1	0	$\begin{array}{r} \hline 21 \\ 100.0 \% \\ 28.8 \% \end{array}$
		\% within PTKAIM	23.8\%	47.6\%	23.8\%	4.8\%	. 0%	
		\% within SCS2X	62.5\%	25.0\%	23.8\%	33.3\%	.0\%	
Total		Count	8	40	21	3	1	73
		\% within PTKAIM	11.0\%	54.8\%	28.8\%	4.1\%	1.4\%	100.0\%
		\% within SCS2X	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	5.406^{a}	4	.248
Likelihood Ratio	5.164	4	.271
Linear-by-Linear Association	2.080		1

a. 5 cells (50.0%) have expected count less than 5 . The minimum expected count is .29 .

PTKAIM * SCS3

Crosstab

			SCS3					Total
			1	2	3	4	5	
PTKAIM	0	Count	0	$\begin{array}{r} \hline 14 \\ 26.9 \% \\ 58.3 \% \end{array}$	$\begin{array}{r} 22 \\ 42.3 \% \\ 68.8 \% \end{array}$	$\begin{array}{r} 14 \\ 26.9 \% \\ 100.0 \% \end{array}$	$\begin{array}{r} 2 \\ 3.8 \% \\ 100.0 \% \end{array}$	$\begin{array}{r} 52 \\ 100.0 \% \\ 71.2 \% \end{array}$
		\% within PTKAIM	.0\%					
		\% within SCS3	.0\%					
	1	Count	1	10	10	0	0	21
		\% within PTKAIM	4.8\%	47.6\%	47.6\%	. 0%	. 0%	100.0\%
		\% within SCS3	100.0\%	41.7\%	31.2\%	. 0%	. 0%	28.8\%
Total		Count	1	24	32	14	2	73
		\% within PTKAIM	1.4\%	32.9\%	43.8\%	19.2\%	2.7\%	100.0\%
		\% within SCS3	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%

Chi-Square Tests						
	Value	df	Asymp. Sig. (2-sided)			
Pearson Chi-Square	10.983^{a}		4			
Likelihood Ratio	15.257	4	.027			
Linear-by-Linear Association	9.217		1			

Chi-Square Tests			
	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	$10.983^{\text {a }}$		4
Likelihood Ratio	15.257		4
Linear-by-Linear Association	9.217		1

a. 5 cells (50.0%) have expected count less than 5 . The minimum expected count is .29 .

PTKAIM * RC1X

Crosstab

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	1.708^{a}	3	.635
Likelihood Ratio	1.760	3	.624
Linear-by-Linear Association	1.622	1	.203
N of Valid Cases	73		

a. 1 cells (12.5%) have expected count less than 5 . The minimum expected count is 2.30

PTKAIM * RC2X

Crosstab

			RC2X					Total
			1	2	3	4	5	
PTKAIM	0	Count	4	14	16	17	1	52
		\% within PTKAIM	7.7\%	26.9\%	30.8\%	32.7\%	1.9\%	100.0\%
		\% within RC2X	57.1\%	60.9\%	94.1\%	68.0\%	100.0\%	71.2\%
	1	Count	3	9	1	8	0	21
		\% within PTKAIM	14.3\%	42.9\%	4.8\%	38.1\%	. 0%	100.0\%
		\% within RC 2 X	42.9\%	39.1\%	5.9\%	32.0\%	. 0%	28.8\%
Total		Count	7	23	17	25	1	73
		\% within PTKAIM	9.6\%	31.5\%	23.3\%	34.2\%	1.4\%	100.0\%
		\% within RC2X	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%

Chi-Square Tests
\square

Pearson Chi-Square	6.760^{a}	4	.149
Likelihood Ratio	8.308	4	.081
Linear-by-Linear Association	1.041	1	.308
N of Valid Cases	73		

a. 5 cells (50.0%) have expected count less than 5 . The minimum expected count is .29 .

PTKAIM * RC3

Crosstab

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	4.349^{a}	4	.361
Likelihood Ratio	4.331	4.522	1
Linear-by-Linear Association	73	.063	
N of Valid Cases		.061	

a. 4 cells (40.0%) have expected count less than 5 . The minimum expected count is .58 .

PTKAIM * RC4

Crosstab

Chi-Square Tests							
	Value	df	Asymp. Sig. (2-sided)				
Pearson Chi-Square	$3.111^{\text {a }}$	4	.539				
Likelihood Ratio	3.769	4	.438				

a. 6 cells (60.0%) have expected count less than 5 . The minimum expected count is .86 .

PTKAIM * RA1

Crosstab

			RA1					Total
			1	2	3	4	5	
PTKAIM	0	Count	$\begin{array}{r} 1 \\ 1.9 \% \\ 50.0 \% \end{array}$	$\begin{array}{r} 1 \\ 1.9 \% \\ 25.0 \% \end{array}$	$\begin{array}{r\|} \hline 8 \\ 15.4 \% \\ 66.7 \% \end{array}$		6	52
		\% within PTKAIM				$\begin{array}{r} 36 \\ 69.2 \% \\ 73.5 \% \end{array}$	11.5\% 100.0\%	$\begin{array}{r} 100.0 \% \\ 71.2 \% \end{array}$
		\% within RA1						
	1	Count	1	3	4	13	0	$\begin{array}{r} 21 \\ 100.0 \% \\ 28.8 \% \end{array}$
		\% within PTKAIM	4.8\%	14.3\%	19.0\%	61.9\%	. 0%	
		\% within RA1	50.0\%	75.0\%	33.3\%	26.5\%	.0\%	
Total	Count \% within PTKAIM \% within RA1		$\begin{array}{r} 2 \\ 2.7 \% \\ 100.0 \% \\ \hline \end{array}$	$\begin{array}{r} 4 \\ 5.5 \% \\ 100.0 \% \end{array}$	12	49 67.1% 100.0%	6$8.2 \%$$100.0 \%$	$\begin{array}{r} \hline 73 \\ 100.0 \% \\ 100.0 \% \end{array}$

Chi-Square Tests

Chi-Square Tests							
	Value	df	Asymp. Sig. (2-sided)				
Pearson Chi-Square	7.277^{a}	4	.122				
Likelihood Ratio	8.364	4	.079				
Linear-by-Linear Association	5.433		1				

a. 7 cells (70.0%) have expected count less than 5 . The minimum expected count is .58 .

PTKAIM * RA2X

Crosstab

Chi-Square Tests						
	Value	df	Asymp. Sig. (2-sided)			
Pearson Chi-Square	3.276^{a}		4			
Likelihood Ratio	3.977		4			

Chi-Square Tests						
	Value	df	Asymp. Sig. (2-sided)			
Pearson Chi-Square	3.276^{a}		4			
Likelihood Ratio	3.977	4	.513			
Linear-by-Linear Association	1.135		1			

a. 5 cells (50.0%) have expected count less than 5 . The minimum expected count is .86 .

PTKAIM * RA3

Crosstab

			2	RA3		

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	$1.901^{\text {a }}$	3	.593
Likelihood Ratio	2.178	3	.536
Linear-by-Linear Association	.051		1

a. 5 cells (62.5%) have expected count less than 5 . The minimum expected count is 1.44 .

