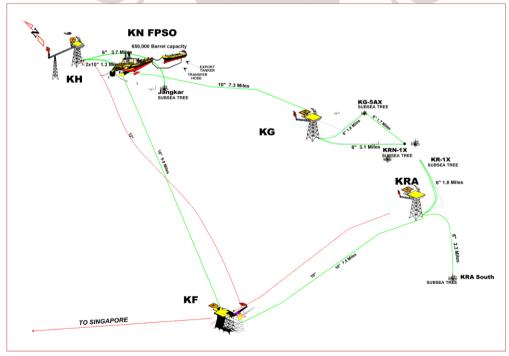
BAB III

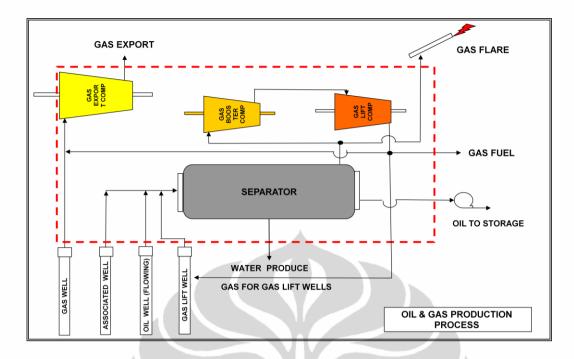

PENGUMPULAN DAN PENGOLAHAN DATA

3.1. Lapangan Produksi

Penelitian ini dilakukan di lapangan produksi minyak dan gas yang terletak di lepas pantai yang berada di perairan Kepulauan Natuna, dengan jarak lurus dari Jakarta 1247 km. Lapangan ini mempunyai produksi minyak dan gas bumi.

Sebagai gambaran awal bahwa lapangan minyak ini mempunyai empat anjungan produksi yang dinamakan KF, KRA, KH dan KG dan satu kapal penampung minyak yang dinamakan KN FPSO. Dari masing-masing anjungan mempunyai kapasitas produksi maupun jumlah orang yang bertempat di dalamnya berbeda-beda, namun karena masih dalam satu lingkup perusahaan maka sistem maupun aturan-aturan yang berlaku sama.

Berikut ini adalah gambaran *layout* dari field yang menjadi obyek penelitian ini.


Gambar 3.1 Layout Lapangan

3.2. Proses Produksi Minyak dan Gas.

Pada proses produksi minyak dan gas, yang merupakan sistem produksi yang kontinyu dan diharapkan akan mempunyai shut down time semiminimal mungkin, karena dengan optimalisasi waktu produksi tentunya akan mendapatkan produksi yang banyak walaupun semuanya tergantung daripada kapasitas dari *reservoir*. Sedangkan dalam penambangan minyak dan gas bumi ini ada di lapangan yang akan dilakukan penelitian ada beberapa macam sumur yaitu:

- 1. Sumur Gas yaitu sumur yang hanya menghasilkan gas bumi saja, sehingga proses pengangkatan gas dari perut bumi akan keluar dengan sendirinya karena tekanan dari dalam *reservoir*.
- 2. Sumur minyak (flowing) : yaitu sumur yang mengeluarkan minyak saja atau minyak dan air yang keluar dari dalam perut bumi dengan sendirinya tanpa dilakukan intervensi apapun terhadap sumur tersebut.
- 3. Sumur Campuran : yaitu sumur yang menghasilkan minyak dan gas dan keluar dengan sendirinya karena tekanan dari dalam.
- 4. Sumur Gas Lift: yaitu sumur yang akan menghasilkan minyak saja atau minyak dan air yang sistem pengangkatannya dengan menggunakan gas bumi bertekanan yang diinjeksikan ke dalam sumur tersebut sehingga minyak atau minyak dan air akan keluar ke permukaan.

Setelah minyak dan gas yang keluar dari perut bumi sampai di permukaan maka dilakukan beberapa proses yang tentunya minyak dan gas tersebut siap di ekspor atau disimpan dalam tanki penyimpan. Secara gari besar diagram pemrosesan minyak dan gas bumi adalah seperti dalam gambar 3.2.

Sumber: Kakap Field P & ID, 2006

Gambar 3.2 Diagram Produksi Minyak dan Gas.

3.2.1 Proses Produksi Minyak

Proses produksi minyak pada prinsipnya hanya proses yang sederhana, namun memerlukan peralatan yang benar-benar teruji karena menyangkut keamanan dari prosesnya. Adapun proses ini akan dimulai dari produksi sumur campuran, sumur minyak dan sumur *gas lift*, dimana fluida yang keluar dari masing- masing sumur akan dimasukkan dalam 3 phasa separator yaitu suatu alat yang akan memisahkan antara minyak, gas dan air.

