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ABSTRACT 

 

Spectral decomposition is one of the method in advance seismic analyses to map 

geologic body. Usually, an interpreter will generate a lot of spectral components 

which are usually scanned every 1 Hz to look for anomalies. Those spectral 

components are highly correlated and redundant, same feature can occur in 

several components with different quality. To reduce the multiplicity of spectral 

data and enhance the most energetic trends inside the data, principal component 

analysis (PCA) is applied to the spectral components. PCA is a multivariate 

statistics method that works by rotating the axes to align with natural extension of 

the swarms of points and ordering the principal components by decreasing 

variance.  

 

In the first experiment to wedge model, PCA is very excellent in mapping all 

wedge body continuously regardless of the thickness. All significant features are 

plotted in the first principal component which accounts for more than 85% data 

variance. We also verify the algorithm to Stratton seismic data, target at channel 

which provide a comparable image from spectral decomposition. But we notice 

that some parts of the channel are slightly poorly imaged due to the contamination 

of noise and low significance of the data. PCA is robust when the trend in the data 

coexists in other spectral components and it doesn’t smeared by noise. By using 

blending technique, we sum up the first three principal component bands and 

shows that the channel is better imaged. Less significant features that show up in 

principal component bands two and three are all mapped to the composite image.  

 

Keywords: spectral decomposition, spectral component, principal component 

analysis, variance 
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ABSTRAK 

 

Dekomposisi spectral merupakan salah satu metoda analisis seismik lanjutan 

untuk memetakan benda geologi. Biasanya seorang interpreter akan menghasilkan 

sangat banyak komponen spektral yang di-scan setiap 1 Hz untuk mencari 

anomali tersebut. Komponen spektral tersebut saling berkorelasi dan berulang, 

suatu fitur yang sama dapat muncul di beberapa komponen tetapi dengan kualitas 

berbeda. Untuk mengurangi perulangan data spektral dan meningkatkan trend di 

dalam data, principal component analysis (PCA) diaplikasikan kepada komponen 

spektral. PCA adalah metode statistik multivariable yang bekerja dengan cara 

merotasi sumbu agar sejajar dengan arah penyebaran data dan mengurutkan 

principal component berdasarkan besar nilai varians. 

 

Dalam eksperimen pertama kepada model baji, PCA dapat memetakan seluruh 

bagian baji dengan menerus tidak peduli dengan ketebalannya. Semua fitur yang 

signifikan diplot pada principal component pertama yang mempunyai lebih dari 

85% varians data. Kami juga memverifikasi algoritma ini pada data seismik 

Stratton, dengan target channel dimana citra yang diperoleh sebanding dengan 

hasil dekomposisi spektral. Tetapi kami juga memperhatikan ada beberapa bagian 

dari channel yang dicitrakan sedikit kurang bagus akibat dari kontaminasi noise 

dan juga kurang signifikannya data tersebut. PCA akan berfungsi dengan baik jika 

trend dalam data koeksis dalam komponen spektral yang lain dan tidak 

didominasi oleh noise. Dengan menggunakan teknik blending, kami 

menjumlahkan tiga principal component band pertama dan menunjukkan bahwa 

channel dapat dipetakan dengan lebih baik. Fitur-fitur yang kurang signifikan 

yang muncul pada principal component band dua dan tiga semua dipetakan dalam 

citra komposit. 

 

Kata kunci: dekomposisi spektral, komponen spektral, principal component 

analysis, varians 
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CHAPTER 1 

INTRODUCTION 

 

 

1.1 Background 

By definition, spectral decomposition is all method that produces continuous 

time-frequency analysis, so it is possible to have a frequency spectrum for 

every time sample from the seismic trace. By transforming the time domain 

into frequency domain via Fourier Transform, the amplitude spectra delineate 

temporal bed thickness while the phase spectra delineate geological 

discontinuities. This technique is an effective tool to delineate stratigraphic 

feature such as channel sands and structural settings involving complex fault 

systems in 3D surveys (Partyka, 1999). 

 

Because spectral decomposition technique typically generates a large number 

of outputs compared to the input, it is a challange for the interpreter to 

understand the meaning of these data. Usually, an interpreter may generate 80 

or more spectral amplitude and phase components from the entire usable 

seismic bandwith at 1 Hz intervals (Guo et al, 2009). 

 

To reduce the multiplicity of spectral data and enhance the most energetic 

trends inside the data, principal component analysis (PCA) is applied to the 

spectral component. The most significant spectral components are sorted by 

the corresponding eigenvalue. Unlike the input spectral magnitudes and phase 

components, PCA does not indicate bed thickness. By projecting three largest 

principal components using three primary colors of red, green, and blue, the 

image can represent more 80% of spectral variance of the data. Principal 

component analysis generates less output volume and also rejects spectral 

components that are identified as noise. 
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1.2 Problem Statement 

There are a great number of spectral components generated in spectral 

decomposition, but not all of them represent the signal from specific geologic 

bodies which are expected. So, what interpreters usually do is tune the 

frequency every 1 Hz, which means an interpreter should analyze more than 

90 images and look for anomaly that may occur. 

 

1.3 Objective 

Because there are a lot of spectral components are generated in spectral 

decomposition, the purpose of this thesis work is to reduce spectral component 

data multiplicity using principal component analysis. Using this technique, we 

hope that trends in our data can be captured and plotted in the first few 

principal components, regardless of the thickness of the geologic body of 

interest. 

 

1.4 Methodology 

The pursuit of better imaging of channel system is investigated using principal 

component spectral analysis technique. 

 

1.5 Writing systematic 

The first Chapter contains introduction to this thesis work, motivation, and 

objectives. The theoretical frameworks are explained in Chapter 2. 

Methodologies and workflow used in this work are discussed in Chapter 3, 

while Chapter 4 contains analysis of the results. Conclusions and 

recommendations are given in Chapter 5. 
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CHAPTER 2 

THEORETICAL FRAMEWORK 

 

 

2.1 Seismic Attribute 

A seismic attribute is a quantitative measure of a seismic characteristic of 

interest, and there are more than 50 different attributes that can be derived 

from seismic data to aid interpretation of geologic structure, stratigraphy, and 

rock/fluid properties. Good seismic attribute is either sensitive to geologic 

feature or reservoir property, or enable us to map the structural or depositional 

environment that is useful to infer some feature or properties of interest 

(Chopra et al, 2005).  

