BAB 4

HASIL DAN PEMBAHASAN

Bab ini akan membahas hasil optimasi sumur gas dan hasil simulasi hysys

4.1 HASIL OPTIMASI SUMUR GAS

Optimasi sumur gas yang dilakukan dimulai dari pengumpulan data sumur gas kemudian penentuan fungsi tujuan dan batasan –batasan serta penentuan solusinya menggunakan software solver.

4.1.1 Data Sumur Gas

Data sumur gas terdiri dari komposisi gas, GOR dan Wc. Data dari setiap sumur dapat dilihat pada Tabel 4.1.

Dari Tabel 4.1 dapat dilihat bahwa baik komposisi, water cut (Wc) maupun GOR dari masing-masing sumur cukup bervariasi. Sumur dengan Wc yang besar menunjukkan sumur tersebut banyak mengandung air, sedangkan sumur dengan komponen C3+ yang tinggi menunjukkan sumur tersebut banyak mengandung LPG dan kondensat, begitu juga sumur dengan GOR yang kecil menunjukkan sumur tersebut banyak mengandung minyak.

Tabel 4.1 Data Sumur Gas

No														
Sumur														Maks Gas
X	CO2	N2	C1	C2	C3	iC4	nC4	iC5	nC5	C6	C7	Wc	GOR	(MMSCFD)
1	0.0857	0.0050	0.7523	0.0813	0.0411	0.0098	0.0113	0.0038	0.0037	0.0050	0.0010	0.0010	0.0238	22
2	0.0848	0.0046	0.7783	0.0782	0.0342	0.0070	0.0073	0.0018	0.0015	0.0013	0.0009	0.4299	0.0377	40
3	0.0831	0.0047	0.7302	0.0917	0.0622	0.0132	0.0125	0.0008	0.0006	0.0006	0.0007	0.7200	0.0100	0.04
4	0.0808	0.0050	0.7489	0.0877	0.0473	0.0106	0.0111	0.0022	0.0018	0.0037	0.0009	0.0010	0.0100	2.54
5	0.0795	0.0063	0.7734	0.0899	0.0325	0.0062	0.0075	0.0017	0.0015	0.0012	0.0003	0.6500	0.0182	39
6	0.0835	0.0046	0.7328	0.0910	0.0613	0.0128	0.0126	0.0004	0.0003	0.0002	0.0005	0.0073	0.0357	1
7	0.0876	0.0066	0.7695	0.0785	0.0337	0.0077	0.0086	0.0030	0.0025	0.0015	0.0009	0.0783	0.0127	4.5
8	0.0815	0.0036	0.7653	0.0912	0.0350	0.0070	0.0089	0.0025	0.0024	0.0025	0.0001	0.4499	0.0272	40
9	0.0874	0.0042	0.7625	0.0810	0.0393	0.0087	0.0096	0.0027	0.0024	0.0015	0.0007	0.4505	0.0077	2
10	0.0997	0.0040	0.7406	0.0855	0.0466	0.0085	0.0087	0.0023	0.0019	0.0015	0.0008	0.7016	0.0090	1
11	0.0839	0.0043	0.7624	0.0833	0.0347	0.0084	0.0108	0.0039	0.0035	0.0045	0.0003	0.7200	0.0174	38
12	0.0873	0.0036	0.7723	0.0808	0.0330	0.0072	0.0087	0.0028	0.0025	0.0015	0.0004	0.1486	0.0079	3
13	0.0603	0.0044	0.8218	0.0869	0.0140	0.0029	0.0038	0.0012	0.0010	0.0036	0.0003	0.0304	0.0075	10
14	0.0759	0.0126	0.7821	0.0803	0.0309	0.0064	0.0066	0.0017	0.0014	0.0014	0.0009	0.0502	0.0144	3
15	0.0213	0.0064	0.9598	0.0051	0.0029	0.0022	0.0003	0.0004	0.0001	0.0004	0.0011	0.0010	0.2000	35

Tabel 4.1 Data Sumur Gas (lanjutan)

No														
Sumur														Maks Gas
X	CO2	N2	C1	C2	C3	iC4	nC4	iC5	nC5	C6	C7	Wc	GOR	(MMSCFD)
16	0.0454	0.0042	0.8978	0.0182	0.0207	0.0077	0.0026	0.0016	0.0005	0.0009	0.0006	0.0010	0.2000	12
17	0.0795	0.0049	0.7686	0.0886	0.0402	0.0071	0.0074	0.0012	0.0010	0.0008	0.0006	0.5000	0.0265	40
18	0.0644	0.0057	0.8122	0.0903	0.0170	0.0034	0.0036	0.0011	0.0008	0.0008	0.0006	0.0010	0.0100	0.23
19	0.0566	0.0128	0.7944	0.0782	0.0336	0.0080	0.0083	0.0029	0.0025	0.0018	0.0009	0.3729	0.0094	22
20	0.0772	0.0074	0.7999	0.0833	0.0236	0.0023	0.0027	0.0008	0.0007	0.0015	0.0008	0.9001	0.0094	1
21	0.0620	0.0051	0.7861	0.0875	0.0476	0.0038	0.0038	0.0010	0.0009	0.0017	0.0004	0.0097	0.0200	0.045
22	0.0836	0.0067	0.7744	0.0825	0.0321	0.0071	0.0083	0.0022	0.0017	0.0011	0.0003	0.0000	0.0100	2.95
23	0.0705	0.0085	0.7792	0.0810	0.0413	0.0080	0.0087	0.0004	0.0004	0.0005	0.0014	0.7755	0.0100	0.03
24	0.1024	0.0051	0.7332	0.0861	0.0424	0.0089	0.0126	0.0040	0.0038	0.0010	0.0004	0.0000	0.1250	0.5
25	0.0973	0.0073	0.7438	0.0860	0.0391	0.0085	0.0110	0.0032	0.0028	0.0007	0.0003	0.2186	0.0126	16
26	0.0972	0.0040	0.7428	0.0868	0.0398	0.0090	0.0120	0.0038	0.0035	0.0008	0.0003	0.0621	0.0110	19
27	0.0870	0.0054	0.7742	0.0802	0.0299	0.0070	0.0087	0.0032	0.0028	0.0011	0.0004	0.2105	0.0533	0.8
28	0.0872	0.0095	0.7833	0.0772	0.0257	0.0055	0.0065	0.0021	0.0017	0.0009	0.0004	0.0000	0.0313	0.5
29	0.1005	0.0055	0.7370	0.0813	0.0394	0.0096	0.0117	0.0043	0.0041	0.0058	0.0008	0.0689	0.0060	11
30	0.0900	0.0046	0.7748	0.0864	0.0270	0.0060	0.0065	0.0017	0.0013	0.0013	0.0004	0.0000	0.0342	3
31	0.0457	0.0049	0.9048	0.0159	0.0171	0.0069	0.0019	0.0014	0.0004	0.0009	0.0000	0.0000	0.0100	0.13
32	0.0880	0.0098	0.7526	0.0820	0.0403	0.0094	0.0104	0.0028	0.0023	0.0017	0.0008	0.4833	0.0166	10

4.1.2 Fungsi Tujuan untuk Optimasi

Sebagaimana dijelaskan pada Bab 3, fungsi tujuan yang digunakan dalam optimasi ini mengikuti persamaan sebagaimana berikut ini :

Profit = (konstanta minyak_1 + konstanta gas pipa_1 + konstanta propana_1 + konstanta butana_1 + konstanta kondensat_1)* laju alir gas_1+....+ (konstanta minyak_n + konstanta gas pipa_1 + konstanta propana_n + konstanta butana_n + konstanta kondensat_n)* laju alir gas_n.

Konstanta-konstanta pada persamaan di atas dihitung berdasarkan persamaan berikut :

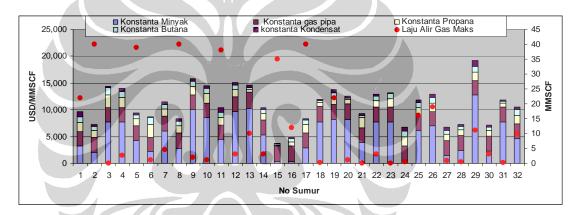
- Konstanta minyak = $\frac{\text{harga minyak}}{\text{GOR}}$ (4.1)
- Konstanta gas pipa = $(1.01x\%C_1 + 1.769x\%C_2)$ *harga gas pipa.....(4.2)
- Konstanta propana = $(52,7x\%C_31)x$ harga propana....(4.3)
- Konstanta butana = $(69.5x\% NC_4 1 + 74.2x\% IC_4 1)$ x harga butana.....(4.4)
- Konstanta kondensat

=
$$(869 \ x\% \ IC_51 + 860 \ x\% \ NC_51 + 977 \ x\% \ C_61 + 1096 \ x\% \ C_71) \ x$$

hargakondensat.....(4.5)

Sementara itu, besaran harga-harga produk yang dituliskan pada persamaan di atas disajikan pada Tabel 4.2 berikut ini:

Tabel 4.2 Harga Produk

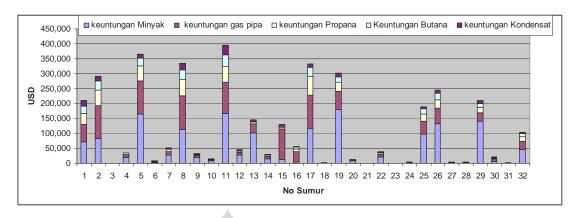

Harga Minyak	77	USD/Bbls
Harga gas pipa	3000	USD/BBTU
Harga Propana	747	USD/MT
Harga Butana	727	USD/MT
Harga		
Kondensat	77	USD/Bbls

Dengan memasukkan harga produk, GOR serta komposisi komponen gas di masing-masing sumur, maka dapat dihitung konstanta-konstanta dari fungsi tujuan yang besarnya ditunjukkan pada Tabel 4.3 berikut ini :