Sehingga keluar dari proses di sperator ini fluida sudah merupakan produk yang siap untuk proses berikutnya, produk tersebut adalah :

- 1. Minyak bumi, setelah keluat dari separator maka minyak akan dipompa menuju tanki penimbun.
- Gas bumi, setelah keluar dari separator maka gas bumi ini akan dilakukan proses selanjutnya yaitu dengan di kompresi supaya tekanan menjadi cukup baik untuk digunakan lagi untuk gas lift, bahan bakar sendiri atau ddicampur dengan produksi dari sumur gas untuk dijual.

3. Air : produksi air akan dilakukan proses kembali untuk memastikan kandungan minyaknya sesuai dengan baku mutu lingkungan untuk dibuang ke laut. (*water overboard*)

3.2.2 Proses Produksi Gas Bumi.

Proses produksi gas bumi adalah proses dari sumur-sumur gas sampai dengan gas tersebut siap dijual. Proses ini dimulai dari produksi sumur-sumur gas yang dilukan filterisasi untuk memastikan bahwa tidak ada fluida cair yang terbawa dalam gas tersebut yang selanjutnya gas dikompres untuk mendapatkan tekanan yang cukup dan siap untuk di ekspor.

3.3. Batasan Sistem dalam Penelitian.

Dalam penelitian ini dilakukan pembatasan – pembatasan dari sistem, hal ini dilakukan untuk menyederhanakan suatu sistem, namun pada prinsipnya tidak berbeda dengan sistem yang sesungguhnya. Batasan-batasan dari sistem tersebut adalah:

- 1. Proses terdiri dari produksi minyak dan gas dan water produce diabaikan.
- 2. Input dari sistem adalah : Minyak dan gas yang keluar dari sumur.
- 3. Output dari Sistem adalah : Gas ekspor, minyak ke penampung, gas untuk bahan bakar dan gas untuk gas lift.
- 4. Konversi gas ke *barrel oil equivalent* (BOE) adalah 1 MMSCF = 1000/6 BOE.
- 5. Equipment pendukung misal generator, diasumsikan normal operasi karena mempunyai *back up unit*.
- 6. Data yang diambil adalah data tahun 2008, karena untuk tahun 2009 data yang ada hanya 8 bulan karena adanya proses shutdown selama 4 bulan untuk project. Sehingga data tahun 2009 dianggap kurang mencukupi.
- 7. Data yang dikumpulkan meliputi : data produksi minyak dan gas, data breakdown time, data planning, data kapasitas reservoir, data kapasitas peralatan dan data cuaca.

3.4 Pengumpulan Data

Data dikumpulan dari data histori lapangan tersebut yang sudah dikumpulkan untuk tahun 2008. Data – data tersebut adalah sebagai berikut.

- a. Data Produksi dari masing-masing field
- b. Data Maintenance Planning
- c. Data Kapasitas Reservoir
- d. Data Breakdown
- e. Data kapasitas peralatan
- f. Data Cuaca
- g. Data Gas Consumption.
- h. Gambar layout dari field.

Adapun data-data tersebut seperti terlampir.

3.5. Pengolahan Data

Data-data yang kita dapatkan dari data histori di atas pertama-tama dilakukan pengelompokan terhadap masing-masing flatform, yaitu menjadi KF, KRA, KH dan KG. Jadi dari sumur-sumur atau *field* yang dari *subsea* digabungkan mengikuti dari dimana hasil dari sumur tersebut di sambungkan.

Jadi dari data yang diperoleh dikelompokkan dan diolah menjadi data awal yang bisa untuk dilakukan penelitian selanjutnya. Data-data tersebut adalah sebagai berikut.

3.5.1 Data Produksi.

Data produksi meliputi produksi minyak dan gas bumi, untuk produk gas bumi satuannya disamakan dengan minya yaitu *Barrel Oil Equivalent* dan data produksi ini meliputi dari produksi 4 anjungan yaitu KH, KF, KRA dan KG. Dalam data produksi ini semua mengambil satuan *Barrel*.

