BAB 4 PENGUMPULAN DAN ANALISIS DATA

4.1 Pendahuluan

Pada bab ini akan dibahas mengenai pengumpulan data dan analisa data yang dimulai dengan melakukan kuesioner tahap pertama kepada para pakar untuk validasi variabel. Variable yang telah disetujui oleh pakar dilanjutkan survey tahap kedua kepada *stakeholder*. Kemudian data dianalisa dengan AHP untuk analisa level risiko agar mendapatkan prioritas faktor-faktor risiko. Setelah itu data diolah dengan analisa statistik, menggunakan analisa korelasi, faktor dan regresi. Faktor dominan kemudian divalidasi ke pakar dan sekaligus ditanyakan tindakan yang diperlukan terhadap faktor-faktor risiko tersebut. Selanjutnya dilakukan simulasi pemodelan dengan software Crystal Ball.

4.2 Pengumpulan Data

Pengumpulan data dilakukan dengan acuan yang tertulis pada sub bab 3.3.3 Pengumpulan Data. Jenis data yang digunakan dalam penelitian ini adalah data sekunder yang digunakan untuk awal variabel penelitian dan data primer yang diperoleh dari hasil kuesioner dan wawancara.

4.2.1 Kuesioner Tahap Pertama

Pengumpulan data tahap pertama digunakan untuk membantu menjawab pertayaan penelitian yang pertama, kuesioner tahap pertama berisi variabel hasil literatur yang dibawa ke pakar untuk diverifikasi, klarifikasi dan validasi. Pakar diminta untuk mengisikan kolom Ya/ Tidak, dan kolom Komentar/ tanggapan/ perbaikan, yang menyatakan persepsi pakar mengenai peristiwa yang menjadi variabel dalam penelitian ini.

Jika variabel penelitian menurut pakar belum lengkap, pakar diminta untuk menambahkan daftar peristiwa yang dapat mempengaruhi kinerja kualitas proyek konstruksi. Dalam melakukan proses identifikasi faktor ini, teknik yang digunakan untuk memperoleh hasil yang sesuai dengan tujuan penelitian, digunakan teknik survei dan wawancara. Pada tahap ini didapatkan data primer yang merupakan hasil masukan survei dan wawancara pakar, dari hasil ini

dikumpulkan variabel tersebut dan disusun menjadi kuesioner tahap ke dua. Adapun profil data umum pakar antara lain sebagai berikut:

Tabel 4.1. Profil Pakar

NO	Pakar	Pengalaman	Pendidikan	Keterangan
NO	1 akai	(Tahun)	Terakhir	Keterangan
1	Pakar 1	15	S1	Konsultan Pengawasan dan
				Perencanaan
2	Pakar 2	20	S1	Konsultan Pengawasan dan
				Perencanaan
3	Pakar 3	33	S2	Kontraktor
4	Pakar 4	30	S2	Owner
5	Pakar 5	28	S1	Konsultan Pengawasan dan
				Perencanaan

Sumber: Hasil olahan data primer

Setiap pakar memiliki persepsi masing-masing dalam menanggapi variabel pada kuesioner tahap pertama. Berdasarkan rata-rata persepsi dan komentar ataupun masukan dari 5 orang pakar pada proses validasi, klarifikasi dan verifikasi, tidak terjadi penambahan dan pengurangan terhadap variabel. Koreksi hanya terhadap kalimat-kalimat pertanyaan yang akan digunakan dalam penyebaran kuesioner. Mengenai hasil validasi atau hasil penyusunan kuesioner tahap satu selengkapnya dapat dilihat pada tabel berikut:

Tabel 4.2. Variabel Hasil Validasi Pakar

Variabel	Variabel Risiko Penawaran <i>Underestimate</i> yang Mempengaruhi Kualitas Proyek Konstruksi
X1	Melakukan order untuk perubahan spesifikasi (Change orders)
X2	Melakukan perubahan terhadap disain (redisign)
Х3	Material yang digunakan kurang dari yang dibutuhkan.
X4	Mutu material tidak sesuai dengan spesifikasi
X5	Menempatkan manajer lapangan yang kurang berpengalaman
X6	Jumlah orang untuk pengawasan mandor kurang
X7	Kontraktor menggunakan tenaga kerja yang tidak trampil dan kurang berpengalaman

Tabel 4.2. (Sambungan)

Variabel	Variabel Risiko Penawaran <i>Underestimate</i> yang Mempengaruhi Kualitas Proyek Konstruksi
X8	Upah tenaga kerja yang diberikan rendah
X9	Kontraktor tidak menempatkan Pengawas QA dan QC di proyek
X10	Kontraktor utama memakai subkontraktor yang tidak berpengalaman.
X11	Subkontraktor merekrut para pekerja di bawah standard
X12	Subkontraktor tidak menyediakan pelatihan untuk pekerja
X13	Menggunakan alat yang lama yang efesiensinya rendah
X14	Alat yang digunakan tidak sesuai spesifikasi
X15	Jumlah alat yang digunakan tidak memadai
X16	Schedule pelaksanaan pekerjaan proyek tidak tepat
X17	Jadwal pengadaan tenaga kerja tidak tepat
X18	Jadwal pengadaan alat tidak tepat
X19	Jadwal pengadaan material tidak tepat
X20	Metode pelaksanaan pekerjaan proyek tidak tepat.
X21	Metode pengoperasian alat tidak tepat.
X22	Kontraktor tidak memiliki biaya untuk bergabung pada <i>quality</i> organization.
X23	Kontraktor tidak melakukan pengukuran dan pemeriksaan alat berat
X24	Kontraktor tidak melakukan analisa alat berat (analysis equipment)
X25	Kontraktor tidak memberikan pelatihan <i>Quality Management</i> kepada personalia
X26	Tidak adanya profesional partisipasi kontraktor terhadap Quality System
X27	Tidak adanya biaya perjalanan untuk Quality Sistem
X28	Tidak adanya biaya overhead dan lainnya seperti untuk sewa, penerangan, komunikasi, dll.

Sumber: Hasil olahan data primer

4.2.2 Kuesioner Tahap Kedua

Responden yang menjadi target korespondesi adalah *owner* dari Dinas Pekerjaan Umum DKI Jakarta Bidang Binamarga dan perusahaan di propinsi DKI Jakarta yang memiliki pengalaman dan sub bidang klasifikasi konsultan 31002, yaitu jasa enjiniring fase konstruksi dan instalasi pekerjaan teknik sipil transportasi, dimana jasa ini meliputi pekerjaan inspeksi teknis selama fase konstruksi untuk:

- 1) Jalan bebas hambatan (higways)
- 2) Jalan raya (streets)
- 3) Jalan (roads)
- 4) Jalan kereta api
- 5) Landasan pacu pesawat
- 6) Jembatan, jalan layang
- 7) Terowongan dan jalan bawah tanah.

Adapun jumlah kuesioner yang telah disampaikan dan dikembalikan dapat dilihat pada tabel di bawah ini :

Tabel 4.3. Penyebaran Kuesioner

No	Uraian	Bidang	Masuk	Kembali
1	Dinas PU DKI Jakarta	Binamarga	45	30
2	Konsultan Supervisi	31002	65	1
	Total	110	31	

Sumber: Hasil olahan data primer

Dari kuesioner yang kembali, adapun data yang bisa dipakai dan diolah dapat dilihat pada tabel berikut :

Tabel 4.4. Jumlah Kuesioner Yang Diolah

No	Uraian	Sample	Tidak dipakai	Diolah	Keterangan						
	Kuesioner Tahap I										
1	Validasi Pakar	5	-	5							
	Kuesioner Tahap II										
2	Dinas PU DKI Jakarta	30	8	22	Kuesioner diisi, tetapi data profil proyek tidak diisi						
3	Konsultan Supervisi	1	-	1	-						
	Kuesioner Tahap III										
4	Validasi Pakar	5		5							

Sumber: Hasil olahan data primer

Dalam hal ini responden owner adalah kepala satker dan pengendali teknis yang memiliki pengetahuan dan pengalaman pada pelaksanaan proyek jalan dan jembatan di Dinas Pekerjaan Umum Propinsi DKI Jakarta. Sedangkan responden dari Konsultan supervisi adalah pimpinan perusahaan. Tujuan dari pengolahan data tahap kedua ini adalah mencari variat (kombinasi linier dari variabel-variabel bebas) atas dua puluh delapan variabel yang telah divalidasi, kemudian dari variat-variat tersebut akan dianalisis korelasi untuk mendapatkan nilai kolerasi yang signifikan terhadap variabel terikat. Tabulasi data Input SPSS dari setiap responden untuk masing jawaban atas pertanyaan-partanyaan yang berkaitan dengan variabel bebas yang mempengaruhi kualitas proyek konstruksi dapat dilihat pada **lampiran E**.

Berikut ini adalah data responden berdasarkan pendidikan, pengalaman, dan jabatan yang memenuhi kualifikasi :

Tabel 4.5. Data Profil Umum Responden

Proyek	Responden	Jabatan	Pengalaman Kerja (Tahun)	Pendidikan Terakhir	
P1	R1	Pengendali Teknis	16	S1	
P2	R2	Pengendali Teknis	10	S2	
Р3	R3	Pengendali Teknis	16	S1	
P4	R4	Pengendali Teknis	16	S1	
P5	R5	Pengendali Teknis	10	S2	
P6	R6	Pengendali Teknis	18	S1	
P7	R7	Pengendali Teknis	16	S2	
P8	R8	Pengendali Teknis	3	S1	
P9	R9	Pengendali Teknis	35	S2	
P10	R10	Pengendali Teknis	12	S1	
P11	R11	Pengendali Teknis	12	S2	
P12	R12	Pengendali Teknis	15	S1	
P13	R13	Pengendali Teknis	12	S1	
P14	R14	Pengendali Teknis	18	S1	
P15	R15	Pengendali Teknis	8	S1	
P16	R16	Pengendali Teknis	5	S1	
P17	R17	Pengendali Teknis	10	S2	
P18	R18	Kepala Satker	35	S1	
P19	R19	Kepala Satker	11	S1	
P20	R20	Pengendali Teknis	7	S2	
P21	R21	Pengendali Teknis	10	S2	
P22	R22	Kepala Satker	10	S2	
P23	R23	Konsultan Supervisi	44	S1	

Sumber: Hasil olahan data primer

Untuk rekapitulasi data profil umum proyek dan responden, lebih lengkapnya dapat dilihat pada $\mathbf{lampiran}\ \mathbf{D}$.

98

No Uraian Jumlah **Prosentase** Grafik I Lokasi Proyek* 1 Jakarta Pusat 8 27,59% 2 Pusat Jakarta Timur 7 24,14% 24.14% Timur 3 Jakarta Barat 5 17,24% 17.24% Barat 4 Jakarta Utara 7 24,14% 24.14% Utara 5 Jakarta Selatan 2 6,90% 6.90% Selatan Jumlah 29 100% II Nilai Total Proyek Sesuai Kontrak Awal 1 $1 < s/d \le 10M$ 14 60,87% 60.87% 1<s/d≤10M 2 $10 < s/d \le 20M$ 4 17,39% 17.39% 10<s/d≤20M 3 $20 < s/d \le 30M$ 3 13,04% 13.04% 20<s/d≤30M 4 $30 < s/d \le 40M$ 1 4,35% 30<s/d≤40M 4 35% 5 $40 < s/d \le 50M$ 1 4,35% 40<s/d≤50M 4 35% 100% Jumlah 23 Ш Kuantitas nilai kontrak awal terhadap perkiraan biaya owner (OE/ Owner Estimate) 1 $\leq 60\%$ 0 0% ≤60% 0.00% 2 $60\% < s/d \le 70\%$ 8 34,78% 60%<s/d≤70% 3 $70\% < s/d \le 80\%$ 60,87% 14 60.87% 70%<s/d≤80% 4 $80\% < s/d \le 90\%$ 1 4,35% 80%<s/d≤90% 4.35% 5 $90\% < s/d \le 100\%$ 0 0% 90%<s/d≤100%0.0<mark>0</mark>% Jumlah 23 100%

Tabel 4.6. Data Profil Umum Proyek

Sumber: Hasil olahan data primer

^{*)} dua buah proyek lebih dari satu lokasi

4.2.3 Kuesioner Tahap Ketiga

Pada pengumpulan data tahap akhir, dilakukan kembeli wawancara pakar guna mendapatkan validasi akhir dan tindakan *preventive* dan *corrective* terhadap faktor risiko yang dominan. Dari wawancara akhir kepada para pakar didapatkan masukan/ komentar mengenai hasil yang telah didapat dari pengolahan data penelitian, sehingga dapat diberikan analisis yang sesuai dengan output tersebut. Adapun pakar yang diwawancarai adalah pakar yang sama dengan pakar pada pengumpulan data tahap satu. Hasil yang didapat pada tahap ini akan dibahas pada bab selanjutnya.

4.3 Analisa data

4.3.1 Analisa Statistik Non Parametrik

Dari 28 variabel dengan 23 sampel data, maka dapat diidentifikasikan analisis deskriptif berdasarkan data responden. Analisis deskriptif responden dilihat dari pendidikan dan pengalaman. Pembagian data tersebut dapat dijelaskan pada tabel 4.7, sebagai berikut :

 Variabel
 Uraian
 Kode

 Pendidikan Terakhir
 \$1
 1

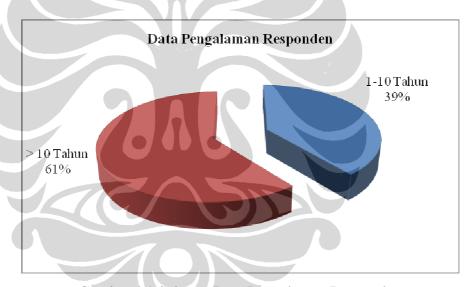
 \$2
 2

 Pengalaman
 1 - 10 Tahun
 1

 > 10 Tahun
 2

Tabel 4.7. Pengelompokan Responden

Sumber: Hasil olahan data primer


Untuk mengetahui perbedaan pemahaman berdasarkan data responden di atas, maka dilkukan uji non-parametrik, dengan bantuan program SPSS 17. Data pada penelitian ini adalah data ordinal (data yang memiliki perbedaan kelas), maka untuk membandingkan dua sampel dapat menggunakan uji seperti Mann Whitney U Test yang dijelaskan pada tabel 3.10.

4.3.1.1 Pengujian Dua Sample Bebas (Uji U Mann-Whitney) Berdasarkan Pengalaman

Uji ini digunakan untuk menguji perbedaan jawaban kuesioner oleh responden yang terdapat dalam sampel ke dalam dua kelompok dengan dua kriteria yang berbeda. Uji ini digunakan untuk menguji beda dengan menggunakan dua rata-rata variabel dan jumlah data sampel penelitian yang sangat sedikit (kurang dari 30). Uji ini diterapkan pada pengalaman kerja responden terhadap variabel yang ditanyakan. Pengalaman responden yang ada dikategorikan kedalam 2 kelompok, yaitu:

- 1. Kelompok pengalaman kerja 1s/d 10 tahun
- 2. Kelompok pengalaman kerja > 10 tahun

Dengan sebaran data seperti pada gambar berikut :

Gambar 4.1 Sebaran Data Pengalaman Responden

Sumber: Hasil olahan data primer

Gambar di atas menunjukkan bahwa sebagian besar responden memiliki pengalaman di atas 10 tahun dengan prosentase 61%, dan untuk pengalaman 1 sampai 10 tahun dengan prosentase 39%. Dari data di atas kemudian diolah dengan bantuan SPSS menggunakan uji seperti Mann Whitney U Test.