Tabel 4.3 Konstanta Fungsi Tujuan

No Konstanta Sumur Konstanta Minyak Konstanta gas pipa Konstanta Propana Konstanta Butana konstanta Kondensat konstanta sumur X1 3.234 2.711 1,616 1,104 957 9,622 X2 2,042 2,773 1,348 748 394 7,306 X3 7,700 2,699 2,447 1,341 188 14,375 X4 7,700 2,735 1,861 1,137 619 14,052 X5 4,239 2,820 1,278 719 326 9,383 X6 2,156 2,703 2,414 1,330 99 8,703 X7 6,040 2,748 1,326 853 550 11,518 X8 2,834 2,803 1,377 836 518 8,368 X9 10,049 2,740 1,545 956 516 15,807 X10 8,547 2,698 1,834 894 460 14,433 <t< th=""><th></th><th>1</th><th>T</th><th>Ι</th><th></th><th></th><th>T</th></t<>		1	T	Ι			T
Sumur Minyak gas pipa Propana Butana Kondensat sumur X1 3,234 2,711 1,616 1,104 957 9,622 X2 2,042 2,773 1,348 748 394 7,306 X3 7,700 2,699 2,447 1,341 188 14,375 X4 7,700 2,735 1,861 1,137 619 14,052 X5 4,239 2,820 1,278 719 326 9,383 X6 2,156 2,703 2,414 1,330 99 8,703 X7 6,040 2,748 1,326 853 550 11,518 X8 2,834 2,803 1,377 836 518 8,368 X9 10,049 2,740 1,545 956 516 15,807 X10 8,547 2,698 1,834 894 460 14,433 X11 4,425 2,752 1,366 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>Total</td></t<>							Total
X1 3,234 2,711 1,616 1,104 957 9,622 X2 2,042 2,773 1,348 748 394 7,306 X3 7,700 2,699 2,447 1,341 188 14,375 X4 7,700 2,735 1,861 1,137 619 14,052 X5 4,239 2,820 1,278 719 326 9,383 X6 2,156 2,703 2,414 1,330 99 8,703 X7 6,040 2,748 1,326 853 550 11,518 X8 2,834 2,803 1,377 836 518 8,368 X9 10,049 2,740 1,545 956 516 15,807 X10 8,547 2,698 1,834 894 460 14,433 X11 4,425 2,752 1,366 1,009 854 10,407 X12 9,702 2,769 1,298 835							konstanta
X2 2,042 2,773 1,348 748 394 7,306 X3 7,700 2,699 2,447 1,341 188 14,375 X4 7,700 2,735 1,861 1,137 619 14,052 X5 4,239 2,820 1,278 719 326 9,383 X6 2,156 2,703 2,414 1,330 99 8,703 X7 6,040 2,748 1,326 853 550 11,518 X8 2,834 2,803 1,377 836 518 8,368 X9 10,049 2,740 1,545 956 516 15,807 X10 8,547 2,698 1,834 894 460 14,433 X11 4,425 2,752 1,366 1,009 854 10,407 X12 9,702 2,769 1,298 835 499 15,103 X13 10,326 2,951 550 351		-	0 11				
X3 7,700 2,699 2,447 1,341 188 14,375 X4 7,700 2,735 1,861 1,137 619 14,052 X5 4,239 2,820 1,278 719 326 9,383 X6 2,156 2,703 2,414 1,330 99 8,703 X7 6,040 2,748 1,326 853 550 11,518 X8 2,834 2,803 1,377 836 518 8,368 X9 10,049 2,740 1,545 956 516 15,807 X10 8,547 2,698 1,834 894 460 14,433 X11 4,425 2,752 1,366 1,009 854 10,407 X12 9,702 2,769 1,298 835 499 15,103 X13 10,326 2,951 550 351 439 14,617 X14 5,339 2,796 1,215 677							
X4 7,700 2,735 1,861 1,137 619 14,052 X5 4,239 2,820 1,278 719 326 9,383 X6 2,156 2,703 2,414 1,330 99 8,703 X7 6,040 2,748 1,326 853 550 11,518 X8 2,834 2,803 1,377 836 518 8,368 X9 10,049 2,740 1,545 956 516 15,807 X10 8,547 2,698 1,834 894 460 14,433 X11 4,425 2,752 1,366 1,009 854 10,407 X12 9,702 2,769 1,298 835 499 15,103 X13 10,326 2,951 550 351 439 14,617 X14 5,339 2,796 1,215 677 384 10,411 X15 385 2,935 115 129						394	
X5 4,239 2,820 1,278 719 326 9,383 X6 2,156 2,703 2,414 1,330 99 8,703 X7 6,040 2,748 1,326 853 550 11,518 X8 2,834 2,803 1,377 836 518 8,368 X9 10,049 2,740 1,545 956 516 15,807 X10 8,547 2,698 1,834 894 460 14,433 X11 4,425 2,752 1,366 1,009 854 10,407 X12 9,702 2,769 1,298 835 499 15,103 X13 10,326 2,951 550 351 439 14,617 X14 5,339 2,796 1,215 677 384 10,411 X15 385 2,935 115 129 147 3,710 X16 385 2,817 813 526 2		7,700		2,447	1,341	188	14,375
X6 2,156 2,703 2,414 1,330 99 8,703 X7 6,040 2,748 1,326 853 550 11,518 X8 2,834 2,803 1,377 836 518 8,368 X9 10,049 2,740 1,545 956 516 15,807 X10 8,547 2,698 1,834 894 460 14,433 X11 4,425 2,752 1,366 1,009 854 10,407 X12 9,702 2,769 1,298 835 499 15,103 X13 10,326 2,951 550 351 439 14,617 X14 5,339 2,796 1,215 677 384 10,411 X15 385 2,935 115 129 147 3,710 X16 385 2,817 813 526 254 4,796 X17 2,911 2,799 1,583 758		7,700			1,137		
X7 6,040 2,748 1,326 853 550 11,518 X8 2,834 2,803 1,377 836 518 8,368 X9 10,049 2,740 1,545 956 516 15,807 X10 8,547 2,698 1,834 894 460 14,433 X11 4,425 2,752 1,366 1,009 854 10,407 X12 9,702 2,769 1,298 835 499 15,103 X13 10,326 2,951 550 351 439 14,617 X14 5,339 2,796 1,215 677 384 10,411 X15 385 2,935 115 129 147 3,710 X16 385 2,817 813 526 254 4,796 X17 2,911 2,799 1,583 758 260 8,311 X18 7,700 2,940 671 364 24	X5						9,383
X8 2,834 2,803 1,377 836 518 8,368 X9 10,049 2,740 1,545 956 516 15,807 X10 8,547 2,698 1,834 894 460 14,433 X11 4,425 2,752 1,366 1,009 854 10,407 X12 9,702 2,769 1,298 835 499 15,103 X13 10,326 2,951 550 351 439 14,617 X14 5,339 2,796 1,215 677 384 10,411 X15 385 2,935 115 129 147 3,710 X16 385 2,817 813 526 254 4,796 X17 2,911 2,799 1,583 758 260 8,311 X18 7,700 2,940 671 364 242 11,918 X19 8,162 2,822 1,324 855 5	X6	2,156	2,703		1,330	99	
X9 10,049 2,740 1,545 956 516 15,807 X10 8,547 2,698 1,834 894 460 14,433 X11 4,425 2,752 1,366 1,009 854 10,407 X12 9,702 2,769 1,298 835 499 15,103 X13 10,326 2,951 550 351 439 14,617 X14 5,339 2,796 1,215 677 384 10,411 X15 385 2,935 115 129 147 3,710 X16 385 2,935 115 129 147 3,710 X16 385 2,817 813 526 254 4,796 X17 2,911 2,799 1,583 758 260 8,311 X18 7,700 2,940 671 364 242 11,918 X19 8,162 2,822 1,324 855 564<	X7	6,040	2,748		853	550	11,518
X10 8,547 2,698 1,834 894 460 14,433 X11 4,425 2,752 1,366 1,009 854 10,407 X12 9,702 2,769 1,298 835 499 15,103 X13 10,326 2,951 550 351 439 14,617 X14 5,339 2,796 1,215 677 384 10,411 X15 385 2,935 115 129 147 3,710 X16 385 2,817 813 526 254 4,796 X17 2,911 2,799 1,583 758 260 8,311 X18 7,700 2,940 671 364 242 11,918 X19 8,162 2,822 1,324 855 564 13,728 X20 8,194 2,866 927 261 270 12,518 X21 3,850 2,847 1,873 397 2		2,834	2,803		836		
X11 4,425 2,752 1,366 1,009 854 10,407 X12 9,702 2,769 1,298 835 499 15,103 X13 10,326 2,951 550 351 439 14,617 X14 5,339 2,796 1,215 677 384 10,411 X15 385 2,935 115 129 147 3,710 X16 385 2,817 813 526 254 4,796 X17 2,911 2,799 1,583 758 260 8,311 X18 7,700 2,940 671 364 242 11,918 X19 8,162 2,822 1,324 855 564 13,728 X20 8,194 2,866 927 261 270 12,518 X21 3,850 2,847 1,873 397 288 9,254 X22 7,700 2,784 1,262 806 36	X9		2,740			516	15,807
X12 9,702 2,769 1,298 835 499 15,103 X13 10,326 2,951 550 351 439 14,617 X14 5,339 2,796 1,215 677 384 10,411 X15 385 2,935 115 129 147 3,710 X16 385 2,817 813 526 254 4,796 X17 2,911 2,799 1,583 758 260 8,311 X18 7,700 2,940 671 364 242 11,918 X19 8,162 2,822 1,324 855 564 13,728 X20 8,194 2,866 927 261 270 12,518 X21 3,850 2,847 1,873 397 288 9,254 X22 7,700 2,784 1,262 806 366 12,919 X23 7,700 2,791 1,627 874 204<	X10	8,547	2,698	1,834	894	460	14,433
X13 10,326 2,951 550 351 439 14,617 X14 5,339 2,796 1,215 677 384 10,411 X15 385 2,935 115 129 147 3,710 X16 385 2,817 813 526 254 4,796 X17 2,911 2,799 1,583 758 260 8,311 X18 7,700 2,940 671 364 242 11,918 X19 8,162 2,822 1,324 855 564 13,728 X20 8,194 2,866 927 261 270 12,518 X21 3,850 2,847 1,873 397 288 9,254 X22 7,700 2,784 1,262 806 366 12,919 X23 7,700 2,791 1,627 874 204 13,196 X24 616 2,679 1,668 1,133 626<	X11	4,425	2,752	1,366	1,009	854	10,407
X14 5,339 2,796 1,215 677 384 10,411 X15 385 2,935 115 129 147 3,710 X16 385 2,817 813 526 254 4,796 X17 2,911 2,799 1,583 758 260 8,311 X18 7,700 2,940 671 364 242 11,918 X19 8,162 2,822 1,324 855 564 13,728 X20 8,194 2,866 927 261 270 12,518 X21 3,850 2,847 1,873 397 288 9,254 X22 7,700 2,784 1,262 806 366 12,919 X23 7,700 2,784 1,262 806 366 12,919 X24 616 2,679 1,668 1,133 626 6,721 X25 6,107 2,710 1,540 1,021 47	X12	9,702	2,769	1,298	835	499	15,103
X15 385 2,935 115 129 147 3,710 X16 385 2,817 813 526 254 4,796 X17 2,911 2,799 1,583 758 260 8,311 X18 7,700 2,940 671 364 242 11,918 X19 8,162 2,822 1,324 855 564 13,728 X20 8,194 2,866 927 261 270 12,518 X21 3,850 2,847 1,873 397 288 9,254 X22 7,700 2,784 1,262 806 366 12,919 X23 7,700 2,784 1,262 806 366 12,919 X23 7,700 2,791 1,627 874 204 13,196 X24 616 2,679 1,668 1,133 626 6,721 X25 6,107 2,710 1,540 1,021 47	X13	10,326	2,951	550	351	439	14,617
X16 385 2,817 813 526 254 4,796 X17 2,911 2,799 1,583 758 260 8,311 X18 7,700 2,940 671 364 242 11,918 X19 8,162 2,822 1,324 855 564 13,728 X20 8,194 2,866 927 261 270 12,518 X21 3,850 2,847 1,873 397 288 9,254 X22 7,700 2,784 1,262 806 366 12,919 X23 7,700 2,791 1,627 874 204 13,196 X24 616 2,679 1,668 1,133 626 6,721 X25 6,107 2,710 1,540 1,021 479 11,857 X26 6,983 2,711 1,569 1,100 571 12,933 X27 1,444 2,772 1,175 822	X14	5,339	2,796	1,215	677	384	10,411
X17 2,911 2,799 1,583 758 260 8,311 X18 7,700 2,940 671 364 242 11,918 X19 8,162 2,822 1,324 855 564 13,728 X20 8,194 2,866 927 261 270 12,518 X21 3,850 2,847 1,873 397 288 9,254 X22 7,700 2,784 1,262 806 366 12,919 X23 7,700 2,791 1,627 874 204 13,196 X24 616 2,679 1,668 1,133 626 6,721 X25 6,107 2,710 1,540 1,021 479 11,857 X26 6,983 2,711 1,569 1,100 571 12,933 X27 1,444 2,772 1,175 822 515 6,728 X28 2,464 2,783 1,013 627	X15	385	2,935	115	129	147	3,710
X18 7,700 2,940 671 364 242 11,918 X19 8,162 2,822 1,324 855 564 13,728 X20 8,194 2,866 927 261 270 12,518 X21 3,850 2,847 1,873 397 288 9,254 X22 7,700 2,784 1,262 806 366 12,919 X23 7,700 2,791 1,627 874 204 13,196 X24 616 2,679 1,668 1,133 626 6,721 X25 6,107 2,710 1,540 1,021 479 11,857 X26 6,983 2,711 1,569 1,100 571 12,933 X27 1,444 2,772 1,175 822 515 6,728 X28 2,464 2,783 1,013 627 353 7,239 X29 12,768 2,665 1,553 1,113	X16	385	2,817	813	526	254	4,796
X19 8,162 2,822 1,324 855 564 13,728 X20 8,194 2,866 927 261 270 12,518 X21 3,850 2,847 1,873 397 288 9,254 X22 7,700 2,784 1,262 806 366 12,919 X23 7,700 2,791 1,627 874 204 13,196 X24 616 2,679 1,668 1,133 626 6,721 X25 6,107 2,710 1,540 1,021 479 11,857 X26 6,983 2,711 1,569 1,100 571 12,933 X27 1,444 2,772 1,175 822 515 6,728 X28 2,464 2,783 1,013 627 353 7,239 X29 12,768 2,665 1,553 1,113 1,064 19,162 X30 2,254 2,806 1,064 654 </td <td>X17</td> <td>2,911</td> <td>2,799</td> <td>1,583</td> <td>758</td> <td>260</td> <td>8,311</td>	X17	2,911	2,799	1,583	758	260	8,311
X20 8,194 2,866 927 261 270 12,518 X21 3,850 2,847 1,873 397 288 9,254 X22 7,700 2,784 1,262 806 366 12,919 X23 7,700 2,791 1,627 874 204 13,196 X24 616 2,679 1,668 1,133 626 6,721 X25 6,107 2,710 1,540 1,021 479 11,857 X26 6,983 2,711 1,569 1,100 571 12,933 X27 1,444 2,772 1,175 822 515 6,728 X28 2,464 2,783 1,013 627 353 7,239 X29 12,768 2,665 1,553 1,113 1,064 19,162 X30 2,254 2,806 1,064 654 329 7,106 X31 7,700 2,826 674 451	X18	7,700	2,940	671	364	242	11,918
X21 3,850 2,847 1,873 397 288 9,254 X22 7,700 2,784 1,262 806 366 12,919 X23 7,700 2,791 1,627 874 204 13,196 X24 616 2,679 1,668 1,133 626 6,721 X25 6,107 2,710 1,540 1,021 479 11,857 X26 6,983 2,711 1,569 1,100 571 12,933 X27 1,444 2,772 1,175 822 515 6,728 X28 2,464 2,783 1,013 627 353 7,239 X29 12,768 2,665 1,553 1,113 1,064 19,162 X30 2,254 2,806 1,064 654 329 7,106 X31 7,700 2,826 674 451 188 11,839	X19	8,162	2,822	1,324	855	564	13,728
X22 7,700 2,784 1,262 806 366 12,919 X23 7,700 2,791 1,627 874 204 13,196 X24 616 2,679 1,668 1,133 626 6,721 X25 6,107 2,710 1,540 1,021 479 11,857 X26 6,983 2,711 1,569 1,100 571 12,933 X27 1,444 2,772 1,175 822 515 6,728 X28 2,464 2,783 1,013 627 353 7,239 X29 12,768 2,665 1,553 1,113 1,064 19,162 X30 2,254 2,806 1,064 654 329 7,106 X31 7,700 2,826 674 451 188 11,839	X20	8,194	2,866	927	261	270	12,518
X23 7,700 2,791 1,627 874 204 13,196 X24 616 2,679 1,668 1,133 626 6,721 X25 6,107 2,710 1,540 1,021 479 11,857 X26 6,983 2,711 1,569 1,100 571 12,933 X27 1,444 2,772 1,175 822 515 6,728 X28 2,464 2,783 1,013 627 353 7,239 X29 12,768 2,665 1,553 1,113 1,064 19,162 X30 2,254 2,806 1,064 654 329 7,106 X31 7,700 2,826 674 451 188 11,839	X21	3,850	2,847	1,873	397	288	9,254
X24 616 2,679 1,668 1,133 626 6,721 X25 6,107 2,710 1,540 1,021 479 11,857 X26 6,983 2,711 1,569 1,100 571 12,933 X27 1,444 2,772 1,175 822 515 6,728 X28 2,464 2,783 1,013 627 353 7,239 X29 12,768 2,665 1,553 1,113 1,064 19,162 X30 2,254 2,806 1,064 654 329 7,106 X31 7,700 2,826 674 451 188 11,839	X22	7,700	2,784	1,262	806	366	12,919
X25 6,107 2,710 1,540 1,021 479 11,857 X26 6,983 2,711 1,569 1,100 571 12,933 X27 1,444 2,772 1,175 822 515 6,728 X28 2,464 2,783 1,013 627 353 7,239 X29 12,768 2,665 1,553 1,113 1,064 19,162 X30 2,254 2,806 1,064 654 329 7,106 X31 7,700 2,826 674 451 188 11,839	X23	7,700	2,791	1,627	874	204	13,196
X26 6,983 2,711 1,569 1,100 571 12,933 X27 1,444 2,772 1,175 822 515 6,728 X28 2,464 2,783 1,013 627 353 7,239 X29 12,768 2,665 1,553 1,113 1,064 19,162 X30 2,254 2,806 1,064 654 329 7,106 X31 7,700 2,826 674 451 188 11,839	X24	616	2,679	1,668	1,133	626	6,721
X27 1,444 2,772 1,175 822 515 6,728 X28 2,464 2,783 1,013 627 353 7,239 X29 12,768 2,665 1,553 1,113 1,064 19,162 X30 2,254 2,806 1,064 654 329 7,106 X31 7,700 2,826 674 451 188 11,839	X25	6,107	2,710	1,540	1,021	479	11,857
X28 2,464 2,783 1,013 627 353 7,239 X29 12,768 2,665 1,553 1,113 1,064 19,162 X30 2,254 2,806 1,064 654 329 7,106 X31 7,700 2,826 674 451 188 11,839	X26	6,983	2,711	1,569		571	12,933
X28 2,464 2,783 1,013 627 353 7,239 X29 12,768 2,665 1,553 1,113 1,064 19,162 X30 2,254 2,806 1,064 654 329 7,106 X31 7,700 2,826 674 451 188 11,839	X27	1,444	2,772	1,175	822	515	6,728
X30 2,254 2,806 1,064 654 329 7,106 X31 7,700 2,826 674 451 188 11,839	X28	2,464	2,783	1,013	627	353	
X30 2,254 2,806 1,064 654 329 7,106 X31 7,700 2,826 674 451 188 11,839	X29	12,768	2,665	1,553	1,113	1,064	19,162
	X30	2,254	2,806	1,064	654		7,106
X32 4,635 2,716 1,588 1,035 523 10,497	X31	7,700	2,826	674	451	188	11,839
	X32	4,635	2,716	1,588	1,035	523	10,497

