SINTESA DAN KARAKTERISASI RASIO MAGNETORESISTANSI PADA BAHAN LaMnO₃

TESIS

Nama : MARKORIJASTI NPM : 630522027y

PROGRAM PASCA SARJANA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI ILMU FISIKA MURNI DAN TERAPAN UNIVERSITAS INDONESIA DEPOK 2008

UNIVERSITAS INDONESIA

SINTESA DAN KARAKTERISASI RASIOMAGNETORESISTANSI PADA BAHAN LaMnO₃

TESIS

Diajukan sebagai salah satu syarat memperoleh gelar Magister Sains

Nama : MARKORIJASTI NPM : 630522027y

Kekhususan Murni dan Terapan Program Studi Magister Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia Depok 2008

Sintesa dan..., Markorijasti, FMIPA UI, 2008

LEMBAR PENGESAHAN

Tesis ini diajukan oleh Nama NPM Program Studi Judul Tesis

:

Markorijasti
630522027y
Magister Fisika
Sintesa dan Karakterisasi Rasio Magnetoresistansi Pada Bahan LaMnO₃

Telah berhasil dipertahankan di hadapan Dewan Penguji dan diterima sebagai bagian persyaratan yang diperlukan untuk memperoleh gelar Magister Sains pada Program Studi Magister Kekhususan Fisika Murni dan Terapan Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia

DEWAN PENGUJI

Ketua	: Dr. Dedi Suyanto	
Pembimbing	: Dr. Budhy Kurniawan	
Penguji I	: Dr.M. Hikam	
Penguji II	: Dr. Cuk Imawan	
Penguji III	: Dr. Imam Fachruddin	

Depok, 23 Juni 2008

KATA PENGANTAR

Alhamdulillahi Robbil Alamin, puji syukur kepada Allah SWT, atas semua karunia dan nikmat yang diberikanNya, sehingga Penulis dapat menyelesaikan penulisan Tesis ini yang diajukan sebagai syarat dalam memperoleh gelar Magister Sains dalam Ilmu Fisika pada Program Pasca Sarjana Fakultas Matematika dan Ilmu Pengetahuan Alam (FMIPA) Universitas Indonesia.

Dalam proses panjang penulisan Tesis ini, banyak masukan, dukungan dan bantuan baik moril maupun materil dari berbagai pihak. Maka dalam kesempatan ini Penulis ingin menyampaikan ucapan terima kasih kepada :

- Bapak Dr. Budhy Kurniawan, selaku dosen pembimbing tugas akhir yang dengan sabar telah memberikan bimbingan, arahan, masukan dan semangat yang terus menerus hingga Penulis dapat menyelesaikan Tesis ini.
- Bapak Dr. Dedi Suyanto selaku Ketua Program Magister Ilmu Fisika Murni dan Terapan Program Pascasarjana FMIPA Universitas Indonesia yang telah memberikan dukungan dan kepercayaan dalam penelitian ini.
- 3. Seluruh Bapak dan Ibu Dosen yang telah memberikan bekal ilmu pengetahuan, khususnya dalam bidang fisika dan mendorong Penulis untuk terus membuka dan memperluas cakrawala ilmu pengetahuan .
- Bapak DR. Cuk Imawan, Bapak DR. Imam Fachrudin dan Bapak DR.M. Hikam selaku dosen Penguji yang telah banyak memberi masukan dan koreksi.
- 5. Bapak Wisnu Ari Adi yang telah banyak membantu Penulis dalam mempelajari pengukuran sampel dan pengolahannya.
- 6. Kedua orang tuaku yang senantiasa menjadi semangat yang tak pernah padam bagi penulis dalam menapaki dinamika perjalanan hidup serta adikadikku yang terus memberikan dukungan dan bantuan begitu besar dan selalu meyakinkanku untuk setiap hal yang positif.
- Suami dan anak-anakku yang telah memberikan izin belajar dan menjadi panduan untuk penulis dalam menjaga kesetiaan dan kepercayaan yang diberikan.

- Bapak Drs. H. Ali Amrin MM, mantan Kepala SMA 38 Jakarta yang telah memberikan dukungan semangat yang begitu besar untuk Penulis dalam menempuh perkuliahan.
- Bapak Drs. H. Arphan Lubis selaku Kepala SMA 38 Jakarta yang telah memberi dukungan kepada penulis selama menyelesaikan tugas akhir penelitian.
- 10. Bapak Suparman yang telah banyak membantu dalam hal kelengkapan administrasi.
- 11. Rekan-rekan di Group Manganat yang telah bersama-sama melalui suka dukanya masa-masa perkuliahan dan penelitian, saling memberi dukungan dan semangat , khususnya angkatan 2005, juga rekan-rekan kuliah seangkatan yang seringkali bersama-sama menyelesaikan tugas dan diskusi, kepada Ali Mukodas sebagai Ketua Angkatan yang telah menjembatani aspirasi rekan-rekan, kepada Bernadeth terima kasih banyak atas bantuannya yang tulus.
- Rekan-rekan guru SMA 38 Jakarta yang telah memberi dukungan, bantuan dan perhatiannya.

Penulis juga mengucapkan terima kasih yang sebesar-besarnya kepada semua pihak yang tidak dapat disebutkan satu persatu, atas semua bantuan dan dukungan dalam penyelesaian Tesis ini. Semoga Allah SWT memberikan balasan kebaikan untuk semuanya dan mudah-mudahan Tesis ini dapat bermanfaat bagi kebaikan dan kemajuan ilmu pengetahuan.

Depok, 23 Juni 2008

Penulis

LEMBAR PERNYATAAN PERSETUJUAN PUBLIKASI KARYA ILMIAH UNTUK KEPENTINGAN AKADEMIS

Sebagai sivitas akademik Universitas Indonesia, saya yang bertanda tangan di bawah ini :

Nama	: Markorijasti
NPM	: 630522027y
Program Studi	: Magister Fisika Kekhususan Fisika Murni dan Terapan
Fakultas	: Matematika dan Ilmu Pengetahuan Alam
Jenis Karya	: Tesis

Demi Pengembangan Ilmu Pengetahuan, menyetujui untuk memberikan kepada Universitas Indonesia **Hak Bebas Royalti Non-Eksklusif (Non Exclusive Royalty Free Right)** atas karya ilmiah saya yang berjudul :

Sintesa dan Karakterisasi Rasio Magnetoresistansi Pada Bahan LaMnO3

beserta perangkat yang ada (bila diperlukan). Dengan hak bebas royalti non eksklusif ini UniversitasIndonesia berhak menyimpan, mengalih media/formatkan, mengelolanya dalam bentuk pangkalan data (database), mendistribusikannya dan menampilkan/mempublikasikannya di Internet atau media lain untuk kepentingan akademis tanpa perlu meminta izin dari saya selama tetap mencantumkan nama saya sebagai penulis/pencipta dan sebagai pemilik Hak Cipta. Segala bentuk tuntutan hukum yang timbul atas pelanggaran Hak Cipta dalam Karya Ilmiah ini menjadi tanggung jawab saya pribadi.

Demikian pernyataan ini saya buat dengan sebenarnya,

Dibuat di : Depok Pada Tanggal : 23 Juni 2008 Yang menyatakan

(Markorijasti)

Ketika batas cakrawala tersapu rona jingga, pertanda matahariku segera berlalu

sementara waktu, cahayanya berangsur terganti oleh sunyinya malam, sepinya mengantar batin dan jiwaku ke dalam perenungan yang dalam, memanduku dalam kesadaran dan keikhlasan bahwa segala upaya dan cinta hanyalah diberikan sematamata karenaNya.

Serima kasih Ayah, paparan yang telah dituturkan menyiratkan semangat dan keluhuran cita-cita hingga rangkaian panjang asa semoga tak henti mewarnai ayun kehidupanku .

Terima kasih Ibu, kesederhanaan dan kepedulianmu telah menyentuh rasa kasihku bahwa betapa manisnya berbagi, meski Ibu telah pergi jauh. Semua ini juga kupersembahkan untuk yang aku sayangi Adik-adikku, Suami dan anakanakku.....Aulia Wisuda Muharram, Harits Faadhilah, Azharizqi Hakiim... Doa dan Asa takkan pernah berhenti Ibu mohonkan, semoga keshalehan menjadi keutamaan.

ABSTRAK

Nama Program Studi Judul : Markorijasti : Fisika : SINTESA DAN KARAKTERISASI RASIO MAGNETORESISTANSI PADA BAHAN LaMnO₃

Sintesa dan karakteristisasi Rasio magneto-resistansi bahan LaMnO₃ telah berhasil dilakukan. Bahan LaMnO₃ yang dihasilkan memiliki fasa tunggal dengan struktur kristal orthorhombic, space group Pnma (I-62) dan parameter kisi a =5,44145 \pm 0.00093 A, b = 7,70625 \pm 0.00074 A dan c = 5.53700 ± 0,00098 A, dengan sudut pembentuk kristal $\alpha = \beta = \gamma = 90^{\circ}$, volume satu unit sel V = 232,184 \pm 0,069 A³, kerapatan satu unit sel ρ = 6,005833 g/cm³. Kualitas fasa yang dihasilkan cukup baik dengan komposisi unsur La:Mn:O = 22,40% : 19,73% : 59,80%. Dari pengamatan SEM, morfologi permukaan bahan menunjukkan partikelnya berbentuk buat-bulat hampir homogen, dengan distribusi ukuran partikel sebesar 1000 – 3000 nm. Rasio magneto-resistansi terbaik yang dihasilkan adalah 33,30% pada arus 10 mA. Faktor-faktor yang memberi kontribusi keberhasilan penelitian ini antara lain proses milling, kompaksi dan pemanasan ulang, sehingga diperoleh homogenitas campuran, porositas yang minimal dalam pembentukan fasa, pengikatan oksigen, sehingga diperoleh fasa LaMnO₃ yang lebih sempurna. Dalam penelitian ini variasi kompaksi dan pemanasan ulang merupakan faktor ekstrinsik yang mempermudah orientasi untuk memperbesar domain magnetik.

Kata kunci: Sintesa, Karakterisasi, Rasio magnetoresistance, LaMnO₃.

ABSTRACT

Name Study Program Title

Markorijasti Fisika THE SYNTHESIS AND CHARACTERIZATION OF MAGNETORESISTANCE RATIO ON THE MATERIAL COMPOUND OF LaMnO₃

The synthesis and characterization of magnetoresistance ratio on the material compound of LaMnO₃ was successfully carried out. It yielded single phase with orthorombic crystal structure, space group Pnma (I-62) and grid $a = 5.44145 \pm 0.00093A$, $b = 7.70625 \pm 0.00074 A$ and parameter of $c = 5.53700 \pm 0.00098$ A, in the angle of crystal shaper $\alpha = \beta = \gamma = 90^{\circ}$, one unit cell volume V = 232.184 \pm 0,09A³, one unit cell density ρ = 6.005833 g/cm³ The phase quality yielded is sufficiently good in the element composition La: Mn: O = 22.40%: 19.73% : 59.80% respectively. Based on the observation of SEM that the morphologically material indicated a round particles are almost homogeneous, in the distribution of particle size is 1000 – 3000 nm. The best magneto-resistance to be yielded is 33,30% with current I = 10 mA. The factors contributing to successful of this research among other milling process, compact and re-heating, so that it was obtained a compound was homogeneous, a minimal porosities, phase forming, oxygen binding, and thus it was obtained phase of LaMnO₃ is more perfected. In this research, that compact variation and reheat are extrinsic factor that is may easily orientation to enlarge magnetic domain.

Key words: Synthesis, Characterization, Magnetoresistance Ratio, LaMnO3.