 

There were many attempts to classify seismic attributes into families to better 

understand the application of them. Taner et al (1994) grouped attributes into 

geometrical and physical types. Geometrical attributes are used to enhance 

geometrical characteristics of seismic data, while physical attributes are for 

defining physical parameters of subsurface. 

 

In a 2001 Geophysics journal, Brown classify attributes base on the 

information we have: time, amplitude, frequency, and attenuation. Each of 

them is further devided into pre-stack and post-stack categories. Post-stack 

attributes are then grouped into horizon and time window based (Figure 2.1). 

Time attributes are for structural definition and amplitude for reservoir and 

stratigraphic properties. 

 

According to Liner et al, 2004, attributes are grouped into general and specific 

categories. Attributes that have strong physical and mathematical basis, which 

give the same behavior to basins around the world, are grouped into general 

categories, for example: horizon peak amplitude, time structure, complex 

amplitude and frequency, generalized Hilbert attributes, horizon dip and 

azimuth, illumination, edge-preserved smoothing, edge detection, AVO, 
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coherence, and spectral decomposition. In the other hand, special attributes are 

not universally valid, but only in special cases. It depends on the statistical 

well correlation in a field so the methods may not be useful for another field. 

Special attributes attract less attention since geoscientists need new 

fundamental information about the subsurface. 

 

 

Figure 2.1. Seismic attribute classification, derived from time, amplitude, frequency, 

and attenuation which are further group into pre-stack and post-stack categories 

(Brown, 2001). 

 

2.2 Seismic Vertical Resolution 

Since seismic wave that travel through the earth is band-limited, experience 

attenuation and also absorption, it has limitation in imaging geological objects 

that are too subtle. When the wavelet interfere, tuning effect will occur, which 

is a phenomenon of constructive or destructive interference of waves from 

closely spaced events or reflections (Schlumberger glossary). It defines λ/4 as 

the tuning thickness, i.e. thickness limit when it is not distinguishable in time. 
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Rayleigh limits the resolution of two superpostioned wavelet when images are 

separated by the peak-to-trough time interval while Ricker’s limit occurs when 

the composite waveform has a curvature of zero at its central maximum (flat 

spot). In a classic paper about thin bed by Widess (1973), it is defined that 

seismic resolving power is λ/8 or one eighth of seismic wavelength. This 

criterion is based on the calculation that the complex waveform from thin bed 

reflection will approximate the time derivative of incident wavelet. The 

complex wavefrom across a thin bed approach the time derivative of incident 

wavelet as the bed reaches zero thickness. He stated that to define thin bed, it 

involves the concept of resolving power. When a bed is thick enough, the 

reflection from the top and base can be distinguished in time. But when the 

thickness is diminished, the recorded reflection will be a composite of top and 

base reflections, i.e. less data of each interface separately, but in the form of 

combination of the two reflections. According to Widess, it continues until the 

bed thickness reach λ/8, and when the bed gets thinner, there is no information 

of each seperate interface anymore (Figure 2.2). He also noted that resolving 

power does not depend only on dominant frequency, but also signal-to-noise 

ratio.  

 

Figure 2.2. Seismic response of beds with different thickness. Note that at thickness less 

than λ/8, the bed is not seperable in time (Widess, 1973) 
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2.3 Spectral Decomposition 

Spectral decomposition has some applications in interpreting seismic data, 

such as mapping temporal bed thickness and geologic discontinuities. By 

transforming seismic data from time domain to frequency domain, the 

amplitude spectra can unveil temporal bed thickness variability while the 

phase spectra indicate geologic discontinuities (Partyka et al, 1999). 

 

Figure 2.3. Spectral interference from thin bed reflection (Partyka et al, 1999) 

 

The idea behind spectral decomposition is the unique characteristic in the 

frequency domain when the signal is reflected from a thin bed. Notch pattern 

in amplitude spectra directly indicate temporal bed thickness (Figure 2.3). Bed 

temporal thickness can be approximated by 1
d

, where d is the distance 

between notches. Using spectral decomposition, continuous bed with 

thickness variation will be mapped onto different frequency amplitude map 

(Figure 2.4). 

 

 

Figure 2.4. Illustration showing that higher frequency amplitude map will highlight 

thinner reservoir on amplitude map while lower frequency amplitude map will 

highlight the thickest part (Laughlin, et al, 2002).  

Channel distribution..., Andrew Jo, FMIPA UI, 2010
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Figure 2.5. Spectral decomposition of seismic trace over (a) long window and (b) 

short window (Partyka et al, 1999). 

 

Transformation from a long trace will give an amplitude spectrum that 

approximates the wavelet spectrum, while, over a short window, the spectrum 

contains information about wavelet overprint and also interferences from 

geologic layers over the selected window, exhibited in periodic notch pattern 

(Figure 2.5). 

 

Using a wedge model, Partyka et al, show the relation between spectral 

decomposition and thin bed tuning. In the example, the temporal thickness of 

thin bed determines the period of notches in the amplitude spectrum with 

respect to frequency (Figure 2.6). From Figure 2.6.c, we can see that period of 

notch pattern is larger for thinner bed, and vice versa. Other way to look at the 

picture is that if we select/slice a certain frequency only, i.e. 50 Hz, we can 

image thin beds that have temporal thickness of 20 ms and 40 ms.  

 

In Gulf of Mexico case study by Partyka, et al (1999), he showed that tuning 

cube frequency slice reveal the Pleistocene-age delta better than full bandwith 

energy map. Note the different features that are highlighted by each frequency 

slice (Figure 2.7).  
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Figure 2.6. Wedge model. (a) Reflectivity; (b) filtered reflectivity; (c) spectral 

amplitudes (Partyka et al, 1999). 

 

 

 
 

Figure 2.7.  Pleistocene-age delta map in GOM (a) 16 Hz (b) 26 Hz frequency slice, 

and (c) conventional full bandwith energy extraction (Partyka, et al, 1999). 
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There are several algorithms that are used to decompose a time series into 

spectral components. Conventional DFT only produce amplitude spectral with 

no time information. Because seismic trace is not stationary and the spectral 

component varies significantly with time, non-standard method of spectral 

decomposition is required. Those methods include: short-time fast Fourier 

transform, continuous wavelet transform, and also the more sophisticated one, 

matching pursuit decomposition. These methods give better resolution in time 

and frequency domain but they are beyond the scope of this thesis work. 