Tabel 3.1. Data Produksi Minyak dan Gas

DIII ANI	K	F	KRA		KH		KG	
BULAN	OIL	GAS	OIL	GAS	OIL	GAS	OIL	GAS
JANUARI 2008	38,917	48,737	68,822	233,723	66,514	70,682	51,193	91,043
FEBRUARI 2008	40,596	44,255	58,543	200,649	61,759	75,990	49,723	90,698
MARET 2008	46,924	48,644	55,295	214,625	63,844	101,301	47,595	85,802
APRIL 2008	38,043	49,017	48,968	214,447	68,590	114,780	39,699	69,919
MEI 2008	38,052	49,615	53,257	217,006	65,097	105,189	43,658	75,738
JUNI 2008	39,298	46,524	52,402	215,259	54,718	86,993	29,348	49,655
JULI 2008	34,045	42,349	49,966	197,590	37,236	58,588	46,547	83,415
AGUSTUS 2008	33,423	40,553	56,408	234,346	37,277	33,568	43,812	82,157
SEPTEMB 2008	37,543	42,848	53,293	220,424	38,405	38,650	42,645	81,771
OKTOBER 2008	38,178	43,985	54,882	207,490	26,828	53,070	41,360	78,880
NOPEMB 2008	36,675	43,338	50,707	191,194	34,124	61,310	32,054	58,472
DESEMBE2008	34,123	43,321	56,516	208,136	28,421	56,967	30,810	57,304

3.5.2 Data Reject.

Dalam sistem produksi ini data reject yang digunakan adalah data gas yang dibakar dalam *flare*.

Tabel 3.2 Data Reject

DIH AN	ANJUNGAN					
BULAN	KF	KRA	KH	KG		
JANUARI 2008	8,691	6,395	4,429	27,479		
FEBRUARI 2008	4,949	6,278	5,940	28,768		
MARET 2008	5,481	6,805	5,292	30,325		
APRIL 2008	5,671	6,230	3,887	22,961		
MEI 2008	4,183	5,021	3,585	18,457		
JUNI 2008	1,654	4,885	5,854	10,748		
JULI 2008	4,418	8,965	8,168	10,897		
AGUSTUS 2008	4,731	8,056	4,761	12,859		
SEPTEMBER 2008	5,029	9,357	4,059	9,851		
OKTOBER 2008	3,523	11,981	3,635	11,792		
NOPEMBER 2008	2,689	12,003	2,351	26,471		
DESEMBER 2008	4,859	7,731	1,757	57,304		

3.5.3 Data Breakdown Peralatan dan Planning Maintenance

Peralatan yang diambil data breakdown-nya adalah peralatan-peralatan kritis saja yaitu Gas Kompresor, baik itu untuk eksport kompressor maupun *gas lift* compressor. Sedangkan data ini diambil dengan satuan jam untuk masing – masing anjungan .

Tabel 3.3. Data Plan dan Unplanned Shutdown

DIH AN		KF	K	RA	I	ΚΗ	F	ζG
BULAN	PLAN	UNPLAN	PLAN	UNPLAN	PLAN	UNPLAN	PLAN	UNPLAN
JANUARI 2008	12	30	-	4	•	72	12	22
FEBRUARI 2008	12	2		1	12		12	3
MARET 2008	14	31	18	1	12	14	12	124
APRIL 2008	12	15		-	10	2	18	80
MEI 2008	12	5	12		-	6	12	63
JUNI 2008	12	1	9	-	12	88	190	1
JULI 2008	120	11	120	1	12	168	72	8
AGUSTUS 2008	14	49	12	3		12	12	16
SEPTEMB. 2008	12	36		1	12	24	12	2
OKTOBER 2008	12	14		4	12	144	12	15
NOPEMBER 2008	12	2	12	16		26	12	110
DESEMBER 2008	12	38		2	12	216	-	140

3.5.4 Data Shift Time

Peralatan dalam sistem produksi ini diharapkan bisa berjalan selama 24 jam sehari, 7 hari dalam seminggu atau bisa disebut berjalan terus-menerus, sehingga jumlah shift time akan sama dengan jumlah jam dalam tiap bulan. Adapun data-data shift time adalah sebagai berikut dengan satuan jam

Tabel 3.4 Data Shift Time

DIII ANI	ANJUNGAN					
BULAN	KF	KRA	KH	KG		
JANUARI 2008	744	744	744	744		
FEBRUARI 2008	696	696	696	696		
MARET 2008	744	744	744	744		
APRIL 2008	720	720	720	720		
MEI 2008	744	744	744	744		
JUNI 2008	720	720	720	720		
JULI 2008	744	744	744	744		
AGUSTUS 2008	744	744	744	744		
SEPTEMB. 2008	720	720	720	720		
OKTOBER 2008	744	744	744	744		
NOPEMBER 2008	720	720	720	720		
DESEMBER 2008	744	744	744	744		

3.5.5 Data Kapasitas Reservoir

Kapasitas reservoir adalah kata kunci dalam produksi minyak dan gas bumi, karena dengan kapasitas ini maka akan diketahui berapa banyak minyak dan gas yang bisa dikeluarkan dari perut bumi.

