

PERANCANGAN KABIN PENGEMUDI KENDARAAN TEMPUR KANON YANG ERGONOMIS DALAM MODEL VIRTUAL ENVIRONMENT

SKRIPSI

MUHAMMAD FAROUK AKBAR 0706274874

FAKULTAS TEKNIK PROGRAM TEKNIK INDUSTRI DEPOK JUNI 2011

PERANCANGAN KABIN PENGEMUDI KENDARAAN TEMPUR KANON YANG ERGONOMIS DALAM MODEL VIRTUAL ENVIRONMENT

SKRIPSI

Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik

MUHAMMAD FAROUK AKBAR 0706274874

FAKULTAS TEKNIK PROGRAM TEKNIK INDUSTRI DEPOK JUNI 2011

HALAMAN PERNYATAAN ORISINALITAS

Skripsi ini adalah hasil karya saya sendiri, dan semua sumber baik yang dikutip maupun yang dirujuk telah saya nyatakan dengan benar

Nama : Muhammad Farouk Akbar

NPM : 0706274874

Tanda tangan : Van

Tanggal: 14 Juni 2011

HALAMAN PENGESAHAN

Skripsi ini diajukan oleh

Nama

Muhammad Farouk Akbar

NPM

0706274874

Program Studi

Teknik Industri

Judul Skripsi

Teknik industri

Perancangan Kabin Pengemudi Kendaraan

Tempur Kanon yang Ergonomis dalam Model

Virtual Environment

Telah berhasil dipertahankan di hadapan Dewan Penguji dan diterima sebagai bagian persyaratan yang diperlukan untuk memperoleh gelar Sarjana Teknik pada Program Studi Teknik Industri, Fakultas Teknik, Universitas Indonesia.

DEWAN PENGUJI

Pembimbing: Armand Omar Moeis, S.T., M.Sc

Penguji : Ir. Boy Nurtjahyo Moch., MSIE

Penguji : Ir. Erlinda Muslim, MEE

Penguji : Dr. –Ing. Amalia Suzianti

Ditetapkan di : Depok

Tanggal : Juni 2011

HALAMAN PERNYATAAN PERSETUJUAN PUBLIKASI TUGAS AKHIR UNTUK KEPENTINGAN AKADEMIS

Sebagai sitivitas akademik Universitas Indonesia, saya yang bertanda tangan di bawah ini:

Nama

: Muhammad Farouk Akbar

NPM

: 0706274874

Program Studi: Teknik Industri

Departemen : Teknik Industri

Fakultas

: Teknik

Jenis Karya

: Skripsi

Demi pengembangan ilmu pengetahuan, menyetujui untuk memberikan kepada Universitas Indonesia Hak Bebas Royalti Noneksklusif (Non-exclusive Royalty-Free Right) atas karya ilmiah saya yang berjudul:

Perancangan Kabin Pengemudi Kendaraan Tempur Kanon yang Ergonomis dalam Model Virtual Environment

beserta perangkat yang ada (jika diperlukan). Dengan Hak Bebas Royalti Noneksklusif ini Universitas Indonesia berhak menyimpan, mengalih media/formatkan, mengelola dalam bentuk pangkalan data (database), merawat dan mempublikasikan tugas akhir saya selama tetap mencantumkan nama saya sebagai penulis/pencipta dan sebagai pemilik Hak Cipta.

Demikian pernyataan ini saya buat dengan sebenarnya.

Dibuat di : Depok

Pada tanggal:

Juni 2011

Yang Menyatakan

(Muhammad Farouk Akbar)

Universitas Indonesia

KATA PENGANTAR

Puji syukur penulis panjatkan kepada Tuhan Yang Maha Esa atas rahmat dan karunia-Nya yang senantiasa menuntun Penulis untuk menyelesaikan skripsi ini dengan baik dan tepat pada waktunya.

Penulis menyadari bahwa skripsi ini dapat terselesaikan dengan baik dengan kerja sama, bantuan, dan dorongan dari berbagai pihak. Untuk itu, penulis menngucapkan terima kasih kepada:

- 1. Bapak Armand Omar Moeis ST, MSc, selaku dosen pembimbing skripsi. Terima kasih atas segala yang telah bapak berikan, baik itu berupa motivasi, arahan, saran, do'a, bimbingan akademis, dan bimbingan hidup kepada penulis. Semoga Allah SWT membalas segala kebaikan bapak dengan kebaikan yang lebih banyak.
- 2. Ir. Boy Nurtjahyo Moch., MSIE dan Ir. Erlinda Muslim, MEE., selaku dosen pembimbing ergonomi yang telah begitu banyak menyediakan waktu, tenaga, pikiran, dan kesabarannya yang luar biasa untuk mengarahkan penulis dalam penelitian ini.
- 3. Ir. Isti Surjandari, P.Hd, selaku pembimbing akademis yang telah memberikan masukan selama penulis menjalani proses akademik di Teknik Industri Universitas Indonesia
- 4. Bapak Sena Maulana selaku pembimbing penulis ketika melakukan pengumpulan data desain kendaraan tempur panser kanon di PT. Pindad Persero.
- 5. Kepada Pangdam Jasa beserta staf di Kodam Jaya yang telah membantu dalam perizinan pengambilan data di Yonif Mekanis 201
- 6. Letnan Sinaga, Letnan Kahfi, serta Letnan Wayan sebagai pembimbing penulis ketika melakukan pengumpulan data antropometri personil Tentara Nasional Indonesia.
- 7. Personil Tentara Nasional Indonesia (TNI) Yonif Mekanis 201 yang bersedia meluangkan waktunya untuk menjadi responden pengambilan data antropometri

- 8. Keluarga tercinta, ayah, ibu, dan kakak-kakakku yang tercinta, atas seluruh perhatian, semangat dan kasih sayangnya yang tanpa batas, dimana tanpanya penulis tidak mungkin mencapai tahap seperti sekarang ini.
- 9. Andrea Coudillo, Ivan Gunawan Sihombing, R Yoga Prawairanegara dan Dela Agung Septriadi, sebagai teman tim skripsi ergonomi pada kendaraan tempur yang bersama-sama dalam suka dan duka menjalani penelitian ini.
- 10. Sahabat-sahabat saya Djati Permono Hadi, Akhmad Robanni, Abdul Salam, Agus Putra, Taufik Wahyu Hidayat, Wira Winardi yang telah memberikan kehidupan yang begitu berharga pada penulis.
- 11. Seluruh karyawan Departemen Teknik Industri terutama Mas Achiel, Mas Topan, Mas Latief, Pak Mursyid, dan Mas Iwan atas kesediaannya membantu penulis di Ergonomic Center hingga malam dan bahkan di akhir pekan.
- 12. Rekan-rekan Teknik Industri angkatan 2007 yang menjadikan proses akademik penulis selama 4 tahun ini tidak membosankan.
- 13. Pihak-pihak yang tidak bisa saya sebutkan satu-persatu di sini.

Akhir kata, penulis berharap Allah SWT membalas segala kebaikan semua pihak yang telah banyak membantu penulis selama ini. Saya menyadari bahwa masih banyak kekurangan di dalam skripsi ini. Kritik dan saran yang membangun sangat saya harapkan. Semoga skripsi ini dapat memberikan manfaat bagi pembacanya.

Depok 14 Juni 2011 Penulis

DAFTAR ISI

HALAM	AN JUDUL	i
	AN PERNYATAAN ORISINALITAS	
	AN PENGESAHAN	
	ENGANTAR	
	AN PRNYATAAN PERSETUJUAN PUBLIKASI TUGAS AKI KEPENTINGAN AKADEMIS	
	.K	
ABSTRA	.CT	vii
	R ISI	
	R GAMBAR	
	R TABEL	
	DAHULUANLatar Belakang	
	Diagram Keterkaitan Masalah	
	Rumusan Masalah	
	Tujuan Penelitian	
	Batasan Masalah	
1.5	Metodologi	
	Sistematika Penulisan	
	DASAN TEORI	
	Ergonomi	
	Work-Related Muskuloskeletal Disorder (WMSD)	
2.3	Antropometri	
2.3.1	· · · · · · · · · · · · · · · · · · ·	
2.3.2		
2.3.3	Data Antropometri	17
2.3.4	Aplikasi Data Antropometri Dalam Perancangan	19
2.4	Postur Duduk	20
2.4.1	Permasalahan Pada Tulang Punggung	20
2.4.2	Penglihatan, Postur Leher dan Kepala	22
2.5	Virtual Environment	24
2.6	Software Siemens Jack 6.1	27
2.6.1	Pendahuluan Mengenai Jack	27
2.6.2	Jack Task Analysis Toolkit	29
2.7	Static Strength Prediction (SSP)	31
2.8	Low Back Analysis (LBA)	33
	Ovako Working Posture Analysis (OWAS)	

2	2.10 1	Rapid Upper Limb Assessment (RULA)	37
2	2.11	Metode Posture Evaluation Index (PEI)	39
	2.11.	Fase Pertama: Analisis terhadap Lingkungan Kerja	40
	2.11.	2 Fase Kedua: Analisis Keterjangkauan dan Aksesibilitas	40
	2.11.	Fase Ketiga: Static Strength Prediction	41
	2.11.	Fase Keempat: Low Back Analysis	41
	2.11.	Fase Kelima: Ovako Working Posture Analysis	41
	2.11.	1 11	
	2.11.		42
2	2.12 1	Kendaraan Tempur Lapis Baja	43
	2.12.	1 Panser APC	43
	2.12.		
	2.12.	Panser Ambulan	45
	2.12.		
	2.12.	5 Panser Logistik	46
	2.12.	5 Panser Mortar	46
	2.12.	7 Kendaraan Intai	47
	2.12.	8 Panser Kanon	47
3.		GUMPULAN DAN PENGOLAHAN DATA	
	3.1	Pengumpulan Data	11
100	3.1.1 Kano	Data Spesifikasi Kabin Pengemudi Kendaraan Tempur Panser n 11	
	3.1.2		
-	3.2	Pengolahan Data	55
	3.2.1	Pembuatan Virtual Environment	56
	3.2.2	Pembuatan Virtual Human Modeling	57
	3.2.3	Pembuatan Postur Pengemudi	60
	3.2.4	Menganalisis Kinerja Virtual Human Model	63
	3.2.5	Perhitungan Nilai Posture Evaluation Index (PEI)	68
-	3.3	Perancangan Konfigurasi Model	69
	3.3.1	Perancangan Konfigurasi Tuas Kemudi	70
	3.3.2	Perancangan Konfigurasi Sudut Kursi	71
	3.3.3	Perancangan Konfigurasi Kemiringan Kursi	71
4.	ANA	LISIS	50
4	4.1	Analisis Desain Rencana Awal Kabin Pengemudi Panser Kanon	50
_	4.2	Analisis Usulan Konfigurasi	81

4.2.1	Analisis Usulan Rancangan Konfigurasi 2		82
4.2.2	Analisis Usulan Rancangan Konfigurasi 3		83
4.2.3	Analisis Usulan Rancangan Konfigurasi 4		85
4.2.4	Analisis Usulan Rancangan Konfigurasi 5		87
4.2.5	Analisis Usulan Rancangan Konfigurasi 6		89
4.2.6	Analisis Usulan Rancangan Konfigurasi 7		91
4.2.7	Analisis Usulan Rancangan Konfigurasi 8		93
4.2.8	Analisis Usulan Rancangan Konfigurasi 9		95
4.3 Ana	alisis Perbandingan		97
5. KESIM	PULAN DAN SARAN		72
5.1 Kes	simpulan		72
5.2 Sar	an		103
6. DAFTA	AR REFERENSI	<u> </u>	104

DAFTAR GAMBAR

Gambar 1.1 Desain Awal Ruang Kabin Pengemudi	1
Gambar 1.2 Diagram Keterkaitan Masalah	4
Gambar 1.3 Diagram Alir Metodologi Penelitian	8
Gambar 2.1 Model Konseptual WMSD	13
Gambar 2.2 Perbedaan Tinggi Tubuh Manusia Dalam Posisi Berdiri Tegak Un	ıtuk
Berbagai Suku Bangsa	17
Gambar 2.3 Data Antropometri Struktural	18
Gambar 2.4 Data Antropometri Fungsional	19
Gambar 2.5 Efek Posisi Duduk Terhadap Pelvis	21
Gambar 2.6 Bagian Lumbar Vertebrata (kiri) Deformasi Pada Diskus Invertebrata	ralis
(kanan)	22
Gambar 2.7 Pandangan Mata (kiri) Tekanan Otot Leher (kanan)	23
Gambar 2.8 Kubus Zelter untuk Konsep Virtual Reality	25
Gambar 2.9 Lingkungan pada Jack	28
Gambar 2.10 Manekin Pria (Jack) dan Wanita (Jill) pada Jack	29
Gambar 2.11 Model Biomekanika Prediksi Beban dan Gaya Persendian	32
Gambar 2.12 Model Kode OWAS	35
Gambar 2.13 Klasifikasi Postur Punggung dalam Metode OWAS	
Gambar 2.14 Klasifikasi Postur Tungkai Bagian Tubuh Atas dalam Metode	
OWAS	36
Gambar 2.15 Klasifikasi Postur Tungkai Bagian Tubuh Atas dalam Metode	
OWAS	37
Gambar 2.16 Contoh Lembar Kerja RULA	39
Gambar 2.17 Diagram Alir Metode PEI	40
Gambar 2.18 Panser Tipe APC (Armoured Personnel Carrier)	44
Gambar 2.19 Panser Tipe Komando	44
Gambar 2.20 Panser Tipe Ambulan	45
Gambar 2.21 Panser Tipe Recovery	45
Gambar 2.22 Panser Tipe Logistik	46
Gambar 2.23 Panser Tipe Mortar	47
Gambar 2.24 Kendaraan Lapis Baja Intai	47
Gambar 2.25 Kendaraan Tempur Panser Kanon	48
Gambar 3.1 Model Virtual Ruang Kabin yang Tersedia	
Gambar 3.2 Model Virtual Kursi Pengemudi	52
Gambar 3.3 Model Virtual Gas dan Rem	53
Gambar 3.4 Model Virtual Tuas Kemudi	53
Gambar 3.5 Diagram Alir Pengolahan Data	56
Gambar 3.6 Model Kabin Pengemudi Panser Kanon	
Gambar 3.7 Command untuk pembuatan Model Manusia Virtual	
Gambar 3.8 Tampilan Modul <i>Build Human</i>	
Gambar 3.9 Tampilan Modul Advance Scaling Build Human	
Gambar 3.10 Tampilan Modul Loads and Weights	60
Gambar 3.11 Tampilan Modul Human Control	
Gambar 3.12 Tampilan Modul Asjust Joint	
Gambar 3.13 Hasil Pembuatan Model Duduk Pada Kabin Pengemudi	62

Gambar 3.14 Hasil Analisis SSP Konfigurasi 1 pada Persentil 5	64
Gambar 3.15 Hasil Analisis SSP Konfigurasi 1 pada Persentil 95	64
Gambar 3.16 Hasil Analisis LBA Konfigurasi 1 pada Persentil 5	65
Gambar 3.17 Hasil Analisis LBA Konfigurasi 1 pada Persentil 95	65
Gambar 3.18 Hasil Analisis OWAS Konfigurasi 1 pada Persentil 5	66
Gambar 3.19 Hasil Analisis OWAS Konfigurasi 1 pada Persentil 95	
Gambar 3.20 Hasil Analisis RULA Konfigurasi 1 pada Persentil 5	67
Gambar 3.21 Hasil Analisis RULA Konfigurasi 1 pada Persentil 95	68
Gambar 4.1 Postur Model Manusia Persentil 5 pada Desain Rencana Awal	Kabin
Pengemudi Panser Kanon	50
Gambar 4.2 Postur Model Manusia Persentil 95 pada Desain Rencana Awa	
Pengemudi Panser Kanon	
Gambar 4.3 Grafik SSP Konfigurasi 1 pada Persentil 5	
Gambar 4.4 Grafik SSP Konfigurasi 1 pada Persentil 95	74
Gambar 4.5 Grafik LBA Konfigurasi 1 pada Persentil 5	
Gambar 4.6 Grafik LBA Konfigurasi 1 pada Persentil9 5	76
Gambar 4.7 Grafik OWAS Konfigurasi 1 pada Persentil 5	77
Gambar 4.8 Grafik OWAS Konfigurasi 1 pada Persentil 95	77
Gambar 4.9 Grafik RULA Konfigurasi 1 pada Persentil 5	78
Gambar 4.10 Grafik RULA Konfigurasi 1 pada Persentil 95	
Gambar 4.11 Usulan Rancangan Konfigurasi 2 pada Persentil 5	
Gambar 4.12 Usulan Rancangan Konfigurasi 2 pada Persentil 95	82
Gambar 4.13 Usulan Rancangan Konfigurasi 3 pada Persentil 5	84
Gambar 4.14 Usulan Rancangan Konfigurasi 3 pada Persentil 95	84
Gambar 4.15 Usulan Rancangan Konfigurasi 4 pada Persentil 5	86
Gambar 4.16 Usulan Rancangan Konfigurasi 4 pada Persentil 95	86
Gambar 4.17 Usulan Rancangan Konfigurasi 5 pada Persentil 5	
Gambar 4.18 Usulan Rancangan Konfigurasi 5 pada Persentil 95	
Gambar 4.19 Usulan Rancangan Konfigurasi 6 pada Persentil 5	90
Gambar 4.20 Usulan Rancangan Konfigurasi 6 pada Persentil 95	90
Gambar 4.21 Usulan Rancangan Konfigurasi 7 pada Persentil 5	
Gambar 4.22 Usulan Rancangan Konfigurasi 7 pada Persentil 95	
Gambar 4.23 Usulan Rancangan Konfigurasi 8 pada Persentil 5	94
Gambar 4.24 Usulan Rancangan Konfigurasi 8 pada Persentil 95	94
Gambar 4.25 Usulan Rancangan Konfigurasi 9 pada Persentil 5	96
Gambar 4.26 Usulan Rancangan Konfigurasi 9 pada Persentil 95	96
Gambar 4.27 Grafik Perbandingan Nilai RULA Seluruh Konfigurasi	
Gambar 4.28 Grafik Perbandingan Nilai OWAS Seluruh Konfigurasi	
Gambar 4.29 Grafik Perbandingan Nilai LBA Seluruh Konfigurasi	
Gambar 4.30 Grafik Perbandingan Nilai PEI Seluruh Konfigurasi	101

DAFTAR TABEL

Tabel 2.1 Detail Usulan Berdasarkan Skor OWAS	37
Tabel 2.2 Target Spesifikasi Desain	49
Tabel 3.1 Rekapitulasi Data Antropometri Personil Yonif Mekanis 201	55
Tabel 3.2 Konfigurasi Desain yang Akan Dibuat	70
Tabel 4.1 Rekapitulasi Kapabilitas SSP Konfigurasi 1 pada Persentil 5	75
Tabel 4.2 Rekapitulasi Kapabilitas SSP Konfigurasi 1 pada Persentil 95	75
Tabel 4.3 Rekapitulasi Perhitungan PEI Konfigurasi 1	81
Tabel 4.4 Rekapitulasi Perhitungan PEI Konfigurasi 2	83
Tabel 4.5 Rekapitulasi Perhitungan PEI Konfigurasi 3	85
Tabel 4.6 Rekapitulasi Perhitungan PEI Konfigurasi 4	87
Tabel 4.7 Rekapitulasi Perhitungan PEI Konfigurasi 5	89
Tabel 4.8 Rekapitulasi Perhitungan PEI Konfigurasi 6	91
Tabel 4.9 Rekapitulasi Perhitungan PEI Konfigurasi 7	93
Tabel 4.10 Rekapitulasi Perhitungan PEI Konfigurasi 8	95
Tabel 4.11 Rekapitulasi Perhitungan PEI Konfigurasi 9	97

ABSTRAK

Nama : Muhammad Farouk Akbar

Program Studi: Teknik Industri

Judul Skripsi : Perancangan Kabin Pengemudi Kendaraan Tempur Kanon yang

Ergonomis dalam Model Virtual Environment

Penelitian ini mengkaji aspek ergonomis pada desain kabin pengemudi panser kanon dalam *Virtual Environment*. Tujuannya adalah mengevaluasi desain awal kabin pengemudi dan menentukan konfigurasi paling ergonomis ditinjau dari sudut tuas kemudi, sudut kursi, dan kemiringan kursi. Dihasilkan 9 buah konfigurasi yang akan dianalisis. Analisa postur menggunakan *software* Jack 6.1. Pendekatan yang digunakan adalah *Posture Evaluation Index* (PEI) yang mengintegrasikan analisis dari tiga metode analisis: *Low Back Analysis, Ovako Working Posture Analysis*, dan *Rapid Upper Limb Assessment*. Hasil penelitian ini yaitu usulan konfigurasi dengan sudut tuas kemudi 45°, sudut kursi 105°, dan kemiringan kursi 15°.

Kata Kunci:

Ergonomi, Virtual Environment, Panser Kanon, Jack 6.1, Posture Evaluation Index

ABSTRACT

Name : Muhammad Farouk Akbar Study Program: Industrial Engineering

Judul Skripsi : Ergonomic Design of Driver's Compartment on Combat Vehicle

Cannon Using Virtual Environment

.

This research studies the ergonomic aspect from driver's compartment of panser cannon in Virtual Environment. The purpose of this project was to evaluated the actual design driver's compartment and determine the most ergonomic configuration that concern at steering wheel angle, chair angle, and chair slope. Jack 6.2.1 was used to analyze posture. Posture Evaluation Index was an approach that integrated the results of these tree methods: Low Back Analysis, Ovako Working Analysis System, and Rapud Upper Limb Analysis. The results are configuration with 45° on steering wheel angle, 105° on chair angle, and 15° on chair slope.

Key words:

Ergonomics, Panser Cannon, Jack 6.1, Posture Evaluation Index,

BAB 1 PENDAHULUAN

1.1 Latar Belakang

Indonesia sebagai salah satu negara kepulauan dan menjunjung tinggi nilainilai perdamaian dalam sejarahnya selalu menekankan arti penting dunia yang
damai. Dengan begitu untuk persoalan penggunaan kekuatan militer Indonesia
lebih ke arah menggunakan kekuatan itu untuk menjaga (*defense* dan *detterence*)
wilayah yang terbentang. Maka dari itu Indonesia membutuhkan infrastruktur dari
segi militer yang kuat untuk dapat mewujudkan perdamaian di dalam
kedaulatannya.

Menurut PT. Pindad Persero salah satu alasan terciptanya proyek kanon dan tank, yang merupakan konsep pengembangan dari kendaraan tempur sebelumnya, adalah dengan adanya Pengarahan Presiden RI 10 oktober. Proyek panser kanon ini pun telah masuk dalam tahap pembuatan prototype di PT. Pindad Persero. Namun berdasarkan desain yang telah ada, terdapat suatu permasalahan dimana karena keterbatasan ruang kabin pengemudi yang dimiliki sehingga bentuk postur yang terjadi pun terbatas. Keterbatasan ruang kabin dapat dilihat pada gambar dibawah ini.

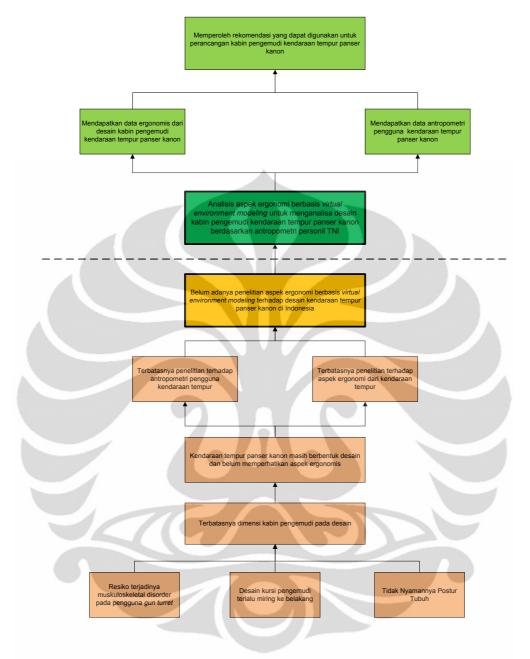
Gambar 1.1 Desain Awal Ruang Kabin Pengemudi

Hubungan antara manusia dengan sistem pada mesin harus diukur dalam pengartian ergonomi. Dari panel kontrol, kursi untuk pengemudi, dan penembak harus berada pada prioritas pertama didalam kajian ergonomi, karena mereka adalah operator yang berada di dalam sistem kedaraan tempur panser kanon sepanjang waktu.

Berdasarkan wawancara langsung dengan desainer yang ada disana, dalam proses pembuatan desain kabin pengemudi pada kendaraan tempur panser kanon penempatan manusia pada desain merupakan hal yang terakhir diperhatikan setelah semua bagian utama (seperti: mesin, rangka mesin, dll) telah di rencanakan. Hal ini tentu saja menjadi salah satu faktor yang dapat menyebabkan kelainan pada tulang atau biasa disebut *muskuloskeletal disorder*.

Keamanan dan kenyamanan pengguna merupakan faktor yang penting dalam desain kendaraan. Kenyamanan dan kinerja dalam berkendara dipengaruhi oleh postur tubuh dalam berkendara, posisi duduk, sudut pandangan, visibilitas, dan ruang untuk sandaran kepala yang tersedia serta dimensi fisik dari pengendara. Desain posisi duduk pada kabin pengemudi yang tidak ergonomis dan tidak sesuai dengan antropometri penggunanya tidak hanya dapat menyebabkan ketidaknyaman, melainkan juga dapat meningkatkan risiko terjadinya cedera dan masalah muskuloskeletal pada penggunanya. Dan seperti yang diketahui sebelumnya bahwa proyek panser kanon masih dalam tahap pembuatan prototype, sehingga belum ada penilitian yang dilaksanakan untuk menkaji aspek ergonomi dari kendaraan tempur panser kanon di Indonesia. Hal inilah yang membuat penulis merasa perlu untuk melakukan penelitian terhadap kendaraan tempur panser kanon.

Kabin pengemudi pada kendaraan tempur panser kanon terdiri dari beberapa poin yang saling berinteraksi satu sama lain. Di dalam kabin pengemudi kita harus mempertimbangkan posisi kursi pengemudi, postur yang terjadi, posisi tuas kemudi, dan posisi pedal gas & rem. Dalam analisis aspek ergonomi dari kursi pengemudi pada kendaraan tempur panser kanon hal tersebut diatas menjadi pertimbangan dalam proses analisisnya. Penilaian aspek ergonomi dilakukan dengan menganalisis evaluasi postur saat orang sedang duduk dengan menggunakan metode *Posture Evaluation Index* (PEI). Metode ini dikembangkan


oleh Francesco Caputo, Prof., Giuseppe Di Gironimo, Ph.D, dan Adelaide Marzano, Ing. dari University of Naples Frederico II, Italia dan bertujuan untuk mengkalkulasi tingkat kenyamanan postur manusia. Postur dalam mengemudikan kendaraan berkaitan dengan kenyamanan dan dapat menunjukkan apakah desain kabin pengemudi sudah ergonomis dan dapat menjamin kenyamanan penggunanya.

Analisis ergonomi dari kursi pengemudi kendaraan tempur panser kanon ini akan dilakukan dengan bantuan software digital human modeling and simulation yang bernama Jack yang tersedia di Ergonomic Centre Teknik Industri Universitas Indonesia. Software Jack digunakan untuk memodelkan dan mensimulasikan interaksi manusia dengan alat kerja yang dipakai dalam sebuah virtual environment. Pada software ini juga telah tersedia Task Analysis Toolkit dan Occupant Packaging Toolkit yang dapat digunakan untuk menganalisis aspek ergonomi dari model pada simulasi yang dijalankan.

Penelitian ini diharapkan dapat mengevaluasi desain dari kursi pengemudi kendaraan tempur panser kanon yang masih dalam tahap pembuatan *prototype* saat ini sudah cukup ergonomis dan sesuai dengan antropometri personel TNI sebagai penggunanya.

1.2 Diagram Keterkaitan Masalah

Diagram keterkaitan masalah dibuat untuk mendapatkan pemahaman yang lebih utuh dan menyeluruh terhadap masing-masing masalah dan keterkaitan yang muncul diantaranya. Berdasarkan latar belakang yang ada di atas dibuat diagram keterkaitan masalah seperti pada gambar 1.2

Gambar 1.2 Diagram Keterkaitan Masalah

1.3 Rumusan Masalah

Berdasarkan latar belakang permasalahan di atas, maka permasalahan yang menjadi fokus penelitian adalah analisa aspek ergonomi dari desain kabin pengemudi pada kendaraan tempur panser kanon terhadap antropometri pengguna berbasis *virtual environment modeling* dengan metode *Posture Evaluation Index*.

1.4 Tujuan Penelitian

Adapun tujuan yang ingin dicapai oleh penulis dalam penelitian ini adalah untuk mendapatkan rekomendasi desain kabin pengemudi pada kendaraan tempu panser kanon yang telah memenuhi standar ergonomi dan dapat memberikan kenyamanan dan keamanan penggunanya.

1.5 Batasan Masalah

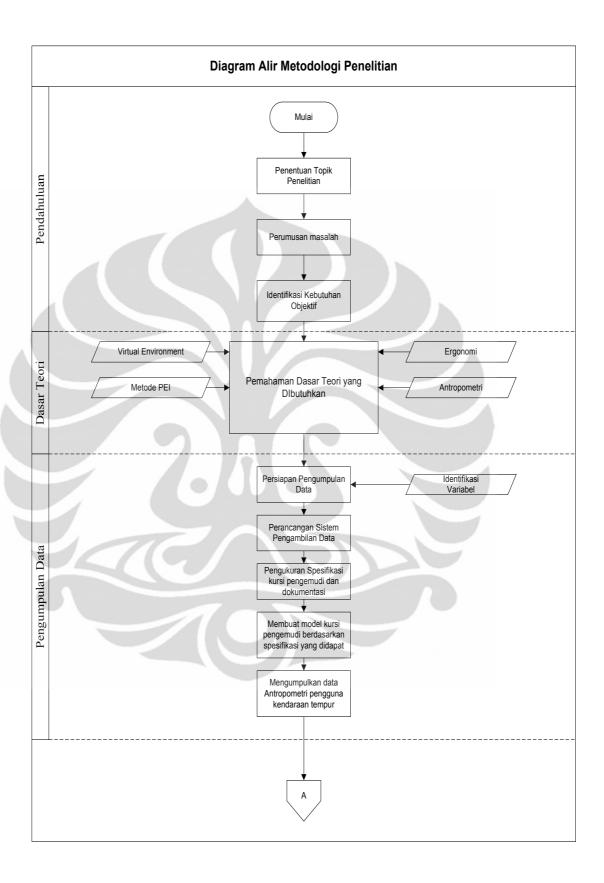
Agar pelaksanaan dan hasil yang akan diperoleh sesuai dengan tujuan penelitian, penulis melakukan pembatasan masalah sebagai berikut.