 

2.4 Fourier Series 

According to Fourier theorem, a random periodic waveform can be 

represented by the sum of sines and cosines (Figure 2.8). Fourier series has 

application in electrical engineering, vibration analysis, acoustics, optics, 

signal processing, image processing, quantum mechanics, etc. Fourier series 

of a periodic 2π function f(x) that is integrable on [-π, π] is given by: 

0

1 1

( ) cos( ) sin( )
2

n n

n n

a
f x a nx b nx

 

 

     (2.1) 

where:  0

1
( )a f x dx



 
  ,  

1
( )cos( )na f x nx dx



 
  ,  

1
( )sin( )nb f x nx dx



 
   

 

It is possible to express Fourier series in exponential form using Euler’s 

formula: 

 cos sininxe nx i nx   (2.2) 

where i is the imaginary unit, to give a more compact formula: 

 ( ) inx

n

n

f x c e




   (2.3) 
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The Fourier coefficient is given by: 

 
1

( ) inx

nc f x e dx







   (2.4) 

while the Fourier coefficients 
na , 

nb , 
nc  are related by: 

n n na c c   for n=0, 1, 2, … 

( )n n nb i c c  for n=1, 2, … 

 

 

Figure 2.8. Fourier series approximation of a square signal (Wikipedia) 

 

2.5 Fourier Transform 

Fourier transform is one of the most important tools in signal processing until 

today. The concept of Fourier transformation is based on the Fourier series, 

which represents any functions with an infinite sum of cosine and sine waves. 

It transforms one complex valued function to another. The definition of 

Fourier transform is: 

2( ) ( ) i tF f t e dt 





  , for every real number of   (2.5) 

In this case, t represents time (second) and  represents frequency (Hz) but it 

is also common to do transformation from time domain into angular frequency 

domain (ω). The inverse process is transformation from frequency domain 

into time domain, which formulated as: 

2( ) ( ) i tf t F e dt 



  , for every real number of t (2.6) 
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An important property of Fourier transforms is their complementary nature, 

which can be stated as the following: 

a. If ( )F   is the Fourier transform of ( )f t , then ( )f t  is also the Fourier 

transform of ( )F   

b. If ( )f t  is the Fourier transform of ( )F  , then ( )F   is also the Fourier 

transform of ( )f t . 

Thus, Fourier transform can be thought as a measure of how much a certain 

frequency is present in a random waveform. Like Fourier series, it sums up or 

integrates the multiplication of the original waveform with a periodic wave 

with certain frequency and calculates how big the value is. Then we move to 

the next frequency, redo the same process and finally, we get a graph of 

frequencies versus constants representing how dominance they are in the 

waveform. 

 

2.6 Fast Fourier Transform (FFT) 

FFT is an algorithm to compute Discrete Fourier Transform (DFT) and its 

inverse. DFT decomposes a sequence of value into different frequencies. Let 

x0, x1, …, xN-1 are complex numbers, the definition of DFT is: 

1 2

0

nN i k
N

k n

n

X x e
 



  (2.7)     

where k= 0, …, N-1. FFT give the same result as by using the definition of 

DFT, but it performs much faster because instead of computing O (N
2
) 

arithmetical operation, it only needs to compute O (N log N) operations.  

 

The most widely used algorithm of FFT is based on Cooley-Tukey FFT 

algorithm which breaks down the DFT into smaller DFTs and combines with 

other algorithm like Raders’s and Bluestein’s algorithm to handle large prime 

factors, and also prime factor algorithm to separate out relatively prime factors 

more efficiently. 
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The radix-2 decimation in time (DIT) is the simplest and common algorithm 

for Cooley-Tukey FFT. It first separates even indexed inputs xm (x0, x2, …, xN-

2) and odd indexed inputs xm+1 (x1, x3, …, xN-1), then perform DFT on each of 

them and later combines to form a complete sequence: 

2 2 1/ 2 1 / 2 12 2

2 2 1

0 0

m mN Ni k i k
N N

k m m

m m

X x e x e
 

  



 

    (2.8) 

 

2.7 Eigenvalue and Eigenvector 

The eigenvector of a matrix is defined as a vector that changes in magnitude 

but not in the direction if operated on a matrix. If the vector flipped to the 

opposite direction, it is still called the eigenvector of that matrix. A scalar 

which multiplied by the eigenvector and gives the same matrix as transformed 

eigenvector is called the eigenvalue of the corresponding eigenvector.  

 

Given a square matrix C, the eigenvalue λ and eigenvector v can be found by 

solving: 

Cv = λv  (2.9) 

Rearranging the formula above, we get (C- λI)v = 0 , which imply that 

det(C- λI) = 0 .The determinant can be expanded into a polynomial in term of 

λ. It is called characteristic polynomial of C and to determine eigenvalue, one 

should find the roots of the polynomial. 

 

This concept is very useful in principal component analysis because the 

largest eigenvalue corresponds with the most significant component 

(eigenvector) of the data. 

 

2.8 Covariance Matrix 

Covariance is statistical measurement to analyze relationship between several 

dimensions, i.e. how much the dimensions vary from the mean with respect to 

each other. If you do covariance calculation of a dimension with itself, you get 

the variance. The formula of covariance is similar to variance: 
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  
  1cov( , )

( 1)

n

i i

i
xy i x i y

X X Y Y

S X Y E X Y
n

 

 

      


 (2.10) 

where 
x is E(X) or expectation value of X and 

y is E(Y). 

 

The result from the calculation above tells us something about the relation of 

dimensions X and Y. The exact value is not as important as its sign. If the 

covariance is positive, we can conclude that both dimensions increase 

together, and if the covariance is negative, while one dimension increases, the 

other decreases. 

 

Covariance is always a measurement of more than one dimensions. For n 

dimensions data, we can calculate 
!