Total konstanta yang ditunjukkan pada Tabel 4.3 adalah penjumlahan dari konstanta masing-masing produk. Harga ini menunjukkan bobot keuntungan dari penjualan produk. Semakin besar nilai total konstanta sumur menunjukkan sumur tersebut semakin banyak menghasilkan keuntungan, oleh karena itu harus diutamakan untuk dibuka. Namun demikian optimasi masih perlu dilakukan mengingat adanya batasan-batasan yang harus diperhitungkan. Dari Tabel 4.3 juga terlihat bahwa konstanta yang paling berpengaruh adalah minyak kemudian gas ke pipa , propana ,butana dan kondensat. Hal ini dapat dilihat secara lebih jelas pada Gambar 4.1 berikut ini :


Gambar 4.1 Kontribusi Konstanta dari masing-masing Produk

Konstanta-konstanta ini jika dikalikan dengan laju alir gas maksimum dari masing-masing sumur didapatkan keuntungan maksimum dari masing-masing sumur. Nilai keuntungan maksimum tersebut disajikan pada Tabel 4.4 berikut ini:

Tabel 4.4 Keuntungan Maksimum setiap Sumur

						Total
No	keuntungan	keuntungan	keuntungan	Keuntungan	keuntungan	keuntungan
Sumur	Minyak	gas pipa	Propana	Butana	Kondensat	sumur (USD)
X1	71,148	59,647	35,560	24,280	21,057	211,692
X2	81,697	110,927	53,922	29,929	15,747	292,221
X3	308	108	98	54	8	575
X4	19,558	6,946	4,728	2,889	1,572	35,692
X5	165,319	109,995	49,855	28,044	12,705	365,918
X6	2,156	2,703	2,414	1,330	99	8,703
X7	27,181	12,366	5,967	3,839	2,477	51,830
X8	113,344	112,127	55,095	33,431	20,722	334,719
X9	20,097	5,481	3,090	1,913	1,033	31,613
X10	8,547	2,698	1,834	894	460	14,433
X11	168,168	104,580	51,909	38,355	32,441	395,453
X12	29,106	8,306	3,894	2,505	1,497	45,308
X13	103,257	29,510	5,500	3,513	4,390	146,170
X14	16,016	8,387	3,645	2,031	1,152	31,232
X15	13,475	102,738	4,008	4,499	5,143	129,863
X16	4,620	33,803	9,757	6,315	3,053	57,548
X17	116,424	111,959	63,316	30,325	10,414	332,438
X18	1,771	676	154	84	56	2,741
X19	179,564	62,088	29,132	18,813	12,409	302,006
X20	8,194	2,866	927	261	270	12,518
X21	173	128	84	18	13	416
X22	22,715	8,214	3,724	2,377	1,080	38,110
X23	231	84	49	26	6	396
X24	308	1,339	834	566	313	3,360
X25	97,713	43,362	24,634	16,330	7,667	189,706
X26	132,671	51,511	29,805	20,906	10,840	245,734
X27	1,155	2,217	940	658	412	5,383
X28	1,232	1,391	506	313	176	3,620
X29	140,448	29,311	17,079	12,240	11,704	210,782
X30	6,761	8,418	3,191	1,961	987	21,317
X31	1,001	367	88	59	24	1,539
X32	46,354	27,156	15,878	10,348	5,232	104,968
Total	1,600,712	1,061,409	481,617	299,105	185,161	3,628,004

Total keuntungan maksimum dari Tabel 4.4 dapat dilihat secara lebih jelas pada Gambar 4.2 berikut ini :

Gambar 4.2 Kontribusi Keuntungan Maksimum dari masing-masing Produk

4.1.3 Batasan-Batasan untuk Optimasi

Batasan kapasitas masing-masing sumur gas yang digunakan untuk optimasi dapat dilihat pada Tabel 4.5 berikut ini :

No Sumur	maks gas (MMSCFD)	No Sumur	maks gas (MMSCFD)	No Sumur	maks gas (MMSCFD)
X1/	22	X12	3	X23	0.03
X2	40	X13	10	X24	0.5
X3	0.04	X14	3	X25	16
X4	2.54	X15	35	X26	19
X5	39	X16	12	X27	0.8
X6	1	X17	40	X28	0.5
X7	4.5	X18	0.23	X29	11
X8	40	X19	22	X30	3
X9	2	X20	1	X31	0.13
X10	1	X21	0.045	X32	10
X11	38	X22	2.95	Total	380

Tabel 4.5 Batasan Kapasitas Sumur

Dari Tabel 4.4 tersebut dapat dilihat kapasitas laju alir gas maksimum dari setiap sumur pada saat katupnya dibuka penuh (100 % bukaan). Total laju alir gas yang dihasilkan dari semua sumur adalah sebesar 380 MMSCFD. Harga laju alir gas maksimum ini didapatkan dari pengetesan sumur yang dilakukan secara reguler pada setiap sumur oleh personil operasi. Harga laju alir gas maksimum yang kecil

menunjukkan sumur tersebut sedikit menghasilkan produksi gas sedangkan untuk nilai produksi minyaknya tergantung pada konstanta GOR. Sumur dengan laju alir gas bernilai kecil dan memiliki angka konstanta GOR yang kecil menunjukkan sumur tersebut dapat menghasilkan produk minyak yang banyak meskipun produksi gasnya kecil. Sementara sumur yang memiliki laju alir gas kecil dan harga GOR yang besar menunjukkan sumur tersebut adalah sumur yang tidak produktif dikarenakan menghasilkan produki gas maupun minyak yang kecil.