Tabel 3.5 Kapasitas Reservoir

DIH AN	K	F	KF	RA	K	Н	K	G
BULAN	OIL	GAS	OIL	GAS	OIL	GAS	OIL	GAS
JANUARI 2008	44,631	54,675	68,646	262,198	71,246	79,293	54,567	102,134
FEBRUARI 2008	41,180	50,608	65,669	229,450	63,805	86,898	49,021	103,716
MARET 2008	48,417	51,049	70,310	225,235	65,712	106,309	50,955	90,044
APRIL 2008	41,431	48,481	69,928	220,210	71,197	113,524	47,928	69,154
MEI 2008	42,216	49,864	69,499	218,097	70,831	105,718	48,136	76,118
JUNI 2008	42,100	48,455	64,885	224,197	57,690	90,605	45,277	51,716
JULI 2008	41,049	55,981	66,600	261,194	57,831	77,447	45,475	110,267
AGUSTUS 2008	40,468	52,071	64,586	265,200	55,795	43,102	44,180	105,492
SEPTEMB. 2008	40,350	54,448	41,981	280,093	51,575	49,112	29,089	103,906
OKTOBER 2008	39,349	57,265	66,985	270,136	53,144	69,093	41,739	102,696
NOPEMB. 2008	37,549	57,008	63,801	251,502	49,825	80,649	39,261	76,916
DESEMBER 2008	38,261	54,280	64,755	260,789	49,859	71,378	39,434	71,800

3.5.6 Data Kapasitas Ideal dari Peralatan.

Masing masing anjungan peralatan yang digunakan mempunyai kapasitas yang berbeda – beda sehingga harus dipisahkan. Data kapasitas peralatan dari masing-masing anjungan adalah sebagai berikut.

Tabel 3.6 Kapasitas Peralatan

EQUIPMENT	KF	KRA	KH	KG
IDEAL OIL PRODUCE RATE (BOE/DAY)	1,750	2,700	3,000	2,500
IDEAL GAS PRODUCE RATE (BOE/DAY)	2,250	9,000	3,700	3,500
EQUIP. IDEAL PRODUCE RATE (BOE/DAY)	4,000	11,700	6,700	6,000

3.4.7 Data Cuaca.

Perubahan cuaca dalam satu tahun dapat terangkum dalam tabel 3.7 sebagai berikut:

Tabel 3.7. Data Cuaca.

		KONDIS	I CUACA	
BULAN	KEC. ANGIN (KNOT)	TINGGERM		TEMPERATUR (DEG C)
JANUARI 2008	15.9	2.2	1010	28.4
FEBRUARI 2008	18.4	2.0	1010	26.6
MARET 2008	12.2	1.6	1010	28.4
APRIL 2008	8.7	0.6	1009	28.4
MEI 2008	10.5	0.9	976	61.0
JUNI 2008	11.0	0.9	1009	29.4
JULI 2008	11.9	1.0	1009	28.6
AGUSTUS 2008	10.8	1.0	1009	29.3
SEPTEMBER 2008	13.3	1.1	1009	29.8
OKTOBER 2008	9.7	0.9	1009	28.6
NOPEMBER 2008	12.5	1.5	1009	28.9
DESEMBER 2008	19.8	2.6	1009	28.3

3.6. Overall Equipment Effectiveness.

Nilai *Overall Equipment Effectiveness* untuk tahun 2008, dihitung berdasarkan data yang telah diolah di atas. Untuk semua anjungan akan dihitung setiap bulan dalam tahun 2008 sehingga akan didapatkan nilai OEE selama satu tahun dari masing-masing anjungan. Untuk perhitungan ini akan diambil contoh untuk perhitungan OEE di bulan Januari 2008 untuk anjungan KF, sedangkan untuk yang lain dihitung dengan menggunakan program excel.