PTKAIM * RA4X

Crosstab

			RA4X					Total
			1	2	3	4	5	
PTKAIM	0	Count		17	12	19	0	52
		\% within PTKAIM	7.7\%	32.7\%	23.1\%	36.5\%	.0\%	100.0\%
		\% within RA4X	50.0\%	68.0\%	70.6\%	86.4\%	. 0%	71.2\%
	1	Count		8	5	3	1	21
		\% within PTKAIM	19.0\%	38.1\%	23.8\%	14.3\%	4.8\%	100.0\%
		\% within RA4X	50.0\%	32.0\%	29.4\%	13.6\%	100.0\%	28.8\%
Total		Count	8	25	17	22	1	73
		\% within PTKAIM	11.0\%	34.2\%	23.3\%	30.1\%	1.4\%	100.0\%
		\% within RA4X	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%

Likelihood Ratio	7.051	4	.133
Linear-by-Linear Association	2.273	1	.132
N of Valid Cases	73		

a. 4 cells (40.0%) have expected count less than 5 . The minimum expected count is .29

PTKAIM * RA5X

Crosstab							
			RA5X				Total
			1	2	3	4	
PTKAIM	0	Count	3	15	18	16	$\begin{array}{r} 52 \\ 100.0 \% \\ 71.2 \% \end{array}$
		\% within PTKAIM	5.8\%	28.8\%	34.6\%	30.8\%	
		\% within RA5X	60.0\%	65.2\%	72.0\%	80.0\%	
	1	Count	2	8	7	4	$\begin{array}{r} \hline 21 \\ 100.0 \% \\ 28.8 \% \end{array}$
		\% within PTKAIM	9.5\%	38.1\%	33.3\%	19.0\%	
		\% within RA5X	40.0\%	34.8\%	28.0\%	20.0\%	
Total		Count	5	23	25	20	73
		\% within PTKAIM	6.8\%	31.5\%	34.2\%	27.4\%	100.0\%
		\% within RA5X	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	1.471^{a}	3	.689
Likelihood Ratio	1.494	3	.684
Linear-by-Linear Association	1.440	1	.230
N of Valid Cases	73		

a. 2 cells (25.0%) have expected count less than 5 . The minimum expected count is 1.44

KURSUSLAIN * TW1

Crosstab

\% within TW1	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%

	Chi-Square Tests		
Pearson Chi-Square	Value	df	Asymp. Sig. (2-sided)
Likelihood Ratio	$23.004^{\text {a }}$	16	.114
Linear-by-Linear Association	17.902	16	.330
N of Valid Cases	1.694	1	.193

a. 20 cells (80.0\%) have expected count less than 5 . The minimum expected count is .01 .

KURSUSLAIN * TW2

Crosstab

Chi-Square Tests			
	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	10.506^{a}	16	.839
Likelihood Ratio	10.491	16	.840
Linear-by-Linear Association	.760	1	.383
N of Valid Cases	73		

a. 21 cells (84.0\%) have expected count less than 5 . The minimum expected count is .01 .

KURSUSLAIN * TW3

Crosstab

TW3					Total
1	2	3	4	5	

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	$14.770^{\text {a }}$	16	.542
Likelihood Ratio	15.801	16	.467
Linear-by-Linear Association	.118	1	.731
N of Valid Cases	73		

a. 20 cells (80.0%) have expected count less than 5 . The minimum expected count is .01

KURSUSLAIN * TW4

Crosstab

			TW4					Total
			1	2	3	4	5	
KURSUSLAIN	0	Count	1	5	5	$\begin{array}{r} 24 \\ 66.7 \% \\ 57.1 \% \end{array}$	$\begin{array}{r} 1 \\ 2.8 \% \\ 50.0 \% \end{array}$	
		\% within KURSUSLAIN	2.8\%	13.9\%	13.9\%			$\begin{array}{r} 36 \\ 100.0 \% \\ 49.3 \% \end{array}$
		\% within TW4	25.0\%	45.5\%	35.7\%			
	1	Count	0		$\begin{array}{r} 5 \\ 29.4 \% \\ 35.7 \% \end{array}$	$\begin{array}{r} \hline 9 \\ 52.9 \% \\ 21.4 \% \end{array}$	9 1 $\%$ 5.9% 50.0%	1 17 $\%$ 100.0% 23.3%
		\% within KURSUSLAIN	.0\%	11.8\%				
		\% within TW4	.0\%	18.2\%				
	2	Count	0		4$40.0 \%$$28.6 \%$	$\begin{array}{r} 3 \\ 30.0 \% \\ 7.1 \% \end{array}$	3 0 $\%$ $.0 \%$ $\%$ $.0 \%$	10 100.0% 13.7%
		\% within KURSUSLAIN	.0\%	30.0\%				
		\% within TW4	.0\%					
	3	Count	2		0$.0 \%$$.0 \%$	$\begin{array}{r} 6 \\ 66.7 \% \\ 14.3 \% \end{array}$	$\begin{array}{r} 0 \\ .0 \% \\ .0 \% \end{array}$	9 100.0% 12.3%
		\% within KURSUSLAIN	22.2\%	11.1\%				
		\% within TW4	50.0\%	9.1\%				
	5	Count	1	0	0	0		1$100.0 \%$$1.4 \%$
		\% within KURSUSLAIN	100.0\%	.0\%	.0\%	.0\%	.0\%	
		\% within TW4	25.0\%	.0\%	. 0%	.0\%	. 0%	
Total		Count	4			$\begin{array}{r} \hline 42 \\ 57.5 \% \\ 100.0 \% \end{array}$	2 2 $\%$ 2.7% $\%$ 100.0%	73 100.0% 100.0%
		\% within KURSUSLAIN	5.5\%	15.1\%	19.2\%			
		\% within TW4	100.0\%	100.0\%	100.0\%			

Chi-Square Tests			
	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	$34.149^{\text {a }}$	16	.005
Likelihood Ratio	23.688	16	.097
Linear-by-Linear Association	6.079		1

a. 19 cells (76.0%) have expected count less than 5 . The minimum expected count is .03 .