( 2)!*2

n

n 
 different covariance value. A 

useful way to get all the possible covariance values is to calculate them and 

put them in a matrix. Covariance matrix of a set of data with n dimensions is: 

 , ,, cov( , )nxn

j k j k j kC c c dim dim   (2.11) 

where Cj,k is the jth
 
, kth component of covariance matrix; dimn is nth 

dimension.  

 

Another useful expression of covariance matrix is: 

, ,

, ,

j k j n

n k n n

c c

C

c c

 
 

  
 
 

 

 

Because covariance is dependent on the scale of X and Y, it is difficult to 

compare covariance of different pairs of variables. For example, if we change 

the scale from meter to kilometer, the covariance will change.  

 

Suppose that we have a variable Z which is a transformation of Y and related 

by the following formula: 
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T
Z = A * Y  (2.12) 

where P is an orthonormal rotation matrix. Now we wish to find the 

covariance matrix of Z, Sz in term of covariance matrix of Y, Sy, we derive the 

equation by algebra substitution as below: 

T

z

T T T

T T

T T

S = E[ZZ ]

= E[(A Y)(A Y) ]

= E[(A Y)(Y A)]

= A E[YY ]A

 

T

y
= A S A  (2.13) 

Now, we have
z y

AS = S A . Rewrite A as

1

n

a

a

 
 
 
  

, Sz as 

1 0 0

0 0

0 0 n





 
 
 
  

, we have 

 1 1 1 2,..., ,...,n na a a a     y y
S S , where n is the eigenvalue and an is the 

eigenvector of covariance matrix Sy (Further discussion at section 2.10). 

 

2.9 Correlation Matrix 

In signal analysis, correlation or cross-correlation is a standard method to 

measure the similarity of two waveforms. It finds many applications in the 

field of pattern recognition, single particle analysis, electron tomography 

averaging, cryptanalysis, and neurophysiology. Mathematically, cross-

correlation is defined as:  

( )( ) ( ) ( )f g t f g t d  





    (2.14) 

where * here denotes cross-correlation, f and g are continuous functions, and 

f denotes complex conjugates of f. For discrete function, cross-correlation is 

defined as: 

( )( ) [ ] [ ]
m

f g n f m g n m






    (2.15) 

Cross-correlation of two functions is similar to convolution in the case of 

shifting the series and multiplies them, but without reversing the series. 

Consider two functions f and g, which differ by two shifts along the x-axis. 
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One could determine how much shifting is needed to make f identical to g, by 

sliding one of the function then multiply every components and sums them up. 

If the functions match, the correlation value will be maximized. In probability 

theory and statistics, cross-correlation usually refers to covariance cov(X,Y) 

between two random vector X and Y. 

 

In multivariate statistics, correlation and covariance are both measuring the 

relationship of variables, but as stated in previous section, covariance is 

sensitive to scale of variables. To overcome this problem, let’s say that we 

need to compare a linear relationship of data in meter, and another in 

kilometer scale, we need to standardize the covariance by dividing by the 

standard deviation ( ) of the two variables. Correlation can be expressed in 

term of covariance as the following: 

  

   

1

2 2

1 1

cov( , )
( , )

n

i i

i

n n
x y

i i

i i

X X Y Y
X Y

cor X Y

X X Y Y
 



 

 

 

 



 

 (2.16) 

where x and y  are standard deviations of variable x and y.  

 

2D cross-correlation is commonly used to measure similarity between two 

images that is quite useful in pattern recognition. It can easily computed by 

summing up the multiplication of pixels from first image with second image 

underneath (Figure 2.8). 

 

Figure 2.9. Cross-correlation between two images (from MATLAB Help) 
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2.10 Principal Component Analysis 

Principal component analysis is a method of multivariate data analysis which 

aims to reduce dimensionality of interconnected variables and maximize the 

variance of linear combination of variables, i.e. searching for a dimension 

along which the data distribution is maximally spread out. It is a well 

established statistical method and has been used in analyzing seismic data. In 

a 1999 SPE publication, Scheevel et al, discussed about the application of 

PCA to seismic amplitude attribute for reservoir characterization. In SEG 

annual meeting presentation (2006), Guo et al, introduce principal component 

analysis of seismic spectral components. The purpose of PCA is to reduce 

number of spectral components from 80 or more to a more manageable 

number of principal components. 

 

Assume that we have n variable vectors y1, y2, …, yn  that form a swarm of 

points in p-dimensional space. If all the variables are correlated, the ellipsoidal 

swarm of points is not oriented parallel to any of the axes represented by y1, 

y2, …, yn . Then we would like to find the natural axes of the ellipsoidal 

swarm of points with origin at y , that is the mean vector of y1, y2, …, yn.  

This is done by translating the origin to y  and then rotating the axes. In this 

way, all the variables will be uncorrelated after the axes rotation. Axes 

rotation is done by multiplying yi by an orthogonal matrix A, which transform 

iy  to iz , with the same distance from the origin: 

i iz = Ay  (2.17) 

Finding the axes of ellipsoid data cloud is equivalent to find an orthogonal 

matrix A that rotate the axes to align with the natural extension of the swarm 

of points so that the principal components z1, z2, …, zn are uncorrelated. So, 

we want the sample covariance matrix of z, z
S = ASA'  to be diagonal: 
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1

2

2

2

2

0 0

0 0

0 0
n

z

z

z

s

s

s

 
 
 
 
 
 
 

zS = ASA'  

where S is the sample covariance matrix of y1, y2, …, yn. Because A is an 

orthogonal matrix whose columns are eigenvectors of S, Sz = diag (λ1, λ2, …, 

λn), where λi are eigenvalues of S. The principal components are the 

transformed variables z1=a1’y, z2=a2’y, …, zn=an’y. The principal component 

with largest eigenvalue, in this case, z1, has the largest variance and zn has the 

smallest variance (Figure 2.10). 

 

Figure 2.10. PCA transformation of a variable y1 and y2 (Rencher, 2002) 

 

To illustrate how principal component analysis works on spectral components, 

consider the following frequency slice of an imaginary seismic data (Figure 

2.11) and the traces plot in three spectral dimensions (Figure 2.12): 
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Figure 2.11. Cartoon showing frequency slice of seismic data. Numbers written in the 

box denote trace number. PC band 1 is plot in (d). 

 

 

Figure 2.12. Principal component of data consisting of three components from the 

previous channel model (Figure 9), with red dots represent three spectral components 

from each trace. 
 