3.6.1. Perhitungan Availability.

Rumusan untuk perhitungan Availability adalah sebagai berikut, dari persamaan 2.1;

Availability (%) =
$$\frac{\text{Operating Time}}{\text{Planned Production Time}} \times 100\%$$

Dimana;

• Planned Prod. Time = Total shift time — Planned Maint time

Planned Prod. Time =
$$744 \text{ jam} - 12 \text{ jam}$$

Planned Prod. Time
$$= 732$$
 jam

Operating Time = Planned Prod. time — Unplanned Stop time

Operating Time
$$= 732 \text{ jam} - 30 \text{ jam}$$

Operating Time
$$= 702$$
 jam

Sehingga,

Availability (%) =
$$\frac{702}{732} \times 100\%$$

Availability (%) =
$$95.9$$
 %

Dengan menggunakan program excel maka nilai *Availability* dari masing-masing anjungan untuk tahun 2008 didapatkan sperti tabel 3.8 berikut. :

Tabel 3.8 Nilai Availability Tahun 2008

DIII ANI	ANJUNGAN					
BULAN	KF	KRA	KH	KG		
JANUARI 2008	95.90%	99.46%	90.32%	96.99%		
FEBRUARI 2008	99.71%	99.86%	100.00%	99.56%		
MARET 2008	95.75%	99.86%	98.09%	83.06%		
APRIL 2008	97.88%	100.00%	99.72%	88.60%		
MEI 2008	99.32%	100.00%	99.19%	91.39%		
JUNI 2008	99.86%	100.00%	87.57%	99.81%		
JULI 2008	98.24%	99.84%	77.05%	98.81%		
AGUSTUS 2008	93.29%	99.59%	98.39%	97.81%		
SEPTEMBER 2008	94.92%	99.86%	96.61%	99.72%		
OKTOBER 2008	98.09%	99.46%	80.33%	97.95%		
NOPEMBER 2008	99.72%	97.74%	96.39%	84.46%		
DESEMBER 2008	94.81%	99.73%	70.49%	81.18%		

3.6.2 Perhitungan Performance.

Performance juga salah satu dari faktor-faktor yang membentuk *Overall Equipment Effectiveness*, dan performance ini adalah tingkat kinerja dari peralatan produksi. Oleh karena itu rumusan dari *performance* ini adalah :

Performance =
$$\frac{\text{No of Produce } \div \text{Operating Time}}{\text{Ideal Run Rate}} \times 100\%$$

Dimana:

• No of Produce: 87.654 barrel per bulan

• Operating Time: 702 jam: 24 jam = 29.25 hari per bulan

• Ideal Run Rate: 4000 barrel.per hari

Sehingga:

Performance =
$$\frac{87,654 \div 29.25}{4,000} \times 100\%$$

Performance =
$$\frac{2,997}{4,000} \times 100\%$$

Performance = 75 %

Tabel 3.9 Nilai Performance tahun 2008

DIHAN	ANJUNGAN					
BULAN	KF	KRA	KH	KG		
JANUARI 2008	74.92%	83.87%	73.13%	80.13%		
FEBRUARI 2008	74.65%	76.50%	72.14%	82.48%		
MARET 2008	82.03%	76.37%	82.39%	87.76%		
APRIL 2008	75.38%	75.05%	92.78%	70.49%		
MEI 2008	72.35%	75.74%	82.65%	71.39%		
JUNI 2008	72.83%	76.26%	81.87%	59.74%		
JULI 2008	74.77%	81.51%	60.86%	78.29%		
AGUSTUS 2008	65.18%	81.81%	34.67%	70.37%		
SEPTEMBER 2008	71.78%	78.09%	40.35%	70.49%		
OKTOBER 2008	68.66%	72.73%	48.67%	67.08%		
NOPEMBER 2008	68.00%	71.71%	49.26%	60.55%		
DESEMBER 2008	66.95%	73.16%	59.28%	58.35%		

3.6.3 Perhitungan Quality.

Kualitas adalah faktor penting juga yang harus diperhatikan dalam perhitungan efektifitas dari suatu sistem produksi. Sehingga dalam perhitungan OEE dimasukkan, rumusan dari faktor kualitas ini adalah.

Quality =
$$\frac{\text{Total jumlah produk} - \text{Jumlah reject}}{\text{Total jumlah Produk}} \times 100\%$$

Dimana:

• Total Jumlah Produk: 87,654 barrel

• Jumlah reject: 8,691 barrel

Jadi:

Quality =
$$\frac{87,654 - 8,691}{87,654} \times 100\%$$

Quality =
$$\frac{78,963}{87,654} \times 100\%$$

Quality =
$$90 \%$$

Perhitungan selanjutkan digunakan excel 2007 untuk menghitung semua nilai quality dari masing-masing anjungan selama tahun 2008, dan didapatkan dalam tabel 3.10.