Adapun hasil uji dari Mann Whitney U Test dapat dilihat pada tabel 4.8 berikut ini :

Tabel 4.8. Output Mann Whitney U Test Kategori Pengalaman

Test Statistics^b

	X1	X2	ХЗ	X4	X5	Х6	X7	Х8	Х9	X10	X11	X12
Mann-Whitney U	61.500	49.500	50.000	55.000	62.000	57.000	39.500	42.000	50.500	45.000	48.000	48.500
Wilcoxon W	106.500	94.500	155.000	160.000	167.000	102.000	144.500	147.000	95.500	150.000	153.000	93.500
Z	114	-1.012	877	553	065	393	-1.557	-1.448	814	-1.189	-1.004	947
Asymp. Sig. (2-tailed)	.909	.311	.380	.580	.948	.694	.120	.148	.416	.234	.315	.344
Exact Sig. [2*(1-tailed Sig.)]	.926ª	.403ª	.439ª	.643ª	.975ª	.734 ^a	.141 ^a	.201 ^a	.439ª	.277ª	.369ª	.369ª

	X13	X14	X15	X16	X17	X18	X19	X20	X21	X22	X23	X24
Mann-Whitney U	45.500	46.000	46.500	53.500	63.000	55.000	54.500	50.500	50.000	43.000	51.000	55.500
Wilcoxon W	90.500	151.000	91.500	98.500	168.000	160.000	159.500	95.500	95.000	88.000	96.000	100.500
Z	-1.165	-1.266	-1.155	625	.000	553	583	877	873	-1.374	798	501
Asymp. Sig. (2-tailed)	.244	.206	.248	.532	1.000	.580	.560	.380	.383	.169	.425	.616
Exact Sig. [2*(1-tailed Sig.)]	.277ª	.305ª	.305ª	.557ª	1.000 ^a	.643 ^a	.600ª	.439 ^a	.439 ^a	.224ª	.477 ^a	.643ª

	X25	X26	X27	X28
Mann-Whitney U	52.000	50.000	58.000	56.000
Wilcoxon W	97.000	95.000	103.000	161.000
Z	725	860	340	472
Asymp. Sig. (2-tailed)	.468	.390	.734	.637
Exact Sig. [2*(1-tailed Sig.)]	.516ª	.439ª	.781 ^a	.688ª

Sumber: Hasil olahan SPSS

a. Hipotesis

Adapun hipotesis yang diusulkan sebagai berikut :

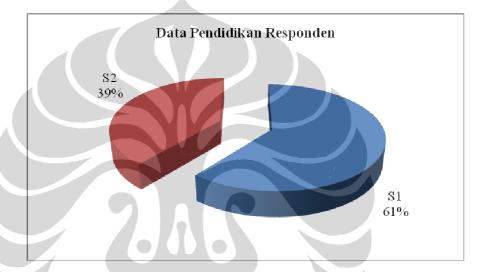
- H₀ = Tidak ada perbedaan persepsi responden yang berpengalaman 1-10 tahun dengan yang berpengalaman > 10 tahun
- H_i = Ada perbedaan persepsi responden yang berpengalaman 1-10 tahun dengan yang berpengalaman > 10 tahun

b. Pengambilan keputusan

Dasar pengambilan keputusan :

- Jika probabilitas > 0.05, maka H_0 diterima
- jika probabilitas < 0,05, maka H₀ ditolak

c. Keputusan


Terlihat bahwa pada kolom asymp. Sig. (2-tailed)/ asympotic significance untuk uji dua sampel sisi adalah > 0.05, atau probabilitas > 0.05. Maka H_0 diterima, atau tidak ada perbedaan persepsi responden yang berpengalaman 1-10 tahun dengan yang berpengalaman > 10 tahun.

4.3.1.2 Pengujian Dua Sample Bebas (Uji U Mann-Whitney) Berdasarkan Pendidikan

Uji ini diterapkan pada kategori pendidiakan responden terhadap variabel yang ditanyakan. Pendidikan responden yang ada dikategorikan kedalam 2 kelompok, yaitu:

- 1. Kelompok responden dengan tingkat pendidikan S1
- 2. Kelompok responden dengan tingkat pendidikan S2

Dengan sebaran data seperti pada gambar berikut :

Gambar 4.2. Sebaran Tingkat Pendidikan Responden

Sumber: Hasil olahan data primer

Gambar di atas menunjukkan bahwa sebagian besar responden memiliki pendidikan S1 dengan prosentase 61%, dan untuk pendidikan S2 dengan prosentase 39%. Dari data di atas kemudian diolah dengan bantuan SPSS menggunakan uji seperti Mann Whitney U Test.

Adapun hasil uji dari Mann Whitney U Test dapat dilihat pada tabel 4.9 berikut ini :

Tabel 4.9. Output Mann Whitney U Test Kategori Pendidikan

Test Statistics^b

	X1	X2	Х3	X4	X5	X6	Х7	X8	Х9	X10	X11	X12
Mann-Whitney U	41.500	55.500	43.000	39.000	48.000	50.000	37.000	42.000	50.500	53.000	34.000	60.500
Wilcoxon W	146.500	160.500	148.000	144.000	153.000	155.000	142.000	147.000	95.500	158.000	139.000	165.500
z	-1.640	562	-1.350	-1.659	973	852	-1.722	-1.448	814	661	-1.941	163
Asymp. Sig. (2-tailed)	.101	.574	.177	.097	.330	.394	.085	.148	.416	.509	.052	.870
Exact Sig. [2*(1-tailed Sig.)]	.179 ^a	.643 ^a	.224 ^a	.141 ^a	.369 ^a	.439 ^a	.109 ^a	.201 ^a	.439 ^a	.557 ^a	.072 ^a	.877 ^a

	X13	X14	X15	X16	X17	X18	X19	X20	X21	X22	X23	X24
Mann-Whitney U	59.500	46.000	58.500	58.500	54.000	55.000	46.000	55.000	60.000	58.500	63.000	50.500
Wilcoxon W	164.500	151.000	163.500	103.500	99.000	160.000	151.000	160.000	165.000	103.500	108.000	95.500
z	233	-1.266	315	296	597	553	-1.166	562	201	309	.000	835
Asymp. Sig. (2-tailed)	.816	.206	.753	.767	.551	.580	.244	.574	.840	.757	1.000	.403
Exact Sig. [2*(1-tailed Sig.)]	.829 ^a	.305 ^a	.781 ^a	.781 ^a	.600ª	.643ª	.305 ^a	.643 ^a	.877 ^a	.781 ^a	1.000 ^a	.439ª

	X25	X26	X27	X28
Mann-Whitney U	59.500	60.000	52.000	41.000
Wilcoxon W	104.500	105.000	157.000	146.000
z	231	198	748	-1.484
Asymp. Sig. (2-tailed)	.818	.843	.454	.138
Exact Sig. [2*(1-tailed Sig.)]	.829 ^a	.877ª	.516ª	.179 ^a

Sumber: Hasil olahan SPSS

a. Hipotesis

Adapun hipotesis yang diusulkan sebagai berikut :

H₀ = Tidak ada perbedaan persepsi responden yang berbeda pendidikan.

H_i = Ada perbedaan minimal satu persepsi responden yang berbeda pendidikan.

b. Pengambilan keputusan

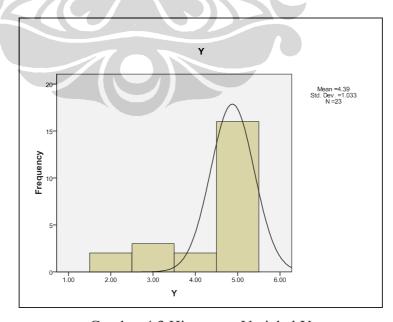
Dasar pengambilan keputusan:

- Jika probabilitas > 0,05, maka H₀ diterima
- jika probabilitas < 0,05, maka H₀ ditolak

c. Keputusan

Terlihat bahwa pada kolom asymp. Sig. (2-tailed)/ asympotic significance untuk uji dua sampel sisi adalah > 0.05, atau probabilitas > 0.05. Maka H_0 diterima, atau tidak ada perbedaan persepsi responden yang berbeda pendidikan.

4.3.1.3 Analisa Deskriptif


Analisa ini memiliki kegunaan untuk menyajikan karakteristik tertentu suatu data dari sampel tertentu. Analisa ini memungkinkan peneliti mengetahui secara cepat gabaran sekilas dan ringkas dari data yang didapat. Dengan bantuan program SPSS, didapat nilai *mean* yang berarti nilai rata-rata, dan nilai *median* yang diperoleh dengan cara mengurutkan semua data yang sama besar dibagi dua. Hasil analisa deskritif akan disajikan dalam masing-masing variabel. Untuk variabel Y, yang merupakan kinerja kualitas proyek, diperoleh nilai *modus* sebesar 3, yang berarti kinerja kualitas sedang.

Tabel 4.10. Frekuensi Kemunculan Kinerja Y

Y

_		Frequency	Percent	Valid Percent	Cumulative Percent
	2.00	2	8.7	8.7	8.7
Į	3.00	3	13.0	13.0	21.7
	Valid 4.00	2	8.7	8.7	30.4
	5.00	16	69.6	69.6	100.0
	Total	-23	100.0	100.0	

Sumber: Hasil olahan SPSS

Gambar 4.3 Histogram Variabel Y

Sumber: Hasil olahan SPSS

Sementara variabel X didapat sebagian besar variabel memiliki nilai mean 3,2 yang dibulatkan 3, yang artinya variabel terbanyak memiliki pengaruh sedang terhadap kualitas proyek konstruksi.

Tabel 4.11. Deskriptif Variabel X

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
X1	23	3.00	4.00	3.3478	.48698
X2	23	3.00	5.00	3.8261	.57621
X3	23	3.00	5.00	4.1739	.77765
X4	23	3.00	5.00	4.3478	.71406
X5	23	1.00	5.00	3.0000	1.20605
X6	23	1.00	5.00	2.8261	1.11405
X7	23	1.00	5.00	2.8696	1.17954
X8	23	3.00	5.00	3.6957	.70290
X9	23	1.00	5.00	2.9130	1.16436
X10	23	1.00	5.00	2.6522	1.02730
X11	23	1.00	4.00	2.6957	.87567
X12	23	1.00	5.00	2.9565	1.10693
X13	23	1.00	5.00	2.6522	1.02730
X14	23	3.00	4.00	3.3913	.49901
X15	23	3.00	5.00	3.6522	.64728
X16	23	1.00	5.00	3.2609	1.05388
X17	23	1.00	5.00	3.0870	.94931
X18	23	2.00	5.00	3.2609	.75181
X19	23	2.00	5.00	3.5217	.89796
X20	23	2.00	5.00	3.8696	.75705
X21	23	2.00	5.00	3.8261	.83406
X22	23	1.00	5.00	2.6522	1.02730
X23	23	1.00	5.00	2.6957	.97397
X24	23	1.00	5.00	2.6087	.98807
X25	23	1.00	5.00	2.8696	1.01374
X26	23	2.00	5.00	3.0435	.97600
X27	23	1.00	4.00	2.6522	.77511
X28	23	1.00	5.00	2.5652	.99206
Valid N (listwise)	23				

Sumber: Hasil olahan SPSS

4.3.1.4 Uji Normalitas

Berbagai fasilitas untuk mendiskripsikan data yang digunakan dalam statistik deskriptif, namun juga dilakukan inferensi (statistik induktif). Untuk melakukan kegiatan inferensi tersebut, harus dilengkapi dengan beberapa pengujian terhadap data yang ada. Dengan kata lain, uji normalitas data adalah hal yang lazim sebelum sebuah metode statistik diterapkan. Adapun hasil uji normalitas, sebagai berikut :

Tabel 4.12. Uji Normalitas

Tests of Normality^{b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x}

	16	Koln	nogorov-Smir	nov ^a	1	Shapiro-Wilk	:
	Y	Statistic	df	Sig.	Statistic	df	Sig.
X1	5	.334	16	.000	.644	16	.000
X2	3	.385	3		.750	3	.000
	4	.260	2				
	5	.356	16	.000	.748	16	.001
Х3	2	.260	2				
	3	.385	3		.750	3	.000
	4	.260	2				
	5	.308	16	.000	.768	16	.001
X4	3	.175	3		1.000	3	1.000
	4	.260	2				
	5	.366	16	.000	.638	16	.000
X5	3	.253	3		.964	3	.637
	4	.260	2				
	5	.257	16	.006	.874	16	.031
X6	2	.260	2				
	3	.253	3		.964	3	.637
	4	.260	2			'	
	5	.247	16	.010	.856	16	.017
X7	2	.260	2				
	3	.253	3		.964	3	.637
	4	.260	2				
	5	.252	16	.008	.848	16	.013
X8	2	.260	2				
	3	.385	3		.750	3	.000
	4	.260	2				
	5	.236	16	.018	.809	16	.004
X9	3	.175	3		1.000	3	1.000
	5	.167	16	.200*	.931	16	.253

Tabel 4.12. (Sambungan)

		Koln	nogorov-Smir	mov ^a		Shapiro-Wilk	-
	Y	Statistic	df	Sig.	Statistic	df	Sig.
X10	2	.260	2				<u> </u>
	3	.253	3		.964	3	.637
	4	.260	2				
	5	.242	16	.013	.878	16	.036
X11	3	.385	3		.750	3	.000
	4	.260	2				
	5	.251	16	.008	.888	16	.051
X12	3	.385	3		.750	3	.000
	4	.260	2				
	5	.216	16	.044	.846	16	.012
X13	2	.260	2				
	3	.385	3		.750	3	.000
	4	.260	2				
	5	.296	16	.001	.796	16	.002
X14	5	.366	16	.000	.638	16	.000
X15	3	.385	3		.750	3	.000
	4	.260	2				
	5	.268	16	.003	.796	16	.002
X16	2	.260	2	·		4	
	3	.175	3		1.000	3	1.000
	4	.260	2				
	5	.188	16_	.136	.932	16	.262
X17	2	.260	2				
	3	.385	3		.750	3	.000
	4	.260	2		70		
	5	.186	16	.141	.927	16	.218
X18	2	.260	2				
	3	.385	3		.750	3	.000
	4	.260	2				
	5	.312	16	.000	.846	16	.012
X19	3	.385	3		.750	3	.000
	4	.260	2				
	5	.306	16	.000	.827	16	.006
X20	2	.260	2				
	3	.175	3		1.000	3	1.000
	4	.260	2				1
	5	.313	16	.000	.787	16	.002

Tabel 4.12. (Sambungan)

		Koln	nogorov-Smii	rnov ^a	Shapiro-Wilk			
	Y	Statistic	df	Sig.	Statistic	df	Sig.	
X21	2	.260	2					
	3	.385	3		.750	3	.000	
	4	.260	2					
	5	.287	16	.001	.807	16	.003	
X22	3	.385	3		.750	3	.000	
	4	.260	2					
	5	.342	16	.000	.802	16	.003	
			_					
N/OO		260	0	-				
X23	2	.260	2		750	2	000	
	3	.385	3		.750	3	.000	
	5	.290	16	.001	.786	16	.002	
X24	2	.260	2					
	3	.385	3		.750	3	.000	
	4	.260	2					
	5	.361	16	.000	.688	16	.000	
X25	3	.385	3		.750	3	.000	
	4	.260	2					
	5	.256	16	.006	.827	16	.006	
X26	3	.385	_3		.750	3	.000	
	5	.257	16	.006	.822	16	.005	
X27	3	.253	3		.964	3	.637	
	5	.308	16	.000	.768	16	.001	
X28	3	.253	3		.964	3	.637	
	4	.260	2					
	5	.323	16	.000	.812	16	.004	

Sumber: Hasil olahan SPSS

Output ini menjelaskan hasil uji apakah sebuah distribusi data bisa dikatakan normal ataukah tidak. Pedoman pengambilan keputusan :

- Nilai Sig. atau signifikansi atau nilai probabilitas < 0,05, Distribusi adalah tidak normal (simetris)
- Nilai Sig. atau signifikansi atau nilai probabilitas > 0,05, Distribusi adalah normal (simetris)

Ada dua macam alat uji kenormalan distribusi data yang bisa digunakan, yakni :

- a. Kolmogrov Smirnov dengan keterangan adalah sama dengan uji Liliefor.
 Didapat tingkat signifikansi atau rata-rata nilai probabilitasnya < 0.05.
 Maka bisa dikatakan Distribusi adalah tidak normal.
- Shapiro Wilk didapatkan tingkat signifikansi atau rata-rata nilai probabilitasnya < 0.05. Maka bisa dikatakan Distribusi adalah tidak normal.

4.3.2 *Analytical Hierarchy Process* (AHP)

Data yang telah ditabulasikan selanjutnya dianalisa dengan metode AHP yang dimulai dengan perlakukan normalisasi matriks, perhitungan konsistensi matriks, konsistensi hirarki dan tingkat akurasi, perhitungan nilai lokal pengaruh, dan perhitungan nilai lokal frekwensi, dari hasil perhitungan ini akan didapat nilai akhir risiko (goal) dan peringkat berdasarkan bobot hasil perhitungan.

4.3.2.1 Perbandingan Berpasangan

Matriks dibuat untuk perbandingan berpasangan, untuk masing-masing frekuensi dan dampak. Kemudian dilanjutkan dengan perbandingan berpasangan sehingga diperoleh sebanyak 5 buah elemen yang dibandingkan. Dibawah ini diberikan matriks berpasangan untuk dampak dan frekuensi.