Batasan kapasitas pemrosesan gas yag digunakan untuk optimasi didapatkan dari kapasitas kompresor dan permintaan/nominasi gas dari pembeli. Dikarenakan kapasitas kompresor bernilai 360 MMSCFD lebih besar dari batasan permintaan pembeli sebesar 300 MMSCFD, maka batasan kapasitas yang digunakan adalah permintaan pembeli. Sehingga batasan kapasitas pemrosesan gas menjadi :

$$X_{gas}1 + X_{gas}2 + X_{gas}3 + \dots + X_{gas}n \le 300$$
(4.6)

Dari harga maksimum aliran gas yang ada pada Tabel 4.5, juga dapat digunakan untuk menghitung laju alir minyak maksimum dan laju alir air maksimum. Tabel 4.6 menunjukkan nilai dari hasil perhitungan tersebut

Tabel 4.6 Batasan Kapasitas Pemrosesan Cairan

No Sumur	konstanta total cairan =(1/GOR)* (1+Wc/(1- Wc))	total cairan = Xgas max * konstanta total cairan	No Sumur	konstanta total cairan =(1/GOR)* (1+Wc/(1- Wc))	total cairan = Xgas max * konstanta total cairan
X1	42.0	924.9	X17	75.6	3024.0
X2	46.5	536.7	X18	100.1	23.0
X3	357.1	14.3	X19	169.0	3719.0
X4	100.1	254.3	X20	1065.7	1065.7
X5	157.3	6135.0	X21	50.5	2.3
X6	28.2	28.2	X22	100.0	295.0
X7	85.1	383.0	X23	445.5	13.4
X8	66.9	2676.0	X24	8.0	0.0
X9	237.5	475.0	X25	101.5	1624.0
X10	372.0	372.0	X26	96.7	1837.0
X11	205.3	7801.0	X27	23.8	0.0
X12	148.0	444.0	X28	32.0	0.0
X13	138.3	1383.0	X29	178.1	1959.0
X14	73.0	219.0	X30	29.3	0.0
X15	5.0	0.0	X31	100.0	13.0
X16	5.0	0.0	X32	116.5	1165.0
				Total	36,387

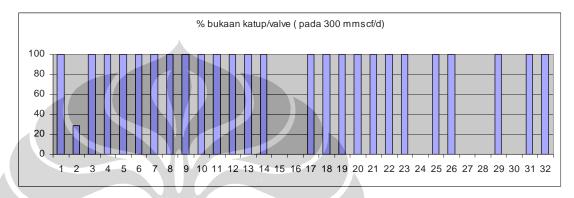
Dari Tabel 4.6 tersebut terlihat bahwa jumlah cairan (air dan minyak) yang dihasilkan dari semua sumur sebesar 36,387 bbls. Nilai ini lebih kecil dari kapasitas pemrosesan di separator sebesar 50,000 bbls, sehingga jika semua sumur dibuka pada bukaan katup 100%, maka semua cairanya dapat diproses. Dikarenakan jumlah total dari semua cairan di sumur lebih kecil dari batasan pemrosesan cairan, maka pada kasus ini tidak dapat digunakan sebagai batasan optimasi.

Dengan demikian maka batasan aliran cairan menjadi :

$$\left(\frac{X_{gas}1}{GOR1}\left(1+\frac{W_{c}1}{1-W_{c}1}\right)\right)+\left(\frac{X_{gas}2}{GOR2}\left(1+\frac{W_{c}2}{1-W_{c}2}\right)\right)+\dots+\left(\frac{X_{gas}n}{GORn}\left(1+\frac{W_{c}n}{1-W_{c}n}\right)\right)\leq 50,000\dots(\textbf{4.7})$$

Sehingga untuk batasan kapasitas pemrosesan yang digunakan yaitu hanya pemrosesan gas.

4.1.4 Hasil Optimasi Laju Alir Sumur Gas


Dengan menjalankan program solver di excel, diperoleh kombinasi laju alir masing-masing sumur sebagaimana ditunjukkan pada Tabel 4.7 berikut ini :

Tabel 4.7 Laju Alir Gas Optimum

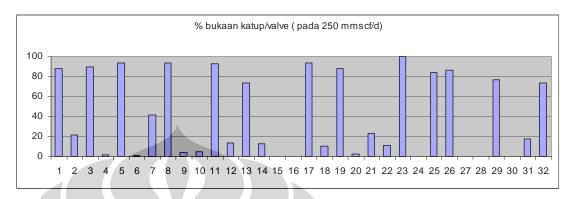
	,			
		bukaan	laju alir	laju alir
No	laju alir gas	katup	minyak	air
Sumur	(MMSCFD)	(%)	(bbls/d)	(bbls/d)
X1	22.000	100	924	0.9
X2	11.535	29	306	230.7
X3	0.040	100	4	10.3
X4	2.540	100	254	0.3
X5	39.000	100	2147	3988.0
X6	1.000	100	28	0.2
X7	4.500	100	353	30.0
X8	40.000	100	1472	1204.0
X9	2.000	100	261	214.0
X10	1.000	100	111	261.0
X11	38.000	100	2184	5617.0
X12	3.000	100	378	66.0
X13	10.000	100	1341	42.0
X14	3.000	100	208	11.0
X15	0.000	0	0	0.0
X16	0.000	0	0	0.0
X17	40.000	100	1512	1512.0
X18	0.230	100	23	0.0
X19	22.000	100	2332	1387.0
X20	1.000	100	106	959.3
X21	0.045	100	2	0.0
X22	2.950	100	295	0.0
X23	0.030	100	3	10.4
X24	0.000	0	0	0.0
X25	16.000	100	1269	355.0
X26	19.000	100	1723	114.0
X27	0.000	0	0	0.0
X28	0.000	0	0	0.0
X29	11.000	100	1824	135.0
X30	0.000	0	0	0.0
X31	0.130	100	13	0.0
X32	10.000	100	602	563.0
Total	300		19676	16711
		<u>I</u>		/

Dari Tabel 4.7 terlihat sumur X15, X16, X24 ,X27, X28, X30 ditutup, sumur X2 dibuka 29% sedangkan sumur lainya dibuka 100% .

Dengan total gas yang diproses sebesar 300 MMSCFD, total cairan minyak dan air yang diproses sebesar 36,386 bblsd dan keuntungan yang dihasilkan sebesar 3,198,961 USD. Hal ini dapat dilihat secara lebih jelas pada Gambar 4.3.

Gambar 4.3 Bukaan Katup Sumur pada Laju Alir 300 MMSCFD

Bukaan sumur X2 sebesar 29% menghasilkan aliran gas sebesar 11.5 MMSCFD. Jika sumur ini dibuka hingga bukaan katup 100% akan dihasilkan laju alir gas maksimum sebesar 40 MMSCFD. Sebagai konsekuensi total gas yg dialirkan ada tambahan sebesar 28,5 MMSCFD. Sehingga total gas yag dialirkan menjadi 328,5 MMSCFD. Hal ini mengakibatkan gasnya melebihi permintaan pembeli. Sehingga sumur X2 ini tidak ekonomis untuk dibuka katupnya secara penuh meskipun cairan yang diproduksi masih di bawah kapasitas separator.


Lebih jauh lagi, jika permintaan pembeli berkurang menjadi 250 MMSCFD, hasil optimasi laju alir sumur dapat ditunjukkan pada Tabel 4.8 berikut ini:

Tabel 4.8 Solusi Laju Alir pada 250 MMSCFD

	Solusi laju	%	laju alir	laju alir
No	alir Xgas	bukaan	minyak	air
Sumur	(MMSCFD)	katup	(bbls/d)	(bbls/d)
X1	19.336	88	812.1	0.8
X2	8.512	21	225.8	170.2
X3	0.036	89	3.6	9.2
X4	0.034	1	3.4	0
X5_	36.371	93	2002.3	3719.2
X6	0.008	1	0.2	0
X7	1.882	42	147.6	12.5
X8	37.366	93	1375.1	1124.7
X9	0.078	4	10.2	8.4
X10	0.047	5	5.2	12.3
X11	35.376	93	2033.2	5229.2
X12	0.399	_13	50.3	8.8
X13	7.397	74	991.9	31.1
X14	0.376	13	26.1	1.4
X15	0	0	0	0
X16	0	0	0	0
X17	37.366	93	1412.4	1412.4
X18	0.024	10	2.4	0
X19	19.393	88	2055.6	1222.6
X20	0.027	3	2.8	25.6
X21	0.011	24	0.5	0
X22	0.339	11	33.9	0
X23	0.03	100	3	10.4
X24	0	0	0	0
X25	13.383	84	1061.5	296.9
X26	16.389	86	1486.2	98.3
X27	0	0	0	0
X28	0.001	0	0	0
X29	8.419	77	1396.1	103.3
X30	0	0	0	0
X31	0.023	18	2.3	0
X32	7.377	74	444.1	415.3
1				

Dari Tabel 4.8 terlihat total cairan yang di proses sebesar 29,500 bbls/d dan laju alir gas 250 MMSCFD dan bukaan katup sumur mengalami perubahan

konfigurasi, beberapa sumur dibuka sekitar 80% dan beberapa sumur dibuka sekitar 20%. Hal ini dapat dilihat secara lebih jelas pada Gambar 4.4 berikut ini :

Gambar 4.4 Bukaan Katup Sumur pada Laju Alir 250 MMSCFD

4.1.4 Komposisi Gas Hasil Pencampuran

Untuk mendapatkan komposisi gas menuju umpan gas menuju unit fraksinasi LPG dan Kondensat, dilakukan pencampuran gas sesuai persamaan berikut ini :

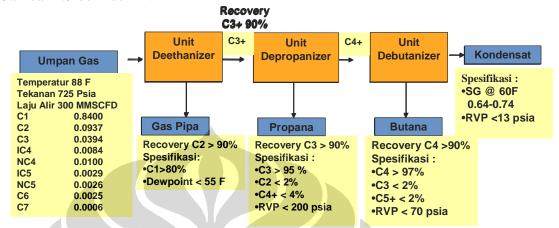
•
$$%C_{1}campuran = \frac{%C_{1}1.X_{gas}1 + %C_{1}2.X_{gas}2 + ... + %C_{1}n.X_{gas}n}{X_{gas}1 + X_{gas}2 + ... + X_{gas}n}$$

•
$$%C_2 campuran = \frac{%C_2 1.X_{gas} 1 + %C_2 2.X_{gas} 2 + ... + %C_2 n.X_{gas} n}{X_{gas} 1 + X_{gas} 2 + ... + X_{gas} n}$$

• ...

•
$$%C_{3}campuran = \frac{%C_{7}1.X_{gas}1 + %C_{7}2.X_{gas}2 + ... + %C_{7}n.X_{gas}n}{X_{gas}1 + X_{gas}2 + ... + X_{gas}n}$$
(4.8)

Setelah dilakukan perhitungan maka dihasilkan komposisi gas yang dapat dilihat pada Tabel 4.9. Dari Tabel 4.9 terlihat bahwa komposisi propana 3.94 %, komposisi butana 1.84 % dan komposisi pentana + 0.85%. Komposisi ini diharapkan dapat diambil semaksimal mungkin untuk memaksimalkan pengambilan produk LPG dan Kondensat. Hal ini karena produk tersebut memiliki nilai keekonomian yang lebih tinggi tinggi jika dibandingkan dengan gas yang dijual dalam bentuk fasa gas melalui pipa. Komposisi gas ini yang akan digunakan sebagai umpan menuju unit fraksinasi

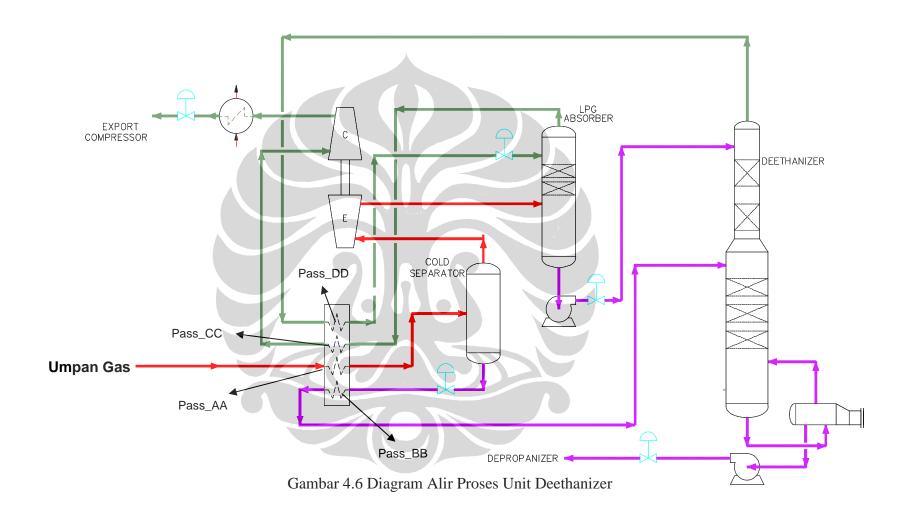

LPG dan Kondensat untuk selanjutnya digunakan untuk simulasi menggunakan software Hysys untuk mendapatkan kondisi proses dengan recovery maksimal dan memenuhi spesifikasi produk penjualan.