Tabel 3.10 Nilai Quality Tahun 2008

BULAN		ANJUI	NGAN	
BULAN	KF	KRA	KH	KG
JANUARI 2008	90.08%	97.89%	96.77%	80.68%
FEBRUARI 2008	94.17%	97.58%	95.69%	79.51%
MARET 2008	94.27%	97.48%	96.80%	77.27%
APRIL 2008	93.49%	97.63%	97.88%	79.05%
MEI 2008	95.23%	98.14%	97.89%	84.54%
JUNI 2008	98.07%	98.17%	95.87%	86.40%
JULI 2008	94.22%	96.38%	91.48%	91.61%
AGUSTUS 2008	93.60%	97.23%	93.28%	89.79%
SEPTEMB. 2008	93.74%	96.58%	94.73%	92.08%
OKTOBER 2008	95.71%	95.43%	95.45%	90.19%
NOPEMBER 2008	96.64%	95.04%	97.54%	70.76%
DESEMBER 2008	93.73%	97.08%	97.94%	34.97%

3.6.4 Perhitungan Overall Equipment Effectiveness.

Setelah didapatkan ketiga faktor di atas maka nilai dari OEE bisa dihitung dengan menggunakan rumus 2.6

$$OEE(\%) = Availability(\%) \times Performance(\%) \times Quality(\%)$$

Dimana:

• Availability: 95.9 %

• Performance: 75 %

• Quality: 90 %

Sehingga OEE didapat :

$$OEE(\%) = 95.9 \% \times 75 \% \times 90 \%$$

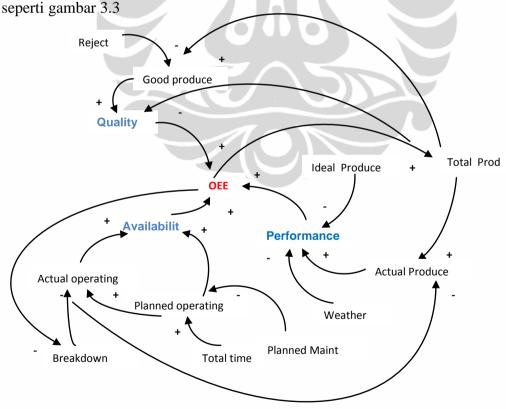
$$OEE(\%) = 64.72\%$$

Dari hasil perhitungan dengan menggunakan excel maka nilai Overall Equipment Effectivess dari masing-masing anjungan seperti tabel 3.11

Tabel 3.11 Overall Equipment Effectiveness

BULAN		ANJU	NGAN	
DULAN	KF	KRA	KH	KG
JANUARI 2008	64.72%	81.65%	63.92%	62.71%
FEBRUARI 2008	70.09%	74.54%	69.03%	65.29%
MARET 2008	74.04%	74.34%	78.23%	56.32%
APRIL 2008	68.97%	73.27%	90.55%	49.38%
MEI 2008	68.43%	74.33%	80.26%	55.16%
JUNI 2008	71.33%	74.87%	68.74%	51.51%
JULI 2008	69.21%	78.43%	42.89%	70.87%
AGUSTUS 2008	56.91%	79.22%	31.82%	61.81%
SEPTEMBER 2008	63.87%	75.32%	36.93%	64.73%
OKTOBER 2008	64.46%	69.04%	37.32%	59.26%
NOPEMBER 2008	65.53%	66.61%	46.31%	36.19%
DESEMBER 2008	59.50%	70.84%	40.92%	16.56%

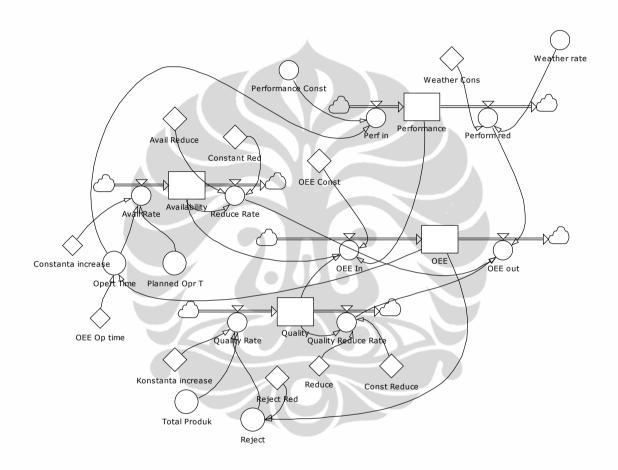
3.7. Model OEE Dengan Sistem Dinamik.