DAFTAR ISI

HALAMAN	I JUDUL	i
LEMBAR P	ENGESAHAN	iii
KATA PEN	GANTAR	iv
LEMBAR P	ERNYATAAN PERSETUJUAN PUBLIKASI	vi
LEMBAR P	ERSEMBAHAN	vii
ABSTRAK .		viii
ABSTRACT	٢	ix
DAFTAR IS	SI	x
DAFTAR TA	ABEL	xiii
DAFTAR G	AMBAR	xiv
DAFTAR L	AMPIRAN	xvii
1. PENDAH	IULUAN	
1.1	Latar Belakang	1
1.2	Batasan Masalah	
1.3	Tujuan Penelitian	4
1.4	Sistematika Penulisan	
2. TINJAUA	AN PUSTAKA	
2.1	Bahan LaMnO3	
2.2	Resistivitas Sampel	
2.3	Magnetoresistansi	
2.4	Sinar X	
2.5	Difraksi Sinar X	
2.6	Hukum Bragg	

2.7	Four Point Probe	12

3. METODOLOGI PENELITIAN

3.1	Tempat, Waktu dan Metode Penelitian		14
3.2	Preparasi Bahan Dasar, Sampel dan Komposisinya		
	3.2.1	Bahan-bahan Dasar	14

		3.2.2	Persamaan Reaksi dan Penimbangan	14
		3.2.3	Pembuatan bahan LaMnO ₃	15
		3.2.4	Penggilingan Mekanik	16
		3.2.5	Kompaksi	18
		3.2.6.	Pemanasan	19
	3.3.	Karakt	erisasi Bahan Dasar dan Sampel	
		3.3.1	Karakterisasi struktur kristal dan fasa sampel dengan	
			Difraktometer sinar X	20
		3.3.2	Karakterisasi Struktur Mikro dan Komposisi bahan	
			dengan Scanning Electron Microscope (SEM)	
			dan EDAX	21
		3.3.3	Pengulangan Milling, kompaksi dan pemanasan untuk	
		-	karakterisasi XRD dan EDAX	22
		3.3.4.	Karakterisasi Suhu Neel dan Rasio Magnetoresistansi dengan	A.
			menggunakan Four Point Probe	23
		3.3.5	Penggerusan dengan mortal, perlakuan kompaksi,	
			pengamatan struktur permukaan dan fenomena magneto	
	- 1		resistansi dengan variasi kompaksi	24
		3.3.6.	Pemanasan ulang pada sampel dengan kompaksi 5000 Psi	
			dan pengamatan fenomena magnetoresistansinya	25
	3.4	Diagra	m Alir Penelitian	26
4 . H .	ASIL D	DAN PE	MBAHASAN	
	4.1.	Hasil P	reparasi Bahan Dasar	27
	4.2.	Hasil p	engukuran Resistansi, Resistivitas, dan Magnetoresistance	
		4.2.1	Pengaruh Tekanan Kompaksi	41
		4.2.2	Pengaruh Arus	44
	4.3.	Analisi	s dan diskusi	52

5. KESIMPULAN DAN SARAN

KESIMPULAN	62
SARAN-SARAN	63

DAFTAR PUSTAKA

DAFTAR LAMPIRAN

DAFTAR TABEL

Tabel 3.1	:	Bahan Dasar Sampel	14
Tabel 4.1	:	Hasil analisis komposisi unsur dengan menggunakan EDAX .	31
Tabel 4.2	:	Data parameter kisi hasil analisis dengan program RIETAN	33
Tabel 4.3	÷	Posisi atom hasil refinement pola XRD LaMnO3	33
Tabel 4.4	:	Data parameter kisi hasil analisis dengan program RIETAN	35
Tabel 4.5	ł,	Posisi atom hasil refinement pola XRD LaMnO3	35
Tabel 4.6	:	Hasil analisis komposisi unsur	37

DAFTAR GAMBAR

Gambar 2.1	:	Struktur Kristal Perovskite	6
Gambar 2.2	:	Struktur Kristal Perovskite tipe Lanthanum Manganate	7
Gambar 2.3	:	Dua kemungkinan orientasi medan magnet	8
Gambar 2.4	:	Terjadinya Sinar X pada NaCl	9
Gambar 2.5	:	Skema Diffraktometer Sinar X	10
Gambar 2.6	:	Difraksi SInar X	11
Gambar 2.7	:	Skema Pola Aliran Arus dalam FPP	12
Gambar 3.1.	:	Neraca Digital	15
Gambar 3.2	:	Arah Rotasi Milling	17
Gambar 3.3	:	High Energy Ballmill	18
Gambar 3.4	:	Alat Kompaksi	19
Gambar 3.5	:	Furnace Merk Carbolite	19
Gambar 3.6	÷	Difraktometer Sinar X Merek Philip Type PW 1710	20
Gambar 3.7	:	Scaning Electron Microscope	21
Gambar 3.8	:	EDAX Philips	22
Gambar 3.9	:	Alat Four Point Probe	23
Gambar 3.10	÷	Alat Ukur Suhu Neel dengan FPP	23
Gambar 4.1	:	Pola difraksi sinar-x dari La ₂ O ₃	27
Gambar 4.2	÷	Profil difraksi sinar-x dari La2O3 referensi	28
Gambar 4.3	:	Pola difraksi sinar-x dari MnO ₂	28
Gambar 4.4	:	Profil difraksi sinar-x dari MnO2 referensi	29
Gambar 4.5	:	Pola difraksi sinar-x hasil pemanasan 1350°C	30
Gambar 4.6	:	Profil difraksi sinar-x dari LaMnO3 referensi	30
Gambar 4.7	:	Hasil pengukuran EDAX pada LaMnO ₃ 1350°C	31
Gambar 4.8	:	Pola difraksi sinar-x hasil refinement dengan analisis Rietveld	32
Gambar 4.9	:	Pola difraksi sinar-x LaMnO3 dengan pemanasan 1100°C	34
Gambar 4.10	:	Hasil refinement pola difraksi sinar-x yang dipanasi 1100°C	34
Gambar 4.11	:	Hasil analisis unsur menggunakan EDAX	36
Gambar 4.12	:	Kurva resistivitas versus suhu	37

Gambar 4.13 :	Foto SEM hasil pemanasan pada 1100°C dengan	
	pembesaran 10.000 kali untuk tekanan (a) 1000 psi, (b)	
	3000 psi, dan (c) 5000 psi.	39
Gambar 4.14 :	Hasil pengukuran R dan ρ pada sampel LaMnO ₃ 1000 psi	40
Gambar 4.15 :	Hasil pengukuran R dan ρ pada sampel LaMnO ₃ 3000 psi	41
Gambar 4.16 :	Hasil pengukuran R dan ρ pada sampel LaMnO ₃ 5000 psi	41
Gambar 4.17 :	Hasil pengukuran MR pada sampel LaMnO ₃ 1000 psi	42
Gambar 4.18 :	Hasil pengukuran MR pada sampel LaMnO ₃ 3000 psi	42
Gambar 4.19 :	Hasil pengukuran MR pada sampel LaMnO ₃ 5000 psi	43
Gambar 4.20 :	Hasil pengukuran R dan ρ pada LaMnO ₃ 1000 psi I=0,5 mA	43
Gambar 4.21 :	Hasil pengukuran R dan ρ pada LaMnO ₃ 1000 psi I=1 mA	44
Gambar 4.22 :	Hasil pengukuran R dan ρ pada LaMnO ₃ 1000 psi I=1,5 mA	44
Gambar 4.23 :	Hasil pengukuran R dan ρ pada LaMnO ₃ 1000 psi I=2 mA	44
Gambar 4.24 :	Hasil pengukuran MR pada LaMnO ₃ 1000 psi I=0,5 mA	45
Gambar 4.25 :	Hasil pengukuran MR pada LaMnO ₃ 1000 psi I=1 mA	45
Gambar 4.26 :	Hasil pengukuran MR pada LaMnO ₃ 1000 psi I=1,5 mA	46
Gambar 4.27 :	Hasil pengukuran MR pada LaMnO ₃ 1000 psi I=2 mA	46
Gambar 4.28 :	Hasil pengukuran R dan p 5000 psi, 1100°C, I=0,5 mA	47
Gambar 4.29 :	Hasil pengukuran R dan p 5000 psi, 1100°C, I=1 mA	47
Gambar 4.30 :	Hasil pengukuran R dan p 5000 psi, 1100°C, I=1,5 mA	48
Gambar 4.31 :	Hasil pengukuran R dan ρ 5000 psi, 1100°C, I=2 mA	47
Gambar 4.32 :	Hasil pengukuran MR, 5000 psi, 1100°C, I= 0,5 mA	49
Gambar 4.33 :	Hasil pengukuran MR, 5000 psi, 1100°C, I=1 mA	49
Gambar 4.34 :	Hasil pengukuran MR, 5000 psi, 1100°C, I= 1,5 mA	49
Gambar 4.35 :	Hasil pengukuran MR, 5000 psi, 1100°C, I= 2 mA	50
Gambar 4.36 :	Pengaruh medan magnet terhadap resistivitas	51
Gambar 4.37 :	Pengaruh medan magnet terhadap resistansi	51
Gambar 4.38 :	Pengaruh medan magnet dan arus terhadap rasio	
	magnetoresistance pada tekanan kompaksi 5000 psi	54

Gambar 4.39 :	Pengaruh medan magnet dan tekanan kompaksi terhadap	
	rasio magnetoresistance pada arus 2 mA	54
Gambar 4.40 :	Pengaruh medan magnet dan arus terhadap rasio	
	magnetoresistance pada tekanan 5000 psi setelah	
	dipanaskan pada suhu 1100°C selama 24 jam	55
Gambar 4.41 :	Pengaruh tekanan kompaksi dan arus terhadap resistansi	
	sampel LaMnO ₃	56
Gambar 4.42 :	Pengaruh tekanan kompaksi dan arus terhadap resistivitas	
	sampel LaMnO ₃	57
Gambar 4.43 :	Pengaruh tekanan kompaksi dan arus terhadap rasio	
	magnetoresistance sampel LaMnO ₃	57
Gambar 4.44 :	Rasio magnetoresistance sampel LaMnO3 dengan tekanan	
	kompaksi 5000 psi sebelum dan sesudah dipanaskan pada	
	1100°C.	58

DAFTAR LAMPIRAN

LAMPIRAN 1 :

Gambar L.1.1 :	Hasil pengukuran R dan ρ pada LaMnO ₃ 1000 psi, I = 0,5 mA
Gambar L.1.2 :	Hasil pengukuran R dan ρ pada LaMnO ₃ 3000 psi, I = 1,0 mA
Gambar L.1.3 :	Hasil pengukuran R dan ρ pada LaMnO ₃ 5000 psi, I = 2,0 mA
Gambar L.1.4 :	Hasil pengukuran R dan ρ pada LaMnO ₃ 3000 psi, I = 0,5 mA
Gambar L.1.5 :	Hasil pengukuran R dan ρ pada LaMnO ₃ 3000 psi, I = 1,0 mA
Gambar L.1.6 :	Hasil pengukuran R dan ρ pada LaMnO ₃ 3000 psi, I = 2,0 mA
Gambar L.1.7 :	Hasil pengukuran R dan ρ pada LaMnO ₃ 5000 psi, I = 0,5 mA
Gambar L.1.8 :	Hasil pengukuran R dan ρ pada LaMnO ₃ 5000 psi, I = 1,0 mA
Gambar L.1.9 :	Hasil pengukuran R dan ρ pada LaMnO ₃ 5000 psi, I = 2,0 mA
Gambar L.1.10 :	Hasil pengukuran R dan ρ pada LaMnO_3 5000 psi, I = 0,5 mA 1100° C
Gambar L.1.11 :	Hasil pengukuran R dan ρ pada LaMnO ₃ 5000 psi, I = 1,0 mA, 1100° C
Gambar L.1.12 :	Hasil pengukuran R dan ρ pada LaMnO ₃ 5000 psi, I = 2,0 mA, 1100° C

LAMPIRAN 2 :

Gambar L.2.1	: Hasil pengukuran GMR pada LaMnO ₃ 1000 psi
Gambar L.2.2	: Hasil pengukuran GMR pada LaMnO ₃ 3000 psi
Gambar L.2.3	: Hasil pengukuran GMR pada LaMnO ₃ 5000 psi
Gambar L.2.4	: Hasil pengukuran GMR pada $LaMnO_3$ 5000 psi 1100 °C
Gambar L.2.5	: Hasil pengukuran GMR pada LaMnO ₃ 0,5 mA
Gambar L.2.6	: Hasil pengukuran GMR pada LaMnO ₃ 1,0 mA
Gambar L.2.7	: Hasil pengukuran GMR pada LaMnO ₃ 1,5 mA
Gambar L.2.8	: Hasil pengukuran GMR pada LaMnO ₃ 2,0 mA

LAMPIRAN 3:

Data resistansi, resistivitas, dan MR untuk arus 0,5 mA, P = 1000 psi

LAMPIRAN 4:

Data resistansi, resistivitas, dan MR untuk arus 0,5 mA, P = 3000 psi

LAMPIRAN 5:

Data resistansi, resistivitas, dan MR untuk arus 0,5 mA, P = 5000 psi

LAMPIRAN 6 :

Data resistansi, resistivitas, dan MR untuk arus 0,5 mA, P = 5000 psi, T = 1100° C

BAB I PENDAHULUAN

1.1. LATAR BELAKANG

Perkembangan teknologi informasi yang sangat luar biasa tidak terlepas dari peranan bahan magnet. Bahan magnetik mulai dikembangkan di Indonesia sejak 1980 dengan menggunakan bahan dasar oksida besi. Mengingat aplikasinya yang cukup luas di bidang elektronik, telekomunikasi, komputer,otomotif, kesehatan, lingkungan dan penyediaan energi terbarukan, maka bahan magnet ini mempunyai potensi yang besar untuk terus dikembangkan . Fenomena kemagnetan dalam dimensi yang jauh lebih kecil telah menjadi topik hangat dalam dua dekade terakhir. Oleh karena itu penelitian bahan magnet sudah seharusnya terus dikembangkan agar dapat mendatangkan nilai tambah dalam teknologi kemagnetan.

Agar dapat diaplikasikan, salah satu syarat yang harus dipenuhi oleh bahan magnetik adalah memiliki rasio magnetoresistansi yang cukup besar dalam pengaruh medan magnet yang relatif kecil. Fenomena magnetoresistansi adalah suatu gejala yang menggambarkan terjadinya perubahan resistansi suatu bahan bila diberikan medan magnet luar [1] dan hambatan listrik yang bervariasi dengan medan magnet sangat penting pada beberapa teknologi.