From the frequency slice cartoon, we can see an obvious feature of the data 

represented by high amplitude (dark green colour) and it is most clearly 

delineated at frequency 2 (Figure 2.11.b). Each trace is plotted to three 

a b 

c d 
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dimension axes and we can see that traces that contain channel gathered near 

frequency 2 axes. We can also see that all the variables are correlated, in other 

word, we can see that feature in other spectral component, although at 

different clarity.  

 

To remove the correlation, so that we can plot the feature in one image, we 

have to rotate the axes align with the natural extention of data cloud. One 

condition for uncorrelated variables is the covariance matrix of the new 

variables must be diagonal. Using this constraint, we search for the 

eigenvector of covariance matrix of original data which will be used to project 

them to new set of variables (principal components). First principal 

component would capture the variable with greatest variance. 
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CHAPTER 3 

METHODOLOGY 

 

  

After having a good grasp of how spectral decomposition and principal 

component analysis work, I am going to discuss about the methodology and 

workflow of PCA applied to synthetic and real spectral data. The algorithm is 

written and executed using MATLAB™ from Mathworks.  

 

3.1 Processing of Synthetic Data 

To evaluate PCA method, we use 3D wedge synthetic data. It is a good model 

to illustrate tuning effect at thin bed case and also hypothetical model of 

channel body which becomes thicker in one direction.  

 

The purpose of constructing this synthetic model is to investigate its 

appearance in time slice, frequency slice using spectral decomposition, and the 

effectiveness of principal component analysis in delineating the whole wedge 

body.  

 

The synthetic wedge model was constructed by defining reflectivity 

coefficients, -0.6 for the top and 0.6 for the base, and then convolved the 

reflectivity with 20 Hz Ricker wavelet which sampling interval is 2 ms (Figure 

3.1). In this work, the model is in 3 dimension having 128 vertical samples, 70 

crosslines, and 80 inlines (Figure 3.2). The top and base interface can be 

distinguished at relatively thick part but the reflections start to interfere 

destructively as the thickness diminishes.  
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The second step is transforming all traces into frequency domain with Fast 

Fourier Transform using MATLAB built-in function (fft) with 200 points 

output. This domain transform generated 200 spectral components with 

interval every 2.5 Hz. These components are then cross-correlated to get 200 

by 200 covariance matrix. To perform PCA, eigenvectors are decomposed 

from the covariance matrix. Original data is projected to the eigenvector to 

obtain new components. 

 

 

   Figure 3.1. (a). Reflectivity model of wedge, (b). Synthethic seismogram from wedge model 

at crossline 60 

a

) 

b

) 

Figure 3.2. Three dimension image of wedge body. 
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3.2  Processing of Real Seismic Data 

We continue with a real 3D seismic data to evaluate the effectiveness of 

principal component analysis to enhance channel distribution map, which sand 

thickness is unknown. Seismic data used in this project is from Stratton Field, 

Texas. The data was already in form of matrix format (*.mat), readily loaded 

using MATLAB. It has 101 time samples with sampling rate 2 ms, 200 

crosslines, and 100 inlines (Figure 3.3). Crossline 50 is shown in Figure 3.4. 

 

Because we are not provided with information from well log, we first scanned 

the time slice to determine zone of interest where geologic feature we want to 

map does appear. Localizing zone of interest will give better approximation of 

frequency domain representation because it takes into account subtle 

information within the window. Otherwise, the frequency spectrum will 

approximate seismic wavelet and could not resolve interesting spectra from 

subtle feature.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. Seismic slice at crossline 39, inline 39, and time slice (47) ms, notice 

the channel pattern (blue). 
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Time to frequency domain transformation of traces from every inline n and 

crossline m is done using Fast Fourier Transform algorithm in MATLAB (fft 

function) with 501 points output. This generated 501 spectral components 

with 1 Hz increment. The results of transformation become the input to 

covariance matrix, which is the cross-correlation of every frequency slices 

with formula as describe in Guo, et al: 

( ) ( )

,

1 1

N M
j k

j k mn mn

n m

C d d
 

   (3.1) 

 where Cjk is the jkth element of covariance matrix C; N is the number of 

seismic lines in the survey; M is the number of seismic crosslines in the 

survey; and ( )j

mnd  and ( )k

mnd  are spectral magnitudes of jth and kth frequencies at 

line n and crossline m. The cross-correlation values are not normalized; it 

means that they are not divided by the standard deviation of each variable, 

because our spectral data have already had the same scale. We also do not 

subtract the spectral magnitude from its mean value (as the covariance and 

correlation formula) because every frequency component the same range of 

spectral magnitude value. So we can get a quick and meaningful result with 

minimum computation. 

 

Figure 3.4. Stratton seismic data at crossline 75 
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The next step is decomposing covariance matrix into eigenvector 
pv  and 

eigenvalue 
p by solving equation: 

p p pCv v  (3.2) 

 

In MATLAB, the eigenvector is obtained by applying pcacov function to a p-

by-p covariance matrix C which returns three outputs: coeff, latent, and 

explained. coeff is a p-by-p matrix which each column containing coefficients 

of a principal component, that are sorted in order of decreasing variance. coeff 

is different from eigenvector produced by eig function in MATLAB, since 

coeff is the normalized eigenvector of covariance matrix, so all the vectors are 

unit length. latent is a vector containing principal component variances, that is 

the eigenvalues of covariance matrix C and the percentage of every principal 

component variances are stored in explained. The variable explained is the 

fraction of: variance of a principal component and total variances. This value 

shows how much a PC band represents the entire data because large variance 

means the principal component captures the major trends of data cloud. 

Eigenvectors with largest eigenvalues represent dimensions with largest 

variance in the data set.  

 

The last step is transforming original spectra d into new variables z using 

equation: 

pz v d  (3.3) 

which linear combination has maximum variance. The principal components 

are sorted in order of decreasing eigenvalue; with largest eigenvalue represent 

linear combination wih maximum variance. The comprehensive workflow is 

shown in Figure 3.5. 
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 Figure 3.5. Cartoon showing workflow of Principal Component Analysis 
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CHAPTER 4 

RESULTS AND ANALYSIS 

 

 

In this section, I will discuss about the result and analysis of the performance of 

principal component spectral analysis applied to a 3D synthetic wedge model and 

also a real 3D seismic data cube. 