Dalam memodelkan dengan sistem dinamik pembentukan OEE ini maka harus terlebih dahulu dibuat Causal Loop Diagram dan menentukan variabelvariabel yang berperan.

3.7.1 Causal Loop Diagram.

Dalam pemodelan sistem pembentukan OEE ini tentunya memerlukan adanya gambaran hubungan masing-masing variabel dalam mempengaruhi antara satu variabel dengan variabel yang lain. Variabel-variabel tersebut adalah:

- 1. Overall Equipment Effectiveness
- 2. Reject
- 3. Good Produce
- 4. Ideal Produce Rate
- 5. Actual Produce Rate
- 6. Total Time
- 7. Planned Maintenance Time
- 8. Breakdown Time.
- 9. Weather


Dengan variabel-variabel di atas baru digambarkan Causal Loop Diagram

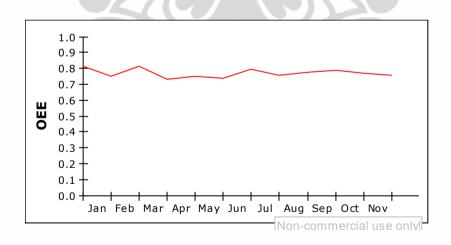
Gambar 3.3. Causal Loop Diagram

3.7.2 Stock And Flow Diagram.

Setelah didapatkan Causal Loop Diagram maka dibuatlah Stock and Flow Diagram dengan menggunakan program Powersim Studio 2005, dengan memasukkan semua variabel-variabel tersebut di atas dan berdasarkan hubungan masing-masing variabel.

Gambar 3.4 Stock Flow Diagram

3.7.3. Running Model

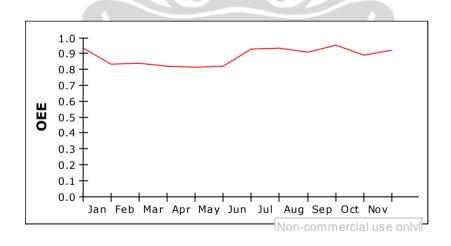

Model dijalankan untuk melihat apakah model yang dibuat dengan actual hasilnya tidak berbeda. Untuk running model dimasukkan data kapasitas reservoir sehingga didapatkan hasil OEE yang ideal yang seharusnya bisa didapatkan. Dari hasil running model sistem dinamik dan di jalankan untuk tahun 2008 akan didapatkan hasil OEE sebagai berikut:

3.7.3.1 Hasil Running Model KF Platform,

Setelah model dijalankan dengan parameter untuk KF Platform didapatkan hasil nilai OEE sebagai berikut.

Tabel 3.12 OEE Model Untuk KF Platform

[—] Time	OEE
Jan 01	0.81
Feb 01	0.75
Mar 01	0.81
Apr 01	0.73
May 01	0.75
Jun 01	0.74
Jul 01	0.79
Aug 01	0.75
Sep 01	0.77
Oct 01	0.79
Nov 01	0.77
Dec 01	0.75
	1

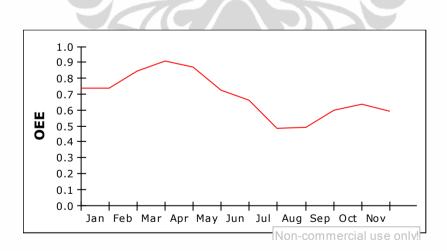

Gambar 3.5 Grafik OEE Model KF Platform

3.7.3.2 Hasil Running Model KRA Platform,

Setelah model dijalankan dengan parameter untuk KRA Platform didapatkan hasil nilai OEE sebagai berikut.

Tabel 3.13 OEE Model Untuk KRA Platform

1		_
Time	OEE	
Jan 01	0.94	
Feb 01	0.84	
Mar 01	0.84	
Apr 01	0.82	
May 01	0.81	
Jun 01	0.82	
Jul 01	0.93	
Aug 01	0.93	
Sep 01	0.91	
Oct 01	0.95	
Nov 01	0.89	
Dec 01	0.92	

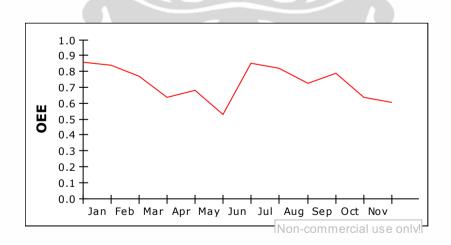

Gambar 3.6. Grafik OEE Model KRA Platform

3.7.3.3 Hasil Running Model KH Platform,

Setelah model dijalankan dengan parameter untuk KH Platform didapatkan hasil nilai OEE sebagai berikut.

