

STATEMENT OF ORIGINALITY

This thesis has been made by me, and all the resources where the writer quote, has been correctly stated below

Name	: Marciela esa Dewa
NPM	: 0806474395
Sincerely	
Date	: June, 22 nd 2010

APPROVAL

This Thesis is made by,

Name : Marciela Esa DEWA

NPM : 0806474395

Program Study : Civil Engineering

Title: Collapse Process Due to Tunneling Erosion in Earth Dams: a Numeri-
cal Study

Has been successfully maintain in front of the judge and fulfill as one requirement to obtain Master of Engineering, Civil Engineering Department, Faculty of Engineering, University of Indonesia.

Supervisor : Prof. Dr. Ir. Irwan KATILI, DEA.

State in: DepokDate: June, 22^{nd} 2010

)

PREFACE

This research was carried out within the Geotechnical and Material Engineering group of the LTDS (Laboratory of Tribology and Dynamics of System) – *Geomatériaux du LTDS* of the Ecole Centrale de Lyon (ECL) in partnership with EDF (Energie de France) and Universitas Indonesia (Depok - Indonesia).

First of all, I would like to express my greatest gratitude with Mr. Jean-Jacques FRY and Mr. Eric VINCENS, to have supported me in the achievement of this work, for all the help which has allowed me to progress scientifically throughout my training course. Without them, this work would not have been carried out.

I would also thank Mr. Katili who gave me this opportunity to do this research in Lyon. Without him this work would not have been carried out. I also thank all the team for FTUI for me has to have formed until today.

I particularly thank all the team for LTDS G8:

- My "partner", son, who accommodated me in "his office", and for all his ideas and his conversations.
- Cécile, Hélène, and Nadège who shared their stories.
- Jean Patrick, Yoann, Alex, Francesco, Pierre-Yves, Pierre Adrien, Bruno, James, and Vuong who are always sportsmen (except for...[©]) and amusing.
- Mrs Maryline Disero and Mrs Marie Chaze who helped me well for all the "dministrative" problems and data-processing

I could not forget these moments. Thank you for these five unforgettable months of works.

Last but not the least, I would like to thank my family which gave me all the necessary support. "Bapak dan Ibu" which helped me spent difficult time much and especially their opinions which help me a lot. My three brothers, Satria, Putra, and Lasta which are always there for me. Finally for Hana (nip) which accompanied me throughout this work and her charming stories. Thank you very much!

PAGE OF COPYRIGHT OF STATEMENT FOR PUBLICATION THESIS AS ACADEMIC NECESSITIES

As academic affiliate of University of Indonesia, authorized signature:

Name	: Marciela esa DEWA
NPM	: 0806474395
Major of Study	: Master Degree
Department	: Civil Engineer
Faculty	: Engineer
Type of paper	: Thesis

In order to support the development of science, the writer has agreed to give **Non-exclusive Royalty – Free Right** to University of Indonesia, according to the writers' academic paper entitled:

COLLAPSE PROCESS DUE TO TUNNELING EROSION IN EARTH DAMS: A NUMERI-CAL STUDY

Including the hardware (if necessary). Accompanying with the Non-exclusive Royalty – Free Right, University of Indonesia has the right to keep, format, manage in any form of database, treat and publish the writers' thesis as long as put the writers' name as the writer or creator and those who belong to the copyright owner.

Thus the certificate had been made by the means of fact:

Place : Depok Date : June 22nd, 2010

Sincere,

(Marciela esa DEWA)