KURSUSLAIN * TW5

			TW5					Total
			1	2	3	4	5	
KURSUSLAIN	0	Count \% within KURSUSLAIN \% within TW5	$\begin{array}{r} \hline 1 \\ 2.8 \% \\ 25.0 \% \end{array}$	$\begin{array}{r} \hline 1 \\ 2.8 \% \\ 33.3 \% \end{array}$	$\begin{array}{r} 3 \\ 8.3 \% \\ 30.0 \% \end{array}$	$\begin{array}{r} 24 \\ 66.7 \% \\ 54.5 \% \end{array}$	$\begin{array}{r} 7 \\ 19.4 \% \\ 58.3 \% \end{array}$	$\begin{array}{r} 36 \\ 100.0 \% \\ 49.3 \% \end{array}$
	1	Count \% within KURSUSLAIN \% within TW5	$\begin{array}{r} 2 \\ 11.8 \% \\ 50.0 \% \end{array}$	$\begin{array}{r} \hline 1 \\ 5.9 \% \\ 33.3 \% \end{array}$	$\begin{array}{r} \hline 3 \\ 17.6 \% \\ 30.0 \% \end{array}$	$\begin{array}{r} \hline 9 \\ 52.9 \% \\ 20.5 \% \end{array}$	$\begin{array}{r} 2 \\ 11.8 \% \\ 16.7 \% \end{array}$	$\begin{array}{r} 17 \\ 100.0 \% \\ 23.3 \% \end{array}$
	2	Count \% within KURSUSLAIN \% within TW5	$\begin{array}{r} 1 \\ 10.0 \% \\ 25.0 \% \end{array}$	0 $.0 \%$ $.0 \%$	$\begin{array}{r} 2 \\ 20.0 \% \\ 20.0 \% \end{array}$	$\begin{array}{r} 5 \\ 50.0 \% \\ 11.4 \% \end{array}$	$\begin{array}{r} 2 \\ 20.0 \% \\ 16.7 \% \end{array}$	$\begin{array}{r} 10 \\ 100.0 \% \\ 13.7 \% \end{array}$
	3	Count \% within KURSUSLAIN \% within TW5	$\begin{array}{r} 0 \\ .0 \% \\ .0 \% \\ \hline \end{array}$	1 11.1% 33.3%	$\begin{array}{r} 2 \\ 22.2 \% \\ 20.0 \% \end{array}$	6 66.7% 13.6%	0 $.0 \%$ $.0 \%$	$\begin{array}{r} 9 \\ 100.0 \% \\ 12.3 \% \end{array}$
	5	Count \% within KURSUSLAIN \% within TW5	$\begin{array}{r\|} \hline 0 \\ .0 \% \\ .0 \% \\ \hline \end{array}$	0 $.0 \%$ $.0 \%$	$\begin{array}{r}0 \\ .0 \% \\ .0 \% \\ \hline\end{array}$	0 $.0 \%$ $.0 \%$	1 100.0% 8.3%	1 100.0% 1.4%
Total		Count \% within KURSUSLAIN \% within TW5	$\begin{array}{r} 4 \\ 5.5 \% \\ 100.0 \% \end{array}$	3 4.1% 100.0%	10 13.7% 100.0%	44 60.3% 100.0%	12 16.4% 100.0%	$\begin{array}{r} \hline 73 \\ 100.0 \% \\ 100.0 \% \end{array}$

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	13.754^{a}	16	.617
Likelihood Ratio	14.064	16	.594
Linear-by-Linear Association	.524	1	.469
N of Valid Cases	73		

a. 20 cells (80.0\%) have expected count less than 5. The minimum expected count is .04.

KURSUSLAIN * EJF1

		\% within EJF1	.0\%	57.1\%	50.0\%	47.8\%	55.6\%	49.3\%
	1	Count	0	1	4	10	$\begin{array}{r} 2 \\ 11.8 \% \\ 22.2 \% \end{array}$	$\begin{array}{r} 17 \\ 100.0 \% \\ 23.3 \% \end{array}$
		\% within KURSUSLAIN	.0\%	5.9\%	23.5\%	58.8\%		
		\% within EJF1	.0\%	14.3\%	40.0\%	21.7\%		
	2	Count	1	1	1	6	1	$\begin{array}{r} 10 \\ 100.0 \% \\ 13.7 \% \end{array}$
		\% within KURSUSLAIN	10.0\%	10.0\%	10.0\%	60.0\%	10.0\%	
		\% within EJF1	100.0\%	14.3\%	10.0\%	13.0\%	11.1\%	
	3	Count	0	1	0	8		9
		\% within KURSUSLAIN	.0\%	11.1\%	. 0%	88.9\%	.0\%	$\begin{array}{r} 100.0 \% \\ 12.3 \% \end{array}$
		\% within EJF1	.0\%	14.3\%	.0\%	17.4\%	.0\%	
	5	Count	0	0	0	0	1	$\begin{array}{r} 1 \\ 100.0 \% \\ 1.4 \% \end{array}$
		\% within KURSUSLAIN	.0\%	. 0%	. 0%	.0\%	100.0\%	
		\% within EJF1	.0\%	. 0%	.0\%	.0\%	11.1\%	
Total		Count	$\begin{array}{r} 1 \\ 1.4 \% \\ 100.0 \% \\ \hline \end{array}$	$\begin{array}{r} 7 \\ 9.6 \% \\ 100.0 \% \\ \hline \end{array}$	$\begin{array}{r} 10 \\ 13.7 \% \\ 100.0 \% \\ \hline \end{array}$	$\begin{array}{r} 46 \\ 63.0 \% \\ 100.0 \% \end{array}$	$\begin{array}{r} \hline 9 \\ 12.3 \% \\ 100.0 \% \end{array}$	$\begin{array}{r} \hline 73 \\ 100.0 \% \\ 100.0 \% \\ \hline \end{array}$
		\% within KURSUSLAIN						
		\% within EJF1						

Chi-Square Tests			
	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	$18.552^{\text {a }}$	16	.293
Likelihood Ratio	15.355	16	.499
Linear-by-Linear Association	.058	1	.810
N of Valid Cases	73		

a. 21 cells (84.0%) have expected count less than 5 . The minimum expected count is .01 .

KURSUSLAIN * EJF2

Crosstab

Chi-Square Tests				
	Value	df	Asymp. Sig. (2-sided)	
Pearson Chi-Square	$9.228^{\text {a }}$	16	.904	
Likelihood Ratio	10.000	16	.867	
Linear-by-Linear Association	1.141		1	

a. 20 cells (80.0%) have expected count less than 5 . The minimum expected count is .03 .