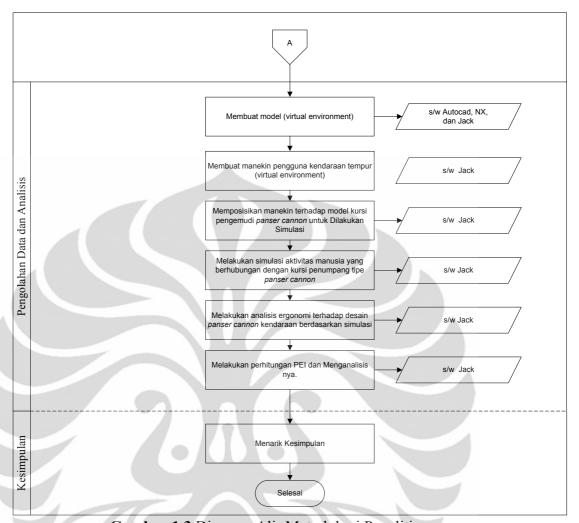
- Objek penelitian adalah desain kendaraan tempur kanon produksi PT. Pindad
- 2. Pengukuran antropometri dilakukan terhadap personil TNI pengguna kendaraan tempur.
- 3. Hasil yang diperoleh dari penelitian berupa rekomendasi desain kabin pengemudi kendaraan tempur kanon yang merupakan analisis dengan metode PEI (*Posture Evaluation Index*) dalam *virtual environment*.
- 4. Desain kabin pengemudi yang direkomendasikan tidak mencantumkan:
 - a. Jenis bahan/ material yang digunakan dalam pembuatan
 - b. Mekanisme pembuatan kabin pengemudi
 - c. Biaya pembuatan kabin pengemudi
- 5. Permodelan dan simulasi menggunakan *software* Jack 6.1 dan NX 6.0

1.6 Metodologi

Secara umum, tahapan-tahapan metodologi dalam penelitian ini adalah sebagai berikut:

1 Pendahuluan


Adapun topik penelitian ini adalah perancangan kabin pengemudi pada panser kanon melalui simulasi model manusia dalam *virtual environment*.


2. Landasan Teori

Setelah menentukan topik penelitian, penulis mencari berbagai jurnal dan buku panduan untuk memahami dasar teori sesuai dengan topik penelitian yang telah ditentukan. Dasar-dasar teori yang dipelajari antara lain

- Dasar-dasar perancangan penelitian
- Ergonomi
- Prinsip penelitian ergonomi dengan virtual environment
- Metode *Posture Evaluation Index*
- Human Articulation in the Automobile Vehicle Accessibility

 Movement
- Spesifikasi militer (milspek)
- Analisis ergonomi dengan LBA, OWAS, dan RULA

Gambar 1.3 Diagram Alir Metodologi Penelitian

3. Persiapan Pengumpulan Data

Pada tahap ini dilakukan identifikasi variabel apa saja yang diperlukan dan bagaimana data akan dikumpulkan.

4. Pengumpulan Data

Pada tahap ini dilakukan pengumpulan data spesifikasi kabin pengemudi kendaraan tempur panser kanon yang telah ada, serta mengumpulkan data antropometri personil TNI sebagai pengguna kendaraan.

5. Pengolahan Data dan Analisis

- Membuat model kabine pengemudi pada kendaraan tempur panser kanon menggunakan software AutoCAD ataupun NX
- Membuat model manusia/ manekin prajurit TNI sebagai pengendara sesuai data antropometri yang diperoleh
- Memposisikan manekin ke dalam environment sesuai dengan postur dan kondisi sebenarnya melalui software Jack 6.1
- Melakukan analisis ergonomi desain kabin pengemudi dengan bantuan *software* Jack 6.1
- Melakukan perhitungan PEI
- Menganalisis hasil perhitungan PEI

6. Penarikan Kesimpulan

Berdasarkan analisis yang dibuat maka akan dapat disimpulkan konfigurasi desain kabin pengemudi pada kendaraan tempur panser kanon yang ergonomis sehingga dapat meningkatkan kenyamanan, keamanan dalam penggunaannya.

1.7 Sistematika Penulisan

Penulisan hasil penelitian ini dibuat secara sistematis dan tersusun atas lima bab sebagai berikut:

Bab 1 merupakan bab pendahuluan yang berisi penjelasan mengenai latar belakang dilaksanakannya penelitian ini, masalah-masalah yang mendasari penelitian ini serta keterkaitan di antaranya yang digambarkan melalui diagram, batasan masalah, metodologi penelitian, serta sistematika penulisan.

Bab 2 merupakan landasan teori yang digunakan dalam penelitian ini. Bagian ini membahas mengenai dasar-dasar ergonomi, seluk-beluk prinsip penelitian ergonomi melalui *virtual environment*, dan metode *posture evaluation index*.

Bab 3 merupakan bab pengumpulan data dan perancangan model. Bab ini membahas mengenai data-data yang dikumpulkan seperti data spesifikasi kabin pengemudi pada kendaraan tempur panser kanon, data antropometri personil TNI

sebagai penggunanya, berikut proses pengumpulan datanya. Pada bab ini juga dibahas mengenai pembuatan model berdasarkan data-data yang telah dikumpulkan menggunakan *software* Jack 6.1.

Bab 4 merupakan bab analisis yang membahas mengenai analisis dari perancangan model yang dibuat berdasarkan beberapa macam konfigurasi. Berdasarkan analisis yang dilakukan, berikutnya dibuat kesimpulan dari penelitian yang dilakukan.

Bab 5 berisi kesimpulan dan saran yang dihasilkan dari penelitian ini. Selain itu pada bab ini juga akan diajukan rekomendasi desain kabin pengemudi pada kendaraan tempur panser kanon yang menjadi objek penelitian.

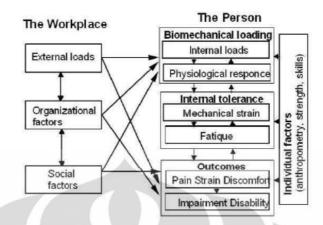
BAB 2

LANDASAN TEORI

2.1 Ergonomi

Ergonomi merupakan kata yang berasal dari bahasa Yunani. *Ergo* (kerja) dan *nomos* (hukum)merupakan definisi ergonomi yang pertama kali digunakan Wojciech Jastrzebowski dalam sebuah koran Polandia pada tahun 1987 (Karwowski, 1991). Ergonomi sering disangkut pautkan dengan human factors, namun beberapa literatur menyebutkan faktor manusia dan ergonomi sebagai sebuah satu kesatuan yang disebut human factors and ergonomics (HFE). Menurut Helander (1997), pengertian HFE terdiri dari beberapa poin, yang didefinisikan sebagai ilmu pengetahuan yang menggunakan informasi tentang kemampuan manusia dan keterbatasannya, serta memerhatikan lingkungan dan hambatan organisasi untuk mendesain sebuah sistem organisasi, pekerjaan, mesin peralatan atau produk yang aman, efisien dan nyaman untuk digunakan.

Menurut International Ergonomics Association (2000), ergonomi dapat didefinisikan sebagai disiplin ilmu yang menaruh perhatian kepada interaksi antara manusia dengan elemen – elemen lainnya dalam suatu sistem dan profesi yang menggunakan teori, prinsip – prinsip, data dan metode untuk mendesain sebuah perancangan yang bertujuan untuk mengoptimasikan kesejahteraan manusia dan kinerja sistem secara keseluruhan. Lebih lanjut lagi, IEA menjelaskan ergonomic sebagai ilmu yang berkontribusi pada desain dan evaluasi sebuah pekerjaan, tugas, produk, lingkungan dan sistem dalam rangka membuat hal – hal tersebut sepadan dengan kebutuhan, kemampuan dan keterbatasan manusia. Sedangkan McCormick (1993) dalam bukunya menggunakan istilah *human factors* untuk mengistilahkan ergonomi, dan mengatakan ergonomi dapat didefinisikan berdasarkan hal-hal dibawah ini:


- 1. Fokus dari *human factors* adalah pada interaksi manusia dengan produk, perlengkapan, fasilitas, prosedur, dan lingkungan yang digunakannya dalam bekerja dan dalam kehidupan sehari-hari.
- 2. Tujuan dari *human factors* ada dua yaitu meningkatkan keefektifan dan keefisienan ditempat bekerja dan aktivitas lain yang dilakukan, sedangkan

- 3. tujuan yang lain adalah untuk meningkatkan keselamatan kerja, kepuasan kerja, serta kualitas hidup manusia.
- 4. Pendekatan dari *human factors* adalah pendekatan aplikasi sistematik dari informasi yang berhubungan dengan kapasitas manusia, batasan, karakteristik, perilaku, motivasi untuk mendesain benda dan lingkungan yang digunakan oleh mereka (manusia). Hal ini termasuk penelitian investigasi untuk melihat informasi antara manusia dengan lingkungan, dan benda-benda disekitarnya.

Dari beberapa penjelasan diatas dapat dilihat bahwa ergonomi adalah suatu ilmu yang membahas semua hal yang berkaitan dengan manusia dan interaksinya dengan pekerjaan serta lingkungannya yang bertujuan meningkatkan kenyamanan, kesehatan dan keselamatan manusia.

2.2 Work-Related Muskuloskeletal Disorder (WMSD)

Work – Related Muskuloskeletal Disorder (WMSD), yang juga memiliki nama lain Repetitive Motion Injury (RMI) atau Cumulative Trauma Disorder (CTD), semakin dikenal di dalam dunia ergonomi selama 20 tahun terakhir. RMI pertama kali diperkenalkan pada tahun 1717 oleh Ramazzini di Italia. Ramazzini mendeskripsikan RMI yang dialami oleh juru tulis yang bekerja merupakan hasil dari gerakan tangan yang berulang – ulang, dengan postur tubuh yang terbatas dan tekanan mental yang berlebihan (Franco dan Fusetti, 2004). RMI, WMSD, CTD merupakan tipe cidera yang disebabkan oleh gerakan yang berulang – ulang, dan menimbulkan efek kumulatif yang menyebabkan RMI dapat bertambah setelah beberapa periode waktu berjalan (Putz-Anderson, 2005). Menurut Helander (2003), penyebab WMSD terdiri dari tiga bagian besar, yaitu metode kerja yang tidak sesuai, waktu istirahat yang tidak cukup serta kondisi yang sedang terjadi saat ini memang sudah berada dalam kondisi mengalami cidera atau gangguan. Utamanya, penyebab terjadinya WMSD merupakan kombinasi dari metode kerja yang tidak sesuai sehingga menyebabkan postur kerja yang buruk dan berakibat pada penggunaan kekuatan otot secara berlebihan dan dilakukan secara repetitif tanpa adanya waktu istirahat yang cukup untuk memulihkan kondisi fisik.

Gambar 2.1 Model Konseptual WMSD (sumber: The Panel on musculoskeletal disorders and workplace, 2001)

Lebih jauh lagi, faktor – faktor penyebab terjadinya WMSDs dapat dibagi menjadi tiga kelompok besar, yaitu faktor primer, sekunder dan kombinasi. Faktor primer penyebab terjadinya WMSD adalah sebagai berikut:

- 1. Peregangan otot yang berlebihan
- 2. Aktivitas berulang
- Sikap kerja tidak alamiah.
 Kemudian, faktor Faktor sekunder penyebab terjadinya WMSDs adalah:
- 1. Tekanan, terjadinya tekanan langsung pada jaringan otot yang lunak.
- 2. Mikrolimat, paparan udara panas dan dingin yang tidak sesuai.
- 3. Getaran, dengan frekwensi tinggi menyebabkan kontraksi otot bertambah, yang menyebabkan peredaran darah tidak lancar dan penimbunan asam laktat dan akhirnya timbul rasa nyeri otot (Suma'mur, 1982)

Terakhir, faktor kombinasi penyebab terjadinya WMSD adalah sebagai berikut:

- Umur, pada umumnya keluhan otot skeletal mulai dirasakan pada usia kerja, yaitu 25 – 60 tahun (Choffin, 1979)
- 2. Jenis kelamin, secara fisiologis kemampuan otot wanita lebih rendah daripada pria.
- 3. Kebiasaan merokok, semakin lama dan semakin tinggi frekwensi merokok, semakin tinggi pula tingkat keluhan otot yang dirasakan.
- 4. Kesegaran jasmani.

5. Kekuatan fisik

6. Ukuran tubuh (antropometri)

WMSD akan selalu muncul jika tidak dilakukan tindakan pencegahan yang baik. untuk mengurangi peluang terjadinya WSMD, tindakan pencegahan yang dapat dilakukan diantaranya adalah memastikan kenyamanan benar – benar terasa pada stasiun kerja. Selain itu, diperlukan istirahat dan peregangan otot yang dilakukan secara berkala di sela – sela pekerjaan.

2.3 Antropometri

2.3.1 Definisi Antropometri

Secara etimologis, istilah antropometri berasal dari bahasa Yunani, vaitu antropos yang berarti manusia, dan metron yang berarti ukuran. Sehingga bisa dikatakan, antropometri adalah studi tentang ukuran tubuh manusia. Manusia mempunyai ukuran dan bentuk tubuh yang berbeda-beda. Ilmu teknik yang menggunakan informasi yang telah ada dan perkembangan informasi yang baru tentang ukuran tubuh manusia disebut ilmu antropometri. Penelitian awal tentang ukuran tubuh manusia dilakukan akhir abad 14. Data antropometri yang cukup lengkap dihasilkan pada awal tahun 1800. Metode-metode pengukuran distandarisasikan beberapa kali yang dilakukan pada awal sampai pertengahan abad 20. Standarisasi yang paling baru muncul pada tahun 1980-an yang dikeluarkan oleh Internasional Standart Organization (ISO). Metode-metode pengukuran standart mengasumsikan tentang ukuran postur tubuh dan batas-batas penggunaannya. Pelaksanaan penelitan untuk penggunaan ilmu teknik hanya dilakukan untuk kepentingan militer. Pengertian antropometri menurut Stevenson (1989) dan Eko Nurmianto (1991) adalah suatu kumpulan data numerik yang berhubungan dengan karakteristik fisik tubuh manusia ukuran, bentuk dan kekuatan serta penerapan dari data tersebut untuk penanganan masalah desain.

Data antropometri akan menentukan bentuk, ukuran dan dimensi-dimensi yang tepat berkaitan dengan produk yang dirancang dan manusia yang akan mengoperasikan atau menggunakan produk tersebut. Maka perancangan produk harus mampu mengakomodasikan dimensi tubuh dari populasi terbesar yang akan menggunakan produk hasil rancangan tersebut. Secara umum sekurang-kurangnya

90% - 95% dari populasi yang menjadi target dalam kelompok pemakai suatu produk haruslah mampu menggunakannya dengan selayaknya. Pada dasarnya peralatan kerja yang dibuat dengan mengambil referensi dimensi tubuh tertentu jarang sekali bisa mengakomodasi seluruh range ukuran tubuh dari populasi yang akan memakainya. Survey antropometri dalam skala besar menghabiskan waktu dan biaya. Ada sebuah metode alternatif yang dapat digunakan yaitu dengan mengerjakan survey khusus untuk memperoleh dimensi pokok. Lalu dimensi lain dihasilkan dari dimensi pokok ini dengan menggunakan prosedur statistik. Biasanya metode ini tidak dapat menghasilkan data yang akurat, akan tetapi metode ini akan menjadi cukup akurat untuk beberapa pelaksanaan praktek tertentu. Aplikasi utama dari penerapan data antropometri adalah:

- Desain lingkup kerja
- Desain lingkungan
- Deain peralatan, perlengkapan mesin
- Desain produk konsumen

2.3.2 Variabilitas Manusia

Manusia mempunyai ukuran-ukuran tubuh yang berbeda-beda. Perbedaan etnis, suku dan bangsa mempunyai cirri-ciri psikologi yang membeuat mereka berbeda beda satu sama lain. Perbedaan bahkan muncul dalam kelompok yang sama menurut karateristik dari gen yang dimiliki. Perbedaan antara satu populasi dengan populasi yang lain adalah dikarenakan oleh factor-faktor yang mempengaruhi dimensi tubuh. Para perancang harus mempertimbangkan factor-faktor tersebut dan menyesuaikan rancangan dengan faktor tersebut. Faktor-faktor yang paling penting adalah :

a. Usia

Secara umum dimensi tubuh manusia akan tumbuh dan bertambah besar – seiring dengan bertambahnya umur – yaitu sejak awal kelahiran sampai dengan umur 20 tahunan. Dari penelitian yang dilakukan oleh A.F. Roche dan G.H. Davila (1972) dalam I Wayan Darma (2004) di USA diperoleh kesimpulan bahwa laki-laki akan tumbuh dan berkembang naik sampai dengan usia 21.2 tahun, sedangkan wanita 17.3 tahun; meskipun ada sekitar

10% yang masih terus bertambah tinggi sampai usia 23.5 tahun (laki-laki) dan wanita 21.1 tahun (wanita). Setelah itu, tidak lagi akan terjadi pertumbuhan justru akan cenderung berubah menjadi penurunan ataupun penyusutan yang dimulai sekitar umur 40 tahunan.

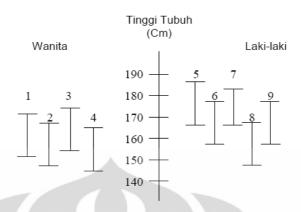
b. Jenis kelamin

Secara distribusi statistik ada perbedaan yang signifikan antara dimensi tubuh pria dan wanita. Untuk kebanyakan dimensi pria dan wanita ada perbedaan yang signifikan diantara rata-rata dan nilai perbedaan ini tidak dapat diabaikan begitu saja. Pria dianggap lebih panjang dimensi segmen badannya dari pada wanita kecuali didaerah pinggul dan paha. Lipatan kulit wanita juga lebih besar dari lipatan kulit pria. Oleh karenanya data antropometri untuk kedua jenis kelamin terseut selalu disajikan secara terpisah.

c. Posisi Tubuh (*Posture*)

Sikap (*posture*) ataupun posisi tubuh akan berpengaruh terhadap ukuran tubuh oleh sebab itu, posisi tubuh standar harus diterapkan untuk survei pengukuran.

d. Cacat Tubuh


Data antropometri akan diperlukan untuk perancangan produk bagi orangorang cacat (kursi roda, kaki/tangan palsu, dan lain-lain).

e. Tebal/Tipisnya Pakaian

Faktor iklim yang berbeda akan memberikan variasi yang berbeda pula dalam bentuk rancangan dan spesifikasi pakaian. Dengan demikian dimensi tubuh orang pun akan berbeda dari satu tempat dengan tempat yang lainnya.

f. Suku bangsa

Suku / bangsa (*etnic*). Setiap suku, bangsa ataupun kelompok etnik akan memiliki karakteristik fisik yang akan berbeda satu dengan yang lainnya. Gambar 2.2 berikut menunjukan perbedaan dimensi ukuran (tinggi) dari berbagai macam suku bangsa (persentil 5 dan 95) tertentu.

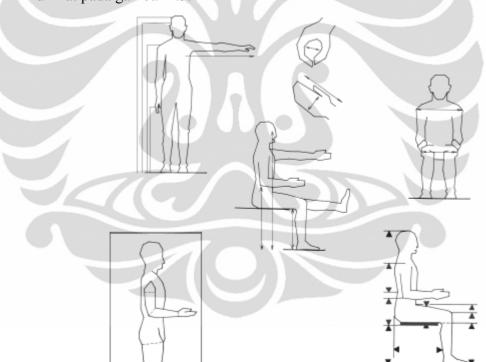
Gambar 2.2 Perbedaan Tinggi Tubuh Manusia Dalam Posisi Berdiri Tegak Untuk Berbagai Suku Bangsa

Catatan:

1. Amerika
6. Italia (militer)
2. Inggris
7. Perancis (militer)
3. Swedia
8. Jepang (militer)
4. Jepang
9. Turki (militer)
5. Amerika (pilot)

g. Kehamilan

Kehamilan (*pregnancy*), dimana kondisi semacam ini jelas akan mempengaruhi bentuk dan ukuran tubuh (khusus perempuan). Hal tersebut jelas memerlukan perhatian khusus terhadap produk-produk yang dirancang bagi segmentasi produk ini.


Akhirnya, sekalipun segmentasi dari populasi yang ingin dituju dari rancangan suatu produk selalu berhasil diidentifikasikan sebaik-baiknya berdasarkan faktor-faktor seperti yang telah diuraikan; namun adanya variasi ukuran bukan tidak mungkin bisa tetap dijumpai. Permasalahan variasi ukuran sebenarnya akan mudah diatasi dengan cara merancang produk (*adjustable*) dalam suatu rentang dimensi ukuran pemakaiannya.

2.3.3 Data Antropometri

Data antropometri, menurut Bridger (1995), memiliki tiga tipe yaitu:

• Data Antropometri Struktural

Data antropometri structural merupakan data antropometri yang didapatkan melalui pengukuran ketika subjek yang diukur berada dalam posisi diam (statis). Pengukuran dimensi tubuh manusia pada data antropometri structural dilakukan dengan cara menghitung jarak dari suatu titik dalam anatomi tubuh manusia terhadap satu titik yang berada dalam permukaan yang tetap. Pengukuran data antropometri structural dapat dilakukan ketika subjek berdiri maupun duduk, asalkan subjek berada dalam posisi yang statis yidak bergerak. Hasil rekapitulasi pengukuran ini berupa data antropometri yang diklasifikasikan dalam persentil tertentu. Lazimnya, persentil yang digunakan adalah persentil 5, persentil 50 dan persentil 95. Data antropometri structural memiliki beberapa kekurangan, salah satunya adalah ketika mengaplikasikan data antropometri structural yang bersifat statis ke dalam penyelesaian suatu desain yang melibatkan gerakan.Contoh data antropometri struktural dapat dilihat pada gambar 2.3.

Gambar 2.3 Data Antropometri Struktural

Sumber: Bridger.R.S, Introduction to Ergonomics, McGraw-Hill, Singapore, 1995, p.64

Data Antropometri Fungsional

Data antropometri fungsional dikumpulkan untuk menggambarkan gerakan bagian tubuh terhadap titik posisi yang tetap, seperti misalnya area jangkauan tangan. Daerah yang berada dalam jangkauan tangan disebut zona jangkauan

maksimum, atau dalam hal ini menggunakan istilah "working envelopes". Berbeda dengan data antropometri structural yang diukur dalam keadaan statis, data antropometri fungsional diukur ketika subjek yang diukur melakukan gerakan – gerakan tertentu yang berkaitan dengan kegiatan yang harus dilakukan. Contoh data antropometri fungsional dapat dilihat pada gambar 2.4.

Gambar 2.4 Data Antropometri Fungsional Sumber: Bridger.R.S, *Introduction to Ergonomics*, McGraw-Hill, Singapore, 1995, p.69

Data Antropometri Newtonian

Tubuh manusia terdiri dari berbagai macam segmen yang memiliki panjang dan massa yang berbeda – beda. Panjang dan massa segmen – segmen tersebut memiliki ukuran masing – masing dan terangkai menjadi satu kesatuan. Panjang dan massa tersebut berhubungan dengan beban yang diterima oleh masing – masing segmen. Untuk mengukur dan membandingkan beban ditanggung suatu segmen digunakanlah data antropometri Newtonian.

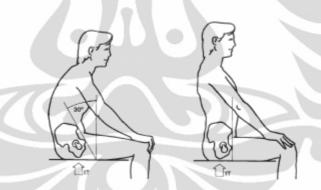
2.3.4 Aplikasi Data Antropometri Dalam Perancangan

Untuk penetapan data antropometri ini, pemakaian distribusi normal dapat diformulasikan berdasarkan nilai mean (rata-rata) dan standar deviasi (SD). Dari nilai yang ada tersebut maka persentil dapat ditetapkan. Persentil adalah suatu nilai yang menyatakan bahwa persentase tertentu dari sekelompok orang yang dimensinya sama dengan atau lebih rendah dari nilai tersebut. Misalnya : 95%

populasi adalah sama dengan atau lebih rendah dari 95 persentil; 5% dari populasi berada sama dengan atau lebih rendah dari 5 persentil. Besarnya nilai persentil dapat ditentukan dari tabel probabilitas distribusi normal.

2.4 Postur Duduk

Teori tentang postur duduk pertama kali dikeluarkan pada tahun 1884. Teori tersebut bernama "hygienic" sitting postures. Staffel (1884) merekomendasikan postur duduk yang tegak pada bagian leher, punggung dan kepala, dengan kondisi lordosis yang normal pada bagian lumbar dan cervic, serta kondisi kyphosis yang ringan pada bagian thoracic spine, yang menyerupai postur tulang belakang pada saat berdiri tegak. Pada periode 1880, banyaknya proposal desain yang masuk untuk furniture sekolah, termasuk kursi dan kombinasi antara kursi dan meja (Zacharkow,1988), dipercaya sesuai untuk mempromosikan postur duduk tersebut.


Selama satu abad, sudah menjadi kepercayaan banyak orang bahwa cara duduk dengan postur tegak lurus merupakan postur duduk yang terbaik. Memang tidak ada yang salah dengan postur duduk tegak dalam jangka waktu yang pendek, namun postur duduk tersebut akan menjadi masalah jika terjadi dalam waktu yang lama. Postur duduk tegak merupakan postur duduk yang statis, berlawanan dengan karakteristik tubuh manusia yang selalu berubah – ubah. Postur duduk tegak dalam waktu yang lama dapat menyebabkan ketidaknyamanan pada bagian tulang punggung, berisiko menekan bagian lunak dan rawan dari tulang punggung, reduksi metabolisme, defisiensi dalam sirkulasi darah, serta akumulasi dari cairan extraselular di kaki bagian bawah (Kroemer *et al.*, 2001)

2.4.1 Permasalahan Pada Tulang Punggung

Postur duduk sangat berkaitan dengan kondisi punggung manusia, terutama kondisi punggung bagian bawah, yang memiliki ruas L4 dan L5. Posisi duduk memang memiliki lebih banyak keunggulan jika dibandingkan dengan posisi berdiri dalam melakukan pekerjaan. Pekerjaan dalam posisi berdiri menyebabkan aliran darah yang bergerak dari bagian kaki menuju keatas harus melawan energi gravitasi, sehingga volume darah menuju bagian tubuh atas

menjadi sedikit berkurang, dan volume darah di bagian bawah tubuh berada dalam jumlah yang lebih banyak. Hal ini menyebabkan adanya pembengkakan pada bagian kaki, khususnya pergelangan kaki (R.S. Bridger, 2003).

Namun, meskipun postur kerja dalam keadaan duduk memiliki keunggulan dibandingkan postur kerja berdiri, postur duduk yang lama dalam sehari, beresiko menyebabkan terjadinya *low back pain* (Hoggendoorn *et al.*, 2000). Postur duduk yang baik seringkali dikaitkan dengan postur duduk tegak dengan derajat kemiringan antara batang tubuh dengan paha sebesar 90 derajat. Namun, postur duduk seperti ini berpeluang besar membuat tulang punggung merosot ke depan (Mandal, 1981,1991). Posisi merosot ini dikarenakan oleh beban statis yang diberikan oleh leher dan kepala kearah bawah. Posisi ini menyebabkan tingkat deformasi yang cukup tinggi dari diskus intervertebralis, yaitu bantalan *fibrocartilage* yang bersifat rawan, yang menghubungkan antara ruas – ruas tulang belakang.

Gambar 2.5 Efek Posisi Duduk Terhadap Pelvis Sumber: Pheasant.S, *Bodyspace: Anthropometry, Ergonomics and the Design of Work, Second Edition,* Taylor & Francis, London, 2003, hal.71

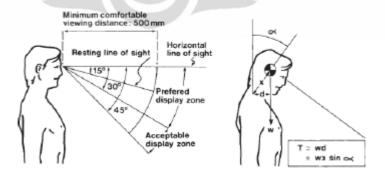
Agar dapat meminimalisasi gangguan pada bagian ruas – ruas tulang belakang, kursi perlu dibuat sedemikian rupa sehingga membuat pemakainya berada dalam posisi netral tanpa menimbulkan beban yang berlebihan pada ruas – ruas tulang punggung, yang juga memungkinkan pengguna dapat mengadopsi posisi yang baik secara fisiologis dan nyaman.keadaan seperti ini dapat dicapai dengan tiga cara, yaitu:

- 1. Posisi duduk setengah berbaring (jika pekerjaan mengharuskan atau cenderung dapat dilakukan dengan posisi seperti ini).
- 2. Tempat duduk yang tidak lebih rendah atau tidak lebih tinggi dari ketinggian dudukan kursi yang dibutuhkan.
- Sandaran yang membentuk sudut tumpul ke permukaan kursi (berfungsi mengurangi flexi pada bagian pinggang) dan memiliki kontur yang menyerupai bentuk tulang belakang penggunanya.

Dalam sebuah studi yang dilakukan oleh Andersson (1974) dengan cara mengukur tekanan hidrostatis dari *nucleus polposus* menggunakan jarum *mount* – *transducer*. Andersson mengemukakan bahwa besarnya tekanan intra-discal yang dihasilkan memiliki nilai yang kurang mencolok pada sudut kemiringan sandaran tertentu, dan akan semakin lebih baik jika bentuk sandaran mengadopsi kontur tulang belakang manusia (lumbar).

Gambar 2.6 Bagian Lumbar Vertebrata (kiri) Deformasi Pada Diskus Invertebralis (kanan)

Sumber: Pheasant.S, *Bodyspace: Anthropometry, Ergonomics and the Design of Work, Second Edition,* Taylor & Francis, London, 2003, hal.71


2.4.2 Penglihatan, Postur Leher dan Kepala

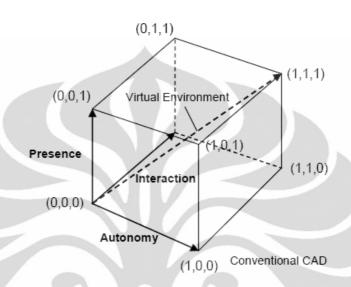
Pekerjaan yang membutuhkan bantuan ketelitian mata dalam pengerjaannya sangat dipengaruhi oleh lokasi tempat mata memandang. Namun, pandangan mata sangat dipengaruhi pula oleh postur leher dan kepala. Mata memiliki daerah pandangan mata, yang disebut *visual field*. Ketika memandang sevuah objek, mata mata akan terfokus pada bagian tengah dari visual field, yang merupakan bagian yang paling sensitif ketika melakukan tugas yang

membutuhkan pandangan mata, seperti membaca, menulis atau mengenali wajah. Bagian tengah tersebut dikenal dengan nama *foveal vision*, yang memiliki daerah pandang dari garis tengah *central fixation* hingga 5 derajat dari garis tersebut.