Tabel 4.13. Matrik Berpasangan Untuk Dampak

	Sangat Tinggi	Tinggi	Sedang	Rendah	Tidak Ada Pengaruh
Sangat Tinggi	1.00	3.00	5.00	7.00	9.00
Tinggi	0.33	1.00	3.00	5.00	7.00
Sedang	0.20	0.33	1.00	3.00	5.00
Rendah	0.14	0.20	0.33	1.00	3.00
Tidak Ada Pengaruh	0.11	0.14	0.20	0.33	1.00
Jumlah	1.79	4.68	9.53	16.33	25.00

Sumber: Hasil olahan

Tabel 4.14. Matrik Berpasangan Untuk Frekuensi

	Sangat Tinggi	Tinggi	Sedang	Rendah	Sangat Rendah
Sangat Tinggi	1.00	3.00	5.00	7.00	9.00
Tinggi	0.33	1.00	3.00	5.00	7.00
Sedang	0.20	0.33	1.00	3.00	5.00
Rendah	0.14	0.20	0.33	1.00	3.00
Sangat Rendah	0.11	0.14	0.20	0.33	1.00
Jumlah	1.79	4.68	9.53	16.33	25.00

Sumber: Hasil olahan

4.3.2.2 Bobot Elemen

Perhitungan bobot elemen untuk masing-masing unsur dalam matriks baik untuk frekuensi maupun dampak dapat dilihat pada tabel dibawah ini.

Tabel 4.15. Perhitungan Bobot Elemen Untuk Dampak

	Sangat Tinggi	Tinggi	Sedang	Rendah	Tidak ada pengatuh	Jumlah	Prioritas	Persentase
Sangat Tinggi	0.560	0.642	0.524	0.429	0.360	2.514	0.503	100.00%
Tinggi	0.187	0.214	0.315	0.306	0.280	1.301	0.260	51.75%
Sedang	0.112	0.071	0.105	0.184	0.200	0.672	0.134	26.72%
Rendah	0.080	0.043	0.035	0.061	0.120	0.339	0.068	13.48%
Tidak Ada Pengaruh	0.062	0.031	0.021	0.020	0.040	0.174	0.035	6.93%
Jumlah	1.000	1.000	1.000	1.000	1.000	5.000		

Sumber: Hasil olahan

Tabel 4.16. Bobot Eleman Dampak

	Tidak ada pengaruh Rei		Sedang	Tinggi	Sangat Tinggi
Bobot	0.069	0.135	0.267	0.518	1.000

Sumber: Hasil olahan

Perhitungan bobot elemen untuk unsur frekuensi, dilakukan dengan cara yang sama dengan perhitungan bobot elemen dampak, yang diperlihatkan pada tabel dibawah ini.

Tabel 4.17. Perhitungan Bobot Elemen Untuk Frekuensi

	Sangat Tinggi	Tinggi	Sedang	Rendah	Sangat Rendah	Jumlah	Prioritas	Persentase
Sangat Tinggi	0.560	0.642	0.524	0.429	0.360	2.514	0.503	100.00%
Tinggi	0.187	0.214	0.315	0.306	0.280	1.301	0.260	51.75%
Sedang	0.112	0.071	0.105	0.184	0.200	0.672	0.134	26.72%
Rendah	0.080	0.043	0.035	0.061	0.120	0.339	0.068	13.48%
Sangat Rendah	0.062	0.031	0.021	0.020	0.040	0.174	0.035	6.93%
Jumlah	1.000	1.000	1.000	1.000	1.000	5.000		

Sumber: Hasil olahan

Tabel 4.18. Bobot Eleman Frekuensi

	Sangat Rendah	Sangat Rendah Rendah		Tinggi	Sangat Tinggi
Bobot	0.069	0.135	0.267	0.518	1.000

Sumber: Hasil olahan

4.3.2.3 Uji Konsistensi Matriks dan Hirarki

Matriks bobot dari hasil perbandingan berpasangan harus mempunyai diagonal bernilai satu dan konsisten. Untuk menguji konsistensi, maka nilai eigen value maksimum (λ_{maks}) harus mendekati banyaknya elemen (n) dan eigen value sisa mendekati nol.

Pembuktian konsistensi matriks berpasangan dilakukan dengan unsurunsur pada tiap kolom dibagi dengan jumlah kolom yang bersangkutan diperoleh matriks sebagai berikut:

0.560	0.642	0.524	0.429	0.360
0.187	0.214	0.315	0.306	0.280
0.112	0.071	0.105	0.184	0.200
0.080	0.043	0.035	0.061	0.120
0.062	0.031	0.021	0.020	0.040

Selanjutnya diambil rata rata untuk setiap baris yaitu 0.50; 0.26; 0.13; 0.07; dan 0.03. Vektor kolom (rata-rata) dikalikan dengan matriks semula, menghasilkan nilai untuk tiap baris, yang selanjutnya setiap nilai dibagi kembali dengan nilai vektor yang bersangkutan.

1.00	3.00	5.00	7.00	9.00		0.503		2.74		0.503	=	5.46
0.33	1.00	3.00	5.00	7.00		0.260		1.41	:	0.260	=	5.43
0.20	0.33	1.00	3.00	5.00	X	0.134	=	0.70	:	0.134	=	5.20
0.14	0.20	0.33	1.00	3.00	. 7	0.068		0.34	:	0.068	=	5.03
0.11	0.14	0.20	0.33	1.00		0.035		0.18	:	0.035	=	5.09
										Sum		26.21

Banyaknya elemen dalam matriks (n) adalah 5, maka $\lambda_{maks} = 26.21 / 5$, sehingga didapat λ maks sebesar 5,24, dengan demikian karena nilai λ maks mendekati banyaknya elemen (n) dalam matriks yaitu 5 dan sisa eigen value adalah 0.24 yang berarti mendekati nol, maka matriks adalah konsisten. Matriks berpasangan untuk dampak dan frekuensi adalah sama sesuai dengan tabel 4.7 dan 4.8 maka hasil ini sama untuk dampak dan frekuensi, yaitu masing-masing matriks konsisten.

Tabel 4.19. Nilai Random Konsistensi Indeks (CRI)

N	1	2	3	4	5	6	7	8	9	10
RI	0	0	0,58	0,9	1,12	1,24	1,32	1,41	1,45	1,49

Sumber: Nila (2007)

Untuk menguji konsistensi hirarki dan tingkat akurasi, untuk dampak dan frekuensi dengan banyaknya elemen dalam matriks (n) adalah 5, besarnya CRI untuk n=5 sesuai dengan tabel 4.11 adalah 1.12, maka CCI=(λ_{maks} – n)/(n-1) sehingga didapat CCI sebesar 0.061. Selanjutnya karena CRH = CCI/CRI, maka CRH = 0.061/1.12 = 0.05. Nilai CRH yang didapat adalah cukup kecil atau dibawah 10 % berarti hirarki konsisten dan tingkat akurasi tinggi. Matriks berpasangan untuk dampak dan frekuensi adalah sama sesuai dengan tabel 5.14 dan 5.15 maka hasil ini sama untuk dampak dan frekuensi, yaitu masing-masing hirarki konsisten dan tingkat akurasi tinggi.

4.3.2.4 Nilai Lokal Dampak dan Frekuensi

Berdasarkan uji konsistensi, maka perhitungan lokal dampak dan frekuensi dapat dilakukan, dengan memasukkan bobot elemen masing-masing sesuai dengan hasil.

Tabel 4.20. Nilai Lokal Dampak

Variabel	Sangat Tinggi	Tinggi	Sedang	Rendah	Tidak ada pengatuh	Nilai	
, 442 140 02	1.000	0.518	0.267	0.135	0.069	Lokal	
X1	0	8	15	0	0	8.148	
X2	2	15	6	0	0	11.366	
Х3	9	9	5	0	0	14.994	
X4	11	9	3	0	0	16.459	
X5	3	5	6	7	2	8.273	
X6	2	4	7	8	2	7.157	

Tabel 4.20. (Sambungan)

Variabel	Sangat Tinggi	Tinggi	Sedang	Rendah	Tidak ada pengatuh	Nilai
, ul lubel	1.000	0.518	0.267	0.135	0.069	Lokal
X8	3	10	10	0	0	10.847
Х9	2	5	8	5	3	7.607
X10	1	3	9	7	3	6.109
X11	0	4	10	7	2	5.824
X12	2	5	8	6	2	7.673
X13	1	4	6	10	2	6.160
X14	0	9	14	0	0	8.399
X15	2	11	10	0	0	10.365
X16	3	6	9	4	1	9.118
X17	1	7	9	5	1	7.771
X18	1	7	12	3	0	8.234
X19	2	12	5	4	0	10.086
X20	4	13	5	1	0	12.199
X21	5	10	7		0	12.181
X22	2	2	6	12	1	6.325
X23	-1/	3	9	8	2	6.174
X24	1	3	7	10	2	5.909
X25	1	5	9	6	2	6.940
X26	2	5	8	8	0	7.804
X27	0	3	10	9	1	5.507
X28	1	3	6	11	2	5.777

Sumber: Hasil olahan

Perhitungan nilai lokal untuk frekuensi diperlihatkan pada tabel dibawah ini.

Tabel 4.21. Nilai Lokal Frekuensi

Variabel	Sangat Tinggi	Tinggi	Sedang	Rendah	Tidak ada pengatuh	Nilai
Variabei	1.000	0.518	0.267	0.135	0.069	Lokal
X1	8	10	5	0	0	14.511
X2	1	6	16	0	0	8.380
X3	4	8	10	0	1	10.882
X4	3	8	12	0	0	10.347
X5	1	9	2	8	3	7.478
X6	0	5	9	7	2	6.075
X7	1	3	7	9	3	5.844
X8	2	6	15	0	0	9.113
X9	2	8	6	3	4	8.425
X10	2	3	10	5	3	7.106
X11	1	3	9	7	3	6.109
X12	2	8	5	5	3	8.358
X13	0	4	11	5	3	5.891
X14	8	8	7	0	0	14.011
X15	2	10	11	0	0	10.115
X16	3	6	10	1	3	9.120
X17	1	6	10	3	3	7.389
X18	3	6	11	2	1	9.383
X19	2	8	8	4	1	8.886
X20	4	2	13	3	1	8.982
X21	1	4	12	5	1	7.020
X22	2	2	9	8	2	6.657

Tabel 4.21. (Sambungan)

Variabel	Sangat Tinggi	Tinggi	Sedang	Rendah	Tidak ada pengatuh	Nilai	
, allasei	1.000	0.518	0.267	0.135	0.069	Lokal	
X23	2	3	6	7	5	6.446	
X24	2	5	4	8	4	7.012	
X25	3	3	10	3	4	7.906	
X26	3	7	7	5	1	9.236	
X27	2	2	11	5	3	6.856	
X28	0	5	-11	6	1	6.405	

Sumber: Hasil olahan

4.3.2.5 Nilai Goal

Nilai goal untuk menentukan rangking atau peringkat AHP, dihitung berdasarkan kombinasi nilai frekuensi dan dampak. Berikut ini ditampilkan rangking atau peringkat dari nilai akhir faktor risiko.

Tabel 4.22. Peringkat Faktor Risiko

	Nilai	Lokal	Nilai (Global	Nilai		Level Risiko
VarIabel	P (%)	Frek (%)	P (%) 0.667	Frek (%) 0.333	Akhir Faktor Risiko	Rangking	
X1	8.148	14.511	5.432	4.837	10.269	9	S
X2	11.366	8.380	7.578	2.793	10.371	5	S
Х3	14.994	10.882	9.996	3.627	13.623	2	Н
X4	16.459	10.347	10.973	3.449	14.422	1	Н
X5	8.273	7.478	5.515	2.493	8.008	14	L
X6	7.157	6.075	4.772	2.025	6.796	20	L
X7	7.589	5.844	5.059	1.948	7.007	19	L

Tabel 4.22. (Sambungan)

	Nilai	Lokal	Nilai	Global	Nilai		Level
VarIabel	P (%)	Frek (%)	P (%) 0.667	Frek (%) 0.333	Akhir Faktor Risiko	Rangking	Risiko
X8	10.847	9.113	7.232	3.038	10.269	7	S
X9	7.607	8.425	5.071	2.808	7.880	16	L
X10	6.109	7.106	4.072	2.369	6.441	21	L
X11	5.824	6.109	3.883	2.036	5.919	28	L
X12	7.673	8.358	5.115	2.786	7.901	15	L
X13	6.160	5.891	4.107	1.964	6.070	25	L
X14	8.399	14.011	5.599	4.670	10.269	8	S
X15	10.365	10.115	6.910	3.372	10.281	6	S
X16	9.118	9.120	6.079	3.040	9.119	11	M
X17	7.771	7.389	5.181	2.463	7.644	17	L
X18	8.234	9.383	5.489	3.128	8.617	12	M
X19	10.086	8.886	6.724	2.962	9.686	10	M
X20	12.199	8.982	8.133	2.994	11.127	3	S
X21	12.181	7.020	8.120	2.340	10.460	4	S
X22	6.325	6.657	4.217	2.219	6.436	22	L
X23	6.174	6.446	4.116	2.149	6.265	24	L
X24	5.909	7.012	3.940	2.337	6.277	23	L
X25	6.940	7.906	4.626	2.635	7.262	18	L
X26	7.804	9.236	5.202	3.079	8.281	13	M
X27	5.507	6.856	3.671	2.285	5.957	27	L
X28	5.777	6.405	3.851	2.135	5.986	26	L

Sumber: Hasil olahan

4.3.2.6 Analisa Level Risiko

Analisa level risiko dilakukan dengan indeks level risiko, dimana indeks level risiko adalah perkalian antara frekuensi dan dampak. Indeks level risiko dikelompokkan kedalam empat kelas sesuai tabel berikut :

Tabel 4.23. Level Risiko

Symbol	Level Risiko	Keterangan
Н	Risiko Tinggi	Nilai Faktor Risiko 14.422 s/d 12.296
S	Risiko Signifikan	Nilai Faktor Risiko 12.296 s/d 10.170
M	Risiko Sedang	Nilai Faktor Risiko 10.170 s/d 8.045
L	Risiko Rendah	Nilai Faktor Risiko 8.045 s/d 5.919

Sumber: Hasil olahan

Rentang kelas diketahui dari bobot yang paling tinggi dikurangi dengan bobot yang paling rendah dan hasilnya dibagi dengan banyaknya kelas. Selanjutnya berdasarkan analisa level risiko untuk empat kelas yaitu L (*Low*), M (*Medium*), S (*Significant*), dan H (*High*), dimana nilai terendah 5.919, nilai terbesar adalah 14.422, dan rentangan 2.126.

Berdasarkan tujuan manajemen risiko, dimana fokus pada level risiko S (*Significant*), dan H (*High*) untuk meningkatkan kinerja kualitas proyek. Sehingga yang menjadi faktor risiko utama adalah variabel yang level risikonya S (*Significant*) dan H (*High*). Dibawah ini diberikan peringkat faktor risiko berdasarkan AHP dan level risiko.