Tabel 3.14 OEE Model Untuk KH Platform

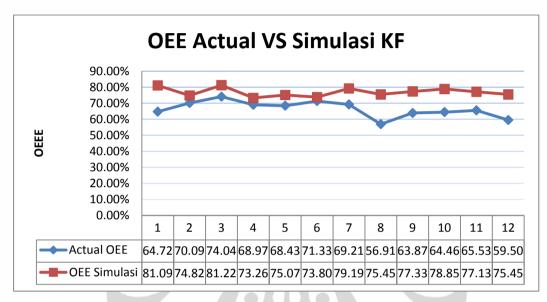
OEE	
0.74	
0.74	
0.85	
0.91	
0.87	
0.73	
0.66	
0.48	
0.49	
0.60	
0.64	
0.59	
	0.74 0.74 0.85 0.91 0.87 0.73 0.66 0.48 0.49 0.60 0.64

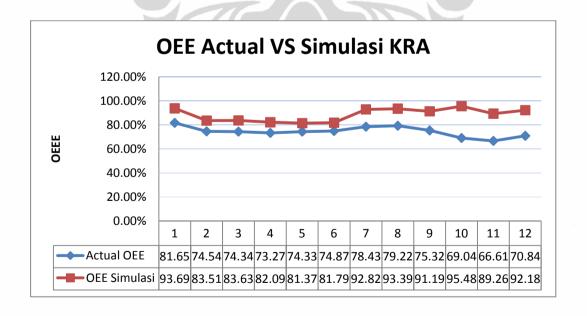

Gambar 3.7. Grafik OEE Model KH Platform

3.7.3.4 Hasil Running Model KG Platform,

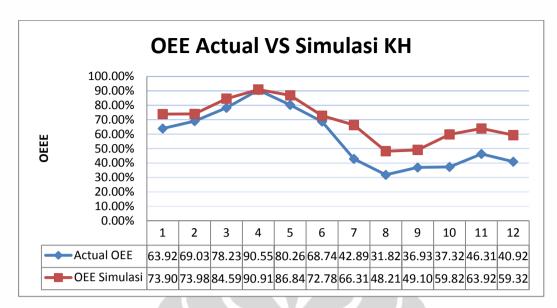
Setelah model dijalankan dengan parameter untuk KG Platform didapatkan hasil nilai OEE sebagai berikut.

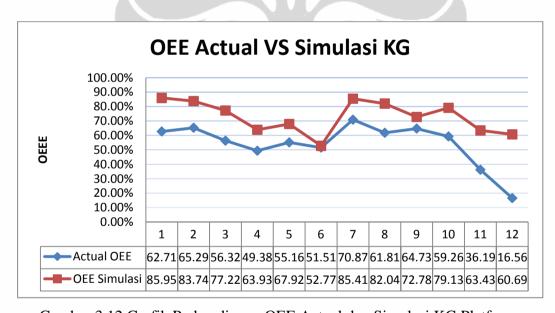
Tabel 3.15 OEE Model Untuk KG Platform


	1	
Time	OEE	
Jan 01	0.86	
Feb 01	0.84	
Mar 01	0.77	
Apr 01	0.64	
May 01	0.68	
Jun 01	0.53	
Jul 01	0.85	
Aug 01	0.82	
Sep 01	0.73	
Oct 01	0.79	
Nov 01	0.63	
Dec 01	0.61	


Gambar 3.8. Grafik OEE Model KG Platform

3.7.4 Validasi Model.


Dari hasil menjalankan model di atas maka masing-masing grafik dibandingkan dengan hasil perhitungan manual dari nilai OEE tahun 2008 akan didapatkan grafik sebagai berikut.


Gambar 3.9 Grafik Perbandingan OEE Actual dan Simulasi KF Platform

Gambar 3.10 Grafik Perbandingan OEE Actual dan Simulasi KRA Platform

Gambar 3.11 Grafik Perbandingan OEE Actual dan Simulasi KH Platform

Gambar 3.12 Grafik Perbandingan OEE Actual dan Simulasi KG Platform

Dari grafik di atas bahwa terlihat dari masing masing platform mempunyai kecenderungan dari grafik yang hampir sama antara actual dan simulasi, sehingga bisa ditarik kesimpulan bahwa model bisa dipakai untuk mensimulasikan kondisi yang ada.