KURSUSLAIN * EJF3

Crosstab								
			EJF3					Total
			1	2	3	4	5	
KURSUSLAIN	0	Count \% within KURSUSLAIN \% within EJF3	$\begin{array}{r} 1 \\ 2.8 \% \\ 33.3 \% \end{array}$	$\begin{array}{r} 6 \\ 16.7 \% \\ 40.0 \% \\ \hline \end{array}$	9 25.0% 52.9%	18 50.0% 52.9%	$\begin{array}{r} 2 \\ 5.6 \% \\ 50.0 \% \end{array}$	$\begin{array}{r} 36 \\ 100.0 \% \\ 49.3 \% \end{array}$
	1	Count \% within KURSUSLAIN \% within EJF3	$\begin{array}{r} \hline 1 \\ 5.9 \% \\ 33.3 \% \end{array}$	$\begin{array}{r} 4 \\ 23.5 \% \\ 26.7 \% \\ \hline \end{array}$	$\begin{array}{r} 5 \\ 29.4 \% \\ 29.4 \% \end{array}$	$\begin{array}{r} 6 \\ 35.3 \% \\ 17.6 \% \end{array}$	$\begin{array}{r} 1 \\ 5.9 \% \\ 25.0 \% \end{array}$	$\begin{array}{r} 17 \\ 100.0 \% \\ 23.3 \% \end{array}$
	2	Count \% within KURSUSLAIN \% within EJF3	$\begin{array}{r} 1 \\ 10.0 \% \\ 33.3 \% \end{array}$	$\begin{array}{r} 1 \\ 10.0 \% \\ 6.7 \% \\ \hline \end{array}$	$\begin{array}{r} \hline 1 \\ 10.0 \% \\ 5.9 \% \\ \hline \end{array}$	$\begin{array}{r} \hline 6 \\ 60.0 \% \\ 17.6 \% \end{array}$	10.0\% $\begin{array}{r}1 \\ 25.0 \%\end{array}$	10 100.0% 13.7%
	3	Count \% within KURSUSLAIN \% within EJF3	$\begin{array}{r} 0 \\ .0 \% \\ .0 \% \end{array}$	4 44.4% 26.7%	$\begin{array}{r} 1 \\ 11.1 \% \\ 5.9 \% \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 4 \\ 44.4 \% \\ 11.8 \% \end{array}$	0 $.0 \%$ $.0 \%$	$\begin{array}{r} \hline 9 \\ 100.0 \% \\ 12.3 \% \end{array}$
	5	Count \% within KURSUSLAIN \% within EJF3	0 $.0 \%$ $.0 \%$	$\begin{array}{r} 0 \\ .0 \% \\ .0 \% \\ \hline \end{array}$	$\begin{array}{r} 1 \\ 100.0 \% \\ 5.9 \% \\ \hline \end{array}$	0 $.0 \%$ $.0 \%$	0 $.0 \%$ $.0 \%$	$\begin{array}{r}1 \\ 100.0 \% \\ 1.4 \% \\ \hline\end{array}$
Total		Count \% within KURSUSLAIN \% within EJF3	$\begin{array}{r} 3 \\ 4.1 \% \\ 100.0 \% \end{array}$	15 20.5% 100.0%	$\begin{array}{\|r\|} \hline 17 \\ 23.3 \% \\ 100.0 \% \end{array}$	$\begin{array}{r} 34 \\ 46.6 \% \\ 100.0 \% \end{array}$	$\begin{array}{r} 4 \\ 5.5 \% \\ 100.0 \% \end{array}$	$\begin{array}{r} \hline 73 \\ 100.0 \% \\ 100.0 \% \end{array}$

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	11.646^{2}	16	.768
Likelihood Ratio	11.662	16	.767
Linear-by-Linear Association	.639		.424
N of Valid Cases	73		

a. 21 cells (84.0\%) have expected count less than 5. The minimum expected count is .04.

KURSUSLAIN * EJF4

Faktor-faktor penyebab..., Raden Ayu Fatimah, FISIP UI, 2009

		\% within KURSUSLAIN \% within EJF4	.0\%	$\begin{gathered} 17.6 \% \\ 18.8 \% \end{gathered}$	$\begin{aligned} & 35.3 \% \\ & 28.6 \% \end{aligned}$	$\begin{aligned} & 35.3 \% \\ & 23.1 \% \end{aligned}$	$\begin{aligned} & 11.8 \% \\ & 25.0 \% \end{aligned}$	$\begin{array}{r} 100.0 \% \\ 23.3 \% \end{array}$
	2			2	0	6	1	10
		\% within KURSUSLAIN	10.0\%	20.0\%	. 0%	60.0\%	10.0\%	100.0\%
		\% within EJF4	50.0\%	12.5\%	. 0%	23.1\%	12.5\%	13.7\%
	3	Count	0	4	1	2	2	9
		\% within KURSUSLAIN	.0\%	44.4\%	11.1\%	22.2\%	22.2\%	100.0\%
		\% within EJF4	.0\%	25.0\%	4.8\%	7.7\%	25.0\%	12.3\%
	5	Count	0	0	1	0	0	1
		\% within KURSUSLAIN	. 0%	.0\%	100.0\%	.0\%	.0\%	100.0\%
		\% within EJF4	. 0%	. 0%	4.8\%	.0\%	.0\%	1.4\%
Total		Count	2	16	21	26	8	73
		\% within KURSUSLAIN	2.7\%	21.9\%	28.8\%	35.6\%	11.0\%	100.0\%
		\% within EJF4	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	15.696^{a}	16	.474
Likelihood Ratio	17.842	16	.333
Linear-by-Linear Association	.000	1	.984
N of Valid Cases	73		

a. 21 cells (84.0%) have expected count less than 5 . The minimum expected count is .03 .

KURSUSLAIN * EJF5

Crosstab

Chi-Square Tests
\square

Pearson Chi-Square	12.903^{a}	16	.680
Likelihood Ratio	18.195	16	.313
Linear-by-Linear Association	.002	1	.961
N of Valid Cases	73		

a. 20 cells (80.0\%) have expected count less than 5 . The minimum expected count is .04 .

KURSUSLAIN * TJF1

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	$8.818^{\text {a }}$	16	.921
Likelihood Ratio	10.558	16	.836
Linear-by-Linear Association	.314	1	.575
N of Valid Cases	73		

a. 21 cells (84.0%) have expected count less than 5 . The minimum expected count is .03 .

KURSUSLAIN * TJF2

Crosstab

	2	Count \% within KURSUSLAIN \% within TJF2	0 $.0 \%$ $.0 \%$	20.0\% ${ }^{2}$		3 30.0% 11.5%	1 10.0% 25.0%	$\begin{array}{r} 10 \\ 100.0 \% \\ 13.7 \% \end{array}$
	3	Count \% within KURSUSLAIN \% within TJF2	0 $.0 \%$ $.0 \%$	22.2\% ${ }^{2}$ 2\%	3 33.3% 11.1%	4 44.4% 15.4%	0 $.0 \%$ $.0 \%$	9 100.0% 12.3%
	5	Count \% within KURSUSLAIN \% within TJF2	0 $.0 \%$ $.0 \%$	$\begin{array}{r}0 \\ .0 \% \\ .0 \%\end{array}$	0 $.0 \%$ $.0 \%$	1 100.0% 3.8%	0 $.0 \%$ $.0 \%$	1 100.0% 1.4%
Total		Count \% within KURSUSLAIN \% within TJF2	$\begin{array}{r} 2 \\ 2.7 \% \\ 100.0 \% \end{array}$	14 19.2% 100.0%	27 37.0% 100.0%	26 35.6% 100.0%	4 5.5% 100.0%	73 100.0% 100.0%

	Chi-Square Tests		
	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	7.080^{a}	16	.972
Likelihood Ratio	8.428	16	.935
Linear-by-Linear Association	.289	1	.591
N of Valid Cases	73		

a. 20 cells (80.0%) have expected count less than 5 . The minimum expected count is .03

KURSUSLAIN * TJF3

Chi-Square Tests							
	Value	df	Asymp. Sig. (2-sided)				
Pearson Chi-Square	$14.194^{\text {a }}$		16				
Likelihood Ratio	12.428		16				