Baru-baru ini pendopingan rare earth manganese perovskite R_{1-x}X Mn O₃ kembali menarik perhatian karena ditunjukkannya Colosal Magneto Resistance. Material-material ini tidak hanya menarik karena potensi aplikasi teknologinya, tetapi juga memiliki hasil-hasil yang mendasar untuk dihubungkan dengan formasi pita logam [2].

Bahan Perovskite juga termasuk Colosal Magneto Resistance (CMR) yaitu bahan yang menunjukkan fenomena perubahan resistansi bila dipengaruhi medan magnet. Material Perovskite secara signifikan masih menunjang pangsa pasar yang cukup besar pada produksi kapasitor [3]. Material ini juga menjanjikan untuk digunakan sebagai elektroda, katalis dan membran.

Untuk bahan logam, efek magnetoresistansi yang dicapai hampir sangat kecil pada suhu kamar, misalnya tembaga, besar efek magnetoresistansinya hanya sekitar 2,5 % padahal medan magnet yang diberikan hampir 24 Tesla. Tetapi untuk bahan semikonduktor seperti Bismut, menunjukkan perubahan efek magnetoresistansi sekitar 18 % pada medan magnet 0,6 Tesla di suhu kamar [4]. LaMnO3 merupakan parental compound yang banyak digunakan dalam penelitian bahan magnet yang bertemakan penambahan dopan, karena pada dasarnya rasio magnetoresistansi bahan ini jauh lebih kecil dibandingkan rasio magnetoresistansi sampel LaMnO₃ hanya berkisar 0,8 – 1 %, kemudian Dudung [6] melaporkan bahwa dengan memperkecil ukuran butir diperoleh peningkatan rasio magnetoresistansi pada bahan CaMnO₃ hampir 14 kali lipat dari sebelumnya. Menurut Gross [7] penambahan dopan Ca ke dalam matrik LaMnO₃ dapat meningkatkan rasio magnetoresistansi sampai 3 – 4 kali lebih besar dibandingkan rasio magnetoresistansi matriknya.

Berdasarkan penelitian-penelitian sebelumnya tersebut dapat dibuat hipotesis bahwa rasio magnetoresistansi bahan LaMnO₃ dapat ditingkatkan dengan memperkecil ukuran butir sampel hingga berukuran nanopartikel dan penambahan dopan pada triple ionized atom dengan double ionized atom seperti Ca, Pb dan Sr. Dengan memberikan variasi arus pada sampel uji dapat diduga akan mempercepat proses pembalikan domain magnetik dari sifat antiferromagnetik ke sifat ferromagnetik. Selain itu pemberian variasi tekanan kompaksi diharapkan dapat memperkecil porositas sampel sedangkan pemanasan yang diberikan ditujukan untuk mempercepat proses difusi sehingga diharapkan terjadi peningkatan rasio magnetoresistansi bahan.

Maka berdasarkan hipotesis tersebut, perubahan resistansi bahan akibat perubahan tekanan kompaksi yang divariasikan dengan arus, suhu dan pemberian medan magnet menjadi pilihan dalam penulisan tesis ini. Dari penelitian dengan tanpa penambahan dopan ini diharapkan akan diperoleh informasi perlakuan tekanan kompaksi, arus dan pemanasan yang terbaik agar diperoleh rasio magnetoresistansi yang optimum, sehingga jika bahan ini didopan akan diperoleh

bahan paduan dengan rasio magnetoresistansi yang jauh lebih baik dan signifikan untuk diaplikasikan pada pengembangan bahan-bahan magnetik berikutnya.

1.2 BATASAN MASALAH

Peranan bahan magnet pada sektor industri, kesehatan lingkungan dan penyediaan energi terbarukan sangatlah kentara dan terus diharapkan. Material manganate yang didoping dengan La atau Sr, seperti LaCaMnO₃ dan CaSrMnO₃ sangat menjanjikan dalam bidang sensor magnetik dan penyimpanan data.

Penelitian bahan yang berbasis manganat sudah banyak dilakukan baik dari jenis bahan, teknik analisa, proses pembuatan maupun material yang digunakan.

Sebagai salah satu Parental Compound dalam pendopingan unsur tanah jarang, sifat listrik bahan LaMnO₃ menjadi penting untuk diteliti lebih jauh. Berdasarkan penelitian sebelumnya, variasi lama milling dapat meningkatkan rasio magnetoresistansi bahan. Dalam tesis ini penulis memfokuskan penelitian pada faktor ekstrinsik lainnya yaitu pemberian tekanan kompaksi yang divariasikan dengan arus dan suhu pemanasan.

Disini penulis memberi batasan pemasalahan pada:

- Bagaimana proses sintesa yang dilakukan untuk pembuatan sampel LaMnO₃ dari bahan dasar La₂O3 dan MnO₂.
- 2. Karakterisasi bahan dasar dan sampel dengan XRD.
- 3. Karakterisasi sampel dengan SEM untuk melihat efek kompaksi.
- 4. Karakterisasi resistivitas sampel untuk membandingkan efek kompaksi, arus, suhu dan pemanasan.

1.3. TUJUAN PENELITIAN

Berdasarkan hipotesis dan batasan masalah yang diperoleh, maka tujuan penelitian ini adalah untuk :

- 1. Mempelajari perubahan fasa pembentukan LaMnO₃
- 2. Mempelajari morfologi permukaan bahan
- 3. Mempelajari komposisi bahan
- 4. Mempelajari suhu Neel bahan
- 5. Menyelidiki pengaruh tekanan kompaksi dengan variasi arus, suhu dan pemberian medan magnet terhadap rasio magnetoresistansi LaMnO₃.

1.4. SISTEMATIKA PENULISAN

Penulisan tesis ini di bagi dalam 5 bab yaitu:

BAB I PENDAHULUAN

Bab ini menjelaskan tentang latar belakang masalah, pembatasan masalah, tujuan penelitian, metode penelitian dan sistematika penulisan.

BAB II TINJAUAN PUSTAKA

Bab ini menjelaskan teori tentang Material Manganat, Resistivitas, Magnetoresistansi, Sinar X, Difraksi Sinar X, Hukum Bragg, dan Four Point Probe.

BAB III METODE PENELITIAN

Bab ini menjelaskan tentang tempat dan waktu penelitian, mulai dari proses preparasi sampel, peralatan karakterisasi yang diperlukan serta diagram alir penelitian.

BAB IV ANALISIS

Bab ini menampilkan data-data hasil karakterisasi bahan dasar, karakterisasi sampel, hasil pengukuran resistivitas, resistansi dan rasio magnetoresistansi , pengolahan data hasil pengukuran yang dilengkapi dengan data acuan serta pembahasannya.

BAB V KESIMPULAN DAN SARAN

Bab ini menjelaskan intisari dari hasil penelitian yang berdasarkan pada tujuan yang akan dicapai, juga saran untuk penelitian lebih lanjut.

BAB II TINJAUAN PUSTAKA

2.1. Bahan LaMnO₃

LaMnO₃ (lanthanum manganite atau lanthanum manganese) merupakan bahan insulator antiferomagnetik dengan temperatur Neel 140 K [8] termasuk salah satu jenis oksida Perovskite (logam transisi) seperti CaMnO₃, YIO₃, dan CaSnO₃, yang merupakan mineral alami dengan formula umum ABX₃. Dimana A = La³⁺ B = Mn³⁺, CO³⁺, Fe³⁺. Bahan-bahan yang termasuk ke dalam keluarga ABX₃ memperlihatkan sifat-sifat magnetik dan listrik yang beragam.

Pelopor penelitian bahan Perovskite sederhana adalah G.H. Jonker dan J.H. Van Santen [9], mereka menerbitkan beberapa review sistem biner $LaMnO_3 - CaMnO_3$, $LaMnO_3 - SrMnO_3$, $LaMnO_3 - BaMnO_3$ $LaMnO_3 - CdMnO_3$ dan $LaMnO_3$ -PbMnO_3. Mangan terpilih sebagai ion magnetik sebab pada paduan $LaMnO_3$, mangan menunjukkan sifat ferromagnetik di suhu rendah sebelum ditemukan $LaFeO_3$ dan $LaCrO_3$ [7].

Gambar 2.1 Struktur Kristal Perovskite.

Perovskite tipe Lanthanum Manganate dapat disintesa pada temperatur ruang dengan milling serbuk La₂O₃ dan MnO₂ dalam temperatur ruang dengan reaksi zat padat. Proses Kimia Mekanik juga dapat diaplikasikan pada sintesa oksida mangan yang kompleks dengan unsur tanah jarang lainnya seperti Pr, Nd dan Sm [10]

Gambar 2.2 Unit sel LaMnO₃

2.2. Resistivitas Sampel [11]

Diketahui bahwa rapat arus didefinisikan sebagai hasil kali konduktivitas bahan dengan medan listrik, yaitu :

 $J = \sigma \cdot \varepsilon \qquad (2.1)$

Dengan σ adalah konduktivitas bahan, ε adalah media listrik. Apabila rapat arus J = I /A, konduktivitas bahan σ = I/ ρ dan medan lisrik ε = V/x, maka persamaan menjadi :

 $I/A = I/\rho$. V/x(2.2)

Dengan A adalah luas bidang yang ditembus arus. Sesuai dengan hukum Ohm bahwa R = V/I maka :

 $R = V / I = \rho x / A$ (2.3)

Dengan x adalah panjang, A adalah luas penampang dan p adalah resistivitas bahan. Dari persamaan tampak bahwa perubahan resistansi sebanding dengan perubahan panjang dan luas bidang yang dilewati arus bahan tersebut.

2.3. Magnetoresistansi

Ada dua klasifikasi besar dari Magnetoresistansi yaitu Ordinary Magnetoresistance (OMR) dan Anisotropic Magnetoresistance (AMR). Klasifikasi ini memerlukan suatu penjelasan secara geometri pada saat dilakukan pengukuran.

Pengukuran magnetoresistansi pada bahan isotrop, arah arus biasanya ditentukan oleh posisi kontak listriknya. Orientasi medan magnetnya dinyatakan dalam dua arah yaitu tegak lurus atau membujur (longitudinal)dan paralel atau melintang (transverse) seperti ditunjukkan pada Gambar

Gambar 2.3. Dua kemungkinan orientasi medan magnet

Besarnya efek Magnetoresistansi secara umum dapat dinyatakan sebagai berikut

$\Delta R_l = K$	$R_{l}(H)-R_{l}(n)$	
$\overline{R_l(n)}^{-}$	$R_{l}(n)$	
$\Delta R_t = K$	$R_{t}(H)-R_{t}(n)$	
$\overline{R_t(n)}$ – –	$R_t(n)$	

Dimana R₁ adalah resistansi pada arah longitudinal, R_t adalah resistansi pada arah transversal, R (H) adalah resistansi sebagai fungsi medan magnet dan R (n) **Universitas Indonesia** adalah resistansi pada nilai medan magnet tertentu. Nilai n pada umumnya adalah nol.

Karakteristik dari Ordinary Magnetoresistance adalah resistansinya meningkat seiring dengan terus meningkatnya medan magnet yang diterapkan baik longitudinal maupun transversal dengan nilai $R_1 > R_t > 0$

Pada bahan ferromagnetik, karakteristik Anisotrop Magnetoresistance lebih mudah terjadi, karakteristik tipe ini adalah menurunnya resistansi bahan ketika diterapkan medan magnet. Pada arah paralel penurunan resistansi jauh lebih tinggi dibandingkan arah tegak lurus, dimana $|\Delta R_t| < |\Delta R_t|$. Jadi, efek magnetoresistansi pada tipe AMR jauh lebih besar dibandingkan dengan OMR. Besarnya efek magnetoresistansi bervariasi, tergantung pada gerakan domain dan arah magnetisasi pada sampel [12].

2.4. Sinar X

Sinar X merupakan radiasi elektromagnetik dengan panjang gelombang sekitar 100 pm ditemukan oleh Wilhem Conrad Rontgen sinar ini dihasilkan dari penembakan logam dengan elektron energi tinggi. Elektron itu mengalami perlambatan ketika menembus logam dan menghasilkan radiasi dengan jarak panjang gelombang kontinu yang disebut Bremstrahlung.

Gambar 2.4 Terjadinya Sinar X pada NaCl

Pada perlambatan ini, tertumpuk beberapa puncak tajam berintesitas tinggi. Puncak ini berasal dari interaksi antara elektron datang dengan elektron pada kulit dalam atom logam. Tumbukan itu mengeluarkan sebuah elektron dan elektron dengan energi lebih tinggi masuk ke tempat kosong, dengan memancarkan kelebihan energinya sebagai foton sinar X Menurut Max Van Laue sinar X dapat didiffraksikan melalui sebuah kristal, karena panjang gelombangnya hampir sama dengan jarak bidang kisi [13].

