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Preface

Why should it be math to be my skripsi topic?

Let’s go back to about 3.5 years ago when I talked with Dr. Terry Mart

in his office at the first time, he showed me that our current understanding

about the universe ends up in the theory beyond Standard Model, and due to

the lack of clue to have such a satisfying theory, physicists try to change the

very fundamental assumption about universe, in which one of theories in this

direction is the very popular yet controversial, superstring theory. He said

that, to understand this theory fully, one must be expert in mathematics,

especially the manipulation of space such as topology and differential geom-

etry, because the central discussion in this theory is not far from it. He gave

me an article about how we can change the shape of a cup into a doughnut

and some touches about Poincaré conjecture which could make me very ex-

cited, not because the fact that this topic was in a peak period1, but mostly

because it is a really intriguing topic at least for some people who think in a

geometrical way. But I must wait until I met Dr. Bobby Eka Gunara such

that I could do my first real research about this matter2. Therefore it is very

appropriate if I should mention their names as the ones who have great roles

behind this work.

I also would thank to Dr. L.T. Handoko, Dr. Agus Salam, Dr. Imam

Fachruddin, Dr. Anto Sulaksono and other (past-)members of Theoreti-

cal Physics Group of Universitas Indonesia (Chrisna S.N., M. Khalid Pat-

mawijaya, Moch. Januar, Tjong Po Djun, Albertus Sulaiman, Muhandis

1Grisha Perelman got the Fields Medal (and declined it) due to his contribution to
complete the Hamilton’s technique in solving the Poincaré conjecture just one month
before that afternoon talk with Sir Terry.

2and also my first serious research in high energy physics and math.
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Shiddiq, Fathia R. Syahroni, Yunita Umniyati, Handhika S. Ramadhan,

Suharyo Sumowidagdo, Andrias Fajarudin, Andhika Oxalion, Ryky Nelson,

and Zuhrianda) for their supports and insanity to fill my days as a weird

physics student in this university.

Talking about insanity, it does no longer make sense if I don’t mention

my friends in Physics UI ’06 and also other friends in Physics ’02, ’03, ’04,

’05, ’07, ’08, ’09, and all people in Math Department, who keep my spirit

to be a good theoretical physicist (and a mathematician?). Sorry to disturb

you with my unimportant behaviors and stormy laugh. For Physics Papa,

Dr. Muhammad Hikam, I am very happy to be your teaching assistant in

3 years. Surely it is a very exciting experience to work and have fun with

you. For my friends in Strawberry Home, who are ready to listen when I

have freaky ideas, freaky songs, freaky smile, and who are ready when I am

happy and when I am sad, I just feel that thanksgiving is not enough for all

of you. For Manyang Panjerrino and Seanko Neri Anggi, thanks very much

for your kindness. Sorry for all crazy things that messed up your days.

Not to be racist, I would like to thank my friends in Universitas Indone-

sia who have the same origin (and also the same senior high school), they

are Andi Rosilala, Abdul Hadi Ilman, Shelli Eldita, Imam Jauhari, Kamal

Hamzah, Farid Hosni (Physics ’00), Benny Irawan (Physics ’03), Desy Ro-

biatul Adhawiyah (Physics ’09), Ali Ihsanul Qauli (hopefully Physics ’10 such

that we will have a symmetry breaking), Danang Setyo Nugroho, and many

others who accompanied me in migration from the beautiful island Madura

into this land of the heathen, Depok. Let’s dominate this university, guys.

For my colleagues in Tim Olimpiade Fisika Indonesia (TOFI) and Un-

dergraduate Mathematics Competition, thanks for those awkward moments.

For Arie Wibowo who has become my lecturer and my brother, thanks very

much Kak. I wish I could write something on your board once more. For

my closed friends Ajat Adriansyah and Lois Simandjuntak, in mathematical

way of thinking, we believe.

Since I enjoy our universe through physics, math, and musics, I would

say thanks to Coldplay, Oasis, Queen, U2, Mozart, Bach, Vivaldi, Beethoven,
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Schubert, and M. Buble who always cheer up my feeling. Thanks for those

great works. You are genius, buddies.

Beside those people who have many important roles in my life, I think it

is my time to be back at home and say my great thanks for my parent, Abd.

Latif and Nur Rahma, who undeniably give uncountable meanings in my life,

and always support me with immeasurable patient. Although we have many

difficult problems, I will always have a power to do my best for you. For

my lovely sister and brother, Rika Nur Aftari Latief and Gammanda Adhny

El-Zamzamy Latief, love the universe we live, do what you like and think

what you want to think.

For Anggun Komala Sari, thanks for letting me into the AKS Universe;

the dreamland for a weird theoretical physicist called me, in which all in-

teractions are bundled into a single unified theory which is not only mathe-

matically artistic, but also beautiful in a way that we could not ever think

before. Thank you for the support you always give to me.

I wrote this work on behalf of the God Almighty, to love Him because

His universe is indeed an oasis for the creatures who think.

Depok, April 16, 2010

Andy Octavian Latief
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Abstract

By studying its curvatures, I prove the nontrivial equivalency between the

constancy of Ricci scalar curvature and the Kähler-Einsteinian notion of

gradient Kähler-Ricci solitons on the complex plane Cn in rotationally sym-

metric ansatz.

Keywords: Kähler-Ricci solitons, curvatures

Abstrak

Dengan mempelajari kelengkungannya, saya membuktikan ekivalensi antara

nilai konstan kelengkungan skalar Ricci dan konsep Kähler-Einstein dari gra-

dien Kähler-Ricci soliton pada bidang kompleks Cn dengan model simetri

rotasi.

Kata kunci: Kähler-Ricci soliton, kelengkungan
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...in a manner that will give the reader the clearest possible idea of why this

theory takes the form it does, and why in this form it does such a good job

of describing the real world.

Steven Weinberg
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Chapter 1

Introduction

1.1 Background and Scope of Problem

In 1982 Richard Hamilton constructed the partial differential equation (PDE)

which flows the Riemannian metric gij of a Riemannian manifold M along

the negative direction of its Ricci curvature tensor Rij, which mathematically

has the form

∂

∂t
gij(z, t) = −2Rij(z, t), (z, t) ∈M × [0,∞) (1.1)

where now then called as Ricci flow [12]. By using this PDE, he hoped we

can provide a method for proving the Thurston and Poincaré conjectures in

classification of the Riemannian manifolds, of which the latter is one of the

seven Millenium Prize problems need to be solved by the mathematicians for

this and next centuries. But the method was still unable to prove these con-

jectures until Grigori Perelman made a series of three papers which finished

Hamilton’s program to solve them [17, 18, 19]. Some authors also have made

a complete verification about the Perelman’s work [5, 14], and all is agree

that these conjectures are officially solved.

The Ricci flow can also be considered as a flow of the Kähler metric gij̄ in

Kähler manifold M along the negative direction of its Ricci curvature tensor

Rij̄, or
∂

∂t
gij̄(z, t) = −Rij̄(z, t), (z, t) ∈M × [0,∞) (1.2)

where the omission of factor 2 in the RHS of equation (1.2) above is merely

a matter of convention. It is known that for every t ∈ [0,∞) the metric gij̄

1
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is still Kähler, and hence this PDE is called the Kähler-Ricci flow. Although

the existence and uniqueness of the solution of equation (1.1) are not obvious

because it is a weakly parabolic system, finally it had been proved by some

authors [12, 8, 7]. In fact, the system of Ricci flow is similar with the curve-

shortening flow [20], which is the weakly parabolic PDE that has a simpler

intuition than behavior of the Ricci flow itself. However, for the equation

(1.2), it turns out that it is the strongly parabolic system, and hence the

solution exists and it is unique [1]. The problem of convergence of this

solution is also attacked by some authors [4, 6].

If the solution of equation (1.2) evolves under a certain one-parameter

family of biholomorphism, or explicitly,

gij̄(z, t) = σ(t)ϕ∗tgij̄(z, 0) (1.3)

where σ(t) is the scaling function and ϕ∗t is the induced mapping of the one-

parameter family of biholomorphism ϕt, then the solution is called Kähler-

Ricci soliton. Furthermore, if the vector which generates that biholomor-

phism is a gradient of some real-valued function, then we call this solution

as the gradient Kähler-Ricci soliton.

The existence of gradient Kähler-Ricci soliton in a certain Kähler ma-

nifold had been showed by some authors in the case where the manifold

is n-dimensional complex plane Cn and the soliton is restricted to be rota-

tionally invariant [2, 3, 10, 11]. In [2], it was also proved that this soliton

has positive sectional curvature. However, the behavior of this rotationally

invariant gradient Kähler-Ricci soliton in Cn is not completely understood

yet, and there are numerous structures of curvatures of this soliton remain

unclear until today.

1.2 Research Aim

This research has a main aim to reveal the structure of curvatures of the

rotationally invariant gradient Kähler-Ricci soliton in Cn, especially the Ricci

curvature tensor and Ricci scalar curvature, and study the relation between

them.

2
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1.3 Research Method

I use the general formulations for curvatures of Kähler metric and use them

to attack the description of curvatures for rotationally invariant gradient

Kähler-Ricci soliton in Cn such that we can study the structure of these

curvatures.

3
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Chapter 2

The Concept of Complex
Geometry

In this chapter we discuss much about the structure of complex geome-

try. Any readers who don’t have some preliminaries in differential geometry

should read appendix B and C first before tackling this chapter.

2.1 Definition of Complex Manifolds

Complex manifold is defined roughly as the geometrical object which locally

has structure similar with the complex Euclidean plane. It is common if we

have a geometrical space then we should construct the coordinate system

to label the points of this manifold with n-tuples of numbers, to make any

calculation easier in this space. We are very familiar with this matter in the

case of flat Euclidean space Cn, in which the coordinate system is denoted

as {zµ} for 1 ≤ µ ≤ n, for a natural number n. For a complex manifold M ,

we can attach a grid of coordinate system such that it covers some parts of

M , hence we can label the points of M by the values of coordinates which

coincide with those points. This is very common and simple technical way to

introduce the coordinate system in a manifold, yet it is very hard to formalize

the concept of coordinate system. We should make a different point of view

to construct this coordinate system in M .

Take a point p ∈ M and construct the neighborhood1 U ⊂ M such that

1It is the very definition of manifold (not only the complex one) that we are always
able to construct the neighborhood around a point. See appendix B.2.

4
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U contains p. Then the coordinate system in a manifold can be viewed as

the mapping from the points in a neighborhood U to the points in complex

Euclidean plane Cn. Define this mapping to be φ, then

φ : U → Cn : p 7→ {zµ}, for µ = {1, 2, . . . , n} (2.1)

It is important to note that the role of φ, besides providing the coordinate

system for the local neighborhoods of a manifold, is to manifest the local

similarity with the complex Euclidean plane.

An interesting situation happens when we have two neighborhoods U and

V which contain a point p ∈M . If the coordinate mapping in neighborhood

U is φ : U → Cn, and coordinate mapping in neighborhood V is ψ : V → Cn,

then the point p has two different coordinates φ(p) and ψ(p). The mapping

χ : φ(U) → ψ(V ) then is a mapping from the subset of Cn to itself. We

restrict, for a space M to be a complex manifold, that this mapping χ, for

every neighborhoods U, V ⊂M , must be the holomorphic map2.

Since the complex manifold M is locally like the complex Euclidean plane

Cn, then the dimension of M is defined as the dimension of Cn. However,

the space Cn itself can be identified as the real Euclidean plane R2n with

dimension 2n, then we should distinguish two types of dimension of a complex

manifold M , the complex dimension dimCM and real dimension dimRM ,

such that if dimCM = n, then dimRM = 2n.

2.2 Calculus on Complex Manifolds

2.2.1 Holomorphic Map

A function f : Cn → C, where f = u + iv, is called holomorphic if for the

coordinate zµ = xµ + iyµ these relations hold

∂u

∂xµ
=

∂v

∂yµ
,

∂u

∂yµ
= − ∂v

∂xµ
(2.2)

for each µ, where 1 ≤ µ ≤ n. Similarly, the mapping (f1, . . . , fn) : Cm → Cn

is holomorphic if each fα is holomorphic, for 1 ≤ α ≤ n.

2See subsection 2.2.1.

5
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If we have a mapping f : M → N , whereM andN are complex manifolds,

then f is holomorphic if for each point p in M and neighborhood U ⊂ M

which contains p, then g : φ(U)→ ψ(V ) is holomorphic, where V ⊂ N is the

neighborhood of f(p) in N , φ and ψ are the coordinate mappings in U and

V .

2.2.2 Complexification

Since the concept of vector field in manifold is indispensable (appendix B.5),

we should learn how to construct the vector field in complex manifold. If

we have a vector field V , then the complexification of V is the set of vectors

A+iB, where A,B ∈ V . The complexification of the vector field V is denoted

as V C. In this way, we can complexify the tangent vector field TpM , tangent

dual vector field T ∗pM such that they will be TpM
C and T ∗pM

C.

The dimension of V C is the same as V , the fact which easily can be seen

from our construction of vectors in V C. If basis vectors of V are {eµ} =

{e1, . . . , en} then a vector A+ iB ∈ V C, for A,B ∈ V , can be stated as

A+ iB = (Aµ + iBµ)eµ (2.3)

and it implies that dimC V
C = dimR V .

2.2.3 Almost Complex Structure

If a manifold M is equipped with vector fields, then it must have the basis

vectors. If we consider M as a real manifold with dimRM = 2n, then the

basis vectors are { ∂

∂x1
, . . . ,

∂

∂xn
,
∂

∂y1
, . . . ,

∂

∂yn

}
(2.4)

where the coordinates in M are {x1, . . . , xn, y1, . . . , yn}, and the basis dual

vectors are

{dx1, . . . , dxn, dy1, . . . , dyn} (2.5)

We can form the basis vectors for complex manifold M by defining

∂

∂zµ
≡ 1

2

( ∂

∂xµ
− i ∂

∂yµ

)
(2.6)

∂

∂z̄µ
≡ 1

2

( ∂

∂xµ
+ i

∂

∂yµ

)
(2.7)

6
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and for the dual vectors,

dzµ ≡ dxµ + idyµ (2.8)

dz̄µ ≡ dxµ − idyµ (2.9)

where 1 ≤ µ ≤ n. Note that these basis vectors and dual vectors satisfy the

orthonormality condition{
dzµ,

∂

∂z̄ν

}
=
{
dz̄µ,

∂

∂zν

}
= 0,

{
dzµ,

∂

∂zν

}
=
{
dzµ,

∂

∂zν

}
= δµν (2.10)

Then we can use the basis vectors (2.6) and (2.7) and the basis dual vectors

(2.8) and (2.9) for complex manifold M .

Back to our view of M as a real manifold, we can define a mapping which

maps a basis vector to another, J : TpM → TpM , such that

J
( ∂

∂xµ

)
=

∂

∂yµ
, J

( ∂

∂yµ

)
= − ∂

∂xµ
(2.11)

for every µ. This function is called almost complex structure since J2 is minus

the identity in TpM . Indeed, the almost complex structure J is a real tensor

of type (1, 1), where in the explicit form it is

J =

(
0 −I
I 0

)
(2.12)

with I is the n× n identity matrix.