KURSUSLAIN * TJF4

Crosstab								
			TJF4					Total
			1	2	3	4	5	
KURSUSLAIN	0	Count \% within KURSUSLAIN \% within TJF4	$\begin{array}{r} \hline 1 \\ 2.8 \% \\ 100.0 \% \end{array}$	8 22.2% 57.1%	13 36.1% 56.5%	12 33.3% 41.4%	$\begin{array}{r} \hline 2 \\ 5.6 \% \\ 33.3 \% \end{array}$	$\begin{array}{r} 36 \\ 100.0 \% \\ 49.3 \% \end{array}$
	1	Count \% within KURSUSLAIN \% within TJF4	$\begin{array}{r} \hline 0 \\ .0 \% \\ .0 \% \end{array}$	1 5.9% 7.1%	7 41.2% 30.4%	8 47.1% 27.6%	$\begin{array}{r} 1 \\ 5.9 \% \\ 16.7 \% \end{array}$	$\begin{array}{r} 17 \\ 100.0 \% \\ 23.3 \% \end{array}$
	2	Count \% within KURSUSLAIN \% within TJF4	$\begin{array}{r} 0 \\ .0 \% \\ .0 \% \end{array}$	$\begin{array}{r} 1 \\ 10.0 \% \\ 7.1 \% \end{array}$	$\begin{array}{r} 2 \\ 20.0 \% \\ 8.7 \% \end{array}$	$\begin{array}{r} 6 \\ 60.0 \% \\ 20.7 \% \end{array}$	$\begin{array}{r} 1 \\ 10.0 \% \\ 16.7 \% \end{array}$	$\begin{array}{r} 10 \\ 100.0 \% \\ 13.7 \% \end{array}$
	3	Count \% within KURSUSLAIN \% within TJF4	$\begin{array}{r} 0 \\ .0 \% \\ .0 \% \end{array}$	$\begin{array}{r} \hline 4 \\ \hline 44.4 \% \\ \hline 28.6 \% \\ \hline \end{array}$	$\begin{array}{r} 0 \\ .0 \% \\ .0 \% \end{array}$	3 33.3% 10.3%	$\begin{array}{r} 2 \\ 22.2 \% \\ 33.3 \% \end{array}$	$\begin{array}{r} 9 \\ 100.0 \% \\ 12.3 \% \end{array}$
	5	Count \% within KURSUSLAIN \% within TJF4	$\begin{array}{r} 0 \\ .0 \% \\ .0 \% \end{array}$	0 $.0 \%$ $.0 \%$	$\begin{array}{r} 1 \\ 100.0 \% \\ 4.3 \% \end{array}$	$\begin{array}{r} 0 \\ .0 \% \\ .0 \% \end{array}$	0 $.0 \%$ $.0 \%$	$\begin{array}{r} 1 \\ 100.0 \% \\ 1.4 \% \end{array}$
Total		Count \% within KURSUSLAIN \% within TJF4	$\begin{array}{r} 1 \\ 1.4 \% \\ 100.0 \% \end{array}$	14 19.2% 100.0%	$\begin{array}{r} 23 \\ 31.5 \% \\ 100.0 \% \end{array}$	$\begin{array}{\|r\|} \hline 29 \\ 39.7 \% \\ 100.0 \% \end{array}$	$\begin{array}{r} \hline 6 \\ 8.2 \% \\ 100.0 \% \end{array}$	$\begin{array}{r} 73 \\ 100.0 \% \\ 100.0 \% \end{array}$

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	$16.704^{\text {a }}$	16	.405
Likelihood Ratio	19.144	16	.261
Linear-by-Linear Association	.826		1
N of Valid Cases	73		.363

a. 20 cells (80.0%) have expected count less than 5 . The minimum expected count is .01 .

KURSUSLAIN * PC1X

Crosstab

			PC1X					Total
			1	2	3	4	5	
KURSUSLAIN	0	Count	$\begin{array}{r} 1 \\ 2.8 \% \\ 25.0 \% \end{array}$	$\begin{array}{r} 18 \\ 50.0 \% \\ 52.9 \% \end{array}$	$\begin{array}{r} 12 \\ 33.3 \% \\ 48.0 \% \end{array}$	$\begin{array}{r} 5 \\ 13.9 \% \\ 55.6 \% \end{array}$	$\begin{array}{r} 0 \\ .0 \% \\ .0 \% \end{array}$	
		\% within KURSUSLAIN						$\begin{array}{r} 36 \\ 100.0 \% \\ 49.3 \% \end{array}$
		\% within PC1X						
	1	Count	1	5	8	2	1	17
		\% within KURSUSLAIN	5.9\%	29.4\%	47.1\%	11.8\%	5.9\%	100.0\%
		\% within PC1X	25.0\%	14.7\%	32.0\%	22.2\%	100.0\%	23.3\%
	2	Count		5	2	2	0	10
		\% within KURSUSLAIN	10.0\%	50.0\%	20.0\%	20.0\%	.0\%	100.0\%

Faktor-faktor penyebab..., Raden Ayu Fatimah, FISIP UI, 2009

		\% within PC1X	25.0\%	14.7\%	8.0\%	22.2\%	.0\%	13.7\%
	3	Count	1	6	2	0		9 100.0% 12.3%
		\% within KURSUSLAIN	11.1\%	66.7\%	22.2\%	.0\%	.0\%	
		\% within PC1X	25.0\%	17.6\%	8.0\%	.0\%	.0\%	
	5	Count	0	0	1	0	0	1
		\% within KURSUSLAIN	.0\%	.0\%	100.0\%	.0\%	.0\%	100.0\%
		\% within PC1X	.0\%	.0\%	4.0\%	.0\%	.0\%	1.4\%
Total		Count	4	34	25	9	1	73
		\% within KURSUSLAIN	5.5\%	46.6\%	34.2\%	12.3\%	1.4\%	100.0\%
		\% within PC1X	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%

Chi-Square Tests			
	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	12.009^{a}	16	.743
Likelihood Ratio	12.923	16	.678
Linear-by-Linear Association	.876	1	.349
N of Valid Cases	73		
a. 21 cells (84.0\%) have expected count less than 5. The minimum expected count is .01.			

KURSUSLAIN * PC2

Crosstab

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	14.573^{a}		16
Likelihood Ratio	13.247		16

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	14.573^{a}		16
Likelihood Ratio	13.247	16	.556
Linear-by-Linear Association	.522	1	.655

a. 20 cells (80.0\%) have expected count less than 5. The minimum expected count is 01.
a. 20 cells (80.0%) have expected count less than 5 . The minimum expected count is .01 .