Tugas yang membutuhkan pandangan mata membuat *foveal regions* dari kedua mata bergerak terpusat beriringan selama tugas dijalankan dan lensa mata berakomodasi agar dapat terfokus pada jarak tertentu. Mata memiliki titik dimana dapat bergerak kearah atas sejauh 48 derajat dan ke arah bawah sejauh 66 derajat tanpa disertai gerakan kepala dan leher (Taylor, 1973). Sedangkan menurut Weston (1953), dalam studinya mengenai *visual fatigue*, menyarankan jika pergerakan mata kearah bawah dibatasi sejauh 24 hingga 27 derajat, melebihi titik tersebut, kepala dan leher cenderung akan menunduk ke arah depan, dan otot – otot leher akan terbebani untuk menyokong berat dari kepala.

Dalam studinya mengenai operator VDU, Grandjean *et al.* (1984) menyatakan bila sudut penglihatan yang direkomendasikan adalah sebesar 9 derajat kearah bawah dari arah horizontal. Hasil berbeda, yaitu 18 derajat juga ditemukan dari hasil penelitian sejenis mengenai operator VDU (Brown & Schaum, 1980). Dari kedua teori tersebut dapat diambil kesimpulan bahwa zona yang baik untuk pandangan (*preferred zone*) adalah sebesar 30 derajat kearah bawah dari garis horizontal, dimana garis pandangan optimum berada di tengah dari zona tersebut. zona tersebut dapat bertambah 15 derajat jika diasumsikan adanya *flexion* dari leher.

Gambar 2.7 Pandangan Mata (kiri) Tekanan Otot Leher (kanan)
Sumber: Pheasant.S, *Bodyspace: Anthropometry, Ergonomics and the Design of Work, Second Edition,* Taylor & Francis, London, 2003, hal.64


Kenyamanan juga menjadi salah datu faktor utama dari pandangan mata terhadap objek yang diletakkan di depan mata pada jarak – jarak tertentu. Lensa mata akan berada dalam kondisi rileks jika memandang benda yang berada pada jarak lebih dari 6 meter di depan mata. Sedangkan untuk melihat benda yang berada dalam jarak dekat dibutuhkan kekuatan otot mata dan lensa mata untuk berakomodasi. Memandang mata terlalu dekat dapat menyebabkan terjadinya kelekahan pada mata yang disebut dengan "eyestrain" dengan gejala pandangan menjadi kabur dan pusing. Jarak 350 mm hingga 400 mm dapat dianggap mencukupi dalam beberapa kondisi. Namun, untuk beberapa kondisi praktis, 500 mm bisa menjadi nilai yang cukup. Menurut studi Grandjean et al. (1984), jarak pandang mata rata – rata yang baik adalah sebesar 760 mm, dari range antara 610 mm hingga 930 mm. sedangkan menurut Brown dan Schuam (1980) menyatakan sebesar 624 mm.

Postur leher dan kepala juga mendapatkan perhatian, khususnya di dunia pendidikan. Untuk mengurangi *flexion* yang terjadi pada leher akibat keharusan murid untuk menulis di meja, dilakukan berbagai penelitian mengenai tingkat kemiringan meja. Zacharkow (1988), memberikan ilustrasi, banyak sekolah di daerah Victoria memiliki meja dengan kemiringan sebesar 15 derajat untuk menulis dan penahan buku agar buku yang diletakkan tidak merosot akibat kemiringan meja. Studi lebih lanjut menyatakan bahwa kemiringan meja (dari 15 atau bahkan 10 derajat) dapat mengurangi *flexion* dari batang tubuh dan leher orang-orang yang duduk dalam melakukan aktivitas membaca dan menulis (Bridger, 1988; de Wall *et al*, 1991.).

2.5 Virtual Environment

Menurut Kalawsky, R. (1993a), *Virtual environment* (VE) adalah representasi dari sistem fisik yang dihasilkan oleh komputer, yaitu suatu representasi yang memungkinkan penggunanya untuk berinteraksi dengan lingkungan sintetis sesuai dengan keadaan lingkungan nyata. Kalawsky juga membicarakan tentang istilah *Virtual Reality* yang pertama kali diperkenalkan Jaron Lanier. Konsep ini merupakan konsep yang sama maknanya dengan *virtual environment*, tetapi lebih dikenal oleh publik. Menurut Zeltzer, D. (1992), dalam

virtual reality terdapat tiga buah komponen; otonomi, keberadaan, dan interaksi yang kesemuanya berada pada nilai maksimalnya dalam kubus Zelter. Gambar 2.5 di bawah menunjukkan dimensi dari *virtual reality*.

Gambar 2.8 Kubus Zelter untuk Konsep *Virtual Reality* Sumber: Kalawsky, 1993

Zelter menyatakan bahwa:

- Otonomi (O) mengacu pada ukuran kualitatif dari kemampuan objek virtual untuk bereaksi terhadap stimulus. Nilai 0 muncul ketika tidak ada reaksi yang timbul dan nilai 1 muncul jika otonomi berada dalam kondisi maksimal.
- Interaksi (I) mengacu pada tingkat aksesibilitas ke parameter atau variabel pada objek. Nilai 0 diberikan pada kontrol variabel yang tidak dilakukan secara langsung. Nilai 1 diberikan jika variabel yang ada bisa dimanipulasi secara langsung (*real time*) ketika program sedang dijalankan.
- Keberadaan (K) mengacu pada tingkat keberadaan dengan sebuah ukuran ketelitian dari sensor *input* dan saluran *output*. Tingkat keberadaan sangatlah bergantung pada kebutuhan dari kerja yang akan dilakukan.

Menurut Kalawsky, R. (1993b), dalam *virtual reality*, titik (1,1,1) sebagai (O,I,K) dalam kubus Zelter menunjukkan kondisi dimana simulasi dapat benarbenar merepresentasikan dunia nyata sehingga akan sulit dibedakan antara dunia nyata dengan simulasi tersebut. Titik (0,1,0) mengindikasikan bahwa pengguna

dapat mengontrol semua variablel dari objek atau model secara *real time* selama program berjalan. Sedangkan, titik (0,1,1) merepresentasikan sebuah situasi dimana terdapat tingkat otonomi dan keberadaan yang tinggi, tetapi dengan tingkat interaksi yang rendah. Di dunia ini, seorang manusia dapat menjadi peneliti pasif dengan kebebasan yang dia miliki dilihat dari sudut pandangnya, tetapi tetap memungkinkan "mencelupkan" dirinya pada lingkungan vitual.

Virtual environment memiliki atribut seperti di bawah ini:

- Lingkungan yang dihasilkan/diciptakan oleh computer.
- Lingkungan atau pengalaman partisipan mengenai lingkungan yang berada dalam dunia 3 dimensi.
- Partisipan merasakan sebuah keberadaan pada virtual environment.
- Partisipan dapat mengatur variabel-variabel yang ada pada virtual environment.
- Perilaku objek pada *virtual environment* bisa disesuaikan dengan perilaku objek tersebut di dunia nyata.
- Partisipan dapat berinteraksi secara real time dengan virtual environment.

Menurut Wilson, J.R. (1999) dalam bukunya, simulasi dalam lingkungan virtual harus dapat mensimulasikan bagaimana model manusia (*virtual human*) berada pada lokasi yang baru, berinteraksi dengan objek dan lingkungan, serta mendapat respon balik yang tepat dari objek yang mereka manipulasi.

Virtual human adalah model biomekanis yang akurat dari sosok manusia. Model ini, sepenuhnya meniru gerakan manusia sehingga memungkinkan bagi para peneliti untuk melakukan simulasi aliran proses kerja, dan melihat bagaimana beban kerja yang diterima model ketika melakukan suatu rangkaian pekerjaan tertentu.

Lapangan aplikasi dari *virtual environment* sangatlah luas. Beberapa diantaranya menurut Määttä, Timo. (2003) adalah:

- Dalam bidang arsitektur, VE digunakan untuk mengevaluasi desain dari struktur baru.
- Dalam bidang pendidikan dan pelatihan, VE digunakan untuk memperlihatkan pada orang bentuk-bentuk dunia seperti permukaan planet, model molekul,

- atau bagian dalam dari tubuh hewan. VE juga sudah digunakan untuk keperluan pelatihan pilot dan pengendara.
- Dalam bidang hiburan, VE digunakan oleh studio film, pembuat *video game*, dan perusahaan mainan.
- Dalam bidang kesehatan, VE digunakan dalam perencanaan terapi radiasi dan simulasi bedah untuk keperluan pelatihan.
- Dalam bidang informasi, VE digunakan untuk menyajikan sebuah set data yang rumit dalam bentuk yang mudah dimengerti.
- Dalam bidang ilmu pengetahuan, VE digunakan untuk memodelkan dan mengkaji sebuah fenomena yang rumit di komputer
- Dalam bidang *telepresence*, VE telah digunakan untuk mengembangkan alat kontrol dari robot (*telerobot*).

Berikut ini adalah contoh penggunaan *virtual environment* yang berhubungan langsung dengan kajian ergonomi yang bernilai positif bagi kesehatan dan keselamatan kerja:

- Penilaian ergonomis tempat kerja, pembagian tugas, seperti dalam perancangan untuk perakitan dan tata letak ruang kerja.
- Pelatihan teknisi pemeliharaan, misalnya untuk bekerja di lingkungan yang berbahaya.
- Perbaikan perencanaan dan pengawasan operasi
- Pelatihan umum untuk industri, termasuk prosedur untuk pergerakan material dan penggunaan mesin pelindung.
- Diagnosa kesalahan (*error*) yang terjadi dan perbaikan dalam proses yang berlangsung di pabrik.

2.6 Software Siemens Jack 6.1

2.6.1 Pendahuluan Mengenai Jack

Software Jack merupakan sebuah software yang berfungsi untuk mensimulasikan atau memodelkan rangkaian pekerjaan. Simulasi dari rangkaian pekerjaan tersebut, dengan software Jack kemudian akan dianalisis dengan menggunakan perangkat analisis untuk dilihat sejauh mana kelayakan suatu desain dan lingkungan kerja dari sisi pandang ergonomi.

Fokus pengembangan yang dapat dilakukan Jack adalah menciptakan model tubuh manusia yang paling akurat, yang terdapat dalam sistem apapun. Kemampuan terbaik dari Jack adalah Jack mampu mengisi lingkungan yang dimilikinya dengan model biomekanikal yang tepat, data antropometri yang dapat diatur dan ditentukan sendiri, dan karakteristik ergonomi yang berlaku di dunia nyata. Lingkungan pada *software* ini dapat terlihat pada gambar 2.9

Gambar 2.9 Lingkungan pada Jack Sumber: Jack Base Manual Version 6.1

Model manekin pada Jack beraksi seperti layaknya manusia sungguhan. Jack telah memperhatikan keseimbangan tubuh, mampu melakukan kegiatan berjalan, dan dapat diberikan perintah untuk mengangkat suatu benda. Model pada Jack juga memiliki "kekuatan" dan jika telah melebihi batas tertentu, maka Jack dapat memberikan peringatan pada penggunanya. Selain itu, pengguna Jack dapat membuat model pria (Jack) maupun wanita (Jill) dalam berbagai macam ukuran tubuh, berdasarkan populasi yang telah divalidasi. Jack 6.1 menggunakan database antropometri ANSUR (Army Natick Survey User Requirements) tahun 1988 untuk membuat model. Namun, Jack juga menyediakan formulir khusus jika pengguna ingin membuat model manekin berdasarkan data antropometri yang ingin diteliti. Gambar 2.10 menunjukkan figur model pria dan wanita pada Jack.

Gambar 2.10 Manekin Pria (Jack) dan Wanita (Jill) pada Jack Sumber: Jack Base Manual Version

Banyak perusahaan telah menggunakan perangkat lunak ini untuk mendapatkan banyak keuntungan, beberapa diantaranya:

- Mempersingkat waktu dari proses desain.
- Biaya pengembangan produk yang lebih rendah.
- Meningkatkan kualitas dari produk yang dihasilkan.
- Meningkatkan produktivitas.
- Meningkatkan keamanan dan keselamatan kerja.
- Secara tidak langsung akan meningkatkan moral dari pekerja.

Secara umum, ada tujuh langkah yang digunakan dalam melakukan simulasi pada Jack, yaitu:

- 1. Membuat virtual environment pada Jack.
- 2. Membuat virtual human.
- 3. Memposisikan *virtual human* pada *virtual environment* sesuai dengan yang diinginkan.
- 4. Memberikan *virtual human* sebuah tugas atau kerja, dan
- 5. Menganalisis kinerja dari tugas yang dikerjakan oleh *virtual human* dengan TAT.

2.6.2 Jack Task Analysis Toolkit

Task Analysis Toolkit (TAT) adalah sebuah modul tambahan pada software Jack yang dapat memperkaya kemampuan pengguna untuk menganalisis aspek ergonomi dan faktor manusia dalam desain kerja di dunia industri. Dengan

TAT, para perancang bisa menempatkan *virtual human* ke dalam berbagai macam lingkungan untuk melihat bagaimana model manusia tersebut menjalankan tugas yang diberikan. TAT dapat menaksir resiko cedera yang dapat terjadi berdasarkan postur, penggunaan otot, beban yang diterima, durasi kerja, dan frekuensi. Kemudian, TAT dapat memberikan intervensi untuk mengurangi resiko. Modul ini juga dapat menunjukkan batasan maksimal dari kemampuan pekerja ketika melakukan kegiatan mengangkat, menurunkan, mendorong, menarik, dan membengkokkan. Selain itu, TAT juga dapat menunjukkan kegiatan-kegiatan yang tidak produktif dan rentan menjadi penyebab cedera atau kelelahan. Dengan Jack TAT, analisis ergonomi dapat dilakukan lebih awal, yaitu pada fase pembuatan desain, sebelum bahaya dan resiko menjadi semakin sulit untuk diatasi dan menimbulkan biaya yang lebih tinggi.

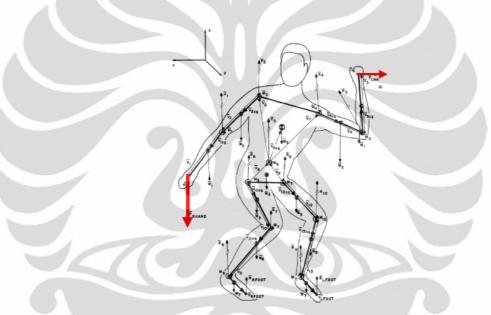
Jack TAT menyediakan sembilan buah metode analisis ergonomi, seperti tertulis di bawah ini:

- Low Back Compression Analysis, yang digunakan untuk mengevaluasi tekanan yang bekerja pada tulang belakang dalam kualitas postur dan kondisi beban tertentu.
- Static Strength Prediction, yang digunakan untuk mengevaluasi jumlah persentase populasi pekerja yang mampu menjalankan pekerjaan yang diberikan berdasarkan postur, tenaga yang dibutuhkan, dan ukuran antropometri.
- NIOSH Lifting Analysis, yang digunakan untuk mengevaluasi kegiatan mengangkat benda berdasarkan persamaan NIOSH.
- *Metabolic Energy Expenditure*, yang digunakan untuk memprediksi energi yang dibutuhkan untuk melakukan suatu kerja berdasarkan karakteristik pekerja dan rangkaian kegiatan yang akan dilakukan.
- Fatigue and Recovery Analysis, yang digunakan untuk menaksir apakah waktu pemulihan yang diberikan bisa mencegah pekerja mengalami kelelahan.
- Ovako Working Posture Analysis (OWAS), yang digunakan untuk mengecek apakah postur yang digunakan dalam bekerja sudah memberikan kenyamanan.

- Rapid Upper Limb Assessment (RULA), yang digunakan untuk mengevaluasi resiko yang menyebabkan gangguan pada tubuh bagian atas.
- Manual Material Handling Limits, yang digunakan untuk mengevaluasi dan merancang kegiatan kerja yang berkaitan dengan proses material handling, sehingga tingkat resiko cedera dapat dikurangi, dan
- Predetermined Time Analysis, yang digunakan untuk memprediksi waktu yang dibutuhkan untuk melakukan suatu kerja berdasarkan sistem method time measurement (MTM-I).

2.7 Static Strength Prediction (SSP)

Static Stregth Prediction adalah alat analisis ergonomi yang digunakan untuk mengevaluasi persentase populasi yang memiliki kemampuan untuk melaksanakan suatu tugas. Analisis ini dibuat berdasarkan kualitas postur, tenaga yang dibutuhkan, dan ukuran antropometri dari populasi. Prinsip dasar yang digunakan SSP adalah (Chaffin, Don, B., Johnson, Louise G., & Lawton, G. (2003)).:


SSP menggunakan konsep biomekanika dalam perhitungannya. Konsep biomekanika diaplikasikan dengan melihat sistem muskuloskeletal yang memungkinkan tubuh untuk mengungkit dan bergerak. Pada tubuh manusia pergerakan otot akan membuat tulang cenderung berotasi pada setiap persendiaan yang ada. Besarnya kecenderungan berotasi ini disebut dengan momen rotasi pada suatu sendi. Selama terjadi pergerakan, maka akan terjadi usaha saling menyeimbangkan antara gaya yang dihasilkan oleh kontraksi otot dengan gaya yang dihasilkan oleh beban pada segmen tubuh dan faktor eksternal lainnya. Secara matematis, hal ini dituliskan dalam persamaan:

dimana Mj adalah gaya eksternal pada setiap persendian dan Sj adalah gaya maksimal yang dapat dihasilkan oleh otot pada setiap persendian. Nilai dari Mj dipengaruhi oleh tiga faktor:

 Beban yang dialami tangan (contohnya: beban mengangkat, gaya dorong, dan lain-lain).

- Postur kerja ketika seseorang mengeluarkan usaha terbesarnya.
- Antropometri seseorang

Setelah semua data yang dibutuhkan terkumpul, maka data tersebut diolah dengan mekanika Newton. Gaya yang didapatkan tubuh dari luar akan dikalikan dengan jarak antara titik tempat tubuh menerima gaya luar tersebut dengan persendian. Yang perlu diperhatikan dalam perhitungan ini adalah penentuan populasi sendi yang terkena dampak dari gaya luar tersebut. Gambar 2.11 adalah model biomekanikal manusia yang digunakan untuk menghitung gaya pada sendi ketika melakukan sebuah aktivitas.

Gambar 2.11 Model Biomekanika Prediksi Beban dan Gaya Persendian Sumber: Chaffin, Don B., G Lawton, & Louise G. Johnson, 2003

Metode SSP dapat digunakan untuk membantu:

- Menganalisis tugas dan kerja yang berkaitan dengan operasi *manual handling* meliputi proses mengangkat, menurunkan, mendorong, dan menarik.
- Memprediksi persentase pekerja pria dan wanita yang memiliki kemampuan statis untuk melaksanakan sebuah tugas.
- Memberikan informasi apakah kebutuhan dari postur kerja yang digunakan melebih batasan dalam standar NIOSH atau batasan kemampuan yang ditentukan sendiri.

Di dalam fase perancangan, sebuah kegiatan kerja (seharusnya) hanya dapat diterima, jika persentase pekerja yang mampu melakukannya mencapai 100%. Dalam praktiknya, hal ini mustahil dilakukan karena banyak kerja yang menghasilkan nilai di bawah 100%. Rancangan kegiatan kerja yang menghasilkan nilai 0% haruslah dieliminasi. Selain itu, kegiatan yang memiliki nilai di bawah batas tertentu sebaiknya juga tidak dilanjutkan ke fase selanjutnya pasca perancangan. Dengan informasi yang diberikan SSP, seorang perancang dapat mendesain sebuah kerja yang mampu dilaksanakan oleh sebanyak mungkin orang dalam suatu populasi.

2.8 Low Back Analysis (LBA)

Low Back Analysis (LBA) merupakan metode untuk mengevaluasi gayagaya yang bekerja di tulang belakang manusia pada kondisi beban dan postur tertentu (Siemens PLM Software, Op Cit, hal. 2-3). Metode LBA bertujuan untuk:

- Menentukan apabila posisi kerja yang ada telah sesuai dengan batasan beban ideal ataupun menyebabkan pekerja rentan terkena cedera pada tulang belakang.
- Memberikan informasi terjadinya peningkatan risiko cidera pada bagian tulang belakang manusia.
- Memperbaiki tata letak sebuah stasiun kerja beserta tugas-tugas yang akan dilakukan di dalamnya sehingga risiko cidera pada bagian tulang belakang pekerja dapat dikurangi.
- Memprioritaskan jenis-jenis kerja yang membutuhkan perhatian lebih untuk dilakukan perbaikan ergonomi di dalamnya.

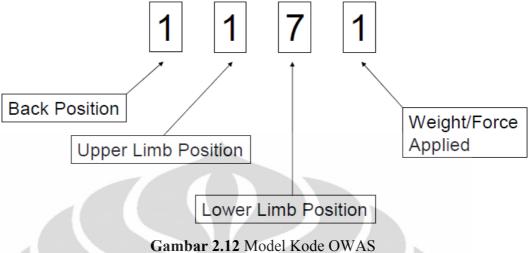
Metode ini menggunakan sebuah model biomekanika kompleks dari tulang belakang manusia yang menggabungkan anatomi terbaru dan data-data fisiologis yang didapatkan dari literatur-literatur ilmiah yang ada. Selanjutnya, metode ini akan mengkalkulasi gaya tekan dan tegangan yang terjadi pada ruas lumbar 4 (L4) dan lumbar 5 (L5) dari tulang belakang manusia dan membandingkan gaya tersebut dengan batas nilai beban ideal yang dikeluarkan oleh *National Institute for Occupational Safety and Health* (NIOSH).

(2.3)

Secara matematis, standar *lifting* NIOSH dapat dirumuskan sebagai berikut(NIOSH, 1998):

RWL = LC x HM x VM x DM x FM x AM x CM

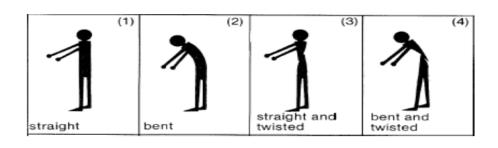
dimana RWL adalah *recommended weight limit*, LC adalah beban konstan (*load constant*) dan faktor lain adalah seperti yang tertulis di bawah:


- HM, faktor "Horizontal Multiplier",
- VM, faktor "Vertical Multiplier",
- DM, faktor "Distance Multiplier",
- FM, faktor "Frequency Multiplier",
- AM, faktor "Asymmetric Multiplier", dan
- CM, faktor "Coupling Multiplier".

2.9 Ovako Working Posture Analysis (OWAS)

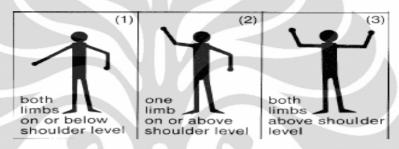
OWAS merupakan metode untuk menganalisa dan mengevaluasi postur kerja manusia yang paling awal dan termudah. Metode ini ditemukan pertama kali oleh Ovako Oy, sebuah perusahaan manufaktur besi yang terletak di Negara Finlandia pada tahun 1977. Metode OWAS didasarkan pada klasifikasi postur kerja yang sederhana dan sistematis yang dikombinasikan dengan tugas, atau pekerjaan, dapat diaplikasikan dalam beberapa bidang, contohnya adalah sebagai berikut:

- Pengembangan tempat kerja atau metode kerja, untuk mengurangi beban muskuloskeletal dengan tujuan membuat usulan yang lebih aman dan lebih produktif
- Perencanaan tempat kerja baru atau metode kerja
- Survei Ergonomi
- Survei kesehatan kerja
- Penelitian dan pengembangan


Metode ini menilai empat bagian tubuh yang dirangkum dalam 4 digit kode (Gambar 2.12). Angka pertama dalam kode untuk menjelaskan postur kerja bagian *back* (tulang punggung), digit kedua adalah bagian *upper limb*, digit ketiga *lower limb* dan terakhir adalah beban yang digunakan selama proses kerja berlangsung. Penjelasan mengenai kode digit akan dijelaskan sebagai berikut.

Sumber: Raemy, Ergonomics Assessments Methods

1. Postur Bagian Punggung


Seperti telah disebutkan sebelumnya, angka pertama dari kode OWAS merupakan kode yeng mendefinisikan posisi atau postur bagian punggung manusia. Posisi punggung manusia ini diklasifikasikan ke dalam 4 jenis posisi yang masing – masing posisi tersebut memiliki kode angka mulai dari angka 1 hingga angka 4. Postur bagian punggung pertama, yang memiliki kode 1 adalah posisi punggung yang memiliki karakteristik tegak, lurus tidak mengalami *flexion* ataupun *extension* sedikitpun. Berdasarkan kode OWAS, posisi ini merupakan posisi terbaik untuk punggung. Posisi kedua, yaitu yang memiliki kode 2 adalah posisi punggung yang membungkuk (*bent*). Kemudian untuk posisi yang ketiga, yang merupakan kode 3 adalah posisi punggung yang tegak, namun mengalami putaran, atau *twisted*. Terakhir, posisi punggung yang memiliki kode 4 adalah posisi punggung yang mengalami perputaran (*twisted*) sekaligus membungkuk (*bent*). Manurut skala OWAS, nilai 4 inilah yang memiliki tingkat keparahan terbesar untuk posisi punggung manusia.

Gambar 2.13 Klasifikasi Postur Punggung dalam Metode OWAS Sumber: Raemy, *Ergonomics Assessments Methods*

2. Posisi Tungkai Bagian Tubuh Atas

Angka kedua dari sistem 4 angka dari kode OWAS merupakan angka yang mendefinisikan posisi tungkai bagian atas tubuh. Dalam hal ini, tungkai bagian atas tubuh dapat dikatakan sebagai lengan dan tangan. Posisi lengan dan tangan diklasifikasikan menjadi tiga posisi. Posisi pertama yang memiliki kode 1 adalah posisi lengan dan tangan yang berada di bawah level ketinggian bahu.

Gambar 2.14 Klasifikasi Postur Tungkai Bagian Tubuh Atas dalam Metode OWAS

Sumber: Raemy, Ergonomics Assessments Methods

Kemudian posisi kedua adalah posisi tangan dan lengan yang salah satunya (kanan atau kiri) berada di atas level ketinggian bahu. Dan yang terakhir adalah posisiyang memiliki nilai 3, dimana lengan dan tangan berada di atas level ketinggian bahu. Keterangan gambar mengenai posisi *upper limb* ini dapat dilihat pada gambar 2.14.

3. Posisi Tungkai Tubuh Bagian Bawah

Angka ketiga dari sistem 4 anga dari kode OWAS merupakan angka yang mendefinisikan posisi tungkai dari bagian tubuh bawah (kaki). Posisi kaki dalam metode OWAS diklasifikasikan ke dalam 7 jenis posisi, yang memiliki kode 1 hingga 7. Posisi pertama yaitu posisi kaki yang berada dalam kondisi duduk, dimana kaki (legs) berada di bawah level ketinggian dudukan kursi. Kemudian posisi kedua adalah posisi berdiri dengan dua kaki menapak sempurna di tanah. Ketiga, posisi berdiri dengan satu kaki terangkat. Keempat, posisi berdiri dengan kedua kaki tertekuk di bagian lutut dan pergelangan kaki. Kelima, posisi berdiri

dengan satu kaki terangkat sekaligus tertekuk. Keenam, posisi berlutut, dan terakhir posisi tubuh yang sedang berjalan. Keterangan gambar mengenai posisi *lower limb* ini dapat dilihat pada gambar 2.15

Gambar 2.15 Klasifikasi Postur Tungkai Bagian Tubuh Atas dalam Metode OWAS

 ${\bf Sumber: Raemy, \it Ergonomics \it Assessments \it Methods}$

4. Beban Ditanggung / Gaya yang Dikerjakan

Angka terakhir dalam metode OWAS adalah angka yang mendefinisikan besarnya beban yang ditanggung, atau gaya yang dikerjakan oleh seseorang ketika melakukan sebuah pekerjaan. Terdapat tiga buah klasifikasi beban, yaitu kurang dari 10 kg, diantara 10 kg hingga 20 kg dan terakhir, lebih dari 20 kg.

Setelah mendapatkan nilai – nilai dari keempat parameter diatas, dilakukan perhitungan untuk menghasilkan skor akhir OWAS. Skor akhir ini memiliki range nilai dari 1 hingga 4, dengan keterangan dari masing – masing skor dapat dilihat dari tabel 2.1

Tabel 2.1 Detail Usulan Berdasarkan Skor OWAS

Skor	Keterangan	Penjelasan
1	Normal posture	Tindakan perbaikan tidak diperlukan
2	Slightly harmful	Tindakan perbaikan diperlukan di masa datang
3	Distinctly harmful	Tindakan perbaikan diperlukan segera
4	Extremely harmful	Tindakan perbaikan diperlukan secepat mungkin

Sumber: Benchmarking of the Manual Handling Assessment Charts, 2002

2.10 Rapid Upper Limb Assessment (RULA)

Rapid Upper Limb Assessment adalah sebuah alat analisis ergonomi yang digunakan untuk mengevaluasi tingkat resiko cedera dan gangguan

muskuloskeletal pada tubuh bagian atas. Analisis dibuat berdasarkan kualitas postur, penggunaan otot, berat beban yang diterima, durasi kerja, dan frekuensinya. Metode ini dibuat melalui pengisian lembar kerja, dimana lembar tersebut akan memudahkan penggunanya untuk menghitung sebuah nilai yang mengindikasikan derajat kepentingan dari tingkat intervensi yang diperlukan untuk mereduksi resiko dan bahaya yang dapat terjadi. Bagian tubuh yang dianalisis dibagi menjadi dua grup. Grup A terdiri dari bagian tubuh tangan dan pergelangan tangan. Grup B terdiri dari leher, batang tubuh, dan kaki. Nilai akhir yang dihasilkan RULA adalah sebagai berikut:

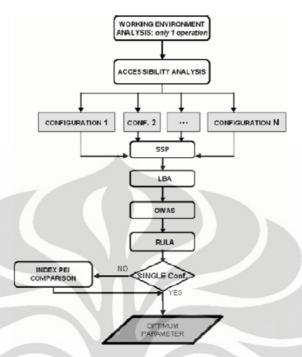
- 1 atau 2, nilai ini mengindikasikan resiko dapat diterima.
- 3 atau 4, nilai ini menyatakan bahwa resiko harus diinvestigasi lebih lanjut.
- 5 atau 6, nilai ini menyatakan bahwa resiko harus diinvestigasi lebih lanjut
- dan diberikan perbaikan dengan cepat.
- 7, nilai menyatakan bahwa resiko harus segera diinvestigasi dan diberi perbaikan.