 

4.1 Synthetic Data 

From this 3D synthetic seismogram cube, we perform time slice to map the 

wedge body. As predicted, it appears that time slice only map the partial part 

of the body because it is very sensitive to interface position in time domain. 

From time slice, it is obvious that the wedge is thickening downward (Figure 

4.1). 

 

To map the wedge in frequency slice, which can give an indication of bed 

temporal thickness, we first transform all traces into frequency domain using 

Fast Fourier Transform.  

 

From the amplitude spectrum of crossline 60, we can see that different wedge 

thickness has different amplitude spectrum response. So, when we see the 

frequency slice, we expect to see bright and dark bands pattern that indicates 

particular temporal thickness. For example, from Figure 4.2, we can see that 

frequency slice at 25 Hz will map wedge with temporal thickness 0.025, 0.05, 

0.1 s.  

 

Figure 4.3 shows spectral decomposition of wedge model. Notice that at 

frequencies 3 – 7 Hz, although spectral decomposition is able to delineate 

most part of the wedge without bright and dark bands, it is not very 

descriptive because spectral decomposition is sensitive to thickness. So, only 

parts of the wedge that have temporal thickness correspond to a certain 

frequency are highlighted. 
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Figure 4.1. Time slice of 3D synthetic seismogram wedge model every 0.2 ms, 

starting at 2 ms 

 

 

Figure 4.2. Amplitude spectrum of traces in crossline 50 
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Figure 4.3. Frequency slice of wedge model showing bright and dark pattern at different 

frequencies:  (a) 1 Hz, (b) 2 Hz, (c) 3 Hz, (d) 4 Hz, (e) 7 Hz, (f) 9 Hz,  (g) 11 Hz,  (h) 15 

Hz,  (i) 17 Hz,  (j) 20 Hz,  (k) 23 Hz,  (l) 32 Hz,  (m) 40 Hz,  (n) 48 Hz, and (o) 55 Hz  
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To overcome the sensitivity problem, we try to run principal component 

analysis which looks for the trend in our data and then map it on the first few 

principal component bands. In this way, we expect to see all the wedge body 

in one image. Figure 4.4 shows first four PC bands, also band 17
th

 and 163
rd

 as 

comparison. We can see that the wedge is mapped to the first PC band 

regardless of the thickness. First principal component accounts for 85% 

variance and the entire first five principal components account for 95% 

variance; this is plotted on Figure 4.5. 

 

Figure 4.4. Spectrum projected onto (a) first, (b) second, (c) third, (d) fourth, (e) 17
th

, and 

(f) 163
rd

 principal component. 

 

 

Figure 4.5. Scree graph of variance percentage explained by principal components 
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4.2 Three Dimension (3D) Seismic Data 

As discussed in Chapter 3, we have to locate zone of interest (channel deposit) 

by scanning time slices because we are not provided with log data. From 

Figure 4.6, the channel is visible starting at 0.06 ms and diminishes at 0.104 

ms. Because of structural variation, some part of the channel appears to have 

different polarity. At time sample 0.06 until 0.064 ms (Figure 4.6.a-c), 

northern part of the channel has positive polarity and becomes negative at 

0.066 until 0.094 ms (Figure 4.6.d-g), while the southern part is visible in 

positive polarity from 0.066 until 0.092 ms (Figure 4.6.d-f).  

 

Next, we perform spectral decomposition using FFT algorithm to the zone of 

interest cube to see at what frequency the channel is clearly imaged. Choosing 

FFT transformation window is very critical because it affects the shape of 

amplitude spectrum greatly and in turn determining whether the geological 

subtleties are captured in the spectrum.  

 

This frequency decomposition generated 501 spectral components from 0 until 

500 Hz. From Figure 4.7, part of channel pointed by yellow arrow tune in first 

at 5 Hz and then gradually tune out at 30 Hz, indicating the thickest part. Also 

notice that the boundary of channel (red arrow) appears to be dark at low 

frequency, and then tune in at higher frequency 

 

The whole channel is quite well imaged at frequency slice 20 – 30 Hz. Other 

nearby spectral components also give almost the same image with different 

part that tune in and out since the thickness of the channel is not homogenous. 
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Figure 4.6. Time slice of Stratton seismic cube at (a) 0.06 ms, (b) 0.062 ms, (c) 0.064 ms, 

(d) 0.088 ms, (e) 0.09 ms, (f) 0.092 ms, (g) 0.094 ms (h) 0.1 ms, (i) 0.102 ms, (j) 0.104 

ms, (k) 0.106 ms, (l) 0.108 ms, (m) 0.11 ms, (n) 0.112 ms, (o) 0.114 ms 
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Figure 4.7. Stratton data frequency slice at (a) 0 Hz, (b) 5 Hz, (c) 10 Hz, (d) 15 Hz, (e) 20 

Hz, (f) 25 Hz, (g) 30 Hz, (h) 35 Hz, (i) 40 Hz, (j) 45 Hz, (k) 50 Hz, (l) 55 Hz, (m) 60 Hz, 

(n) 65 Hz, (o) 70 Hz, (p) 75 Hz, (q) 80 Hz, (r) 85 Hz, (s) 90 Hz, and (t) 95 Hz. 
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We realize that most of the spectral components are highly correlated and 

carry almost the same information about the channel, like in Figure 4.7, we 

can see that major part of the channel is coexist from frequency slice 10 until 

70 Hz. To capture the trend, we transform the original data to remove the 

correlation among the bands using principal component analysis (PCA). 

Figure 4.8.a shows the covariance matrix of original spectral components. 

 

To perform PCA to our data, we utilize 86 spectral components from 5 to 90 

Hz and then form a 86-by-86 covariance matrix using equation (3.1), compute 

the eigenvector and eigenvalue pairs by solving equation (3.2), and project the 

original spectra to eigenvectors to yield new sets of data. Figure 4.9 shows the 

amount of information from the data that is defined by each principal 

component. The first principal components alone accounts for more than 97% 

spectral variance. Note that the cross-correlation among principal components 

is zero, except correlation with themselves (Figure 4.8.b). 