KURSUSLAIN * PC3X

Crosstab

			PC3X					Total
			1	2	3	4	5	
KURSUSLAIN	0	Count \% within KURSUSLAIN \% within PC3X	2 5.6% 33.3%	18 50.0% 45.0%	8 22.2% 66.7%	$\begin{array}{r} 7 \\ 19.4 \% \\ 50.0 \% \end{array}$	$\begin{array}{r} 1 \\ 2.8 \% \\ 100.0 \% \end{array}$	$\begin{array}{r} 36 \\ 100.0 \% \\ 49.3 \% \end{array}$
	1	Count \% within KURSUSLAIN \% within PC3X	1 5.9% 16.7%	$\begin{array}{r} 9 \\ 52.9 \% \\ 22.5 \% \end{array}$	$\begin{array}{r} 3 \\ 17.6 \% \\ 25.0 \% \end{array}$	[$\begin{array}{r}4 \\ 23.5 \% \\ 28.6 \%\end{array}$	0 $.0 \%$ $.0 \%$	$\begin{array}{r} 17 \\ 100.0 \% \\ 23.3 \% \end{array}$
	2	Count \% within KURSUSLAIN \% within PC3X	$\begin{array}{r} 2 \\ 20.0 \% \\ 33.3 \% \end{array}$	$\begin{array}{\|r} \hline 4 \\ 40.0 \% \\ 10.0 \% \end{array}$	$\begin{array}{r} 1 \\ 10.0 \% \\ 8.3 \% \end{array}$	$\begin{array}{r} \hline 3 \\ 30.0 \% \\ 21.4 \% \end{array}$	0 $.0 \%$ $.0 \%$	$\begin{array}{r} 10 \\ 100.0 \% \\ 13.7 \% \end{array}$
	3	Count \% within KURSUSLAIN \% within PC3X	$\begin{array}{r} \hline 1 \\ 11.1 \% \\ 16.7 \% \end{array}$	$\begin{array}{r} \hline 8 \\ 88.9 \% \\ 20.0 \% \end{array}$	$\begin{array}{r} 0 \\ .0 \% \\ .0 \% \end{array}$	$\begin{array}{r} \hline 0 \\ .0 \% \\ .0 \% \end{array}$	0 $.0 \%$ $.0 \%$	$\begin{array}{r} 100.0 \% \\ 12.3 \% \end{array}$
	5	Count \% within KURSUSLAIN \% within PC3X	0 $.0 \%$ $.0 \%$	1 100.0% 2.5%	0 $.0 \%$ $.0 \%$	0 $.0 \%$ $.0 \%$	0 $.0 \%$ $.0 \%$	1 100.0% 1.4%
Total		Count \% within KURSUSLAIN \% within PC3X	$\begin{array}{r} 6 \\ 8.2 \% \\ 100.0 \% \end{array}$	$\begin{array}{r} \hline 40 \\ \hline 54.8 \% \\ 100.0 \% \end{array}$	$\begin{array}{r} \hline 12 \\ 16.4 \% \\ 100.0 \% \end{array}$	$\begin{array}{\|r\|} \hline 14 \\ 19.2 \% \\ 100.0 \% \end{array}$	1 1.4% 100.0%	$\begin{array}{r} 73 \\ 100.0 \% \\ 100.0 \% \end{array}$

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	$11.499^{\text {a }}$		16
Likelihood Ratio	14.617		16

a. 20 cells (80.0%) have expected count less than 5 . The minimum expected count is .01 .

KURSUSLAIN * PC4X

Crosstab

		\% within PC4X	25.0\%	13.5\%	30.8\%	37.5\%	33.3\%	23.3\%
	2	Count	0	8	1	1	0	10
		\% within KURSUSLAIN	.0\%	80.0\%	10.0\%	10.0\%	.0\%	100.0\%
		\% within PC4X	.0\%	21.6\%	7.7\%	6.2\%	.0\%	13.7\%
	3	Count	0	5	2	0	2	9
		\% within KURSUSLAIN	.0\%	55.6\%	22.2\%	.0\%	22.2\%	100.0\%
		\% within PC4X	.0\%	13.5\%	15.4\%	.0\%	66.7\%	12.3\%
	5	Count	0	1	0	0	0	1
		\% within KURSUSLAIN	.0\%	100.0\%	.0\%	.0\%	.0\%	100.0\%
		\% within PC4X	.0\%	2.7\%	.0\%	.0\%	.0\%	1.4\%
Total		Count	4	37	13	16	3	73
		\% within KURSUSLAIN	5.5\%	50.7\%	17.8\%	21.9\%	4.1\%	100.0\%
		\% within PC4X	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%

Chi-Square Tests			
	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	19.962^{a}	16	.222
Likelihood Ratio	21.454	16	.162
Linear-by-Linear Association	.005	1	.941
N of Valid Cases	73		

a. 20 cells (80.0%) have expected count less than 5 . The minimum expected count is .04

KURSUSLAIN * PC5

Crosstab

			PC5					Total
			1	2	3	4	5	
KURSUSLAIN	0	Count	0	6 16.7% 60.0%	12 33.3% 57.1%	$\begin{array}{r} \hline 14 \\ 38.9 \% \\ 40.0 \% \end{array}$	$\begin{array}{r} 4 \\ 11.1 \% \\ 66.7 \% \end{array}$	
		\% within KURSUSLAIN	. 0%					36 100.0% 49.3%
		\% within PC5	. 0%					
	1	Count		2 11.8% 20.0%	2 6 35.3% 28.6%	8$47.1 \%$$22.9 \%$	$\begin{array}{r} 1 \\ 5.9 \% \\ 16.7 \% \end{array}$	$\begin{array}{r} 17 \\ 100.0 \% \\ 23.3 \% \end{array}$
		\% within KURSUSLAIN						
		\% within PC5						
	2	Count	1			3 4 $\%$ 40.0% $\%$ 11.4%		$\begin{array}{r} 10 \\ 100.0 \% \\ 13.7 \% \end{array}$
		\% within KURSUSLAIN	10.0\%	10.0\%	30.0%		10.0%	
		\% within PC5	100.0\%		14.3%		16.7\%	
	3	Count	0	1	0		0	9 100.0% 12.3%
		\% within KURSUSLAIN	.0\%	11.1\%	. 0%	88.9\%	. 0%	
		\% within PC5	.0\%	10.0\%	.0\%	22.9\%	. 0%	
	5	Count	0	0$.0 \%$$.0 \%$		$\begin{array}{r} 1 \\ 100.0 \% \\ 2.9 \% \end{array}$		1 100.0% 1.4%
		\% within KURSUSLAIN	.0\%		.0\%			
		\% within PC5	.0\%		.0\%			
Total		Count	1	10	21	35$47.9 \%$$100.0 \%$	6$8.2 \%$$100.0 \%$	73 100.0% 100.0%
		\% within KURSUSLAIN	1.4\%	13.7\%	28.8\%			
		\% within PC5	100.0\%	100.0\%	100.0\%			

a. 22 cells (88.0%) have expected count less than 5 . The minimum expected count is .01 .

KURSUSLAIN * SCS1

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	$9.955^{\text {a }}$	16	.869
Likelihood Ratio	13.899	16	.606
Linear-by-Linear Association	.144	1	.704
N of Valid Cases	73		

a. 21 cells (84.0%) have expected count less than 5 . The minimum expected count is .01 .

KURSUSLAIN * SCS2X

Crosstab

		\% within KURSUSLAIN \% within SCS2X	$\begin{gathered} 20.0 \% \\ 25.0 \% \end{gathered}$	$\begin{gathered} 50.0 \% \\ 12.5 \% \end{gathered}$	$\begin{aligned} & 30.0 \% \\ & 14.3 \% \end{aligned}$.0\%	.0\%	$\begin{array}{r} 100.0 \% \\ 13.7 \% \end{array}$
	3			4	3	0	0	9
		\% within KURSUSLAIN	22.2\%	44.4\%	33.3\%	.0\%	.0\%	100.0\%
		\% within SCS2X	25.0\%	10.0\%		.0\%	.0\%	12.3\%
	5	Count	0	1	0	0	0	1
		\% within KURSUSLAIN	.0\%	100.0\%	.0\%	.0\%	.0\%	100.0\%
		\% within SCS2X	.0\%	2.5\%	. 0%	.0\%	.0\%	1.4\%
Total		Count	8	40	21	3	1	73
		\% within KURSUSLAIN	11.0\%	54.8\%	28.8\%	4.1\%	1.4\%	100.0\%
		\% within SCS2X	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%

Chi-Square Tests			
	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	15.859^{a}	16	.463
Likelihood Ratio	15.291	16	.503
Linear-by-Linear Association	.784	1	.376
N of Valid Cases	73		

a. 21 cells (84.0%) have expected count less than 5 . The minimum expected count is .01

KURSUSLAIN * SCS3

Crosstab

Chi-Square Tests			
	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	29.498^{a}	16	.021
Likelihood Ratio	24.224	16	.085
Linear-by-Linear Association	2.707	1	.100

Chi-Square Tests				
	Value	df	Asymp. Sig. (2-sided)	
Pearson Chi-Square	29.498^{a}		16	
Likelihood Ratio	24.224	16	.021	
Linear-by-Linear Association	2.707		1	

a. 20 cells (80.0%) have expected count less than 5 . The minimum expected count is .01 .