Tabel 4.24. Peringkat Faktor Risiko Berdasarkan AHP dan Analisa Level Risiko

	Nilai	Lokal	Nilai (Global	Nilai		Level
VarIabel	P (%)	Frek (%)	P (%) 0.667	Frek (%) 0.333	Akhir Faktor Risiko	Rangking	Risiko
X4	16.459	10.347	10.973	3.449	14.422	1	Н
X3	14.994	10.882	9.996	3.627	13.623	2	Н
X21	12.181	7.020	8.120	2.340	10.460	3	S
X1	8.148	14.511	5.432	4.837	10.269	4	S
X14	8.399	14.011	5.599	4.670	10.269	5	S
X20	12.199	8.982	8.133	2.994	11.127	6	S
X8	10.847	9.113	7.232	3.038	10.269	7	S
X2	11.366	8.380	7.578	2.793	10.371	8	S
X15	10.365	10.115	6.910	3.372	10.281	9	S
X9	7.607	8.425	5.071	2.808	7.880	10	L
X5	8.273	7.478	5.515	2.493	8.008	11	L
X18	8.234	9.383	5.489	3.128	8.617	12	M
X12	7.673	8.358	5.115	2.786	7.901	13	L
X26	7.804	9.236	5.202	3.079	8.281	14	M
X19	10.086	8.886	6.724	2.962	9.686	15	M
X17	7.771	7.389	5.181	2.463	7.644	16	L

Tabel 4.24. (Sambungan)

	Nilai	Lokal	Nilai (Global	Nilai			
VarIabel	P (%)	Frek (%)	P (%)	Frek (%) 0.333	Akhir Faktor Risiko	Rangking	Level Risiko	
X16	9.118	9.120	6.079	3.040	9.119	17	М	
X25	6.940	7.906	4.626	2.635	7.262	18	L	
X10	6.109	7.106	4.072	2.369	6.441	19	L	
X7	7.589	5.844	5.059	1.948	7.007	20	L	
X6	7.157	6.075	4.772	2.025	6.796	21	L	
X11	5.824	6.109	3.883	2.036	5.919	22	L	
X27	5.507	6.856	3.671	2.285	5.957	23	L	
X28	5.777	6.405	3.851	2.135	5.986	24	L	
X23	6.174	6.446	4.116	2.149	6.265	25	L	
X22	6.325	6.657	4.217	2.219	6.436	26	L	
X13	6.160	5.891	4.107	1.964	6.070	28	L	
X24	5.909	7.012	3.940	2.337	6.277	28	L	

Sumber: Hasil olahan

Dibawah ini ditampilkan faktor risiko utama. Faktor-faktor yang ditampilkan adalah yang mempunyai rangking terbaik berdasarkan bobot, dan masuk kedalam level *significant risk* dan *high risk* sesuai manajemen risiko, dimana perusahaan atau organisasi fokus pada risiko S (*Significant*) dan H (*High*) untuk meningkatkan kinerja kualitas proyek, sehingga faktor risiko utama adalah

variabel yang level risikonya S (Significant) dan H (High), seperti yang tergambar pada tabel berikut.

Tabel 4.25. Faktor Risiko Utama

Rank	Variabel	Keterangan	Level Risiko			
Biaya U	ntuk Pencapa	ian Spesifikasi/ Design Tidak Memadai				
4	X1	Melakukan order untuk perubahan spesifikasi (Change orders)	S			
8	(redisign)					
Biaya U	ntuk Ketersed	lian Material Tidak Memadai				
2	Х3	Material yang digunakan kurang dari yang dibutuhkan.	Н			
1	X4	Mutu material tidak sesuai dengan spesifikasi	Н			
Biaya U	ntuk SDM Ti	lak Memadai				
7	X8	Upah tenaga kerja yang diberikan rendah	S			
Biaya U	ntuk Ketersed	liaan Alat Tidak Memadai				
			~			
5	X14	Alat yang digunakan tidak sesuai spesifikasi	S			
9	X15	Jumlah alat yang digunakan tidak memadai	S			
Biaya U	ntuk Pelaksar	aan Metode Tidak Memadai				
6	S					
3	X21	Metode pengoperasian alat tidak tepat.	S			

Sumber: Hasil olahan

4.3.3 Analisa Statistik Parametrik

4.3.3.1 Random Sampling

Menurut Walpole, R.H. Myers, S.L. Myers & Ye (2002) random variabel adalah fungsi yang mengaitkan bilangan real dengan setiap unsur dalam ruang sampel [80].

Sebuah sampel adalah subyek yang dipilih dari suatu populasi untuk penyelidikan. Sebuah sampel acak adalah salah satu dipilih oleh sebuah metode yang melibatkan komponen yang tidak terduga. Random sampling juga dapat merujuk kepada mengambil sejumlah pengamatan independen dari distribusi probabilitas yang sama, tanpa melibatkan populasi yang nyata. Sebuah sampel probabilitas adalah satu di mana setiap item memiliki probabilitas yang diketahui berada di dalam sampel.

Sampel biasanya tidak akan benar-benar mewakili populasi dari mana ia diambil-acak ini variasi dalam hasil dikenal sebagai sampling error. Dalam kasus sampel acak, teori matematika tersedia untuk menilai sampling error. Dengan demikian, perkiraan yang diperoleh dari sampel acak dapat disertai dengan ukuran ketidakpastian yang berhubungan dengan perkiraan. Ini dapat mengambil bentuk kesalahan standar, atau jika sampel cukup besar untuk teorema limit sentral akan berlaku, interval kepercayaan dapat dihitung.

Dikarenakan data tidak berdistribusi normal, oleh karena itu analisa regresi untuk menentukan model tidak bisa dicapai. Adapun solusi agar data dapat berdistribusi normal sebagai salah satu syarat metode statistik parametrik, adalah dengan membuat suatu random sampel hingga 46 sampel (50% dari sampel sebelumnya). Tabulasi data *random sampling* dapat dilihat pada **lampiran 5.** Adapun langkah-langkah dalam pembuatan *random sampling*:

- 1. Pertama buat tabulasi data hasil kuesioner pada *software Excel* seperti pada lampiran E.
- 2. Hasil tabulasi data kita *copy* dan di *paste transpose*. Kemudian kita hitung nilai rata-rata dari masing-masing sampel tersebut.
- 3. Hasil rata-rata kita kalikan dengan tingkat keakuratan data sebesar yang kita inginkan. Pada penelitian ini keakuratan kita ambil batas bawah dan atas sebesar 20% (1,2 dan 0,8).

- 4. Setelah itu kita buat data random pada sel baru dengan formula =rand(). Copy formula tersebut sebanyak variabel yang kita inginkan dengan jumlah sampel minimal 45 buah.
- Kemudian pada sel baru, kita buat formula nilai sampel hasil penelitian dikurangi dengan data random sesuai dengan baris dan kolom selnya masing-masing.
- 6. Setelah itu kita hitung lagi nilai rata-rata dari hasil pengurangan tersebut sesuai dengan variabelnya masing-masing.
- 7. Dari hasil rata-rata tersebut kita buat formula =IF(AND(a>b,a<c),"YES","NO"). Dimana : a = nilai variabel rata-rata hasil pengurangan data sampel dengan data formula random, b = nilai variabel rata-rata dikali tingkat keakuratan (0,8), dan c = nilai variabel rata-rata dikalikan dikalikan tingkat keakuratan (1,2).
- 8. Kemudian kita tekan tombol Del pada keyboard hingga masing-masing variabel muncul kata "YES". Jika sudah, kunci angka random tersebut dengan *copy* dan *paste value* agar data random tidak berobah.
- 9. Jika telah selesai maka data *random sample* dapat kita gunakan untuk analisis selanjutnya.

4.3.3.2 Analisa Korelasi

Dari data random sampling, tahap selanjutnya yaitu input data dilakukan dengan menggunakan *software* SPSS 17. Karena data menggunakan data berdeistribusi normal (>30 sampel dan skala kinerja interval), maka langkah pertama analisa adalah menggunakan menggunakan metoda korelasi *Pearson* untuk mencari variabel-variabel x yang berpengaruh terhadap variabel y. Hasil *output correlation* ini dapat dilihat pada **lampiran 6.** Dari hasil korelasi tersebut dipilih variabel-variabel bebas yang memiliki keeratan hubungan yang signifikan yaitu X1, X3, X4, dan X15. Antara lain sebagai berikut:

Tabel 4.26. Signifikan Keeratan Hubungan Hasil Analisa Korelasi *Pearson* Terhadap Kinerja Y

No Kode	Wada	Variabel	Correlation	
	Kode	variabei	Coefficient	
1	X1	Melakukan order untuk perubahan spesifikasi (<i>Change orders</i>)	374*	
2	X3	Material yang digunakan kurang dari yang dibutuhkan	496**	
3	X4	Mutu material tidak sesuai dengan spesifikasi	581**	
4	X15	Jumlah alat yang digunakan tidak memadai	354*	

Sumber: Hasil olahan SPSS

Angka pada output antara kinerja Y dengan variabel X dapat dilihat pada tabel di atas. Angka variabel X4 menunjukkan kuatnya korelasi antara kinerja kualitas proyek dengan tingkat pengaruh risiko karena > 0,5. Sedangkan tanda negatif menunjukkan bahwa semakin sering risiko terbut terjadi akan membuat kinerja kualitas proyek konstruksi akan semakin turun.

Setelah angka korelasi yang signifikant didapat langkah selanjutnya adalah menguji apakah angka korelasi yang didapat benar-benar signifikan atau dapat digunakan untuk analisa regresi, yaitu dengan melakukan analisa faktor.

4.3.3.3 Analisa Faktor

Analisis faktor dilakukan untuk membentuk beberapa kelompok variabevariabel bebas yang dianggap valid. Penyederhanaan jumlah variabel yang cukup besar menjadi beberapa kelompok yang kecil dilakukan berdasarkan faktor yang sama dengan tetap mempertahankan sebanyak mungkin informasi aslinya.

Menurut santoso (2009), dalam banyak kasus pada umumnya jumlah variabel independen berkisar antara dua sampai empat variabel. walaupun secara teoritis bisa digunakan banyak variabel bebas, namun penggunaan lebih dari tujuh variabel independen dianggap tidak efektif [81]. Karena jumlah variabel yang signifikan hanya empat, maka analisa faktor tidak dilakukan.

4.3.3.4 Analisa Regresi

Langkah selanjutnya adalah regresi yang berfungsi untuk mengetahui arah hubungan antara variabel bebas (*independent*) dengan variabel terikat (*dependent*) apakah masing-masing variabel bebas berhubungan positif atau negatif. Dan untuk memprediksi nilai dari variabel terikat apakah mengalami kenaikan atau penurunan. Dimana pada analisis ini digunakan analisi linier. Untuk variabel-variabel X yang berkorelasi kemudian dimasukkan ke variabel terikat Y.

Tujuan dari analisis regresi adalah untuk mendapatkan suatu model statistik dan dapat pula digunakan sebagai mencari variabel X yang dominan yang mempengaruhi kualitas proyek konstruksi. Yaitu dengan melihat variabel X yang ada pada model persamaan yang didapat. Variabel yang dominan tersebut yang akan dilakukan simulasi Monte Carlo. Untuk mendapatkan tingkat kepercayaan yang tinggi, maka ada sampel yang direduksi karena *out layer*. Pada masingmasing tahapan pembuangan sampel pada analisa regresi ini, adapun nilai tingkat kepercayaan (R Square) yang di dapat sebagai berikut:

Tabel 4.27. Variabel Yang Direduksi

No.	Data yang di buang	\mathbb{R}^2	Condition Index	Responden	Nilai Proyek	Prosentase Penawaran	Keterangan
1	22	0.525	16,392 < 17	R22	1 <s d≤10m<="" td=""><td>70%<s d≤80%<="" td=""><td>-</td></s></td></s>	70% <s d≤80%<="" td=""><td>-</td></s>	-
2	40	0.566	16,754 < 17	R41	20 <s d≤30m<="" td=""><td>70%<s d≤80%<="" td=""><td>Random P18</td></s></td></s>	70% <s d≤80%<="" td=""><td>Random P18</td></s>	Random P18
3	18	0.601	16,615 < 17	R18	20 <s d≤30m<="" td=""><td>70%<s d≤80%<="" td=""><td>-</td></s></td></s>	70% <s d≤80%<="" td=""><td>-</td></s>	-
4	25	0.641	16,484 < 17	R27	1 <s d≤10m<="" td=""><td>60%<s d≤70%<="" td=""><td>Random P4</td></s></td></s>	60% <s d≤70%<="" td=""><td>Random P4</td></s>	Random P4
5	20	0.684	16,615 < 17	R21	$1 < s/d \le 10M$	70% <s d≤80%<="" td=""><td>-</td></s>	-
6	40	0.710	16,411 < 17	R45	$1 < s/d \le 10M$	70% <s d≤80%<="" td=""><td>Random P22</td></s>	Random P22
7	30	0.738	16,506 < 17	R34	$1 < s/d \le 10M$	60% <s d≤70%<="" td=""><td>Random P11</td></s>	Random P11
8	30	0.761	16,300 < 17	R35	$1 < s/d \le 10M$	70% <s d≤80%<="" td=""><td>Random P12</td></s>	Random P12
9	11	0.783	16,123 < 17	R11	$1 < s/d \le 10M$	60% <s d≤70%<="" td=""><td>-</td></s>	-
10	32	0.808	16,045 < 17	R39	1 <s d≤10m<="" td=""><td>70%<s d≤80%<="" td=""><td>Random P16</td></s></td></s>	70% <s d≤80%<="" td=""><td>Random P16</td></s>	Random P16
11	31	0.837	16,932 < 17	R38	1 <s d≤10m<="" td=""><td>70%<s d≤80%<="" td=""><td>Random P15</td></s></td></s>	70% <s d≤80%<="" td=""><td>Random P15</td></s>	Random P15
12	25	0.861	17,088 > 17	R30	10 <s d≤20m<="" td=""><td>70%<s d≤80%<="" td=""><td>Random P7</td></s></td></s>	70% <s d≤80%<="" td=""><td>Random P7</td></s>	Random P7

Sumber: Hasil olahan

Dari hasil pada di atas didapatkan nilai R^2 terakhir 0.861. dikarenakan nilai $Condition\ Index > 17$ maka nilai R^2 yang di pakai adalah pada hasil pembuangan yang ke 11 (sebelas) yaitu sebesar 0,837 dengan nilai $Condition\ Index$ (16,932) < 17. Nilai $Condition\ Index$ bisa diperkecil yaitu dengan dilanjutkan pembuangan data Variabel X15. Setelah diuji ternyata nilai Rsquare semakin jauh turun. Dikarenakan data tinggal sedikit maka diambil keputusan pembuangan data berhenti sampai nilai $R^2 = 0,837$. Adapun hasil $output\ model\ summary$ hasil pembuangan data terakhir dapat dilihat pada tabel berikut :

Tabel 4.28. Model Summary

Model Summary^d

Model	R	R Square	Adjusted R Square	Std. Error of R Square the Estimate Change		F Change	df1	df2	Sig. F Change	Durbin- Watson
1	,698°	.487	.471	.91544	.487	31.300	1	33	.000	
2	,8 0 3 ^b	.644	.622	.77411	.157	14.150	1	32	.001	
3	.915°	.837	.822	.53173	.193	36.823	1	31	.000	1.934

- a. Predictors: (Constant), X4
- b. Predictors: (Constant), X4, X3
- c. Predictors: (Constant), X4, X3, X15
- d. Dependent Variable: Y

Sumber: Hasil olahan SPSS

Tabel di atas menggambarkan tingkat kepercayaan model dan jumlah model yang mungkin dapat dibentuk. Nilai R² yaitu tingkat kepercayaan model yang menunjukkan tingkat kepercayaan model yang dibuat. Semakin besar nilai *Rsquare* nya maka semakin tinggi tingkat kepercayaan model yang dibuat. Nilai *Rsquare* dapat ditingkatkan dengan cara mereduksi sampel yang *outlayer*.

Tabel 4.29. Nilai Collinearity Test

Collinearity Diagnostics⁴

				Variance Proportions				
Model	Dimension	Eigen <i>v</i> alue	Condition Index	(Constant)	X4	Х3	X15	
1	1	1.982	1.000	.01	.01			
	2	.018	10.583	,99	,99			
2	1	2.955	1.000	.00	.00	.00		
	2	.027	10.463	. 1 0	.27	.97		
	3	.018	12.975	.89	.73	.02		
3	1	3.917	1.000	.00.	.00.	.00.	.00	
	2	.048	9.038	.00	.01	.37	.44	
	3	.022	13.481	.0 1	.92	.38	.14	
	4	.014	16.932	.99	.07	.25	.42	

a. Dependent Variable: Y

Sumber: Hasil olahan SPSS

Pada tabel di atas didapatkan *Colinerity indeks*, yang menunjukkan bahwa model yang dibuat terdapat *multicollinerity* atau tidak. Dengan kata lain bahwa variabel-variabel X yang ada pada model tersebut memiliki hubungan yang kuat diantara sesama variabel X. *Colinerity indeks (CI)* disyaratkan harus < 17, jika ada variabel X yang mempunyai CI > 17 maka variabel tersebut sebaiknya dihilangkan. Ada kemungkinan variabel X dengan CI > 17 tetap dipertahankan jika hubungan diantara variabel X yang terdapat dalam model tersebut lebih kecil dari nilai korelasi terkecil antara variabel Y dengan variabel X.