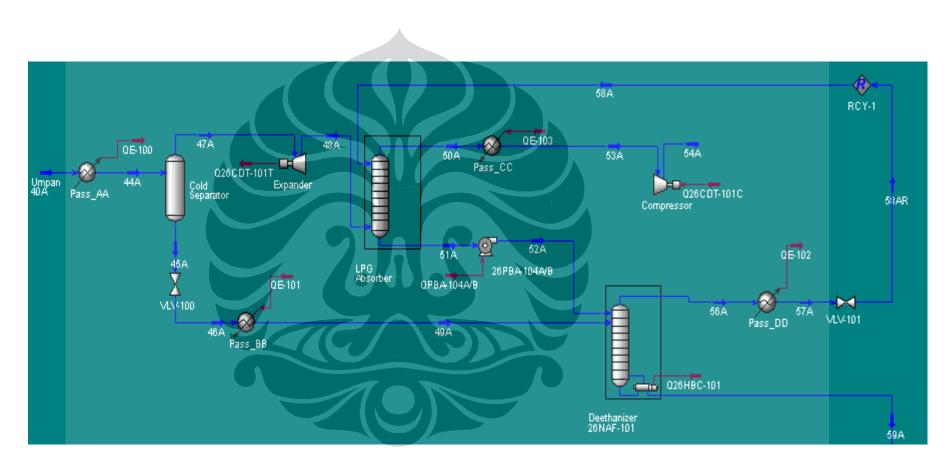
Tabel 4.9 Komposisi Gas Campuran

	komponen	komposisi	
	C1	0.8400	
	C2 C3	0.0937	
	C3	0.0394	
	iC4	0.0084	
	nC4	0.0100	
	iC5	0.0029	
	nC5	0.0026	
	C6	0.0025	
	C7	0.0006	
7.			

4.2 HASIL SIMULASI HYSYS PADA LAJU ALIR 300 MMSCFD

Simulasi Hysys yang dilakukan pada unit peralatan seperti ditunjukkan pada Gambar 4.5 berikut ini :




Gambar 4.5 Blok Diagram Simulasi Hysys

Dari Gambar 4.5 terlihat, ada tiga bagian modul simulasi Hysys yang akan dilakukan yaitu unit deethanizer, unit depropanizer dan unit debutanizer. Unit deethanizer menghasilkan produk gas jual ke pipa dan umpan gas menuju unit depropanizer. Pada unit depropanizer, gas yang keluar dari bagian bawah kolom deethanizer diambil komponen propananya. Sementara gas yang keluar dari bagian bawah kolom depropanizer menuju unit debutanizer untuk diambil komponen butana dan kondensatnya.

4.2.1 Hasil Simulasi pada unit Deethanizer

Diagram alir proses untuk unit deethanizer dapat dilihat pada Gambar 4.6. Sementara diagram alir proses pada simulasi Hysys dapat ditunjukkan pada Gambar 4.7.

Gambar 4.7 Diagram Alir Simulasi Hysys pada Unit Deethanizer

Diagram alir simulasi Hysys yang ditunjukkan pada Gambar 4.7 terlihat sedikit berbeda dengan diagram alir proses yang ditunjukkan pada Gambar 4.6. Letak perbedaanya yaitu pada peralatan heat exchanger. Pada Gambar 4.6, heat exchanger yang digunakan menggunakan compacted LNG heat exchanger, sementara pada Gambar 4.7 menggunakan 4 buah single Heat exchanger. Hal ini bertujuan untuk lebih menyederhanakan simulasi yang akan dilakukan. Namun demikian perubahan temperatur masuk dan temperatur keluar dari masing-masing heat exchanger dibuat sama antara yang menggunakan 4 buah single heat exchanger dengan yang menggunakan compacted LNG heat exchanger. Temperatur masuk dan keluar di masing-masing heat exchanger tersebut disajikan sebagaimana pada Tabel 4.10 berikut ini:

Tabel 4.10 Temperatur pada Heat Exchanger

Heat	T_masuk	T_keluar		
exchanger	(F)	(F)	gas dari	gas menuju
			umpan gas	masukan
			unit	Cold
Pass_AA	88.5	0.0	deethanizer	separator
			keluaran	
			bagian bawah	umpan gas
			Cold	kolom
Pass_BB	-29.1	82.5	separator	deethanizer
			keluaran	
			bagian atas	
	11		LPG	masukan
Pass_CC	-97.5	83.5	Absorber	kompressor
			keluaran	
			bagian atas	masukan
			kolom	LPG
Pass_DD	-0.7	-91.3	deethanizer	Absorber

Pada simulasi ini, data T_keluar dari masing-masing Heat Exchanger dan T_masuk heat exchanger pass_AA (umpan unit deethanizer) ditentukan, sedangkan T_masuk dari heat exchanger Pass_BB, heat exchanger Pass_CC dan heat exchanger Pass_DD diperoleh dari hasil simulasi.

Selain itu, tekanan masuk dan keluar expander juga ditentukan sebagaimana terlihat pada Tabel 4.11. Dalam hal ini temperatur keluar expander akan dihasilkan dari simulasi Hysys.

Tabel 4.11 Tekanan di Expander

Expander	Tekanan(psi)	Tekanan(psi)
Ekspansi		
gas	718	215

Sementara itu, kolom deethanizer ditentukan/dispesifikasi dengan kondisi proses yang ditunjukkan pada Tabel 4.12.

Tabel 4.12 Spesifikasi Kolom Deethanizer

Kolom deethanizer	spesifikasi
Recovery C2	0.99
Tekanan Umpan kolom	
/Reboiler (psia)	248.7
Tekanan LPG	
Absorber (psia)	244.7
Jumlah tahap	21
Lokasi umpan	10

Dari Tabel 4.12 terlihat kondisi yang dispesifikasi yaitu recovery C2, tekanan umpan dan tekanan LPG absorber yang berfungsi sebagai kondenser. Sedangkan jumlah tahap dan lokasi umpan disesuaikan dengan peralatan yang terpasang di lapangan.

Setelah dilakukan simulasi, diperoleh hasil kalkulasi kondisi oleh software Hysys di kolom deethanizer seperti ditunjukkan pada Tabel 4.13.

Tabel 4.13 Kondisi Proses Kolom Deethanizer

kolom Deethanizer	kondisi proses
Temperatur reboiler (F)	162
Fraksi C2 di atas kolom	0.434
Fraksi C1 di atas kolom	0.485
Fraksi C3+ di bawah kolom	0.995
Laju alir total di bagian	
bawah (MMSCFD)	17.8
Laju alir C3 + di bagian	
bawah	
(MMSCFD)	17.7

Dari Tabel 4.13 didapatkan temperatur reboiler sebesar 162 F pada kolom deethanizer yang akan digunakan sebagai setpoint bagi operasi kolom deethanizer. Sedangkan kondisi aliran gas secara lengkap dari masing-masing peralatan disajikan pada Tabel 4.14.

Tabel 4.14 Kondisi Proses Aliran Gas pada Unit Deethanizer

				-										
No	1 .	Fraksi	TP (TP)	P) A AGGED	A 01	G2	G2	:04	G4	:05	0.5	O.C	07
Stream	keterangan	Uap	T (F)	(psia)	MMSCFD	C1	C2	C3	iC4	nC4	iC5	nC5	C6	C7
	umpan unit													
40A	deethanizer	1.0	88.5	724.7	300.0	0.8400	0.0937	0.0394	0.0084	0.0100	0.0029	0.0026	0.0025	0.0006
	umpan setelah													
44A	pendingin	0.9	0.0	717.7	300.0	0.8400	0.0937	0.0394	0.0084	0.0100	0.0029	0.0026	0.0025	0.0006
	bagian bawah													
45A	cold separator	0.0	0.0	717.7	16.7	0.3369	0.1750	0.1943	0.0701	0.0982	0.0378	0.0368	0.0413	0.0096
	bagian atas		A.				4,444		7.					
47A	Cold separator	1.0	0.0	717.7	283.3	0.8696	0.0889	0.0302	0.0048	0.0048	0.0008	0.0006	0.0002	0.0000
	keluaran													
	Expander													
	menuju bagian													
	bawah LPG													
48A	Absorber	0.9	-85.3	214.7	283.3	0.8696	0.0889	0.0302	0.0048	0.0048	0.0008	0.0006	0.0002	0.0000
	masukan bagian					$\mathcal{L}\mathcal{L}$								
	atas LPG													
58A	absorber	0.4	-96.7	209.7	21.8	0.4847	0.4338	0.0738	0.0045	0.0029	0.0002	0.0001	0.0000	0.0000
	bagian bawah													
	Kolom LPG													
51A	Absorber	0.0	-86.3	212.7	23.0	0.2160	0.2888	0.3507	0.0624	0.0613	0.0102	0.0074	0.0029	0.0002
	bagian atas													
	Kolom LPG													
50A	Absorber	1.0	-97.5	209.7	282.2	0.8931	0.0993	0.0075	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000
	keluaran													
53A	Pass_CC	1.0	83.5	200.7	282.2	0.8931	0.0993	0.0075	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000
54A	Gas menuju	1.0000	152.7	306.7	282.2	0.8931	0.0993	0.0075	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000
J-7/1	pipa	1.0000	152.1	300.7	202.2	0.0731	0.0773	0.0073	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000

Tabel 4.14 Kondisi Proses Aliran Gas pada Unit Deethanizer (lanjutan)

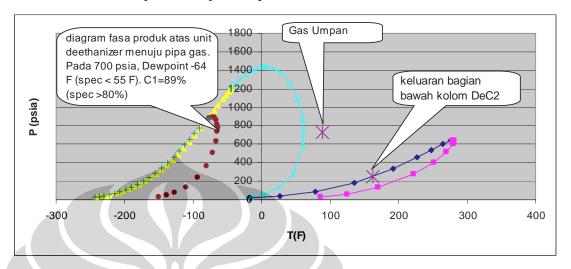
	1	1	1	1	ı		ı	ı	1		1	Г		1
No		Fraksi		P										
Stream	keterangan	Uap	T (F)	(psia)	MMSCFD	C1	C2	C3	iC4	nC4	iC5	nC5	C6	C7
	keluaran													
46A	VLV-100	0.3	-29.1	257.7	16.7	0.3369	0.1750	0.1943	0.0701	0.0982	0.0378	0.0368	0.0413	0.0096
	umpan													
	kolom													
49A	deethanizer	0.6	82.5	248.7	16.7	0.3369	0.1750	0.1943	0.0701	0.0982	0.0378	0.0368	0.0413	0.0096
	Refluks		Λ											
	kolom													
52A	deethanizer	0.0	-85.9	248.7	23.0	0.2160	0.2888	0.3506	0.0624	0.0614	0.0102	0.0074	0.0029	0.0002
	bagian								Δ					
	bawah													
	kolom													
59A	deethanizer	0.0	162.0	248.7	17.8	0.0000	0.0048	0.5436	0.1406	0.1673	0.0483	0.0438	0.0423	0.0093
	bagian atas													
	kolom													
	deethan	1												
56A	izer	1.0	-0.7	244.7	21.8	0.4846	0.4338	0.0738	0.0045	0.0029	0.0002	0.0001	0.0000	0.0000
	keluaran													
57A	Pass_DD	0.4	-91.3	242.7	21.8	0.4846	0.4338	0.0738	0.0045	0.0029	0.0002	0.0001	0.0000	0.0000
	keluaran													
58AR	VLV_101	0.4	-96.7	209.7	21.8	0.4846	0.4338	0.0738	0.0045	0.0029	0.0002	0.0001	0.0000	0.0000

Dari data Tabel 4.14 ini dapat dilakukan analisis kondisi proses aliran gas dari masing-masing peralatan yang dapat dijelaskan sebagaimana berikut ini :

Umpan gas (40A) dengan laju molar 300 MMSCFD, tekanan 724.7 psia dan temperatur 88.5 F didinginkan di heat exchanger Pass_AA hingga mencapai temperatur 0 F.