KURSUSLAIN * RC1X

Crosstab							
			RC1X				Total
			1	2	3	4	
KURSUSLAIN	0	Count \% within KURSUSLAIN \% within RC1X	$\begin{array}{r} 5 \\ 13.9 \% \\ 62.5 \% \end{array}$	$\begin{array}{r} 11 \\ 30.6 \% \\ 42.3 \% \end{array}$	$\begin{array}{r} 11 \\ 30.6 \% \\ 61.1 \% \end{array}$	$\begin{array}{r} 9 \\ 25.0 \% \\ 42.9 \% \end{array}$	$\begin{array}{r} 36 \\ 100.0 \% \\ 49.3 \% \end{array}$
	1	Count \% within KURSUSLAIN \% within RC1X	$\begin{array}{\|r\|} \hline 2 \\ 11.8 \% \\ 25.0 \% \end{array}$	$\begin{array}{r} 5 \\ 29.4 \% \\ 19.2 \% \end{array}$	4 23.5\% 22.2%	$\begin{array}{r} 6 \\ 35.3 \% \\ 28.6 \% \end{array}$	$\begin{array}{r} 17 \\ 100.0 \% \\ 23.3 \% \end{array}$
	2	Count \% within KURSUSLAIN \% within RC1X	$\begin{array}{r} 1 \\ 10.0 \% \\ 12.5 \% \end{array}$	5 50.0% 19.2%	$\begin{array}{r} 1 \\ 10.0 \% \\ 5.6 \% \end{array}$	$\begin{array}{r} 3 \\ 30.0 \% \\ 14.3 \% \end{array}$	$\begin{array}{r} 10 \\ 100.0 \% \\ 13.7 \% \end{array}$
	3	Count \% within KURSUSLAIN \% within RC1X	$\begin{array}{r} \hline 0 \\ .0 \% \\ .0 \% \end{array}$	$\begin{array}{r} \hline 5 \\ 55.6 \% \\ 19.2 \% \end{array}$	22.2\% 11.1\%	$\begin{array}{r} 2 \\ 22.2 \% \\ 9.5 \% \end{array}$	$\begin{array}{r} \hline 9 \\ 100.0 \% \\ 12.3 \% \end{array}$
	5	Count \% within KURSUSLAIN \% within RC1X	0 $.0 \%$ $.0 \%$	[$\begin{array}{r}0 \\ .0 \% \\ .0 \% \\ \hline\end{array}$	0 $.0 \%$ $.0 \%$	$\begin{array}{r} 1 \\ 100.0 \% \\ 4.8 \% \end{array}$	1 100.0% 1.4%
Total		Count \% within KURSUSLAIN \% within RC1X	$\begin{array}{r} 8 \\ 11.0 \% \\ 100.0 \% \end{array}$	$\begin{array}{r} 26 \\ 35.6 \% \\ 100.0 \% \\ \hline \end{array}$	$\begin{array}{r} \hline 18 \\ 24.7 \% \\ 100.0 \% \end{array}$	$\begin{array}{r} 21 \\ 28.8 \% \\ 100.0 \% \end{array}$	$\begin{array}{r} \hline 73 \\ 100.0 \% \\ 100.0 \% \end{array}$

Chi-Square Tests						
	Value	df	Asymp. Sig. (2-sided)			
Pearson Chi-Square	7.769^{a}	12	.803			
Likelihood Ratio	8.783	12	.721			
Linear-by-Linear Association	.237	1	.626			
N of Valid Cases	73					

a. 16 cells (80.0%) have expected count less than 5 . The minimum expected count is .11 .

KURSUSLAIN * RC2X

Crosstab

		\% within KURSUSLAIN \% within RC2X	$\begin{gathered} 17.6 \% \\ 42.9 \% \end{gathered}$	$\begin{gathered} 23.5 \% \\ 17.4 \% \end{gathered}$	$\begin{gathered} 23.5 \% \\ 23.5 \% \end{gathered}$	$\begin{aligned} & 35.3 \% \\ & 24.0 \% \end{aligned}$.0\%	$\begin{array}{r} 100.0 \% \\ 23.3 \% \end{array}$
	2			4	1	4	0	10
		\% within KURSUSLAIN	10.0\%	40.0\%	10.0\%	40.0\%	.0\%	100.0\%
		\% within RC2X	14.3\%	17.4\%	5.9\%	16.0\%	.0\%	13.7\%
	3	Count		4	0	4	0	9
		\% within KURSUSLAIN	11.1\%	44.4\%	.0\%	44.4\%	.0\%	100.0\%
		\% within RC2X	14.3\%	17.4\%	.0\%	16.0\%	.0\%	12.3\%
	5	Count	0	0	0	1	0	1
		\% within KURSUSLAIN	.0\%	.0\%	.0\%	100.0\%	.0\%	100.0\%
		\% within RC2X	.0\%	. 0%	. 0%	4.0\%	. 0%	1.4\%
Total		Count	7	23	17	25	1	73
		\% within KURSUSLAIN	9.6\%	31.5\%	23.3\%	34.2\%	1.4\%	100.0\%
		\% within RC2X	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	11.010^{a}	16	.809
Likelihood Ratio	13.565	16	.631
Linear-by-Linear Association	.002	1	.965
N of Valid Cases	73		

a. 20 cells (80.0%) have expected count less than 5 . The minimum expected count is .01 .

KURSUSLAIN * RC3

Crosstab

Chi-Square Tests
\square

Pearson Chi-Square	13.253^{a}	16	.654
Likelihood Ratio	13.094	16	.666
Linear-by-Linear Association	3.084	1	.079
N of Valid Cases	73		

a. 20 cells (80.0%) have expected count less than 5 . The minimum expected count is .03 .

