BAB 3 PERANCANGAN JARINGAN

3.6 Perancangan Jaringan

Jaringan yang dibuat ini digunakan untuk mengevaluasi kinerja protokol bidang kontrol yang terlibat dalam pengoperasian jaringan. Sebagaimana yang telah dijelaskan pada Bab 2, jaringan GMPLS terdiri dari dua bidang yaitu bidang kontrol yang mengendalikan pembentukan LSP dan bidang data yang digunakakan untuk mengalirkan trafik. Jaringan dibuat secara *virtual* merujuk pada konfigurasi yang telah dibuat oleh *team* DRAGON, perubahan dilakukan dengan menambahkan dua *end system* dan satu *router* bertujuan untuk membandingkan *path* yang terbentuk antara *end to end system*.

Gambar 3.1 Konfigurasi Jaringan GMPLS

Dengan perubahan ini, jaringan terdiri empat *end system* yang diberi notasi ES1,ES2, ES3 dan ES4. Kemudian 1 NARB, serta 4 VLSR, VLSR1, VLSR2,

VLSR3 dan VLSR4, selain itu juga terdapat *switch*, yang diberi notasi *switch1*. Semua perangkat tersebut dihubungkan seperti yang dapat dilihat pada Gambar 3.1. Pada gambar terlihat bahwa semua perangkat dihubungkan dengan switch melalui *interface bridge* eth0, eth1, eth2, sampai eth9.

3.7 Perancangan Infrastruktur Bidang Kontrol

Perancangan infrastruktur bidang kontrol dilakukan dengan menghubungkan semua perangkat dengan *switch Ethernet. Switch* ini digunakan untuk *switching* penyediaan *link* secara dinamis. Pengkonfigurasian *switch* dilakukan melalui XML yang diumpankan ke NARB yang menjalankan protokol OSPF-TE. Setiap *link* bidang kontrol memerlukan *Generic Routing Encapsulation* (*GRE*) tunnel yang dibangun diantara elemen-elemen jaringan yang berdekatan secara logika (*VLSR atau NARB*). Pada konfigurasi ini ES menjalankan protokol *routing* dan *signaling* sehingga diperlukan *setup* GRE tunnels antara VLSR dan ES. Dalam *setup* GRE ini digunakan alamat manajemen sebagai *endpoint* untuk membangun semua GRE *tunnel*. GRE *tunnel* yang dibuat adalah sebagai berikut :

- GRE *tunnel* antara ES1 dan VLSR1 adalah *subnet mask* 10.1.1.0/30 dan diberi nama GRE2.
- GRE *tunnel* antara VLSR1 dan VLSR 2 adalah *subnet mask* 10.1.2.0/30 diberi nama GRE 3.
- GRE tunnel antara VLSR 3 dan ES2 adalah *subnet mask* 10.1.5.0/30 diberi nama GRE 4
- GRE tunnel antara VLSR2 dan VLSR3 adalah *subnet mask* 10.1.4.0/30 diberi nama GRE 5
- GRE tunnel antara VLSR1 dan VLSR3 adalah *subnet mask* 10.1.3.0/30 diberi nama GRE 6
- GRE tunnel antara VLSR1 dan VLSR 4 adalah *subnet mask* 10.1.8.0/30 diberi nama GRE 7.
- GRE tunnel antara VLSR4 dan VLSR 3 adalah *subnet mask* 10.1.9.0/30 diberi nama GRE 8.

• GRE tunnel antara VLSR4 dan ES4 adalah *subnet mask* 10.1.9.0/30 dan diberi nama GRE 9

Daftar *Generic Routing Encapsulation* (GRE) *tunnel* untuk kanal kontrol yang dikonfigurasi dapat dilihat pada tabel 3.1. Alamat lokal menunjukan alamat disisi perangkat elemen jaringan lokal, sedangkan alamat *remote* adalah alamat perangkat yang akan dihubungkan dengan perangkat lokal tersebut.