2.5. Difraksi Sinar X

Analisis struktur kristal umumnya menggunakan metode difraksi. Sumbernya dapat berupa sinar X, elektron atau netron. Pemilihan sumber yang digunakan tergantung dari bentuk penelitiannya. Penggunaan sumber sinar X dapat menghasilkan informasi yang cukup akurat dan data-data yang diperoleh dari hasil pengamatan dapat digunakan untuk mengetahui sifat-sifat bahan yang sedang diteliti.

Ada beberapa metode untuk melakukan percobaan difraksi sinar X, salah satunya adalah dengan metode cuplikan serbuk. Pada metode ini, cuplikan yang digunakan adalah serbuk dengan radiasi monokromatis. Sinar yang didifraksikan diamati dengan detektor beserta peralatan elektronik lainnya yang disebut Difraktometer [14]

Gambar 2.5. Skema Diffraktometer Sinar X

2.6. Hukum Bragg

Bila seberkas sinar-X yang sejajar dan monokromatis ditumbukan pada sebuah kristal, maka sinar-X tersebut akan didifraksikan oleh atom-atom penyusun bidang kristal tersebut. Besarnya sudut difraksi θ tergantung kepada panjang gelombang (A) berkas sinar dan jarak antar bidang (d).

Gambar 2.6. Difraksi Sinar X

Garis horizontal P menggambarkan bidang dalam kristal yang dipisahkan oleh jarak antara bidang d. Berkas sinar K dan L berturut-turut dihamburkan oleh bidang P₁ dan P₂. berkas sinar yang terhambur hanya terjadi pada sudut θ , yaitu K¹ dan L¹ saja dengan syarat gelombang K¹ dan L¹ sefase. Apabila kedua berkas sinar sefasa, maka akan terjadi penguatan atau interefensi yang saling membangun [15],sebaliknya bila kedua gelombang tidak sefasa yang terjadi adalah pelemahan atau saling meniadakan.

Untuk gelombang yang sefasa dalam hal ini BC + CD = $n\lambda$ dan BC = CD d sin θ , maka kondisi untuk difraksi akan diberikan oleh hukum Bragg :

 $n\lambda = 2 d_{hkl} \sin \theta$ (2.6)

dimana :

- n = nomor orde hamburan
- λ = panjang gelombang
- $d_{hkl} = jarak antar bidang yang menggambarkan sistem ukuran sel dan indeks miller bidang tersebut.$
- θ = sudut hamburan

2.7 Four Point Probe

Untuk mengamati sifat listrik suatu bahan biasanya digunakan metode four point probe (probe empat titik). Disebut probe empat titik, karena ada empat titik kontak yang disentuhkan pada permukaan sampel. Keempat titik kontak (probe) ini dibuat berderet dalam satu garis lurus dengan jarak antar probe diatur sedemikian rupa sehingga satu sama lain mempunyai jarak yang sama. Arus listrik yang konstan dialirkan sepanjang permukaan sampel melalui dua probe terluar. Bila sampel mempunyai resistansi, maka akan ada penurunan tegangan ketika arus mengalir sepanjang sampel tersebut. Perubahan tegangan diukur melalui dua probe yang lain yaitu dua probe bagian dalam.

Gambar 2.7. Skema Pola Aliran Arus dalam FPP

Pola aliran arus pada Four Point Probe membentuk pola setengah bola, sehingga luasan yang dialiri arus adalah A = $2\pi x^2$ dan ujung probe paling luar merupakan superposisi dari arus, maka R = V/2 I. Sehingga diperoleh resistivitas sampel :

 $\rho=2\pi s \ [V/I] \rightarrow \rho=2\pi s.R \(2.7)$

BAB III

METODOLOGI PENELITIAN

3.1. Tempat, Waktu dan Metode Penelitian

Penelitian ini dilakukan di Laboratorium Fisika UI dan Laboratorium Pusat Teknologi Bahan Industri Nuklir (PTBIN) BATAN Serpong Tangerang untuk proses sintesa, milling, pemanasan dan karakterisasi XRD, EDAX, SEM dan FPP.

Waktu penelitian dimulai sejak Juli 2006 sampai dengan November 2007. Metode Penelitian yang digunakan adalah Metode Eksperimen.

3.2. Preparasi Bahan Dasar, Sampel dan Komposisinya

3.2.1. Bahan-bahan Dasar

Bahan-bahan dasar yang diperlukan dalam persiapan sampel LaMnO₃ adalah sebagai berikut :

Tabel 3.1. Bahan	Dasar Sampel
------------------	--------------

No.	Nama	Formula	Produk	Mr	Kemurnian
12	71	Kimia	5		
1	Manganese	Mn0 ₂	ALDRICH	86,94	99, 0%
	(IV) oxide	11 0		g/nol	
2	Lantanum	La ₂ O ₃	MERCK	325,80	99, 5%
	Oxide	\sim		g/mol	

3.2.2. Persamaan Reaksi dan Penimbangan

Bahan-bahan dasar yang diperlukan berdasarkan prinsip stoikiometri ditimbang dengan neraca digital

 $ALa_2O_3 + BMnO_2$

 $LaMnO_3 + DO_2$

Massa $La_2O_3 = A/C \times 30 \text{ gram/Mr } LaMnO_3 \times Mr La_2O_3 \times 1/\text{kemurnian}$

 $Massa MnO_2 = B/C x \quad 30 \text{ gram}/ \text{ Mr LaMnO}_3 x \text{ Mr MnO}_2 x 1/\text{kemurnian}$

Bahan-bahan dasar yang diperlukan berdasarkan prinsip stoikiometri ditimbang dengan neraca digital

Gambar 3.1. Neraca Digital

3.2.3. Pembuatan bahan LaMnO₃ :

Proses pembuatan sampel La MnO_3 dimulai dengan persiapan jumlah material serbuk La $_2O_3$ dan MnO_2 dengan reaksi kimia sebagai berikut :

 $La_2O_3 + 2MnO_2 \longrightarrow 2LaMnO_3 + 1/2O_2$

Untuk menghasilkan 30 gram La Mn O3 digunakan rumus :

Massa $La_2O_3 = 30/Mr \ LaMnO_3 \ x \ Mr \ La_2O_3 \ x \ 1/99,5 \dots (3.1)$

Massa
$$MnO_2 = 30/Mr LaMnO_3 \times Mr Mn O_2 \times 1/99 \dots (3.2)$$

Diketahui :

$$Mr LaMnO_3 = 241, 84$$

$$Mr La_2O_3 = 325, 8$$

$$Mr Mn O_2 = 86,94$$

Jumlah mol zat := 30/241,84 = 0,1240 mol

Maka dibutuhkan :

La $_{2}O_{3}$: $\frac{1}{2} \times 0,1240 \times 325,8 \times 100/99,5 = 20,30$ gram

 MnO_2 : 1x 0,1240 x 86,94 x 100/99 = 10,88 gram

Setelah itu kedua bahan masing-masing dikarakterisasi dengan X Ray Diffraction untuk meyakinkan bahwa keduanya betul-betul La₂O₃ dan MnO₂.

3.2.4. Penggilingan Mekanik :

Kedua bahan dasar dicampur dan digerus dengan alat High Energy Ball Mill (HEM) selama 10 jam. HEM digunakan untuk sintesa material-material baru dan pembentukan material nanopartikel. Selain itu HEM juga mengubah kondisi reaksi kimia yang umumnya terjadi dengan cara induksi selama milling atau memodifikasi reaksi dari zat padat yang dimilling.

Ball Mill merupakan alat untuk mereduksi ukuran material sampai sepersepuluh mikro. Keuntungannya menggunakan Bill Mill antara lain: merupakan teknologi sederhana yang tidak memerlukan banyak bagian yang

bergerak. Alat ini memungkinkan bahan dasar digerinda dengan baik dan mengatur kuantitas dari hasil akhir.

Teknik penggilingan secara mekanik yang biasa disebut balls mill ini yaitu menggunakan cara dengan jalan menggoncangkan bola-bola keras (hards balls) yang berada didalam suatu wadah secara gaya sentrifugal. Didalam wadah terdapat partikel-partikel bahan, yang selanjutnya wadah akan berputar kontinyu dengan rotasi permenit tertentu, dengan berputarnya wadah maka akan terjadi tumbukan (impact) antara partikel-partikel bahan dengan bola-bola.

Gambar 3.2.. Arah Rotasi Milling

Penggilingan secara mekanik ini banyak dipakai untuk menghasilkanberbagai macam bahan nanostruktur. Untuk elemen murni akan didapat sejumlah besar cacat (defect) dan strain mekanik yang terakumulasi. Dalam pemakaian penggilingan mekanik ini selain menghasilkan pengurangan

ukuran butiran juga akan membentuk struktur metastable. Kekurangan pada proses penggilingan secara mekanik ini adalah timbulnya impurities yang tidak dapat dihindarkan. Impurities (pengotoran) terbentuk karena mengauskan dari vila dan bola-bola, sehingga pada akhirnya menghadirkan kontaminasi pada elemenelemen.

Kecepatan optimal penggilingan yang dibutuhkan untuk menghasilkan homogenisasi dari elemen-elemen bergantung pada kecepatan rotasi mekanik yang dinyatakan dalam putraran permenit

 $No = 32/\sqrt{.d....(3.3)}$

Dengan d adalah diameter wadah

Dalam penelitian ini, HEM yang dipakai adalah Spex 8000 dengan spesifikasi normal speed 4500 rpm, run time 90 menit, of time 30 menit dan on of cycle 1 kali.

Gambar 3.3. High Energy Ballmill

3.2.5. Kompaksi

Bahan yang sudah mendapat perlakuan milling selama 10 jam selanjutnya dikompaksi pada tekanan 5000 Psi hingga bahan berbentuk pellet.

Gambar 3.4. Alat Kompaksi

3.2.6. Pemanasan

Bahan yang sudah dikompaksi kemudian dipanaskan. Pemanasan pertama pada 1350 $^{\rm O}{\rm C}$ selama 6 jam.

Gambar 3.5. Furnace Merk Carbolite

3.3. Karakterisasi Bahan Dasar dan Sampel

3.3.1. Karakterisasi struktur kristal dan fasa sampel dengan Difraktometer Sinar X

Gambar 3.6. Difraktometer Sinar X Merk Philip Type PW 1710

Alat ini digunakan untuk mengamati kualitas dan kuantitas fasa-fasa yang ada di dalam sampel. Pengukuran pola difraksi sampel dilakukan dengan menggunakan berkas sinar X dari tube anode Cu yang memiliki panjang gelombang 1,5406 Amstrong, mode : continuous-scan, step size : $0,02^{0}$ dan time per step : 0,5 detik.

Profil Difraktometer Sinar X yang diperoleh dianalisis dengan menggunakan perangkat lunak Program Rietvield Analysis (RIETAN). Fujji Izumi membuat Progam ini pada tahun 1994 [16]. Analisis dengan metode ini dimulaidengan memasukkan dua jenis data, data pertama merupakan data instrumen yang berisi parameter struktur kristal dan data yang kedua merupakan data intensitas.

Informasi yang diberikan dari program ini adalah data parameter struktur kristal dalam sel satuan, data intensitas hasil perhitungan dan pengamatan., data jumlah fraksi massa yang diperoleh apabila terdapat lebih dari satu fasa dan data refleksi Bragg yang muncul.

3.3.2. Karakterisasi Struktur Mikro dan Komposisi bahan dengan Scanning Electron Microscope (SEM) dan EDAX

Pada alat ini, foto struktur mikro sampel pada dasarnya diperoleh dengan memanfaatkan berkas elektron sekunder. Berkas elektron sekunder diperoleh sebagai akibat adanya tumbukan tidak elastis antara berkas elektron primer dari mesin SEM dengan elektron-elektron yang ada di kulit paling dalam pada atomatom sampel yang menyebabkan terlemparnya elektron-elektron atom tersebut. Elektron yang terlempar ini kemudian disebut Elektron Sekunder (SE)

SE yang berasal dari atom-atom di permukaan langsung terlempar keluar dari permukaan dan ditangkap oleh Detektor SE. Oleh karena itu gambar butirbutir di permukaan lebih terang, karena lebih banyak SE yang masuk ke detektor. Sedangkan gambar butir di bagian dalam akan tampak lebih gelap, karena SE yang masuk ke detektor lebih sedikit. Dengan demikian struktur mikro permukaan tampak berdimensi tiga.

Gambar 3.7. Scaning Electron Microscope

Gambar 3.8. EDAX PhilliPs

3.3.3. Pengulangan milling, kompaksi dan pemanasan untuk karakterisasi XRD dan EDAX

Untuk mendapatkan sampel yang baik, maka bahan di milling kembali selama 10 jam, kemudian dikompaksi pada tekanan 5000 Psi, dipanaskan pada 1100⁰ selama 24 jam. Setelah itu bahan ini dikarakterisasi XRD dan EDAX kembali.

3.3.4. Karakterisasi Suhu Neel dan Rasio Magnetoresistansi dengan menggunakan Four Point Probe

Gambar 3.9. Alat Four Point Probe

Gambar 3.10. Alat Ukur Suhu Neel dengan FPP

3.3.5. Penggerusan dengan mortal, perlakuan variasi kompaksi, pengamatan struktur permukaan dan fenomena magnetoresistansi.