CONTENTS

STATEMENT OF ORIGINALITY	II
APPROVAL	III
PREFACE	IV
PAGE OF COPYRIGHT OF STATEMENT FOR PUBLICATION	V
CONTENTS	VI
LIST OF FIGURES	. VIII
LIST OF TABLES	XI
ABSTRACT	XII
RESUME	XIII
CHAPTER 1	
CENERAL PRESENTATION	1
GENERAL FRESENTATION	1
1.1 COLLAPSE OF CAVITIES: THE PHENOMENON	l 2
1.1.1 Example of mode of ruplure of a cavity	2
1.1.2 The case of suu omung 1.1.3 Objectives of research	
1.2 CHARACTERISTICS OF THE SOIL	4
1.2.1 Soil mechanics properties	4
1.2.2 Criterion of Mohr Coulomb	5
1.2.3 The classification of the soils	6
CHAPTER 2	
THE COLLAPSE OF CAVITIES: MODELLING	8
2.1 THE STABILITY OF THE CAVITIES	8
2.1.1 Observational approach	8
2.1.2 Analytical approach	16
2.2 THE EXPANSION OF CAVITY	18
2.2.1 The application of the expansion of cavities	18
2.2.2 Simplified calculation	19
2.3 CROLET'S MODEL	20
CHAPTER 3	
SPECIFIC STUDY OF THE COLLAPSE OF THE SOILS	23
3.1 MODELING OF COLLAPSE	23
<i>3.1.1 Geometry</i>	23
3.1.2 Rheological models	25
3.1.3 Numerical models	
3.2 URITERIA OF COLLAPSE	
5.2.1 Analysis of Aalmensional Parameters	
3.2.2 Criteriu of rupiure	30
5.2.5 Curiography of the plusic zones	+5

Universitas Indonesia

vi

3.2.4	Cartography of vector of deformation	47
CHAPTE	R 4	
CRITICA	L ANALYSIS OF THE NUMERICAL MODELLING	49
4.1 A	NALYZES WITH THE MODEL OF MOHR-COULOMB	49
4.1.1	Earth dam - low height with circular cavity	
4.1.2	Earth dam - low height with elliptic cavity	58
4.1.3	Earth dam - great height with circular cavity	71
4.2 A	NALYZE FOR MODEL OF MOHR COULOMB WITH SOFTENING	80
CHAPTE	R 5	
CONCLU	SION	93
BIBLIOG	RAPHY	94

LIST OF FIGURES

Figure 1 Formation of a Cavity (LCPC INERIS)	3
Figure 2 Tragedy of Situ Gintung (seen above)	3
Figure 3 Collapse of Gintung Situ	4
Figure 4 Mohr Circle (with mechanical properties of soil)	6
Figure 5 Diagrammatic cut of a cavity (Vachat's Study)	9
Figure 6 Model of Piggott and Eynon	10
Figure 7 Model in cone (Piggott and Eynon)	11
Figure 8 Model in triangle (Piggott and Eynon)	12
Figure 9 Model in rectangle (Piggott and Eynon)	13
Figure 10 Results of the model of Piggott and Eynon	13
Figure 11 Vertical displacement according to Whittaker and Reddish	14
Figure 12 Model of subsidence by Whittaker and Reddish	14
Figure 13 Concept of induced fracturing	17
Figure 14 Iteration suggested by Abbas-Fayad on the analytical application of calcul	ation17
Figure 15 Transverse section of the conduit	23
Figure 16 Axisymmetric model with a circular cavity	24
Figure 17 Axisymmetric model with an elliptic cavity	24
Figure 18 Criterion of rupture of Mohr Coulomb in FLAC	26
Figure 19 Field used for the rule of flow	27
Figure 20 Radoucissant model	
Figure 21 Approaches the model radoucissant in FLAC2D	29
Figure 22 Cut grid: compromise meanwhile and precision	31
Figure 23 Mohr Coulomb Model at the balance state	32
Figure 24 Mohr Coulomb Model with a circular cavity (here $r=1m$)	32
Figure 25 Mohr Coulomb Model with an elliptic cavity (here, $a=5m$; $b=3m$)	
Figure 26 Model of great dimension ($h=90m$; $r=54m$)	35
Figure 27 Mechanical properties of the model radoucissant 1	
Figure 28 Mechanical properties of the model radoucissant 2	
Figure 29 Development of γ^{p} during the creation of a cavity (value obtained with $r=3$	ōm;
C = 100 k P a)	40
Figure 30 Development of γp during the creation of a cavity with total rupture (value	obtained
with $r=5m$; $C=80kPa$)	42
Figure 31 Maximum coefficient of Reduction, taken of a curve γp - R	43
Figure 32 Evolution of the index of plasticity	46
Figure 33 Evolution of the vectors speed	48
Figure 34 Mohr Coulomb Model with circular cavity (r=1m)	49