Metode RULA akan membantu penggunanya untuk:

- Memberikan penilaian terhadap suatu kegiatan kerja dengan cepat sehingga resiko cedera pada tubuh bagian atas dapat dikurangi.
- Membantu dalam pembuatan desain kegiatan kerja atau perbaikan dari kegiatan yang telah ada.
- Mengidentifikasi dan memprioritaskan postur kerja yang membutuhkan perhatian lebih untuk dilakukan perbaikan ergonomi di dalamnya.

Step 1: Locale Upper Am Position Step 1: Locale Upper Am Position Step 2: Locale Upper Am Position Step 3: Adjust... Final layer Am Store Final to subject of press or service store and store and store of press or service store and store an

RULA Employee Assessment Worksheet


FINAL SCORE: 1 or 2 = Acceptable; 3 or 4 investigate further; 5 or 6 investigate further and change soon; 7 investigate and change immediately

Gambar 2.16 Contoh Lembar Kerja RULA Sumber: Hedge, 2000

2.11 Metode Posture Evaluation Index (PEI)

Metodologi PEI dan WEI dikembangkan oleh Prof. Frans Caputo dan Giuseppe Di Gironimo, Ph.D dari University of Naples Frederico II, Italia. Metodologi ini dikembangkan berdasarkan aplikasi *Task Analysis Toolkit* (TAT) yang terdapat pada *software* Jack. Tujuan dari penggunaan metodologi ini adalah untuk melakukan optimalisasi terhadap fitur geometri pada sebuah stasiun kerja. Dengan optimalisasi yang dilakukan, postur kerja yang paling memberikan kenyamanan pada pekerja, dalam berbagai macam persentil populasi, dapat ditentukan17.

Jika fitur geometri yang menjadi karakter dari sebuah stasiun kerja hanya mempengaruhi sisi ergonomi dari sebuah operasi, maka metode PEI dapat digunakan sehingga optimalisasi dari sebuah operasi pada satu buah stasiun kerja dapat dilakukan.. Metode ini mengikuti alur yang ada pada gambar di bawah:

Gambar 2.17 Diagram Alir Metode PEI Sumber: Caputo, Di Gironimo, Marzano, 2006

2.11.1 Fase Pertama: Analisis terhadap Lingkungan Kerja

Fase pertama terdiri dari analisis terhadap lingkungan kerja dengan memperhatikan seluruh pergerakan alternatif yang memungkinkan: hal ini, secara umum, meliputi pemahaman terhadap rute alternatif, postur dan kecepatan eksekusi, yang kesemuanya memberikan kontribusi terhadap kesimpulan yang akan diambil. Sangatlah penting untuk mensimulasikan semua operasi di atas untuk memverifikasi kelayakan dari operasi tersebut. Faktanya, sebagai contoh, tidak menjadi jaminan apakah semua titik yang ditentukan bisa dijangkau oleh postur yang berbeda. Eksekusi dari analisis ini menjamin tingkat kelayakan dari tugas yang ada. Diantara seluruh fase optimalisasi, fase pertama adalah fase yang membutuhkan waktu paling lama karena fase ini membutuhkan pembuatan simulasi secara *real time* dalam jumlah yang banyak, padahal banyak diantaranya yang akan menjadi sia-sia.

2.11.2 Fase Kedua: Analisis Keterjangkauan dan Aksesibilitas

Perancangan dari sebuah stasiun kerja selalu membutuhkan kajian pendahuluan terhadap aksesibilitas dari titik-titik kritis (*critical points*). Hal ini

adalah masalah yang menarik dan sering muncul dalam lini produksi. Masalah ini berkenaan dengan apakah memungkinkan untuk membawa seluruh metode gerakan yang telah dirancang ke dalam sebuah operasi dan apakah semua titik kritis dapat dijangkau oleh pekerja. Sebuah analisis dapat dilakukan dalam Jack, dengan mengaktifkan algoritma mengenai deteksi benturan. Kegiatan kerja yang tidak memberikan hasil yang memuaskan pada fase ini lebih baik tidak dilanjutkan ke fase berikutnya. Dari analisis terhadap lingkungan, keterjangkauan, dan aksesibilitas, konfigurasi dari tata letak maupun metode kerja yang akan dianalisis pada fase berikutnya dapat ditentukan. Jika jumlah konfigurasi yang memungkinkan untuk diteliti terlalu banyak, maka prosedur *Design of Experiment* (DOE) dapat diterapkan.

2.11.3 Fase Ketiga: Static Strength Prediction

Setelah konfigurasi kegiatan kerja disusun, pertanyaan berikutnya adalah: berapa banyak pekerja yang memiliki kekuatan untuk melaksanakan tiap kegiatan yang ada pada konfigurasi. Seperti yang telah tertuang pada sub-bab 2.6, kegiatan yang memiliki nilai persentase di bawah batas tertentu sebaiknya tidak dilanjutkan ke fase selanjutnya.

2.11.4 Fase Keempat: Low Back Analysis

Analisis ini mengevaluasi secara *real time* beban yang diterima oleh bagian tulang belakang model manekin saat melakukan tugas yang diberikan. Nilai tekanan yang dihasilkan, kemudian dibandingkan dengan batasan tekanan yang ada pada standar NIOSH yaitu 3400 N.

2.11.5 Fase Kelima: Ovako Working Posture Analysis

Kegiatan yang telah dianalisis dengan metode LBA, kemudian, dievaluasi dengan menggunakan OWAS. Metode OWAS mengevaluasi secara *real time* tingkat kenyamanan bentuk postur tubuh dari model manekin selama pelaksanaan aktivitas. Kemudian, OWAS memberikan nilai level antara 1 s.d 4 dan kode 4 digit yang digunakan untuk menilai posisi dari tubuh bagian belakang, kedua tangan, dan kaki beserta tingkat beban yang diterima. Nilai level menunjukkan

tingkat kualitas postur secara kuantitatif dan tingkat kepentingan dari langkahlangkah koreksi yang harus dilakukan.

2.11.6 Fase Keenam: Rapid Upper Limb Assessment

Dari skenario konfigurasi yang diajukan, prosedur mengeliminasi secara progresif kegiatan kerja pada konfigurasi yang: 1) tidak memungkinkan untuk mengakses titik-titik kritis, 2) tidak mampu dilakukan oleh populasi pekerja yang ada 3) sangat memungkinkan memberikan bahaya dan cedera pada bagian tulang belakang. Pada fase kelima, kualitas dari postur kerja dianalisis. Analisis ini mengacu pada keberadaan resiko terjadinya penyakit dan atau bahaya yang dapat timbul pada tubuh bagian atas. Resiko tersebut diberikan nilai antara 1 s.d. 7. Nilai tersebut mengindikasikan tingkat bahaya dari resiko beserta langkah korektif yang harus dilakukan.

2.11.7 Fase Ketujuh: Evaluasi PEI

Perbandingan kualitas ergonomi antara satu kegiatan kerja dengan kegiatan lainnya dapat dilakukan pada fase ini. Perbandingan tersebut akan memberikan sebuah klasifikasi resiko yang terjadi pada para bagian muskuloskeletal pekerja, baik dalam jangka pendek maupun jangka panjang. Yang menjadi acuan dari perbandingan tersebut adalah nilai PEI yang dihasilkan. Nilai PEI tersebut mengintegrasikan hasil dari analisis LBA, OWAS, dan RULA. Konfigurasi dengan nilai tertinggi dinyatakan sebagai konfigurasi yang paling optimal.

Nilai PEI merupakan jumlah total dari tiga buah variabel; *I*1, *I*2, dan *I*3. Variabel *I*1 merupakan hasil normalisasi dari nilai LBA dengan batas kekuatan tekanan pada standar NIOSH (3400 N). Variabel *I*2, dan *I*3 merupakan hasil dari indeks OWAS yang dinormalisasi dengan nilai kritisnya ("4") dan indeks RULA yang dinormalisasi dengan nilai kritisnya ("7")19.

$$PEI = I1 + I2 + mr.I3$$
 dimana: (2.4)

I1= LBA/3400 N, I2= OWAS/4, I3=RULA/7, dan mr adalah amplification factor dengan nilai 1,42.

Definisi dari PEI dan penggunaan dari ketiga buah metode analisis (LBA, OWAS, RULA) bergantung terhadap hal-hal berikut. Faktor-faktor yang menjadi penyebab utama dari pembebanan yang berlebihan pada biomekanikal adalah: repetisi, frekuensi, postur, usaha kerja, dan waktu pemulihan. Faktor yang memberikan pengaruh paling besar terhadap kegiatan adalah postur ekstrim, khususnya pada tubuh bagian atas. Konsekuensinya, perhatian yang lebih harus diberikan pada evaluasi tingkat ketidaknyaman pada lumbar disc L4/L5 (pengaruh I1) dan evaluasi dari tingkat kelelahan pada tubuh bagian atas (pengaruh I3). PEI memungkinkan penggunanya untuk menentukan modus operandi untuk menjalankan kegiatan kerja dalam cara yang sederhana. Faktanya, postur optimal yang berkaitan dengan kegiatan dasar adalah postur kritis dengan nilai PEI minimum. Variabel yang mempengaruhi nilai akhir PEI bergantung pada tingkat ketidaknyaman pada postur yang dianalisis: semakin tinggi tingkat ketidaknyaman, semakin tinggi nilai PEInya.

Untuk memastikan tingkat kenyamanan dari kerja, dengan memperhatikan standar keamanan dan keselamatan, sebuah postur yang nilai *I*1-nya lebih dari atau sama dengan 1 akan diasumsikan tidak absah. Berdasarkan hal ini, nilai maksimal yang dapat diterima adalah 3 (kekuatan tekanan yang bekerja pada *lumbar disc* L4/L5 sama dengan batas pada standar NIOSH 3400 N, nilai dari sudut sendi tidak dapat diterima). Dengan mengulangi semua fase di atas untuk tiap konfigurasi, maka nilai ergonomi dari tiap konfigurasi dapat ditentukan, dan akhirnya, kegiatan kerja yang paling optimal dalam konfigurasi dapat dipilih.

2.12 Kendaraan Tempur Lapis Baja

Kendaraan tempur kanon merupakan pengembangan varian dari panser 6x6 yang telah ada sebelumnya. Terdapat beberapa jenis kendaraan tempur lapis baja yang merupakan pengembangan varian dari panser 6x6, diantaranya adalah:

2.12.1 Panser APC

APS-3 "Anoa" adalah sebuah kendaraan militer lapis baja buatan PT. Pindad Persero, Indonesia. Kendaraan ini dipergunakan untuk mengangkut personel atau dikenal dengan nama APC (*Armoured Personnel Carrier*). Nama

ANOA sendiri diambil dari nama hewan Anoa yang hidup di pulau sulawesi. APS 3 ini dinamai anoa, yang merupakan salah satu jenis kerbau asli Indonesia. Panser tipe APC ini dinilai tidak ergonomis dikarenkan bentuknya yang hampir seluruhnya menyadur kendaraan lapis baja buatan Perancis, *Véhicule de l'Avant Blindé* (VAB).

Gambar 2.18 Panser Tipe APC (Armoured Personnel Carrier)

2.12.2 Panser Komando

Panser komando memiliki sedikit perbedaan pada body bagian belakang bila dibandingkan dengan panser APC. Hal ini dikarenakan panser komando memiliki beberapa peralatan peralatan penting didalamnya yang ukurannya tidaklah kecil. Seperti namanya, panser komando merupakan tempat memberikan komando kepada panser lainnya. Panser komando selalu berada di depan untuk selalu memberitahukan situasi dan kondisi medan perang yang dilalui oleh kesatuan infantri didalamnya.

Gambar 2.19 Panser Tipe Komando

2.12.3 Panser Ambulan

Panser ambulan merupakan kendaraan militer lapis baja yang digunakan untuk mengangkut korban perang. Pada body panser ambulan terdapat lambang palang merah yang membedakan panser ini dengan panser-panser lainnya. Isi dari panser ambulan pun berbeda dengan panser tipe APC, di dalam panser ambulan terdapat beberapa peralatan medik serta tandu yang digunakan untuk mengangkut korban perang.

Gambar 2.20 Panser Tipe Ambulan

2.12.4 Panser Recovery

Panser *recovery* merupakan kendaraan militer lapis baja yang digunakan untuk memperbaiki ataupun menderek tipe panser lainnya. Seperti yang kita ketahui sebelumnya, panser merupakan termasuk kendaraan yang berat sehingga tidak sembarang mobil derek bisa menderek tipe panser lainnya. Dikarenakan didalam suatu medan perang dibutuhkan tingkat mobilitas yang tinggi maka dari itu dikembangkanlah varian panser tipe ini dalam membantu pembetulan tipe panser lainnya.

Gambar 2.21 Panser Tipe *Recovery*

2.12.5 Panser Logistik

Panser logistik merupakan kendaraan militer lapis baja yang digunakan untuk mengangkut berbagai macam logistik yang digunakan di dalam medan perang. Banyak sekali logistik yang diperlukan dan sangat penting di dalam medan perang salah satunya adalah bahan bakar. Bagi tipe panser lainnya bahan bakar merupakan suatu hal yang penting yang tak dapat diacuhkan. Dalam perang logistik merupakan salah satu nyawa yang paling berharga dan merupakan salah satu bentuk strategi perang juga. Pada bagian dalam terdapat susunan rak tempat menaruh logistik yang dibawa, yang merupakan pembeda dengan tipe panser lainnya.

Gambar 2.22 Panser Tipe Logistik

2.12.6 Panser Mortar

Panser Mortar merupakan kendaraan militer lapis baja yang digunakan untuk membawa mortar. Mortar itu sendiri adalah senjata artileri yang diisi dari depan, dan menembakkan peluru dengan kecepatan yang rendah, jarak yang jangkauan dekat, dan dengan perjalanan peluru yang tinggi lengkungan parabolnya. Hal yang berbeda antara panser mortar dengan panser lainnya adalah, dapat dibukanya bagian atas panser sehingga peluru pada mortar dapat diluncurkan.

Gambar 2.23 Panser Tipe Mortar

2.12.7 Kendaraan Intai

Intai merupakan kendaraan militer lapis baja yang digunakan untuk mengintai lawan di dalam suatu medan perang. Bentuknya yang lebih kecil dibandingkan yang lain membuat intai memiliki mobilitas yang lebih tinggi.

Gambar 2.24 Kendaraan Lapis Baja Intai

2.12.8 Panser Kanon

Panser kanon merupakan proyek pengembangan panser Pindad ANOA 6x6. Sistem turet canon panser ini menggunakan CSE-90/MK-III buatan CMI *Defense*, Belgia. CSE-90 berkaliber 90mm ini juga dilengkapi dengan senapan mesin coaxial 7,62mm. Untuk perangkat komunikasi menggunakan *Intercom set* VHF/FM dengan fasilitas *anti-jamming* dan berkemampuan *hopping channel*. Peralatan pertempuran lainnya adalah teropong malam (*Night Vision Google*), GPS, dan perangkat sensor senjata.

Gambar 2.25 Kendaraan Tempur Panser Kanon

Pengarahan Presiden RI 10 Oktober 2010 tentang kendaraan tempur kanon menjadi dasar konsep pengembangan kendaraan tempur panser kanon. Konsep desain panser kanon itu sendiri adalah:

- Memakai Turret CSE-90 dan Gun Mk3 Cockrail Kal 90 mm (kaliber sedang)
- Penggunaan double wishbone dan coil spring, dengan lebar track menjadi
 2515 mm jadi ada modifikasi suspensi Panser 6x6 anoa, sedang axle dan hub reduction tetap.
- Sistem otomotif yang sebagian besar mengadopsi Panser 6x6
- Mudah dalam *loading/unloading* power pack
- Memiliki lebar body lebih besar yaitu 2700 mm
- Memiliki siluet yang rendah
- Driver hatch sebelah kanan, dan letak muffler sebelah kiri (pilih exhaust engine yg sebelah kiri)
- Penggunaan periskop untuk pengemudi
- Pemanfaatan fasilitas produksi yang telah ada.

Tabel 2.2 Target Spesifikasi Desain

Panser 6x6	Keterangan	
Canon		
	6655mm	
Dimensi	2700mm	
Dimensi	2850mm Turet	
	1950mm Hull top	
Combat Weight	15.500 Kg	
Configurasi	6x6 Mid Engine	
Senjata	90 mm	
Power Ratio	20.97 Hp/ton	
Engines	1300 Nm	
	340 Hp	
Crew	3 orang	
Manufaktur	Pindad	
Driver	Kanan	

(Sumber: PT. Pindad Persero)

BAB3

PENGUMPULAN DAN PENGOLAHAN DATA

Bab ini membahas mengenai data-data yang dikumpulkan seperti data spesifikasi kabin pengemudi pada kendaraan tempur panser kanon, data antropometri personil TNI sebagai penggunanya, berikut proses pengumpulan datanya. Pada bab ini juga dibahas mengenai pembuatan model berdasarkan data-data yang telah dikumpulkan menggunakan *software* Jack 6.1.

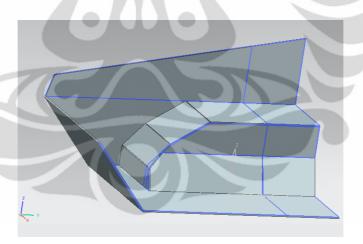
3.1 Pengumpulan Data

Dalam penelitian ini dibutuhkan data masukan untuk menyusun virtual environment dan virtual human modeling dalam software Jack 6.1. Data masukan yang dibutuhkan tersebut didapatkan dari desain yang telah tersedia dari PT. PINDAD Persero. Dalam pembuatan virtual environment, diperlukan data – data yang berhubungan dengan objek penelitian berlangsung, dalam hal ini adalah kabin pengemudi pada panser kanon. Dalam kabin pengemudi, dilihat hal – hal yang berinteraksi langsung dengan pengemudi dalam mengoperasikan panser kanon. Terdapat beberapa objek yang berinteraksi langsung dengan pengemudi selama pengoperasian panser kanon. Oleh karena itu, untuk membuat sebuah virtual environment dibutuhkan data spesifikasi dari objek-objek yang berinteraksi langsung dengan pengemudi tersebut berdasarkan spesifikasi militer yang ada.

Untuk pembuaan model manusia virtual (*virtual human modeling*) dibutuhkan data antropometri dari personil TNI yang akan menggunakan panser kanon nantinya. Data antropometri ini dibutuhkan untuk membuat model manusia yang merepresentasikan ukuran tubuh personil TNI yang sebenarnya.

3.1.1 Data Spesifikasi Kabin Pengemudi Kendaraan Tempur Panser Kanon

Kendaraan tempur yang menjadi objek penelitian adalah kendaraan tempur panser kanon. Kendaraan tempur panser kanon merupakan pengembangan dari kendaraan tempur panser lainnya. Kendaraan tempur panser kanon yang menjadi objek penelitian ini masih berbentuk desain dan masih dalam proses pembuatan.


Pada kabin pengemudi terdapat beberapa desain yang saling berinteraksi dan menunjang satu sama lainnya, diantaranya adalah:

- 1. Ruang kabin
- 2. Kursi pengemudi
- 3. Pedal gas dan rem
- 4. Tuas kemudi

Berikut ini adalah detail spesifikasi kabin pengemudi kendaraan tempur panser kanon berdasarkan ukuran pada desain yang tersedia.

3.1.1.1 Data Spesifikasi Ruang Kabin

Ruang kabin merupakan hal yang terpenting didalam objek penelitian ini. Ruang kabin yang tersedia menjadi batas gerak yang mungkin terjadi dalam proses pengoperasian dalam kabin pengemudi kendaraan tempur panser kanon. Berikut ini adalah detail spesifikasi ruang kabin yang tersedia dalam desain yang diberikan oleh PT. Pindad Persero.

Gambar 3.1 Model Virtual Ruang Kabin yang Tersedia

Dikarenakan terbatas oleh rongga tempat peletakan roda panser kanon, maka ruang kabin yang tersedia untuk peletakan kursi pengemudi, pedal gas dan rem, serta tuas kemudi dijelaskan sebagai berikut.

Panjang alas : 140 cmLebar alas : 300 cm

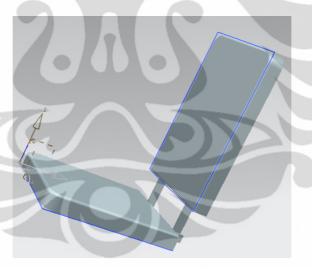
• Tinggi kabin : 965 cm (jarak dari alas ke titik tertinggi kabin)

• Sudut kemiringan atap kabin: 10⁰

• Sudut kemiringan depan kabin: 125⁰

3.1.1.2 Data Spesifikasi Kursi Pengemudi

Kursi Pengemudi merupakan suatu hal yang penting di dalam kabin pengemudi panser kanon. Kursi pengemudi menentukan seperti apa postur yang terbentuk di dalam kabin pengemudi tersebut. Berikut ini adalah data spesifikasi dari kursi pengemudi yang didapat.

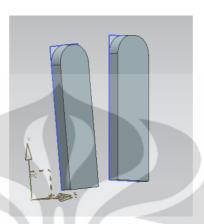

• Panjang alas duduk : 34 cm

• Lebar alas duduk : 28,5 cm

• Panjang senderan kursi : 41 cm

• Lebar senderan kursi : 28,5 cm

• Tebal kursi : 4 cm



Gambar 3.2 Model Virtual Kursi Pengemudi

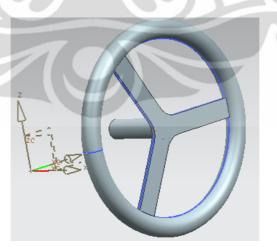
3.1.1.3 Data Spesifikasi Pedal Gas dan Rem

Pedal kemudi yang ada hanya terdapat dua macam, yaitu pedal dan rem. Dikarenakan kendaraan tempur panser kanon yang direncanakan memiliki transmisi *automatic* sehingga tidak adanya padel kopling pada kabin pengemudi panser kanon ini. Pedal gas dan rem pada penilitian ini dibuat berdasarkan spesifikasi militer yang ada. Berikut ini adalah data spesifikasi dari pedal gas dan rem yang didapat.

Lebar pedal gas : 7,2 cmLebar pedal rem : 6,4 cm

Gambar 3.3 Model Virtual Gas dan Rem

3.1.1.4 Data Spesifikasi Tuas Kemudi


Tuas kemudi aktual yang telah ada adalah berbentuk lingkaran penuh.

Tuas Kemudi pada penilitian ini dibuat berdasarkan spesifikasi militer yang ada.

Berikut ini adalah data spesifikasi dari tuas kemudi yang didapat.

• Diameter tuas kemudi : 33 cm

• Ketebalan tuas kemudi : 3 cm

Gambar 3.4 Model Virtual Tuas Kemudi

3.1.2 Data Antropometri

Data antropometri yang digunakan untuk membuat model manusia virtual (virtual human model) adalah data antropometri Yonif Mekanis 201. Pemilihan

personil Yonif Mekanis 201 dikarenakan Yonif Mekanis 201 merupakan kesatuan yang satu-satunya berinteraksi langsung dengan kendaraan tempur panser pada saat penelitian berlangsung. Data antropometri tersebut diperoleh dengan cara melakukan pengukuran langsung menggunakan peralatan antropometer terhadap sampel personil Yonif Mekanis 201 sebanyak 170 orang responden. Pengukuran yang dilakukan bersifat manual dikarenakan keterbatasan waktu yang dimiliki oleh personil Yonif Mekanis 201 sehingga tidak dapat dilakukan pengukuran dengan menggunakan AnthroScan.

Terdapat beberapa data dimensi-dimensi tubuh yang dibutuhkan untuk dijadikan data masukan dalam *software* Jack 6.1 yang berjumlah 15 dimensi tubuh, diantaranya adalah:

- Tinggi tubuh saat berdiri tegak
- Tinggi lutut saat duduk kaki tegak
- Jarak antara lantai sampai bawah paha
- Panjang telapak kaki
- Jarak bokong ke lutut (depan)
- Jarak bokong ke lutut (belakang)
- Tinggi bahu dari bantalan duduk
- Tinggi mata dari bantalan duduk
- Tinggi duduk (kepala ke bantalan duduk)
- Jarak bahu ke siku
- Jarak siku ke ujung jari
- Lebar bahu
- Lebar pelana (diukur setinggi pusar)
- Lebar bokong
- Lebar perut

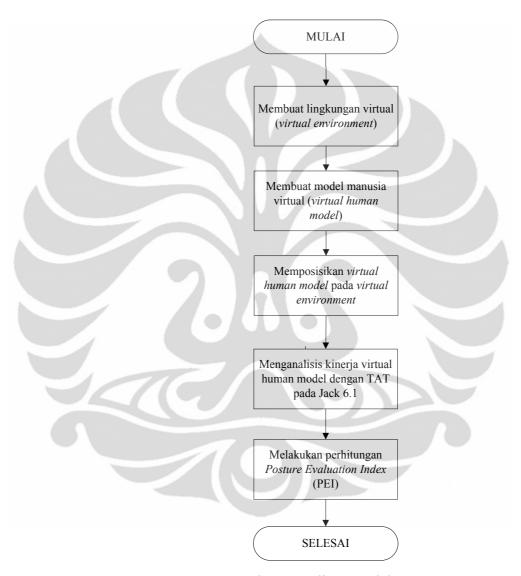
Pengambilan data antropometri personil Yonif Mekanis 201 dilakukan dengan peralatan antropometer. Semua ukuran dimensi antropometri diambil dalam satuan sentimeter (cm) dan untuk berat badan diukur dalam satuan kilogram (kg). Pengambilan data antropometri dilakukan oleh lima orang operator karena pengukuran antropometri secara manual serta cukup banyaknya besaran yang diukur memakan waktu yang cukup lama sehingga proses pengambilan data

antropometri dapat mencukupi data antropometri yang dibutuhkan dalam waktu perizinan yang diberikan sebelumnya.

Berdasarkan hasil pengambilan data, kemudian dilakukan pengolahan data untuk mendapatkan data antropometri personil TNI dengan persentil 5 dan persentil 95. Rincian data persentil yang diolah dari data antropometri tinggi, berat badan, serta beberapa dimensi tubuh lainnya dapat dilihat pada rekapitulasi data dibawah ini.

Tabel 3.1 Rekapitulasi Data Antropometri Personil Yonif Mekanis 201

No.	Dimensi	Persentil 5	Persentil 95
1.	Tinggi	164.0	176.0
2.	Tinggi lutut saat duduk kaki tegak	51.0	58.6
3.	Jarak antara lantai sampai bawah paha	42.0	48.0
4.	Panjang telapak kaki	24.7	28.0
5.	Jarak Bokong ke lutut depan	52.0	60.0
6.	Jarak bokong ke lutut belakang	43.0	50.6
7.	Tinggi bahu dari bantalan duduk	50.0	59.0
8.	Tinggi mata dari bantalan duduk	69.0	78.0
9.	Tinggi duduk, kepala ke bantalan duduk	79.5	89.0
10.	Jarak bahu ke siku	31.0	37.0
11.	Jarak siku ke ujung jari	42.0	48.0
12.	Lebar bahu	39.0	46.0
13.	Lebar pelana, setinggi pusar	26.0	35.0
14.	Lebar bokong	32.0	40.0
15.	Lebar perut	16.0	26.0
16.	Berat Badan	54.0	75.6

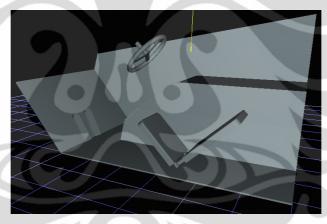

3.2 Pengolahan Data

Pengolahan data merupakan tahapan selanjutnya yang dilakukan setelah data-data yang dibutuhkan terkumpul. Pengolahan data dilakukan dengan menggunakan *software* Jack 6.1. Tahapan yang dilakukan dalam pembuatan model penelitian dengan menggunakan software Jack 6.1, yaitu:

- 1. Membuat lingkungan virtual (*virtual environment*)
- 2. Membuat model manusia virtual (virtual human model)
- 3. Memposisikan *virtual human model* pada *virtual environment* sesuai dengan keadaan yang direncanakan
- 4. Menganalisis kinerja *virtual human model* dengan menggunakan *Task Analysis Toolkit* (TAT) yang terdapat pada *software* Jack 6.1

5. Melakukan perhitungan *Posture Evaluation Index* (PEI)

Berikut adalah diagram alir pengolahan data seperti yang telah dijelaskan pada poin-poin diatas.


Gambar 3.5 Diagram Alir Pengolahan Data

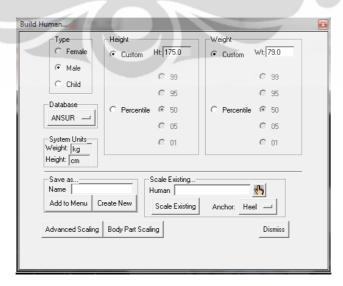
3.2.1 Pembuatan Virtual Environment

Tahapan awal dari pengolahan data adalah membuat lingkungan virtual (virtual environment). Pembuatan virtual environment dalam penelitian ini dilakukan dengan bantuan software Jack 6.1. Namun, untuk bisa menyusun virtual environment yang merepresentasikan ukuran di dunia nyata, harus dibentuk terlebih dahulu model lingkungan kerja (virtual environment) dalam

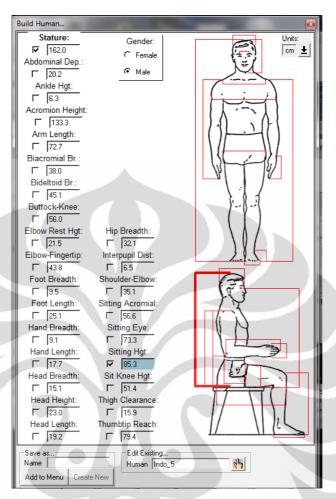
software NX 6.0. Lingkungan kerja yang dimaksud dalam penilitian ini adalah kabin pengemudi pada kendaraan tempur panser kanon. Pembuatan model *virtual* kabin pengemudi kendaraan tempur panser kanon dikerjakan dalam *software* NX 6.0 dengan ukuran dimensi yang telah disesuaikan dengan ukuran sebenarnya.