Tabel 4.30. Koefisien Model

Coefficients^a

	Unstandardized Coefficients		Standardized Coefficients			Correlations			Collinearity Statistics		
Model		В	Std. Error	Beta	t	Sig.	Zero-order	Partial	Part	Tolerance	WF
1	(Constant)	6,483	.826		7.847	.000					
	X4	-1.103	.197	-,698	-5,595	.000	-,698	-,698	-,698	1.000	1.000
2	(Constant)	7.834	.785		9.973	.000					
	X4	847	.180	536	-4.70 3	.000	698	639	496	.857	1.167
	X 3	606	.161	428	-3.762	.001	631	554	397	.857	1.167
3	(Constant)	10.163	.662		15.348	.000					
	X4	656	.128	415	- 5.142	.000	698	678	372	.805	1.242
	X 3	713	.112	505	-6.369	.000	631	753	461	.836	1.197
	X1 5	771	.127	455	-6.068	.000	504	737	440	.935	1.069

a. Dependent Variable: Y

Sumber: Hasil olahan SPSS

Dari hasil output tabel di atas maka dapat dibuat model persamaan sebagai berikut :

$$Y = 10,163 - 0,656X4 - 0,713X3 - 0,771X15 \tag{4.1}$$

Dimana:

Y = Kinerja Kualitas Proyek Konstruksi

X3 = Material yang digunakan kurang dari yang dibutuhkan

X4 = Mutu material tidak sesuai dengan spesifikasi

X15 = Jumlah alat yang digunakan tidak memadai

4.3.3.5 Uji Validitas Model Statistik

Uji model dilakukan untuk meyakinkan persamaan yang terpilih. Untuk mengukur kestabilan model tersebut dilakukan metode uji analisa parametrik sebagai berikut :

• Uji Multikolinearitas

Uji multikolinearitas dilakukan untuk mengetahui apakah terdapat multikolinearitas atau terjadinya korelasi diantara sesama variabel terpilih. Model regresi yang baik tidak boleh ada multikolinearitas. Uji ini dapat dapat dilihat dari nilai VIF untuk masing-masing prediktor dan dari nilai *Condition Index*. Persyaratan untuk dapat dikatakan terbebas dari multikolinearitas adalah apabila nilai VIF tidak boleh lebih dari 10. Sedangkan nilai VIF masing-masing prediktor pada tabel coeffisien kecil dari 10 yaitu X4 = 1.242, X3 = 1.197 dan X15 = 1.069.

• Hasil Coefficient of Determination Test (Adjusted R² test)

Uji validitas untuk model statistik yang telah diperoleh, pertama dilakukan dengan menggunakan R^2 yaitu untuk menilai apakah model yang terbentuk tersebut dapat mewakili populasinya. Dimana nilai $R^2 = 0.837$, yang mana artinya variabel X3, X4 dan X15 memberikan konstribusi tingkat kepercayaan terhadap model sudah 83, 7%. Sedangkan untuk mengetahui apakah model regresi pada penelitian sudah benar atau salah dilakukan juga uji F, dan uji t.

• Hasil Uji F-Test

Uji hipotesis yang digunakan pada tahap ini adalah menggunakan nilai F yang terbentuk seperti pada tabel berikut :

Tabel 4.31. Anova

ANOVAd

Mode	el	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	26.231	1	26.231	31.300	.000a
	Residual	27.655	33	.838		
	Total	53.886	34			
2	Regression	34.710	2	17.355	28.961	,000b
	Residual	19.176	32	.599		
	Total	53.886	34			
3	Regression	45.121	3	15.040	53.1 96	.000°
	Residual	8.765	31	.283		
	Total	53.886	34			

- a. Predictors: (Constant), X4
- b. Predictors: (Constant), X4, X3
- c. Predictors: (Constant), X4, X3, X15
- d. Dependent Variable: Y

Sumber: Hasil olahan SPSS

Hipotesisnya berbunyi sebagai berikut:

- H₀: Tidak ada hubungan linier antara faktor dominan terhadap kualitas proyek konstruksi
- H_i : Ada Hubungan linier antara faktor dominan terhadap kualitas proyek konstruksi

Analisa Nilai F:

•	Nilai F Hitung	=	53, 196
•	Tingkat signifikansi, α	=	0,05
•	Denumerator (Responden - variabel)	=	35 - 3 = 32
•	Numerator (variabel - 1)	=	3 - 1 = 2
•	Nilai F tabel	=	3,29

 $Selanjutnya \ adalah \ menentukan \ kriteria \ uji \ hipotesis \ sebagai \ berikut:$ $Jika \ F \ penelitian > F \ tabel \ maka \ H_0 \ ditolak \ dan \ H_i \ diterima. \ Jika \ F \ penelitian < F$

tabel maka H_0 diterima dan H_i ditolak. Dari hasil penelitian didapatkan bahwa angka F penelitian sebesar 53,196 > F tabel sebesar 3,29 Maka H_0 ditolak dan H_i diterima. Artinya, ada hubungan linier antara faktor dominan terhadap kualitas proyek konstruksi. Dengan demikian model regresi di atas sudah layak dan benar. Kesimpulan adalah ada pengaruh faktor dominan terhadap kualitas proyek konstruksi. Sedangkan dari nilai Signifikansi 0,000 < 0,01, maka model dapat diterima.

• Hasil Uji T-Test

Langkah selanjutnya melakukan t- test dengan tujuan untuk mengetahui tingkat kepercayaan tiap variabel bebas dalam persamaan atau model regresi yang digunakan dalam memprediksi nilai kinerja Y. Untuk melihat besarnya pengaruh variabel tersebut terhadap kualitas proyek konstruksi digunakan uji T sebagai berikut.

Tabel 4.32. Coeficients

Coefficients*

	Unstandardized Coefficients		Standardized Coefficients			Correlations			Collinearity Statistics		
Model		В	Std. Error	Beta	t	Sig.	Zero-order	Partial	Part	Tolerance	MF
1	(Constant)	6,483	.826		7.847	.000	1				
	X4	-1,103	,197	-,698	-5,595	.000	-,698	-,698	-,698	1.000	1.000
2	(Constant)	7.834	.785		9.973	.000					
	X4	847	.180	536	-4.703	.000	698	639	496	.857	1.167
	X3	606	.161	428	-3.762	.001	631	554	397	.857	1.167
3	(Constant)	10.163	.662		15.348	.000					
	X4	656	.128	- .415	- 5.142	.000	698	678	372	.805	1.242
	X3	713	.112	505	-6.369	.000	631	753	461	.836	1.197
	X15	771	.127	455	-6.068	.000	504	737	440	.935	1.069

a. Dependent Variable: Y

Sumber: Hasil olahan SPSS

Untuk melihat adanya hubungan linier antara variabel X dengan kinerja Y, hipotesis yang diajukan sebagai berikut :

H₀ : Tidak ada hubungan linier antara faktor dominan terhadap kualitas proyek konstruksi

 H_i : Ada Hubungan linier antara faktor dominan terhadap kualitas proyek Konstruksi

Analisa Nilai t:

• Tingkat signifikansi, $\alpha = 0.05$

• DF (Responden - variabel) = 35 - 3 = 32

• Nilai t tabel (two tailed) = 1,69

• Nilai t hitung = 15,348

• Nilai signifikansi terhadap variabel Y = 0,000

Selanjutnya adalah menentukan kriteria uji hipotesis sebagai berikut : Jika t penelitian > t tabel maka H_0 ditolak dan H_i diterima. Jika t penelitian < t tabel maka H_0 diterima dan H_i ditolak. Dari hasil penelitian didapatkan bahwa angka t penelitian sebesar 15,348 > t tabel sebesar 1,69. Maka H_0 ditolak dan H_i diterima. Artinya, ada hubungan linier antara faktor dominan terhadap kualitas proyek konstruksi. Jika dilihat dari angka Beta maka variabel terebut berpengaruh negatif terhadap kualitas proyek konstruksi. Sedangkan dari nilai Signifikansi 0,000 < 0,01, maka model dapat diterima.

• Hasil Uji Durbin Watson (d-test)

Tidak adanya otokorelasi diantara nilai residu (error term) e_i dan e_j , dimana cov $(e_i, e_j) = 0$; $i \neq j$, yang artinya nilai residu yang berasal dari hasil regresi yang satu, tidak berhubungan/mempengaruhi nilai residu yang lainnya (saling bebas). Lebih rinci, otokorelasi merupakan korelasi antara nilai residu yang dapat terjadi pada data observasi lintas waktu (time series data), maupun korelasi antar tempat (cross-sectional data).

Cara mendeteksinya adalah dengan cara melakukan tes Durbin Watson (*dtest*). Dari hasil output SPSS, akan tertera hasil dari *d-test* tersebut, dan interpretasinya adalah sebagai berikut :

- a. Jika d lebih kecil dari dL atau lebih besar dari (4-dU), maka hipotesis nol ditolak, yang berarti terdapat autokorelasi.
- b. Jika terletak antara dU dan (4-dU), maka hipotesis nol diterima, yang berarti tidak ada autokorelasi,
- c. Jika d terletak antara dL dan dU atau diantara (4-dU) dan (4-dL), maka tidak menghasilkan kesimpulan yang pasti.

Tabel 4.33. Model Summary

Model Summary^d

							Cha	ange Statistie	cs		
	Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	df1	df2	Sig. F Change	Durbin- Watson
ſ	1	,698ª	.487	.471	.91544	.487	31.300	1	33	.000	
·	2	.803b	.644	.622	.77411	.157	14.150	1	32	.001	
	3	.915°	.837	.822	.53173	.193	36.823	1	31	.000	1.934

- a. Predictors: (Constant), X4
- b. Predictors: (Constant), X4, X3
- c. Predictors: (Constant), X4, X3, X15
- d. Dependent Variable: Y

Sumber: Hasil olahan SPSS

Hipotesisnya berbunyi sebagai berikut :

H₀ : Tidak adanya otokorelasi diantara nilai residu

H_i : Tidak adanya otokorelasi diantara nilai residu

Analisa Nilai DW:

Karena nilai DW terletak antara dU dan (4-dU), atau 1,653 < 1,934 < 2,347, maka hipotesis nol diterima, yang berarti tidak ada autokorelasi.

4.4 Simulasi Variabel dengan Crystall Ball 7.3

Hasil simulasi faktor dan regresi telah mengeluarkan model matematis yang menggambarkan hubungan antara variabel dominan terhadap kualitas proyek kkonstruksi. Variabel penentu yang dihasilkan, digunakan untuk melakukan simulasi dengan *Crytal ball* yang bertujuan untuk mengetahui probabilitas terjadinya variabel penentu dengan skala penilaian 1 sampai 5, di dalam populasinya. Proses simulasi pada penelitian ini dilakukan terhadap variabel terikat Y. simulasi terhadap masing-masing variabel terikat Y tersebut dilakukan

sebanyak 1.000 iterasi. Adapun langkah-langkah dalam melakukan simulasi dengan crystal ball seperti berikut ini :

- 1. Data diambil dari hasil out put Cooefficients
- 2. Menyusun skenario yang mungkin terjadi sebagai berikut :

Tabel 4.34. Skenario Pada Simulasi

SKENARIO	PERSAMAAAN
1	Y=DynX4DynX3DynX15
2	Y=MinX4DynX3DynX15
3	Y=MaxX4DynX3DynX15
4	Y=MeanX4DynX3DynX15
5	Y=DynX4MinX3DynX15
6	Y=DynX4MaxX3DynX15
7	Y=DynX4MeanX3DynX15
8	Y=DynX4DynX3MinX15
9	Y=DynX4DynX3MaxX15
10	Y=DynX4DynX3MeanX15
11	Y=MinX4MinX3DynX15
12	Y=MaxX4MinX3DynX15
13	Y=MeanX4MinX3DynX15
14	Y=MinX4MaxX3DynX15
15	Y=MinX4MeanX3DynX15
16	Y=MaxX4MaxX3DynX15
17	Y=MeanX4MaxX3DynX15
18	Y=MinX4DynX3MinX15
19	Y=MaxX4DynX3MinX15
20	Y=MeanX4DynX3MinX15
21	Y=MinX4DynX3MaxX15

Tabel 4.34. (Sambungan)

SKENARIO	PERSAMAAAN
22	Y=MinX4Dyn X3MeanX15
23	Y=MaxX4DynX3MaxX15
24	Y=MaxX4DynX3MeanX15
25	Y=Mean X4DynX3Mean X15
26	Y=DynX4MinX3MinX15
27	Y=DynX4MinX3MaxX15
28	Y=DynX4MinX3MeanX15
29	Y=DynX4MaxX3MinX15
30	Y=DynX4MeanX3MinX15
31	Y=DynX4MeanX3MaxX15
32	Y=DynX4MaxX3MaxX15
33	Y=DynX4MeanX3MeanX15

Sumber: Hasil olahan

3. Menyusun data yang akan diinput ke Software Crystal Ball seperti pada tabel berikut :

Tabel 4.35. Data Input Crystal Ball

INPUT CRYSTAL BALL SKENARIO: 1

Y=DynX4DynX3DynX15 Y =		Y =	Forecaste Perormance	Coef regresi	Nilai Kasus	DISTI	RIBUSI NOF	RMAL SCOI	RE 1-5
		(Constant)	5.768		Score 1-5	Min	Max	Mean	Stdev
			10.163	10.163					
Dyn	DynX4	X4	-0.656	-0.656	1	2.00	5.00	4.09	0.72
Dyn	DynX3	X3	-1.426	-0.713	2	2.00	5.00	3.89	0.86
Dyn	DynX15	X15	-2.313	-0.771	3	2.00	5.00	3.38	0.71

INPUT CRYSTAL BALL SKENARIO: 2

Y=MinX4DynX3DynX15		Y =	Forecaste Perormance	Coef regresi	Nilai Kasus	DISTE	RIBUSI NOI	RMAL SCO	RE 1-5
		(Constant)	5.768		Score 1-5	Min	Max	Mean	Stdev
			10.163	10.163					
Min	MinX4	X4	-0.656	-0.656	1	2.00	5.00	4.09	0.72
Dyn	DynX3	X3	-1.426	-0.713	2	2.00	5.00	3.89	0.86
Dyn	DynX15	X15	-2.313	-0.771	3	2.00	5.00	3.38	0.71

Y=MaxX4DynX3DynX15		Y =	Forecaste Perormance	Coef regresi	Nilai Kasus	DISTE	RIBUSI NOI	RMAL SCO	RE 1-5
		(Constant)	5.768		Score 1-5	Min Max Mean Std			
			10.163	10.163					
Max	MaxX4	X4	-0.656	-0.656	1	2.00	5.00	4.09	0.72
Dyn	DynX3	X3	-1.426	-0.713	2	2.00	5.00	3.89	0.86
Dyn	DynX15	X15	-2.313	-0.771	3	2.00	5.00	3.38	0.71

INPUT CRYSTAL BALL SKENARIO: 4

Y=MeanX4DynX3DynX15 Y =		Y =	Forecaste Perormance	Coef regresi Nilai Kasu		DIST	RE 1-5		
		(Constant)	5.768		Score 1-5	Min Max Mean Std			
			10.163	10.163					
Mean	MeanX4	X4	-0.656	-0.656	1	2.00	5.00	4.09	0.72
Dyn	DynX3	X3	-1.426	-0.713	2	2.00	5.00	3.89	0.86
Dyn	DynX15	X15	-2.313	-0.771	3	2.00	5.00	3.38	0.71

INPUT CRYSTAL BALL SKENARIO:

Y=DynX4MaxX3DynX15		Y=	Forecaste Perormance	Coef regresi	Nilai Kasus	DISTRIBUSI NORMAL S		RMAL SCO	RE 1-5
		(Constant)	5.768		Score 1-5	Min Max Mean			Stdev
			10.163	10.163					
Dyn	DynX4	X4	-0.656	-0.656	1	2.00	5.00	4.09	0.72
Max	MaxX3	X3	-1.426	-0.713	2	2.00	5.00	3.89	0.86
Dyn	DynX15	X15	-2.313	-0.771	3	2.00	5.00	3.38	0.71

INPUT CRYSTAL BALL SKENARIO:

Y=DynX4M	leanX3DynX15	Y =	Forecaste Perormance	Coef regresi	Nilai Kasus	DISTRIBUSI NORMAL SCOR			RE 1-5
		(Constant)	5.768		Score 1-5	Min	Max	Mean	Stdev
			10.163	10.163					
Dyn	DynX4	X4	-0.656	-0.656	1	2.00	5.00	4.09	0.72
Mean	MeanX3	X3	-1.426	-0.713	2	2.00	5.00	3.89	0.86
Dyn	DynX15	X15	-2.313	-0.771	3	2.00	5.00	3.38	0.71