Bahan digerus dengan mortal kemudian dibagi dan ditimbang untuk diberi perlakuan kompaksi yang berbeda yaitu 1000 Psi, 3000 Psi dan 5000 Psi. Setelah itu diamati stuktur permukaannya masing-masing dengan SEM. Pada tahap berikutnya masing-masing sampel diamati pengaruh variasi tekanan kompaksi, arus terhadap fenomena magnetoresistansinya dengan alat FPP.

3.3.6. Pemanasan Ulang pada sampel dengan kompaksi 5000 Psi dan pengamatan fenomena magnetoresistansinya.

Langkah terakhir adalah mengamati fenomena magnetoresistansi bahan yang diberi tekanan kompaksi sebesar 5000 Psi dan dipanaskan pada 1100⁰ C selama 6 jam. Langkah ini dilakukan dengan tujuan untuk membandingkan rasio magnetoresistansi bahan sebelum dan sesudah dipanaskan ulang serta mempelajari seberapa besar pengaruh suhu dan pemanasan terhadap rasio magnetoresistansi bahan.

3.4. Diagram Alir Penelitian

BAB IV HASIL DAN PEMBAHASAN

4.1. Hasil Preparasi Bahan Dasar

Paduan La MnO_3 diperoleh dengan mencampurkan beberapa oksida penyusun, yaitu bahan La₂O₃ dan MnO₂. Fasa dari kedua bahan dasar ini diukur dengan menggunakan difraktometer sinar-x (XRD) untuk menentukan apakah bahan dasar ini masih baik atau tidak untuk digunakan mensintesis paduan La MnO_3 . Hasil pengukuran XRD pada La₂O₃ ditunjukkan seperti pada Gambar 4.1.

Profil yang ditunjukkan pada Gambar 1 dan berdasarkan referensi dari *database JCPDS – International Center for Diffraction Data (ICDD)* milik Swanson pada tahun 1954 seperti yang diperlihatkan pada Gambar 4.2 [17], menunjukkan bahwa bahan La₂O₃ ini masih layak untuk digunakan.

05-0602 Quality * CAS Number	La2 03 Lanharun Oede		
Nolecular Weight: 325.81 Volume[CD]: 82.30 Dx: 5.574 Dm:	Ret Swanson, Fuyat, Natl Bur, Stand. (U.S.), Circ. 539, II, 33 (1954)		
S.G.:P3in1 (164) Cell Pacatranistic в 3.937 b с 6.1.29 х 8 у	48 35 35 48 35 35 35 35 35 35 35 35 35 35 35 35 35		
iS/FOM: F3D=47(.0160, 40) Acor Ead: DuKat Lambds: 1.5406	0 25 50 75 100 125 29*		
unar na Jap	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		

Gambar 4.2. Profil difraksi sinar-x dari La2O3 referensi

Pada Gambar 4.1 menunjukkan bahwa struktur kristal bahan dasar dari La_2O_3 ini adalah Tetragonal, space group Pnma, dan mempunyai parameter kisi a = b = 3,907 A, dan c = 6,329 A.

Hasil pengukuran XRD pada bahan MnO₂ ditunjukkan seperti pada Gambar 4.3.

Gambar 4.3. Pola difraksi sinar-x dari MnO₂

Profil yang ditunjukkan pada Gambar 4.3 dan berdasarkan referensi dari *database JCPDS – International Center for Diffraction Data (ICDD)* hasil penelitian Natl Burl pada tahun 1972 seperti yang diperlihatkan pada Gambar 4.4 [18], menunjukkan bahwa bahan MnO₂ ini masih layak untuk digunakan.

24-0735 Quality I CAS Number Moleco de Valaistet - 95-94	Mn 02 Manganese Dxide Ref. Natl But, Stand, JU.S. (Monogr. 25, 10, 39 (1972)		
Molecular Weight: 96.94 Volume(DD) 55.64 Dar. 5.189 Dar. S.G. P42/hom [136]; Cel Pasemeters; a 4.393 b c 2.874 S.F. P42/hom [136]; Cel Pasemeters; a 4.393 b c 2.874 S.S.FOM: F29-51(.0157, 36) More: 2.70 Red: Cul/at Lambda 1.54096 Filter d.3p. Nimeral Name. Pynokuske, syn	Not. Not. Start [0.5] Microgr. 25, 10, 33 [1372] 1 2 3		
	59 370 14 2 2 0 65 36 5 3 2 1 100 81 6 2 1 300 81 6 2 1 300 81 6 2 1 300 81 6 2 1 300 81 6 1 4 1 2 1 300 81 1 1 10 92 336 2 4 10 123 667 7 3 2 60 554 <1 2 1 90 724 6 2 2 2 1 10 13 267 7 3 2 1 10		

Gambar 4.4. Profil difraksi sinar-x dari MnO₂ referensi

Pada Gambar 4.3 menunjukkan bahwa struktur kristal bahan dasar MnO_2 ini adalah Tetragonal, space group P422/nnm, dan mempunyai parameter kisi a = b = 4,399 A, dan c = 2,874 A.

Kedua bahan dasar ini kemudian dicampur dengan menggunakan *High Energy Milling* (HEM) selama 10 jam sehingga diharapkan akan diperoleh campuran yang homogen dengan ukuran serbuk yang kecil. Selanjutnya untuk membentuk fasa LaMnO₃ dilakukan proses pemanasan pada suhu 1350 °C selama 6 jam. Proses pemanasan ini berdasarkan diagram fasa system biner La₂O₃ – Mn₂O₃ dan merujuk pada referensi dari penelitian yang dilakukan oleh Grier [19]. Hasil pengukuran dengan menggunakan difraksi sinar-x pada pemanasan 1350 °C ini ditunjukkan pada Gambar 4.5.

Gambar 4.5. Pola difraksi sinar-x hasil pemanasan 1350 °C selama 6 jam

Identifikasi fasa-fasa pada Gambar 4.5 merujuk pada *database JCPDS* – *International Center for Diffraction Data* (*ICDD*) tahun 1994 seperti yang diperlihatkan pada Gambar 4.6 [20].

PDFNumber Search Print View	Data Conversion Window Clear Help
β (1000)	Construction version Class Prep Landhamum Manganese Onde Ref. Abbatista, F., Borlera, Ceram. Int., 7, 135(1381)
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Gambar 4.6. Profil difraksi sinar-x dari LaMnO₃ referensi

Pola difraksi sinar-x yang dihasilkan pada Gambar 4.5 menunjukkan bahwa puncak-puncak yang diperoleh cocok dengan pola difraksi sinar-x yang dihasilkan oleh penelitian Abbadiota dengan karakteristik sebagai berikut, struktur kristal bahan ini adalah orthorombik, space group Pnma, dan mempunyai parameter kisi a = 5,537 A, b = 5,741 A dan c = 7,694 A.

Hasil ini didukung dengan pengukuran komposisi unsur menggunakan peralatan EDAX, seperti yang ditunjukkan pada Gambar 4.7.

Gambar 4.7. Hasil pengukuran EDAX pada LaMnO₃ 1350 °C

Hasil analisi dari pengukuran EDAX ini diperlihatkan pada Tabel 4.1 di bawah ini.

No.	Unsur	Persen berat atom (%)
1.	Lantanum (La)	32,63
2.	Mangan (Mn)	24.09
3.	Oksigen (O)	43,29

Tabel 4.1. Hasil analisis komposisi unsur dengan menggunakan EDAX

Berdasarkan data yang dihasilkan oleh EDAX menunjukkan bahwa komposisi sampel belum mendekati komposisi stokiometri yang diinginkan, yaitu La_{1,63}Mn_{1,21}O_{2,17}.

Analisis fasa LaMnO₃ lebih lanjut kemudian dilakukan dengan menggunakan software RIETAN (Rietveld Analisis). Hasil analisis yang diperoleh dengan menggunakan program Rietveld ini ditunjukkan pada Gambar 4.8.

Gambar 4.8. Pola difraksi sinar-x hasil refinement dengan analisis Rietveld.

Simbol (+) merupakan hasil pengukuran sampel dengan menggunakan difraksi sinar-x yang lazim disebut garis observasi. Garis lurus yang berimpit dengan garis observasi adalah hasil perhitungan berdasarkan data yang diperoleh dari penelitian Abbadiota (referensi) yang kemudian disebut dengan garis kalkulasi. Garis bar adalah titik-titik puncak fasa LaMnO₃ dari hasil perhitungan berdasarkan referensi. Garis

dibawah garis bar merupakan selisih dari profil hasil observasi dan profil hasil kalkulasi. Semakin datar garis biru ini berarti bahwa profil hasil observasi ini semakin cocok dan terfitting baik dengan profil hasil kalkulasi. Hasil ini menunjukkan bahwa sampel yang terbentuk merupakan fasa LaMnO₃.

Pola difraksi hasil analisis menunjukkan adanya puncak-puncak yang berimpit dengan profil pola difraksi fasa LaMnO₃ namun ada beberapa puncak yang tidak terfitting dengan baik. Sehingga hasil ini memberikan arti bahwa sampel tampak belum sempurna membentuk fasa LaMnO₃. Data parameter kisi, nilai R dan chi square (s) dari struktur kristal ini hasil analisis ditunjukkan pada Tabel 4.2.

Tabel 4.2. Data parameter kisi hasil analisis dengan program RIETAN

	Parameter kisi (Å)			
LaMnO ₃				
а	b	С		
5,45901 ± 0,00087	$7,75174 \pm 0,00145$	5,54054 ± 0,00076		

Unsur	Hunian	Posisi atom			Faktor R (%) dan
-	Atom	Х	У	Z	Chi square
La	1,00	0,00110	0,25000	-0,00434	Rwp = 27.95
Mn	1,00	0,00000	0,00000	0,50000	Rp = 16.94
O(1)	1,00	0,62059	0,25000	0,16732	Ri = 13.23
O(2)	1,00	0,29103	0,08227	0,76868	Rf = 13.66
		\	\sim		S = 1.3269

Tabel 4.3. Posisi atom hasil refinement pola XRD LaMnO₃

Tampak bahwa faktor R relative kecil, sedangkan faktor S bernilai lebih besar dari nilai standar *Rietveld* ($S_{standar} = 1,30$). Hasil *refinement* pola difraksi dengan program *rietveld analysis* yang dikeluarkan oleh *Izumi* [16] menunjukkan bahwa paduan ini memiliki struktur kristal *orthorombic* dengan group ruang *Pnma*. *Refinement* ini juga menunjukkan hasil *fitting* antara observasi dan kalkulasi tidak

cukup baik, sehingga dengan dengan demikian puncak-puncak difraksi dapat kita indikasikan bahwa fasa yang terbentuk pada paduan ini tidak hanya fasa utama LaMnO₃.

Langkah berikutnya, sampel LaMnO3 yang telah dipanaskan pada suhu 1350 °C tersebut dimilling kembali selama 10 jam untuk mendapatkan homogenitas dan perolehan butiran yang kecil. Kemudian proses pemanasan kedua dilakukan di dalam tungku (tube furnace) dengan suhu 1100 °C selama 24 jam. Hasil pengukuran pola difraksi sinar-x ditunjukkan pada Gambar 4.9, untuk sampel yang telah dipanaskan pada suhu 1100 °C selama 24 jam.

Gambar 4.9. Pola difraksi sinar-x LaMnO3 dengan pemanasan 1100 °C.

Gambar 4.9 menunjukkan bahwa telah terjadi rekristalisasi pada masing-masing sampel yang ditandai dengan semakin tajam-tajam puncak dari pola difraksi sinar-x yang terbentuk. Sehingga melalui proses pemanasan ini akan diperoleh kristal LaMnO₃ dengan ukuran kristalit yang kecil.

Gambar 4.10. Hasil refinement pola difraksi sinar-x yang dipanasi 1100 °C.

Analisis terakhir yang dapat dilakukan untuk menunjukkan bahwa proses pemanasan ini memberikan hasil yang lebih baik dari yang sebelumnya, yaitu dengan merefine pola difraksi sinar-x hasil proses pemanasan pada suhu 1100 °C menggunakan analisis rietveld.

Langkah yang dilakukan adalah sama seperti saat merefine pola difraksi sinar-x pada sampel yang dipanasi pada suhu 1350 °C. Hasil refinement yang diperoleh dengan menggunakan analisis program rietveld ditunjukkan seperti pada Gambar 4.10.

Pada Gambar 4.10, garis dibawah simbol bar yang merupakan selisih antara garis observasi dan kalkulasi tampak lebih datar dibandingkan dengan hasil yang diperoleh dari analasis pola difraksi sinar-x pada sampel hasil pemanasan 1350 °C. Semakin datar garis di bawah simbol bar ini berarti bahwa profil hasil observasi ini semakin cocok dan terfitting baik dengan profil hasil kalkulasi. Hal ini menunjukkan bahwa sampel yang terbentuk jauh lebih sempurna dibandingkan dengan hasil pemanasan 1350 °C, yaitu fasa LaMnO₃.