Setelah membuat model dalam *software* NX 6.0, model kabin pengemudi yang dihasilkan memiliki format standar yaitu (.prt). Kemudian model kabin pengemudi yang dihasilkan dirubah ke dalam format (.igs) agar dapat diimport ke dalam *software* Jack 6.1. Setelah pengubahan format, file langsung bisa diimport ke dalam *software* Jack 6.1 untuk kemudian digabungkan dengan model manusia virtual (*virtual human model*) untuk dilakukan langkah selanjutnya. Berikut adalah hasil pembuatan model kabin pengemudi kendaraan tempur panser kanon dengan menggunakan *software* NX 6.0.

Gambar 3.6 Model Kabin Pengemudi Panser Kanon


3.2.2 Pembuatan Virtual Human Modeling

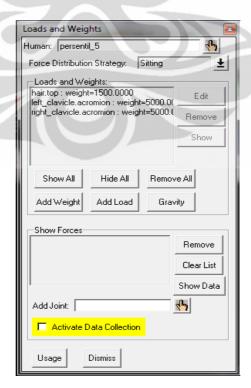
Model manusia virtual, dalam penilitian ini adalah model personil Yonif Mekanis 201 dibuat berdasarkan data dimensi-dimensi tubuh yang dibutuhkan yang telah dilakukan pengukuran sebelumnya. Dari data dimensi-dimensi tubuh yang didapat tersebut kemudian dimasukkan ke dalam fitur Build Human yang ada dalam *software* Jack 6.1.



Gambar 3.7 Command untuk pembuatan Model Manusia Virtual

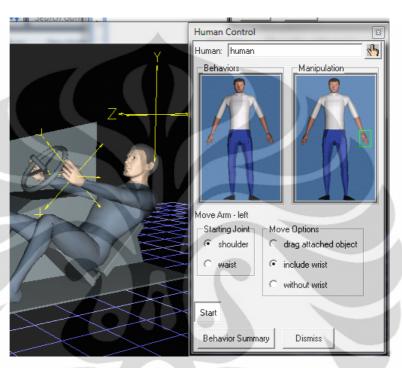
Pembuatan model manusia virtual dilakukan secara *customize*. Dalam pembuatan secara *customize* dibutuhkan informasi-informasi pendukung berdasarkan ukuran antropometri yang sebenarnya. Informasi yang dibutuhkan dalam pembuatan model manusia virtual adalah jenis kelamin, ukuran tinggi badan, berat badan, serta persentil model manusia virtual yang akan dibuat. Selain itu harus ditetapkan standar antropometri yang digunakan. Data-data tersebut diatas dimasukkan dalam tampilan modul *build human* serta *advance scaling* pada *build human* seperti terlihat pada gambar berikut ini.

Gambar 3.8 Tampilan Modul Build Human

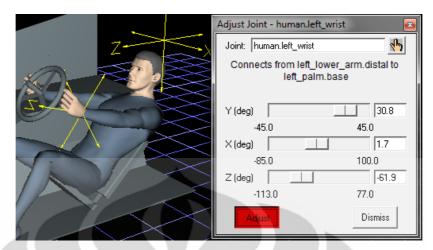

Gambar 3.9 Tampilan Modul Advance Scaling Build Human

Data antropometri yang telah dimasukkan ke dalam dialog box kemudian pada *software* Jack 6.1 akan dengan sendirinya membuat model manusia yang mendekati ukuran aslinya untuk masing-masing spesifikasi dimensi tubuh yang dimiliki. *Software* Jack 6.1 juga dapat memunculkan ukuran-ukuran spesifikasi tubuh yang telah dibuat dengan mode scaling, dimana dari data tinggi dan berat badan manusia yang telah dimasukkan sebelumnya, dapat dibuat estimasi ukuran-ukuran spesifikasi tubuh manusia yang dinginkan, seperti panjang lengan, panjang kaki, tinggi duduk, dan ukuran spesifikasi tubuh lainnya. Kemudian data-data spesifikasi dimensi tubuh yang diinginkan dimasukkan pada mode scaling sehingga model manusia virtual yang dibuat menjadi seperti yang dibutuhkan dalam objek penilitian ini.

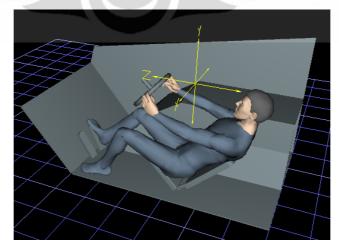
3.2.3 Pembuatan Postur Pengemudi


Memposisikan virtual human model pada virtual environment merupakan tahap selanjutnya pada pengolahan data ini sehingga membentuk postur duduk pada kabin pengemudi secara virtual. Pembentukan postur duduk dilakukan setelah pembentukan model manusia virtual (virtual human modeling) selesai dilakukan. Postur pengemudi yang disimulasikan disesuaikan dengan modelmodel yang saling berinteraksi dalam kabin pengemudi, yaitu kursi pengemudi, pedal gas dan rem, serta tuas kemudi dan dibatasi oleh ruang kabin yang tersedia.

Seperti telah dibahas sebelumnya, model manusia yang akan dipakai dalam analisis penelitian ini adalah model personil Yonif Mekanis 201 dengan persentil 5 dan persentil 95. Jenis kelamin pada model personil Yonif Mekanis 201 semuanya adalah laki-laki. Pembuatan postur duduk dalam software Jack 6.1 harus dilakukan dengan seksama agar postur duduk dalam keadaan yang sesuai dengan rancangan awal. Postur duduk dibuat pertama-tama dengan mengkondisikan posisi model manusia virtual agar berada dalam kondisi duduk dan kemudian model manusia diberikan beban kerja yang dialami sesuai dengan yang ditunjukkan pada gambar dibawah ini


Gambar 3.10 Tampilan Modul Loads and Weights

Kemudian, model manusia virtual yang sudah dalam kondisi duduk tersebut disesuaikan dengan posisi kursi pengemudi yang tersedia, dan disesuaikan kondisinya agar sesuai dengan keadaan yang direncanakan.


Gambar 3.11 Tampilan Modul Human Control

Untuk menyeseuaikan postur duduk dalam model agar sesuai dengan kenyataannya dapat digunakan beberapa command yang ada dalam *software* Jack 6.1. Penyesuaian postur dilakukan dengan memodifikasi persendian model manusia yang ada dengan menggunakan command *human control*. Perintah *human control* ini berfungsi untuk memodifikasi bentuk postur tubuh model manusia virtual dengan menyesuaikan sekelompok persendian tubuh manusia (*joint*) sesuai dengan yang kita inginkan.

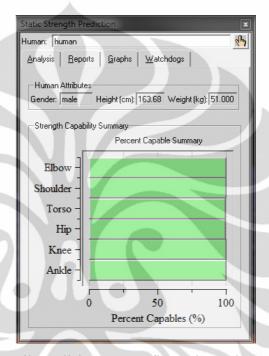
Gambar 3.12 Tampilan Modul Asjust Joint

Sekelompok persendian yang diubah dalam pembentukan model mahasiswa ketika duduk adalah tangan, kaki, kepala, mata, leher, bahu dan tulang belakang. Untuk bagian tubuh tertentu ada yang hanya bisa dimodifikasi sendiri saja, dengan kata lain bukan merubah sekelompok sendi, namun hanya merubah satu persendian saja. Untuk melakukan hal ini, dapat digunakan *adjust joint* agar perubahan yang dilakukan lebih spesifik dan lebih detail. Penggunaan *adjust joint* mempu membuat persedian berubah sesuai sumbu x, y dan z. Perubahan ini disebut dengan traslasi. Selain itu persendian dapat diputar, atau dirotasikan. Namun tidak semua persendian bisa diputar, karena *software* Jack 6.1 dapat membedakan secara spesifik bagian tubuh atau sendi mana saja dalam tubuh manusia yang dapat diputar atau dirotasikan.

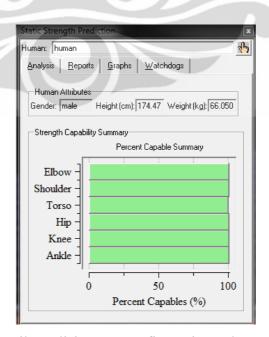
Gambar 3.13 Hasil Pembuatan Model Duduk Pada Kabin Pengemudi

Selain itu ada bagian tubuh yang tidak hanya dapat dirotasi namun juga dapat ditranslasikan. Perubahan – perubahan dapat dilakukan dengan bebas sesuai dengan batasan – batasan perubahan yang berlaku pada tiap masing – masing persendian tubuh manusia. Pada gambar 3.13 dapat dilihat hasil pembuatan model manusia dengan menggunakan *software* Jack 6.1 dalam *virtual environment*. Setelah selesai dibuat model manusia dan diposisikan di dalam *virtual environment*, dilakukan analisis dengan menggunakan *Task Analysis Toolkit* (TAT) yang dimiliki oleh software Jack 6.1.

3.2.4 Menganalisis Kinerja *Virtual Human Model*


Dalam menganalisa pengaruh postur duduk terhadap tubuh, khususnya tubuh bagian atas, digunakanlah beberapa *tools* yang tersedia di dalam *Task Analysis Toolkit* (TAT) yang terdapat pada *software* Jack 6.1. *Tools* yang digunakan untuk menganalisis kinerja model manusia dalam penelitian ini berjumlah empat buah *tools*. eempat *tools* tersebut adalah sebagai berikut:

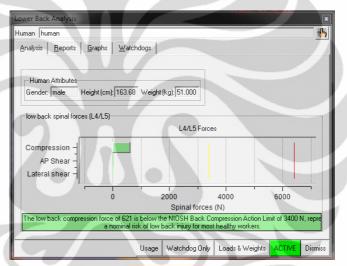
- Static Strength Prediction (SSP)
- Low Back Analysis (LBA)
- Ovako Working Posture Analysis System (OWAS)
- Rapid Upper Limb Assessment (RULA)


Model manusia akan dianalisis dengan keempat *tools* diatas, yang kemudian akan dikombinasikan dengan perhitungan khusus untuk mendapatkan nilai postur tubuh secara keseluruhan. Nilai postur tubuh ini dinamakan dengan *Posture Evaluation index* (PEI). Analisis yang dilakukan dengan menggunakan keempat *tools* ini dapat menunjukkan postur duduk yang paling besar pengaruhnya terhadap tubuh pada model manusia virtual. Hasil analisis dampak postur duduk terhadap tubuh manusia ini kemudian akan dibandingkan antar satu konfigurasi dengan konfigurasi lainnya. Hasil ini diharapkan nantinya akan dapat memberikan usulan bagaimana rancangan kabin pengemudi pada kendaraan tempur panser kanon yang memiliki kecenderungan menyebabkan beban terkecil terhadap tubuh pengguna. Berikut adalah hasil penilaian dari keempat *tools* yang terdapat pada *Task Analysis Toolkit* terhadap postur duduk personil Yonif Meknais 201 dalam konfigurasi rencana awal rancangan kabin pengemudi.

3.2.4.1 Static Strength Prediction

Static strength perdiction digunakan untuk memvalidasi apakah postur yang dibuat dapat dikerjakan atau dilakukan oleh populasi lainnya. Besaran kapabilitas dapat diatur sesuai keinginan kita.

Gambar 3.14 Hasil Analisis SSP Konfigurasi 1 pada Persentil 5



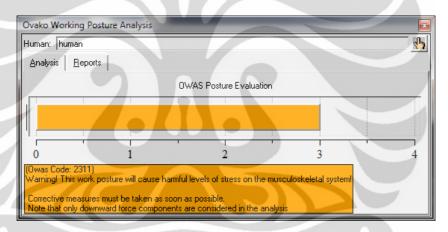
Gambar 3.15 Hasil Analisis SSP Konfigurasi 1 pada Persentil 95

Dalam hasil analisis SSP pada Jack TAT (*Task Analysis Toolkit*) untuk konfigurasi 1 (rencana awal rancangan kabin pengemudi) persentil 5 dan persentil 95, terlihat bahwa postur yang diujikan mampu dilakukan oleh 80% populasi yang memiliki usia, gender dan tinggi badan yang berbeda.

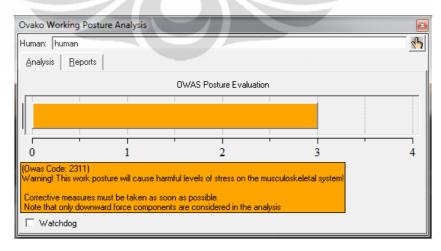
3.2.4.2 Low Back Analysis

Lower Back Analysis digunakan untuk melihat seberapa besar beban yang dikenakan atau ditanggung oleh punggung bagian bawah (Low Back), yaitu bagian punggung L4 dan L5.

Gambar 3.16 Hasil Analisis LBA Konfigurasi 1 pada Persentil 5



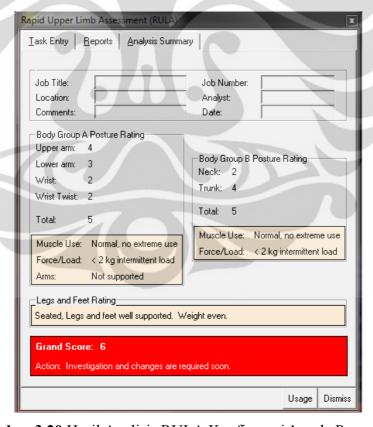
Gambar 3.17 Hasil Analisis LBA Konfigurasi 1 pada Persentil 95


Berdasarkan hasil analisis RULA pada Jack TAT (*Task Analysis Toolkit*) untuk konfigurasi 1 (rencana awal rancangan kabin pengemudi) persentil 5 dan persentil 95, besar gaya yang diterima oleh punggung bagian bawah adalah sebesar 621 N pada persentil 5 dan 771 N pada persentil 95. Nilai RULA yang dihasilkan pada konfigurasi 1 masih di bawah batas normal yang diperbolehkan yaitu 3400 N.

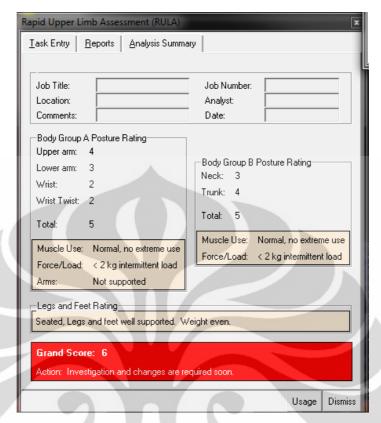
3.2.4.3 Ovako Working Posture Analysis System

Sistem penilaian dengan skor OWAS digunakan ketika sistem yang diteliti mudah untuk diamati dan dipelajari. OWAS meninjau postur standar untuk trunk, arms,lower body, dan neck.

Gambar 3.18 Hasil Analisis OWAS Konfigurasi 1 pada Persentil 5



Gambar 3.19 Hasil Analisis OWAS Konfigurasi 1 pada Persentil 95


Dari hasil analisis modul OWAS dalam Jack TAT (*Task Analysis Toolkit*) untuk konfigurasi 1 (rencana awal rancangan kabin pengemudi) persentil 5 dan persentil 95, didapatkan kode OWAS 2311. Kemudian kode OWAS tersebut dikalkulasikan dan menghasilkan skor OWAS sebesar 3 poin pada persentil 5 dan persentil 95.

3.2.4.4 Rapid Upper Limb Assessment

RULA merupakan alat untuk mengevaluasi faktor-faktor risiko postur, kontraksi otot statis, gerakan repetitif, dan gaya yang digunakan untuk suatu pekerjaan tertentu. Setiap faktor memiliki konstribusi masing-masing terhadap suatu nilai yang dihitung. Nilai-nilai tersebut dijumlah dan diterapkan pada tabel untuk menentukan *Grand Score*.

Gambar 3.20 Hasil Analisis RULA Konfigurasi 1 pada Persentil 5

Gambar 3.21 Hasil Analisis RULA Konfigurasi 1 pada Persentil 95

Grand Score menunjukkan sejauh mana pekerja terpapar faktor-faktor risiko di atas dan berdasarkan nilai tersebut, dapat disarankan tindakan yang perlu diambil. Berdasarkan hasil analisis RULA, grand score dari postur duduk konfigurasi 1 adalah sebesar 6 poin pada persentil 5 dan 6 poin pada persentil 95. Poin 6 pada persentil 5 dan persentil 95 ini mengindikasikan bahwa postur duduk yang direncanakan pada rancangan awal kabin pengemudi kendaraan tempur panser kanon adalah postur yang membahayakan kesehatan, dibutuhkan investigasi dan perbaikan secepatnya.

3.2.5 Perhitungan Nilai *Posture Evaluation Index* (PEI)

Setelah didapat keluaran *Task Analysis Toolkits*, maka langkah selanjutnya adalah melakukan perhitungan *Posture Evaluation Index* (PEI). *Postur Evaluation Index* (PEI) didapatkan dengan mengkombinasikan tiga *tools* dalam Jack TAT, yaitu *Low Back Analysis, Ovako Working Posture Analysis System, Rapid Upper Limb Assessment*. Setelah sebelumnya memerhatikan nilai dari *Static Strength Prediction* dari postur duduk konfigurasi yang diujikan. Sebagai contoh, tahapan

perhitungan nilai PEI untuk konfigurasi 1 (rencana awal rancangan kabin pengemudi) pada manekin persentil 5 dan persentil 95, menurut persamaan yang telah disebutkan pada bab 2, dapat dijelaskan sebagai berikut.

• Berdasarkan skor yang didapat melalui Jack TAT (Task Analysis Toolkit) pada persentil 5 dimana:

Nilai LBA : 621 N

Nilai RULA: 6

Nilai OWAS : 3

Maka nilai PEI dari konfigurasi 1 untuk persentil 5 adalah

$$PEI = 621 \text{ N}/3400\text{N} + 3/4 + 6/7 . 1,42$$

$$=2,153$$

• Berdasarkan skor yang didapat melalui Jack TAT (Task Analysis Toolkit) pada persentil 95 dimana:

Nilai LBA : 771 N

Nilai RULA: 6

Nilai OWAS : 3

Maka nilai PEI dari konfigurasi 1 untuk persentil 95 adalah

$$PEI = 771 \text{ N}/3400\text{N} + 3/4 + 6/7 . 1,42$$

$$= 2,194$$

Nilai PEI ini selanjutnya akan dibandingkan dengan nilai PEI untuk konfigurasi lainnya. Setelah itu akan diambil konfigurasi yang memiliki nilai PEI terkecil sebagai dasar pertimbangan dalam membuat rekomendasi rancangan kabin pengemudi pada kendaraan tempur panser kanon yang ergonomis.

3.3 Perancangan Konfigurasi Model

Setelah didapatkan nilai PEI, maka langkah selanjutnya dibutuhkan perancangan konfigurasi model dalam menentukan desain kabin pengemudi kendaraan tempur panser kanon yang lebih ergonomis. Penentuan nilai PEI menjadi dasar dalam menentukan desain yang lebih ergonomis. Nilai PEI dari masing-masing konfigurasi nantinya akan dibandingkan satu sama lain. Setelah dilakukan perbandingan maka didapat nilai PEI terkecil pada salah satu konfigurasi yang telah dibandingkan sebelumnya.

Tabel 3.2 Konfigurasi Desain yang Akan Dibuat

Tabel 3.2 Konfigurasi Desain yang Akan Dibuat					
		Sudut tuas Kemiringa			
Konfigurasi	Persentil	kemudi	kursi	Sudut kursi	
				Rencana	
1	5	Rencana Awal	Rencana Awal	Awal	
1				Rencana	
	95	Rencana Awal	Rencana Awal	Awal	
2	5	71	15	105	
	95	71	15	105	
3	5	45	15	105	
3	95	45	15	105	
4	5	71	30	105	
4	95	71	30	105	
5	5	45	30	105	
5	95	45	30	105	
6	5	71	15	120	
0	95	71	15	120	
7	5	45	15	120	
	95	45	15	120	
8	5	71	30	120	
8	95	71	30	120	
9	5	45	30	120	
9	95	45	30	120	

Perancangan konfigurasi ini dilakukan berdasarkan variabel-variabel yang sudah ditentukan sebelumnya. Dalam penilitian ini, variabel yang digunakan ada tiga, yaitu sudut tuas kemudi, sudut kursi pengemudi, seta kemiringan kursi pengemudi yang kemudian akan dijelaskan seperti dibawah ini.

3.3.1 Perancangan Konfigurasi Tuas Kemudi

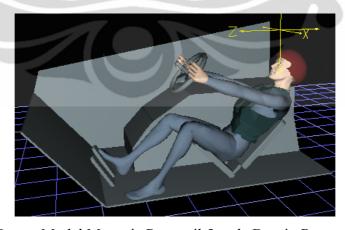
Perancangan konfigurasi pada tuas kemudi mempunyai dua level nilai (kombinasi), yaitu tuas kemudi dengan sudut 71° serta tuas kemudi dengan sudut 45°. Sudut tuas kemudi diukur dari sejajar dengan lantai pada kabin pengemudi. Peletakan tuas kemudi berada di atas paha dan di depan perut dengan posisi 41 cm dari sandaran kursi serta 24 cm dari alas duduk pada kursi pengemudi berdasarkan spesifikasi militer yang ada.

3.3.2 Perancangan Konfigurasi Sudut Kursi

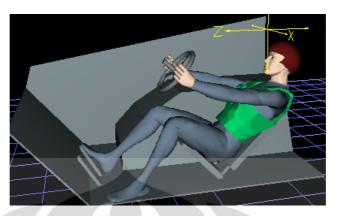
Perancangan konfigurasi pada sudut kursi mempunyai dua level nilai (kombinasi), yaitu 105° dan 120°. Sudut kursi diukur dari sudut yang tercipta antara alas duduk hingga sandaran yang ada pada kursi.

3.3.3 Perancangan Konfigurasi Kemiringan Kursi

Perancangan konfigurasi pada kemiringan kursi mempunyai dua level nilai (kombinasi), yaitu 15° dan 30°. Kemiringan kursi diukur dari sudut yang terbentuk antara alas duduk pada kursi dengan sejajar pada alas kabin pengemudi.


BAB 4

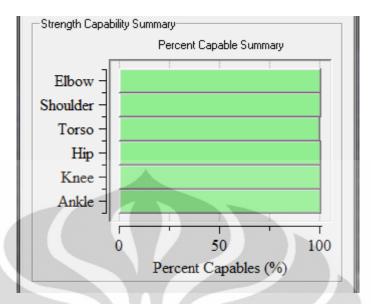
ANALISIS


Bab ini membahas mengenai analisis ergonomi desain kabin pengemudi yang awalnya direncanakan serta beberapa konfigurasi desain yang diusulkan dengan mengacu pada hasil dari *Task Analysis Toolkits* yang terdapat dalam *software* Jack 6.1. Konfigurasi kabin pengemudi yang baik secara ergonomis dilihat dari sudut tuas kemudi, sudut kursi pengemudi serta kemiringan kursi. Semua konfigurasi desain yang ada akan dihitung besar nilai *Posture Evaluation Index* (PEI) dan dibandingkan satu sama lain untuk mendapatkan rekomendasi desain kabin pengemudi kendaraan tempur panser kanon yang paling ergonomis bagi penggunanya. Pada bagian akhir bab ini, konfigurasi-konfigurasi yang paling optimal ditetapkan. Berdasarkan analisis tersebut, maka kesimpulan akhir dapat ditarik.

4.1 Analisis Desain Rencana Awal Kabin Pengemudi Panser Kanon

Desain rencana awal kabin pengemudi pada kendaraan tempur panser kanon terlihat pada Gambar 4.1 dan Gambar 4.2. Analisis desain rencana awal kabin pengemudi panser kanon dijabarkan pada pembahasan berikutac

Gambar 4.1 Postur Model Manusia Persentil 5 pada Desain Rencana Awal Kabin Pengemudi Panser Kanon


Gambar 4.2 Postur Model Manusia Persentil 95 pada Desain Rencana Awal Kabin Pengemudi Panser Kanon

Analisis *Static Strength Prediction* dilakukan sebagai tahap awal sebelum dilakukan perhitungan *Posture Evaluation Index* (PEI). Tujuan dilakukan analisis ini adalah untuk melihat berapa persentase populasi manusia yang memiliki kapabilitas untuk melakukan postur atau gerakan yang disimulasikan. Prof. Francesco Caputo dan Giuseppe Di Gironimo, Ph.D, peneliti dari Fakultas Teknik University of Naples Federico II yang mengembangkan metode PEI ini menyarankan untuk menggunakan batas minimal persen kapabilitas sebesar 90 %. Jika tingkat kapabilitas pada SSP ini di atas 90 %, maka perhitungan PEI dapat dilanjutkan.


Ada enam bagian tubuh yang diukur kapabilitasnya, yaitu:

- siku (elbow)
- bahu (*shoulder*)
- batang tubuh (*torso*)
- pinggul (*hip*)
- lutut (knee), dan
- pergelangan kaki (ankle).

Jika diperhatikan hasil yang diperoleh dari *Task Analysis Toolkits* untuk konfigurasi 1 pada persentil 5 maupun ke-95 memiliki tingkat kapabilitas di atas 90 %. Dapat dilihat pada Gambar 4.3 dan 4.4, bahwa warna hijau pada grafik menunjukkan bahwa tingkat kapabilitas untuk konfigurasi aktual ini masih dalam batas aman.

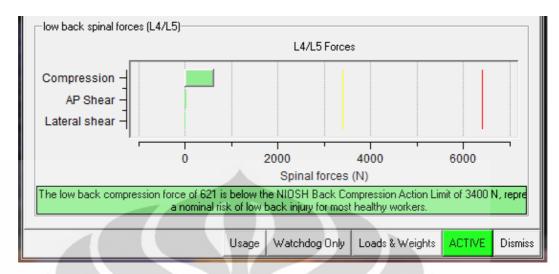
Gambar 4.3 Grafik SSP Konfigurasi 1 pada Persentil 5

Gambar 4.4 Grafik SSP Konfigurasi 1 pada Persentil 95

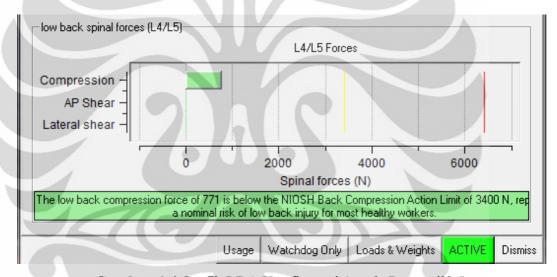
Dari Tabel 4.1 dan 4.2 dapat dilihat bahwa hampir keenam bagian tubuh kanan maupun kiri memiliki tingkat kapabilitas 100%, kecuali pada bagian pinggul kiri dan pinggul kanan untuk persentil 5 dan pinggul kanan untuk persentil 95 yang memiliki tingkat kapabilitas 99 %. Dengan demikian, maka dapat disimpulkan bahwa 100% populasi pengguna memiliki kapabilitas untuk melakukan gerakan sesuai dengan postur yang awalnya direncanakan pada kabin pengemudi panser kanon dengan desain aktual ini (konfigurasi 1), baik untuk persentil 5 maupun untuk persentil 95.

Tabel 4.1 Rekapitulasi Kapabilitas SSP Konfigurasi 1 pada Persentil 5

Capability Summary Chart

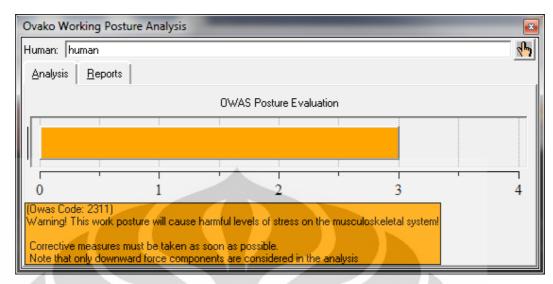

			Left				Right				
		Moment	Muscle	Mean	SD	Cap	Moment	Muscle	Mean	SD	Cap
		(Nm)	Effect	(Nm)	(Nm)	(%)	(Nm)	Effect	(Nm)	(Nm)	(%)
	Elbow	-1		56	14	100	-1		60	15	100
	Abduc/Adduc	-8	ABDUCT	73	18	100	-8	ABDUCT	78	19	100
Shoulder	Rotation Bk/Fd	-2	FORWARD	96	26	100	-2	FORWARD	103	28	100
	Humeral Rot	0		57	15	100	0		62	16	100
	Flex/Ext	43	FLEXN	198	58	100					
Trunk	Lateral Bending	0		251	56	100					
	Rotation	-0	-	92	25	100					
	Hip	-0		214	86	99	-0		210	84	99
	Knee	0	7	155	54	100	-0		170	59	100
	Ankle	0		107	35	100	0		143	47	100

Tabel 4.2 Rekapitulasi Kapabilitas SSP Konfigurasi 1 pada Persentil 95

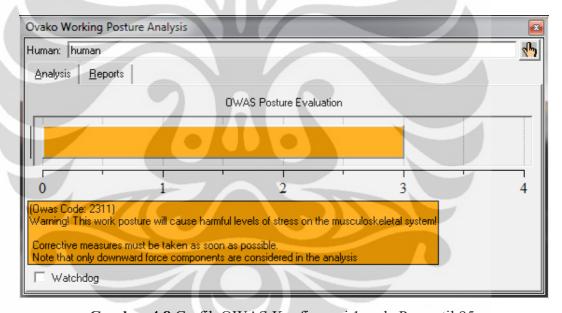

Capability Summary Chart

			Left			Right					
		Moment (Nm)	Muscle Effect	Mean (Nm)	10.	-	Moment (Nm)	Muscle Effect	Mean (Nm)	SD (Nm)	Cap (%)
	Elbow	-1	\	60	15	100	-1	-:-	65	16	100
	Abduc/Adduc	-11	ABDUCT	71	17	100	-11	ABDUCT	76	19	100
Shoulder	Rotation Bk/Fd	-4	FORWARD	97	26	100	-4	FORWARD	104	28	100
	Humeral Rot	-0		33	8	100	-0	1-	36	8	100
	Flex/Ext	54	FLEXN	199	58	99					
Trunk	Lateral Bending	0	A	244	55	100					
	Rotation	-0		91	24	100					
	Hip	0		200	55	100	-0		211	85	99
	Knee	0		155	54	100	-0		169	59	100
	Ankle	0		107	35	100	0		144	48	100

Setelah dilakukan analisis SSP dan konfigurasi 1 ini telah memenuhi persyaratan dari segi kapabilitas, maka perhitungan PEI untuk konfigurasi 1 ini dapat dilanjutkan. Tahap berikutnya dilakukan analisis *Lower Back Analysis* (LBA), *Ovako Working Analysis System* (OWAS) serta *Rapid Upper Limb Assesment* (RULA).