INPUT CRYSTAL BALL SKENARIO: 8

Y=DynX4Dy	Y=DynX4DynX3MinX15 Y =		Forecaste Perormance	Coef regresi	Nilai Kasus	DISTI	RIBUSI NOI	RMAL SCO	RE 1-5
		(Constant)	5.768		Score 1-5	Min Max Mean Stdev			Stdev
			10.163	10.163					
Dyn	DynX4	X4	-0.656	-0.656	1	2.00	5.00	4.09	0.72
Dyn	DynX3	X3	-1.426	-0.713	2	2.00	5.00	3.89	0.86
Min	MinX15	X15	-2.313	-0.771	3	2.00	5.00	3.38	0.71
							,		

Y=DynX4D	ynX3MaxX15	Y =	Forecaste Perormance	Coef regresi	Nilai Kasus	DISTRIBUSI NORMAL SCORE 1-			RE 1-5
		(Constant)	5.768		Score 1-5	Min Max Mean			Stdev
			10.163	10.163					
Dyn	DynX4	X4	-0.656	-0.656	1	2.00	5.00	4.09	0.72
Dyn	DynX3	X3	-1.426	-0.713	2	2.00	5.00	3.89	0.86
Max	MaxX15	X15	-2.313	-0.771	3	2.00	5.00	3.38	0.71

INPUT CRYSTAL BALL SKENARIO: 10

Y=DynX4Dy	nX3MeanX15	Y =	Forecaste Perormance	Coef regresi	Nilai Kasus				RE 1-5
		(Constant)	5.768		Score 1-5	Min Max Mean			Stdev
			10.163	10.163					
Dyn	DynX4	X4	-0.656	-0.656	1	2.00	5.00	4.09	0.72
Dyn	DynX3	X3	-1.426	-0.713	2	2.00	5.00	3.89	0.86
Mean	MeanX15	X15	-2.313	-0.771	3	2.00	5.00	3.38	0.71

INPUT CRYSTAL BALL SKENARIO: 1:

Y=MinX4M	inX3DynX15	Y =	Forecaste Perormance	Coef regresi	Nilai Kasus	DISTRIBUSI NORMAL SCORE 1-				
		(Constant)	5.768		Score 1-5	Min	Max	Mean	Stdev	
			10.163	10.163						
Min	MinX4	X4	-0.656	-0.656	1	2.00	5.00	4.09	0.72	
Min	MinX3	X3	-1.426	-0.713	2	2.00	5.00	3.89	0.86	
Dyn	DynX15	X15	-2.313	-0.771	3	2.00	5.00	3.38	0.71	

INPUT CRYSTAL BALL SKENARIO: 12

Y=MaxX4M	inX3DynX15	Y=	Forecaste Perormance	Coef regresi	Nilai Kasus	DISTRIBUSI NORMAL SCORE			RE 1-5
		(Constant)	5.768		Score 1-5	Min Max Mean S			Stdev
			10.163	10.163					
Max	MaxX4	X4	-0.656	-0.656	1	2.00	5.00	4.09	0.72
Min	MinX3	X3	-1.426	-0.713	2	2.00	5.00	3.89	0.86
Dyn	DynX15	X15	-2.313	-0.771	3	2.00	5.00	3.38	0.71

INPUT CRYSTAL BALL SKENARIO: 13

Y=MeanX4	MinX3DynX15	Y =	Forecaste Perormance	Coef regresi	Nilai Kasus	DISTRIBUSI NORMAL SCO)RE 1-5	
		(Constant)	5.768		Score 1-5	Min	Max	Mean	Stdev	
			10.163	10.163						
Mean	MeanX4	X4	-0.656	-0.656	1	2.00	5.00	4.09	0.72	
Min	MinX3	X3	-1.426	-0.713	2	2.00	5.00	3.89	0.86	
Dyn	DynX15	X15	-2.313	-0.771	3	2.00	5.00	3.38	0.71	

INPUT CRYSTAL BALL SKENARIO: 14

Y=MinX4Ma	axX3DynX15	Y =	Forecaste Perormance	Coef regresi	Nilai Kasus	DISTRIBUSI NORMAL SCORE 1			RE 1-5
		(Constant)	5.768		Score 1-5	Min Max Mean S			Stdev
			10.163	10.163					
Min	MinX4	X4	-0.656	-0.656	1	2.00	5.00	4.09	0.72
Max	MaxX3	X3	-1.426	-0.713	2	2.00	5.00	3.89	0.86
Dyn	DynX15	X15	-2.313	-0.771	3	2.00	5.00	3.38	0.71
							,		

Y=MinX4M	eanX3DynX15	Y =	Forecaste Perormance	Coef regresi	Nilai Kasus	DISTRIBUSI NORMAL SCORE 1-5 Min Max Mean Stde			RE 1-5
		(Constant)	5.768		Score 1-5	Min	Min Max Mean		
			10.163	10.163					
Min	MinX4	X4	-0.656	-0.656	1	2.00	5.00	4.09	0.72
Mean	MeanX3	X3	-1.426	-0.713	2	2.00	5.00	3.89	0.86
Dyn	DynX15	X15	-2.313	-0.771	3	2.00	5.00	3.38	0.71

INPUT CRYSTAL BALL SKENARIO: 16

Y=MaxX4M	IaxX3DynX15	Y =	Forecaste Perormance	Coef regresi	Nilai Kasus	DISTRIBUSI NORMAL SCORE 1-			RE 1-5
		(Constant)	5.768		Score 1-5	Min Max Mean S			Stdev
			10.163	10.163					
Max	MaxX4	X4	-0.656	-0.656	1	2.00	5.00	4.09	0.72
Max	MaxX3	X3	-1.426	-0.713	2	2.00	5.00	3.89	0.86
Dyn	DynX15	X15	-2.313	-0.771	3	2.00	5.00	3.38	0.71

INPUT CRYSTAL BALL SKENARIO: 18

Y=MinX4Dy	ynX3MinX15	Y=	Forecaste Perormance	Coef regresi	Nilai Kasus	DISTRIBUSI NORMAL SCORE			RE 1-5
		(Constant)	5.768		Score 1-5	Min Max Mean S			Stdev
			10.163	10.163					
Min	MinX4	X4	-0.656	-0.656	1	2.00	5.00	4.09	0.72
Dyn	DynX3	X3	-1.426	-0.713	2	2.00	5.00	3.89	0.86
Min	MinX15	X15	-2.313	-0.771	3	2.00	5.00	3.38	0.71

INPUT CRYSTAL BALL SKENARIO: 19

Y=MaxX4I	DynX3MinX15	Y =	Forecaste Perormance	Coef regresi	Nilai Kasus	DISTRIBUSI NORMAL SCORE			RE 1-5
		(Constant)	5.768		Score 1-5	Min	Max	Mean	Stdev
			10.163	10.163					
Max	MaxX4	X4	-0.656	-0.656	1	2.00	5.00	4.09	0.72
Dyn	DynX3	X3	-1.426	-0.713	2	2.00	5.00	3.89	0.86
Min	MinX15	X15	-2.313	-0.771	3	2.00	5.00	3.38	0.71

INPUT CRYSTAL BALL SKENARIO: 20

Y=MeanX4D	Y=MeanX4DynX3MinX15 Y =		Forecaste Perormance	Coef regresi	Nilai Kasus	DISTI	RIBUSI NOI	RMAL SCO	RE 1-5
		(Constant)	5.768		Score 1-5	Min Max Mean Std			Stdev
			10.163	10.163					
Mean	MeanX4	X4	-0.656	-0.656	1	2.00	5.00	4.09	0.72
Dyn	DynX3	X3	-1.426	-0.713	2	2.00	5.00	3.89	0.86
Min	MinX15	X15	-2.313	-0.771	3	2.00	5.00	3.38	0.71
							,		

Y=MinX4Dy	ynX3MaxX15	Y =	Forecaste Perormance	Coef regresi	Nilai Kasus	DISTI	RIBUSI NOI	RMAL SCO	RE 1-5
		(Constant)	5.768		Score 1-5	Min	Max	Mean	Stdev
			10.163	10.163					
Min	MinX4	X4	-0.656	-0.656	1	2.00	5.00	4.09	0.72
Dyn	DynX3	X3	-1.426	-0.713	2	2.00	5.00	3.89	0.86
Max	MaxX15	X15	-2.313	-0.771	3	2.00	5.00	3.38	0.71

INPUT CRYSTAL BALL SKENARIO: 22

Y=MinX4Dy	Y=MinX4Dyn X3MeanX15 Y =		Forecaste Perormance	Coef regresi Nilai Kasus		DISTRIBUSI NORMAL SCORE 1-5				
		(Constant)	5.768		Score 1-5	Min	Max	Mean	Stdev	
			10.163	10.163						
Min	MinX4	X4	-0.656	-0.656	1	2.00	5.00	4.09	0.72	
Dyn	Dyn X3	X3	-1.426	-0.713	2	2.00	5.00	3.89	0.86	
Mean	MeanX15	X15	-2.313	-0.771	3	2.00	5.00	3.38	0.71	

INPUT CRYSTAL BALL SKENARIO: 2

Y=MaxX4D	ynX3MaxX15	Y =	Forecaste Perormance	Coef regresi	Nilai Kasus	DISTRIBUSI NORN		DISTRIBUSI NORMAL SCORE 1-5	
		(Constant)	5.768		Score 1-5	Min	Max	Mean	Stdev
			10.163	10.163					
Max	MaxX4	X4	-0.656	-0.656	1	2.00	5.00	4.09	0.72
Dyn	DynX3	X3	-1.426	-0.713	2	2.00	5.00	3.89	0.86
Max	MaxX15	X15	-2.313	-0.771	3	2.00	5.00	3.38	0.71

INPUT CRYSTAL BALL SKENARIO: 24

Y=MaxX4Dy	nX3MeanX15	Y=	Forecaste Perormance	Coef regresi	Nilai Kasus DISTRIBUSI NOR		RMAL SCORE 1-5		
			5.768		Score 1-5	Min	Max	Mean	Stdev
			10.163	10.163					
Max	MaxX4	X4	-0.656	-0.656	1	2.00	5.00	4.09	0.72
Dyn	DynX3	X3	-1.426	-0.713	2	2.00	5.00	3.89	0.86
Mean	MeanX15	X15	-2.313	-0.771	3	2.00	5.00	3.38	0.71

INPUT CRYSTAL BALL SKENARIO: 25

Y=Mean X4DynX3Mean X15		Y =	Forecaste Y = Perormance Coef regresi Nilai Kasus DISTRIBUSI NORM						RE 1-5
		(Constant)	5.768		Score 1-5	Min Max Mean			Stdev
			10.163	10.163					
Mean	Mean X4	X4	-0.656	-0.656	1	2.00	5.00	4.09	0.72
Dyn	DynX3	X3	-1.426	-0.713	2	2.00	5.00	3.89	0.86
Mean	Mean X15	X15	-2.313	-0.771	3	2.00	5.00	3.38	0.71

INPUT CRYSTAL BALL SKENARIO: 26

Y=DynX4M	Y=DynX4MinX3MinX15		Forecaste Perormance	Coef regresi	Nilai Kasus	DISTI	RIBUSI NOI	RMAL SCO	RE 1-5
		(Constant)	5.768		Score 1-5	Min Max Mean		Mean	Stdev
			10.163	10.163					
Dyn	DynX4	X4	-0.656	-0.656	1	2.00	5.00	4.09	0.72
Min	MinX3	X3	-1.426	-0.713	2	2.00	5.00	3.89	0.86
Min	MinX15	X15	-2.313	-0.771	3	2.00	5.00	3.38	0.71
							,		

Y=DynX4Mi	inX3MaxX15	Y =	Forecaste Perormance	Coef regresi	Nilai Kasus	DISTI	RIBUSI NOI	RMAL SCO	RE 1-5
		(Constant)	5.768		Score 1-5	Min Max M			Stdev
			10.163	10.163					
Dyn	DynX4	X4	-0.656	-0.656	1	2.00	5.00	4.09	0.72
Min	MinX3	X3	-1.426	-0.713	2	2.00	5.00	3.89	0.86
Max	MaxX15	X15	-2.313	-0.771	3	2.00	5.00	3.38	0.71

INPUT CRYSTAL BALL SKENARIO: 28

Y=DynX4Mi	Y=DynX4MinX3MeanX15 Y =		Forecaste Perormance	Coef regresi	Nilai Kasus	DISTI	RIBUSI NOF	RMAL SCOI	RE 1-5
		(Constant)	5.768		Score 1-5	Min Max Mean			Stdev
			10.163	10.163					
Dyn	DynX4	X4	-0.656	-0.656	1	2.00	5.00	4.09	0.72
Min	MinX3	X3	-1.426	-0.713	2	2.00	5.00	3.89	0.86
Mean	MeanX15	X15	-2.313	-0.771	3	2.00	5.00	3.38	0.71

INPUT CRYSTAL BALL SKENARIO: 25

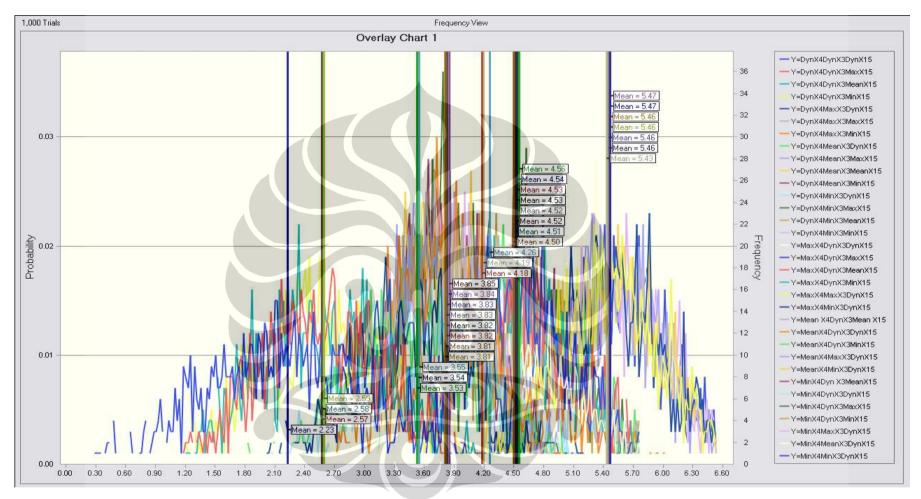
Y=DynX4Ma	Y=DynX4MaxX3MinX15		Forecaste Perormance	Coef regresi	Nilai Kasus	DISTRIBUSI NORM		ORMAL SCORE 1-5	
			5.768		Score 1-5	Min	Max	Mean	Stdev
			10.163	10.163					
Dyn	DynX4	X4	-0.656	-0.656	1	2.00	5.00	4.09	0.72
Max	MaxX3	X3	-1.426	-0.713	2	2.00	5.00	3.89	0.86
Min	MinX15	X15	-2.313	-0.771	3	2.00	5.00	3.38	0.71

INPUT CRYSTAL BALL SKENARIO: 36

Y=DynX4Me	anX3MinX15	Y=	Forecaste Perormance	Coef regresi	Nilai Kasus	DISTRIBUSI NORMAL SCO		RE 1-5	
		(Constant)	5.768		Score 1-5	Min	Max	Mean	Stdev
			10.163	10.163					
Dyn	DynX4	X4	-0.656	-0.656	1	2.00	5.00	4.09	0.72
Mean	MeanX3	X3	-1.426	-0.713	2	2.00	5.00	3.89	0.86
Min	MinX15	X15	-2.313	-0.771	3	2.00	5.00	3.38	0.71