Since the tangent vector space TpM can be complexified into TpM
C, then

the almost complex structure J must be generalized to yield

J
( ∂

∂zµ

)
= i

∂

∂zµ
, J

( ∂

∂z̄µ

)
= − ∂

∂z̄µ
(2.13)

where two equations above come from the corresponding action of J to the

basis vectors ∂/∂xµ and ∂/∂yµ. Hence the explicit expression for the almost

complex structure is

J = i dzµ ⊗ ∂

∂zµ
− i dz̄µ ⊗ ∂

∂z̄µ
(2.14)

From these equations we can easily observe that the tangent vector fields in

a complex manifold M can be decomposed as

TpM
C = TpM

+ ⊕ TpM− (2.15)

7
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where

TpM
± = {Z ∈ TpMC | JZ = ±iZ} (2.16)

Another interesting fact is about the dimension of each spaces above.

Since M has complex dimension n and real dimension 2n, then the complex

dimension of TpM
C is 2n, because it comes from the complexification of TpM

and we know that dimR V = dimC V
C. Therefore we have

n = dimCM =
1

2
dimRM (2.17)

=
1

2
dimC TpM

C = dimC TpM
+ = dimC TpM

− (2.18)

2.3 Hermitian Manifolds

Given a complex manifold M with dimCM = n equipped with a Riemannian

metric g, then for two vectors W = U + iV, Z = X + iY ∈ TpM
C we can

extend g such that

g(W,Z) = g(U,X)− g(V, Y ) + i[g(U, Y ) + g(V,X)] (2.19)

for every U, V,X, Y ∈ TpM . Then the components of g are

gµν = g
( ∂

∂zµ
,
∂

∂zν

)
(2.20)

gµν̄ = g
( ∂

∂zµ
,
∂

∂z̄ν

)
(2.21)

gµ̄ν = g
( ∂

∂z̄µ
,
∂

∂zν

)
(2.22)

gµ̄ν̄ = g
( ∂

∂z̄µ
,
∂

∂z̄ν

)
(2.23)

2.3.1 Hermitian Metric

If the Riemannian metric g of M satisfies the condition

g(JX, JY ) = g(X, Y ) (2.24)

for any X, Y ∈ TpM and the point p ∈ M , then g is called the Hermitian

metric. The manifold M which is equipped by Hermitian metric g is called

Hermitian manifold. It is a well-known theorem which states that any com-

plex manifold admits Hermitian metric. For a complex manifold M with

8
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any Riemannian metric g, then we can construct another metric g′ which is

defined as

g′(X, Y ) =
1

2

(
g(X, Y ) + g(JX, JY )

)
(2.25)

and it is obvious that g′(JX, JY ) = g′(X, Y ), which implies that it is indeed

a Hermitian metric.

By using the condition (2.24) for the Hermitian metric, we will know

that the only components which are nonzero in this metric are the mixed

components. The zero components are

gµν = g
( ∂

∂zµ
,
∂

∂zν

)
= g
(
J
∂

∂zµ
, J

∂

∂zν

)
= −gµν = 0 (2.26)

gµ̄ν̄ = g
( ∂

∂z̄µ
,
∂

∂z̄ν

)
= g
(
J
∂

∂z̄µ
, J

∂

∂z̄ν

)
= −gµ̄ν̄ = 0 (2.27)

Therefore, the Hermitian metric g can be written as

g = gµν̄ dz
µ ⊗ dz̄ν + gµ̄ν dz̄

µ ⊗ dzν (2.28)

2.3.2 Kähler Form

For a Hermitian manifold M with a Hermitian metric g, and for any X, Y ∈
TpM , we can define a tensor

Ω(X, Y ) = g(JX, Y ) (2.29)

which then is called the Kähler form of Hermitian metric g. The Kähler form

is antisymmetric, in a sense that

Ω(X, Y ) = g(JX, Y ) = g(J2X, JY ) = g(−X, JY ) = −g(JY,X)

= −Ω(Y,X) (2.30)

If we see M as a complex manifold such that we should talk about the

Kähler form in the domain of complex tangent vector space TpM
C, then the

components of Kähler form Ω are zero except the mixed ones,

Ωµν = Ω
( ∂

∂zµ
,
∂

∂zν

)
= g
(
J
∂

∂zµ
,
∂

∂zν

)
= igµν = 0 (2.31)

Ωµ̄ν̄ = Ω
( ∂

∂z̄µ
,
∂

∂z̄ν

)
= g
(
J
∂

∂z̄µ
,
∂

∂z̄ν

)
= −igµ̄ν̄ = 0 (2.32)

Ωµν̄ = Ω
( ∂

∂zµ
,
∂

∂z̄ν

)
= g
(
J
∂

∂zµ
,
∂

∂z̄ν

)
= igµν̄ (2.33)

Ωµ̄ν = Ω
( ∂

∂z̄µ
,
∂

∂zν

)
= g
(
J
∂

∂z̄µ
,
∂

∂zν

)
= −igµ̄ν (2.34)
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Therefore the Kähler form can be expressed as

Ω = igµν̄dz
µ ⊗ dz̄ν − igµ̄νdz̄µ ⊗ dzν (2.35)

= igµν̄dz
µ ⊗ dz̄ν − igµν̄dz̄ν ⊗ dzµ (2.36)

= igµν̄ dz
µ ∧ dz̄ν (2.37)

where the last term in the RHS is defined by

dzµ ∧ dz̄ν ≡ dzµ ⊗ dz̄ν − dz̄ν ⊗ dzµ (2.38)

2.4 Kähler Manifolds

2.4.1 Definition

If the Hermitian manifold M with a Hermitian metric g has a closed Kähler

form,

dΩ = 0 (2.39)

then M is called Kähler manifold and g is called Kähler metric.

By using this condition, we will have

dΩ = (∂ + ∂̄)igµν̄dz
µ ∧ dz̄ν

= i∂λgµν̄dz
λ ∧ dzµ ∧ dz̄ν + i∂λ̄gµν̄dz̄

λ ∧ dzµ ∧ dz̄ν

0 =
1

2
i(∂λgµν̄ − ∂µgλν̄)dzλ ∧ dzµ ∧ dz̄ν

+
1

2
i(∂λ̄gµν̄ − ∂ν̄gµλ̄)dz̄λ ∧ dzµ ∧ dz̄ν (2.40)

and it implies that there are two equations that must be satisfied by Kähler

metric,

∂λgµν̄ = ∂µgλν̄ , ∂λ̄gµν̄ = ∂ν̄gµλ̄ (2.41)

The solution for these equations is the Kähler metric of the form

gµν̄ = ∂µ∂ν̄K (2.42)

where a scalar function K is called the Kähler potential.
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2.4.2 The Curvatures of Kähler Manifolds

We are now in a position to talk about the curvatures of Kähler manifolds

which will be our main discussion in the next chapter. The readers who are

not familiar to this topic are very recommended to see appendix C.4.

Riemann Curvature Tensor

Generally the Riemann curvature tensor of the Kähler metric is defined as

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z (2.43)

where X, Y and Z are the vector fields in Cn. We can obtain the components

of this Riemann tensor by setting each vector fields X, Y , Z to be the

holomorphic and anti-holomorphic vector fields.

The most simple components are Rλ
µνσ and Rλ̄

µ̄ν̄σ̄, which are zero.

Rλ
µνσeλ = ∇ν∇σeµ −∇σ∇νeµ −∇[eν ,eσ ]eµ

= ∇ν(Γ
ρ
σµeρ)−∇σ(Γρνµeρ)

= ∇νeρΓ
ρ
σµ + ∂νΓ

ρ
σµeρ −∇σeρΓ

ρ
νµ − ∂σΓρνµeρ

= ∂νΓ
ρ
σµeρ − ∂σΓρνµeρ + ΓρσµΓωνρeω − ΓρνµΓωσρeω

= (∂νΓ
λ
σµ − ∂σΓλνµ + ΓρσµΓλνρ − ΓρνµΓλσρ)eλ

such that we have

Rλ
µνσ = ∂νΓ

λ
σµ − ∂σΓλνµ + ΓρσµΓλνρ − ΓρνµΓλσρ

= ∂ν(g
λω̄∂σgµω̄)− ∂σ(gλω̄∂νgµω̄)

+(gρω̄∂σgµω̄)(gλη̄∂νgρη̄)− (gρω̄∂νgµω̄)(gλη̄∂σgρη̄)

= ∂νg
λω̄∂σgµω̄ + gλω̄∂ν∂σgµω̄ − ∂σgλω̄∂νgµω̄ − gλω̄∂σ∂νgµω̄

+gρω̄gλη̄∂σgµω̄∂νgρη̄ − gρω̄gλη̄∂νgµω̄∂σgρη̄

= ∂νg
λω̄∂σgµω̄ − ∂σgλω̄∂νgµω̄ − ∂σgµω̄∂νgλω̄ + ∂νgµω̄∂σg

λω̄

= 0 (2.44)

And similarly for Rλ̄
µ̄ν̄σ̄, since it is the conjugate of Rλ

µνσ.
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We also can verify that all other components except Rλ
µν̄σ, Rλ

µνσ̄, Rλ̄
µ̄ν̄σ

and Rλ̄
µ̄νσ̄ are zero. Here we have

Rλ
µν̄σeλ = ∇ν̄∇σeµ −∇σ∇ν̄eµ −∇[eν̄ ,eσ ]eµ

= ∇ν̄(Γ
ρ
σµeρ) = ∂ν̄Γ

ρ
σµeρ (2.45)

Rλ
µνσ̄eλ = ∇ν∇σ̄eµ −∇σ̄∇νeµ −∇[eν ,eσ̄ ]eµ

= −∇σ̄(Γρνµeρ) = −∂σ̄Γρνµeρ (2.46)

Rλ̄
µ̄ν̄σeλ̄ = ∇ν̄∇σeµ̄ −∇σ∇ν̄eµ̄ −∇[eν̄ ,eσ ]eµ̄

= −∇σ(Γρ̄ν̄µ̄eρ̄) = −∂σΓρ̄ν̄µ̄eρ̄ (2.47)

Rλ̄
µ̄νσ̄eλ̄ = ∇ν∇σ̄eµ̄ −∇σ̄∇νeµ̄ −∇[eν ,eσ̄ ]eµ̄

= ∇ν(Γ
ρ̄
σ̄µ̄eρ̄) = ∂νΓ

ρ̄
σ̄µ̄eρ̄ (2.48)

such that it implies

Rλ
µν̄σ = ∂ν̄Γ

λ
σµ = ∂ν̄(g

λρ̄∂σgµρ̄)

= gλρ̄∂ν̄∂σgµρ̄ + ∂ν̄g
λρ̄∂σgµρ̄ (2.49)

Rλ
µνσ̄ = −∂σ̄Γλνµ = −∂σ̄(gλρ̄∂νgµρ̄)

= −gλρ̄∂σ̄∂νgµρ̄ − ∂σ̄gλρ̄∂νgµρ̄ (2.50)

Rλ̄
µ̄ν̄σ = −∂σΓλ̄ν̄µ̄ = −∂σ(gρλ̄∂ν̄gρµ̄)

= −gρλ̄∂σ∂ν̄gρµ̄ − ∂σgρλ̄∂ν̄gρµ̄ (2.51)

Rλ̄
µ̄νσ̄ = ∂νΓ

λ̄
σ̄µ̄ = ∂ν(g

ρλ̄∂σ̄gρµ̄)

= gρλ̄∂ν̄∂σgρµ̄ + ∂νg
ρλ̄∂σ̄gρµ̄ (2.52)

We note that Rλ
µν̄σ is the conjugate of Rλ̄

µ̄νσ̄, and Rλ
µνσ̄ is the conjugate

of Rλ̄
µ̄ν̄σ. Besides, we also have these obvious symmetries

Rλ̄
µ̄ν̄σ = −Rλ̄

µ̄σν̄ , Rλ
µν̄σ = −Rλ

µσν̄ (2.53)

so it is adequate for us to calculate only the term Rλ̄
µ̄νσ̄ as the components

of Riemann tensor. We define

Rµν̄λσ̄ = gµω̄R
ω̄
ν̄λσ̄ (2.54)
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such that we have

Rµν̄λσ̄ = gµω̄(gρω̄∂λ∂σ̄gρν̄ + ∂λg
ρω̄∂σ̄gρν̄)

= ∂λ∂σ̄gµν̄ − gρω̄∂λgµω̄∂σ̄gρν̄ (2.55)

It provides the details of Riemann curvature tensor completely.

Ricci Curvature Tensor

We continue the discussion to the next tensor which represents the curvature

of complex manifolds, the Ricci curvature tensor Rµν̄ . It is defined as

Rµν̄ = Rλ
λµν̄ (2.56)

such that in terms of metric, it has the form

Rµν̄ = −∂ν̄gλρ̄∂µgλρ̄ − gλρ̄∂ν̄∂µgλρ̄ (2.57)

= −∂ν̄(gλρ̄∂µgλρ̄) (2.58)

or in terms of the determinant of metric, it’s form is

Rµν̄ = −∂ν̄∂µ ln det gλρ̄ (2.59)

By using the equation above we can find the Ricci tensor completely if we

know the details of metric.

Ricci Scalar Curvature

If we contract the Ricci tensor Rµν̄ once more, we will get the scalar, which

is called Ricci scalar curvature, methematically it is written as

R = gµν̄Rµν̄ (2.60)

Remark. If the complex manifoldM is flat, then its Riemann curvature tensor

vanishes (Rµν̄λσ̄ = 0). If the Riemann tensor is zero, then its Ricci tensor is

also zero, but the converse is not always true. If this Ricci tensor vanishes

(Rµν̄ = 0), then the complex manifold M is called Ricci flat. Furthermore, if

its Ricci tensor is zero, then its Ricci scalar also vanishes, but the converse
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again is not true. So if the Riemann tensor is zero (or the manifold is flat),

then its Ricci tensor and Ricci scalar are zero (and that is why we call the

manifold is flat). But if the Ricci scalar is zero, nothing can be said about

the Ricci and Riemann tensors.
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Chapter 3

Solitons in the Kähler-Ricci
Flow

3.1 Definition of Kähler-Ricci Solitons

Suppose we have a complete noncompact n-dimensional Kähler manifold M ,

with an initial Kähler metric g̃ij̄(z), where z ∈M . We can define the Kähler-

Ricci flow as the partial differential equation which has the form

∂

∂t
gij̄(z, t) = −Rij̄(z, t) (3.1)

defined on M×[0,∞), where (z, t) ∈M×[0,∞), and gij̄(z, 0) = g̃ij̄(z). If the

solution of (3.1) flows along the one-parameter family of biholomorphisms

gij̄(z, t) = σ(t)ϕ∗tgij̄(z, 0) (3.2)

where σ(t) = 1 + λt, for a constant λ ∈ R, is the scaling function, and the

flow ϕ is generated along the negative direction of the holomorphic vector

field V , then we will have the equation that characterizes the metric at t = 0,

i.e.

∂

∂t
gij̄(z, t)

∣∣∣
t=0

= σ′(0)ϕ∗tgij̄(z, 0)
∣∣∣
t=0
− σ(0)LV gij̄(z, 0)

−Rij̄(z, 0) = λgij̄(z, 0)− LV gij̄(z, 0)

where LV gij̄(z, 0) is the Lie derivative of metric gij̄(z, 0) at t = 0. Then we

have

Rij̄(z, 0) + λgij̄(z, 0) = ∂iVj̄ + ∂j̄Vi (3.3)
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The solution of (3.3) is called Kähler-Ricci soliton, and λ > 0, λ = 0 and

λ < 0 cases correspond to expanding, steady and shrinking Kähler-Ricci

solitons, respectively.