GRE	Local Network	Local Ctrl	Local Tunnel	Remote Network	Remote Ctrl	Remote Tunnel
Name	Element	Addr	Addr	Element	Addr	Addr
GRE1	NARB	10.1.6.1	192.168.1.10	VLSR2	10.1.6.2	192.168.1.6
GRE2	VLSR1	10.1.1.1	192.168.1.4	ES1	10.1.1.2	192.168.1.2
GRE3	VLSR2	10.1.2.2,	192.168.1.6	VLSR1	10.1.2.1	192.168.1.4
GRE4	VLSR3	10.1.5.1	192.168.1.8,	ES2	10.1.5.2	192.168.1.9
GRE5	VLSR2	10.1.4.1	192.168.1.6	VLSR3	10.1.4.2	192.168.1.8
GRE6	VLSR3	10.1.3.2	192.168.1.8,	VLSR1	10.1.3.1	192.168.1.4
GRE7	VLSR1	10.1.7.1	192.168.1.4	VLSR4	10.1.7.2	192.168.11.3
GRE8	VLSR4	10.1.8.1	192.168.1.3	VLSR3	10.1.8.2	192.168.1.8
GRE9	VLSR4	10.1.9.1	192.168.1.3	ES4	10.1.9.2	192.168.1.13

Tabel 3.1 Konfigurasi Kanal Kontrol

3.8 Penyediaan Alamat *Traffic Engineering* (TE)

Alamat TE digunakan sebagai identifikasi link data pada jaringan dinamis yang diformat seperti alamat IP regular. Alamat ini digunakan bidang kontrol untuk mengidentifikasi, menghitung *paths*, dan sebagai jaringan *signal* penyediaan *link* pada jaringan dinamis. Alamat ini tidak digunakan untuk mengirimkan dan menerima data. Dengan adanya alamat TE ini *interface* bidang data dengan *link* kontrolnya dapat dihubungkan. Daftar *link* data dan alamat TE untuk *link* bidang data yang akan dikonfigurasi dapat dilihat pada Tabel 3.2. Pada tabel tersebut terlihat bahwa GRE *tunnel* NARB tidak memiliki link TE, karena data tidak mengalir pada *tunnel* tersebut. RCE pada NARB akan menghitung jumlah hop dengan mengembalikan *Explicit Route Object* (ERO) menggunakan alamat *link* data TE ini. Setiap *hop* memerlukan 2 alamat yaitu untuk alamat sumber dan tujuan.

Data Plane Link ID	Local Network Device	Local TE Addr	Remote TE Addr	Remote Network Device	Associated Control Channel ID		
D1	switch	ETH1	11.1.5.2	ES 2	GRE 4		
D2	switch	ETH1, ETH2, ETH3, ETH4	11.1.1.2, 11.1.2.1 11.1.3.1,11.1.8.1	VLSR 1	GRE 2, GRE 3, GRE 6, GRE 8		
D3	switch	ETH 1, ETH 2, ETH3	11.1.2.2, 11.1.4.1 11.1.7.1,	VLSR 2	GRE 3, GRE 5 GRE 7		
D4	switch	ETH 1	11.1.1.1	ES 1	GRE 2		
D5	switch	ETH 1, ETH 2 ETH 3, ETH4	11.1.5.1, 11.1.4.2 11.1.3.2, 11.1.8.2	VLSR 3	GRE 4, GRE5 GRE6, GRE 9		
D7	switch	ETH 1, ETH 2 ETH 3	11.1.8.2, 11.1.9.1 11.1.10.1	VLSR4	GRE 8, GRE 9 GRE 10		
D8	switch	ETH 1	11.1.10.2	ES 4	GRE 10		