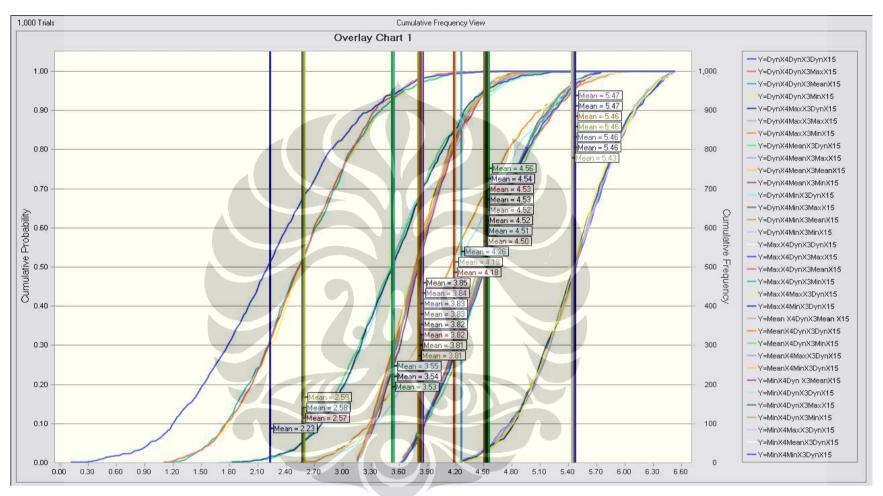
INPUT CRYSTAL BALL SKENARIO: 31

Y=DynX4M	Y=DynX4MeanX3MaxX15 Y =		Forecaste Perormance	Coef regresi	Nilai Kasus	DISTI	RIBUSI NOF	RMAL SCOI	RE 1-5
		(Constant)	5.768		Score 1-5	Min Max Mean S			Stdev
			10.163	10.163					
Dyn	DynX4	X4	-0.656	-0.656	1	2.00	5.00	4.09	0.72
Mean	MeanX3	X3	-1.426	-0.713	2	2.00	5.00	3.89	0.86
Max	MaxX15	X15	-2.313	-0.771	3	2.00	5.00	3.38	0.71


INPUT CRYSTAL BALL SKENARIO: 32

Y=DynX4M	Y=DynX4MaxX3MaxX15 Y		Forecaste Perormance	Coef regresi	Nilai Kasus	DISTI	RIBUSI NOI	RMAL SCO	RE 1-5
		(Constant)	5.768		Score 1-5	Min Max Mean		Mean	Stdev
			10.163	10.163					
Dyn	DynX4	X4	-0.656	-0.656	1	2.00	5.00	4.09	0.72
Max	MaxX3	X3	-1.426	-0.713	2	2.00	5.00	3.89	0.86
Max	MaxX15	X15	-2.313	-0.771	3	2.00	5.00	3.38	0.71
							,		

Y=DynX4MeanX3MeanX15		Y =	Forecaste Perormance	Coef regresi	Nilai Kasus	DISTE	RIBUSI NORMAL SCORE 1-5		
		(Constant)	5.768		Score 1-5	Min	Max	Mean	Stdev
			10.163	10.163					
Dyn	DynX4	X4	-0.656	-0.656	1	2.00	5.00	4.09	0.72
Mean	MeanX3	X3	-1.426	-0.713	2	2.00	5.00	3.89	0.86
Mean	MeanX15	X15	-2.313	-0.771	3	2.00	5.00	3.38	0.71


Sumber: Hasil olahan

- 4. Adapun cara input data tabel di atas pada *software Crystal Ball* pertama adalah klik nilai kasus score dynamis yang akan diinput, klik menu *Cristal Ball > Define Assumption*, maka akan ditampilkan tabel *Distribution Gallery*, setelah itu pilih *Basic > Normal >* OK.
- 5. Pada tabel *Define Assumtion*, isi seluruh kotak dengan nama dan nilai yang telah kita tentukan sebelumnya, kemudian klik Enter > Ok. Lakukan langkah (4) dan (5) seterusnya untuk seluruh nilai score, hingga diberi tanda warna hijau.
- 6. Setelah nilai *Define Assumtion* diisi seluruhnya, klik jumlah nilai *Forecaste Perormance*, klik *Define Forecast* kemudian isi name sesuai dengan nama skenario dan Unit SCORE 1-5, atau sesuai dengan data yang kita miliki, kemudian klik OK.
- 7. Klik *Run Preference*, kemudian atur *Trial*, *Sampling*, *Speed*, *Option dan Statistics*, sesuai dengan yang kita butuhkan.
- 8. Setelah *Run Preference* diatur, maka langkah selanjutnya Klik **Start** untuk *Run*.
- 9. Maka akan dihasilkan *out put* seperti grafik-grafik berikut :

Gambar 4.4. Frequency View

Sumber: Hasil olahan Crystall Ball

Gambar 4.5. Commulative Frequency View

Sumber: Hasil olahan Crystall Ball

Gambar 4.4 dan 4.5 merupakan hasil output dari software Crystal Ball. Gambar 4.4 menunjukkan sebaran frekuensi yang mungkin terjadi pada berbagai kondisi. Sedangkan gambar 4.5 adalah grafik *commualive frequency* yang digunakan untuk meramal kondisi yang tepat. Grafik ini merupakan gabungan dari frekuensi komulaif dari skenario.

Setelah disimulasikan ke 33 skenario tersebut dengan *software Crystal Ball* maka didapatkan nilai mean terendah yaitu 2,23 dan tertinggi yaitu 5,47 dengan rata-rata nilai mean 4,19. Nilai mean rata-rata ini digunakan sebagai batas kegagalan dari proyek konstruksi tersebut. Karena penilaian semakin ke kanan kinerja semakin buruk, maka adapun hasil yang didapat setelah simulasi ini adalah:

Tabel 4.36. Kesimpulan Hasil Simulasi

No	Statistic	Mean	Keterangan
1	Y=DynX4DynX3DynX15	2.23	Sukses
2	Y=DynX4DynX3MaxX15	2.57	Sukses
3	Y=DynX4DynX3MeanX15	2.58	Sukses
4	Y=DynX4DynX3MinX15	2.59	Sukses
5	Y=DynX4MaxX3DynX15	3.54	Sukses
6	Y=DynX4MaxX3MaxX15	3.83	Sukses
7	Y=DynX4MaxX3MinX15	3.82	Sukses
8	Y=DynX4MeanX3DynX15	3.53	Sukses
9	Y=DynX4MeanX3MaxX15	3.83	Sukses
10	Y=DynX4MeanX3MeanX15	3.81	Sukses
11	Y=DynX4MeanX3MinX15	3.85	Sukses
12	Y=DynX4MinX3DynX15	3.55	Sukses
13	Y=DynX4MinX3MaxX15 3.82		Sukses
14	Y=DynX4MinX3MeanX15	3.81	Sukses

Tabel 4.36. (Sambungan)

No	Statistic	Mean	Keterangan
15	Y=DynX4MinX3MinX15	3.84	Sukses
16	Y=MaxX4DynX3DynX15	4.19	Gagal
17	Y=MaxX4DynX3MaxX15	4.54	Gagal
18	Y=MaxX4DynX3MeanX15	4.53	Gagal
19	Y=MaxX4DynX3MinX15	4.51	Gagal
20	Y=MaxX4MaxX3DynX15	5.46	Gagal
21	Y=MaxX4MinX3DynX15	5.46	Gagal
22	Y=Mean X4DynX3Mean X15	4.52	Gagal
23	Y=MeanX4DynX3DynX15	4.18	Sukses
24	Y=MeanX4DynX3MinX15	4.56	Gagal
25	Y=MeanX4MaxX3DynX15	5.46	Gagal
26	Y=MeanX4MinX3DynX15	5.46	Gagal
27	Y=MinX4Dyn X3MeanX15	4.52	Gagal
28	Y=MinX4DynX3DynX15	4.26	Gagal
29	Y=MinX4DynX3MaxX15	4.53	Gagal
30	Y=MinX4DynX3MinX15	4.5	Gagal
31	Y=MinX4MaxX3DynX15	5.47	Gagal
32	Y=MinX4MeanX3DynX15	5.43	Gagal
33	Y=MinX4MinX3DynX15	5.47	Gagal

Sumber: Hasil olahan

Dari hasil out put *Crystal Ball* juga dihasilkan grafik *sensitifity chart*. Hasil ini dapat dilihat pada **lampiran 8**. Dari grafik tersebut bahwasanya hasil *sensitivity analysis* yang paling tinggi yaitu pada skenario Y=DynX4DynX3DynX15. Dimana prosentase sensitivity DynX3 = -36,2%, DynX15 = 34,4%, DynX4 = -21,4%. Masing-masing skenario menunjukkan nilai negatif. Artinya bahwa kinerja Y berbanding terbalik dengan variabel X. Dengan **Universitas Indonesia**

arti bahwa apabila risiko variabel X4 dan X3 dan X15 semakin besar, maka nilai kualitas pekerjaan proyek akan semakin berkurang. Jadi artinya ketiga variabel ini akan berdampak menurunkan kualitas proyek konstruksi.

4.5 Kuesioner Tahap Ketiga

Setelah didapatkan faktor risiko yang berpengaruh terhadap kinerja kualitas proyek konstruksi, maka tahap berikutnya adalah melakukan validasi atas hasil tersebut. Survei dilakukan dengan melakukan wawancara terhadap pakar yang memenuhi persyaratan untuk mengetahui pendapat mereka tentang hasil yang didapat. Lima orang pakar didapat dengan latar belakang konsultan, kontraktor dan owner berpengalaman minimal 15 tahun berhasil dihubungi dalam survei dan wawancara. Pakar yang dihubungi pada validasi tahap ini, sama dengan pakar pada kuesioner tahap pertama.

Pertanyaan yang diajukan kepada para pakar, berupa bagaimana pendapat mereka terhadap ketiga faktor utama risiko yang mempengaruhi terjadinya penurunan kinerja kualitas proyek, dengan bentuk jawaban Setuju atau Tidak Setuju. Dari hasil validasi kelima orang pakar menyatakan setuju.

Pada tahap ketiga ini juga dilakukan validasi *risk respon* atau tindakan terhadap variabel yang berpengaruh. Risk respon pada penelitian ini didapat berdasarkan wawancara kepada lima orang pakar tersebut di atas. dengan bentuk jawaban Setuju atau Tidak Setuju. Dari hasil validasi kelima orang pakar menyatakan setuju. Adapun hasil Validasi Risk Respon terhadap penentuan tindakan *preventive* dan *corrective* hasil wawancara dengan pakar terhadap risiko yang dominan antara lain sebagai berikut:

Tabel 4.37. Penentuan Tindakan Preventive dan Corrective Hasil Wawancara Dengan Pakar Terhadap Risiko

Variabel	Variabel	Tindaka	an
variabei	Variabei	Preventive	Corective
X3	Material yang digunakan kurang dari yang dibutuhkan	 Pre Construction Meeting (PCM) dilakukan sebelum pelaksanaan fisik dimulai dan dalam rapat pra pelaksanaan tersebut untuk mendapatkan kesepakatan bersama dan visi penyelesaian pekerjaan yang sama sesuai dengan apa yang sudah tertuang didalam Dokumen Kontrak dan Kontrak Perjanjian Kerja. Contoh bahan / material yang akan digunakan dimintakan persetujuan Direksi, bila disetujui kemudian dibawa ke laboratorium yang ditunjuk / direkomendasikan oleh proyek, guna diadakan test karekteristik sesuai spesifikasi teknik / petunjuk Direksi untuk selanjutnya dibuat campuran pendahuluan (Preliminary Mix) dan percobaan campuran (Trial Mix). 	 Memerintahkan kontraktor untuk melakukan pekerjaan diruas fungsional yang mengalami kerusakan Mutual check dilakukan bersama - sama dengan Direksi untuk mendapatkan pekerjaan yang sebenarnya dilaksanakan / gambar terpasang (as built drawing) sebagai dasar volume pekerjaan yang akan dimintakan pembayarannya Konsultan supervisi memberi teguran 1, 2 dan 3 kepada kontraktor Pemutusan kontrak dan penarikan jaminan pelaksanaan

Tabel 4.37. (Sambungan)

Variabal	Variabal	Tindakan				
Variabel	Variabel	Preventive	Corective			
		- Pengukuran dan penandaan lokasi pekerjaan				
		(pemasangan profil) yang akan dilaksanakan sesuai Gambar Rencana bersama Direksi.				
		- Pengawas lapangan dan konsultan pengawas harus lebih cermat dalam menjalankan tugasnya				
		- Pengendalian Kepala Satker/ Kuasa, Pengguna Anggaran dan Pejabat Pembuat Komitmen harus				
		efektif.				

Tabel 4.37. (Sambungan)

Variabel	Variabel	Tinda	kan
variabei	variabei	Preventive	Corective
X4	Mutu material tidak sesuai dengan spesifikasi	 Pre Construction Meeting (PCM) dilakukan sebelum pelaksanaan fisik dimulai dan dalam rapat pra pelaksanaan tersebut untuk mendapatkan kesepakatan bersama dan visi penyelesaian pekerjaan yang sama sesuai dengan apa yang sudah tertuang didalam Dokumen Kontrak dan Kontrak Perjanjian Kerja. Contoh bahan / material yang akan digunakan dimintakan persetujuan Direksi, bila disetujui kemudian dibawa ke laboratorium yang ditunjuk / direkomendasikan oleh proyek, guna diadakan test karekteristik sesuai spesifikasi teknik / petunjuk Direksi untuk selanjutnya dibuat campuran pendahuluan (Preliminary Mix) dan percobaan campuran (Trial Mix). 	 Memerintahkan kontraktor untuk melakukan pekerjaan diruas fungsional yang mengalami kerusakan Konsultan supervisi memberi teguran 1, 2 dan 3 kepada kontraktor Pekerjaan dicek, jika masih dibatas toleransi biaya dikurangi, jika tidak maka pekerjaan tersebut dibongkar dan diganti yang baru. Pemutusan kontrak dan penarikan jaminan pelaksanaan

Tabel 4.37. (Sambungan)

Variabel	Variabel	Tindakan				
v ariabei	v ariabei	Preventive	Corective			
		 Dalam pengiriman besi dan baja struktur disertakan sertifikat / surat hasil pemeriksaan dan pengujiannya untuk diserahkan kepada Direksi. Permintaan persetujuan untuk pengecekan hasil pekerjaan kepada Direksi. Apabila diperlukan, maka test Core Drill dilaksanakan untuk kontrol silang terhadap ketebalan dan kadar aspal terpasang dilapangan. Penyedia Jasa bersama Tim Proyek melaksanakan peninjauan ke pabrik, dalam rangka inspeksi pekerjaan pembuatan beton pracetak. Pengawas lapangan dan konsultan pengawas harus lebih cermat dalam menjalankan tugasnya Pengendalian Kepala Satker/ Kuasa, Pengguna Anggaran dan Pejabat Pembuat Komitmen harus efektif. 				

Tabel 4.37. (Sambungan)

Variab -	Vorichal	Tindak	can
Variabel	Variabel	Preventive	Corective
		Treventive	Corective
X15	Jumlah alat yang digunakan	- Pre Construction Meeting (PCM) dilakukan	- Memerintahkan kontraktor untuk melakukan
	tidak memadai	sebelum pelaksanaan fisik dimulai dan dalam	penambahan alat sesuai dengan yang
		rapat pra pelaksanaan tersebut untuk	dibutuhkan
		mendapatkan kesepakatan bersama dan visi	- Penambahan jam kerja
		penyelesaian pekerjaan yang sama sesuai dengan	
		apa yang sudah tertuang didalam Dokumen	
		Kontrak dan Kontrak Perjanjian Kerja.	
		- Melakukan rapat lapangan sekali dalam satu	
		minggu, dan membicarakan setiap penyimpangan	
		yang terjadi serta mencari solusinya	
		- Pengawas lapangan dan konsultan pengawas	
		harus lebih cermat dalam menjalankan tugasnya	
		- Pengendalian Kepala Satker/ Kuasa, Pengguna	
		Anggaran dan Pejabat Pembuat Komitmen harus	
		efektif.	

Sumber: Hasil olahan data primer

4.6 Kesimpulan

Pengumpulan data penelitian ini dilakukan secara bertahap sesuai dengan tujuan masing-masing pengolahan data. Pengumpulan data pertama adalah validasi pakar yang juga dijadikan dasar penetapan variabel. Pengumpulan data tahap dua merupakan penyebaran kuesioner pada para stakeholder untuk melihat peringkat faktor risiko yang mempengaruhi kinerja kualitas proyek, kemudian dilakukan analisa statistik untuk menentukan besar pengaruh faktor dominan tersebut. Setelah itu dilakukan validasi kepakar sekaligus penentuan tindakan preventive dan corrective.

BAB 5 TEMUAN DAN BAHASAN

5.1 Pendahuluan

Bab selanjutnya menjelaskan temuan dari dari pengolahan data pada bab 4. Hasil temuan ini terbagi menjadi 3 kelompok yaitu hasil *Analytical Hierarchy Process* (AHP), korelasi dan regresi dan Simulasi dengan *Crystal Ball*. Selanjutnya akan dilakukan pembahasan berdasarkan hasil validasi akhir terhadap para pakar dan studi literatur.