Conversely, if we have a metric that undergoes the biholomorphism con-

dition (3.2), then by defining that

σ(t) ≡ 1 + λt (3.4)

and the vector field

W (t) ≡ 1

σ(t)
V (3.5)

then the equation (3.2) becomes

∂

∂t
gij̄(z, t) = σ′(t)ϕ∗tgij̄(z, 0)− σ(t)ϕ∗t (LW (t)gij̄(z, 0))

= λϕ∗tgij̄(z, 0)− ϕ∗t (LV gij̄(z, 0))

= ϕ∗t (λgij̄(z, 0)− LV gij̄(z, 0))

= ϕ∗t (−Rij̄(z, 0))

= −Rij̄(z, t) (3.6)

where we have used the equation (3.3). The calculation above is identic to

equation (3.1), and hence establishes the equivalence.

If the vector field V is the gradient of a real-valued function f (which we

can view as the 0-form on M), then equation (3.3) becomes

Rij̄(z, 0) + λgij̄(z, 0) = ∂i∂j̄f (3.7)

and the holomorphicity of V is guaranteed by

∂i∂jf = 0 (3.8)

The cases λ > 0, λ = 0 and λ < 0 in equation (3.7) correspond to expanding,

steady and shrinking gradient Kähler-Ricci solitons, respectively.

3.2 Rotationally Invariant Solitons

Suppose we have a noncompact complex plane Cn equipped with the coor-

dinate z = {z1, . . . , zn}. The Kähler metric gij̄(z) can be described in terms
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of the Kähler potential Φ(z) as follows

gij̄(z) = ∂i∂j̄Φ(z) (3.9)

We want to make a constraint on the potential Φ(z) such that it is rotationally

symmetric

Φ(z) ≡ u(|z|2) (3.10)

and by defining s ≡ ln |z|2, we can use the Kähler potential in the form u(s),

for s ∈ (−∞,∞).

The function u(s) must satisfy

u′(s) > 0, u′′(s) > 0, for s ∈ (−∞,∞) (3.11)

which is obtained by the positive-definiteness condition of the Kähler metric

(which we will show below), and it also must satisfy the asymptotic condition

at s→ −∞,

u(s) = a0 + a1e
s + a2e

2s + a3e
3s + · · · , a1 > 0 (3.12)

From now on we will omit the argument of Kähler metric by remembering

that we work in t = 0 for this section. By straightforward calculation we can

find the explicit form of the Kähler metric gij̄ in terms of Kähler potential

gij̄ = ∂i∂j̄u(s)

=
∂

∂zi

(
u′(s)e−szj

)
= u′(s)e−sδij + (u′′(s)− u′(s))e−2sz̄izj (3.13)

It is important to note that the metric (3.13) above can be viewed as the

sum of two different n × n matrices. Then our next task is to find out the

inverse metric and the explicit form for its determinant.

Remember that if we are given

B = A+XY (3.14)

where B and A are the n× n matrices, X is the n× 1 matrix, and Y is the

1× n matrix, then the inverse of matrix B is

B−1 = A−1 − 1

1 + Y A−1X
A−1XY A−1 (3.15)
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Therefore, by defining

p(s) ≡ u′(s)e−s, q(s) ≡ (u′′(s)− u′(s))e−2s (3.16)

and

X ≡
√
q(s)

z̄1
...
z̄n

 , Y ≡
√
q(s)

(
z1 · · · zn

)
(3.17)

where X is the n× 1 matrix and Y is the 1× n matrix, the equation (3.13)

can be written as

gij̄ = p(s)δij +XY (3.18)

such that we can find the explicit form for its inverse

gij̄ =
1

p(s)
δij − 1

1 + q(s)
p(s)

∑
i z

2
i

1

(p(s))2
ziz̄j

=
1

u′(s)
esδij − (u′′(s)− u′(s))e−2s

(u′(s))2e−2s + u′(s)(u′′(s)− u′(s))e−2s
ziz̄j

= (u′(s))−1esδij + ((u′′(s))−1 − (u′(s))−1)ziz̄j (3.19)

and for the determinant of metric, which is also straightforwadly easy to

compute

det gij̄ = (p(s))n + (p(s))n−1q(s)|z|2

= e−ns(u′(s))n + e−(n−1)s(u′(s))n−1(u′′(s)− u′(s))e−s

= e−ns(u′(s))n−1u′′(s) (3.20)

where we can see that the positive-definiteness of the Kähler metric implies

the constraint (3.11).

Define

w(s) ≡ − ln det gij̄

= ns− (n− 1) lnu′(s)− lnu′′(s) (3.21)

then the Ricci curvature tensor can be written as

Rij̄ = ∂i∂j̄w(s) (3.22)
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such that the equation (3.7) becomes

Rij̄ + λgij̄ = ∂i∂j̄(w(s) + λu(s)) (3.23)

where we have identified f(s) = w(s) + λu(s).

The holomorphic vector field V has the form

V i = gij̄∂j̄(w + λu)

=
(

(u′)−1esδij + ((u′′)−1 − (u′)−1)ziz̄j
)

(w′ + λu′)e−szj

=
w′ + λu′

u′′
zi (3.24)

Since the vector V is holomorphic, there must exist µ ∈ R such that

w′ + λu′ = −µu′′ (3.25)

and by subtituting equation (3.21) to (3.25), we will get

n− (n− 1)
u′′

u′
− u′′′

u′′
+ λu′ = −µu′′

u′′′

u′′
+
(n− 1

u′
− µ

)
u′′ = n+ λu′ (3.26)

Now define

φ(s) ≡ u′(s) (3.27)

then equation (3.26) becomes

φ′′

φ′
+
(n− 1

φ
− µ

)
φ′ = n+ λφ (3.28)

or, by modifying the first term in previous equation,

dφ′

dφ
+
(n− 1

φ
− µ

)
φ′ = n+ λφ (3.29)

By defining

A(φ) ≡ n− 1

φ
− µ, B(φ) ≡ n+ λφ (3.30)

equation (3.28) can be calculated easily, to get the result

dφ′

dφ
+ A(φ)φ′ = B(φ)

e
∫
A(φ) dφdφ

′

dφ
+ e

∫
A(φ) dφA(φ)φ′ = e

∫
A(φ) dφB(φ)

d

dφ

(
φ′e

∫
A(φ) dφ

)
= e

∫
A(φ) dφB(φ)

φ′e
∫
A(φ) dφ =

∫
e
∫
A(φ) dφB(φ) dφ (3.31)
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such that we will get

φ′ = e−
∫
A(φ) dφ

∫
e
∫
A(φ) dφB(φ) dφ (3.32)

Since ∫
A(φ) dφ =

∫ (n− 1

φ
− µ

)
dφ = (n− 1) lnφ− µφ (3.33)

and consequently e
∫
A(φ) dφ = φn−1e−µφ, we have from equation (3.32),

φ′ = φ1−neµφ
∫
φn−1e−µφ(n+ λφ) dφ

= φ1−neµφ
(
n

∫
φn−1e−µφ dφ+ λ

∫
φne−µφ dφ

)
(3.34)

Define

In ≡
∫
φne−µφ dφ (3.35)

then by partial integration we have the recursive relation for In,

In = − 1

µ
φne−µφ +

∫
n

µ
φn−1e−µφ dφ

= − 1

µ
φne−µφ +

n

µ
In−1 (3.36)

and by continuing this relation, we have

In = − 1

µ
φne−µφ +

n

µ
In−1

= − 1

µ
φne−µφ − n

µ2
φn−1e−µφ +

n(n− 1)

µ2
In−2

= − 1

µ
φne−µφ − n

µ2
φn−1e−µφ

−n(n− 1)

µ3
φn−2e−µφ − n(n− 1)(n− 2)

µ3
In−3

= −
n∑
k=0

1

µk+1

n!

(n− k)!
φn−ke−µφ

= −
n∑
k=0

1

µn−k+1

n!

k!
φke−µφ (3.37)

where we get the explicit form for In.

Equation (3.34) in terms of In is

φ′ = φ1−neµφ(nIn−1 + λIn + c) (3.38)
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for a constant c ∈ R. Hence, by inserting equation (3.37) to (3.38), it becomes

φ′ = φ1−neµφ

(
− n

n−1∑
k=0

1

µn−k
(n− 1)!

k!
φke−µφ

−λ
n∑
k=0

1

µn−k+1

n!

k!
φke−µφ + c

)

= φ1−neµφ

(
− λ

µ
φne−µφ − λ+ µ

µn+1

n−1∑
k=0

n!

k!
µkφke−µφ + c

)

= −λ
µ
φ− λ+ µ

µn+1

n−1∑
k=0

n!

k!
µkφk+1−n +

ceµφ

φn+1
(3.39)

The equation (3.39) above is the ODE which is satisfied by the rotationally

invariant gradient Kähler-Ricci soliton on the complex plane Cn.
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Chapter 4

Calculation and Result

4.1 The Curvatures of Rotationally Invariant

Kähler Metric

We can study the richness of properties of our soliton by analyzing the struc-

ture of its curvatures. Since the soliton in section 3.2 is built to be rotationally

invariant, we should calculate the curvatures for this model, by first comput-

ing the curvatures for any rotationally invariant Kähler metric and restricting

the results for the case of rotationally invariant soliton using equation (3.28).

For the next three lemmas we assume that we are working on the Kähler

manifold M attached by the coordinate system {zi} and equipped with

Kähler metric gij̄ = ∂i∂j̄u(s), where u(s) is the Kähler potential and s ≡
ln |z|2, and with u′ ≡ φ. The curvatures of this metric are described by

Riemann tensor Rij̄kl̄, Ricci tensor Rij̄, and the Ricci scalar R.

Lemma 1. The Riemann tensor Rij̄kl̄ for the rotationally invariant Kähler
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metric gij̄ is given by

Rij̄kl̄ = (φ′′′ − 6φ′′ + 11φ′ − 6φ)e−4sz̄izj z̄kzl

+(φ′′ − 3φ′ + 2φ)e−3s(δij z̄kzl + δilz̄kzj + δklz̄izj + δjkz̄izl)

+(φ′ − φ)e−2s(δijδkl + δilδjk)

−1

φ
(φ′ − φ)2e−3s(δij z̄kzl + δilz̄kzj + δjkz̄izl + δklz̄izj)

−4
( 1

φ′
− 1

φ

)
(φ′ − φ)2e−4sz̄izj z̄kzl

−
(

1− 2
φ

φ′
+
φ′′

φ′

)
(φ′′ − 3φ′ + 2φ)e−4sz̄izj z̄kzl (4.1)

Proof. The Riemann curvature tensor of the Kähler metric gij̄ has the form

stated in equation (2.55) above as

Rij̄kl̄ =
∂2gij̄
∂zk∂z̄l

− gpq̄ ∂giq̄
∂zk

∂gpj̄
∂z̄l

(4.2)

The first term on the RHS of equation (4.2) above can be calculated easily

as follows

∂2gij̄
∂zk∂z̄l

=
∂

∂zk
∂

∂z̄l

(
u′e−sδij̄ + (u′′ − u′)e−2sz̄izj

)
=

∂

∂zk

(
(u′′ − u′)e−2s(δijzl + δilzj) + (u′′′ − 3u′′ + 2u′)e−3sz̄izjzl

)
=

(
(u′′′ − u′′)e−2s − 2(u′′ − u′)e−2s

)
e−sz̄k(δijzl + δilzj)

+(u′′ − u′)e−2s(δijδkl + δilδjk) +
(

(u′′′′ − 3u′′′ + 2u′′)e−3s

−3(u′′′ − 3u′′ + 2u′)e−3s
)
e−sz̄izj z̄kzl

+(u′′′ − 3u′′ + 2u′)e−3sz̄i(δklzj + δjkzl)

= (u′′′ − 3u′′ + 2u′)e−3sz̄k(δijzl + δilzj)

+(u′′ − u′)e−2s(δijδkl + δilδjk)

+(u′′′′ − 6u′′′ + 11u′′ − 6u′)e−4sz̄izj z̄kzl

+(u′′′ − 3u′′ + 2u′)e−3sz̄i(δklzj + δjkzl)

= (u′′′′ − 6u′′′ + 11u′′ − 6u′)e−4sz̄izj z̄kzl

+(u′′′ − 3u′′ + 2u′)e−3s(δij z̄kzl + δilz̄kzj + δklz̄izj + δjkz̄izl)

+(u′′ − u′)e−2s(δijδkl + δilδjk) (4.3)
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And the second term on the RHS of equation (4.2) can be calculated

straightforwardly as

gpq̄
∂giq̄
∂zk

∂gpj̄
∂z̄l

= gpq̄
∂

∂zk
(u′e−sδiq + (u′′ − u′)e−2sz̄izq)

∂

∂z̄l
(u′e−sδpj + (u′′ − u′)e−2sz̄pzj)

= gpq̄
(

(u′′ − u′)e−2sz̄kδiq

+(u′′′ − 3u′′ + 2u′)e−3sz̄iz̄kzq + (u′′ − u′)e−2sz̄iδkq

)
(

(u′′ − u′)e−2szlδpj + (u′′′ − 3u′′ + 2u′)e−3szjzlz̄p

+(u′′ − u′)e−2szjδpl

)
=

( 1

u′
esδpq +

( 1

u′′
− 1

u′

)
zpz̄q

)(
(u′′ − u′)e−2s(δiqz̄k + δkqz̄i)

+(u′′′ − 3u′′ + 2u′)e−3sz̄iz̄kzq

)(
(u′′ − u′)e−2s(δpjzl + δplzj)

+(u′′′ − 3u′′ + 2u′)e−3szjzlz̄p

)
=

( 1

u′
esδpq +

( 1

u′′
− 1

u′

)
zpz̄q

)
(

(u′′ − u′)2e−4s(δiqδpj z̄kzl + δiqδplz̄kzj + δkqδpj z̄izl

+δkqδplz̄izj)

+(u′′ − u′)(u′′′ − 3u′′ + 2u′)e−5s(δiqz̄kz̄pzjzl + δkqz̄iz̄pzjzl

+δpj z̄iz̄kzlzq + δplz̄iz̄kzjzq)

+(u′′′ − 3u′′ + 2u′)2e−6sz̄iz̄kz̄pzjzlzq

)
=

1

u′
(u′′ − u′)2e−3s(δij z̄kzl + δilz̄kzj + δjkz̄izl + δklz̄izj)

+
4

u′
(u′′ − u′)(u′′′ − 3u′′ + 2u′)e−4sz̄iz̄kzjzl

+
1

u′
(u′′′ − 3u′′ + 2u′)2e−4sz̄izj z̄kzl

+4
( 1

u′′
− 1

u′

)
(u′′ − u′)2e−4sz̄izj z̄kzl

+4
( 1

u′′
− 1

u′

)
(u′′ − u′)(u′′′ − 3u′′ + 2u′)e−4sz̄izj z̄kzl

+
( 1

u′′
− 1

u′

)
(u′′′ − 3u′′ + 2u′)2e−4sz̄izj z̄kzl
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where by simplifying the terms, we will have

gpq̄
∂giq̄
∂zk

∂gpj̄
∂z̄l

=
1

u′
(u′′ − u′)2e−3s(δij z̄kzl + δilz̄kzj + δjkz̄izl + δklz̄izj)