viii

Figure 35	Mohr Coulomb Model with circular cavity $(r=5m)$	0
Figure 36	Mohr Coulomb Model with circular cavity $(r=9m)$	0
Figure 37	Comparison between the Mohr Coulomb Model and circular cavity5	1
Figure 38	Presentation of γp with total rupture, circular model MC cavity ($r=5m$; $C=80kPa$)	
		2
Figure 39	Index of plasticity of the Mohr-Coulomb model in low height ($r=5m$, $Cu=80kPa$)	
		3
Figure 40	Vectors speed of the Mohr Coulomb Model in low height ($r=5m$, $Cu=80kPa$)5	3
Figure 41	Zoom of the vectors speed of the Mohr Coulomb Model in low height ($r=5m$,	
Cu=	80kPa)	4
Figure 42	Index of plasticity for the basic model (Mohr-Coulomb, $r=5m$, $Cu=55kPa$)5	5
Figure 43	Displacement in Y of the Mohr Coulomb Model in low height ($r=5m$, $Cu=55kPa$)	6
Figure 44	Displacement in X of the Mohr Coulomb Model in low height ($r=5m$, $Cu=55kPa$)	
		6
Figure 45	Vectors speed of the Mohr Coulomb Model in low height ($r=5m$, $Cu=55kPa$)5	7
Figure 47	Model of Mohr Coulomb with an elliptic cavity ($a=5m \ b=1m$)	8
Figure 46	Mode of rupture during the widening of a conduit	8
Figure 48	Model of Mohr Coulomb with an elliptic cavity $(a=5m b=3m)$	9
Figure 49	Presentation of γp , elliptic model MC cavity ($a=5m \ b=1m$; $C=80kPa$)60	0
Figure 50	Presentation of γp , elliptic model MC cavity ($a=5m \ b=3m$; $C=80kPa$)	1
Figure 51	Vectors of speed, model MC with elliptic cavity ($a=5m$, $b=1m$, $Cu=80kPa$)6	1
Figure 52	Vectors of speed refined, model MC with elliptic cavity ($a=5m$, $b=1m$, $Cu=80kPa$))
		2
Figure 53	Vectors of speed, model MC with elliptic cavity ($a=5m$, $b=3m$, $Cu=80kPa$)62	2
Figure 54	Vectors of speed refined, model MC with elliptic cavity ($a=5m$, $b=3m$, $Cu=80kPa$))
		3
Figure 55	Index of plasticity, model MC with elliptic cavity ($a=5m$, $b=1m$, $Cu=80kPa$)6	3
Figure 56	Index of plasticity, model MC with elliptic cavity ($a=5m$, $b=3m$, $Cu=80kPa$)64	4
Figure 57	Comparison with different form of the geometry of cavity (Cref=1300kPa)6	5
Figure 58	Index of plasticity, model MC with elliptic cavity ($a=5m$, $b=1m$, $Cu=40kPa$)6	5
Figure 59	Index of plasticity, model MC with elliptic cavity ($a=5m$, $b=3m$, $Cu=55kPa$)60	6
Figure 60	Comparison with different form of the geometry of cavity (flattened model;	
Cref	=1300kPa)	6
Figure 61	Presentation of γp , model MC with elliptic cavity ($a=1m \ b=5m$; $C=90kPa$)67	7
Figure 62	Vectors of speed, model MC with elliptic cavity ($a=1m$, $b=5m$, $Cu=90kPa$)64	8
Figure 63	Index of plasticity, model MC with elliptic cavity ($a=1m$, $b=5m$, $Cu=90kPa$)6	8
Figure 64	Presentation of γp , elliptic model MC cavity ($a=1m \ b=3m$; $C=90kPa$)69	9
Figure 65	Vectors of speed, Model MC with elliptic cavity ($a=3m$, $b=5m$, $Cu=90kPa$)69	9
Figure 66	Index of plasticity, Model MC with elliptic cavity ($a=3m$, $b=5m$, $Cu=90kPa$)79	0