Tabel 3.2 Daftar Link Data dan Alamat TE

3.9 XML dan Hasil Konfigurasi

Pembuatan konfigurasi jaringan dilakukan dengan menggunakan *Extendible Markup Langguage* (XML),. Konfigurasi ini merujuk pada *script* yang sudah tersedia, *script* konfigurasi tersebut dibuat sesuai kebutuhan, seperti yang dapat dilihat pada Gambar 3.1. Berdasarkan gambar tersebut dibuat *script* sesuai dengan skenario yang akan dilakukan, dimana jaringan terdiri dari perangkat *switch*, *host*, koneksi dan GRE *tunnel*. *Script*-nya adalah sebagai berikut :

<connections>

```
<connection>
<device interface="eth0" name="switch1"/>
<device interface="eth0" name="ES-2"/>
</connection>
```

<connection>

```
<device interface="eth8" name="switch1"/>
<device interface="eth0" name="ES-4"/>
</connection>
```

<connection>

<device interface="eth6" name="switch1"/> <device interface="eth0" name="ES-3"/> </connection>

<connection>

<device interface="eth1" name="switch1"/> <device interface="eth0" name="vlsr3"/> </connection>

<connection>

<connection>

<connection>

<device interface="eth4" name="switch1"/> <device interface="eth0" name="ES-1"/> </connection>

<connection>

<connection>

<device interface="eth5" name="switch1"/>
<device interface="eth0" name="narb"/>

</connection>

```
<connection>
<device interface="eth1" name="ES-1"/>
<device interface="eth1" name="vlsr1"/>
</connection>
```

<connection>

```
<device interface="eth1" name="vlsr2"/>
<device interface="eth2" name="vlsr1"/>
</connection>
```

<connection>

<device interface="eth1" name="ES-2"/> <device interface="eth1" name="vlsr3"/> </connection>

<connection>

<device interface="eth2" name="vlsr2"/> <device interface="eth2" name="vlsr3"/> </connection>

<connection>

<device interface="eth3" name="vlsr3"/> <device interface="eth3" name="vlsr1"/> </connection>

Koneksi switch dengan perangkat

Koneksi antar perangkat

```
<connection>
                                  <device interface="eth4" name="vlsr1"/>
                                  <device interface="eth1" name="vlsr4"/>
                       </connection>
                      <connection>
                                  <device interface="eth4" name="vlsr3"/>
                                  <device interface="eth2" name="vlsr4"/>
                       </connection>
                      <gretunnel mask="10.1.6.0/30" name="gre1">
                                  <device interface="eth0" name="vlsr2"/>
                                  <device interface="eth0" name="narb"/>
                      </gretunnel>
                      <gretunnel mask="10.1.1.0/30" name="gre2" temask="11.1.1.0/30">
                                  <device interface="eth0" name="ES-1" switchport="eth1"/>
<device interface="eth0" name="vlsr1" switchport="eth1"/>
                       </gretunnel>
                       <gretunnel mask="10.1.7.0/30" name="gre7" temask="11.1.7.0/30">
                                  <device interface="eth0" name="ES-3" switchport="eth1"/>
                                  <device interface="eth0" name="vlsr2" switchport="eth3"/>
                       </gretunnel>
                      <gretunnel mask="10.1.8.0/30" name="gre8" temask="11.1.8.0/30">
<device interface="eth0" name="vlsr4" switchport="eth1"/>
                      <device interface="eth0" name="vlsr1" switchport="eth4"/>
                       </gretunnel>
                       <gretunnel mask="10.1.9.0/30" name="gre9" temask="11.1.9.0/30">
                                  <device interface="eth0" name="vlsr4" switchport="eth2"/>
                                  <device interface="eth0" name="vlsr3" switchport="eth4"/>
                       </gretunnel>
                                                                                                           Koneksi GRE
                       <gretunnel mask="10.1.10.0/30" name="gre10" temask="11.1.10.0/30">
                                                                                                           tunnel
                                  <device interface="eth0" name="ES-4" switchport="eth1"/>
                                 device interface="eth0" name="vlsr4" switchport="eth3"/>
                       </gretunnel>
                       <gretunnel mask="10.1.2.0/30" name="gre3" temask="11.1.2.0/30">
                                  <device interface="eth0" name="vlsr1" switchport="eth2"/>
<device interface="eth0" name="vlsr2" switchport="eth1"/>
                       </gretunnel>
                       <gretunnel mask="10.1.5.0/30" name="gre4" temask="11.1.5.0/30">
                                  <device interface="eth0" name="vlsr3" switchport="eth1"/>
<device interface="eth0" name="ES-2" switchport="eth1"/>
                      </gretunnel>
                      <device interface="eth0" name="vlsr3" switchport="eth2"/>
                       </gretunnel>
                       <gretunnel mask="10.1.3.0/30" name="gre6" temask="11.1.3.0/30">
                                  <device interface="eth0" name="vlsr1" switchport="eth3"/>
                                  <device interface="eth0" name="vlsr3" switchport="eth3"/>
                      </gretunnel>
           </connections>
</config>
```