+4
( 1

u′′
− 1

u′

)
(u′′ − u′)2e−4sz̄izj z̄kzl

+

(
4
(u′′
u′
− 1
)

+ 4
(

1− u′′

u′
− u′

u′′
+ 1
))

(u′′′ − 3u′′ + 2u′)

e−4sz̄izj z̄kzl

+

(
1

u′
+
( 1

u′′
− 1

u′

))
(u′′′ − 3u′′ + 2u′)2e−4sz̄izj z̄kzl

=
1

u′
(u′′ − u′)2e−3s(δij z̄kzl + δilz̄kzj + δjkz̄izl + δklz̄izj)

+4
( 1

u′′
− 1

u′

)
(u′′ − u′)2e−4sz̄izj z̄kzl

+4
(

1− u′

u′′

)
(u′′′ − 3u′′ + 2u′)e−4sz̄izj z̄kzl

+
1

u′′
(u′′′ − 3u′′ + 2u′)2e−4sz̄izj z̄kzl (4.4)

By using the convention (3.27) we can write the two terms in the RHS of

equation (4.2) above as

∂2gij̄
∂zk∂z̄l

= (φ′′′ − 6φ′′ + 11φ′ − 6φ)e−4sz̄izj z̄kzl

+(φ′′ − 3φ′ + 2φ)e−3s(δij z̄kzl + δilz̄kzj + δklz̄izj + δjkz̄izl)

+(φ′ − φ)e−2s(δijδkl + δilδjk) (4.5)

gpq̄
∂giq̄
∂zk

∂gpj̄
∂z̄l

=
1

φ
(φ′ − φ)2e−3s(δij z̄kzl + δilz̄kzj + δjkz̄izl + δklz̄izj)

+4
( 1

φ′
− 1

φ

)
(φ′ − φ)2e−4sz̄izj z̄kzl

+4
(

1− φ

φ′

)
(φ′′ − 3φ′ + 2φ)e−4sz̄izj z̄kzl

+
1

φ′
(φ′′ − 3φ′ + 2φ)2e−4sz̄izj z̄kzl

=
1

φ
(φ′ − φ)2e−3s(δij z̄kzl + δilz̄kzj + δjkz̄izl + δklz̄izj)

+4
( 1

φ′
− 1

φ

)
(φ′ − φ)2e−4sz̄izj z̄kzl

+
(

1− 2
φ

φ′
+
φ′′

φ′

)
(φ′′ − 3φ′ + 2φ)e−4sz̄izj z̄kzl (4.6)
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Therefore, we have the explicit form of the Riemann curvature tensor as

Rij̄kl̄ = (φ′′′ − 6φ′′ + 11φ′ − 6φ)e−4sz̄izj z̄kzl

+(φ′′ − 3φ′ + 2φ)e−3s(δij z̄kzl + δilz̄kzj + δklz̄izj + δjkz̄izl)

+(φ′ − φ)e−2s(δijδkl + δilδjk)

−1

φ
(φ′ − φ)2e−3s(δij z̄kzl + δilz̄kzj + δjkz̄izl + δklz̄izj)

−4
( 1

φ′
− 1

φ

)
(φ′ − φ)2e−4sz̄izj z̄kzl

−
(

1− 2
φ

φ′
+
φ′′

φ′

)
(φ′′ − 3φ′ + 2φ)e−4sz̄izj z̄kzl (4.7)

which completes the proof of this lemma.

Since our metric is rotationally symmetric, then it is adequate to find the

description for Riemann curvature tensor at point P = {z1, 0, . . . , 0}. At this

point,

|z|2 = z1z̄1 = es, s = ln |z|2 (4.8)

z̄izj z̄kzl = δijkl1e
2s (4.9)

δij z̄kzl+δilz̄kzj+δklz̄izj+δjkz̄izl = (δijδkl1 +δilδkj1 +δklδij1 +δjkδil1)es (4.10)

where δijkl1 and δij1 are zero unless all indices are 1. Using these three
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equations we can write the equation (4.1) above as

Rij̄kl̄ = (φ′′′ − 6φ′′ + 11φ′ − 6φ)e−2sδijkl1

+(φ′′ − 3φ′ + 2φ)e−2s(δijδkl1 + δilδkj1 + δklδij1 + δjkδil1)

+(φ′ − φ)e−2s(δijδkl + δilδjk)

−1

φ
(φ′ − φ)2e−2s(δijδkl1 + δilδkj1 + δklδij1 + δjkδil1)

−4
( 1

φ′
− 1

φ

)
(φ′ − φ)2e−2sδijkl1

−
(

1− 2
φ

φ′
+
φ′′

φ′

)
(φ′′ − 3φ′ + 2φ)e−2sδijkl1

= (φ′ − φ)e−2s(δijδkl + δilδjk)

+(φ′′ − 3φ′ + 2φ)e−2s(δijδkl1 + δilδkj1 + δklδij1 + δjkδil1)

+(φ′′′ − 6φ′′ + 11φ′ − 6φ)e−2sδijkl1

−1

φ
(φ′ − φ)2e−2s(δij1̂δkl1 + δil1̂δkj1 + δkl1̂δij1 + δjk1̂δil1)

− 4

φ′
(φ′ − φ)2e−2sδijkl1

− 1

φ′
(φ′′ + φ′ − 2φ)(φ′′ − 3φ′ + 2φ)e−2sδijkl1 (4.11)

where δij1̂ in equation (4.11) above means zero unless i = j and neither i or

j is 1.

The last term in equation (4.11) can be computed to get the relation

1

φ′
(φ′′ + φ′ − 2φ)(φ′′ − 3φ′ + 2φ)e−2sδijkl1 =

1

φ′
(φ′′ − φ′)2e−2sδijkl1 (4.12)

such that we will have the simpler description for Riemann curvature tensor

of rotationally invariant Kähler metric on Cn

Rij̄kl̄ =
(

(φ′ − φ)(δijδkl + δilδjk)

+(φ′′ − 3φ′ + 2φ)(δijδkl1 + δilδkj1 + δklδij1 + δjkδil1)

+(φ′′′ − 6φ′′ + 11φ′ − 6φ)δijkl1

−1

φ
(φ′ − φ)2(δij1̂δkl1 + δil1̂δkj1 + δkl1̂δij1 + δjk1̂δil1)

− 1

φ′
(φ′′ − φ′)2δijkl1

)
e−2s (4.13)

The author of [2] has proved that by using the equation above for Riemann

tensor, the sectional curvature of metric in manifold M is negative.
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Next we compute the very important curvature tensor, the Ricci tensor

Rij̄.

Lemma 2. The Ricci tensor Rij̄ for the rotationally invariant Kähler metric

gij̄ is given by

Rij̄ =

(
− φ′′

φ′
− (n− 1)

φ′

φ
+ n

)
e−sδij

+

(
− φ′′′

φ′
+
φ′′2

φ′2
+
φ′′

φ′
− (n− 1)

φ′′

φ
+ (n− 1)

φ′2

φ2

+(n− 1)
φ′

φ
− n

)
e−2sz̄izj (4.14)

Proof. Now we should calculate each terms in the RHS of equation (2.57).

∂igkp̄ = ∂i(u
′e−sδkp + (u′′ − u′)e−2sz̄kzp)

= (u′′e−s − u′e−s)e−sz̄iδkp +
(

(u′′′ − u′′)e−2s

−2(u′′ − u′)e−2s
)
e−sz̄iz̄kzp + (u′′ − u′)e−2sz̄kδip

= (u′′ − u′)e−2s(z̄iδkp + z̄kδip)

+(u′′′ − 3u′′ + 2u′)e−3sz̄iz̄kzp (4.15)

such that from the result above we can calculate

∂j̄∂igkp̄ = ∂j̄

(
(u′′ − u′)e−2s(z̄iδkp + z̄kδip) + (u′′′ − 3u′′ + 2u′)e−3sz̄iz̄kzp

)
=

(
(u′′′ − u′′)e−2s − 2(u′′ − u′)e−2s

)
e−szj(z̄iδkp + z̄kδip)

+(u′′ − u′)e−2s(δijδkp + δjkδip) +
(

(u′′′′ − 3u′′′ + 2u′′)e−3s

−3(u′′′ − 3u′′ + 2u′)e−3s
)
e−sz̄izj z̄kzp

+(u′′′ − 3u′′ + 2u′)e−3s(δij z̄kzp + δjkz̄izp)

= (u′′ − u′)e−2s(δijδkp + δjkδip)

+(u′′′ − 3u′′ + 2u′)e−3s(δkpz̄izj + δipz̄kzj + δij z̄kzp + δjkz̄izp)

+(u′′′′ − 6u′′′ + 11u′′ − 6u′)e−4sz̄izj z̄kzp (4.16)
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then we calculate this term

∂j̄g
kp̄ = ∂j̄

( 1

u′
esδkp +

( 1

u′′
− 1

u′

)
zkz̄p

)
=

(
− u′′

u′2
es +

1

u′
es
)
e−szjδ

kp +
(
− u′′′

u′′2
+
u′′

u′2

)
e−szjz

kz̄p

+
( 1

u′′
− 1

u′

)
zkδpj

=
u′′

u′

( 1

u′′
− 1

u′

)
zjδ

kp +
(
− u′′′

u′′2
+
u′′

u′2

)
e−szjz

kz̄p

+
( 1

u′′
− 1

u′

)
zkδpj

=
( 1

u′′
− 1

u′

)(u′′
u′
zjδ

kp + zkδpj

)
+
(
− u′′′

u′′2
+
u′′

u′2

)
e−szjz

kz̄p (4.17)

such that we can calculate the second term in the RHS of equation (2.57)

gkp̄∂j̄∂igkp̄ =
( 1

u′
esδkp +

( 1

u′′
− 1

u′

)
zkz̄p

)(
(u′′ − u′)e−2s(δijδkp + δjkδip)

+(u′′′ − 3u′′ + 2u′)e−3s(z̄izjδkp + z̄kzjδip + z̄kzpδij + z̄izpδjk)

+(u′′′′ − 6u′′′ + 11u′′ − 6u′)e−4sz̄izj z̄kzp

)
= (n+ 1)

1

u′
(u′′ − u′)e−sδij +

1

u′
(u′′′ − 3u′′ + 2u′)e−sδij

+(n+ 2)
1

u′
(u′′′ − 3u′′ + 2u′)e−2sz̄izj +

1

u′
(u′′′′ − 6u′′′

+11u′′ − 6u′)e−2sz̄izj +
( 1

u′′
− 1

u′

)
(u′′ − u′)e−sδij

+
( 1

u′′
− 1

u′

)
(u′′ − u′)e−2sz̄izj +

( 1

u′′
− 1

u′

)
(u′′′ − 3u′′

+2u′)e−sδij + 3
( 1

u′′
− 1

u′

)
(u′′′ − 3u′′ + 2u′)e−2sz̄izj

+
( 1

u′′
− 1

u′

)
(u′′′′ − 6u′′′ + 11u′′ − 6u′)e−2sz̄izj (4.18)

and we can simplify the result above to get

gkp̄∂j̄∂igkp̄ =
(u′′′
u′′

+ n
u′′

u′
+
u′

u′′
− (n+ 2)

)
e−sδij

+
(u′′′′
u′′
− 3

u′′′

u′′
+ (n− 1)

u′′′

u′
+ (−3n+ 2)

u′′

u′
− u′

u′′

+2(n+ 1)
)
e−2sz̄izj (4.19)
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The first term is

∂j̄g
kp̄∂igkp̄ =

(( 1

u′′
− 1

u′

)(u′′
u′
zjδ

kp + zkδpj

)
+
(
− u′′′

u′′2
+
u′′

u′2

)
e−szjz

kz̄p

)
(

(u′′ − u′)e−2s(z̄iδkp + z̄kδip) + (u′′′ − 3u′′ + 2u′)e−3sz̄iz̄kzp

)
=

( 1

u′′
− 1

u′

)
(u′′ − u′)e−2s

(
n
u′′

u′
z̄izj +

u′′

u′
z̄izj + z̄izj + esδij

)
+
( 1

u′′
− 1

u′

)
(u′′′ − 3u′′ + 2u′)e−3s

(u′′
u′
z̄izje

s + z̄izje
s
)

+2(u′′ − u′)
(
− u′′′

u′′2
+
u′′

u′2

)
e−2sz̄izj

+(u′′′ − 3u′′ + 2u′)
(
− u′′′

u′′2
+
u′′

u′2

)
e−2sz̄izj

=
( 1

u′′
− 1

u′

)
(u′′ − u′)e−sδij +

(
− u′′′2

u′′2
+ 2

u′′′

u′′
+ (−n+ 1)

u′′2

u′2

+(2n− 1)
u′′

u′
+
u′

u′′
− (n+ 2)

)
e−2sz̄izj (4.20)

Therefore we have

Rij̄ = −∂j̄gkp̄∂igkp̄ − gkp̄∂j̄∂igkp̄

= −
( 1

u′′
− 1

u′

)
(u′′ − u′)e−sδij −

(
− u′′′2

u′′2
+ 2

u′′′

u′′
+ (−n+ 1)

u′′2

u′2

+(2n− 1)
u′′

u′
+
u′

u′′
− (n+ 2)

)
e−2sz̄izj −

(u′′′
u′′

+ n
u′′

u′
+
u′

u′′

−(n+ 2)
)
e−sδij −

(u′′′′
u′′
− 3

u′′′

u′′
+ (n− 1)

u′′′

u′
+ (−3n+ 2)

u′′

u′

− u
′

u′′
+ 2(n+ 1)

)
e−2sz̄izj

=

(
− φ′′

φ′
− (n− 1)

φ′

φ
+ n

)
e−sδij

+

(
− φ′′′

φ′
+
φ′′2

φ′2
+
φ′′

φ′
− (n− 1)

φ′′

φ
+ (n− 1)

φ′2

φ2

+(n− 1)
φ′

φ
− n

)
e−2sz̄izj

which is the complete description for the Ricci tensor.

The formula for Ricci tensor above is valid for all rotationally symmetric

Kähler metric. Therefore, we can examine the Ricci tensor only at a point
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P = {z1, 0, . . . , 0}. Here we have z̄izj = esδij1, where the δij1 is zero unless

i = j = 1. Define two functions α(s) and β(s) as

α(s) ≡ −φ
′′

φ′
− (n− 1)

φ′

φ
+ n (4.21)

β(s) ≡ −φ
′′′

φ′
+
φ′′2

φ′2
+
φ′′

φ′
− (n− 1)

φ′′

φ
+ (n− 1)

φ′2

φ2

+(n− 1)
φ′

φ
− n (4.22)

such that the Ricci tensor has the form

Rij̄ = α(s)e−sδij + β(s)e−sδij1 (4.23)

The expression for Ricci scalar R can also be described.