Pendinginan di heat exhanger Pass_AA ini berasal dari pertukaran panas dari gas dingin (48A) yang berasal dari proses ekspansi di expander.

Setelah gas umpan (40A) mengalami pendinginan di heat exchanger pass_AA maka kemudian mengalami flashing di tangki Cold separator. Di bagian bawah tangki cold separator, gas (45A) memiliki fasa cair (fraksi uap 0) dengan laju molar 16.7 MMSCFD dan komposisi C1= 0.33, C2 = 0.17 dan C3+ 0.5. Sementara gas di bagian atas tangki cold separator (47A) memiliki fraksi uap 1, laju alir 283.3 MMSCFD dengan komposisi C1= 0.86, C2= 0.09 dan C3+ = 0.04.


Gas yang keluar dari bagian atas cold separator ini (47A) kemudian diekspansikan di expander untuk menghasilkan pendinginan yang akan dipakai untuk mendinginkan gas lainya di heat exchanger. Proses expansi gas ini seperti ditunjukkan pada Tabel 4.14 di no.stream 47A dan 48 A. Ekspansi gas ini terjadi dari tekanan 718 psia hingga tekanan 215 psia. Perubahan temperatur akibat proses ekspansi di expander ini mengakibatkan temperaturnya turun dari 0 F menjadi -85 F.

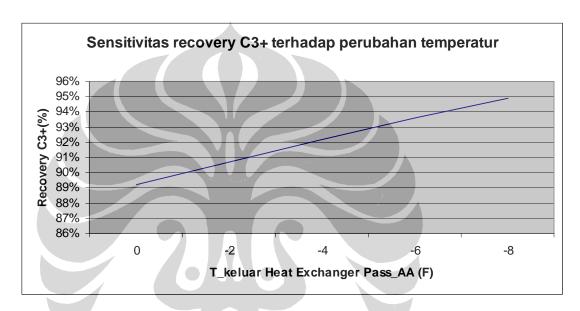
Setelah gas (47A) mengalami pendinginan di expander kemudian terjadi flashing di kolom LPG Absorber. Gas yang terflashing di kolom LPG Absorber pada bagian bawah kolom yaitu gas (51A) memiliki laju alir 23 MMSCFD, komposisi C3+ = 0.5 dan fraksi uap 0, selanjutnya menuju kolom deethanizer bagian atas. Sementara gas (50A) yang keluar dari bagian atas LPG Absorber memiliki laju alir 282.2 MMSCFD dan komponen C1=0.89, C2=0.28, C3+ =0.5 akan menuju heat exchanger pass_CC untuk dipanaskan sebelum memasuki kompresor dan menuju kompresor tekanan tinggi sebelum dijual melalui pipa.

Gas (45A) yang keluar di bagian bawah tangki cold separator sebelum memasuki kolom deethanizer melewati katup VLV-100 terlebih dahulu dan mengalami penurunan tekanan dari 717 psia ke 257 psia yang diikuti penurunan temperatur dari 0 F ke -29 F. Gas (46A) ini kemudian melewati heat exchanger pass _BB untuk mengalami pemanasan dari temperatur -29 F ke temperatur 82.5 F. Setelah gas ini mengalami pemanasan kemudian memasuki kolom deethanizer sebagai umpan gas kolom deethanizer.

Kondisi umpan kolom deethanizer ini (49A) memiliki fraksi uap 0.6 dengan komposisi C3+=0.5, C1=0.33, C2 =0.175, tekanan 248.7 psia dan temperatur 82.5 F. Gas umpan pada kolom deethanizer kemudian memasuki tahap ke 10 dari total 25 tahap destilasi yang kemudian terjadi proses fraksinasi di kolom deethanizer. Pada bagian bawah kolom deethanizer, gas dipanaskan oleh temperatur reboiler dengan set kondisi temperatur 162 F agar komponen ethana dapat menguap dan menuju bagian atas kolom. Komponen gas pada bagian bawah kolom deethanizer (59A) memilki laju alir 17.82 MMSCFD dengan komposisi C3+ =0.99, C1= 0 dan C2= 0.0048. Sedangkan gas yang keluar di bagian atas kolom deethanizer (56A) memiliki temperatur -0,7 F laju alir 21.8 MMSCFD, tekanan 244,7 psia dan komposisi C1=0.48, C2 =0.43, C3+ 0.08. Gas yang keluar pada bagian atas ini kemudian menuju heat excanger pass DD untuk mengalami pendinginan dari -0.7 F ke 91.3 F sebelum memasuki kolom LPG Absorber. Pendinginan di heat exchanger ini juga diperoleh dari proses ekspansi gas di expander yang bersumber dari heat exchanger pass_AA. Setelah memasuki kolom LPG Absorber, gas ini mengalami flashing dan gas yang keluar di bagian bawah kolom LPG Absorber ini akan direflukskan kembali ke kolom deethanizer. Gas yang keluar dari bagian bawah kolom deethanizer ini (59A) memiliki laju alir komponen C3+ 17.7 MMSCFD. Nilai ini jika dibandingkan dengan laju alir dari umpan gas di unit deethanizer yaitu sebesar C3+ 19,8 MMSCFD, didapatkan recovery C3+ = 90%. Sehingga dari hasil ini dapat disimpulkan bahwa komponen LPG dan kondensat yang terambil dari umpan gas unit deethanizer sekitar 90%.

Diagram P dan T antara kondisi gas umpan dengan kondisi keluaran bagian bawah kolom deethanizer seperti ditunjukkan pada Gambar 4.8

Gambar 4.8 Perbandingan Diagram Fasa Gas Umpan dengan Keluaran Kolom

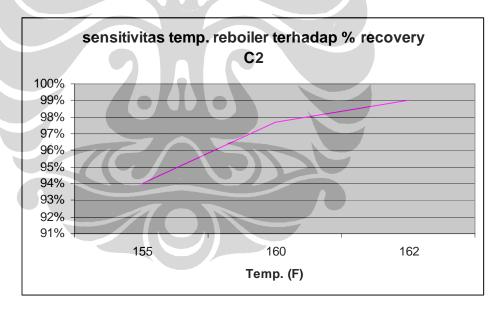

Deethanizer bagian Bawah

Dari Gambar 4.8 ini terlihat unit deethanizer ini menggeser diagram fasa ke kanan dengan bentuk kurva yang lebih ramping. Gas keluaran bagian bawah kolom deethanizer ini untuk selanjutnya di proses di unit depropanizer dan unit debutanizer untuk diambil LPG dan Kondensatnya. Sedangkan produk atas unit deethanizer ini menuju pipa gas untuk dijual menuju pipa. Dari Gambar 4.8 juga terlihat dewpoint gas menuju gas pipa memenuhi spesifikasi bernilai -64 F pada tekanan 700 psia. Harga dewpoint sesuai spesifikasi berharga maksimum 55 F pada tekanan 700 psia. Komposisi gas menuju gas pipa ini seperti ditunjukkan pada Tabel 4.14 no stream 54A terlihat fraksi Methana 89%. Harga komposisi Methana sesuai spesifikasi yaitu minimal 80%.

Simulasi yang dijalankan pada unit deethanizer ini dilakukan dengan cara mencoba coba mengubah variabel proses seperti memvariasikan temperatur keluaran umpan setelah heat exchanger pass_AA dan juga temperatur reboiler pada kolom deethanizer. Variabel ini dipilih untuk menyederhakan simulasi Hysys yang

dilakukan, sedangkan pengaruh variabel proses yang lainya tidak ditinjau pada penelitian ini.

Pengaruh perubahan temperatur umpan unit deethanizer setelah melewati heat exchanger pass_AA dengan recovery C3+ yang dihasilkan disajikan pada Gambar 4.9 berikut ini:



Gambar 4.9 Sensitivitas Perubahan Temperatur Umpan terhadap Produk C3+

Dari gambar 4.9 terlihat bahwa semakin dingin temperatur gas setelah heat exchanger pass_AA maka semakin besar C3+ yang dihasilkan. Penurunan temperatur ini dapat dilakukan dengan cara menurunkan temperatur umpan gas unit deethanizer atau memperbesar hilang tekan pada expander. Sebagaimana dijelaskan sebelumnya sebelum gas memasuki kolom deethanizer terlebih dahulu memasuki peralatan expander. Peralatan Expander ini pada prinsipnya adalah sistem pendingin dengan menggunakan hilang tekan pada proses. Semakin besar hilang tekan pada expander maka semakin dingin temperatur yang dihasilkan sehingga temperatur umpan gas unit deethanizer setelah heat exchanger pass_AA juga semakin dingin. Dengan semakin dinginya temperatur ini maka proses flashing di cold separator akan semakin banyak

menghasilkan fraksi cairan yang merupakan komponen C3+. Selain untuk mendinginkan gas umpan unit dethanizer, gas dingin hasil keluaran Expander juga untuk mendinginkan gas yang keluar dari bagian atas kolom deethanizer. Jika temperatur ini semakin dingin, proses flashing di LPG Absorber juga semakin banyak menghasilkan fraksi cairan yang mengandung banyak komponen C3+ untuk selanjutnya dialirkan menuju kolom deethanizer sebagai refluks. Sehingga dapat disimpulkan bahwa semakin dingin temperatur gas setelah heat exchanger pass_AA ini maka semakin besar C3+ yang dihasilkan.

Selain melihat pengaruh temperature umpan juga dilihat pengaruh temperatur reboiler pada kolom deethanizer. Hubungan antara temperatur reboiler dengan dengan recovery C2 yang dihasilkan, disajikan pada Gambar 4.10 berikut ini:


Gambar 4.10 Sensitivitas Perubahan Temperatur Reboiler terhadap Recovery C2

Dari Gambar 4.10 terlihat bahwa jika temperatur reboiler di kolom deethanizer temperatur reboiler dinaikkan maka recovery C2 naik. Namun pada suatu harga temperatur reboiler tertentu hingga recoverynya mendekati 100% penaikan


harga temperatur reboiler tidak mengakibatkan penambahan recovery C2 secara berarti.

4.2.2 Hasil Simulasi pada unit Depropanizer

Diagram alir proses untuk unit depropanizer dapat dilihat pada Gambar 4.11. Sementara diagram alir proses pada simulasi Hysys seperti ditunjukkan pada Gambar 4.12.

Gambar 4.11 Diagram Alir Proses Unit Depropanizer

Gambar 4.12 Diagram Alir Simulasi Hysys Unit Depropanizer

Pada simulasi kolom depropanizer ini varaibel yang dispesifikasi ditunjukkan pada Tabel 4.15

Tabel 4.15 Spesifikasi Simulasi Kolom Depropanizer

Kolom	
Depropanizer	spesifikasi
C3 recovery	0.99
Fraksi C3 di atas	0.96
Tekanan umpan	
/reboiler (psia)	226.7
Tekanan condenser	
(psia)	224.7
Jumlah tahap	25
Lokasi umpan	10

Dari Tabel 4.15 terlihat data yang dispesifikasi yaitu C3 recovery dan fraksi C3 di bagian atas kolom. Hal ini dimaksudkan untuk mendapatkan pengambilan maksimum yang diindikasikan oleh besarnya C3 recovery, juga agar kualitas produk mengikuti spesifikasi penjualan yang diindikasikan oleh fraksi komponen C3 di atas kolom minimal 95%. Data lainya yang dispesifikasi yaitu tekanan umpan dan tekanan condenser, sedangkan untuk jumlah tahap dan lokasi umpan disesuaikan dengan kondisi peralatan di lapangan.