 

In Figure 4.10, we map the five largest principal components and also the 16
th
 

component. Channel feature is best represented by the first PC band (Figure 

4.10.a), with decreasing significant feature map on the rest PC bands. Note 

that in large PC band number (Figure 4.10.f), the image mostly contains noise, 

thus, PCA can be an effective filter mechanism improve signal-to-noise ratio 

by throwing out PC bands that contain insignificant signal. PCA successfully 

capture the major trend (channel) in our data without needing to scan the 

entire frequency slice. This can be very useful for application in data 

compaction, since we are able to reject lots of unsignificant components. 

Because PCA capture trend of data, it map the most energetic trend regardless 

of the thickness. So, while spectral decomposition is sensitive to thickness, 

PCA is the opposite. 
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Figure 4.8. Covariance matrix of (a) 91 original spectral components, (b) 91 principal 

components displayed in form of colored image. Hot color represent high correlation. 

 

 

Figure 4.9. Graph showing variance explained by PC. The first principal component 

accounts for more than 97% variance. 
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Figure 4.10. Spectral components projected to (a) 1
st
, (b) 2

nd
, (c) 3

rd
, (d) 4

th
, (e) 5

th
, and (f) 

16
th
 PC bands. 
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To compare between the result of conventional spectral decomposition and 

principal component spectral analysis, we use PC band 1 and frequency slice 25 

Hz (Figure 4.11). We notice that image of the first PC band manage to plot the 

major part of channel, with slightly better image at the northern part (blue arrow), 

the channel appears to be more continuous although other spectral components 

like 35 – 45 Hz also display a continuous feature there.  

 

But the western (yellow arrow), and the southern part (red arrow) are slightly 

poorly imaged. Also point out that those parts are slightly smeared in frequency 

slice too. The reason slightly reduce quality in PC band is due to properties of 

PCA that seeks the most energetic trend in data, but if the channel has low 

reflectivity, it will not appear as a significant component in data and is not 

restored in the few first principal components. In other words, it overlooks subtle 

feature that may be interesting for a geoscientist. Conversely, if noise (such as 

acquisition footprint) has higher amplitude and seems to be coherent, it will show 

up in first few principal components. 

 

By summing up or blending the first three principal components, i.e. 1
st
, 2

nd
, and 

the 3
rd

 PC bands, we can enhance the channel distribution mapping. In Figure 

4.11.c, southern part of the channel (green arrow) which appears strongly at 

frequency slice 0 – 15 Hz, is better imaged compared to using principal 

component band 1 alone. This blending technique will capture most parts of 

channel that only appear in several frequency slices. 
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Figure 4.11. Comparison between (a) Frequency slice at 25 Hz, (b) the first principal 

component band, (c) sum of 1
st
, 2

nd
, and 3

rd
 PC bands. 

a 

b 

c 
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CHAPTER 5 

CONCLUSION 

 

 

From the result of this thesis work, we conlude that principal component analysis 

is proved to be an effective tool for geophysicists to track the trend of data they 

have. Principal component analysis is also very useful in data compaction since it 

reduce more than 90 spectral components that have to be analyzed into less than 5 

principal components. The principle is to let the data tell something by 

themselves. In our case, i.e. channel mapping, principal component reject most of 

the insignificant signal, hence only project the main feature to the first few PC 

bands. While spectral decomposition is very sensitive to thickness, PCA is the 

opposite. In case we have a continuous feature but with different thickness, PCA 

will plot all the body in the first principal component band if it is also a trend in 

the data. 

 

Since PCA basically look for statistical trend between spectral components, it has 

a major pitfall, i.e. subtle feature with little reflectivity or those which do not 

coexist in other spectral components will be overlooked or poorly imaged. In our 

work, some part of the channel is blurred, not because PCA fail to capture that 

feature, but because of the blurry part is not coexist in most of spectral 

components. By summing up the first three principal component bands, we show 

that the channel distribution can be better imaged.  
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Appendices 

 

 

A. Wedge Model 
 

clear all 
clc 
%ANDREW JO/0606068026 
%RC wedge 3D 
wed=zeros(70,75,80); 
wed(5,:,20:60)=-0.6; 
wed(6,1:10,20:60)=0.6; 
for i=6:70; 
    wed(i,(i+4),20:60)=0.6; 
end 

  
%Ricker 20 Hz 
dt=0.002; 
fdom=20; 
tlength=127*dt; 
[wave,tw]=ricker(dt,fdom,tlength); 

  
%3D-->2D 
wed2=reshape(wed,70,6000); 
%wed2=wed2'; 

  
%convolv 
seisw=conv2(wed2,wave); 
[ntime,ntrace]=size(seisw); 

  
%2D-->3D 
seisw3=reshape(seisw,ntime,75,80); 
%--------------------------------- 
%Plot crossline 60 
r=seisw3(:,:,60); 
rt=0:dt:(ntime-1)*dt; 
figure(1);plotseis(r,rt);title('Crossline 60');ylabel('time (s)') 

  
seisw=seisw'; 
seis2d=seisw; 
seisw=reshape(seisw,75,80,197); 

  
%Slice 
[ny,nx,nz]=size(seisw); 
[x,y,z]=meshgrid(20:60,1:ny,1:nz); 
figure(2); 
slice(x,y,z,seisw(:,20:60,:),[20,60],60,70);colormap(jet);colorbar

;set(gca,'xdir','reverse');set(gca,'zdir','reverse');shading 

interp 

  
%FFT 
seisf=abs(fft(seisw3,500)); 
fx=0:1/(dt*499):1/dt; 
figure(5);imagesc(fx,reshape(seisf(1:70,:,50),70,75)); 
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%time slice 
figure(3); 
for j=1:10:190; 
    imagesc(reshape(seisw3(j,:,:),75,80));colorbar;colormap(gray); 
    title(['Time Sample ' num2str(j*0.002) 's']); 
    pause; 
end 

  
%freq slice 
for k=1:10:200; 
    imagesc(reshape(seisf(k,:,:),75,80));colorbar;colormap(gray); 
    title(['frequency ' num2str(500/500*k) 'Hz']); 
    pause; 
end 