Lemma 3. The Ricci scalar R for the rotationally Kähler metric gij̄ is given

by

R = −φ
′′′

φ′2
+
φ′′2

φ′3
− 2(n− 1)

φ′′

φ′φ
− (n− 1)(n− 2)

φ′

φ2
+
n(n− 1)

φ
(4.24)

Proof. First, we recall that for any rotationally invariant Kähler metric on

Cn, the Ricci tensor takes the form

Rij̄ = α(s)e−sδij + β(s)e−2sz̄izj (4.25)

where α(s) and β(s) are described in equations (4.21) and (4.22). Then we

can calculate as follows,

R = gij̄Rij̄

=
(1

φ
esδij +

( 1

φ′
− 1

φ

)
ziz̄j

)(
α(s)e−sδij + β(s)e−2sz̄izj

)
=

n− 1

φ
α(s) +

1

φ′
(α(s) + β(s))

=
n− 1

φ

(
− φ′′

φ′
− (n− 1)

φ′

φ
+ n
)

+
1

φ′

(
− φ′′

φ′
− (n− 1)

φ′

φ
+ n

−φ
′′′

φ′
+
φ′′2

φ′2
+
φ′′

φ′
− (n− 1)

φ′′

φ
+ (n− 1)

φ′2

φ2
+ (n− 1)

φ′

φ
− n

)
= −φ

′′′

φ′2
+
φ′′2

φ′3
− 2(n− 1)

φ′′

φ′φ
− (n− 1)(n− 2)

φ′

φ2
+
n(n− 1)

φ

and it is the statement for Ricci scalar that we want.
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4.2 The Curvatures of Rotationally Invariant

Gradient Kähler-Ricci Soliton

After we have succeeded to write the expressions for Ricci tensor and Ricci

scalar of any rotationally invariant Kähler metric in lemma 2 and 3, we want

to get the corresponding expressions for the rotationally invariant gradient

Kähler-Ricci soliton. In fact, we have

Theorem 4. The Ricci curvature tensor Rij̄ and Ricci scalar R of the

rotationally invariant gradient Kähler-Ricci soliton gij̄ = ∂i∂j̄u(s), where

s ≡ ln |z|2 and u′ ≡ φ, are

Rij̄ = −(µφ′ + λφ)e−sδij + (−µφ′′ + (µ− λ)φ′ + λφ)e−2sz̄izj (4.26)

R = −µ2φ′ − µλφ− (µ+ λ)n (4.27)

Proof. Recall that the rotationally invariant gradient Kähler-Ricci soliton

satisfies equation (3.28), then for this soliton, the functions α(s) and β(s)

take the form

α(s) = −µφ′ − λφ (4.28)

β(s) = −µφ′′ + (µ− λ)φ′ + λφ (4.29)

where to get the expression for β(s) above we have differentiate equation

(3.28) with respect to s to get the equation

φ′′′

φ′
− φ′′2

φ′2
+ (n− 1)

(φ′′
φ
− φ′2

φ2

)
= µφ′′ + λφ′ (4.30)

Then by using the expressions for α(s) and β(s) above, equation (4.14) for

the Ricci tensor now becomes

Rij̄ = −(µφ′ + λφ)e−sδij + (−µφ′′ + (µ− λ)φ′ + λφ)e−2sz̄izj (4.31)

32

The curvatures of..., Andy Octavian Latief, FMIPA UI, 2010



To find the form of Ricci scalar, we should use equations (4.28) and (4.29).

R =
n− 1

φ
α(s) +

1

φ′
(α(s) + β(s))

= −(n− 1)
1

φ
(µφ′ + λφ)− 1

φ′
(µφ′′ + λφ′)

= −µ
(φ′′
φ′

+ (n− 1)
φ′

φ

)
− λn

= −µ(µφ′ + λφ+ n)− λn

= −µ2φ′ − µλφ− (µ+ λ)n (4.32)

where we have used the equation (3.28) to simplify things.

Remark. It is important to note that for µ = 0 and λ 6= 0, the Ricci tensor

and Ricci scalar have the forms Rij̄ = −λgij̄ and R = −λn, for which the

Kähler metric gij̄ becomes Kähler-Einstein metric. And for if µ = λ = 0, the

metric is Ricci flat, because Rij̄ and R vanish.

4.3 Equivalency of the Constant Ricci Scalar

and the Kähler-Einstenian Notion

By using the results of our previous calculation, we can establish this theo-

rem.

Theorem 5. Suppose we have a rotationally invariant gradient Kähler-Ricci

soliton gij̄ on the complex plane Cn, with soliton parameter λ and the holo-

morphic vector V i = −µzi which generates the biholomorphism, then

Case λ 6= 0, µ = 0. All solitons have constant nonzero Ricci scalar and are

Kähler-Einstein.

Case λ = 0, µ 6= 0. No soliton has constant Ricci scalar and is Kähler-

Einstein.

Case λ = 0, µ = 0. All solitons have vanishing Ricci scalar and Ricci tensor.

Case λ 6= 0, µ 6= 0. Both constancy of Ricci scalar and Kähler-Einsteinian

case happen when µ = −λ. If either happens, both will vanish and the soliton

is trivial.
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Proof. Recall that the Ricci scalar and Ricci tensor have the form

R = −µ2φ′ − µλφ− (µ+ λ)n (4.33)

Rij̄ = −(µφ′ + λφ)e−sδij + (−µφ′′ + (µ− λ)φ′ + λφ)e−2sz̄izj (4.34)

and the soliton on Cn must satisfies the equation

φ′′

φ′
+
(n− 1

φ
− µ

)
φ′ = n+ λφ (4.35)

If R is constant, say R = κn for a constant κ, then this equation holds

µ2φ′ + µλφ+ (µ+ λ+ κ)n = 0 (4.36)

and if gij̄ is Kähler-Einstein, say Rij̄ = νgij̄ for a constant ν, then these

equations hold

µφ′ + (λ+ ν)φ = 0 (4.37)

−µφ′′ + (µ− (λ+ ν))φ′ + (λ+ ν)φ = 0 (4.38)

which come from the independency of δij and z̄izj.

Case λ 6= 0, µ = 0.

From (4.33) and (4.34), we have that R = −λn and Rij̄ = −λgij̄. These

results also come from equations (4.36), (4.37) and (4.38) which yield κ =

ν = −λ.

Case λ = 0, µ 6= 0.

From equation (4.36), we have

µ2φ′ + (µ+ κ)n = 0 (4.39)

which has the solution φ = −
(
µ+κ
µ2

)
ns + c, for a constant c. Then we have

φ′ = −
(
µ+κ
µ2

)
n and φ′′ = 0. Then substituting this into equation (4.35), then

we have

−
(µ+ κ

µ2

)
ns+ c−

n(n− 1)
(
µ+κ
µ2

)
κ
µ
n

= 0 (4.40)

which implies µ + κ = 0 and c = 0, and hence φ = 0, which contradicts the

positive-definiteness of Kähler metric.
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From equations (4.37) and (4.38), we have φ = ce−νs/µ, for a constant c.

After substituting this into equation (4.35), we have

νce−νs/µ −
(µ+ ν

µ

)
n = 0 (4.41)

which means ν = 0 and hence n = 0, or for the second possibility it implies

that µ + ν = 0 and ν = 0, which means that µ = 0, where either cases lead

to a contradiction.

Case λ = µ = 0.

From equations (4.33) and (4.34) we have R = 0 and Rij̄ = 0. A remark

in the previous section also proves this case.

Case λ 6= 0, µ 6= 0.

From equation (4.36) we have

φ′ +
λ

µ
φ+

(µ+ λ+ κ

µ2

)
n = 0 (4.42)

which has the solution

φ = −
(µ+ λ+ κ

µλ

)
n+ ce−λs/µ (4.43)

for a constant c. After subtituting this into equation (4.35), we have

−1

c

(µ+ λ+ κ

µλ

)
neλs/µ + 1−

(n− 1)λ
µ

(n− 1)λ
µ

+ nκ
µ

= 0 (4.44)

which implies µ + λ + κ = 0 and κ = 0. Hence µ = −λ, and the soliton gij̄

is identity metric, unique up to scaling. Since κ = 0, then R = 0.

From equations (4.37) and (4.38) we have

µφ′ + (λ+ ν)φ = 0 (4.45)

−µφ′′ + (µ− (λ+ ν))φ′ + (λ+ ν)φ = 0 (4.46)

The solution of these two equations is either φ = ces or φ = ce−(λ+ν)s/µ, for

a constant c. Substituting the latter to equation (4.35) we will get

νce−(λ+ν)s/µ −
(µ+ ν + λ

µ

)
n = 0 (4.47)

then ν = 0 and µ + ν + λ = 0, which yield µ = −λ, and the soliton gij̄ is

identity metric, unique up to scaling. Since ν = 0, then Rij̄ = 0.
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From this theorem we have this

Corollary 6. On the complex plane Cn, the rotationally invariant gradient

Kähler-Ricci soliton gij̄ is Kähler-Einstein if and only if its Ricci scalar is

constant.
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Chapter 5

Conclusion

From theorem 5, or more explicitly in corollary 6, we conclude that the

constancy of Ricci scalar curvature and the Kähler-Einsteinian notion are

completely equivalent for the case of rotationally invariant gradient Kähler-

Ricci solitons. This equivalence is not trivial in the sense that it generally

does not hold for any Kähler metric, so it makes the structure of solitons

in rotationally symmetric setup much more interesting. We also conclude

that in the case where the Ricci scalar could be not constant or the soliton

could be not Kähler-Einstein, if we set either Ricci scalar to be constant or

the soliton is Kähler-Einstein, then they must vanish identically, and this

condition could be only achieved in the case where µ = −λ.
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Appendix A

Einstein Summation
Convention

Throughout the text I assume the Einstein summation convention holds, i.e.

if we have a quantity which has one subscript index and one same superscript

index, then it means that we must add over the possible values of the index.

For example, if we have a quantity

UµU
µ (A.1)

where µ runs from 1 to n, then the quantity is defined as

UµU
µ ≡ U1U

1 + · · ·+ UnU
n =

n∑
µ=1

UµU
µ (A.2)

Another example is

UµT
µν ≡ U1T

1ν + · · ·+ UnT
nν (A.3)

In equation (A.2), the quantity UµU
µ is a scalar, a real number, since it

comes from the summation of the corresponding components of Uµ and Uµ.

But in equation (A.3), UµT
µν is a vector, and the equation itself is indeed n

equations embedded in a single one.
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Appendix B

Manifolds

B.1 Introduction

When I was a child I often asked a question about the best way to measure

the distance over the curved object, such as mountain and hill.

Naturally, the answer is so easy. The first idea that came to my mind is

about measuring the length of a thread connecting two points in that curved

surface while keeping this thread along the surface. With this method we

still get the intuitive notion that distance is the smallest possible length of

line that connects those two points. But technically, it is very difficult to do;

it seems there is no standard way to make it easy, unlike in the flat surface1.

This difficulty arises from the fact that our surrounding will appear different

when we are in different points in the curved surface. This obviously does

not happen in the flat one, because if we stand in any points and see to every

directions, it appears identically: an empty plane. Due to its simplicity, we

will observe what we can do with the flat space2 (usually it is denoted as Rn,

where n is the space dimension, and it is also known as the Euclidean space)

first before we tackle the curved one.

When we talk about the flat space (and any other ones), we can think

that this is the background or place for something to happen, or see this

1Here, we also can use the ”thread method” to find a distance between two points, but
due to its flatness, we can simply mark each points on the surface with a tuple of numbers,
and describe the distance by using these numbers.

2I will use the term flat space as the flat surface of any arbitrary dimension other than
2 as well.
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object in its entirety and regard it as the main focus of our attention without

concerning about something else. We should use the second view. When

we are looking to a flat space, we can see that it is nothing other than a

collection of many points, or elements. We will need to parameterize these

points such that we can refer to it easily. Therefore, the natural way to

identify the points are to relate them with some easier objects that we can

encounter, i.e. the n-tuple of numbers. Given a point p which belongs to the

space Rn, we can know where the point is by using the n-tuple of numbers

for this point. The mapping which relates the points on the flat space Rn to

their n-tuple of numbers is called the coordinate system.

It is natural to make a requirement that our coordinate system must spec-

ify the points in Rn to the n-tuple of numbers uniquely and each points should

have single-valued tuple. In Rn, it is possible to construct such coordinate

system. If the coordinate of a point is denoted as {xµ}, where µ = 1, . . . , n,

then we will know that a different number for each µ in this coordinate means

different points in Rn.

However, the structure of space and some physical events which occur

in this flat space will not be affected by our choice of coordinate system.

Whether we choose the Cartesian or spherical or cylindrical system, nature

does not know. Therefore, it is an advantage for us to choose the simplest

possible system, which is usually the orthogonal one such as Cartesian, al-

though it is not an absolute principle.

Because the choice of coordinate system to identify the points in Rn is not

unique, then we can make many systems in this space. By principle, they are

equally likely each other to mark the elements of flat space, since nature does

not provide the way to distinguish them. Therefore, we can construct the

coordinate systems as many as we can, and it means that we must provide a

way to transfer the information obtained from one system to another. This

way is called the coordinate transformation. Given some coordinate systems

and how to transform the coordinates between them, we can know the values

of some physical quantities in another frame if we know their values in at

least one coordinate system. For the physical situation, if there are many
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observers who see the same event, then the agreement between them only

comes after the coordinate transformations.

By using these principles, that we can make the coordinate system to

identify the points in the flat Euclidean space and the existence of a con-

sistent transformation between the coordinate systems, will help us much to

construct the theory for the curved space.

B.2 Definition

What we can do in the flat Euclidean space cannot be generalized to the

curved one, because by nature, the surroundings of every points in the curved

space are different. We cannot make an identification which is as easy as in

the flat one, but fortunately we can do it in a local area in the curved space.

It is possible because if we make any small area in the curved space, the

situation will appear like we are in the flat one; the fact which is motivated

highly by our daily intuitive notion about the flatness of Earth in our region

although it is indeed a sphere. Therefore, it is an advantage for us to highlight

this property of local flatness, and define the curved space which3 locally looks

like the Euclidean space Rn as the n-dimensional manifold.

Mathematically, it means that for every point p ∈ M , we can make a

neighborhood U ⊂ M which contains p (i.e. p ∈ U) such that locally in

this neighborhood U there exists a mapping φ : U → Rn which maps the

neighborhood U to the flat space Rn. The existence of φ guarantees that

the manifold M locally looks like the Rn. Therefore, what we can do in the

previous section for the Euclidean space can also be done here in Rn which

mimics the manifold M only locally.

The introduction of the local mapping φ in our theory to identify the

points in M by a local coordinate system is very important, in the sense

that we cannot make a single coordinate system which works globally over

the manifold. If we insist to make this one, in some cases we will have the

3If we view the curved space as the collection of points, then there are numerous
numbers of curved space which cannot be approximated as the flat one locally in each its
points.
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coordinate which is not continuous, and in other cases we will have points in

M which have multiple values of coordinate. It is very hard to work in both

situations, so it is best if we introduce many coordinate systems in every

neighborhoods of M such that every two nearby points4 have nearby values

of coordinate, and every points have a single value of coordinate in at least

one local coordinate system.

The problem of coordinate transformation in the flat space can also be

formalized in the manifold. Since we can make any coordinate systems we

want in Rn, it means that we can also make any coordinate systems in each

local neighborhood of M . If we have two neighborhoods U, V ⊂ M we have

two mappings which map these two neighborhoods to Rn, i.e.