Figure 67 Comparison between number of stability and various models	71
Figure 68 Comparison of the number of stability based in cohesion limits (model of 10m,	
30m, 90m)	73
Figure 69 Comparison of the number of stability based in ultimate cohesion (model of 10m,	,
30m, 90m)	74
Figure 70 Value γp refined Model MC great height ($h=30m$, $r=27m$, $Cu=700kPa$) ($\gamma pmax =$	=
50%)	75
Figure 71 Value γp refined and zoomée - Model MC great height ($h=90m$, $r=27m$,	
$Cu = 850 kPa) (\gamma pmax = 5\%).$	75
Figure 72 Vectors of displacement models great height (MC, $h=30m$, $r=27m$, $Cu=700kPa$).	76
Figure 73 Refined vectors of displacement model MC great height ($h=90m$, $r=27m$,	
Cu=850kPa)	76
Figure 74 Index of plasticity model MC, great height ($h=30m$, $r=27m$, $Cu=700kPa$)	77
Figure 75 Index of plasticity model MC, great height ($h=90m$, $r=27m$, $Cu=850kPa$)	77
Figure 76 Comparison models great height with circular cavity of 27 m (MC)	78
Figure 77 Comparison models great height with circular cavity of 18 m (MC)	78
Figure 78 Comparison models great height with circular cavity of (MC)	79
Figure 79 Comparison models great height with circular cavity of (MC)	79
Figure 80 Result of the model radoucissant 1 & 2, and Mohr Coulomb (<i>circle</i> , $r=5m$)	
(<i>Cref=5000kPa</i>)	82
Figure 81 Value γp - Model Radoucissant 1 ($h=10m$, $r=5m$, $Cu=80kPa$)	83
Figure 82 Value γp refined - Model Radoucissant 1 ($h=10m$, $r=5m$, $Cu=80kPa$)	83
Figure 83 Value γp - Model Radoucissant 2 ($h=10m$, $r=5m$, $Cu=70kPa$)	84
Figure 84 Value γp refined - Model Radoucissant 2 ($h=10m$, $r=5m$, $Cu=70kPa$)	84
Figure 85 Displacement in X model radoucissant 1 ($h=10m$, $r=5m$, $Cu=80kPa$)	85
Figure 86 Displacement in Y model radoucissant 1 ($h=10m$, $r=5m$, $Cu=80kPa$)	85
Figure 87 Displacement in X model radoucissant 2 ($h=10m$, $r=5m$, $Cu=70kPa$)	86
Figure 88 Displacement in Y model radoucissant 2 ($h=10m$, $r=5m$, $Cu=70kPa$)	86
Figure 89 Vectors of model displacement radoucissant 1 ($h=10m$, $r=5m$, $Cu=80kPa$)	87
Figure 90 Zoom of Vectors of displacement model radoucissant 1 ($h=10m$, $r=5m$,	
Cu=80kPa)	87
Figure 91 Vectors of displacement model radoucissant 2 ($h=10m$, $r=5m$, $Cu=70kPa$)	88
Figure 92 Index of plasticity model radoucissant 1 ($h=10m$, $r=5m$, $Cu=80kPa$)	88
Figure93 Index of plasticity model radoucissant 2 ($h=10m$, $r=5m$, $Cu=70kPa$)	89
Figure 94 Comparison of the number of stability (all models; ultimate cohesion)	90
Figure 95 Comparison of the number of stability for the model in low height (ultimate	
cohesion)	91
Figure 96 Comparison of the number of stability for the model in great height (ultimate	
cohesion)	91

LIST OF TABLES

Table 1 Various types of collapse	1
Table 2 Non-cohesive soils and cohesive soils: characteristics	7
Table 3 Soil mechanics properties	7
Table 4 Mohr Coulomb Model with a circular cavity in low height	31
Table 5 Mohr Coulomb Model with elliptic cavity	32
Table 6 Mohr Coulomb Model great height	34
Table 7 Model radoucissant 1 with a circular cavity	35
Table 8 Model radoucissant 2 with a circular cavity	36
Table 9 Result of the Mohr Coulomb Model with circular cavity	50
Table 10 Result of the Model of Mohr Coulomb with an elliptic cavity $(Cu=1300kPa)$	59
Table 11 Mohr Coulomb Model in great height	72
Table 12 Number of stability based in cohesion limits (height of the model of 10m)	72
Table 13 Number of stability based in cohesion limits (height of the model of 30m)	72
Table 14 Number of stability based in cohesion limits (height of the model of 90m)	72
Table 15 Number of stability based in ultimate cohesion (height of the model of 10m)	73
Table 16 Number of stability based in ultimate cohesion (height of the model of 30m)	73
Table 17 Number of stability based in ultimate cohesion (height of the model of 90m)	73
Table 18 Model Radoucissant 1 (height of 10m) (Cref=5000kPa)	80
Table 19 Model Radoucissant 2 (height of 10m) (Cref=5000kPa)	80
Table 20 Model Radoucissant 1 (height of 90m) (Cref=5000kPa)	80
Table 21 Model Radoucissant 2 (height of 30m) (Cref=5000kPa)	81
Table 22 Model Radoucissant 2 (height of 90m) (Cref=5000kPa)	81