3.10 Pembentukan LSP

Pembentukan LSP dilakukan secara manual yaitu dilakukan per *hop* dengan langkah- langkah berikut :

- 1. *Edit* LSP, pada pengeditan LSP ini LSP harus diberi nama, sesuai dengan yang diinginkan.
- 2. Set alamat sumber dan tujuan, memberikan id lsp, dan id tunnel
- 3. Set bandwidth, kapabilitas Switch jenis encoding, G-PID
- 4. Set Vtag
- 5. Exit
- 6. Sh LSP
- 7. Commit LSP

Setting dilakukan disetiap node melalui Command Line Interface (CLI), setting LSP yang dilakukan dapat dilihat pada Gambar 3.2. Gambar tersebut memperlihatkan bahwa LSP yang akan dibentuk mempunyai alamat asal 192.168.1.2 yang merupakan alamat ES1 memiliki LSP ID 1000, sedangkan tujuannya adalah VLSR2 dengan alamat 192.168.1.4. dengan tunnel id 2000. bandwidth lsp tersebut giga Ethernet dengan kapabilitas switch L2SC, teknik encoding yang digunakan Ethernet dengan General Payload ID (GPID) Ethernet.

UML - red-es1
n i
red-es1(edit-lsp-test)# set source ip-address 192.168.1.2 lsp-id 1000 destinatio
n ip-address 192.168.1.4 g
red-es1(edit-lsp-test)# set source ip-address 192,168,1,2 lsp-id 1000 destinatio
n ip-address 192.168.1.4 t
tagged-group tunnel-id
red-es1(edit-lsp-test)# set source ip-address 192.168.1.2 lsp-id 1000 destinatio
n ip-address 192.168.1.4 tu
red-es1(edit-lsp-test)# set source ip-address 192,168,1,2 lsp-id 1000 destinatio
n ip-address 192.168.1.4 tunnel-id 2000
red-es1(edit-lsp-test)# set b
red-es1(edit-lsp-test)# set bandwidth gige sw
red-es1(edit-lsp-test)# set bandwidth gige swcap l2sc
encoding LSP Encoding Type
red-esi(edit-isp-test)# set Dandwidth gige swcap 12sc e
red-esi(edit-isp-test)# set bandwidth gige swcap i2sc encoding e
red-esi(edit-isp-tesi)# set bandwidth gige swcap izsc encoding ethernet g
red-esi(edit-isp-test)# set bandwidth gige swcap i2sc encoding ethernet gpid et .
annet est(est)=test)# set bandwidth gige swcap izst encouring ethernet gpid eth
red-ex1(edit-lon-text)# set utan a
red-est(edit isp test)# set utag a
red-est(edit isp test)# evit

Gambar 3.2 Setting pembentukan LSP

Sedangkan LSP yang terbentuk dapat dilihat pada Gambar 3.3. Pada Gambar 3.3 tersebut setelah setting dilakukan *link state* nya adalah edit. Agar status LSP berubah menjadi *Inservice* maka LSP yang dibuat haruslah di *Commit* terlebih dahulu. Bila NARB tidak menyediakan parameter yang disediakan, maka statusnya adalah *commit*.