φ : U → Rn, ψ : V → Rn (B.1)

If U ∩ V 6= ∅, then every points p ∈ U ∩ V will have two coordinate values

defined by φ and ψ, and the coordinate transformation between them is

represented by the composition mapping

ψ ◦ φ−1 : φ(U ∩ V )→ ψ(U ∩ V ) (B.2)

For the sake of consistency, we require that this composition mapping ψ ◦
φ−1 must be continuous for every pairs U and V in the manifold M , and has

continuous inverse φ ◦ψ−1. If the coordinate in φ(U) and ψ(V ) has the form

{xµ} and {yµ} respectively, then explicitly the coordinate transformation

between them is

yµ =
∂yµ

∂xν
xν , for µ = 1, 2, . . . , n (B.3)

where we assume that Einstein summation convention holds in this equation

(and any other equations that appear in this skripsi. See appendix A.). If

this transformation and its inverse are differentiable for every pairs U and V

in M , then M is called differentiable manifold.

4Formally, I mean the two points that are in the same neighborhood.
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B.3 Some Examples

Here are some simple manifolds which, apart from their simplicity, have rich

structures and undeniably will increase our understanding about the concept

of manifold. I pick these examples from [15].

Example 1. The simplest manifold is the Euclidean space itself, where the

mapping φ is the identity, and this mapping holds for all parts in this space.

It is equivalent to say that the neighborhood U in which the mapping φ can

be applied is the entire Rn.

Example 2. The only 1-dimensional manifold M which is connected is the

circle S1. The natural coordinate system in this circle is by giving the one

parameter usually called as the angle θ. By setting θ = 0 to a point in the

circle, say p, then the value of θ increases as we move along the circle in

counterclockwise direction by a usual convention. Continuing our motion,

we will arrive at points close to our original point p, and which we will be

asked a question, whether we want to identify that original point p as its

original angle 0, or 2π since we have moved along a complete circle. If we

choose 0, then our coordinate system is discontinuous, with a jumping from

2π−ε, for ε� to 0. And if we choose the latter, we will have the coordinate

system which is not unique; all points will have coordinate values {θ+ 2kπ},
for k ∈ N.

One way out is to introduce two neighborhoods U, V ⊂ S1 where U

covers the upper half of this circle and V is for the lower half. By using these

neighborhoods, we have two mappings φ : U → R and ψ : V → R which, for

example, have the form

φ : U → (−ε, π + ε) (B.4)

ψ : V → (π − ε, ε) (B.5)

where the coordinate transformation ψ ◦ φ−1 occurs in the intersection of U

and V .

Example 3. The n-dimensional sphere Sn is one of example of manifold, and

it is differentiable. We must face the same problem we meet in the case of
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circle S1 when we want to make a single global coordinate system in Sn.

But we also can make two neighborhoods, each occupies the upper and lower

hemisphere of Sn, such that each neighborhoods are mapped to the Rn.

Example 4. The n-dimensional real projective space RP n is defined as the

quotient space (Rn+1 − {0})/ ∼, where ∼ is the equivalence relation defined

in Rn+1 − {0}, i.e. for x, y ∈ Rn+1 − {0} then x ∼ y means there exists

0 6= k ∈ R such that x = ky. It means that all points which lie on the same

line through the origin of Rn+1 can be considered as the same element in

RP n.

Since the coordinate of points is described by n + 1 numbers x0, . . . , xn

then it can be used for points in the RP n. By introducing the neighborhood

Ui where it contains the points with xi 6= 0 for some i, then the coordinate

of points in Ui can be described as

{χ1, . . . , χn} = {x0/xi, . . . , xi−1/xi, xi+1/xi, . . . , xn/xi}

and it explains why our projective space has n dimensions. Therefore the

mapping φi : Ui → Rn has the form

φi({x0, . . . , xn}) = {χ1, . . . , χn}

If a point p ∈ Ui ∩ Uj then there exist two mappings φi and φj for each

neighborhoods,

φi({x0, . . . , xn}) = {χ1, . . . , χn}, φj({x0, . . . , xn}) = {η1, . . . , ηn}

where

{η1, . . . , ηn} = {x0/xj, . . . , xj−1/xj, xj+1/xj, . . . , xn/xj}

Therefore, the coordinate transformation between them is

(φj ◦ φ−1
i )(χk) =

xj
xi
ηk

Example 5. Grassmanian manifold Gk,n(R) is defined as the k-dimensional

hyperplane in Rn. Therefore, it is a generalization of the projective space

RP n, i.e. RP n = G1,n+1(R).
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Example 6. Torus can be defined as a result of the compactification of a

square in R2, but it also can be viewed as the product of the circle S1 with

itself, i.e. T = S1 × S1. As the result, torus can be described by two

parameters, each for these two circles, and hence it also can be viewed as the

manifold in R4, in which it is a flat manifold in this space, apart from our

daily imagination that torus / doughnut is a curved manifold in R3.

B.4 Curves and Functions

Since the manifold is the generalization for the flat space, then consequently

we need to make a proper generalization for every concepts in the flat space

such that we can use them, if possible, when we are working in the mani-

fold. In this subsection we will discuss about the curve and function defined

over the manifold, and in the next subsection we will discuss about some

important and useful objects, i.e. vector, dual vector and tensor fields.

In the flat plane Rn, we often analyzed the track of a particle that moves

under some potential. Ordinarily, the curve on the plane can be parameter-

ized using one parameter, say t, such that every points on the curve can be

marked with some definite value of this parameter. We can also make an

arbitrary choice to place the zero of t; nature will not know which point you

identify with the t = 0. If I make a coordinate system on this plane, then a

point on the curve has the coordinate

(x1, . . . , xn) = (x1(t), . . . , xn(t))

such that if you have a single number t, then you will have n numbers, i.e.

the xµs (for 1 ≤ µ ≤ n), and it gives you the precise position of the point

on the curve (this is why we often say that curve is one-dimensional). You

can make an arbitrary curve on this plane which touches every parts of this

plane, but by principal, you can always identify its points using this single

parameter t.

However, this advantage to use the powerful parameter t to mark points

on the curve cannot hold peacefully if we make a generalization from the plane

to a manifold. The problem is, we cannot make a global coordinate system
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which covers all parts of the manifold. Instead, we need to define some

local coordinate systems, provided that we still can transform each other

using continuous mapping. Therefore, the principal that we can identify the

points on the curve by using coordinate {xµ} doesn’t make sense anymore,

since two neighborhoods on the manifold have different convention about the

values of xµs.

To solve this problem, we need to make two mappings. First, consider the

mapping c : [a, b] ∈ R → M such that c(s) = c(t) whenever s = t ∈ R. We

can imagine that this is the curve which connects two points on the manifold,

namely p = c(a) and q = c(b), and for the sake of simplicity we make an

assumption that it is a simple curve; there is no intersection of this curve

with itself. Of course you don’t need to have finite numbers for a and b, since

the two queens of pain (−∞ and∞) will also work. While the first mapping

is the one which maps R to M , the second mapping is φ : U → Rn, i.e.

the mapping that serves as the coordinate marker for each points on some

neighborhood in M . Therefore, we can construct the composition mapping

φ ◦ c : [a, b] → Rn : t 7→ {x1, . . . , xn}, such that from a single parameter t

you will get n values of coordinates, in a neighborhood U .

If the part of R is mapped to M and produces what we intuitively call

as curve, then the mapping from M to R makes a very different object: this

is simply the ordinary function defined on a manifold5. Concretely, if we

have a function f : M → R, and take a point p ∈ M with the coordinate

φ(p), then we will have the composition mapping f ◦ φ−1 : Rn → R. In

physics, we often encounter this composition mapping f ◦ φ−1, which relates

the coordinates of points on the space with their values in real numbers.

Actually, this physicist’s view will not make any trouble if we can define a

global coordinate system on the manifold, but if we just could make a system

of local coordinates, then we need to distinguish the role of f , the function

from points of the manifold to some real numbers, and the role of φ, the

attachment of points to a local coordinate system.

5We will denote F(M) as the set of functions defined over the manifold M , i.e. F(M) =
{f | f : M → R}
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B.5 Vector, Dual Vector, and Tensor Fields

Vector field in a certain space can be described as the mapping from the

points to a vector. In flat space, we can state the vector field easily in

terms of basis vectors, the set of linear independent vectors which span that

space. If our coordinate is Cartesian, as an example, we can construct the

n orthonormal vectors6 which are linear independently each other and span

the space, usually denoted as eµ, which work globally over the space. The

decision to make an orthonormal system is very optional, and in fact for

the flat space we can make any set of vectors which satisfy the conditions

above as the basis vectors. Unfortunately, we cannot use this method in a

manifold, but we can use the analogy from the expansion of function using

Taylor series to define the local basis vectors [9].

Suppose we have an n-dimensional manifold M , and a neighborhood U ⊂
M which contains p ∈ M . Then, consider another point q ∈ U near p such

that the coordinate of q differs with p by a small number εµ, i.e.

yµ = xµ + εµ (B.6)

where {yµ} and {xµ} are the coordinates of q and p respectively. Then, if we

have a function f defined over the manifold, f : M → R, and if the value of

this function at p is f(p), then its value at q can be expanded using Taylor

series as

f(q) = f(p) + εµ
∂f

∂xµ

∣∣∣
p

+ · · · (B.7)

From equation (B.7) above, we can see that the difference between f(q) and

f(p) in the first order is εµ ∂f
∂xµ

, the directional derivative of the function f

(i.e. the derivative of f on the direction along the curve which connects p

and q). We can guess that this directional derivative does not depend on the

coordinate system we use; for if we are given a function f on a manifold M ,

the value of directional derivative of f at a certain point on M is coordinate

independent. Then, we can also guess that

εµ
∂

∂xµ
(B.8)

6It is obvious that the set of vectors which span the flat space and are linear independent
must contain n elements.

47

The curvatures of..., Andy Octavian Latief, FMIPA UI, 2010



is the tangential vector of the curve which connects points p and q, by setting

lim ε→ 0.

Being the vector, we can view the εµ in equation (B.8) as its component,

and ∂/∂xµ as the basis. This choice of basis vectors is called the coordinate

basis, since it depends on the orientation of axis of coordinate system we make

(remember that we can construct the basis vectors independently without

noticing the axis orientation of the coordinate system being used). Therefore,

we have had the basis vectors we want in manifold; the basis which will

replace the orthonormal basis vectors in Cartesian system in flat space.

One thing to remember for this construction of vector is about the com-

parison of two vectors. On the plane, we can say that two vectors on two

different points are identic if they are parallel and their components are the

same. On manifold, the first statement still holds (that two vectors are the

same if their directions are the same), but the second statement fails. We

cannot compare the components of two vectors on two different points be-

cause the coordinate systems we use are generally different at those points.

Although the vectors are parallel, their components are different. Mathemat-

ically, if we have two parallel vectors A = Aµ ∂
∂xµ

at a ∈ M and B = Bµ ∂
∂yµ

at b ∈M , then

A = Aµ
∂

∂xµ
= Bµ ∂

∂yµ
= B (B.9)

but generally Aµ 6= Bµ. Since the transformation between these two basis

vectors is
∂

∂yµ
=
∂xν

∂yµ
∂

∂xν
(B.10)

then the equation which relates the components of A and B is

Aν =
∂xν

∂yµ
Bµ (B.11)

The two equations, (B.9) and (B.11), are the mathematical version of two

statements I said previously.

Take a specific point p ∈ M . If there is a smooth curve through p,

then there is a vector tangential to this curve at p. Therefore, if we can

draw all possibilities of curves through p, we can draw all vectors which are

tangential to manifold M at p. The vector space which is spanned by the
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set of tangential vectors at p is denoted as TpM , where the subcscript p

is useful to stress that the different points have different tangential vector

spaces7. Namely, the tangential vector space TqM at q is generally different

with TpM . They are same only if our manifold is flat. The set of vector

fields in M will be denoted as χ(M), such that if X ∈ χ(M), then the vector

X|p ∈ X is the element of TpM .

We also can create another object on manifold which we will name as the

dual vector. Shortly, the dual vector (or, people often call it as one-form)

ω can be defined as the mapping that takes a vector V into a real number

ω(V ). The dual vector ω can be stated explicitly as

ω = ωµdx
µ (B.12)

where the ωµ is the components of ω and dxµ is its basis. The advantage of

making the basis in this way is because the statement that ω is a mapping

from vector to a real number can be translated to a statement that there

exists inner product between the dual vector and vector in T ∗pM and TpM

respectively, which has a real number as the result, i.e.

〈ω, V 〉 = ω(V ) ∈ R (B.13)

By using the coordinate representation, we will have

〈ω, V 〉 = 〈ωµdxµ, V ν ∂

∂xν
〉 = ωµV

ν〈dxµ, ∂

∂xν
〉

≡ ωµV
ν ∂x

µ

∂xν
= ωµV

νδµν (B.14)

= ωµV
µ ∈ R (B.15)

The space which is spanned by the dual vectors at p is denoted as T ∗pM ,

and it is called the dual space of TpM . And the set of dual vector fields in

M is denoted as T ∗M . Please note that the inner product we defined above

is between the dual vector and the vector, not between two vectors. Don’t

7Notice that although both TpM and Rn = φ−1(U) are the “planes” tangential to
manifold M , they are by definition very different in structures. TpM , being the vector
space, contains the vectors as its elements, but φ−1(U) contains points because it is a flat
manifold.
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be trapped by the ordinary inner product between two vectors; this ordinary

inner product actually can give us the length of vector. Here, there is no

such definition for the length of something and distance between two points.

What we only have is the components of the vector and not its length. The

discussion about the length of vector and the distance between two points

on the manifold is appropriate only if we have a metric on the manifold (see

section C).

Now, after we successfully construct the vectors and dual vectors, we can

make a straightforward generalization to an object called tensor. If we define

the dual vector as a mapping from vector to real number, then we define the

tensor of type (r, s) as a mapping from r dual vectors and s vectors to a real

number. Then, we can say that the vector is a tensor of type (1, 0) (because

if we have a vector, then we need one dual vector to make a real number) and

the dual vector is a tensor of type (0, 1). If the coordinate representation of

vector V is V = V µ ∂
∂xµ

and dual vector ω is ω = ωµdx
µ, then the (r, s)-tensor

T is represented as8

T = T µ1···µr
ν1···νs

r⊗
i=1

∂

∂xµi

s⊗
j=1

dxνj (B.16)

such that if we have r dual vectors ω1, . . . , ωr and s vectors V1, . . . , Vs, the

mapping T is

T (ω1, . . . , ωr, V1, . . . Vs) = T µ1···µr
ν1···νsω1µ1

. . . ωrµrV1
ν1 . . . Vs

νs (B.17)

For the next discussion we will denote the tangential (r, s)-tensor space at a

point p ∈ M as T r
s,pM , and the set of (r, s)-tensor fields in manifold M as

T r
s M .

The coordinate transformation between components of tensor is also easy

to develop. If we have a tensor T on a manifold M , and we make two different

coordinate systems {xµ} and {yµ} on the neighborhood U of point p, then

T = T µ1···µr
ν1···νs

r⊗
i=1

∂

∂xµi

s⊗
j=1

dxνj = Tα1···αr
β1···βs

r⊗
i=1

∂

∂xαi

s⊗
j=1

dxβj (B.18)

8Actually this representation is called as Einstein-Penrose representation for tensor.
There is another representation, a graphical one, made by Penrose [16] which is useful for
classification of Lie groups. This is far out of our topic.
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such that the transformation between the components of tensor T is

T µ1···µr
ν1···νs =

r∏
i=1

s∏
j=1

∂xµi

∂yαi
∂yβj

∂xνj
Tα1···αr

β1···βs (B.19)

Any indexed object on the manifold which transforms like the equation (B.19)

above is a tensor. It’s why we commonly use the coordinate transformation,

which is simple and easy to use, as the defining method to distinguish a

tensor, not its original definition as a mapping from a number of vectors and

a number of dual vectors to a real number.