Data parameter kisi, nilai R dan chi square (s) dari struktur kristal ini hasil analisis ditunjukkan pada Tabel 4.5.

Parameter kisi (Å)			
LaMnO ₃			
а	b	С	
$5,44145 \pm 0.00093$	$7,70625 \pm 0,00074$	$5,53700 \pm 0,00098$	

Tabel 4.5. Data parameter kisi hasil analisis dengan program RIETAN

Tabel 3. Posisi atom hasil refinement pola XRD LaMnO₃

Unsur	Faktor		Posisi atom		Faktor R (%)
	Hunian	X	у	Z	Chi square (S)
	Atom	_	. 6		<
	-				Rwp = 42.83
La	1.00	0.00521	0.25000	-0.00009	Rp = 31.22
Mn	1.00	0.00000	0.00000	0.50000	RI = 25.58
O(1)	1,00	0.48963	0.25000	0.06113	RF = 19.42
O(2)	1,00	0.49270	0.03551	0.86540	S = 1.6877

Tampak bahwa faktor R dan faktor S relative lebih kecil dibandingkan dengan hasil refinement pada sample dengan proses pemanasan 1350 °C, dan faktor S bernilai lebih kecil dari nilai standar *Rietveld* (S_{standar} = 1,30). Hal ini berarti bahwa sampel hasil proses pemanasan pada suhu 1100 °C, secara kualitatif dan kuantitatif menunjukkan hasil yang jauh lebih baik dibandingkan hasil proses pemanasan pada suhu 1350 °C. Jadi hasil *refinement* pola difraksi ini menunjukkan bahwa paduan ini memiliki struktur kristal *orthorombic* dengan group ruang *Pnma. Refinement* ini juga menunjukkan hasil *fitting* antara observasi dan kalkulasi sudah sangat baik, sehingga dengan metode pencocokan puncak-puncak difraksi dapat diindikasikan bahwa fasa yang terbentuk pada paduan ini hanyalah fasa utama LaMnO₃.

Hasil proses pemanasan ini diharapkan dapat mengikat oksigen yang lebih banyak. Oleh sebab itu salah satu langkah konfirmasi yang dapat menunjukkan jumlah peningkatan oksigen ini dilakukan pengukuran dengan menggunakan EDAX.

Hasil yang diperoleh dari pengukuran EDAX ditunjukkan pada Gambar 4.11.

Gambar 4.11. Hasil analisis unsur menggunakan EDAX

Hasil analisis dari pengukuran EDAX diperlihatkan pada Tabel 4.4 di bawah ini. Tabel 4.4. Hasil analisi komposisi unsur

No.	Unsur	Persen berat atom (%)
1.	Lantanum (La)	22,40
2.	Mangan (Mn)	19,73
3.	Oksigen (O)	59,80

Data yang dihasilkan oleh EDAX pada sampel yang telah dipanaskan pada suhu 1100 °C selama 24 jam menunjukkan bahwa komposisi sampel mendekati komposisi stokiometri yang diinginkan dibandingkan dengan komposisi hasil pemanasan 1350 °C, yaitu La_{1,11}Mn_{1,02}O_{2,86}. Tampak disini bahwa pada kandungan unsur La dan Mn sudah tepat sesuai dengan komposisi stokiometri, begitu pula komposisi Oksigen

mendekati tepat. Sehingga berdasarkan Tabel 4.2 dan Tabel 4.4, tampak bahwa kandungan oksigen meningkat dengan proses pemanasan ulang tersebut, dari semula hanya 43,29% menjadi 59,80%. Sehingga komposisi dari sampel ini menjadi semakin lebih sempurna.

Gambar 4.12 merupakan hasil pengukuran suhu Neel (T_N) yang diukur pada rentang suhu 77 K sampai 300 K pada bahan LaMnO₃.

Gambar 4.12. Kurva resistivitas versus suhu

Pada Gambar 4.12, tampak bahwa ada suhu transisi yang muncul yaitu suhu Neel T_N . Suhu Neel terjadi pada daerah sekitar 140 K. Suhu Neel adalah suhu transisi peralihan sifat magnetik bahan dari paramagnetik ke antiferromagnetik. Hal ini berarti bahwa di dalam sampel ini mengandung satu domain magnetik, yaitu antiferromagnetik.

Kemudian sampel dibagi menjadi 3 (tiga) bagian untuk diperlakukan variasi tekanan kompaksi, yaitu tekanan 1000 psi, 3000 psi, dan 5000 psi yang berturut-turut disebut dengan LaMnO₃ 1000 psi, LaMnO₃ 3000 psi, dan LaMnO₃ 5000 psi. Untuk itu langkah selanjutnya adalah melihat struktur permukaan dari sampel hasil proses pemanasan ini dengan menggunakan scanning electron microscope (SEM). Tujuan utama dari pemotretan struktur permukaan ini adalah melihat ukuran partikel dari hasil proses rekristalisasi ini seperti ditunjukkan pada Gambar 4.13.

(b)

Gambar 4.13 Foto SEM hasil pemanasan pada 1100 °C dengan perbesaran 10.000 kali untuk tekanan (a) 1000 psi, (b) 3000 psi, dan (c) 5000 psi.

Gambar 4.13 adalah hasil foto SEM dengan perbesaran 10.000 kali. Berdasarkan hasil foto SEM tersebut dapat diperkirakan bahwa distribusi ukuran partikel setelah proses milling setelah melalui proses pemanasan 1100 °C selama 24 jam relatif sama. Distribusi ukuran partikel sampel adalah 1000 –3000 nm. Dari hasil SEM tersebut menunjukkan bahwa proses pemanasan kedua ini menghasilkan struktur kristal LaMnO₃ dengan tidak merubah ukuran partikelnya namun dampak dari meningkatnya tekanan kompaksi sangat terlihat dengan berkurangnya porositas sampel. Kemudian sampel dibagi menjadi 3 (tiga) bagian untuk diperlakukan variasi tekanan kompaksi, yaitu tekanan 1000 psi, 3000 psi, dan 5000 psi yang berturut-turut disebut dengan LaMnO₃ 1000 psi, LaMnO₃ 3000 psi, dan LaMnO₃ 5000 psi. Untuk itu langkah selanjutnya adalah melihat struktur permukaan dari sampel hasil proses pemanasan ini dengan menggunakan scanning electron microscope (SEM). Tujuan utama dari pemotretan struktur permukaan ini adalah melihat ukuran partikel dari hasil proses rekristalisasi ini seperti ditunjukkan pada Gambar 4.13.

4.2. Hasil pengukuran Resistansi, Resistivitas, dan Magnetoresistance

4.2.1. Pengaruh Tekanan Kompaksi

Hasil pengukuran resistansi, resistivitas, dan rasio magnetoresistance pada sampel LaMnO₃ dengan menggunakan metode four point probe ditunjukkan berturut-turut Gambar 4.14, Gambar 4.15, dan Gambar 4.16.

Gambar 4.16. Hasil pengukuran R dan p pada sampel LaMnO₃ 5000 psi

Pengukuran rasio magnetoresistance bahan LaMnO₃ sebagai fungsi medan magnet luar H dilakukan pada rentang pengukuran 0 sampai 7,6 kOe. Hasil pengukuran rasio magnetoresistance sebagai fungsi medan magnet luar ditunjukkan pada Gambar 4.17, Gambar 4.18, dan Gambar 4.19. Gambar 4.18 adalah kurva rasio magnetoresistance LaMnO₃ 1000 psi.

Medan Magnet (kOe)

Gambar 4.18. Hasil pengukuran MR pada sampel LaMnO3 3000 psi

4.2.2. Pengaruh Arus

Hasil pengukuran resistansi, resistivitas, dan rasio magnetoresistance pada sampel LaMnO₃ dengan tekanan kompaksi 1000 psi ditunjukkan berturut-turut Gambar 4.20, Gambar 4.21, Gambar 4.22 dan Gambar 4.23.

Gambar 4.20. Hasil pengukuran R dan ρ pada LaMnO₃ 1000 psi I = 0,5 mA

Gambar 4.22. Hasil pengukuran R dan ρ pada LaMnO₃ 1000 psi I = 1,5 mA

Gambar 4.23. Hasil pengukuran R dan ρ pada LaMnO₃ 1000 psi I = 2 mA

Pengukuran rasio magnetoresistance bahan LaMnO₃ sebagai fungsi medan magnet luar H dilakukan pada rentang pengukuran 0 sampai 7,6 kOe. Hasil pengukuran rasio magnetoresistance ditunjukkan pada Gambar 4.24, Gambar 4.25, Gambar 4.26 dan Gambar 4.27.

Medan Magnet (kOe)

Gambar 4.24 Hasil pengukuran MR pada La MnO_3 1000 psi I = 0,5 mA

Medan Magnet (kOe)

Gambar 4.26. Hasil pengukuran MR pada LaMnO₃ 1000 psi I = 1,5 mA

Gambar 4.27. Hasil pengukuran MR pada LaMnO₃ 1000 psi I = 2 mA

Hasil pengukuran resistansi, resistivitas, dan rasio magnetoresistance pada sampel LaMnO₃ dengan tekanan kompaksi 3000 psi dan 5000 psi ditunjukkan pada Lampiran tesis ini.

Gambar 4.28. Hasil pengukuran R dan ρ , 5000 psi, 1100 °C, I = 0,5 mA

Gambar 4.29. Hasil pengukuran R dan p, 5000 psi, 1100 °C, I = 1 mA

Sedangkan hasil pengukuran resistansi, resistivitas, dan rasio magnetoresistance pada sampel LaMnO₃ dengan tekanan kompaksi 5000 psi setelah dipanaskan pada suhu 1100 °C selama 24 jam ditunjukkan berturut-turut Gambar 4.28, Gambar 4.29, Gambar 4.30 dan Gambar 4.31.

Gambar 4.30. Hasil pengukuran R dan p, 5000 psi, 1100 °C, I = 1,5 mA

Gambar 4.31. Hasil pengukuran R dan p, 5000 psi, 1100 °C, I = 2 mA

Pengukuran rasio magnetoresistance bahan LaMnO3 sebagai fungsi medan magnet luar H dilakukan pada rentang pengukuran 0 sampai 7,6 kOe. Hasil pengukuran rasio magnetoresistance dengan tekanan kompaksi 5000 psi setelah dipanaskan pada suhu 1100 °C selama 24 jam ditunjukkan berturut-turut Gambar 4.32, Gambar 4.33, Gambar 4.34 dan Gambar 4.35.

Medan Magnet (kOe)

Gambar 4.32. Hasil pengukuran MR, 5000 psi, 1100 °C, I = 0,5 mA

Gambar 4.34. Hasil pengukuran MR, 5000 psi, 1100 °C, I = 1,5 mA

Gambar 4.35. Hasil pengukuran MR, 5000 psi, 1100 °C, I = 2 mA

4.3. Analisis dan Diskusi

Hasil analisis Rietveld menunjukkan bahwa sampel LaMnO₃ memiliki struktur kristal Orthorombik (I – 62) dengan space group P n m a dan mempunyai parameter kisi a = 5,44145 ± 0.00093 A, b = 7,70625 ± 0,00074 A, dan c = 5,53700 ± 0,00098 A, dengan sudut pembentuk kristal $\alpha = \beta = \gamma = 90^{\circ}$, sendangkan volume satu unit sel, V = 232,184 ± 0,069 A³. Kerapatan satu unit sel $\rho = 6,005833$ g/cm³.

Gambar 4.36, menunjukkan perubahan resistivitas bahan akibat pengaruh medan magnet luar H. Tampak bahwa resistivitas menurun dengan meningkatnya medan magnet luar. Sedangkan Gambar 4.37, menunjukkan perubahan resistansi bahan akibat pengaruh medan magnet luar H. Tampak bahwa resistivitas menurun dengan meningkatnya medan magnet luar.

Gambar 4.37. Pengaruh medan magnet terhadap resistansi

Baik pada Gambar 4.36 maupun Gambar 4.37, tampak bahwa resistivitas dan resistansi bahan pada Medan Magnet H = 0 bernilai relatif sama baik dengan masukan arus sebesar 0,5 mA, 1 mA, 1,5 mA, dan 2 mA. Hal ini sangat bersesuaian dengan kaidah hukum Ohm, dimana resistivitas atau resistansi suatu bahan akan tetap pada kondisi yang sama walaupun diberikan beragam arus masukan. Namun baik resistivitas maupun resistansi akan berubah apabila volume dan kerapatan bahan itu berubah. Tampak pada Gambar 4.36 maupun Gambar 4.37 bahwa baik resistivitas maupun resistansi bahan berkurang dengan meningkatnya tekanan kompaksi pada saat preparasi sampel. Hal ini menunjukkan bahwa dengan meningkatnya tekanan kompaksi tersebut sampel memiliki kerapatan yang lebih tinggi dan berarti bahwa porositas sampel menurun sehingga luas permukaan kontak antara butir semakin besar seperti yang digambarkan pada morfologi permukaan hasil pengamatan dengan SEM pada Gambar 4.13. Dengan demikian konduktivitas listrik sampel meningkat ditandai dengan menurunnya resistivitas maupun resistansi bahan sampel tersebut.