ABSTRACT

Internal Erosion initiated by water movement along channels called tunnel erosion, often crack or defect the dam's structure. It is one of the main causes of water structure's (dams, dikes, etc.) collapse. This phenomenon can be divided into 3 phases, tunnelling, collapse, and the opening of the channel inside the dam [1]:

- "Tunnelling" transport large quantities of particles due to the hydraulic gradient. It's happen fast in a preferential path especially in some point of dam structure's weaknesses.
- The gradual collapse of the roof of tunnel erosion allows the expansion of the channel.
- The opening of the channel is started after the collapse of the channel by tunnel erosion.

Research has been done to explain the phenomenon of collapse, but there are still questions, including the formulation, phase, and form of the rupture. Moreover, the equation used is not always adapted to the various cases of the soil. Research by Hunt and Hanson showed the different phases of a dam collapse with a rate of expansion of a hole driven only by the constraint of shearing.

Through this numerical study, we find that their hypothesis is not correct, because there are other parameters that affect this phenomenon and also the effect of traction force. The study is simplified by modelling an earthen dam with a given cavity; where the undrained cohesion is controlled to see at which value of cohesion the fracture achieved. This simplification is the opposite in the real case, where the cohesion is fixed but the cavity expands. We find that the collapse of the earthen dam because of the tunnel erosion occurs in two stages: the arching effect in the channel across the dam that makes vertical sag then collapse, and the expansion of the channel which is inclined more like a slope. The high of the dam and the form of the "tunnel" cavity also influenced the failure mode.

Keyword: Internal Erosion, Collapse, Numerical Study, Tunnelling.

Résumé

L'érosion interne dans un conduit dit « renard », résulte de l'infiltration d'eau souvent une fissure où un défaut à travers le corps du barrage. Elle est l'une des causes principales de ruptures hydrauliques (barrages, digues, etc.). Ce phénomène peut être décomposé en 3 phases, la phase de renard, l'effondrement, et la phase de brèche [1] :

- La phase de renard est à l'origine du transport des grandes quantités de particules à cause de la présence d'un gradient hydraulique. Celle-ci se fait rapidement dans un cheminement préférentiel le long duquel sont répartis un certain nombre des points faibles.
- L'effondrement progressif du toit du renard permet l'agrandissement du conduit.
- La phase de brèche est atteinte lors de la rupture totale du renard.

Des recherches ont été faites pour expliquer le phénomène d'effondrement, mais il reste encore des interrogations, notamment sur la forme de la rupture. Par exemple, l'équation utilisée n'est pas toujours adaptée aux différents cas du sol. Le travail de *Hunt et Hanson* a montré les différentes phases de rupture d'un barrage dont le taux d'élargissement d'une brèche est piloté uniquement par la contrainte de cisaillement.

Par cette étude numérique, nous trouvons que son hypothèse n'est pas correcte, auto il y a d'autres paramètres qui jouent sur ce phénomène et notamment la résistance à la traction du sol. L'étude réalisée est simplifiée par un barrage en terre avec une cavité donnée, où sa cohésion non drainée est diminuée pour voir à quelle valeur de cohésion on atteint la rupture. Ce qui est le contraire du cas réel où la cohésion est fixe mais la cavité s'agrandit. Nous trouvons que l'effondrement du barrage en terre à cause du renard se produit en deux temps : l'effet de voûte dans un conduit qui fait une affaissement vertical puis l'agrandissement de la brèche par formation d'un talus. La hauteur du barrage et la cohésion du sol influencent aussi le mode de rupture.

Mot Clé: Etude Numérique, L'érosion interne, L'effondrement, Renard.