B.6 Induced Mapping

Suppose we have a mapping f : M → N which maps a point from mani-

fold M to N , then naturally it will induce the mapping f∗ which is called

the differential mapping, from the tangential vector space of p in M to the

tangential vector space of f(p) in N , i.e.

f∗ : TpM → Tf(p)N (B.20)

Given a vector V ∈ TpM , then the vector f∗V ∈ Tf(p)N is defined as

f∗V [g] = V [g ◦ f ] (B.21)

for a function g : N → R. If we denote V = V µ∂/∂xµ and f∗V = W ν∂/∂yν

for the coordinate {xµ} of p and {yν} of f(p), then from equation (B.21)

above we will have

W ν ∂

∂yν
[g] = V µ ∂

∂xµ
[g ◦ f ] (B.22)

such that if we set g to be yν we will have

W ν = V µ ∂y
ν

∂xµ
(B.23)

This relation can also be generalized to the case of (r, 0)-tensor, i.e.

f∗ : T r
0,pM → T r

0,f(p)N (B.24)

such that it yields

Sν1···νr =
r∏
i=1

∂yνi

∂xµi
T µ1···µr (B.25)
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for T ∈ T r
0 M and S ∈ T r

0 N .

The mapping f : M → N also induces the pullback mapping f ∗ :

T ∗f(p)N → T ∗pM , defined as

〈f ∗ω, V 〉 = 〈ω, f∗V 〉 (B.26)

where ω ∈ T ∗pN and V ∈ TpM . If we define η ≡ f ∗ω ∈ T ∗pM , then we can

calculate

ων = ηµ
∂xµ

∂yν
(B.27)

This also can be extended to the case of (0, s)-tensor, i.e.

f ∗ : T 0
s,pM → T 0

s,f(p)N (B.28)

such that it yields

Sν1···νs =
s∏
i=1

∂xνi

∂yµi
Tµ1···µs (B.29)

for T ∈ T 0
s M and S ∈ T 0

s N .

There is no natural extension of the induced mapping for the case of

mixed tensor, i.e. for T r
s M , with r, s 6= 0.

B.7 Flows and Lie Derivatives

In physics we are familiar with this situation: there is an area (or volume)

which has the vector field which becomes the tangential vector of some curves

in this area. The trivial example is a river, where the curve is the motion

track of a particular dust floating down the river, and where the tangential

vector is indeed the velocity of the stream. Another situation is where you

draw the lines around the magnet which point from the north pole to the

south pole, where the tangential vector is the magnetic field of that magnet.

Due to this familiarity in physical world, it can be an advantage if we can

define the similar concept in the manifold.

Suppose we have an n-dimensional manifold with the vector field X de-

fined over this manifold. Provided the neighborhood U and the mapping

52

The curvatures of..., Andy Octavian Latief, FMIPA UI, 2010



φ : U → Rn around the point p ∈ M , we can construct the curve which has

the form
dxµ(t)

dt
= Xµ(x(t)) (B.30)

where {xµ(t)} is nothing other than φ(p). We can see easily from equation

above that the vector field X is the tangential vector of this curve, and we

will call it the integral curve for the next discussion. There will be possibly

many integral curves on the same manifold, with a given vector field. We can

define the equivalence class such that two points in M belong to the same

class if they are connected to the same curve. For this, we can single out one

point in each class which represents that class, to make the analysis easier

for the next time.

Suppose we have one of those equivalence classes, and a point x0 as its

representation. Then, the integral curve for this point is

d

dt
σµ(t, x0) = Xµ(σ(t, x0)) (B.31)

where we have changed the symbol from x to σ because we want to stress a

point: that our integral curve passes the point x0. Then, we can make this

relation

σ(0, x0) = x0 (B.32)

where we assume that the parameter t of the curve is zero in x0. We also

have

σ(t, σ(s, x0)) = σ(t+ s, x0) (B.33)

which tells us about the freedom to choose the initial point of the integral

curve, or to choose the representation for each equivalence classes we talked

above. Given the vector field X on the manifold, we can principally find the

parametric equation for the integral curve by using that flow equation.

We can change a point of view in this point. If we remember that the

initial point of the integral point is free to choose, then we can assume it’s

undefined initially, and we can write the integral curve as σ(t, x) which maps

the parameter t and the point x ∈ M to another point σ(t, x) ∈ M in the

manifold. This mapping σ : R×M →M forms the diffeomorphism from M
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to the manifold M̃ which is diffeomorphic withM . To see this diffeomorphism

clearly, ones usually use the symbol σt : M → M , where we can see that in

each parameter t there is the manifold Mt which is diffeomorphic to M and

they are related by mapping σt : M →M .

The concept of integral curves in the manifold can also be used to compare

the vectors in different points. As we know, we cannot compare two vectors

in two different points in the manifold because we cannot make a single global

coordinate system. Thus, if we have a vector field Y in M , then we cannot

compare the vector of Y on a point p and q, where p 6= q. We need a method

to compare them, and fortunately provided the concept of integral curve, we

have it. We can make an integral curve which connects two points p and q

which we denote its tangential vector as X. Then we have these two flow

equations
dσµt (x)

dt
= Xµ(x(t)) (B.34)

and
dτµt (x)

dt
= Y µ(x(t)) (B.35)

Suppose we want to compare two vectors Y |x and Yx+εX in the points x and

x+εX of M , respectively, where εX is nothing but the scaling of X|x. Then,

we can use the induced mapping to bring the Y |x+εX to the point x, and we

denote this translated vector as Ỹ |x. Therefore, the difference between Y |x
and Yx+εX now becomes

Y |x − Ỹ |x = Y |x − (σ−ε)∗Y |x+εX (B.36)

where (σ−ε)∗ is the induced mapping. We can define the Lie derivative of Y

along the integral curve of X in the point x by using the difference above

LXY = lim
ε→0

1

ε
((σ−ε)∗Y |x+εX − Y |x) (B.37)

Now we want to work more explicitly, and suppose X = Xµ∂/∂xµ and

Y = Y µ∂/∂xµ. The coordinate of σε(x) is xµ + εXµ, then the vector Y |x+εX

is described as

Y |x+εX = Y µ(xν + εXν)eµ|x+εX (B.38)
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such that we can obtain the vector Ỹ |x by using the induced mapping (σ−ε)∗

to the vector above and get this result

Ỹ |x = Y |x + ε(Xµ(x)∂µY
ν(x)− Y µ(x)∂µX

ν(x))eν |x +O(ε2) (B.39)

hence we can get the expression for LXY as

LXY = (Xµ∂µY
ν − Y µ∂µX

ν)eν (B.40)

If we define the Lie bracket [X, Y ] between two vector fields X and Y by

the relation

[X, Y ] = X[Y [f ]]− Y [X[f ]] (B.41)

where X[Y [f ]] is the directional derivative of the Y [f ] along X, and where

Y [f ] = Y µ∂f/∂xµ. It appears easily that this definition coincides with that

of Lie derivative, then we have

LXY = [X, Y ] (B.42)

It is important to note that the Lie derivative of a function f , LXf , can

be computed to get the result

LXf = X[f ] (B.43)

i.e. the usual directional derivative of the function f along X. For the case

of (r, s)-tensors, the concept of Lie derivative can be used to each index. For

if we have two tensors T1, T2 ∈ T r
s M , the Lie derivative of T1 +T2 is the sum

of Lie derivatives of each tensors, i.e.

LX(T1 + T2) = LXT1 + LXT2 (B.44)

and for the direct product of two tensors T1 ∈ T r
s M and T2 ∈ T r′

s′ M , we

have

LXT1 ⊗ T2 = (LXT1)⊗ T2 + T1 ⊗ (LXT2) (B.45)
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Appendix C

Riemannian Manifolds

C.1 Metric Tensor

Now it’s the time to introduce the concept of distance into our manifold. In

section B, we have defined the curved space and generalized some objects

which initially only exist in the flat space such as vector and dual vector

fields, and regard them as the quantities which have the representations

in terms of coordinate basis and hence also have the components, relative

to this coordinate. However, in daily life we must tackle the space which

has a distance concept within it and the concept of length of vector. The

latter has a great significant functionality because often in physics we need

to know the magnitude of quantity defined as the vector and dual vector

fields. The development of the topics discussed in this section is useful for

the construction and formulation of general relativity [21, 13].

For if we want to define a distance notion in a given manifold M , then we

can simply take any two arbitrary points in M and define how much the dis-

tance between them. Of course, we can say that our manifold has a distance

notion only after the distance of any pairs of its points has been defined.

Notice that this distance is not affected by our choice of coordinate; the type

of coordinate system and the way we use it won’t change the distance we

have defined between pairs of points. Hence, we should construct a mech-

anism which allows us to pretend the distance of two fixed points although

we change the coordinate system of our manifold.

If we have two nearby points p, q ∈ M which have the coordinate values
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{xµ} and {xµ + dxµ}, then the distance between them should be comparable

to the difference between their coordinates, i.e. dxµ, for 1 ≤ µ ≤ n. Precisely,

if we make a vector ds which connects p and q, then we can represent it in

terms of basis vectors as

ds = dxµeµ (C.1)

where eµ = ∂/∂xµ is the basis vector, such that the distance ds between

these points can be stated as the length of this vector, i.e.

ds2 = ds · ds = dxµdxνeµ · eν (C.2)

If we define

gµν ≡ eµ · eν (C.3)

then we can have the convenient description for the distance of points p and

q as

ds2 = gµνdx
µdxν (C.4)

Since gµν is the inner product of two basis vectors, we can interpret it as

the component of a (0, 2)-tensor g ∈ T 0
2 M where for the next discussion will

be called as the metric tensor, and we can write it in terms of basis of the

vector space T 0
2 M ,

g = gµνdx
µ ⊗ dxν (C.5)

where now the dxµ is not the difference between coordinates of p and q which

most physicists will imagine it as the infinitesimal distance, but it should be

considered as the basis of dual vectors in M . Being a (0, 2)-tensor, it needs

two vectors to produce a real number, and if we provide the vector ds for its

argument we will get the equation (C.4) above. Since dxµ and dxν can be

interchanged, then we need the metric g to be symmetric in its indices,

gµν = gνµ (C.6)

If we have two vectors1 U, V ∈ TpM , then the inner product between

1Note that these two vectors need to be in the same neighborhood U of a certain point
p ∈M to ensure that we use the same coordinate system for both of them.
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them is

g(U, V ) = gµνU
αV β(dxµ ⊗ dxν)(eα, eβ)

= gµνU
αV βδµαδ

ν
β

= gµνU
µV ν (C.7)

such that if we set V = U , then we have the length of vector U ,

|U |2 = g(U,U) = gµνU
µU ν (C.8)

But it still doesn’t tell us the whole story. We can restrict the metric g

to be positive-definite, in the sense that if we have a vector U ∈ TpM , then

the norm of this vector |U |2 must be nonnegative, or |U |2 = g(U,U) ≥ 0,

where the equation holds only for the case of the nullity of U . If a manifold

M is equipped with the metric g which is symmetric and positive-definite,

then this manifold is called the Riemannian manifold, and its metric g is

called the Riemannian metric. Since it is positive-definite, all eigenvalues of

Riemannian metric are positive, and hence it has the inverse denoted as gµν .

Moreover, it also can be diagonalized by using certain procedure involving

the orthogonal matrix, and rescaled such that all entries in the diagonal of

diagonalized metric are the unity. This matrix is nothing other than the

identity metric, which is also known as the metric tensor of the Euclidean

space Rn, denoted as δµν . Therefore, we conclude that the Riemannian metric

g of a Riemannian manifold M can be reduced to the identity metric δ of

the Euclidean space Rn.

We can weaken our restriction about the positive-definiteness of metric

to a more flexible condition: g(U,U) can be zero although U is not zero, and

it is possible to have g(U,U) < 0 for a certain U ∈ TpM . If a manifold M

is equipped with this kind of symmetric metric, then M is called pseudo-

Riemannian manifold, and its metric g is called pseudo-Riemannian metric.

We can principally reduce this metric into the diagonal matrix, and hence

we will get some positive and negative eigenvalues, or after rescaling and

reordering, we will have the diagonal matrix η = diag(1, . . . , 1,−1, . . . ,−1),

in which there are r numbers of 1 and s numbers of −1. The signature of
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metric is defined as r − s, and it is same for all points in the manifold. For

the specific case, if the number of positive eigenvalues is only one, then M

is called the Lorentzian manifold, and its metric g is called the Lorentzian

metric. The diagonal metric corresponding to the Lorentzian one is called

the Minkowski metric, η = diag(1,−1, . . . ,−1).

Let’s back to the case of Riemannian manifold M with a Riemannian

metric g. If this metric is provided only with one vector U = Uµ∂/∂xµ ∈
TpM , i.e. g(U, ·), then it will produce something like the dual vector, since

this object needs one more vector to produce a real number. Therefore, the

metric g can be a bridge between the set of vectors and dual vectors in the

manifold. If we denote the dual vector corresponding to g(U, ·) as Uνdx
ν ,

then

Uνdx
ν = g(U, ·) (C.9)

such that componentwise it has the form

Uν = gµνU
µ (C.10)

If the vector V ∈ TpM is taken into the empty slot of g(U, ·), then we have

gµνU
µV ν = UνV

ν (C.11)

where the operation of inner product now can be carried out easily by using

this new tool.

Here is the clear ground for this matter. In the manifold where we don’t

introduce the metric, the inner product takes place between a vector and a

dual vector. And since there is no link between the set of tangential vectors

TpM and dual vectors T ∗pM , we can take a product between any vectors and

any dual vectors without an interesting intuitive sense. If we are working in

the (pseudo-)Riemannian manifold, then the inner product also takes place

between a vector and a dual vector. But since there is a linking chain between

them, so called as the metric, then we will have an interesting situation when

we take an inner product between a vector and its corresponding dual, in

which it will give us the norm or length of that vector (or, dual vector). Of

course we can freely take an inner product between a vector with any dual
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vectors which don’t correspond to that vector, in which we will have the

ordinary inner product between two different vectors.

C.2 The Concepts of Connection, Covariant

Derivative and Parallel Transport

Now suppose we have a Riemannian manifoldM equipped with a Riemannian

metric g, with a neighborhood U ⊂ M which contains p ∈ M such that the

coordinate system in this neighborhood is {xµ}. If in this manifold there

exists a vector field V ∈ χM , then the component of this vector in the

neighborhood U is V = V µ∂/∂xµ = V µeµ. What if we differentiate this

vector in a direction of xν? It has no problem when the manifold is flat,

but since we are working on the general case, we must remember that the

coordinate system in another neigborhood adjacent to U is different with U .