  
%-------------------------------------------------------------- 
%covariance matrix 
[nf,il,xl]=size(seisf); 
c(1:90,1:90)=0; 
%cross-correlation 
for j=1:90; 
    for k=1:90; 
        for m=1:xl; 
            for n=1:il; 
                c(j,k)=c(j,k)+seisf(k,n,m)*seisf(j,n,m); 
            end 
        end 
    end 
end 

  

  
%[V,D]=eig(c); 
[V,D,variance]=pcacov(c); 

  
seispca=reshape(seisf(1:90,:,:),90,6000); 

  
seisfinal=zeros(90,6000); 
for g=1:6000; 
    seisfinal(:,g)=V*seispca(:,g); 
end 

  
figure(6); 
for o=1:20; 
    

imagesc(reshape(seisfinal(o,:,:),75,80));colormap(gray);colorbar; 
    title(['PCA Band ' num2str(o)]); 
    pause; 
end 

     
figure(8); 
bar(variance(1:20)); 
xlabel('Principal Component') 
ylabel('Variance Explained (%)')    
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B. Seismic 3D Data 
         

clear all 
clc 
% %ANDREW JO/0606068026 
load dataku 

  
pts=501; %no of fft points 
% 

%================================================================= 
%Slice 3D 
seissl=reshape(seis,101,20000); 
seissl=seissl'; 
seissl=reshape(seissl,200,100,101); 
[ny,nx,nz]=size(seissl); 
[x,y,z]=meshgrid(1:nx,1:ny,1:nz); 
figure(12); 
slice(x,y,z,seissl,39,39,47);colormap(jet); 
colorbar;set(gca,'xdir','reverse'); 
set(gca,'zdir','reverse');shading interp 
% 

%================================================================= 
%Plot Zone of Interest 
seissl=reshape(seis,101,20000); 
seissl=seissl'; 
seissl=reshape(seissl,200,100,101);seissl=seissl(:,:,41:52); 
[ny,nx,nz]=size(seissl); 
[x,y,z]=meshgrid(1:nx,1:ny,1:nz); 
figure(112); 
slice(x,y,z,seissl,[1 100],[1 200],1);colormap(jet); 
colorbar;set(gca,'xdir','reverse'); 
set(gca,'zdir','reverse');shading interp 
% 

%================================================================= 
%Time Slice 
figure(1); 
for i=30:1:50;  
    seis2=seis(i,:,:); 
    seis2=reshape(seis2,200,100); 
    imagesc(seis2);colorbar;colormap(gray); 
    title(['Time Sample ' num2str(i) '  /  ' num2str(i*0.002-

0.002) ' ms']) 
    pause; 
end 
% 

%================================================================= 
%FFT 
freq=fft(seis(41:48,:,:),pts); %channel still visible in this 

range, 100 pts 
freqabs=abs(freq); 
% 

%================================================================= 
%Tuning Cube 
seissl=reshape(freqabs,pts,20000); 
seissl=seissl'; 
seissl=reshape(seissl,200,100,pts); 
[ny,nx,nz]=size(seissl); 
[x,y,z]=meshgrid(1:nx,1:ny,1:90); 
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figure(112); 
slice(x,y,z,seissl(:,:,1:90),[1 100],[1 200],1);colormap(jet); 
colorbar;set(gca,'xdir','reverse'); 
set(gca,'zdir','reverse');shading interp 
% 

%================================================================= 
%Tuning Cube Cross Section 
ii=0; 
for i=57:65;ii=ii+1; 
figure(33);subplot(3,3,ii);imagesc(reshape(freqabs(1:100,i,:),100,

100)); 
title(['xl ' num2str(i)]);colormap(jet); 
end 
% 

%================================================================= 
%Frequency Spectrum of Traces 
xl=62; %max 200 
ii=0;figure(231); 
for i=59:83;ii=ii+1; 
subplot(5,5,ii);plot(1:200,freqabs(1:200,xl,i));xlabel('Hz'); 
title(['Xl ' num2str(xl) ' , Trace #' num2str(i)]) 
end 
% 

%================================================================= 
%Frequency Slice 
figure(16); 
for n=10:10:100; 
    x=freqabs(n,:,:); 
    imagesc(reshape(x,200,100));colorbar;colormap(gray); 
    title(['Amplitude Spectrum, Sample=' num2str(n) ', Frequency=' 

num2str(501/pts*n-1) 'Hz']); 
    pause; 
end 
% 

%================================================================= 
%Phase 
phs=unwrap(angle(freq)); 
figure(98); 
for i=1:5:100; 
imagesc(reshape(phs(i,:,:),200,100));colorbar; 
pause; 
end 
% 

%================================================================= 
% %Covariance Matrix 
[nf,il,xl]=size(freqabs); 
comp=250; %number of spectral components to cross-corelate 

  
% %Cross-Correlation 
c=0; 
c(1:comp,1:comp)=0;  
for j=1:comp; 
    for k=1:comp; 
        for m=1:20000; 
            c(j,k)=c(j,k)+freqabs(k,m)*freqabs(j,m); 
        end 
    end 
end 
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% 

%================================================================= 
% %EigenV 
fstart=6; 
fend=200; 
[V,D,variance]=pcacov(c(fstart:fend,fstart:fend)); 
seispca=reshape(freqabs(fstart:fend,:,:),fend-fstart+1,20000); 
% 

%================================================================= 
%Projection 
seisfinal=zeros(fend-fstart+1,20000); 
for g=1:20000; 
    seisfinal(:,g)=V*seispca(:,g); 
end 
% 

%================================================================= 
% %Covariance of new variables 
d=0; 
d(1:fend-fstart+1,1:fend-fstart+1)=0; 
for j=1:fend-fstart+1; 
    for k=1:fend-fstart+1; 
        for m=1:20000; 
            d(j,k)=d(j,k)+seisfinal(k,m)*seisfinal(j,m); 
        end 
    end 
end 
% 

%================================================================= 
% %Plot PCA 
figure (9); 
for o=1:9; 
    

subplot(3,3,o);imagesc(reshape(seisfinal(o,:,:),200,100));colormap

(flipud(gray));colorbar; 
    title(['PCA Band ' num2str(o)]); 
end 
% 

%================================================================= 
%Variance Explained 
figure(8); 
bar(variance(1:20)); 
xlabel('Principal Component') 
ylabel('Variance Explained (%)') 
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