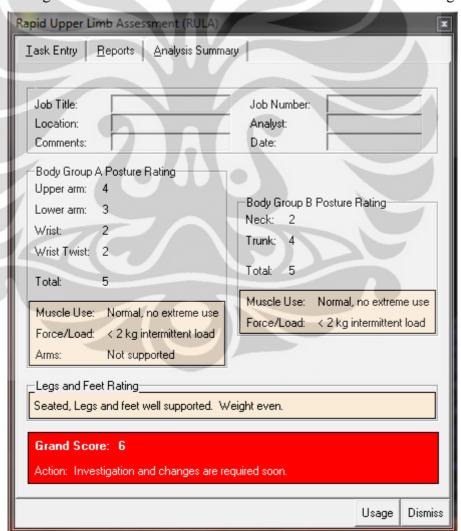
Gambar 4.5 Grafik LBA Konfigurasi 1 pada Persentil 5



Gambar 4.6 Grafik LBA Konfigurasi 1 pada Persentil9 5

Gambar 4.5 dan 4.6 di atas merupakan hasil nilai LBA yang diperoleh untuk konfigurasi 1 (rencana awal desain) pada kabin pengemudi panser kanon. Dari kedua grafik tersebut dapat ditarik kesimpulan bahwa untuk konfigurasi 1 pada persentil 5 maupun persentil 95, resiko terjadinya cederapada tulang belakang relatif kecil. Hal ini dikarenakan nilai *Lower Back Compression Force* yang dihasilkan masih dibawah *Compression Action Limit* berdasarkan standar NIOSH, yaitu 3400 N. Seperti yang terlihat pada kedua grafik tersebtu, nilai LBA untuk konfigurasi 1 pada persentil 5 dan persentil 95 berturut-turut menunjukkan angka 621 N dan 771 N.

Gambar 4.7 Grafik OWAS Konfigurasi 1 pada Persentil 5


Gambar 4.8 Grafik OWAS Konfigurasi 1 pada Persentil 95

Menurut hasil perhitungan postur duduk yang dikeluarkan oleh *Task Analysis Toolkit*, konfigurasi 1 pada persentil 5 menghasilkan nilai 3 sedangkan pada persentil 95 juga menghasilkan nilai 3 dengan kode yang sama yaitu 2311. Berdasarkan kategori tingkat urgensi perlunya dilakukan perbaikan, angka ini menunjukkan bahwa postur kerja saat ini secara nyata membahayakan sistem muskuloskeletal manusia. Tindakan perbaikan perlu dilakukan sesegera mungkin.

Berikut penjelasan secara mendetai mengenai skor OWAS postur ini.

1. Bagian batang tubuh berada dalam kategori 2, yaitu gabungan antara karakteristik membungkuk dan membelok sehingga mengindikasikan

- terjadinya posisi tulang punggung yang membungkuk (*flexion*) dan berbelok (*twisting*). Hal ini berakibat menimbulkan tekanan pada ruas L4-L5 pada spinal tulang belakang model.
- 2. Bagian tangan berada dalam kategori 3 yang menandakan bahwa posisi tangan model berada di atas bahu. Postur ini merupakan postur yang memiliki resiko cedera yang cukup besar.
- 3. Bagian tubuh bawah berada dalam kategori 1 yang menandakan bahwa pekerjaan dilakukan dalam posisi duduk.
- 4. Beban yang diterima model termasuk dalam kategori 1, hal ini mengindikasikan bahwa beban tersebut masih berada di bawah 10kg.

Gambar 4.9 Grafik RULA Konfigurasi 1 pada Persentil 5

Rapid Upper Limb Assessment (RULA)	y
Job Title: Location: Comments:	Job Number: Analyst: Date:
Body Group A Posture Rating Upper arm: 4 Lower arm: 3 Wrist: 2 Wrist Twist: 2 Total: 5 Muscle Use: Normal, no extreme use Force/Load: < 2 kg intermittent load Arms: Not supported	Body Group B Posture Rating Neck: 3 Trunk: 4 Total: 5 Muscle Use: Normal, no extreme use Force/Load: < 2 kg intermittent load
Legs and Feet Rating Seated, Legs and feet well supported. We Grand Score: 6 Action: Investigation and changes are rec	

Gambar 4.10 Grafik RULA Konfigurasi 1 pada Persentil 95

Hasil perhitungan RULA pada gambar 4.9 dan gambar 4.10 yang dikeluarkan oleh *Task Analysis Toolkit* software jack 6.1 menunjukkan bahwa postur duduk yang diuji dalam konfigurasi ini memiliki *grand score* sebesar 6. Nilai ini merupakan hasil perhitungan dua kelompok anggota tubuh, kelompok A dan kelompok B. Kelompok A adalah skor untuk postur lengan atas, lengan bawah, dan pergelangan tangan. Kelompok B adalah skor untuk leher, punggung, dan kaki. Kombinasi nilai dan perhitungan khusus yang dihasilkan pada *Body Group A* dan *Body Group B* akan menghasilkan suatu angka yang menunjukkan tingkat intervensi yang harus dilakukan untuk mengurangi resiko cedera pada tubuh bagian atas.

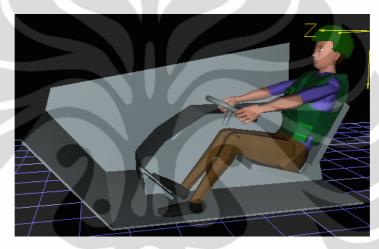
Untuk kelompok bagian tubuh A pada persentil 5 didapatkan nilai skor sebesar 4 untuk lengan atas, 3 untuk lengan bawah, 2 pergelangan tangan dan 2

untuk putaran tangan. Hal ini mengindikasikan bahwa bagian lengan atas memiliki pergerakan kearah depan dalam interval 45 derajat hingga 90 derajat. Hal ini dikarenakan posisi tuas kemudi yang berada diatas bahu yang mengharuskan pengemudi mengangkat tangannya jauh keatas. Bagian lengan bawah memiliki karakteristik melewati sumbu x normal kearah bawah dan tengah sehingga memiliki skor sebesar 3. Selain itu, skor 2 yang dimiliki pergelangan tangan menunjukkan bahwa pergelangan tangan sedikit mengalami perputaran dan membengkok. Untuk Kelompok bagian tubuh A pada persentil 95 didapatkan nilai skor sebesar 4 untuk lengan atas, 3 untuk lengan bawah, 2 pergelangan tangan dan 2 untuk putaran tangan. Indikasi yang terjadi sama dengan yang terjadi pada kelompok bagian tubuh A pada persentil 5.

Sedangkan untuk kelompok bagian tubuh B pada persentil 5, nilai yang didapatkan untuk bagian leher (*neck*) adalah sebesar 2. Hal ini dikarenakan pengemudi diharuskan melihat layar periskop sehingga leher mengalami sedikit pergerakan ke arah depan. Lalu untuk bagian batang tubuh (*trunk*) memiliki nilai 4 yang menggambarkan keadaan badan yang menyender ke arah belakang. Pada kelompok bagian tubuh B pada persentil 5 terlihat perbedaan pada nilai skor leher yaitu sebesar 3. Hal ini dikarenakan tinggi badan yang dimiliki pengemudi diharuskan untuk lebih menekukkan leher ke arah depan sehingga menyebabkan nilai yang dihasilkan lebih besar dibandingkan persentil 5. Hasil kalkulasi kedua bagian anggota tubuh ini menghasilkan *grand score* 6, dimana investigasi diperlukan dan sistem kerja segera dirubah.

Setelah mendapatkan nilai SSP, LBA, OWAS, dan RULA, maka langkah selanjutnya adalah menghitung nilai PEI sesuai dengan formula perhitungan PEI yang telah dijelaskan sebelumnya pada bab 2. Dari hasil perhitungan, diperoleh nilai PEI untuk konfigurasi 1 (rencana awal desain) pada persentil 5 dan ke-95 berturut-turut sebesar 2,153 dan 2,194. Nilai PEI ini nantinya akan dibandingkan dengan nilai PEI untuk konfigurasi lain, untuk kemudian dicari konfigurasi desain yang memiliki nilai PEI terkecil. Tabel 4.3 di bawah ini menunjukkan hasil rekapitulasi nilai SSP, LBA, OWAS dan RULA serta perhitungan nilai PEI untuk konfigurasi 1 kabin pengemudi panser kanon pada persentil 5 dan persentil 95.

Tabel 4.3 Rekapitulasi Perhitungan PEI Konfigurasi 1


				entil
			5	95
	SSP > 90%			Ya
	LBA (N)		621	771
OMAG	Kode		2311	2311
OWAS	Nilai	Nilai		3
		UA	4	4
	Kelompok Bagian Tubuh A	LA	3	3
		W	2	2
		WT	2	2
RULA		Total A	5	5
		N	2	3
	Kelompok	T	4	4
	Bagian Tubuh B	Total B	5	5
	Total		6	6
	Nilai PEI		2,152	2,194

4.2 Analisis Usulan Konfigurasi

Setelah dilakukan analisis terhadap konfigurasi 1 yang dibuat berdasarkan peninjauan pada kondisi yang sebenarnya, selanjutnya dilakukan analisis terhadap rancangan konfigurasi yang telah dibuat. Pembuatan usulan konfigurasi pada desain kabin pengemudi kendaraan tempur panser kanon dilakukan dengan mengubah sudut tuas kemudi, sudut kursi pengemudi, serta kemiringan kursi pengemudi yang berada di dalam kabin pengemudi. Perubahan yang dilakukan pada sudut tuas kemudi berupa sudut tuas kemudi dengan sudut 45° dan sudut tuas kemudi dengan sudut 71° dengan posisi yang tetap yaitu 41 cm dari sandaran kursi pengemudi serta 24 cm dari alas duduk pada kursi pengemudi. Perubahan yang dilakukan pada sudut kursi pengemudi berupa sudut kursi pengemudi dengan sudut kursi pengemudi 105° serta 120°. Perubahan yang dilakukan pada kemiringan kursi pengemudi berupa sudut kemiringan kursi pengemudi pada sudut 15° dan 30°. Hasil kombinasi dari perubahan yang dilakukan pada sudut tuas kemudi, sudut kursi pengemudi, serta kemiringan kursi pengemudi menghasilkan usulan konfigurasi desain. Setiap usulan konfigurasi yang dibuat akan disimulasikan dengan antropometri personil TNI pada persentil 5 dan 95.

4.2.1 Analisis Usulan Rancangan Konfigurasi 2

Konfigurasi 2 pada kabin pengemudi kendaraan tempur panser kanon dilakukan dengan memposisikan tuas kemudi dengan sudut 71° serta kursi pengemudi dengan sudut kursi 105° dan kemiringan kursi 15°. Pada konfigurasi 2 ini posisi tubuh mendekati batas ruang kabin yang tersedia namun masih dapat direalisasikan. Dengan posisi tuas kemudi pada sudut 71° menyebabkan tangan lebih jauh untuk meraih tuas kemudi bagian atas dan menyebabkan posisi tangan tegang dan berada diatas bahu.

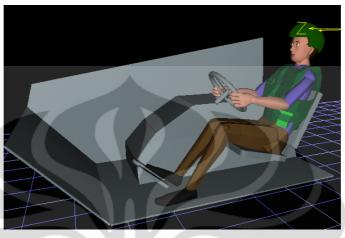
Gambar 4.11 Usulan Rancangan Konfigurasi 2 pada Persentil 5

Gambar 4.12 Usulan Rancangan Konfigurasi 2 pada Persentil 95

Usulan Rancangan Konfigurasi 2 kabin pengemudi pada kendaraan tempur panser kanon ini berdasarkan kapabilitas postur yang ada pada SSP berada di atas 90% sehingga postur yang tercipta pada konfigurasi 2 memungkinan untuk

direalisasikan. Konfigurasi 2 kabin pengemudi pada kendaraan tempur panser kanon ini memiliki RULA yang lebih kecil dibandingkan dengan konfigurasi 1, yaitu 5 pada kedua persentil. Sedangkan nilai OWAS pada konfigurasi 2 ini mempunyai nilai yang lebih rendah bila dibandingkan dengan konfigurasi 1, yaitu 2 pada kedua persentil. Sementara itu, nilai LBA pada konfigurasi 2 adalah 678 N untuk persentil 5 dan 786 N untuk persentil 95.

Tabel 4.4 Rekapitulasi Perhitungan PEI Konfigurasi 2


Tabel 4.4 Rekapitulasi I effituligali I El Rolligulasi 2						
			Pers	entil		
			5	95		
	SSP > 90%			Ya		
	LBA (N)		678	786		
OWAS	Kode		2111	2111		
OWAS	Nilai		2	2		
	Kelompok Bagian Tubuh A	UA	4	3		
		LA	3	3		
		W	1	2		
		WT	1	1		
RULA		Total A	4	4		
		N	1	1		
	Kelompok	T	4	4		
-	Bagian Tubuh B	Total B	5	5		
	Total		5	5		
	Nilai PEI		1,714	1,745		

Seperti terlihat pada tabel 4.4 diatas, usulan rancangan konfigurasi 2 mempunyai nilai PEI sebesar 1,714 pada persentil 5 serta 1,745 pada persentil 95. Hal ini menunjukkan bahwa usulan rancangan konfigurasi 2 kabin pengemudi kendaraan tempur panser kanon relatif lebih ergonomis dibandingkan dengan konfigurasi 1 (desain rancangan awal).

4.2.2 Analisis Usulan Rancangan Konfigurasi 3

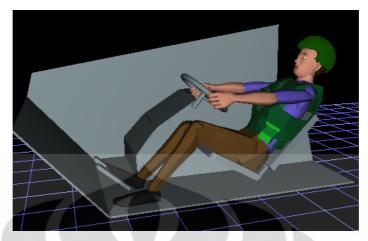
Konfigurasi 3 pada kabin pengemudi kendaraan tempur panser kanon dilakukan dengan memposisikan tuas kemudi dengan sudut 45° serta kursi pengemudi dengan sudut kursi 105° dan kemiringan kursi 15° . Pada konfigurasi 3 ini posisi tubuh mendekati batas ruang kabin yang tersedia namun masih dapat direalisasikan. Dengan posisi tuas kemudi pada sudut 45° menyebabkan tangan

lebih dekat untuk meraih tuas kemudi bagian atas dan menyebabkan posisi tangan normal dan berada di bawah bahu.

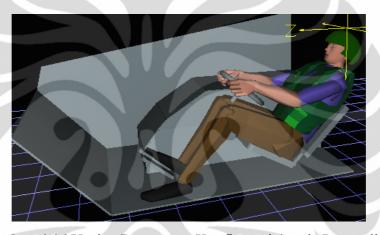
Gambar 4.13 Usulan Rancangan Konfigurasi 3 pada Persentil 5

Gambar 4.14 Usulan Rancangan Konfigurasi 3 pada Persentil 95

Usulan Rancangan Konfigurasi 3 kabin pengemudi pada kendaraan tempur panser kanon ini berdasarkan kapabilitas postur yang ada pada SSP berada di atas 90% sehingga postur yang tercipta pada konfigurasi 3 memungkinan untuk direalisasikan. Konfigurasi 3 kabin pengemudi pada kendaraan tempur panser kanon ini memiliki RULA yang lebih kecil dibandingkan dengan konfigurasi 1, yaitu 4 pada kedua persentil. Sedangkan nilai OWAS pada konfigurasi 3 ini mempunyai nilai yang lebih rendah bila dibandingkan dengan konfigurasi 1, yaitu 2 pada kedua persentil. Sementara itu, nilai LBA pada konfigurasi 3 adalah 688 N untuk persentil 5 dan 804 N untuk persentil 95.


Tabel 4.5 Rekapitulasi Perhitungan PEI Konfigurasi 3

	+.5 Rekapitulasi i e		Persentil		
			5	95	
	SSP > 90%		Ya	Ya	
	LBA (N)		688	804	
OMAC	Kode		2111	2111	
OWAS	Nilai	Nilai			
	Kelompok Bagian Tubuh A	UA	2	2	
		LA	3	2	
		W	1	1	
		WT	1	1	
RULA		Total A	3	3	
	-	N	1	1	
	Kelompok	T	4	4	
	Bagian Tubuh B	Total B	5	5	
Total		4	4		
	Nilai PEI		1,514	1,548	


Seperti terlihat pada tabel 4.5 diatas, usulan rancangan konfigurasi 3 mempunyai nilai PEI sebesar 1,514 pada persentil 5 serta 1,548 pada persentil 95. Hal ini menunjukkan bahwa usulan rancangan konfigurasi 3 kabin pengemudi kendaraan tempur panser kanon relatif lebih ergonomis dibandingkan dengan konfigurasi 1 (desain rancangan awal).

4.2.3 Analisis Usulan Rancangan Konfigurasi 4

Konfigurasi 4 pada kabin pengemudi kendaraan tempur panser kanon dilakukan dengan memposisikan tuas kemudi dengan sudut 71° serta kursi pengemudi dengan sudut kursi 105° dan kemiringan kursi 30° . Pada konfigurasi 4 ini posisi tubuh lebih condong kebelakang dan postur kaki lebih menekuk dibandingkan sebelumnya. Dengan posisi tuas kemudi pada sudut 71° menyebabkan tangan lebih jauh untuk meraih tuas kemudi bagian atas dan menyebabkan posisi tangan tegang dan berada diatas bahu.

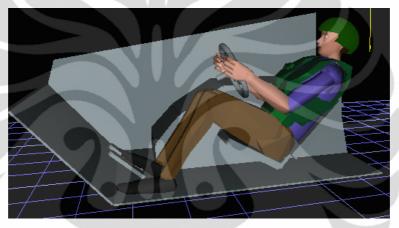
Gambar 4.15 Usulan Rancangan Konfigurasi 4 pada Persentil 5

Gambar 4.16 Usulan Rancangan Konfigurasi 4 pada Persentil 95

Usulan Rancangan Konfigurasi 4 kabin pengemudi pada kendaraan tempur panser kanon ini berdasarkan kapabilitas postur yang ada pada SSP berada di atas 90% sehingga postur yang tercipta pada konfigurasi 4 memungkinan untuk direalisasikan. Konfigurasi 4 kabin pengemudi pada kendaraan tempur panser kanon ini memiliki RULA yang lebih kecil dibandingkan dengan konfigurasi 1, yaitu 5 pada kedua persentil. Sedangkan nilai OWAS pada konfigurasi 4 ini mempunyai nilai yang lebih yang sama dengan konfigurasi 1, yaitu 3 pada kedua persentil. Sementara itu, nilai LBA pada konfigurasi 4 adalah 925 N untuk persentil 5 dan 1077 N untuk persentil 95.

Tabel 4.6 Rekapitulasi Perhitungan PEI Konfigurasi 4

				entil
			5	95
	SSP > 90%			Ya
	LBA (N)		925	1077
OWAS	Kode		2311	2311
UWAS	Nilai		3	3
		UA	4	3
	Kelompok Bagian Tubuh A	LA	3	3
		W	1	2
		WT	1	1
RULA		Total A	4	4
		N	1	1
	Kelompok	T	4	4
	Bagian Tubuh B	Total B	5	5
	Total		5	5
	Nilai PEI		2,036	2,081


Seperti terlihat pada tabel 4.6 diatas, usulan rancangan konfigurasi 4 mempunyai nilai PEI sebesar 2,036 pada persentil 5 serta 2,081 pada persentil 95. Hal ini menunjukkan bahwa usulan rancangan konfigurasi 4 kabin pengemudi kendaraan tempur panser kanon relatif lebih ergonomis dibandingkan dengan konfigurasi 1 (desain rancangan awal).

4.2.4 Analisis Usulan Rancangan Konfigurasi 5

Konfigurasi 5 pada kabin pengemudi kendaraan tempur panser kanon dilakukan dengan memposisikan tuas kemudi dengan sudut 45° serta kursi pengemudi dengan sudut kursi 105° dan kemiringan kursi 30° . Pada konfigurasi 5 ini posisi tubuh lebih condong kebelakang dan postur kaki lebih menekuk dibandingkan sebelumnya. Dengan posisi tuas kemudi pada sudut 45° menyebabkan tangan lebih dekat untuk meraih tuas kemudi bagian atas dan menyebabkan posisi tangan normal dan berada di bawah bahu.

Gambar 4.17 Usulan Rancangan Konfigurasi 5 pada Persentil 5

Gambar 4.18 Usulan Rancangan Konfigurasi 5 pada Persentil 95

Usulan Rancangan Konfigurasi 5 kabin pengemudi pada kendaraan tempur panser kanon ini berdasarkan kapabilitas postur yang ada pada SSP berada di atas 90% sehingga postur yang tercipta pada konfigurasi 5 memungkinan untuk direalisasikan. Konfigurasi 5 kabin pengemudi pada kendaraan tempur panser kanon ini memiliki RULA yang lebih kecil dibandingkan dengan konfigurasi 1, yaitu 5 pada kedua persentil. Sedangkan nilai OWAS pada konfigurasi 5 ini mempunyai nilai yang lebih yang sama dengan konfigurasi 1, yaitu 3 pada kedua persentil. Sementara itu, nilai LBA pada konfigurasi 5 adalah 925 N untuk persentil 5 dan 1070 N untuk persentil 95.

Tabel 4.7 Rekapitulasi Perhitungan PEI Konfigurasi 5

Tuber W. Remaphans Termingan			Persentil		
			5	95	
_	SSP > 90%		Ya	Ya	
	LBA (N)		925	1070	
OWAS	Kode		2311	2341	
OWAS	Nilai		3	3	
	Kelompok Bagian Tubuh A	UA	2	2	
		LA	3	2	
		W	1	1	
		WT	1	1	
RULA		Total A	3	3	
		N	1	2	
	Kelompok	T	4	4	
	Bagian Tubuh B	Total B	5	5	
	Total		4	4	
	Nilai PEI		1,833	1,876	

Seperti terlihat pada tabel 4.7 diatas, usulan rancangan konfigurasi 5 mempunyai nilai PEI sebesar 1,833 pada persentil 5 serta 1,876 pada persentil 95. Hal ini menunjukkan bahwa usulan rancangan konfigurasi 5 kabin pengemudi kendaraan tempur panser kanon relatif lebih ergonomis dibandingkan dengan konfigurasi 1 (desain rancangan awal).

4.2.5 Analisis Usulan Rancangan Konfigurasi 6

Konfigurasi 6 pada kabin pengemudi kendaraan tempur panser kanon dilakukan dengan memposisikan tuas kemudi dengan sudut 71° serta kursi pengemudi dengan sudut kursi 120° dan kemiringan kursi 15°. Pada konfigurasi 6 ini bagian tubuh atas lebih merebah dibandingkan dengan sebelumnya. Dengan posisi tuas kemudi pada sudut 71° menyebabkan tangan lebih jauh untuk meraih tuas kemudi bagian atas dan menyebabkan posisi tangan tegang dan berada diatas bahu.

Gambar 4.19 Usulan Rancangan Konfigurasi 6 pada Persentil 5

Gambar 4.20 Usulan Rancangan Konfigurasi 6 pada Persentil 95

Usulan Rancangan Konfigurasi 6 kabin pengemudi pada kendaraan tempur panser kanon ini berdasarkan kapabilitas postur yang ada pada SSP berada di atas 90% sehingga postur yang tercipta pada konfigurasi 6 memungkinan untuk direalisasikan. Konfigurasi 6 kabin pengemudi pada kendaraan tempur panser kanon ini memiliki RULA yang lebih kecil dibandingkan dengan konfigurasi 1, yaitu 5 pada kedua persentil. Sedangkan nilai OWAS pada konfigurasi 6 ini mempunyai nilai yang lebih rendah pada persentil 5 dengan nilai 2 dan nilai yang sama pada persentil 95 dengan nilai 3 bila dibandingkan dengan konfigurasi 1. Sementara itu, nilai LBA pada konfigurasi 6 adalah 959 N untuk persentil 5 dan 1124 N untuk persentil 95.


Tabel 4.8 Rekapitulasi Perhitungan PEI Konfigurasi 6

T WAS THE TELEVISION OF THE TE				entil
			5	95
	SSP > 90%			Ya
	LBA (N)		959	1124
OWA	Kode		2111	2311
OWAS	Nilai		2	3
	Kelompok Bagian Tubuh A	UA	3	3
		LA	3	3
		W	2	1
		WT	1	1
RULA		Total A	4	4
		N	1	1
	Kelompok	T	4	4
	Bagian Tubuh B	Total B	5	5
	Total		5	5
	Nilai PEI		1,796	2,095

Seperti terlihat pada tabel 4.8 diatas, usulan rancangan konfigurasi 6 mempunyai nilai PEI sebesar 1,796 pada persentil 5 serta 2,095 pada persentil 95. Hal ini menunjukkan bahwa usulan rancangan konfigurasi 6 kabin pengemudi kendaraan tempur panser kanon relatif lebih ergonomis dibandingkan dengan konfigurasi 1 (desain rancangan awal).

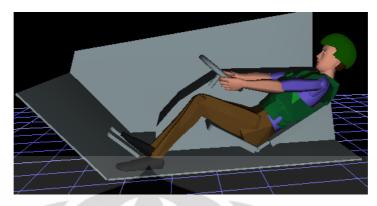
4.2.6 Analisis Usulan Rancangan Konfigurasi 7

Konfigurasi 7 pada kabin pengemudi kendaraan tempur panser kanon dilakukan dengan memposisikan tuas kemudi dengan sudut 45° serta kursi pengemudi dengan sudut kursi 120° dan kemiringan kursi 15°. Pada konfigurasi 7 ini bagian tubuh atas lebih merebah dibandingkan dengan sebelumnya. Dengan posisi tuas kemudi pada sudut 45° menyebabkan tangan lebih dekat untuk meraih tuas kemudi bagian atas dan menyebabkan posisi tangan normal dan berada di bawah bahu.

Gambar 4.21 Usulan Rancangan Konfigurasi 7 pada Persentil 5

Gambar 4.22 Usulan Rancangan Konfigurasi 7 pada Persentil 95

Usulan Rancangan Konfigurasi 7 kabin pengemudi pada kendaraan tempur panser kanon ini berdasarkan kapabilitas postur yang ada pada SSP berada di atas 90% sehingga postur yang tercipta pada konfigurasi 7 memungkinan untuk direalisasikan. Konfigurasi 7 kabin pengemudi pada kendaraan tempur panser kanon ini memiliki RULA yang lebih kecil dibandingkan dengan konfigurasi 1, yaitu 5 pada kedua persentil. Sedangkan nilai OWAS pada konfigurasi 7 ini mempunyai nilai yang lebih rendah bila dibandingkan dengan konfigurasi 1, yaitu 2 pada kedua persentil. Sementara itu, nilai LBA pada konfigurasi 7 adalah 969 N untuk persentil 5 dan 1160 N untuk persentil 95.


Tabel 4.9 Rekapitulasi Perhitungan PEI Konfigurasi 7

Persentil					
			5	95	
	SSP > 90%		Ya	Ya	
	LBA (N)		969	1160	
OVAZAC	Kode		2111	2111	
OWAS	Nilai		2	2	
	Kelompok Bagian Tubuh A	UA	3	2	
		LA	3	3	
		W	1	2	
		WT	1	1	
RULA		Total A	4	4	
		N	2	2	
	Kelompok	T	4	4	
	Bagian Tubuh B	Total B	5	5	
	Total		5	5	
	Nilai PEI		1,799	1,855	

Seperti terlihat pada tabel 4.9 diatas, usulan rancangan konfigurasi 7 mempunyai nilai PEI sebesar 1,799 pada persentil 5 serta 1,855 pada persentil 95. Hal ini menunjukkan bahwa usulan rancangan konfigurasi 7 kabin pengemudi kendaraan tempur panser kanon relatif lebih ergonomis dibandingkan dengan konfigurasi 1 (desain rancangan awal).

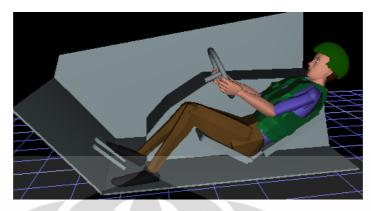
4.2.7 Analisis Usulan Rancangan Konfigurasi 8

Konfigurasi 8 pada kabin pengemudi kendaraan tempur panser kanon dilakukan dengan memposisikan tuas kemudi dengan sudut 71° serta kursi pengemudi dengan sudut kursi 120° dan kemiringan kursi 30°. Pada konfigurasi 8 ini bagian tubuh atas jauh lebih merebah dibandingkan dengan sebelumnya dan postur kaki lebih menekuk dibandingkan sebelumnya. Dengan posisi tuas kemudi pada sudut 71° menyebabkan tangan lebih jauh untuk meraih tuas kemudi bagian atas dan menyebabkan posisi tangan tegang dan berada diatas bahu.

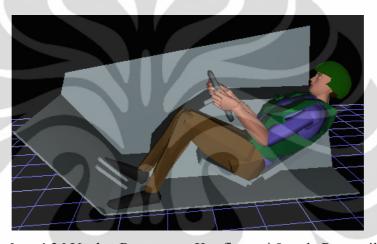
Gambar 4.23 Usulan Rancangan Konfigurasi 8 pada Persentil 5

Gambar 4.24 Usulan Rancangan Konfigurasi 8 pada Persentil 95

Usulan Rancangan Konfigurasi 8 kabin pengemudi pada kendaraan tempur panser kanon ini berdasarkan kapabilitas postur yang ada pada SSP berada di atas 90% sehingga postur yang tercipta pada konfigurasi 8 memungkinan untuk direalisasikan. Konfigurasi 8 kabin pengemudi pada kendaraan tempur panser kanon ini memiliki RULA yang lebih kecil dibandingkan dengan konfigurasi 1, yaitu 4 pada persentil 5 dan 5 pada persentil 95. Sedangkan nilai OWAS pada konfigurasi 8 ini mempunyai nilai yang sama bila dibandingkan dengan konfigurasi 1, yaitu 3 pada kedua persentil. Sementara itu, nilai LBA pada konfigurasi 8 adalah 1093 N untuk persentil 5 dan 1306 N untuk persentil 95.