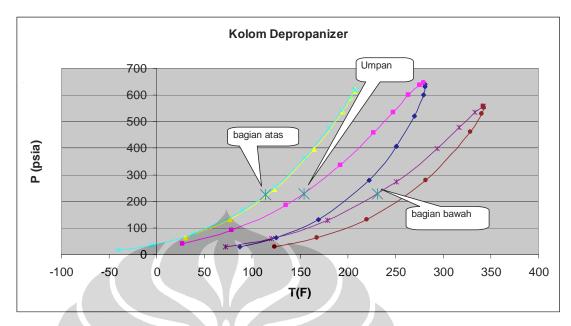
Setelah dilakukan simulasi, diperoleh hasil kalkulasi kondisi proses oleh software Hysys di kolom depropanizer dapat ditunjukkan pada Tabel 4.16

Tabel 4.16 Kondisi Proses Kolom Depropanizer

kolom Depropanizer	kondisi proses
Fraksi C4+ di atas kolom	0.037
Temperatur reboiler (F)	231
Rasio Refluks	1.804
Fraksi C2 di atas kolom	0.009
RVP di atas kolom (psia)	187
Fraksi C3 di bawah kolom	0.001
Laju alir C3 (MMSCFD)	9.6
Temperatur condenser (F)	114

Sedangkan kondisi aliran gas secara lengkap dari masing-masing peralatan disajikan pada Tabel 4.17

Tabel 4.17 Kondisi Proses Aliran Gas pada Unit Depropanizer


No Stream	71A	77A	75A
		bagian bawah	bagian atas
	umpan kolom	kolom	kolom
keterangan	depropanizer	depropanizer	depropanizer
Fraksi Uap	0.1	0.0	0.0
T (F)	154.7	231.0	113.8
P (psia)	226.7	226.7	224.7
F (MMSCFD)	17.8	7.8	10.0
C1	0.0000	0.0000	0.0000
C2	0.0048	0.0000	0.0086
C3	0.5436	0.0100	0.9600
iC4	0.1406	0.2865	0.0267
nC4	0.1673	0.3757	0.0047
iC5	0.0483	0.1101	0.0000
nC5	0.0438	0.1000	0.0000
C6	0.0423	0.0965	0.0000
C 7	0.0093	0.0212	0.0000

Jika dibandingkan kualitas produk yang dihasilkan dengan spesifikasi penjualan yaitu seperti ditunjukkan pada Tabel 4.18 berikut ini :

Tabel 4.18 Kualitas Produk Propana

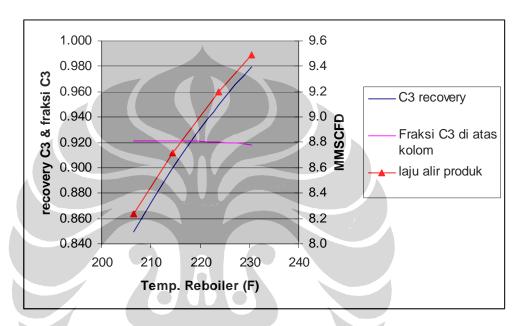
110	kualitas	
Propana	produk	spesifikasi
C3	96%	> 95%
C2	0.86%	< 2%
C4+	3.14%	< 4%
RVP	187.1 psia	< 200 psia

Diagram P dan T antara kondisi gas umpan dengan kondisi bagian atas dan bawah kolom depropanizer seperti ditunjukkan pada Gambar 4.13

Gambar 4.13 Perbandingan Diagram Fasa Gas Umpan dengan Keluaran Kolom Depropanizer

Dari Gambar 4.13 ini terlihat unit depropanizer ini menggeser diagram fasa ke kiri dengan bentuk kurva yang lebih ramping untuk menghasilkan produk propana sedangkan diagram fasa yang berada di sebelah kanan umpan yang sebagian besar komponenya adalah C4+ akan menuju unit debutanizer.

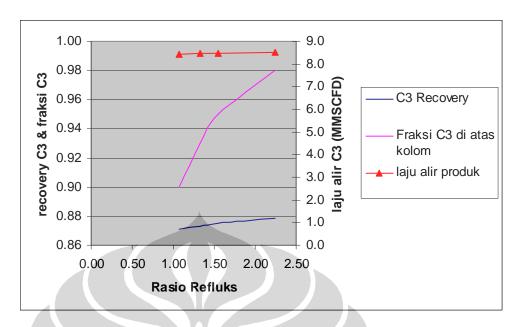
Pada simulasi unit kolom depropanizer ini memiliki fungsi tujuan :


- Recovery tinggi
- Spesifikasi produk terpenuhi

Variabel proses yang dapat dikontrol/dapat diubah-ubah, diantaranya yaitu :

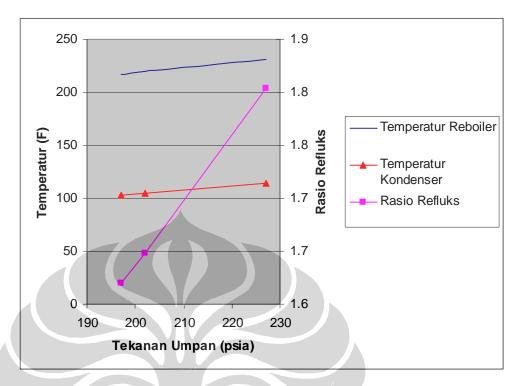
- Temperatur Reboiler
- Temperatur Condenser
- Tekanan Umpan
- Temperatur Umpan
- Rasio refluks

Pada penelitian ini difokuskan pada pengaruh variabel temperatur reboiler, rasio refluks dan tekanan umpan sedangkan pengaruh variabel proses yang lainya tidak dilakukan untuk menyederhanakan simulasi yang dilakukan.


Pengaruh perubahan temperatur reboiler pada harga rasio refluks konstan sebesar 1.25 dapat ditunjukkan pada Gambar 4.14.

Gambar 4.14 Sensitivitas Temperatur Reboiler pada Kolom Depropanizer

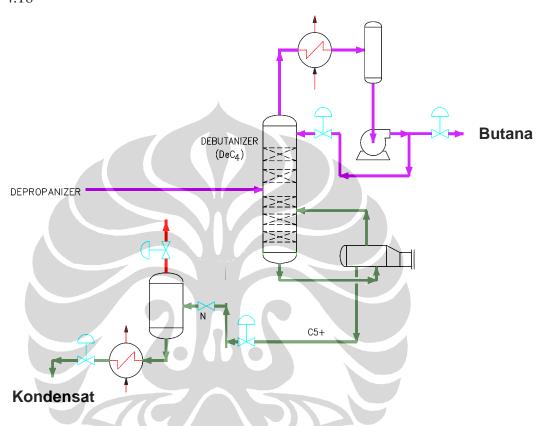
Dari Gambar 4.13 dapat dilihat bahwa semakin tinggi temperatur reboiler pada harga rasio refluks konstan, recovery C3 semakin tinggi. Semakin tinggi recovery terlihat laju alir produk propane semakin banyak, namun komponen fraksi C3 di atas kolom cenderung tetap. Sehingga dapat disimpulkan bahwa temperatur reboiler dapat digunakan untuk meningkatkan recovery produk namum kurang dapat digunakan untuk meningkatkan harga fraksi komponen C3 di atas kolom.


Sementara pengaruh rasio refluks pada harga temperatur reboiler yang tetap sebesar 210 F seperti ditunjukkan pada Gambar 4.15.

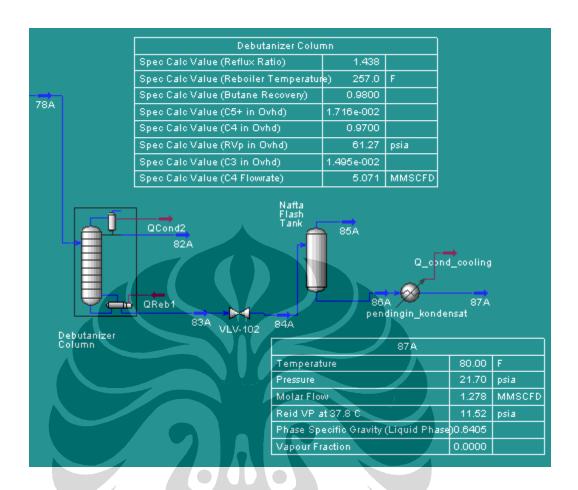
Gambar 4.15 Sensitivitas Rasio Refluks pada Kolom Depropanizer

Jika dilihat pada Gambar 4.15 terlihat bahwa semakin tinggi rasio refluks pada temperatur reboiler yang tetap pada harga 210 F, fraksi komponen C3 di atas kolom semakin tinggi, namun recovery C3 dan laju alir C3 cenderung tetap. Sehingga dapat disimpulkan bahwa rasio refluks dapat digunakan untuk meningkatkan fraksi komponen C3 namum kurang dapat digunakan untuk meningkatkan harga recovery C3. Harga Fraksi C3 di atas kolom ini berkaitan dengan spesifikasi produk penjualan yaitu sebesar > 95%.

Pengaruh perubahan tekanan umpan pada harga recovery C3 99% dan fraksi C3 di atas kolom 0.96 tetap seperti ditunjukkan pada Gambar 4.16.


Gambar 4.16 Sensitivitas Perubahan Tekanan Umpan pada Kolom Depropanizer

Dari Ganbar 4.16 terlihat semakin rendah tekanan umpan temperatur reboiler, rasio refluks dan temperatur kondenser yang dibutuhkan semakin kecil.


Dari hasil ini didapatkan usulan penentuan set kondisi proses untuk kolom depropanizer yaitu dengan cara meningkatkan recovery terlebih dahulu dengan mengatur temperatur reboiler kemudian melakukan peningkatan fraksi komponen C3 di bagian atas kolom dengan meningkatkan rasio refluks. Sedangkan jika ada perubahan tekanan umpan maka kondisi proses juga harus disesuaikan, semakin rendah tekanan umpan temperatur reboiler, rasio refluks dan temperatur kondenser yang dibutuhkan semakin kecil. Sehingga tujuan awal yaitu mendapatkan recovery yang tinggi/laju lair yang banyak dan memenuhi spesifikasi produk dapat dicapai.

4.2.3 Hasil Simulasi pada unit Debutanizer

Diagram alir proses untuk unit debutanizer dapat dilihat pada Gambar 4.17 Sementara diagram alir proses pada simulasi Hysys seperti ditunjukkan pada Gambar. 4.18

Gambar 4.17 Diagram Alir Proses Unit Debutanizer

Gambar 4.18 Diagram Alir Simulasi Hysys Unit Debutanizer

Pada simulasi kolom debutanizer ini varaibel yang dispesifikasi ditunjukkan pada Tabel 4.19

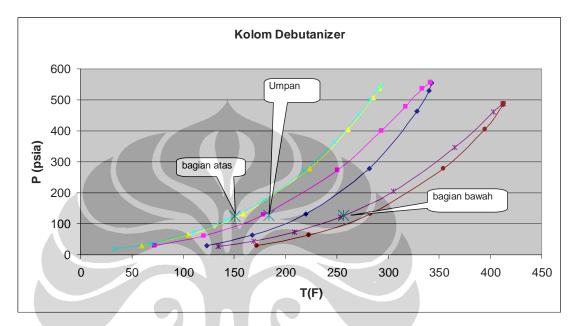
Tabel 4.19 Spesifikasi Simulasi Kolom Debutanizer

Kolom debutanizer	spesifikasi
C4 Recovery	0.980
Fraksi C4 di atas	0.970
Jumlah tahap	21
Lokasi umpan	10
Tekanan reboiler (psi)	126.7
Tekanan Condenser (psi)	124.7

Dari Tabel 4.19 terlihat data yang dispesifikasi yaitu C4 recovery dan fraksi C4 di bagian atas kolom. Hal ini dimaksudkan untuk mendapatkan pengambilan maksimum yang diindikasikan oleh besarnya C4 recovery, juga agar kualitas produk mengikuti spesifikasi penjualan diindikasikan oleh fraksi komponen C4 di atas kolom minimal 97%. Data lainya yang dispesifikasi yaitu tekanan umpan dan tekanan condenser, sedangkan untuk jumlah tahap dan lokasi umpan disesuaikan dengan kondisi lapangan.