KURSUSLAIN * RC4

Crosstab								
			RC4					Total
			1	2	3	4	5	
KURSUSLAIN	0	Count \% within KURSUSLAIN \% within RC4	2 5.6% 66.7%		12 33.3% 75.0%	18 50.0% 42.9%	$\begin{array}{r} 2 \\ 5.6 \% \\ 50.0 \% \end{array}$	$\begin{array}{r} 36 \\ 100.0 \% \\ 49.3 \% \end{array}$
	1	Count \% within KURSUSLAIN \% within RC4	$\begin{array}{r} 1 \\ 5.9 \% \\ 33.3 \% \end{array}$	$\begin{array}{r} 1 \\ 5.9 \% \\ 12.5 \% \end{array}$	$\begin{array}{r} 2 \\ 11.8 \% \\ 12.5 \% \end{array}$	$\begin{array}{r} 12 \\ 70.6 \% \\ 28.6 \% \end{array}$	$\begin{array}{r} 1 \\ 5.9 \% \\ 25.0 \% \end{array}$	$\begin{array}{r} 17 \\ 100.0 \% \\ 23.3 \% \end{array}$
	2	Count \% within KURSUSLAIN \% within RC4	$\begin{array}{r} 0 \\ .0 \% \\ .0 \% \end{array}$	$\begin{array}{r} \hline 2 \\ 20.0 \% \\ 25.0 \% \end{array}$		$\begin{array}{r} 7 \\ 70.0 \% \\ 16.7 \% \end{array}$	$\begin{array}{r} 1 \\ 10.0 \% \\ 25.0 \% \end{array}$	$\begin{array}{r} 10 \\ 100.0 \% \\ 13.7 \% \end{array}$
	3	Count \% within KURSUSLAIN \% within RC4	$\begin{array}{r} \hline 0 \\ .0 \% \\ .0 \% \\ \hline \end{array}$	$\begin{array}{r\|} \hline 2 \\ 22.2 \% \\ 25.0 \% \\ \hline \end{array}$	$\begin{array}{r} 2 \\ 22.2 \% \\ 12.5 \% \end{array}$	5 55.6% 11.9%	0 $.0 \%$ $.0 \%$	9 100.0% 12.3%
	5	Count \% within KURSUSLAIN \% within RC4	$\begin{array}{r} \hline 0 \\ .0 \% \\ .0 \% \\ \hline \end{array}$	1 100.0% 12.5%	0 $.0 \%$ $.0 \%$	0 $.0 \%$ $.0 \%$	0 $.0 \%$ $.0 \%$	$\begin{array}{r} 1 \\ 100.0 \% \\ 1.4 \% \\ \hline \end{array}$
Total		Count \% within KURSUSLAIN \% within RC4	$\begin{array}{r} 3 \\ 4.1 \% \\ 100.0 \% \\ \hline \end{array}$	$\begin{array}{r} 8 \\ 11.0 \% \\ 100.0 \% \\ \hline \end{array}$	$\begin{array}{r} 16 \\ 21.9 \% \\ 100.0 \% \end{array}$	$\begin{array}{r} 42 \\ 57.5 \% \\ 100.0 \% \end{array}$	4 5.5% 100.0%	$\begin{array}{r} 73 \\ 100.0 \% \\ 100.0 \% \end{array}$

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	19.504^{a}		16
Likelihood Ratio	18.897		16
Linear-by-Linear Association	.309		1

a. 20 cells (80.0%) have expected count less than 5 . The minimum expected count is .04

KURSUSLAIN * RA1

Crosstab

			RA1					Total
			1	2	3	4	5	
KURSUSLAIN	0	Count	1	1	7	23	4	36
		\% within KURSUSLAIN	2.8\%	2.8\%	19.4\%	63.9\%	11.1\%	100.0\%
		\% within RA1	50.0\%	25.0\%	58.3\%	46.9\%	66.7\%	49.3\%
	1	Count	0	0	3	13	1	17
		\% within KURSUSLAIN	.0\%	. 0%	17.6\%	76.5\%	5.9\%	100.0\%
		\% within RA1	.0\%	. 0%	25.0\%	26.5\%	16.7\%	23.3\%

	2	Count \% within KURSUSLAIN \% within RA1	r\|r $\begin{array}{r}1 \\ 10.0 \% \\ 50.0 \%\end{array}$	0 $.0 \%$ $.0 \%$	1 10.0% 8.3%	7 70.0% 14.3%	1 10.0% 16.7%	$\begin{array}{r} 10 \\ 100.0 \% \\ 13.7 \% \end{array}$
	3	Count \% within KURSUSLAIN \% within RA1	0 $.0 \%$ $.0 \%$	3 33.3% 75.0%	1 11.1% 8.3%	5 55.6% 10.2%	0 $.0 \%$ $.0 \%$	9 100.0% 12.3%
	5	Count \% within KURSUSLAIN \% within RA1	$\begin{array}{r}0 \\ .0 \% \\ .0 \%\end{array}$	0	0 $.0 \%$ $.0 \%$	1 100.0% 2.0%	0 $.0 \%$ $.0 \%$	1 100.0% 1.4%
Total		Count \% within KURSUSLAIN \% within RA1	$\begin{array}{r} \hline 2 \\ 2.7 \% \\ 100.0 \% \end{array}$	4 5.5% 100.0%	12 16.4% 100.0%	49 67.1% 100.0%	6 8.2% 100.0%	73 100.0% 100.0%

Chi-Square Tests			
\begin{tabular}{\|l	r	r	r
\hline			
\end{tabular}			
Pearson Chi-Square	Value	df	Asymp. Sig. (2-sided)
Likelihood Ratio	$20.176^{\text {a }}$	16	.212
Linear-by-Linear Association	15.837	16	.464
N of Valid Cases	1.613	1	.204

a. 20 cells (80.0%) have expected count less than 5 . The minimum expected count is .03

KURSUSLAIN * RA2X

Crosstab

Chi-Square Tests			
	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	$19.968{ }^{\text {a }}$	16	. 222
Likelihood Ratio	24.943	16	. 071

a. 20 cells (80.0%) have expected count less than 5 . The minimum expected count is .04 .

KURSUSLAIN * RA3

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	14.925^{a}	12	.246
Likelihood Ratio	7.293	12	.838
Linear-by-Linear Association	.363	1	.547
N of Valid Cases	73		

a. 16 cells (80.0%) have expected count less than 5 . The minimum expected count is .07 .

KURSUSLAIN * RA4X

Crosstab

		\% within RA4X	12.5\%	16.0\%	11.8\%	4.5\%	100.0\%	12.3\%
	5	Count	0	0	1	0	0	1
		\% within KURSUSLAIN	. 0%	.0\%	100.0\%	.0\%	.0\%	100.0\%
		\% within RA4X	.0\%	.0\%	5.9\%	.0\%	.0\%	1.4\%
Total		Count	8	25	17	22	1	73
		\% within KURSUSLAIN	11.0\%	34.2\%	23.3\%	30.1\%	1.4\%	100.0\%
		\% within RA4X	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%

Chi-Square Tests			
\begin{tabular}{\|l	r	r	r
\hline			
\end{tabular}			
Pearson Chi-Square	Value	df	Asymp. Sig. (2-sided)
Likelihood Ratio	$16.264^{\text {a }}$	16	.435
Linear-by-Linear Association	13.238	16	.655
N of Valid Cases	.154	1	.695

a. 20 cells (80.0%) have expected count less than 5 . The minimum expected count is .01

KURSUSLAIN * RA5X

Crosstab

	Chi-Square Tests		
\begin{tabular}{\|l	r	r	r
\hline			
\end{tabular}	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	19.712^{a}	12	.073
Likelihood Ratio	21.082	12	.049
Linear-by-Linear Association	.167	1	.683
N of Valid Cases	73		

a. 15 cells (75.0%) have expected count less than 5 . The minimum expected count is .07 .