Secara teori berdasarkan model yang dihasilkan oleh Kubo [21], lazim disebut dengan formula Kubo, bahwa konduktivitas dari hamburan elektron bebas oleh kebergantungan potensial spin (spin-dependent potentials). Dari formula tersebut dapat didefiniskan secara sederhana bahwa kondiktivitas bahan terutama bahan yang memiliki sifat magnetoresistance dipengaruhi oleh dua faktor penting, yaitu yang pertama adalah dipengaruhi oleh adanya hamburan elektron bebas (free electron scatter) dan yang kedua adalah dipengaruhi oleh momen dipol. Sedangkan menurut model *magnetic granular solid* bahwa besaran resistivitas dianggap merupakan suatu hasil proses hamburan (*scattering*) dari electron oleh potensial grain dan magnetic momen dipole antara domain di dalam suatu *grain* atau butir. Faktor-faktor penyebab munculnya hamburan elektron adalah adanya impuritas (ketidakmurnian bahan), porositas atau void (kekosongan), dan adanya cacat kristal. Sedangkan yang mempengaruhi momen dipol adalah spin magnetic bahan dalam sebuah domain magnetik.

Jadi munculnya resistivitas pada bahan tersebut disebabkan bahwa bahan tersebut yang utama memiliki porositas atau void sehingga elektron terhambur
olehnya. Sedangkan menurunnya resistivitas bahan di bawah kondisi medan magnet luar, sangat dipengaruhi oleh adanya momen dipol. Dengan pembalikan spin magnetik pada bahan yang searah dengan medan magnet luar berakibat perjalanan elektron semakin baik (tidak terganggu oleh arah domain spin magnetic) sehingga secara berangsur-angsur efek hamburan elektron akibat arah domain spin magnetik ini semakin berkurang. Berkurangnya hamburan elektron tersebut ditandai dengan menurunnya nilai resistivitas bahan tersebut seperti tampak pada Gambar 4.36 dan Gambar 4.37.

Sifat magnetoresistance (MR) merupakan perubahan sifat resistivitas bahan pada kondisi dibawah pengaruh medan magnet luar H. Sifat resistansi listriknya secara signifikan berkurang ketika medan magnet luar mengimbas secara parallel dengan arah magnetisasi bahan. Sifat MR dicirikan dengan rasio magnetoresitance, vaitu delta ρ/ρ , dimana delta ρ adalah selisih harga tahanan listrik (resistivitas) ketika dikenakan medan magnet. Dan ρ disini diukur pada kondisi searah medan magnetisasi[22]. Sampel LaMnO₃ adalah salah satu bahan yang memiliki rasio magnetoresistance relatif kecil. Pengukuran sifat MR pada sampel LaMnO₃ sesudah proses *milling* dan pemanasan pada 1100 °C dilakukan untuk kondisi arus dan penampang bahan sejajar terhadap fluks medan magnet. Proses milling ini mengakibatkan hancurnya partikel besar menjadi partikel yang lebih kecil. Sedangkan dalam satu partikel diyakini terdiri dari beberapa grain sehingga antar grain yang satu dengan yang lain dibatasi dengan grain boundary. Apabila dalam satu partikel memiliki banyak grain boundary, sehingga terdapat domain magnetic dengan arah yang dimungkinkan bermacam-macam, maka untuk membalik domain magnetic tersebut diperlukan energi yang cukup besar. Berbeda apabila dalam satu partikel hanya terdapat satu grain, sehingga domain magnetic dapat dengan mudah dibelokkan atau dibalikkan menjadi satu arah magnetisasi. Dari hasil pengukuran terakhir ini diduga kuat terdapat beberapa partikel merupakan satu grain akibat proses Dengan demikian pembalikan domain magnetic milling tersebut. dari antiferomagnetik ke feromagnetik akan mudah dicapai pada medan magnet yang relative rendah.

Pengukuran sifat MR sebagai fungsi arus pada tekanan kompaksi 5000 psi ditunjukkan pada Gambar 4.38. Pada Gambar 4.38, terlihat bahwa rasio magnetoresistance semakin menurun dengan bertambahnya medan magnet luar. Menurut *Fujii* dan kawan-kawan [16] bahwa sifat magnetoresistance dicirikan oleh adanya transisi fasa metamagnetik dimana momen atom *Mn* yang tersusun secara antiferromagnetik akan berubah menyusun dirinya menjadi ferromagnetik ketika dikenakan medan magnet luar. Jadi hal ini sangat bersesuaian dengan penelitian Fujji dan kawan-kawan, bahwa pada sample LaMnO₃ telah terjadi transisi fasa metamagnetik dimana momen atom Mn yang tersusun secara antiferromagnetik berubah menyusun dirinya menjadi ferromagnetik.

Gambar 4.38. Pengaruh medan magnet dan arus terhadap rasio magnetoresistance pada tekanan kompaksi 5000 psi.

Sedangkan pengukuran sifat MR sebagai fungsi tekanan kompaksi pada arus 2 mA ditunjukkan pada Gambar 4.39.

Gambar 4.39. Pengaruh medan magnet dan tekanan kompaksi terhadap rasio magnetoresistance pada arus 2 mA.

Tampak pada Gambar 4.39 bahwa rasio magnetoresistance semakin besar dengan meningkatnya tekanan kompaksi. Hal ini berarti bahwa tekanan kompaksi sangat mempengaruhi kondisi dari momen dipol pada domain magnetic disetiap grain. Diketahui bahwa pengaruh tekanan kompaksi dapat menyebabkan adanya orientasi pada bidang kristal dan domain magnetik. Sehingga diduga bahwa dengan meningkatnya tekanan kompaksi ini berakibat semakin banyaknya domain-domain yang terorientasi pada arah tertentu. Dengan demikian pada akhirnya energi yang diperlukan untuk membalik domain pada arah tertentu akan lebih mudah dibandingkan sampel yang memiliki domain magnetik dengan orientasi spin magnetiknya lebih acak.

Kemudian pengukuran sifat MR sebagai fungsi arus pada tekanan kompaksi 5000 psi setelah dipanaskan kembali pada suhu 1100 selama 6 jam ditunjukkan pada Gambar 4.40.

Medan Magnet (kOe)

Gambar 4.40. Pengaruh medan magnet dan arus terhadap rasio magnetoresistance pada tekanan kompaksi 5000 psi setelah dipanaskan kembali pada suhu 1100 °C selama 6 jam.

Hal terjadi pada Gambar 4.40, tampak bahwa rasio vang sama magnetoresistance bahan ini meningkat setelah sample tersebut dikompaksi pada tekanan 5000 psi kemudian dipanaskan kembali pada suhu 1100 °C selama 6 jam. Telah dijelaskan sebelumnya bahwa faktor tekanan kompaksi mengakibatkan munculnya orientasi domain magnetik. Kemudian domain magnetik yang terorientasi akibat faktor tekanan kompaksi tersebut dipanaskan sehingga sebagian mengalami difusi membentuk domain magnetik yang lebih besar dengan arah orientasi yang sama. Sehingga pada akhirnya pula akan memberikan kontribusi yaitu mempermudah pembelokan domain magnetik pada satu arah. Dengan kata lain bahwa energi yang diperlukan untuk mengarahkan domain magnetik itu lebih kecil dibandingkan dengan sebelumnya.

Pada Gambar 4.41, Gambar 4.42, dan Gambar 4.43 merupakan hasil akhir yang diperoleh dari pengaruh arus dan tekanan kompaksi yang berturut-turut terhadap sifat listrik yaitu resistansi, resitivitas dan rasio magnetoresistance sample LaMnO₃.

Gambar 4.42. Pengaruh tekanan kompaksi dan arus terhadap resistivitas sample LaMnO₃

Gambar 4.44. Rasio magnetoresistance sample LaMnO₃ dengan tekanan kompaksi 5000 psi sebelum dan sesudah dipanaskan pada 1100 °C

Nilai rasio magnetoresistance bahan LaMnO₃ yang paling tinggi yaitu sebesar 33.30 % (I = 10 mA) diperoleh pada sampel yang di*milling* selama 10 jam kemudian disinter 1350 °C selama 6 jam, dimilling kembali selama 10 jam, dipanaskan kembali 1100 °C selama 24 jam, dipelet dengan tekanan kompaksi sebesar 5000 psi dan dipanaskan kembali 1100 °C selama 6 jam. Nilai dari rasio magnetoresistance ini termasuk sangat besar apabila dibandingkan dengan hasil penelitian sebelumnya yang diperoleh oleh peneliti lain untuk sistem ABO3 tanpa doping. Penelitian yang dilakukan oleh *Gross* [7] dengan menggunakan sampel RMnO₃ (R = La, Ca, dan Sr) menghasilkan ratio megnetoresistance hanya berkisar 16 - 18% dan Damay [5], memperoleh ratio GMR sample LaMnO₃ hanya berkisar 0,8 – 1%. Faktor-faktor yang memberikan kontribusi keberhasilan dari penelitian ini adalah antara lain proses milling yang dapat meningkatkan homogenitas campuran sekaligus memperkecil partikel, proses pemanasan pada 1350 °C selama 6 jam yang merupakan suhu sintering yang optimum sehingga pembentukan fasa LaMnO₃ sangat baik, pemanasan ulang pada 1100 °C selama 24 jam yang bertujuan untuk rekristalisasi akibat proses milling dan pengikatan oksigen lebih banyak sehingga fasa LaMnO₃ yang terbentuk lebih sempurna, proses kompaksi yang memberikan kontribusi adanya orientasi domain magnetik dan pemanasan kembali pada suhu 1100 °C selama 6 jam yang juga memberikan kontribusi besar untuk menggabungkan antar partikel dimana domain magnetiknya telah terorientasi membentuk domain magnetik yang lebih besar. Faktor terakhir ini yang merupakan metode yang belum pernah dilakukan oleh penelitipeneliti lain.

BAB V KESIMPULAN DAN SARAN

KESIMPULAN

Pembuatan dan karakterisasi sifat listrik dari paduan Magnetoresistance LaMnO₃ telah berhasil dilakukan. Bahan LaMnO₃ yang telah dibuat memiliki fasa tunggal dengan struktur kristal orthorombik, space group Pnma (I-62) dan parameter kisi a = 5,44145 ± 0.00093 A, b = 7,70625 ± 0,00074 A, dan c = 5,53700 ± 0,00098 A, dengan sudut pembentuk kristal $\alpha = \beta = \gamma = 90^{\circ}$, sendangkan volume satu unit sel, V = 232,184 ± 0,069 A³. Kerapatan satu unit sel $\rho = 6,005833$ g/cm³. Dan memiliki kualitas yang cukup baik dengan komposisi unsur La : Mn : O = 22,40% : 19,73% : 59,80, perbandingan ini mendekati komposisi ideal LaMnO₃.

Dari hasil foto dengan Scanning Elestron Microscop, morfologi permukaan menunjukkan bahwa partikelnya berbentuk bulat-bulat hampir homogen di seluruh permukaan dengan distribusi ukuran partikel sebesar 500 – 3000 nm. Nilai rasio magnetoresistance bahan LaMnO₃ yang paling tinggi yaitu sebesar 33,30 % pada pemberian arus sebesar 10 mA yang diperoleh dari sampel yang di*milling* selama 10 jam, dikompaksi pada 5000 Psi dan dipanaskan pada 1350 °C selama 6 jam, dimilling kembali selama 10 jam, dikompaksi pada 5000 Psi dan dipanaskan pada 1100 °C selama 24 jam, terakhir sample digerus dengan mortal lalu dikompaksi, sampel dengan tekanan kompaksi sebesar 5000 Psi dipanaskan kembali pada 1100 °C selama 6 jam.

Dengan demikian dalam eksperimen ini telah berhasil dibuat paduan *magnetoresistance* LaMnO₃ dengan kualitas yang cukup baik dan memiliki rasio *magnetoresistance* yang jauh lebih besar dibandingkan hasil penelitian Damay dan kawan-kawan atau hampir 2 kali lipat dibandingkan hasil penelitian Gross dan kawan-kawan. Faktor-faktor yang memberikan kontribusi keberhasilan dari penelitian ini adalah antara lain proses milling yang dapat meningkatkan homogenitas campuran sekaligus memperkecil partikel, proses pemanasan pada

1350 °C selama 6 jam yang merupakan suhu sintering yang optimum sehingga pembentukan fasa LaMnO₃ sangat baik, pemanasan ulang pada 1100 °C selama 24 jam yang bertujuan untuk rekristalisasi akibat proses milling dan pengikatan oksigen lebih banyak sehingga fasa LaMnO₃ yang terbentuk lebih sempurna, proses kompaksi yang memberikan kontribusi adanya orientasi domain magnetik dan pemanasan kembali pada suhu 1100 °C selama 6 jam yang juga memberikan kontribusi besar untuk menggabungkan antar partikel dimana domain magnetik yang telah terorientasi membentuk domain magnetik yang lebih besar. Maka dapat disimpulkan bahwa rasio magnetoresistansi suatu bahan yang didopan akan lebih baik apabila sebelum proses dopan diberi perlakuan kompaksi dan pemanasan ulang yang optimal.