Tabel 4.10 Rekapitulasi Perhitungan PEI Konfigurasi 8

	.10 Rekapitalasi 1 C			entil
			5	95
	SSP > 90%		Ya	Ya
	LBA (N)		1093	1306
OWAS	Kode		2341	2341
UWAS	Nilai		3	3
		UA	2	3
	Kalamanak	LA	3	3
	Kelompok Bagian Tubuh A	W	1	2
	bagian rubun A	WT	1	2
RULA		Total A	3	4
		N	3	3
	Kelompok	T	4	4
	Bagian Tubuh B	Total B	5	5
	Total		4	5
	Nilai PEI		1,883	2,148


Seperti terlihat pada tabel 4.10 diatas, usulan rancangan konfigurasi 8 mempunyai nilai PEI sebesar 1,883 pada persentil 5 serta 2,148 pada persentil 95. Hal ini menunjukkan bahwa usulan rancangan konfigurasi 8 kabin pengemudi kendaraan tempur panser kanon relatif lebih ergonomis dibandingkan dengan konfigurasi 1 (desain rancangan awal).

4.2.8 Analisis Usulan Rancangan Konfigurasi 9

Konfigurasi 9 pada kabin pengemudi kendaraan tempur panser kanon dilakukan dengan memposisikan tuas kemudi dengan sudut 71° serta kursi pengemudi dengan sudut kursi 120° dan kemiringan kursi 30°. Pada konfigurasi 9 ini bagian tubuh atas jauh lebih merebah dibandingkan dengan sebelumnya dan postur kaki lebih menekuk dibandingkan sebelumnya. Dengan posisi tuas kemudi pada sudut 45° menyebabkan tangan lebih dekat untuk meraih tuas kemudi bagian atas dan menyebabkan posisi tangan normal dan berada di bawah bahu.

Gambar 4.25 Usulan Rancangan Konfigurasi 9 pada Persentil 5

Gambar 4.26 Usulan Rancangan Konfigurasi 9 pada Persentil 95

Usulan Rancangan Konfigurasi 9 kabin pengemudi pada kendaraan tempur panser kanon ini berdasarkan kapabilitas postur yang ada pada SSP berada di atas 90% sehingga postur yang tercipta pada konfigurasi 9 memungkinan untuk direalisasikan. Konfigurasi 9 kabin pengemudi pada kendaraan tempur panser kanon ini memiliki RULA yang lebih kecil dibandingkan dengan konfigurasi 1, yaitu 4 pada persentil 5 dan 5 pada persentil 95. Sedangkan nilai OWAS pada konfigurasi 9 ini mempunyai nilai yang sama bila dibandingkan dengan konfigurasi 1, yaitu 3 pada kedua persentil. Sementara itu, nilai LBA pada konfigurasi 9 adalah 1062 N untuk persentil 5 dan 1299 N untuk persentil 95.

Persentil 5 95 SSP > 90% Ya Ya LBA (N) 1062 1299 Kode 2341 2341 **OWAS** Nilai 3 3 2 3 UA 3 LA 3 Kelompok 1 1 W Bagian Tubuh A WT 1 1 **RULA** Total A 3 4 2 2 4 4 Kelompok Bagian Tubuh B 5 5 Total B

Tabel 4.11 Rekapitulasi Perhitungan PEI Konfigurasi 9

Seperti terlihat pada tabel 4.11 diatas, usulan rancangan konfigurasi 9 mempunyai nilai PEI sebesar 1,874 pada persentil 5 serta 2,146 pada persentil 95. Hal ini menunjukkan bahwa usulan rancangan konfigurasi 9 kabin pengemudi kendaraan tempur panser kanon relatif lebih ergonomis dibandingkan dengan konfigurasi 1 (desain rancangan awal).

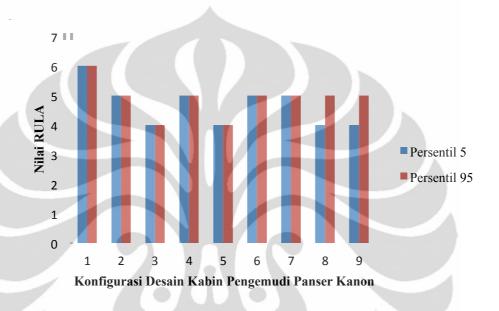
Total

Nilai PEI

4

1,874

5

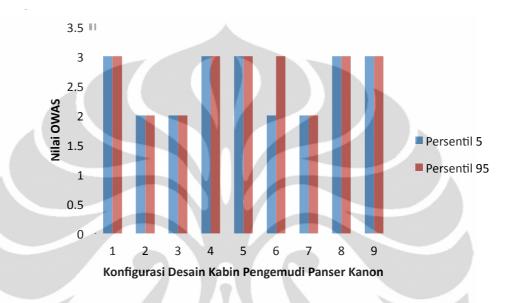

2,146

4.3 Analisis Perbandingan

Setelah dilakukan perhitungan nilai PEI dari konfigurasi 1 hingga usulan rancangan konfigurasi 9 pada kabin pengemudi kendaraan tempur panser kanon, maka hasil yang diperoleh sebelumnya dapat dibandingkan satu sama lain. Perbandingan ini dilakukan untuk mencari konfigurasi manakah yang memiliki nilai PEI terendah, yang menunjukkan bahwa konfigurasi tersebut merupakan desain yang paling ergonomis bagi pengemudi.

Berdasarkan perbandingan dari hasil SSP pada konfigurasi 1 hingga usulan rancangan konfigurasi 9 kabin pengemudi panser kanon pada persentil 5 dan 95 memiliki kecenderungan hasil yang sama. Dimana hasil SSP yang dihasilkan pada semua konfigurasi bernilai di atas 90%. Hal ini menunjukkan bahwa nilai SSP telah melewati syarat yang disarankan dalam metode *Posture Evaluation Index* yang dikembangkan oleh peneliti dari Fakultas Teknik

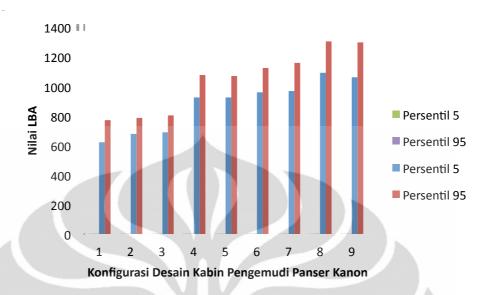
University of Naples Federico II Italia, Prof. Francesco Caputo dan Giuseppe Di Gironimo, Ph.D. Maka dari itu dapat ditarik kesimpulan bahwa semua konfigurasi kabin pengemudi kendaraan tempur panser kanon memungkinkan di atas 90% populasi untuk melakukan aktivitas yang disimulasikan dengan postur yang ditunjukkan pada semua konfigurasi.



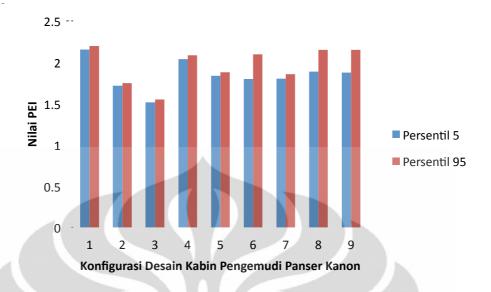
Gambar 4.27 Grafik Perbandingan Nilai RULA Seluruh Konfigurasi

Berdasarkan gambar 4.27 mengenai grafik perbandingan nilai RULA pada seluruh konfigurasi terlihat bahwa semua usulan konfigurasi yang telah dibuat memiliki nilai RULA dibawah konfigurasi 1 (rencana desain awal). Namun diantara semua konfigurasi yang mempunyai nilai RULA terkecil adalah konfigurasi 3 dan konfigurasi 4. Pada kedua konfigurasi yang memiliki nilai RULA terkecil tersebut memiliki kesamaan yang terletak pada usulan konfigurasi desain tuas kemudi pada sudut 45°.

Sesuai dengan penjelasan sebelumnya mengenai RULA (*Rapid Upper Limb Assesment*) yang merupakan penilaian pada postur tubuh bagian atas. Bila merujuk pada perbandingan nilai RULA diatas konfigurasi desain dengan tuas kemudi pada sudut 71° memiliki nilai RULA yang tinggi. Konfigurasi desain dengan tuas kemudi pada sudut 71° menyebabkan tangan lurus kedepan dan menegan. Sendi pergelangan tangan mengalami perputaran yang cukup besar serta kondisi tangan yang berada di atas bahu pada konfigurasi desain dengan tuas


kemudi pada sudut 71° mengakibatkan nilai RULA menjadi tinggi. Sehingga berdasarkan perbandingan nilai RULA konfigurasi tuas kemudi pada sudut 45° bersifat lebih ergonomis bila dibandingkan dengan rencana awal desain dan sudut tuas kemudi 71°.

Gambar 4.28 Grafik Perbandingan Nilai OWAS Seluruh Konfigurasi


Berdasarkan gambar 4.28 mengenai grafik perbandingan nilai OWAS pada seluruh konfigurasi terlihat bahwa terdapat beberapa usulan konfigurasi yang mempunyai nilai OWAS berada dibawah konfigurasi 1 (rencana desain awal). Dapat dilihat bahwa konfigurasi 2, konfigurasi 3, serta konfigurasi 7 memiliki nilai OWAS terkecil bila dibandingkan dengan konfigurasi lainnya. Pada konfigurasi-konfigurasi tersebut yang memiliki nilai OWAS terkecil tersebut memiliki kesamaan yang terletak pada usulan konfigurasi desain kemiringan kursi pengemudi sebesar 15°.

Bila dilihat dari penjelasan mengenai OWAS (*Ovako Working Analysis System*) yang menilai kenyamanan suatu postur kerja, terlihat bahwa postur yang tercipta dari kemiringan kursi sebesar 30° tidaklah nyaman. Pada postur kerja yang tercipta dari kemiringan kursi sebesar 30°, sudut yang terjadi antara paha dan kaki bagian bawah semakin menekuk. Sedangkan pada kemiringan kursi pengemudi sebesar 15° postur kaki sedikit menekuk namun berada dalam kondisi normal.

Gambar 4.29 Grafik Perbandingan Nilai LBA Seluruh Konfigurasi

Berdasarkan gambar 4.29 mengenai grafik perbandingan nilai LBA pada seluruh konfigurasi terlihat bahwa semua usulan konfigurasi yang telah dibuat memiliki nilai RULA di atas konfigurasi 1 (rencana desain awal). Hal ini terjadi dikarenakan posisi badan yang merebah dan tidak lurus menyebabkan tekanan pada tubuh bagian bawah. Namun pada konfigurasi 2 dan 3, nilai LBA yang dihasilkan tidak begitu jauh bila dibandingkan dengan konfigurasi 1. Hal ini disebabkan sudut kursi serta kemiringan kursi pengemudi yang tidak terlalu besar dan tidak terlalu membuat postur tubuh menjadi merebah.

Gambar 4.30 Grafik Perbandingan Nilai PEI Seluruh Konfigurasi

Nilai PEI yang besar pada konfigurasi 1 dipengaruhi oleh nilai RULA yang paling besar dengan nilai 6. Dengan demikian jika ditinjau dari nilai PEI, dapat dikatakan konfigurasi 1 sebagai rencana awal desain merupakan desain kabin pengemudi kendaraan tempur panser kanon yang paling tidak ergonomis.

Seperti halnya konfigurasi 1, beberapa konfigurasi lain juga memiliki nilai PEI yang hampir mendekati konfigurasi 1. Walaupun nilai RULA yang dimiliki tidak sebesar konfigurasi 1, namun nilai LBA yang besar mempengaruhi konfigurasi memiliki nilai PEI yang tinggi. Sebaliknya pada konfigurasi 3, walaupun memiliki nilai LBA yang cukup besar bila dibandingkan dengan konfigurasi 1, namun kecilnya nilai RULA dan OWAS yang dimiliki membuat nilai PEI yang dimiliki menjadi kecil.

Setelah dilakukan perhitungan nilai PEI untuk seluruh konfigurasi, kemudian dilanjutkan dengan perbandingan seluruh hasil nilai PEI yang didapat. Dapat disimpulkan bahwa usulan sudut tuas kemudi sebesar 45°, sudut kursi pengemudi 105°, serta sudut kemiringan kursi sebesar 15° (konfigurasi 3) dengan nilai PEI terendah merupakan usulan konfigurasi desain kabin pengemudi kendaraan tempur panser kanon yang paling ergonomis bagi pengendaranya.

BAB 5

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Dari pembahasan yang telah ada sebelumnya, dapat diambil beberapa kesimpulan.

Pada rencana awal desain kabin pengemudi kendaraan tempur panser kanon, desain awal kabin pengemudi kendaraan tempur panser kanon saat ini memiliki nilai LBA sebesar 631 N untuk persentil 5 dan 771 N untuk persentil 95. Nilai LBA yang masih dibawah Compression Action Limit berdasarkan standar NIOSH (3400 N) menunjukkan bahwa desain tersebut masih cukup aman dan memberikan resiko cedera pada tulang belakang yang relatif kecil. Sementara itu, nilai OWAS yang diperoleh bernilai 3. Hal ini menunjukkan bahwa postur kritis pengendara yang akan dialami saat ini secara nyata membahayakan sistem muskoloskeletal manusia. Tindakan perbaikan perlu dilakukan sesegera mungkin. Kemudian nilai RULA yang diperoleh senilai 6 pada kedua persentil. Dengan demikian perlu segera dilakukan investigasi lebih lanjut terhadap kemungkinan resiko cedera yang dapat terjadi. Selain itu, perbaikan mungkin dibutuhkan untuk mengurangi resiko cedera yang terjadi. Nilai PEI untuk desain aktual ini bernilai 2,153 untuk persentil 5 dan 2,194 untuk persentil 95. Nilai PEI ini bukan merupakan nilai yang terbaik bila dibandingkan dengan konfigurasi lain, sehingga potensi untuk melakukan perbaikan desain aktual sepeda motor Honda Supra X 125 ini masih ada.

Terdapat beberapa faktor utama yang mempengaruhi nilai PEI pada postur yang tercipta dalam rencana awal desain kabin pengemudi kendaraan tempur panser kanon yaitu sudut tuas kemudi, sudut kursi pengemudi, serta sudut kemiringan kursi pengemudi.

Usulan konfigurasi desain kabin pengemudi kendaraan tempur panser kanon yang terbaik dari sisi ergonomi untuk pengemudi adalah konfigurasi keempat dengan melakukan perubahan pada sudut tuas kemudi, sudut kursi pengemudi, serta sudut kemiringan kursi pengemudi . Kabin pengemudi kendaraan tempur panser kanon dengan konfigurasi terbaik tersebut memiliki

spesifikasi sudut tuas kemudi sebesar 45°, sudut kursi pengemudi sebesar 105°, serta sudut kemiringan kursi pengemudi sebesar 15°. Nilai PEI yang dihasilkan dari usulan konfigurasi kabin pengemudi kendaraan tempur panser kanon ketiga adalah sebesar 1,514 untuk persentil 5 serta 1,548 untuk persentil 95 di mana nilai PEI tersebut paling rendah dibandingkan konfigurasi kabin pengemudi kendaraan tempur panser kanon lainnya baik untuk persentil 5 maupun 95 sehingga menunjukan bahwa desain kabin pengemudi kendaraan tempur panser kanon tersebut paling ergonomis berdasarkan metode *Posture Evaluation Index*.

5.2 Saran

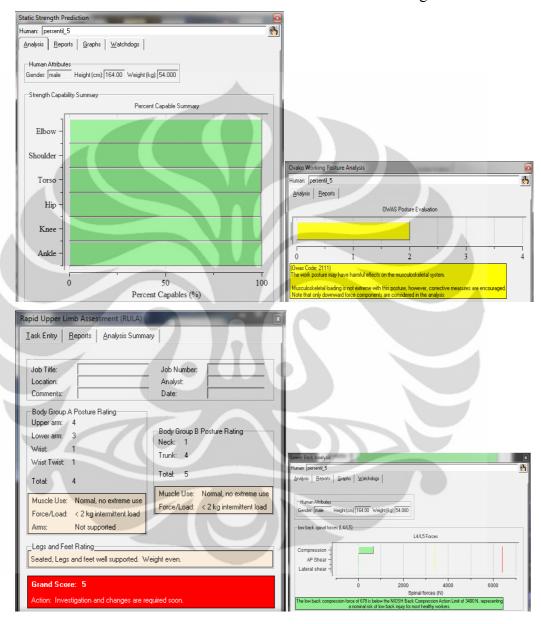
Postur duduk tubuh yang semakin merebah dapat menimbulkan faktor ketidaknyamanan lebih tinggi bila dibandingkan dengan postur duduk tubuh yang normal. Maka dari itu disarankan dalam desain kabin pengemudi dibuatkan ruang timbul pada bagian atas kabin pengemudi, sehingga postur duduk yang tercipta bisa dalam posisi normal dan kepala pengemudi tidak mengalami benturan dengan bagian atas kabin pengemudi.

Faktor ergonomi seharusnya menjadi suatu hal yang penting dalam mendesain kendaraan tempur. Dengan adanya faktor ergonomis dalam ruang lingkup kerja dapat membuat pekerjaan menjadi lebih optimal.

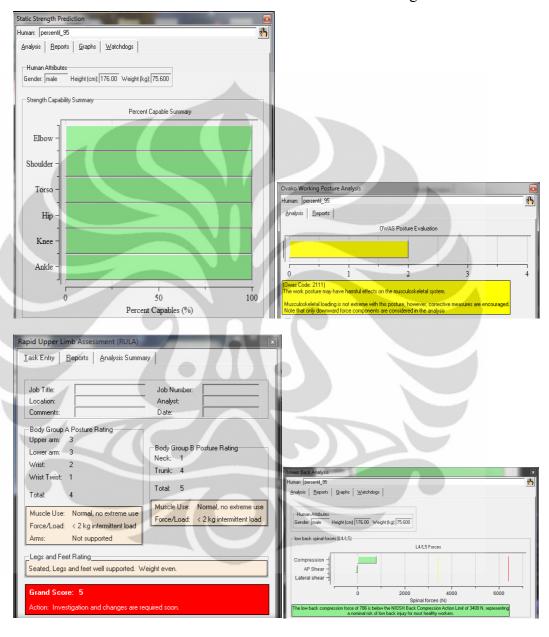
DAFTAR REFERENSI

- Bridger, R.S., (2003). *Introduction to Ergonomics* (2nd ed.). New York: Taylor & Francis, h.1.
- Kalawsky, R. (1993b). Critical Aspects of Visually Coupled Systems. In: Earnshaw, R., Gigante, M. and Jones, H. (eds.), Virtual Reality Systems. London: Academic Press, h. 302–312.
- Karwowski, W., Marras, W.S. (2003). Occupational Ergonomic Principles of Work Design. Boca Raton: CRC Press. Pg 25-1 26-12
- Määttä, Timo. (2003). Virtual Environment in Machinery Safety Analysis. Finlandia: VTT Technical Research Centre of Finland.
- Mark Sanders. S dan Ernest J McCormick, (1993). *Human Factor in Engineering and Design*, Attention (pp. 4), Singapore: MCGraw-Hill Inc.
- NIOSH. (1998). NIOSH Document, Applications Manual for the Revised NIOSH Lifting Equation, NIOSH Publication Number 94-110.
- Park, Se Jin., Lee, Jeong-Woo., Kwon, Kyu-Sik., Kim, Chae-Bogk., Kim, Han-Kyung. (1999). *Preferred Driving Posture and Driver's Physical Dimension*.
- Siemens PLM Software Inc. (2008). *Jack user manual version 6.0*. California: Author.
- Siemens PLM Software Inc. (2008). *Jack task analysis toolkit (TAT) training manual*. California: Author.
- UGS Tecnomatix (2005). *Jack human modeling and simulation*. http://www.ugs.com/
- United States Department of Defense (1999). Department of Defense Human Engineering Design Criteria Standard.
- The International Ergonomics Association. (2000). *The Discipline of Ergonomics*. http://www.iea.cc/

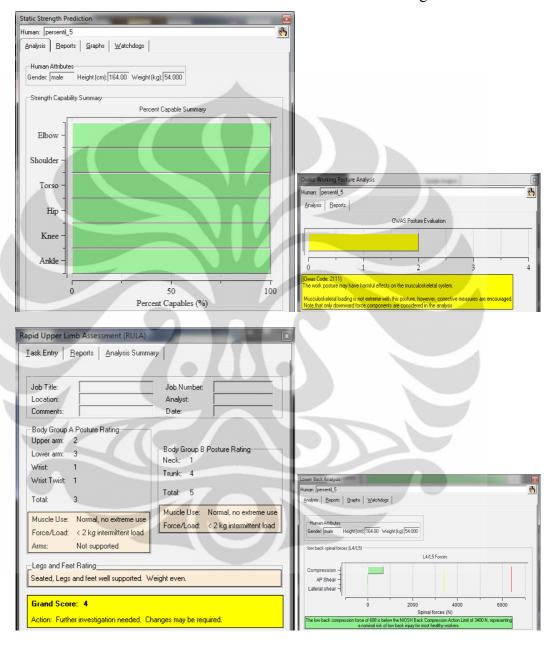
Zeltzer, D. (1992). Autonomy, Interaction and Presence. Presence, 1(1).

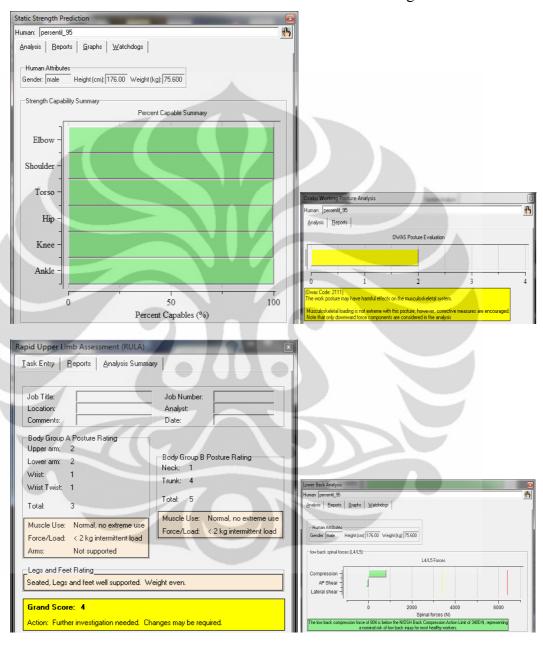

Lampiran 1
Data Antropometri Tentara Yonif Mekanis 201

No	Umur	Tinggi Badan	Berat Badan	a	b	c	d	e	f	g	h	i	j	k	l	m	n
1	24	174	92	60	45.5	26	62	52	57	76	86.5	37	48	42	36	40	26
2	21	171	59	55	47	26	55	44	54	73	86	34	43	39	27	34	15
3	23	171	58	55	46.5	27	57	49	54	74	89	35	46	39	30	34	19
4	21	178	66	56	47	25	56	56	59	80	94	34.5	45	42	27	33	18
5	28	168	75	54	42	25	53.5	44	57	78.5	88	33	43	40	30	37	20
6	29	166	58	53	43	25	54	44	55	76	83	37	43	40	28	33	18.5
7	21	166	55	53	41	24.5	51	42	56	70	87	37	42	41	26.5	31	16
8	22	170	62	55	42	25	55	43	56	75.5	86.5	35	47	41	29	33	16
9	20	170	60	57.5	44	25	55	44	56	74	87 90	34	47 49	40	28 29	35 36	18 19
10	30 32	170 168	70 67	55.5	44	26 25	57 53	46 45	60 57	75.5	86	34	49	40	30	35	14
12	31	168	58	55.5	45	26	55	48	53	70.3	82	34	43	40	29	35	22
13	27	169	73	55.5	45	25	54	46	58	77	87	33	46	40	29	33	18
14	31	176	73	55	47	25	54	45	60	82	91	35	45	43	29	35	21
15	30	164	57	50	42	25	48	42	52	70	81	33	42	38	27	32	14
16	31	176	70	57	47	25	58	49	58.5	78	91.5	34	45	42	27	32	19
17	27	167.5	52	56	46.5	25	56	47	54	70	81	36	45	40	26	34	15
18	31	170	61	55	45	26	55	47	54.5	71	84.5	34	46	42	27	34	18
19	31	165	54	53	45	25	55	47	55	70	82	33	45	39	26	32	18
20	32	177	64	59	48	30	58	47	57	72	85	34	47	43	31	39	21
21	31	177	67	54	44	27	49	40	54	74	84	34	40	40	33	40	20
22	29	171	57	57	46	28	58	47	51	69	82	37	46	43	29	35	19
23	30	169	58	54	44	27	54	44	54	70	83	32	43	40	29	38	18
24	31	175	67	57	47	28	60	50	57	74	86	36	47	44	27	40	20
25	33	169	78	56	46	28	61	51	53	70	84	35	46	45	35	39	24
26	31	176	65	57	45	28	61	46	59	78	80	33	45	44	32	39	20
27	29	168	56	55	46	28	54	44	52	66	78	33	46	40	28	34	17
28	32	165	75	56	45	27	59	48	52	65	80	33	44	44	36	40	22
29	29	169	68	57	45	28	59	47	51	65	80	33	43	41	30	36	20
30	32	166	65	55	45	27	54	44	55	73	84	33	43	40	31	38	21
31	30	166	65	55	45	28	55	45	51	72	81	33	42	39	29	34	18
32	25	170	58	56	45	27	55	45	54	68	73	33	43	39	29	34	19
33	28	167	56	55	45	27	54	44	54	73	81	34	44	40	28	36	17
34	27	166	55	55	44	27	56	46	50	69	81	31	42	40	27	38	18
35	27	174	60	58	46	29	58	45	56	76	85	34	49	42	30	40	18
36	27	182	70	59	48	30	62	51	56	74	85	34	48	46	30	34	24
37	28 27	170	55	56	47	27	57	45	58	76	85	33	45 45	39	31 28	34	20
38	23	178	63	59 53	47 42	28	60 53	48	57 54	75 72	86 84	34	38	40 38	28	32 32	22 18
39 40	23	168 172	55 56	56	42	29 28	53	41	55	68	84	33	48	43	28	34	18
41	28	172	60	55	44	28	55	44	53	74	83	33	48	43	30	34	19
42	33	173	70	56	45	27	58	49	56	67	47	34	43	43	30	37	19
43	21	166	60	56	45	26	54	49	53	73	81	34	46	43	28	33	19
44	30	170	65	57	45	26	62	49	52	69	81	33	45	42	33	36	22
45	29	168	56	56	46	26	58	48	51	72	82	31	42	39	29	34	19
46	29	169	68	56	46	27	57	45	53	72	83	34	47	42	34	39	19
47	33	171	70	55	45	27	55	47	54	74	83	33	39	43	30	37	25
48	29	172	72	58	48	26	52	45	58	75	85	33	45	43	30	37	25
49	32	175	76	59	49	25	58	50	56	77	86	35	46	43	32	36	26
50	22	170	59	56	46	26	54	46	51	73	82	35	47	40	28	34	19


51	27	164	59	55	46	26	53	43	54	76	85	32	46	40	28	34	18
52	30	163	56	53	43	25	56	48	49	70	79	32	43	40	30	35	19
53	30	170	73	55	45	26	58	48	58	72	84	32	47	42	32	32	20
54	23	172	62	56	47	25	53	43	57	77	90	33	43	43	28	34	18
55	32	165	65	55	44	24	54	41	50	67	80	33	43	42	33	35	19
56	22	174	68	58	49	27	58	49	54	73	84	33	44	43	35	39	22
57	35	165	70	54	45	26	58	48	56	70	82	30	42	42	30	45	21
58	24	169	55	56	47	25	55	45	51	70	81	32	46	40	24	30	17
59	23	170	60	55	45.5	25	52	44	54	72	83	34	47	38	26	32	16
60	23	167	57	54	44	29	52	45	54	74	84	34	46	44	29	40	19
61	22	169	58	54	45	27	60	50	50	73	84	34	47	43	28	38	20
62	26	170	71	55	45	27	57	45	59	75	84	33	47	44	30	39	24
63	25	170	68	55	45	26	57	46	54	76	85	31	45	42	28	36	19
64	23	173	69	58	48	25	56	47	51	72	82	37	49	43	29	35	20
65	32	176	78	55	46	25	59	48	58	77	88	35	47.5	42	26	33	20
66	26	167	63	52	42	26	56	45	55	70	82	33	47.3	43	30	40	23
67	31	163	58	54	46	26	54	43	54	76	84	33	42	42	30	38	22
\blacksquare	26	103		52	44	26	55	46	50	71	82	33	42	41	30	36	19
68	23	168	66	52	42		57	45	53	74		32	42	40	30	37	18
-	30		55	55	47	24	51	43	54	71	84	33	42	_	31	36	23
70	38	164			47	26 25		43			80	33	42	43		38	19
71		165	60	53 54	_	27	57		53	70 71		-			30		
72	21	168	58		44		58 55	48	50		81	33	47 48	44	30	39 34	19
73 74	29 28	173	61 54	55 50	45	26 25	53	45	60 59	76	86	34	_	43	32	_	19
		165			41			43		80	89		45	44	32	35	18
75	31	165	65	53	43	25	57	47	54	73	83	34	47	46	32	34	18
76	29	169	61	55	44	25	54	44	53	72	83	34	48	46	30	33	17
77	23	170	58	51	43	24	54	46.5	58	81	92	33	46	42	24	34	16
78	22	166	58	52	44	24	53.5	45	54	74.5	85	33	46	42	24	35	17
79	29	164	58	51	43	23	53	45	53	76	86	33	44	41	28	34	17
80	24	175	68	55	45	27	56	46	58	76	85	35	48	43	33	35	20
81	28	167	60	55	45	26	56	45	63	73	82	34	46	45	32	34	19
82	21	173	59	56	45	25	56	46	54	77	90	36	48	45	30	37	18
83	26	173	60	53	44	26	59	48	55	76	88	34	46	43	31	35	18
84	29	171	58	56	46	26	61	53	53	71	83	37	48	41	30	38	18
85	23	166	61	53	44	26	53	41	56	76	87	31	44	42	31	38	20
86	23	171	58	54	44	26	55	45	59	75	83	36	46	42	32	39	23
87	36	165	54	54	44	26	52	43	53	25	84	31	44	44	30	36	24
88	28	172	65	54	45	27	59	49	55	74	83	34	45	46	32	36	24
89	28	166	60	54	44	26	56	47	56	72	83	35	45	44	34	48	24
90	26	172	65	55	47	26	56	45	55	76	84	32	44	43	32	35	22
91	30	172	60	53	47	26	58	49	54	75	84	34	46.5	41	28	35	18.5
92	24	166	58	57	44	25	57	48	52	74	84	35	46	42	31	35	18
93	25	166	62	54	44	26	56	45	50	71	83	35	46	41	26	34	18
94	25	171	72	56	45	27	54	46	54	76	85	34	45	46	30	34	21
95	27	168	82	55	42	28	60	48	54	74	84	33	47	45	38	44	26
96	27	167	52	54	43	26	58	48	50	69	80	34	42	41	32	32	19
97	28	165	52	56	46	26	53	45	54	69	83	33	46	39	29	36	18
98	24	167	58	54	44	26	56	45	48	69	80	32	45	41	30	34	19
99	27	168	70	57	46	25	59	48	56	74	86	33	47	35	34	37	20
100	28	163	60	62	46	26	53	47	52	75	83	55	42	46	35	38	12
101	22	164	58	54	44	25	53	43	50	70	78	30	43	42	29	32	18
102	31	165	56	54	44	25	51	41	51	70	82	30	45	39	28	31	18
103	26	171	63	54	44	27	60	49	54	74	82	33	44	44	33	36	19
104	29	164	68	51	40	25	55	46	53	72	81	33	46	44	30	39	22
105	41	167	74	55	45	25	55	46	56	72	84	33	45	43	32	35	22
106	29	167	65	56	44	26	53	43	53	70	82	33	45	42	31	34	19
107	23	171	60	56	46	25	53	43	57	77	87	37	46	40	25	33	18
108	24	170	64	57	47	26	59	48	55	72	81	33	46	45	31	36	19
109	21	180	66	57	47	27	60	49	60	80	92	36	46	42	27	34	19
110	26	176	58	57	48	26	56	47	52	73	82	34	46	42	27	35	23
111	27	165	55	54	46	26	54	47	52	72	81	34	43	42	29	37	19
112	29	172	65	58	48	26	60	53	55	75	84	36	47	44	32	34	22
113	38	162	63	55	46	25	58	47	48	69	74	33	45	44	31	34	23
114	22	170	68	56	44	26	17	45	53	73	83	32	47	43	33	39	19
115	22	169	59	54	45	25	57	46	44	71	81	33	44	44	44	29	19
			· ·		_	_	_		_	_	_	_	_	_	_	_	_