Then, what we can do at best is

∂νV = ∂ν(V
µeµ) = (∂νV

µ)eµ + V µ(∂νeµ) (C.12)

The first term on the RHS of equation above is what we expect to get if the

manifold is flat. But the second term is rather strange. Indeed, we don’t omit

it from the equation because it doesn’t vanish. The nonvanishing property

of term ∂νeµ tells us that the basis vectors are not constant throughout the

manifold. Intuitively the gradient of basis vectors doesn’t lie intrinsically

in the manifold; if we embbed the manifold in some other familiar spaces

like a Euclidean, then there will be a component of this gradient which is

orthogonal out of the manifold. We don’t talk about the complete vector of

gradient of basis vectors, but we only work with its parallel component which

lies along the manifold, since the direction out of manifold is not its intrinsic

property because it really depends on how we embbed the manifold. Since

the component parallel with the local manifold is also a vector, then we can

describe it as the linear superposition of the basis vectors,

∂νeµ = Γλνµeλ (C.13)
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such that now we will get

∇νV ≡ ∂νV = (∂νV
µ + V ρΓµνρ)eµ (C.14)

where we will call it as the covariant derivative, which reminds us that it

is the proper derivative in the manifold, hence it will be provided the new

symbol ∇ to differ with our ordinary differentiation in the flat space.

Since it is the differentiation along the direction of xν , which means the

direction of eν , the symbol ∇νV can also be written as ∇eνV . It really helps

us to formulate the differentiation of a vector along the direction of a vector

field, say X = Xµ∂/∂xµ, instead of only one direction of the basis vector.

Then obviously for this general case we will have

∇XV = ∇(Xνeν)V = Xν∇eνV (C.15)

and by inserting the previous result for ∇eνV , it yields

∇XV = Xν(∂νV
µ + V ρΓµνρ)eµ (C.16)

The operator ∇ above is called the affine connection, and it is indeed a

mapping ∇ : χM × χM → χM , which has the properties

∇X(Y + Z) = ∇XY +∇XZ (C.17)

∇(X+Y )Z = ∇XZ +∇YZ (C.18)

∇(fX)Y = f∇XY (C.19)

∇X(fY ) = X[f ]Y + f∇XY (C.20)

for a function f ∈ FM and X, Y, Z ∈ TM . These properties can be checked

directly from the defining equation (C.16).

We can view the equation (C.16) just like what ordinary differentiation

means; it tells us about the change of the vector field V when we move

along the integral curve of the vector field X. Notice that it doesn’t mean to

bring or translate a single vector V along that curve, but we do compare the

two different vectors in different points in the curve where those two vectors

belong to the vector field V . If the covariant derivative of V along the integral
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curve of X is zero, then we call that the vector field V is parallel transported

along the integral curve of X, where the name is suggested from the fact

that the vectors of V in two different points along the curve is parallel. The

equation which defines this parallel transport is

dV µ

dt
+ Γµνρ

dxν

dt
V ρ = 0 (C.21)

where we have used the tangentiality condition for X, i.e. X = d/dt =

(dxν/dt)eν . Moreover, if we set V = X in equation (C.21) above, we will get

d2xµ

dt2
+ Γµνρ

dxν

dt

dxρ

dt
= 0 (C.22)

The curve xµ(t) which satisfies the equation (C.22) is called geodesic. It tells

us that in geodesic, the tangential vectors in every points along this curve

point to the same direction, hence it will be the candidate for the straightest

curve in the curved manifold. By using the calculus of variation, we can also

show that the curve which has the shortest length between any two points

in the manifold is this geodesic defined by equation (C.22), and therefore

we can state safely that the generalization of straight line in the flat space

to the curved manifold is the geodesic, where both of them share the same

properties: they are the straightest and the shortest paths which connect any

two points in the space. We also can show easily that the equation (C.22)

above will be reduced to the one which characterizes the straight line in the

flat space,
d2xµ

dt2
= 0 (C.23)

where we have noted that Γµνρ, being the component of the gradient of basis

vectors in the manifold, should be zero in the flat space.

The covariant derivative can be applied to a case of function on the ma-

nifold. If we have f ∈ FM , then its covariant derivative along the integral

curve of the vector field X is

∇Xf = X[f ] (C.24)

such that if we have a vector field V , the covariant derivative of fV is

∇X(fV ) = X[f ]V + f∇XV (C.25)
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where it is similar with the Leibniz rule for the differentiation of the product

functions. Then, if we set f = 〈ω, V 〉 for a dual vector ω ∈ T ∗pM , we have

∇X〈ω, V 〉 = X[〈ω, V 〉] = 〈∇Xω, V 〉+ 〈ω,∇XV 〉 (C.26)

If we write the components of the equations above, we will have

Xµ((∂µων)V
ν+ων(∂µV

µ)) = (∇Xω)µV
µ+ωµX

ν∂νV
µ+ωµX

νV ρΓµνρ (C.27)

and it yields

(∇Xω)µ = Xν(∂νωµ − ωρΓρνµ) (C.28)

Therefore, we get the complete description for the covariant derivative of

dual vector ω,

∇Xω = Xν(∂νωµ − ωρΓρνµ)dxµ (C.29)

Notice that the appearance of the second term in the RHS of above equa-

tion is due to the nonvanishing property of the gradient of basis of dual

vectors in M . Namely, since

∇eνω = ∇νω = ∂νωµdx
µ + ωµ∂νdx

µ (C.30)

where dxµ should be considered as the basis of dual vectors, not the infinites-

imal length or the difference between two values of coordinates. From this

point we can see that ∂νdx
µ must satisfy

∂νdx
µ = −Γµνλdx

λ (C.31)

which is analog with the case of basis of vectors.

For any tensors T1, T2 ∈ T M , we require that

∇X(T1 ⊗ T2) = (∇XT1)⊗ T2 + T1 ⊗ (∇XT2) (C.32)

and the generalization for the case of tensor is rather straighforward. As an

example, the covariant derivative of metric g is

(∇λg)µν = ∂λgµν − gρνΓρλµ − gµρΓρλν (C.33)
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C.3 Connection Coefficient, Metric and Levi-

Civita Connections

We will call Γµνρ as the connection coefficient. It is an object that has indices,

but actually it is not a tensor. Recall that if an object T of the same type with

this connection coefficient has a component T µνρ in the coordinate system

{xµ} and T ′µνρ in {x′µ}, then

T ′µνρ =
∂x′µ

∂xα
∂xβ

∂x′ν
∂xω

∂x′ρ
Tαβω (C.34)

then T is a tensor. Therefore, we need to check the transformation property

of the connection coeeficient if we change the coordinate system.

In the coordinate system {x′µ}, the gradient of basis vectors fµ ≡ ∂/∂x′µ

can be stated as
∂

∂x′ν
fµ = Γ′λνµfλ (C.35)

where Γ′λνµ is the connection coefficient in this prime coordinate. Since

∂

∂x′ν
fµ =

∂

∂x′ν

( ∂xα
∂x′µ

eα

)
=

∂2xα

∂x′νx′µ
eα +

∂xα

∂x′µ
∂xβ

∂x′ν
∂

∂xβ
eα (C.36)

then it implies

Γ′λνµfλ =
∂2xα

∂x′νx′µ
eα +

∂xα

∂x′µ
∂xβ

∂x′ν
∂

∂xβ
eα

Γ′λνµ
∂xα

∂x′λ
eα =

( ∂2xα

∂x′νx′µ
+
∂xω

∂x′µ
∂xβ

∂x′ν
Γαβω

)
eα

Γ′λνµ =
∂x′λ

∂xα
∂2xα

∂x′νx′µ
+
∂x′λ

∂xα
∂xβ

∂x′ν
∂xω

∂x′µ
Γαβω (C.37)

The appearance of the first term in the RHS of equation above makes the

connection coefficient failed to be a tensor.

Now we want to put a restriction for our form of connection coefficient.

If we parallel transport the two vectors V and W along the integral curve of

X, where V,W,X ∈ TM , then we require that the inner product between V

and W doesn’t change along the transportation. Precisely,

0 = ∇X(g(V,W )) = (∇Xg)(V,W ) + g(∇XV,W ) + g(V,∇XW )

= Xλ(∇λg)µνV
µW ν (C.38)
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where we have used the fact that our vectors V and W are parallel trans-

ported, ∇XV = ∇XW = 0. Therefore, the covariant derivative of metric g

is zero,

(∇λg)µν = 0 (C.39)

If the connection ∇ satisfies the equation (C.39) above, then it is called the

metric connection. From equation (C.33) we can write

∂λgµν − gρνΓρλµ − gµρΓρλν = 0 (C.40)

By cycling the indices, we have

∂µgνλ − gρλΓρµν − gνρΓρµλ = 0 (C.41)

∂νgλµ − gρµΓρνλ − gλρΓρνµ = 0 (C.42)

such that −(C.40) + (C.41) + (C.42) yields

−∂λgµν + ∂µgνλ + ∂νgλµ + gρνT
ρ
λµ + gρµT

ρ
λν − 2gρλΓ

λ
(µν) = 0 (C.43)

where we have defined

T ρλµ ≡ Γρλµ − Γρµλ (C.44)

Γρ(µν) ≡
1

2

(
Γρµν + Γρνµ

)
(C.45)

The quantity T ρλµ is called the torsion tensor, and it is indeed a tensor, which

can be proved easily by using the transformation property of connection

coefficient (C.37).

The description for Γρ(µν) can be obtained easily,

Γρ(µν) =

{
ρ
µν

}
+

1

2
(Tν

ρ
µ + Tµ

ρ
ν) (C.46)

where we have defined the Christoffel symbol as{
ρ
µν

}
≡ 1

2
gρλ(∂µgνλ + ∂νgµλ − ∂λgµν) (C.47)

Now we can calculate the formula for the connection coefficient

Γρµν = Γρ(µν) +
1

2
T ρµν (C.48)

=

{
ρ
µν

}
+Kρ

µν (C.49)
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The quantity Kρ
µν is called the contorsion, defined as

Kρ
µν ≡

1

2
(T ρµν + Tν

ρ
µ + Tµ

ρ
ν) (C.50)

It is obviously a tensor.

There is an interesting fact about this matter. If we have a Riemannian

metric M equipped with a Riemannian metric g with its covariant derivative

is zero and the torsion tensor T vanishes, i.e. Γρµν = Γρνµ, then the con-

nection ∇ is called the Levi-Civita connection. A well-known theorem states

that for any Riemannian manifold in which these conditions hold except the

vanishing of torsion tensor, then there exists uniquely a Levi-Civita connec-

tion. It comes from the fact that if we are given the connection coefficient

Γρµν , then the quantity

Γ′ρµν = Γρµν + Sρµν (C.51)

is also a connection coefficient if S is tensor. Then by choosing Sρµν to be

Sρµν = −Kρ
µν (C.52)

we can see that from equation (C.49) the connection coefficient Γ′ρµν now

becomes

Γ′ρµν =

{
ρ
µν

}
(C.53)

where it is obviously the connection coefficient of the Levi-Civita connection.

C.4 Torsion and Curvature Tensors

We have talked so far about the properties which differ the curved manifold

with the flat one, such as whether the connection coefficient vanishes or not,

but we still don’t have the intrinsic mechanicsm which allows us to determine

the curvature of manifold, in the sense that this mechanics must not rely

on the coordinate system heavily. The nonvanishing connection coefficient

cannot provide these requirements for us for two reasons. First, because it

depends on how we make the system of coordinate basis vectors over the

manifold and it ends up with how we choose the coordinate system. And

second, because it cannot tell us how much the curvature of some region of
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a manifold. In this subsection we will discuss about the properties of torsion

tensor and some curvature tensors. We also discuss the torsion tensor here

because its geometrical meaning is as important as the curvature tensors.

Here, we will talk about torsion tensor first before attacking the curvature

tensors because of the former is simpler than the latter.

The torsion tensor T : χM × χM → χM is defined as

T (X, Y ) = ∇XY −∇YX − [X, Y ] (C.54)

for the vector fields X, Y ∈ χM . Componentwise, it is described as

T λµνeλ = T (eµ, eν) = ∇µeν −∇νeµ − [eµ, eν ]

= (Γλµν − Γλνµ)eλ (C.55)

such that we have

T λµν = Γλµν − Γλνµ (C.56)

Therefore, torsion tensor measures how much we differ from the symmetric

property of connection coefficient in the Levi-Civita case. If T λµν = 0, then

the manifold is called torsionless manifold.

If we have three points p, q, r ∈ M with their coordinates {xµ}, {xµ +

δµ} and {xµ + εµ} respectively, with δµ, εµ � for all µ. If we construct

the vectors X = δµeµ and Y = εµeµ such that X (Y ) is the vector which

connects the point p to q (r). If we parallel transport the vector X (Y ) along

the infinitesimal line pr (pq), then the component of vector X (Y ) becomes

δµ − δλενΓµνλ (εµ − ενδλΓµλν). This transported vector of X (Y ) connects

a point r (q) to a new point s1 (s2), such that we have the vector which

connects points p and s1 (p and s2) is pr + rs1 (pq + qs2), i.e.

pr + rs1 = εµ + δµ − δλενΓµνλ (C.57)

pq + qs2 = δµ + εµ − ενδλΓµλν (C.58)

The difference between the vectors ps1 and ps2 is

δλεν(Γµλν − Γµνλ) (C.59)
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where we notice that the term inside the parenthesis is the torsion tensor

T µλν . Hence, if the torsion tensor vanishes, then the parallelogram made of

small displacement vectors and their parallel transport is closed.

The first curvature tensor I want to discuss is the Riemann curvature

tensor R : χM × χM × χM → χM . It is defined as

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z (C.60)

for X, Y, Z ∈ χM . The component of Riemann tensor is described as

Rλ
µνσeλ = ∇ν∇σeµ −∇σ∇νeµ −∇[eν ,eσ ]eµ (C.61)

= (∂νΓ
λ
σµ − ∂σΓλνµ + ΓωσµΓλνω − ΓωνµΓλσω)eλ (C.62)

such that we have

Rλ
µνσ = ∂νΓ

λ
σµ − ∂σΓλνµ + ΓωσµΓλνω − ΓωνµΓλσω (C.63)

The geometrical meaning of Riemann tensor is about the difference of two

vectors after they are parallel transported from the same vector along two

different paths. Suppose we have four points p, q, r, s which have coordinates

{xµ}, {xµ + δµ}, {xµ + εµ} and {xµ + δµ + εµ} respectively. If we have a

vector V ∈ TpM , then after parallel transport to point s along the path pqs,

this vector has the form

V µ − V κδνΓµνκ − V κενΓµνκ − V κελδν(∂νΓ
µ
λκ − ΓωνκΓ

µ
λω) (C.64)

and similarly for the path prs,

V µ − V κενΓµνκ − V κδνΓµνκ − V κελδν(∂λΓ
µ
νκ − ΓωλκΓ

µ
νω) (C.65)

where we omit the terms larger than second order in δ and ε. The difference

between these two vectors is

V κελδν(∂λΓ
µ
νκ − ∂νΓµλκ + ΓωνκΓ

µ
λω − ΓωλκΓ

µ
λω) (C.66)

and again, we can identify the term in parenthesis as the Riemann tensor

Rµ
κλν .
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The Ricci curvature tensor is defined as

Ric(X, Y ) ≡ 〈dxµ, R(eµ, Y )X〉 (C.67)

and its component is

Rµν = Ric(eµ, eν) = Rλ
µλν (C.68)

such that we can form the Ricci scalar curvature, defined as the contraction

of Ricci curvature tensor with the metric,

R = gµνRµν (C.69)
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