Setelah dilakukan simulasi, diperoleh hasil kalkulasi kondisi proses oleh software Hysys di kolom debutanizer seperti ditunjukkan pada Tabel 4.20

Tabel 4.20 Kondisi Proses Kolom Debutanizer


kolom	kondisi
debutanizer	proses
Rasio	
Refluks	1.4
Temperatur	
Reboiler	257
C5+ di atas	0.017
RVP di atas	61.3
C3 di atas	0.015
C4 flowrate	5.1
Temperatur	
Condenser	151

Jika dibandingkan kualitas produk yang dihasilkan dengan spesifikasi yaitu seperti ditunjukkan pada Tabel 4.21 berkut ini :

Tabel 4.21 Kualitas Produk Butana

	kualitas	
Butana	produk	spesifikasi
C4	97%	> 97%
C3	1.49%	< 2%
C5+	1.5%	< 2%
RVP	61.27 psia	< 70 psia

Diagram P dan T antara kondisi gas umpan dengan kondisi bagian atas dan bawah kolom debutanizer seperti ditunjukkan pada Gambar 4.19

Gambar 4.19 Perbandingan Diagram Fasa Gas Umpan dengan Keluaran Kolom Debutanizer

Sedangkan pada tangki stabilisasi kondensat varaibel yang dispesifikasi ditunjukkan pada Tabel 4.22 dan tabel 4.23

Tabel 4.22 Spesifikasi Temperatur tangki stabilisasi Kondensat

Penurunan Temperatur	T_masuk (F)	T_keluar (F)
Pendingin_Kondensat	149.4	80.0

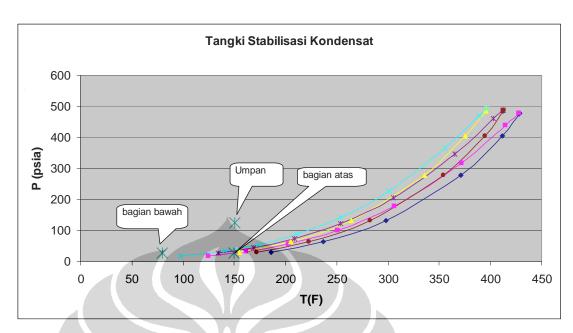
Tabel 4.23 Spesifikasi Tekanan tangki stabilisasi Kondensat

Penurunan Tekanan	Tekanan _masuk (psi)	Tekanan_keluar (psi)		
VLV-102	126.7	26.7		

Setelah dilakukan simulasi, diperoleh hasil kalkulasi kondisi proses oleh software Hysys di tangki stabilisasi kondensat seperti ditunjukkan pada Tabel 4.24

Tabel 4.24 Kondisi Proses Tangki Stabilisasi Kondensat

keluaran	
condensate	kondisi
stabilizer	proses
Temperatur (F)	80.000
Pressure (Psia)	21.7
Molar Flow	
(MMSCFD)	1.278
RVP (Psia)	11.5
Vapour Fraction	0.000
SG	0.6405


Jika dibandingkan kualitas produk yang dihasilkan dengan spesifikasi yaitu seperti ditunjukkan pada Tabel 4.25 berikut ini :

Tabel 4.25 Kualitas Produk Kondensat

	kualitas	
Kondensat	produk	spesifikasi
SG	0.6405	0.64-0.74
RVP	11.5	< 13 psia

Sedangkan kondisi aliran gas secara lengkap dari masing-masing peralatan disajikan pada Tabel 4.26

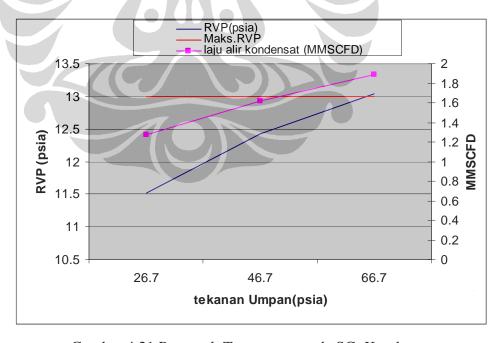
Diagram P dan T antara kondisi gas umpan dengan kondisi bagian atas dan bawah tangki stabilisasi kondensat seperti ditunjukkan pada Gambar 4.20

Gambar 4.20 Perbandingan Diagram Fasa Gas Umpan dengan Keluaran Tangki Stabilisasi Kondensat

Tabel 4.26 Kondisi Proses Aliran Gas pada Unit Debutanizer

No		Fraksi		Р										
Stream	keterangan	Uap	T (F)	(psia)	MMSCFD	C1	C2	C3	iC4	nC4	iC5	nC5	C6	C7
70.4	umpan kolom	0.2	102.0	1267	7.0	0.0000	0.0000	0.0100	0.2065	0.0757	0.1101	0.1000	0.0065	0.0212
78A	debutanizer	0.3	183.8	126.7	7.8	0.0000	0.0000	0.0100	0.2865	0.3757	0.1101	0.1000	0.0965	0.0212
	bagian bawah													
02.4	kolom	0.0	2-5-0	105		0.0000	0.0000	0 0000					0.001.5	0.0.00
83A	debutanizer	0.0	257.0	126.7	2.6	0.0000	0.0000	0.0000	0.0025	0.0375	0.3074	0.2970	0.2916	0.0639
	bagian atas													
	kolom					2 22 22								
82A	debutanizer	0.0	150.8	124.7	5.2	0.0000	0.0000	0.0149	0.4269	0.5431	0.0125	0.0025	0.0000	0.0000
	umpan unit													
	Condensate				1000									
84A	stabilizer	0.5	149.4	26.7	2.6	0.0000	0.0000	0.0000	0.0025	0.0375	0.3074	0.2970	0.2916	0.0639
	bagian atas													
	tangki													
	condensate		1.1		7 .791									
85A	stabilizer	1.0	149.4	26.7	1.3	0.0000	0.0000	0.0000	0.0041	0.0580	0.3806	0.3373	0.1980	0.0220
	bagian bawah						`							
	tangki													
0.11	condensate					0.000	0.000	0.000						0.40.40
86A	stabilizer	0.0	149.4	26.7	1.3	0.0000	0.0000	0.0000	0.0009	0.0165	0.2326	0.2558	0.3875	0.1068
	bagian bawah													
	tangki							7						
	condensate													
	stabilizer													
	setelah													
87A	pendingin	0.0	80.0	21.7	1.3	0.0000	0.0000	0.0000	0.0009	0.0165	0.2326	0.2558	0.3875	0.1068

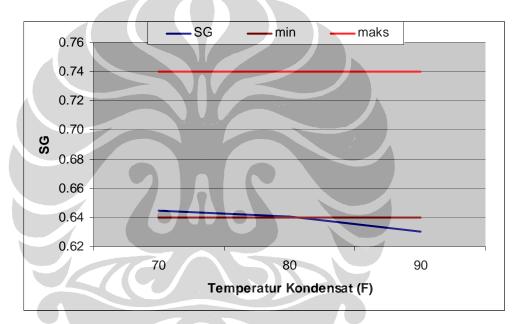
Pada penelitian ini analisis sensitivitas pada kolom debutanizer untuk melihat pengaruh variabel Temperatur Reboiler dan Rasio refluks tidak dilakukan karena prinsip kolom depropanizer sama dengan prinsip kerja debutanizer. Hal ini dilakukan untuk lebih menyederhakan simulasi yang dilakukan.


Sedangkan pada simulasi unit tangki stabilisasi kondensat ini memiliki fungsi fujuan tujuan:

- RVP memenuhi spesifikasi (< 13 psia)
- SG memenuhi spesifikasi (0.64-0.74)
- Laju Alir Kondensat tinggi

Variabel yg dikontrol/dapat diubah-ubah:

- Tekanan Umpan menuju Naphta Flash Tank
- Temperatur keluaran Naphtha Flash Tank menuju Tanki Kondensat


Dari simulasi yang dilakukan dengan mencoba coba parameter proses didapatkan Hubungan tekanan terhadap RVP yang ditunjukkan pada Gambar 4.21

Gambar 4.21 Pengaruh Temperatur pada SG Kondensat

Dari Gambar 4.20 terlihat bahwa semakin tinggi tekanan umpan kondensat menuju unit tangki stabilisasi kondensat, nilai RVP semakin tinggi begitu juga nilai laju alir produk bagian bawah tangki stabilisasi kondensat menuju tangki penyimpanan kondensat semakin besar.

Sedangkan pengaruh pendinginan setelah keluar dari bagian bawah tangki stabilisasi kondensat sebelum memasuki tangki penyimpanan kondensat terhadap SG dapat dilihat pada Gambar 4.22 berikut ini

Gambar 4.22 Pengaruh Temperature pada RVP Kondensat

Terlihat dari Gambar 4.21 bahwa semakin tinggi temperatur maka nilai SG semakin kecil sebaliknya semakin dingin temperatur maka SG semakin besar.

4.3 HASIL SIMULASI HYSYS PADA LAJU ALIR 130 MMSCFD

Simulasi Hysiys dilakukan pada laju alir gas sebesar 130 MMSCFD yang merupakan laju alir gas minimum pada Expander. Komposisi gas umpan yang dihasilkan dari optimasi sumur pada laju alir gas tersebut dibandingkan dengan berbagai laju alir yang lain dapat dilihat pada Tabel 4.27 berikut ini.

Tabel 4.27 Perbandingan Komposisi Gas Umpan pada Laju Alir Gas yang berbeda.

Komponen	Laju Alir 130 MMSCFD	Laju Alir 250 MMSCFD	Laju Alir 300 MMSCFD
C1	0.8411	0.8396	0.840026
C2	0.0912	0.094064	0.093693
C3	0.0386	0.039355	0.03936
iC4	0.0088	0.008396	0.008419
nC4	0.0107	0.009993	0.009965
iC5	0.0034	0.002886	0.002869
nC5	0.0030	0.002633	0.002604
C6	0.0026	0.002542	0.002514
C7	0.0006	0.000529	0.000551

Dari Tabel 4.27 terlihat tidak terjadi perubahan komposisi gas yang berarti. Dengan menggunakan komposisi gas pada laju alir gas 130 MMSCFD, didapatkan kondisi proses yang tidak jauh berbeda dengan kondis proses pada laju alir 300 MMSCFD. Hal ini dapat dilihat secara lebih jelas pada Tabel 4.28, Tabel 4.29 dan Tabel 4.30.

Tabel 4.28 Hasil Simulasi Unit Deethanizer pada Laju Alir 130 MMSCFD

	Kondisi Proses pada laju Alir 300	Kondisi Proses	Towast/
Unit Deethanizer	MMSCFD	pada laju Alir 130 MMSCFD	Target/ spesifikasi
Temperatur Reboiler (F)	162	163	
Tekanan Expander (Psia)	215	213	
Recovery C3+	90%	90%	Min 90%
Recovery C2	99%	99%	Min 90%
Dewpoint gas menuju pipa pada 700 psia (F)	-64	-65	55

Tabel 4.29 Hasil Simulasi Unit Depropanizer pada Laju Alir 130 MMSCFD

		Kondisi	
	Kondisi	Proses pada	
	Proses pada	laju Alir	
	laju Alir 300	130	Target/
Kolom Depropanizer	MMSCFD	MMSCFD	Spesifikasi
Temperatur Reboiler (F)	231	232	
Rasio refluks	1.8	1.9	
Temperatur kondenser (F)	114	114	
Recovery C3	0.99	0.99	Min 90%
Fraksi C3 di atas	0.96	0.96	Min 0.95
Fraksi C4+ di atas kolom	0.037	0.036	Maks 0.04
Fraksi C2 di atas kolom	0.009	0.008	Maks 0.02
RVP di atas kolom (psia)	187	187	Maks 200

Tabel 4.30 Hasil Simulasi Unit Debutanizer pada Laju Alir 130 MMSCFD

		Kondisi	
	Kondisi	Proses pada	
	Proses pada	laju Alir	
	laju Alir 300	130	Target/
Unit Debutanizer	MMSCFD	MMSCFD	spesifikasi
Temperatur Reboiler (F)	257	255	
Rasio refluks	1.4	1.5	
Temperatur kondenser (F)	151	151	
Tekanan Kondensat (Psia)	21.7	21.7	
Temperatur Kondensat (F)	80	70	
Recovery C4	0.98	0.98	Min 90%
Fraksi C4 di atas	0.97	0.97	Min 0.97
Fraksi C5+ di atas kolom	0.017	0.018	Maks 0.02
Fraksi C3 di atas kolom	0.015	0.013	Maks 0.02
RVP di atas kolom	61.3	61	Maks 70
RVP Kondensat (Psia)	11.5	11.8	Maks 13
SG	0.6405	0.6447	0.64-0.74