116
118
119
120 32 163 75 53 43 27 53 43 53 72 82 32 43 47 32 39 121 20 165 50 53 44 26 58 47 63 77 86 34 44 39 27 30 122 30 168 65 52 43 26 58 43 56 77 88 32 43 39 29 34 123 23 166 56 53 43 27 57 46 51 74 83 31 43 44 26 35 124 23 172 53 52 44 27 56 46 57 78 87 31 46 42 27 36 125 28 165 68 54 44 27 57 46 54 71 83 32 45 44 31 37 126 23 169 63 56 45 26 56 45 56 75 85 34 46 44 32 34 127 23 174 65 58 47 26 60 50 55 75 86 37 48 41 24 33 128 29 168 60 55 45 25 56 48 53 71 80 35 46 42 28 36 129 22 172 65 53 44 25 55 46 54 77 89 32 45 44 18 33 30 23 173 76 57 47 26 57 51 53 74 82 34 44 45 32 34 131 28 167 59 53 43 24 58 48 52 75 85 34 46 42 23 34 133 29 170 73 58 48 26 60 50 55 74 83 34 46 42 35 37 134 27 173 75 56 46 25 57 47 56 75 85 31 48 44 27 32 135 27 171 57 56 46 25 57 48 55 78 88 32 47 42 26 33 136 27 171 57 56 46 25 57 48 55 78 88 32 47 42 26 33 137 24 170 60 55 46 25 57 48 55 78 88 32 47 42 26 33 138 25 163 50 51 41 27 56 45 25 60 50 55 77 87 33 45 43 30 34 140 26 173 60 56 49 25 60 50 55 77 87 33 44 44 44 44 45 32 34 140 26 173 60 56 49 25 60 50 55 77 87 33 45 43 30 34 144 26 168 61 57 77 26 57 58 58 58 58 58 59 48 50 57 58 58 59 48 50 57 58 58 59 48 50 57 58 58 59 49 58 59 59 59 49 59 59 59 49 59 5
121 20
122 30 168 65 52 43 26 53 43 56 77 88 32 43 39 29 34 123 23 166 56 53 43 27 57 46 51 74 83 31 43 44 20 35 125 28 165 68 54 44 27 57 46 57 78 87 31 43 44 20 35 126 23 169 63 56 45 26 56 45 56 75 85 34 46 42 23 37 126 23 174 65 58 47 26 60 50 55 75 86 37 48 41 24 23 128 29 168 60 55 45 25 56 48 53 71 80 35 46 42 28 36 129 22 172 65 53 44 25 55 46 54 77 89 32 45 40 18 33 130 23 173 76 57 47 26 57 51 53 74 82 34 44 45 32 35 131 28 167 59 53 43 24 58 48 52 75 85 34 46 42 23 34 133 29 170 73 58 48 26 56 50 55 74 83 34 46 42 33 34 133 29 170 73 58 48 26 57 47 56 75 85 34 46 42 33 34 133 27 171 68 56 47 27 58 47 55 78 88 32 47 42 26 33 136 27 171 68 56 47 27 58 47 55 78 88 32 47 42 26 33 139 30 171 65 55 46 25 57 48 34 47 46 33 38 130 27 171 68 56 47 27 58 47 56 75 85 34 48 44 24 28 34 133 29 170 73 58 48 26 60 50 55 74 83 34 46 42 35 37 134 27 173 67 67 67 67 67 67 67
123
124
126
128 29 168 60 55 45 25 56 48 53 71 80 35 46 42 28 36 130 23 173 76 57 47 26 57 51 53 74 82 34 44 45 32 35 131 28 167 59 53 43 24 58 48 52 75 85 34 45 40 27 32 132 19 172 60 55 47 27 58 46 56 77 85 35 46 42 28 36 133 29 170 73 58 48 26 60 50 55 74 83 34 45 40 27 32 132 19 172 60 55 47 27 58 46 56 77 85 35 46 46 23 23 37 134 27 173 75 59 48 27 57 47 56 75 85 31 48 44 28 34 135 27 171 68 56 47 27 58 47 55 74 84 34 47 46 33 38 136 27 171 57 56 46 25 57 48 55 78 88 32 47 42 26 33 139 30 171 65 55 46 26 58 49 56 77 87 33 45 43 30 34 140 26 173 60 56 49 25 60 49 54 77 87 33 45 43 30 34 141 24 26 35 143 31 171 85 56 45 25 60 50 55 76 78 78 33 45 43 30 34 144 26 168 61 57 47 26 59 49 52 74 84 34 47 40 44 44 42 29 169 57 53 45 25 60 50 55 77 87 33 45 43 30 34 144 26 168 61 57 47 26 56 47 57 57 58 43 44 47 40 44 44 44 26 168 61 57 47 26 56 47 57 57 58 33 43 44 47 40 44 44 26 168 61 57 47 26 56 47 58 57 88 33 44 47 40 44 44 26 168 61 57 47 26 56 47 56 76 88 33 44 47 40 44 44 26 168 61 57 47 26 59 49 53 73 82 31 42 44 38 42 30 39 143 31 166 60 51 41 27 56 45 56 57 88 33 43 44 44 44 44 44
128
129
130
131 28 167 59 53 43 24 58 48 52 75 85 34 45 40 27 32 132 19 172 60 55 47 27 58 46 56 77 85 35 46 46 32 34 133 29 170 73 58 48 26 60 50 55 74 83 34 46 42 35 37 134 27 173 75 59 48 27 57 47 56 75 85 31 48 44 28 34 135 27 171 68 56 47 27 58 47 55 74 84 34 47 46 33 38 136 27 171 57 56 46 25 57 48 55 78 88 32 47 42 26 33 137 24 170 60 55 46 26 58 49 56 77 86 36 40 42 28 34 138 25 163 50 51 43 24 54 46 52 71 79 32 42 41 26 33 139 30 171 65 55 45 25 60 50 55 77 87 33 45 43 30 34 140 26 173 60 56 49 25 60 49 54 75 84 36 45.5 42 26 33 141 31 171 85 56 45 25 60 51 55 76 85 33 44 47 40 44 142 29 169 57 53 43 27 56 45 56 74 83 32 45 43 30 38 144 26 168 61 57 47 26 56 47 56 76 84 34 44 44 34 37 145 26 172 63 56 47 26 59 49 58 77 84 36 44 42 30 39 148 28 165 60 50 41 26 53 47 50 72 82 33 43 41 28 37 148 28 165 60 50 41 26 54 43 56 74 83 32 45 43 30 38 150 25 170 62 55 48 26 58 48 57 76 85 33 44 41 29 38 153 27 165 59 52 43 27 57 46 51 74 83 31 43 44 26 35 155 29 167 60 56 56 53 43 27 57 46 51 74 83 31 43 44 26 35 155 29 167 66 56 53 43 27 57 46 51 74 83 31 43 44 26 35 155 29 167 66 56 53 43 27 57 46 51 74 83 31 43 44 26 35 155 29 167 66 56 53 43 27 57 46 51 74 83 31 43 44 26 34 157 24 170 64 57 47 26 59 48 55 77 83
132 19 172 60 55 47 27 58 46 56 77 85 35 46 46 32 34 133 29 170 73 58 48 26 60 50 55 74 83 34 46 42 35 37 134 27 171 68 56 47 27 58 47 55 74 84 34 47 46 33 38 136 27 171 57 56 46 25 57 48 55 78 88 32 47 42 26 33 137 24 170 60 55 46 26 58 49 56 77 86 36 40 42 28 34 138 25 163 50 51 43 24 54 46 52 71
133 29 170 73 58 48 26 60 50 55 74 83 34 46 42 35 37 134 27 173 75 59 48 27 57 47 56 75 85 31 48 44 28 34 1 135 27 171 68 56 47 27 58 47 55 74 84 34 47 46 33 38 136 27 171 57 56 46 25 57 48 55 78 88 32 47 42 26 33 137 24 170 60 55 46 26 58 49 56 77 86 36 40 42 28 34 138 25 163 50 51 43 24 54 46 52 <
134 27 173 75 59 48 27 57 47 56 75 85 31 48 44 28 34 1 135 27 171 68 56 47 27 58 47 55 74 84 34 47 46 33 38 136 27 171 57 56 46 25 57 48 55 78 88 32 47 42 26 33 137 24 170 60 55 46 26 58 49 56 77 86 36 40 42 28 34 138 25 163 50 51 43 24 54 46 52 71 79 32 42 41 26 33 139 30 171 65 55 45 25 60 50 57 <
135 27 171 68 56 47 27 58 47 55 74 84 34 47 46 33 38 136 27 171 57 56 46 25 57 48 55 78 88 32 47 42 26 33 137 24 170 60 55 46 26 58 49 56 77 86 36 40 42 28 34 138 25 163 50 51 43 24 54 46 52 71 79 32 42 41 26 33 139 30 171 65 55 45 25 60 50 55 77 87 33 44 41 26 33 140 26 173 60 56 49 25 60 50 55 75
136 27 171 57 56 46 25 57 48 55 78 88 32 47 42 26 33 137 24 170 60 55 46 26 58 49 56 77 86 36 40 42 28 34 138 25 163 50 51 43 24 54 46 52 71 79 32 42 41 26 33 139 30 171 65 55 45 25 60 50 55 77 87 33 45 43 30 34 140 26 173 60 56 49 25 60 51 55 76 85 33 44 47 40 44 142 29 169 57 53 43 27 56 49 52 74 84
137 24 170 60 55 46 26 58 49 56 77 86 36 40 42 28 34 138 25 163 50 51 43 24 54 46 52 71 79 32 42 41 26 33 139 30 171 65 55 45 25 60 50 55 77 87 33 45 43 30 34 140 26 173 60 56 49 25 60 49 54 75 84 36 45.5 42 26 33 141 31 171 85 56 45 25 60 51 55 76 85 33 44 47 40 44 142 29 169 80 53 43 27 56 45 56 74 84
138 25 163 50 51 43 24 54 46 52 71 79 32 42 41 26 33 139 30 171 65 55 45 25 60 50 55 77 87 33 45 43 30 34 140 26 173 60 56 49 25 60 49 54 75 84 36 45.5 42 26 33 141 31 171 85 56 45 25 60 51 55 76 85 33 44 47 40 44 142 29 169 57 53 43 27 56 49 52 74 84 34 44 44 44 44 142 30 39 143 31 166 60 51 41 27 56
139 30 171 65 55 45 25 60 50 55 77 87 33 45 43 30 34 140 26 173 60 56 49 25 60 49 54 75 84 36 45.5 42 26 33 141 31 171 85 56 45 25 60 51 55 76 85 33 44 47 40 44 142 29 169 57 53 43 27 56 49 52 74 84 34 45 42 30 39 143 31 166 60 51 41 27 56 45 56 74 83 32 45 43 30 38 144 26 168 61 57 47 26 56 47 56 76
140 26 173 60 56 49 25 60 49 54 75 84 36 45.5 42 26 33 141 31 171 85 56 45 25 60 51 55 76 85 33 44 47 40 44 142 29 169 57 53 43 27 56 49 52 74 84 34 45 42 30 39 143 31 166 60 51 41 27 56 45 56 74 83 32 45 43 30 38 144 26 168 61 57 47 26 56 47 56 76 84 34 44 44 34 37 145 26 172 63 56 47 26 59 49 58 77
141 31 171 85 56 45 25 60 51 55 76 85 33 44 47 40 44 142 29 169 57 53 43 27 56 49 52 74 84 34 45 42 30 39 143 31 166 60 51 41 27 56 45 56 74 83 32 45 43 30 38 144 26 168 61 57 47 26 56 47 56 76 84 34 44 44 34 37 145 26 172 63 56 47 26 59 49 58 77 84 36 44 42 32 35 146 29 169 80 53 42 25 59 49 53 73 82 31 42 44 38 42 147 27 165 <
142 29 169 57 53 43 27 56 49 52 74 84 34 45 42 30 39 143 31 166 60 51 41 27 56 45 56 74 83 32 45 43 30 38 144 26 168 61 57 47 26 56 47 56 76 84 34 44 44 34 37 145 26 172 63 56 47 26 59 49 58 77 84 36 44 42 32 35 146 29 169 80 53 42 25 59 49 53 73 82 31 42 44 38 42 147 27 165 57 52 42 26 53 47 50 72
143 31 166 60 51 41 27 56 45 56 74 83 32 45 43 30 38 144 26 168 61 57 47 26 56 47 56 76 84 34 44 44 34 37 145 26 172 63 56 47 26 59 49 58 77 84 36 44 42 32 35 146 29 169 80 53 42 25 59 49 53 73 82 31 42 44 38 42 147 27 165 57 52 42 26 53 47 50 72 82 33 43 41 28 37 148 28 165 60 50 41 26 54 43 56 74
144 26 168 61 57 47 26 56 47 56 76 84 34 44 44 34 37 145 26 172 63 56 47 26 59 49 58 77 84 36 44 42 32 35 146 29 169 80 53 42 25 59 49 53 73 82 31 42 44 38 42 147 27 165 57 52 42 26 53 47 50 72 82 33 43 41 28 37 148 28 165 60 50 41 26 54 43 56 74 83 32 45 43 30 38 149 25 167 60 56 46 26 55 46 55 75
145 26 172 63 56 47 26 59 49 58 77 84 36 44 42 32 35 146 29 169 80 53 42 25 59 49 53 73 82 31 42 44 38 42 147 27 165 57 52 42 26 53 47 50 72 82 33 43 41 28 37 148 28 165 60 50 41 26 54 43 56 74 83 32 45 43 30 38 149 25 167 60 56 46 26 55 46 55 75 83 33 43 43 33 36 150 25 170 62 55 48 26 58 48 57 76
146 29 169 80 53 42 25 59 49 53 73 82 31 42 44 38 42 147 27 165 57 52 42 26 53 47 50 72 82 33 43 41 28 37 148 28 165 60 50 41 26 54 43 56 74 83 32 45 43 30 38 149 25 167 60 56 46 26 55 46 55 75 83 33 43 43 33 36 150 25 170 62 55 48 26 58 48 57 76 85 37 45 43 33 34 151 27 170 78 51 41 24 57 47 52 72
147 27 165 57 52 42 26 53 47 50 72 82 33 43 41 28 37 148 28 165 60 50 41 26 54 43 56 74 83 32 45 43 30 38 149 25 167 60 56 46 26 55 46 55 75 83 33 43 43 33 36 150 25 170 62 55 48 26 58 48 57 76 85 37 45 43 33 34 151 27 170 78 51 41 24 57 47 52 72 80 30 40 42 37 41 152 28 167 59 52 43 27 52 46 51 73
148 28 165 60 50 41 26 54 43 56 74 83 32 45 43 30 38 149 25 167 60 56 46 26 55 46 55 75 83 33 43 43 33 36 150 25 170 62 55 48 26 58 48 57 76 85 37 45 43 33 34 151 27 170 78 51 41 24 57 47 52 72 80 30 40 42 37 41 152 28 167 59 52 43 27 52 46 51 73 81 32 44 41 29 38 153 27 165 59 49 41 26 53 43 55 74
149 25 167 60 56 46 26 55 46 55 75 83 33 43 43 33 36 150 25 170 62 55 48 26 58 48 57 76 85 37 45 43 33 34 151 27 170 78 51 41 24 57 47 52 72 80 30 40 42 37 41 152 28 167 59 52 43 27 52 46 51 73 81 32 44 41 29 38 153 27 165 59 49 41 26 53 43 55 74 83 33 45 42 30 37 154 23 166 56 53 43 27 57 46 51 74 83 31 43 44 26 35 155 29 167 65 56 44 26 53 43 53 70 82 33 45 42 31 34 156
150 25 170 62 55 48 26 58 48 57 76 85 37 45 43 33 34 151 27 170 78 51 41 24 57 47 52 72 80 30 40 42 37 41 152 28 167 59 52 43 27 52 46 51 73 81 32 44 41 29 38 153 27 165 59 49 41 26 53 43 55 74 83 33 45 42 30 37 154 23 166 56 53 43 27 57 46 51 74 83 31 43 44 26 35 155 29 167 65 56 44 26 53 43 53 70
151 27 170 78 51 41 24 57 47 52 72 80 30 40 42 37 41 152 28 167 59 52 43 27 52 46 51 73 81 32 44 41 29 38 153 27 165 59 49 41 26 53 43 55 74 83 33 45 42 30 37 154 23 166 56 53 43 27 57 46 51 74 83 31 43 44 26 35 155 29 167 65 56 44 26 53 43 53 70 82 33 45 42 31 34 156 25 166 62 54 44 26 56 45 50 71
152 28 167 59 52 43 27 52 46 51 73 81 32 44 41 29 38 153 27 165 59 49 41 26 53 43 55 74 83 33 45 42 30 37 154 23 166 56 53 43 27 57 46 51 74 83 31 43 44 26 35 155 29 167 65 56 44 26 53 43 53 70 82 33 45 42 31 34 156 25 166 62 54 44 26 56 45 50 71 83 35 46 41 26 34 157 24 170 64 57 47 26 59 48 55 72
153 27 165 59 49 41 26 53 43 55 74 83 33 45 42 30 37 154 23 166 56 53 43 27 57 46 51 74 83 31 43 44 26 35 155 29 167 65 56 44 26 53 43 53 70 82 33 45 42 31 34 156 25 166 62 54 44 26 56 45 50 71 83 35 46 41 26 34 157 24 170 64 57 47 26 59 48 55 72 81 33 46 45 31 36 158 30 163 56 53 43 25 56 48 49 70
154 23 166 56 53 43 27 57 46 51 74 83 31 43 44 26 35 155 29 167 65 56 44 26 53 43 53 70 82 33 45 42 31 34 156 25 166 62 54 44 26 56 45 50 71 83 35 46 41 26 34 157 24 170 64 57 47 26 59 48 55 72 81 33 46 45 31 36 158 30 163 56 53 43 25 56 48 49 70 79 32 43 40 30 35
155 29 167 65 56 44 26 53 43 53 70 82 33 45 42 31 34 156 25 166 62 54 44 26 56 45 50 71 83 35 46 41 26 34 157 24 170 64 57 47 26 59 48 55 72 81 33 46 45 31 36 158 30 163 56 53 43 25 56 48 49 70 79 32 43 40 30 35
156 25 166 62 54 44 26 56 45 50 71 83 35 46 41 26 34 157 24 170 64 57 47 26 59 48 55 72 81 33 46 45 31 36 158 30 163 56 53 43 25 56 48 49 70 79 32 43 40 30 35
157 24 170 64 57 47 26 59 48 55 72 81 33 46 45 31 36 158 30 163 56 53 43 25 56 48 49 70 79 32 43 40 30 35
158 30 163 56 53 43 25 56 48 49 70 79 32 43 40 30 35
160 27 167 52 54 43 26 58 47 50 69 80 34 42 41 32 32
161 27 173 75 59 48 27 57 46 56 75 85 31 48 44 28 34 1
162 24 170 64 57 47 26 59 48 55 72 81 33 46 45 31 36
163 25 169 60 58 47 27 58 46 54 73 80 33 45 44 30 35
164 28 171 63 59 48 26 57 46 56 82 82 34 47 45 32 36
165 27 168 63 55 46 26 59 47 57 76 83 36 47 44 32 36
166 24 166 58 57 44 25 57 48 52 74 84 35 46 42 31 35
167 29 167 65 56 44 26 53 43 53 70 82 33 45 42 31 34
168 27 165 55 54 46 26 54 47 52 72 81 34 43 42 29 37
169 29 172 65 58 48 26 60 53 55 75 84 36 47 44 32 34
169 29 172 65 58 48 26 60 53 55 75 84 36 47 44 32 34 170 29 168 60 55 45 25 56 48 53 71 80 35 46 42 28 36


Lampiran 2 Hasil Analisis Jack TAT Konfigurasi 2 Persentil 5

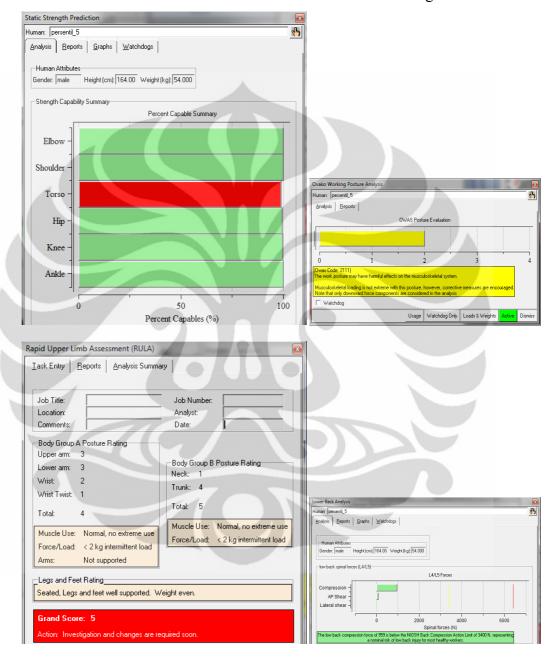

Lampiran 3 Hasil Analisis Jack TAT Konfigurasi 2 Persentil 95

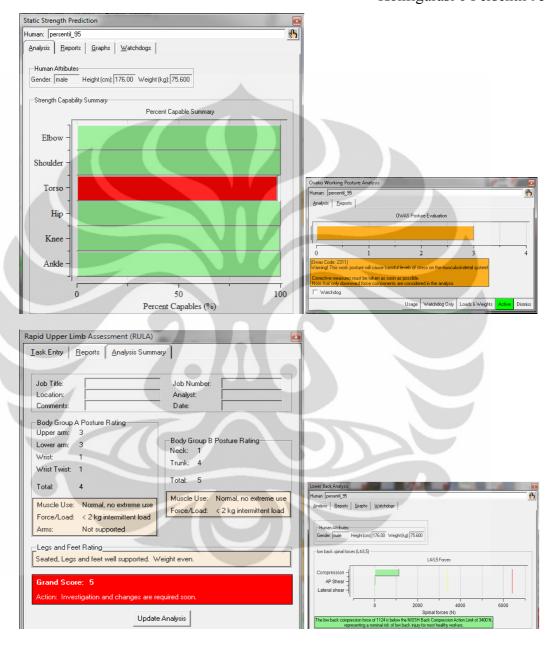
Lampiran 4 Hasil Analisis Jack TAT Konfigurasi 3 Persentil 5

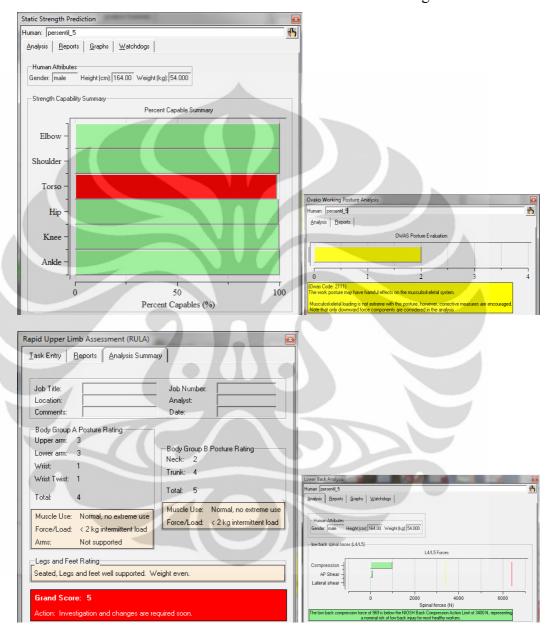
Lampiran 5 Hasil Analisis Jack TAT Konfigurasi 3 Persentil 95

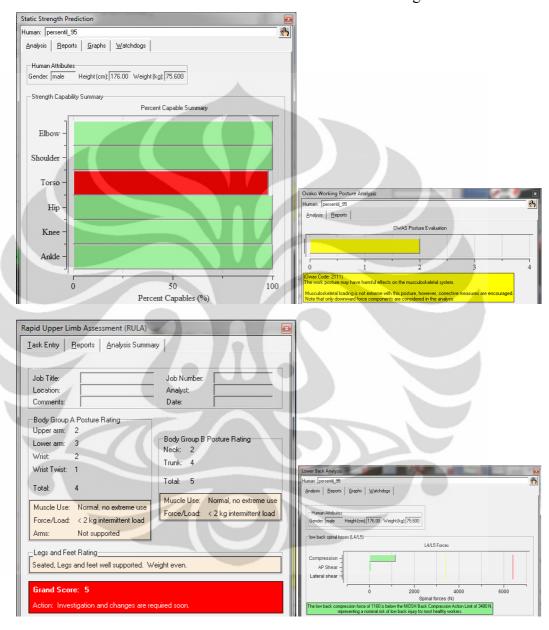
Lampiran 6 Hasil Analisis Jack TAT Konfigurasi 4 Persentil 5

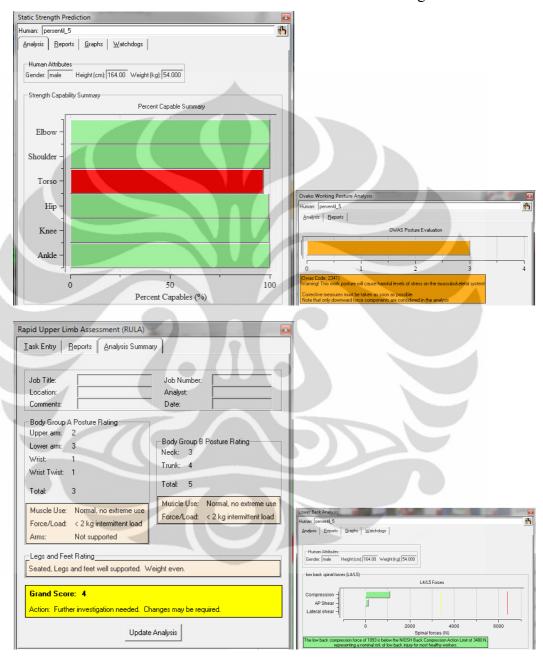
Lampiran 7 Hasil Analisis Jack TAT Konfigurasi 4 Persentil 95


Lampiran 8 Hasil Analisis Jack TAT Konfigurasi 5 Persentil 5


Lampiran 9 Hasil Analisis Jack TAT Konfigurasi 5 Persentil 95

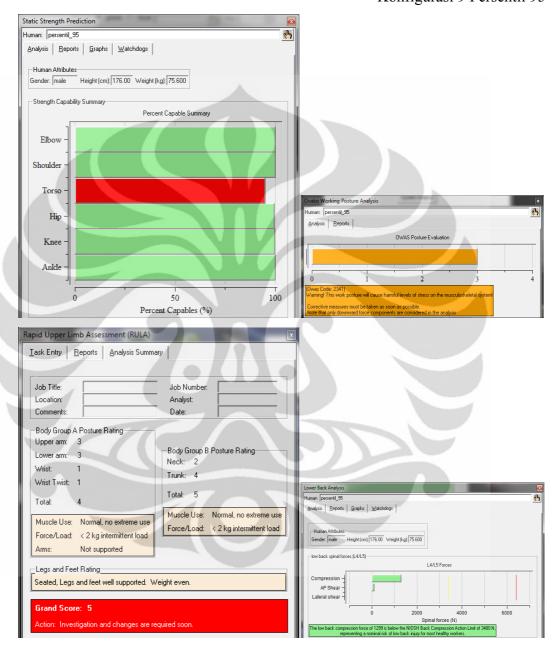

Lampiran 10 Hasil Analisis Jack TAT Konfigurasi 6 Persentil 5


Lampiran 11 Hasil Analisis Jack TAT Konfigurasi 6 Persentil 95


Lampiran 12 Hasil Analisis Jack TAT Konfigurasi 7 Persentil 5

Lampiran 13 Hasil Analisis Jack TAT Konfigurasi 7 Persentil 95

Lampiran 14 Hasil Analisis Jack TAT Konfigurasi 8 Persentil 5


Lampiran 15 Hasil Analisis Jack TAT Konfigurasi 8 Persentil 95

Lampiran 16 Hasil Analisis Jack TAT Konfigurasi 9 Persentil 5

Lampiran 17 Hasil Analisis Jack TAT Konfigurasi 9 Persentil 95