5.2 Temuan

5.2.1 Hasil Analytical Hierarchy Process (AHP)

Pada analisa peringkat dengan AHP, dilakukan uji konsistensi matriks dan konsisten hirarki.

5.2.1.1 Uji Konsistensi Matriks

Banyaknya elemen dalam matriks (n) adalah 5, maka $\lambda_{maks} = 26.21 / 5$, sehingga didapat λ maks sebesar 5,24, dengan demikian karena nilai λ maks mendekati banyaknya elemen (n) dalam matriks yaitu 5 dan sisa eigen value adalah 0.24 yang berarti mendekati nol, maka matriks adalah konsisten. Matriks berpasangan untuk dampak dan frekuensi adalah sama sesuai dengan tabel 4.7 dan 4.8 maka hasil ini sama untuk dampak dan frekuensi, yaitu masing-masing matriks konsisten.

5.2.1.2 Uji Konsistensi Hirarki dan Tingkat Akurasi

Berdasarkan hasil uji banyaknya elemen dalam matriks (n) adalah 5, besarnya CRI untuk n=5 sesuai dengan tabel 4.23 adalah 1.12, maka CCI=(λ_{maks} – n)/(n-1) sehingga didapat CCI sebesar 0.061. Selanjutnya karena CRH = CCI/CRI, maka CRH = 0.061/1.12 = 0.05. Nilai CRH yang didapat adalah cukup kecil atau dibawah 10 % berarti hirarki konsisten dan tingkat akurasi tinggi.

5.2.1.3 Analisa Level Risiko

Analisa level risiko dilakukan dengan indeks level risiko, dimana indeks level risiko adalah perkalian antara frekuensi dan dampak. Berdasarkan tujuan manajemen risiko dimana perusahaan fokus pada level risiko S (*Significant*), dan H (*High*) untuk meningkatkan kinerja waktu proyek, sehingga yang menjadi faktor risiko utama adalah variabel yang level risikonya S (*Significant*) dan H (*High*). Dibawah ini diberikan peringkat faktor risiko berdasarkan AHP dan level risiko.

Tabel 5.1. Peringkat Faktor Risiko Untuk Level Signifikan dan Tinggi

	Nilai	Lokal	Nilai (Global	Nilai		Lavel
VarIabel	P (%)	Frek (%)	P (%)	Frek (%)	Akhir Faktor	Rangking	Level Risiko
	1 (70)	1104 (70)	0.667	0.333	Risiko		
X4	16.459	10.347	10.973	3.449	14.422	1	Н
X3	14.994	10.882	9.996	3.627	13.623	2	Н
X21	12.181	7.020	8.120	2.340	10.460	3	S
X1	8.148	14.511	5.432	4.837	10.269	4	S
X14	8.399	14.011	5.599	4.670	10.269	5	S
X20	12.199	8.982	8.133	2.994	11.127	6	S
X8	10.847	9.113	7.232	3.038	10.269	7	S
X2	11.366	8.380	7.578	2.793	10.371	8	S
X15	10.365	10.115	6.910	3.372	10.281	9	S

Sumber: Hasil olahan

5.2.2 Hasil Korelasi dan Regresi

Temuan selanjutnya dilakukan analisi korelasi dan regresi untuk menjawab tujuan penelitian pertama yiatu faktor dominan apa yang berpengaruh tinggi terhadap kinerja kualitas proyek konstruksi. Hasil temuan korelasi awal, ternyata korelasinya positif. Yang berarti semakin besar tingkat pengaruh maka semakin kecil nilai *rework* atau *rework* semakin tidak ada, berarti kualitas proyek semakin baik. Hal ini berbeda dengan hipotesa yaitu "Risiko-risiko yang mungkin terjadi pada penawaran underestimate, dapat mempengaruhi turunnya kualitas proyek konstruksi jalan dan jembatan di propinsi DKI Jakarta".

Dengan demikian nilai kinerja Y kemudian ditranspose dengan rumus 5-n+1. Dimana angka 5 menunjukkan skala penilaian tertinggi dan "n" adalah penilaian tingkat pengaruh sebelumnya. Dari hasil analisa korelasi terhadap variabel dengan rangking tertinggi hasil analisa AHP yaitu X1, X2, X3, X4, X8, X14, X15, X20 dan X21 dengan kinerja kualitas proyek (Y), dengan bantuan korelasi *pearson* didapat bahwa faktor risiko utama yaitu:

1. X1 ((Melakukan order untuk perubahan spesifikasi (Change orders))

Pada output antara variabel X1 dengan kinerja Y, menghasilkan angka - 0.374. Angka tersebut menunjukkan lemahnya korelasi antara melakukan order untuk perubahan spesifikasi (*Change orders*) dengan kinerja kualitas proyek konstruksi, karena < 0,5. Sedangkan tanda negatif menunjukkan bahwa semakin besar risiko melakukan order untuk perubahan spesifikasi (*Change orders*) terjadi, maka kinerja kualitas proyek akan semakin turun. Dan sebaliknya, semakin sedikit risiko melakukan order untuk perubahan spesifikasi (*Change orders*) terjadi akan membuat kinerja kualitas proyek justru semakin baik.

2. X3 (Material yang digunakan kurang dari yang dibutuhkan)

Pada output antara variabel X3 dengan kinerja Y menghasilkan angka - 0.496. Angka tersebut menunjukkan cukup kuatnya korelasi antara material yang digunakan kurang dari yang dibutuhkan dengan kinerja kualitas proyek konstruksi, karena mendekati 0,5. Sedangkan tanda negatif menunjukkan bahwa semakin besar risiko material yang digunakan kurang

dari yang dibutuhkan terjadi, maka kinerja kualitas proyek akan semakin turun. Dan sebaliknya, semakin sedikit risiko material yang digunakan kurang dari yang dibutuhkan terjadi akan membuat kinerja kualitas proyek justru semakin meningkat.

3. X4 (Mutu material tidak sesuai dengan spesifikasi)

Pada output antara variabel X4 dengan kinerja Y menghasilkan angka - 0.581. Angka tersebut menunjukkan kuatnya korelasi antara mutu material tidak sesuai dengan spesifikasi dengan kinerja kualitas proyek konstruksi, karena > 0,5. Sedangkan tanda negatif menunjukkan bahwa semakin besar risiko mutu material tidak sesuai dengan spesifikasi terjadi, maka kinerja kualitas proyek akan semakin turun. Dan sebaliknya, semakin sedikit risiko mutu material tidak sesuai dengan spesifikasi terjadi akan membuat kinerja kualitas proyek justru semakin meningkat.

4. X15 (Jumlah alat yang digunakan tidak memadai)

Pada output antara variabel X15 dengan kinerja Y menghasilkan angka - 0.354. Angka tersebut menunjukkan lemahnya korelasi antara material yang digunakan kurang dari yang dibutuhkan dengan kinerja kualitas proyek konstruksi, karena < 0,5. Sedangkan tanda negatif menunjukkan bahwa semakin besar risiko jumlah alat yang digunakan tidak memadai terjadi, maka kinerja kualitas proyek akan semakin turun. Dan sebaliknya, semakin sedikit risiko jumlah alat yang digunakan tidak memadai terjadi akan membuat kinerja kualitas proyek justru semakin meningkat.

Dari hasil analisis regresi ditemukan persamaan regresi yang paling optimal adalah sebagai berikut :

$$Y = 10,163 - 0,656X4 - 0,713X3 - 0,771X15$$
 (5.1)

Dimana:

Y = Kinerja Kualitas Proyek Konstruksi

X3 = Material yang digunakan kurang dari yang dibutuhkan

X4 = Mutu material tidak sesuai dengan spesifikasi

X15 = Jumlah alat yang digunakan tidak memadai

Dari persamaan hasil regresi tersebut kemudian dilakukan uji mulitikolonirealitas, *R2*, *F-test*, *T-test* dan tes *Durbin Watson*. Dari hasil uji mulitikolonirealitas yang dilakukan tidak terdapat multikolinearitas atau tidak ada terjadinya korelasi diantara sesama variabel terpilih. Hasil R² disimpulkan bahwa variabel X3, X4 dan X15 memberikan konstribusi tingkat kepercayaan terhadap model sudah 83, 7%. Sedangkan hasil uji F-test disimpulkan bahwa ada hubungan linier antara faktor dominan terhadap kualitas proyek konstruksi. Dengan demikian model regresi di atas sudah layak dan benar. Dengan demikian ada pengaruh faktor dominan terhadap kualitas proyek konstruksi. Sedangkan dari nilai Signifikansi 0,000 < 0,01, maka model dapat diterima.

Dari hasil uji T-test dihasilkan ada hubungan linier antara faktor dominan terhadap kualitas proyek konstruksi. Jika dilihat dari angka Beta maka variabel terebut berpengaruh negatif terhadap kualitas proyek konstruksi. Sedangkan dari nilai Signifikansi 0,000 < 0,01, maka model dapat diterima. Sedangkan hasil uji *Durbin Watson* terletak antara dU dan (4-dU), maka hipotesis nol diterima, yang berarti tidak ada autokorelasi.

Jadi berdasarkan hasil uji model dengan statistik persamaan model diatas sudah dapat diterima. Karena berdasarkan hasil uji semua sudah dinyatakan dengan benar.

5.3 Pembahasan

Berdasarkan hasil AHP dan analisa regresi telah ditemukan variabelvariabel yang dominan yang dapat mempengaruhi kualitas proyek konstruksi jalan dan jembatan di propinsi DKI Jakarta. Berdasarkan hasil AHP, yang mempunyai bobot risiko yang paling besar adalah X1, X2, X3, X4, X8, X14,X15, X20 dan 21. Sedangkan hasil regresi, faktor risiko yang paling dominan adalah X3, X4 dan X15. Yang mana variabel tersebut berdampak menurunkan kualitas proyek konstruksi. Variabel-variabel tersebut antara lain sebagai berikut:

1. X1 (Melakukan order untuk perubahan spesifikasi (*Change orders*))

Menurut Kashiwhgi & Byfield (2002), proses pengadaan didalam konstruksi telah berjalan dengan kompetitif "low bid". Ini mempunyai satu peningkatan yang dianjurkan pada desakan pada harga, perkembangan

dari sistem konstruksi dan produk untuk menjumpai spesifikasi yang minimum, memaksa kontraktor untuk menghasilkan volume yang lebih besar, dan hal bukan kinerja konstruksi serta proses pengadilan. Proses tawaran rendah telah telah menghasilkan pekerjaan mutu rendah, kondisi kerja yang kurang baik, menghasilkan *change orders*, *claims*, proses pengadilan dan peningkatan biaya *project management* [82].

2. X2 (Melakukan perubahan terhadap disain (redisign))

Menurut Zaghloul & Hartman (2003), penelitian pakar telah menunjukkan bahwa alokasi risiko ketidakpastian kondisi kerja dan kecukupan dokumen kontrak akan memudahkan kontraktor untuk *redisign* melalui penolakan klausul kontrak, yang mana satu alasan berpengaruh nyata untuk peningkatan total biaya dari suatu proyek. Apapun peningkatan pada proses akan berpengaruh nyata untuk konstruksi [83].

3. X3 (Material yang digunakan kurang dari yang dibutuhkan)

Kekurangan material merupakan faktor yang perlu diperhatikan karena memungkinkan terjadinya konflik. Kekurangan material dapat menurunkan mutu/kualitas jika melebihi batasan toleransi. Dalam rangka agar tidak mengalami kerugian atau untuk mendapatkan suatu nilai keuntungan tertentu, kontraktor melakukan strategi yang salah satunya mengurangi alokasi biaya material di lapangan, yang berdampak menurunkan kualitas pelaksanaan proyek. Karena biaya untuk ketersediaan material tidak memadai disebabkan harga penawaran terlalu rendah.

4. X4 (Mutu material tidak sesuai dengan spesifikasi)

Hinzen & Kuchenmeister (1981), menyatakan bahwa faktor yang memperendah kinerja proyek salah satunya adalah material yang tidak sesuai spesifikasi [84]. Dikarenakan penawaran terlalu rendah, maka alokasi biaya untuk ketersediaan material tidak memadai. Sehingga agar tidak mengalami kerugian atau untuk mendapatkan suatu nilai keuntungan tertentu, kontraktor melakukan strategi yang salah satunya mengurangi

alokasi biaya pelaksanaan di lapangan, yang berdampak menurunkan kualitas pelaksanaan proyek.

5. X8 (Upah tenaga kerja yang diberikan rendah)

Menurut Razek (1998), insentif adalah penghargaan kepada tenaga kerja yang bekerja dengan baik. Untuk meningkatkan mutu, pelaksana proyek harus melakukan beberapa hal yang salah satunya adalah meningkatkan kepuasan pekerja. Hal ini dapat dilakukan antara lain dengan memperbaiki *insentive* dan mengkaitkannya dengan mutu [85].

6. X14 (Alat yang digunakan tidak sesuai spesifikasi)

Menurut Jahren & Ashe (1990), kompleksitas disain merupakan fungsi dari *constructability*, pemakaian teknologi maju, metoda dan peralatan khusus serta integrasi bermacam-macam disiplin. Metode yang baik sangat berpengaruh terhadap barunya alat yang digunakan. Kontraktor yang telah memiliki pengalaman terhadap metode dan alat yang digunakan, akan menghadapi risiko yang lebih kecil [86].

7. X15 (Jumlah alat yang digunakan tidak memadai)

Jumlah alat sangat mempenaruhi mutu pekerjaan. Seperti dalam pekerjaan pengecoran jalan. Kualitas pengecoran beton sangat tergantung dengan kecepatan waktu dalam pelaksanaannya. Jika pekerjaan pengecoran terhenti dikarenakan biaya untuk ketersediaan alat tidak memadai, yang disebabkan penawaran harga terlalu rendah, maka akan mempengaruhi kualitas dari mutu beton tersebut.

8. X20 (Metode pelaksanaan pekerjaan proyek tidak tepat)

Razek (1998) mengatakan bahwa untuk meningkatkan mutu proyek, pelaksana harus melakukan beberapa hal, yang salah satunya adalah meningkatkan proses dan aturan kerja, hal ini dapat dilakukan antara lain dengan meningkatkan metode dan prosedur kerja [87]. Jika biaya untuk

pelaksanaan metode tersebut tidak memadai, maka akan berdampak atas turunnya kualitas proyek konstruksi.

9. X21 (Metode pengoperasian alat tidak tepat)

Mutu pekerjaan juga tergantung pada metode pengoperasian alat yang tidak tepat. Metode yang baik sangat berpengaruh terhadap alat yang digunakan. Kontraktor yang telah memiliki pengalaman terhadap metode dan alat yang digunakan, akan menghadapi risiko yang lebih kecil. Karena biaya untuk pelaksanaan metode tersebut tidak memadai maka kontraktor mencari tenaga operator yang murah yang memiliki pengalaman yang kurang. Sehingga metode untuk pengoperasian alat menjadi tidak tepat.

5.4 Pembuktian Hipotesa

Sesuai dengan hasil temuan dari analisa data secara statistik deskriptif, uji U Mann-Whitney, analisa AHP, uji konsistensi matriks, uji hirarki dan tingkat akurasi, analisa level risiko, analisa korelasi parametris, analisa regresi dan validasi ke pakar, serta penjelasan temuan pada bab ini, maka hipotesa penelitian ini terbukti bahwa:

- 1. Faktor-faktor risiko utama yang berdampak pada kinerja kualitas proyek konstruksi jalan dan jembatan di propinsi DKI Jakarta adalah dari variabel seperti pada tabel 5.2.
- 2. Faktor-faktor risiko tersebut menurunkan kinerja kualitas proyek konstruksi jalan dan jembatan di propinsi DKI Jakarta

Tabel 5.2. Pembuktian Hipotesa

No	Kode	Variabel
1	X3	Material yang digunakan kurang dari yang dibutuhkan
2	X4	Mutu material tidak sesuai dengan spesifikasi
3	X15	Jumlah alat yang digunakan tidak memadai

Sumber: hasil olahan

5.5 Kesimpulan

Sesuai dengan penjelasan diatas didapati bahwa faktor-faktor risiko penawaran *underestimate* yang signifikan berdampak menurunkan kinerja kualitas proyek konstruksi jalan dan jembatan di propinsi DKI Jakarta adalah variabel X4 (mutu material tidak sesuai dengan spesifikasi), X3 (material yang digunakan kurang dari yang dibutuhkan) dan X15 (jumlah alat yang digunakan tidak memadai).