Setelah dilakukan perintah *Commit lsp test*, status LSP berubah menjadi *In service* yang berarti LSP sudah terbentuk. Hal ini dapat dilihat pada Gambar 3.3

0	UN	ML - red-es	1						
	LS	SP status summ	ary		M2				
Name Status	Dir S	Source (IP/LSP	ID)	Destination	(IP/Tunnel	ID)			
test Edit	<=> 1 1	192,168,1,2 1000		192,168,1,4 2000					
red-es1> commit lsp tø red-es1> sh lsp	red-es1> commit lsp test red-es1> sh lsp								
LSP status summary									
Name Status	Dir S	Source (IP/LSP	ID)	Destination	(IP/Tunnel	ID)			
test In service (=> 192,168,1.2 192,168,1.4 1000 2000 red-es1> sh lsp test Src 192,168,1,2/1000, dest 192,168,1,4/2000 GRI: 1052067898-2147483649 Generic TSPEC R=gige, B=gige, P=gige, m=100, M=1500 Encoding ethernet, Switching 12sc, G-Pid ethernet Ingress Local ID Type: none id, Value: 1000 Egress Local ID Type: none id, Value: 2000, E2E LSP VLAN Tag: 65535. Status: In service red-es1>									

Gambar 3.3 LSP dalam status In service

Untuk melihat LSP yang terbentuk, dapat dilihat pada Gambar 3.4, dimana LSP tersebut memiliki alamat sumber, alamat tujuan, *bandwidth* yang tersedia, tipe *switch*, type encoding dan status LSP yang digunakan serta Jumlah *Generalize Routing Identifier* (GRI) yang tersedia.

I I I I I I I I I I I I I I I I I I I									
Src 192,168,1,2	Dest 192,168,1,4	Bandwidth 1000.00	SwType 51	EncType 2	(Vtag) O	State established	GRI 1609		
192,168,1,8	192,168,1,4	1000.00	51	2	100	established	1057		
192,168,1,9 51104-214748364	192,168,1,8 19	1000.00	51	2	0	established	3806		
narb:cli>									

Gambar 3.4 Status LSP yang terbentuk

3.11 Perancangan Pengujian Skalabilitas

Perancangan pengujian skalabilitas dilakukan dengan peningkatan jumlah *resource*, yaitu :

3.6.3 Penambahan VLSR

Penambahan VLSR dilakukan untuk menguji sampai sejauh mana jaringan yang dirancang mampu menghitung *shortest path* dengan *variable* jumlah VLSR.Rangkaian nya dirancang seperti Gambar 3.5, dimana penambahan VLSR dipasangkan pada VLSR3, sampai ditemukan batas jumlah maksimum VLSR yang bisa dipasangkan.

3.6.4 Penambahan Jumlah Path yang Tersedia

Perancangan rangkaian pengujian skalabilitas yang kedua adalah dengan menambahkan jumlah *path* pada topologi jaringan yang dikonfigurasi. Rancangan ini bertujuan untuk mengetahui utilitas masing-masing link yang telah disediakan.Hasil rancangannya dapat dilihat pada Gambar 3.6. Pengujian dilakukan dua kali yang pertama dilakukan saat LSP belum di bentuk, sedangkan yang kedua saat LSP telah terbentuk. Penambahan path dilakukan dengan path yang bobotnya sama dengat path jalur tersingkat, dalam jaringan pengujian ini path tersingkat memiliki 4 *hop* yang node sumbernya adalah ES-1 sedangkan *node* tujuannya adalah ES-3.

3.6.5 Penambahan End Sistem

Perancangan skalabilitas ketiga adalah dengan memvariabelkan jumlah *end user* di pengirim dan penerima, pada pengujian ini akan diketahui berapa jumlah maksimum *End System* baik di pengirim maupun di penerima. Hasil pengujian akan menggambarkan jumlah maksimum ES yang dapat di instalasi pada VLSR. Hasil rancangannya dapat dilihat pada Gambar 3.7.