SARAN-SARAN

- Meningkatnya rasio magnetoresistansi pada bahan LaMnO₃ tanpa dopan ini memberikan peluang untuk penelitian yang lebih mendalam tentang perlakuan apa saja yang dapat diterapkan pada bahan ini agar terjadi peningkatan rasio magnetoresistansinya.
- Untuk meningkatkan sensitivitas bahan , dalam penelitian selanjutnya yang bertemakan pendopingan sebaiknya kualitas rasio magnetoresistansi bahan sudah ditingkatkan dulu sebelum didopan.
- 3. Agar dapat digunakan sebaik-baiknya dalam aplikasi praktis maka kualitas sensitivitas bahan dapat dipersiapkan secara maksimal sejak preparasi awal sampel seperti perlakuan milling, pemanasan dan kompaksi yang optimal.

DAFTAR PUSTAKA

- 1. J.Z.Sun, Thin Film Trilayer Manganate Junction, Physics. Journal 1998.
- 2. T.G.Perring (ISIS), G. Aeppli (NEC Research Institute, New Jersey), 2007
- M. Barsoum, *Fundamental of Ceramic*, Mc. Graw- Hill. Comp, Inc. Internacional Editor. 1997
- 4. A.B. Pippard, *Magnetoresistance in Metals*, Cambridge University Press, New York, 1989.
- Damay, F. Matin.C, Magnan.A, Raveau.B, Caution Disorder and Size Effects upon Magnetic Transition in La A Mn Manganites, J. Appl. Phys 82 (12), 15 Desember 1997.
- 6. Dudung Abdul Kodir, Thesis Pasca Sarjana, Universitas Indonesia, 2006.
- Gross. L, Buchner. B, Freitag. B.H, Hoffener, C. Klein. J, Lu. Y,Mader. W, Philipp, J.B. Rao, M.S.R. Reutler, P. Pritter.S, Thienhaus. S, Uhlenburk. S, Wieden Horst. B, *Physics of Grain Boundaries in the Collosal Magnetoresistance Manganates*, Journal of Magnetism and Magnetic Material, 211 (2000), 150 – 159
- 8. Z. Popovic and S.Athpaty, Phys, Rev. Lett. 84. 1603 (2000).
- 9. G.H. Jonker and J.H. Van Santen, *Ferromagnetic Compound of Manganase with Perovskite Structure*, Physics, 16: 337, 1950.
- 10. Bolzan, A.A., et al., aust. J. Chem., 46, 939 (1993).
- Wisnu Ari Adi, Engkir Sukirman, Didin S. Winatapura, Grace T.J. Sulungbudi, Faktor Koreksi Dimensi Sampel pada Sifat Listrik Superkonduktor YBaCuO dengan menggunakan Metode Four Point Probe, Majalah BATAN, ISSN 0303-2876, Vol.XXXIV, No.1 / 2, Januari/April 2001, hal 15 – 30.
- C.L. Chien, John Q, Xiao and J. Samuel Jiang, *Giant Negative Magnetoresistance in Granular Ferromagnetic System*, J. Appl. Phys, 73:5309, 1993.
- 13. P.W. Atkins, *Physical Chemistry*, Oxford University Press, 1990.
- 14. Charles Kittel, *Introduction to Solid State Physics*, John Wiley and Sons, Inc, New Cork, 1986.

- B.D. Cullity, *Elements of X-Ray Diffraction*, 2 ed, Addison-Wesley Pub. Co. Inc. Massachussets (1978).
- 16. Fujji. H, et al, Solid State Común, Vol 53, No. 8, (1985), p
- 17. Swanson, Fuyat, Natl Buhr. Stand, (US), Circ, 539, III, 33 (1954).
- 18. Natl Buhr, Stand, (US), Monogr, 25, 7, 82, (1969).
- Huang Q, Santoro. A, Lynn. J.W. Erwin, R,W. Borchers, C.A. Peng, C.L. Greene, R.L. Physical Review B, Vol 55, No. 22, Juni 1997.
- 20. Grier. D, Mc. Charty G, North Dakota State University, Fargo ND. USA. ISDD. Grant in Aid, (1994).
- 21. Goodenaugh, JB. Zhou, JS.Nature. 386,279, (1997)s
- 22. Baibich, et al, Phys, Review Setter, 61 (1998) p. 2472-2475.

DAFTAR ACUAN

- 1. G.H. JONKER AND J.H. VAN SANTEN, Feromagnetic compound of manganese with perovskite structure, Physica, 16: 337, 1950.
- GROSS, R., ALFF, L., BUCHNER, B., FREITAG, B.H., HOFENER, C., KLEIN, J., LU, Y., MADER, W., PHILIPP, J.B., RAO, M.S.R., REUTLER, P., RITTER, S., THIENHAUS, S., UHLENBRUCK, S., WIEDENHORST, B., Physics of Grain Bounderies in the colossal magnetoresistance manganites, Journal of MagnGrain Boundariesetism and Magnetic materials, 211 (2000) 150 – 159.
- INAMI, T., HINO., O., NOHDO, S., KANAO, R., IKEDA, N., YAMADA, Y., KATANO, S., Charge ordering in low-doping rate A1-xBxMnO3, Adv. Sci. Res. Center, JAERI.
- DAMAY, F., MATIN, C., MAIGNAN, A., RAVEAU, B., Caution disorder and size effects upon magnetic transitions in Ln_{0.5}A_{0.5}MnO₃ Manganites, J. Appl. Phys, 82 (12), 15 December 1997.
- SAHANA, M., SATYALAKSHMI, K.M., HEGDE, M.S., PRASAD, V., SUBRAMANYAM, S.V., Materials Research Bulletin, Vol 32, No. 7, pp. 831-837, 1997.
- 6. DUDUNG ABDUL KODIR, Thesis Pasca Sarjana, Universitas Indonesia, 2006.
- M.N. BAIBICH, J.M. BROTO, A. FERT, F. NGUYEN VAN DAU, F., PETROFF, P. EITENNE, G. CREUZET, A. FREIDERICH, AND J. CHAZELAS, Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices, Phys. Rev. Lett. 61:2472, 1988.
- 8. SETYO PURWANTO, Doctor Thesis at Tohoku Univ., Japan (1996).
- CHAHARA, K.I., OHNO, T., KASAI, M., KOZONO, Y., Appl. Phys. Lett., 63, 1990 (1993).
- VON HELMOLT, R., WECKER, J., HOLZAPFEL, B., SHULTZ, L., SAMWER, K., Phys. Rev. Lett., 71, 2331 (1993).
- 11. WISNU ARI ADI, ENGKIR SUKIRMAN, DIDIN S. WINATAPURA, GRACE TJ. SULUNGBUDI, Faktor koreksi dimensi sampel pada sifat listrik superkonduktor YBa₂Cu₃O_{7-x} dengan menggunakan metode four point probe, Universitas Indonesia

Majalah BATAN, ISSN 0303-2876, Vol.XXXIV, No. 1 / 2, Januari/April 2001, hal 15-30.

- SETYO PURWANTO, Laporan Riset Unggulan Terpadu, Kemenneg Ristek, 1998 – 2000.
- BARTHELEMY, A., FERT, A., PETROFF, F., Giant Magnetoresistance in Magnetic Multilayers, Handbook of Magnetic Materials, Vol. 12, Elsevier Science B.V., 1999.
- 14. IZUMI, F., Rietan Manual, 1994 (private communication).
- 15. SWANSON, FUYAT, Natl Bur. Stand. (U.S.), Circ., 539, III, 33 (1954).
- 16. BERNSTEIN, L., Menlo Park, CA, USA, Private Communication, (1994).
- 17. BOLZAN, A.A., et al., aust. J. Chem., 46, 939 (1993).
- 18. Natl. Bur. Stand. (US), Monogr, 25, 7, 82, (1969).
- 19. GRIER, D., Mc CHARTHY, G., North Dakota Sate Univ., Fargo, ND, USA, ISDD, Grant in Aid, (1994).
- 20. GOODENOUGH, J.B., ZHOU, J.S., Nature, 386, 229, (1997).
- 21. FUJJI, H., et.al., Solid State Commun., Vol 53, No. 8, (1985), p 715-717.
- 22. BAIBICH, et.al., Phys. Review Letter, 61 (1998) p. 2472-2475.
- 23. BINASCH, et.al., Phys. Review B, (1989), p 4828-4830.

Gambar L.1.2. Hasil pengukuran R dan ρ pada LaMnO₃ 1000 psi, I = 1,0 mA

Gambar L.1.4. Hasil pengukuran R dan ρ pada LaMnO₃ 1000 psi, I = 2,0 mA

Gambar L.1.6. Hasil pengukuran R dan ρ pada LaMnO₃ 3000 psi, I = 1,0 mA

Gambar L.1.8. Hasil pengukuran R dan ρ pada LaMnO₃ 3000 psi, I = 2,0 mA

Gambar L.1.10. Hasil pengukuran R dan ρ pada LaMnO₃ 5000 psi, I = 1,0 mA

Gambar L.1.12. Hasil pengukuran R dan ρ pada LaMnO₃ 5000 psi, I = 2,0 mA

Gambar L.1.14. Hasil pengukuran R dan p LaMnO₃ 5000 psi,1100°C, I = 1,0

Gambar L.1.16. Hasil pengukuran R dan ρ LaMnO3 5000 psi, 1100°C, I = 2,0 mA

Gambar L.1.18. Hasil pengukuran R dan ρ LaMnO₃ 5000 psi, 1100°C, I = 10 mA

Medan Magnet (kOe)

Gambar L.2.2. Hasil pengukuran GMR pada LaMnO₃ 3000 psi.

Gambar L.2. 4. Hasil pengukuran GMR pada LaMnO₃ 0,5 mA

Gambar L.2.6. Hasil pengukuran GMR pada LaMnO₃ 1,5 mA

Gambar L.2.8. Hasil pengukuran GMR pada LaMnO₃ 5000 psi, 1100 °C

Data Resistansi	, Resistivitas	, dan MR	untuk Arus	0,5 mA.	P = 1000	osi.
-----------------	----------------	----------	------------	---------	----------	------

									Rho
	I (A)	V (mV)	H (Oe)	H (kOe)	R (Ohm)	H (kOe)	MR	MR (%)	(Ohm.cm)
	0.11	14.03685	128.0629	0.128063	14036.85	0.128063	0	0	8815.1418
	0.21	14.03675	165.8219	0.165822	14036.75	0.165822	-7.12E-06	-0.00071	8815.079
	0.31	14.0363	203.5809	0.203581	14036.3	0.203581	-3.92E-05	-0.00392	8814.7964
	0.41	14.036	241.3399	0.24134	14036	0.24134	-6.06E-05	-0.00606	8814.608
	0.51	14.03565	279.0989	0.279099	14035.65	0.279099	-8.55E-05	-0.00855	8814.3882
	0.61	14.0356	316.8579	0.316858	14035.6	0.316858	-8.91E-05	-0.00891	8814.3568
	0.71	14.03545	354.6169	0.354617	14035.45	0.354617	-9.97E-05	-0.00997	8814.2626
	0.81	14.0352	392.3759	0.392376	14035.2	0.392376	-0.000118	-0.01175	8814.1056
	0.91	14.0352	430.1349	0.430135	14035.2	0.430135	-0.000118	-0.01175	8814.1056
	1.01	14.035	467.8939	0.467894	14035	0.467894	-0.000132	-0.01318	8813.98
	1.11	14.035	505.6529	0.505653	14035	0.505653	-0.000132	-0.01318	8813.98
	1.21	14.03495	543.4119	0.543412	14034.95	0.543412	-0.000135	-0.01354	8813.9486
	1.31	14.0349	581.1709	0.581171	14034.9	0.581171	-0.000139	-0.01389	8813.9172
	1.41	14.0349	618.9299	0.61893	14034.9	0.61893	-0.000139	-0.01389	8813.9172
	1.51	14.0348	656.6889	0.656689	14034.8	0.656689	-0.000146	-0.0146	8813.8544
1.1	1.61	14.03475	694.4479	0.694448	14034.75	0.694448	-0.00015	-0.01496	8813.823
	1.71	14.0347	732.2069	0.732207	14034.7	0.732207	-0.000153	-0.01532	8813.7916
	1.81	14.03465	769.9659	0.769966	14034.65	0.769966	-0.000157	-0.01567	8813.7602
	1.91	14.03455	807.7249	0.807725	14034.55	0.807725	-0.000164	-0.01639	8813.6974
	2.01	14.03455	845.4839	0.845484	14034.55	0.845484	-0.000164	-0.01639	8813.6974
	2.11	14.0345	883.2429	0.883243	14034.5	0.883243	-0.000167	-0.01674	8813.666
	2.21	14.03445	921.0019	0.921002	14034.45	0.921002	-0.000171	-0.0171	8813.6346
	2.31	14.0344	958.7609	0.958761	14034.4	0.958761	-0.000175	-0.01745	8813.6032
	2.41	14.0344	996.5199	0.99652	14034.4	0.99652	-0.000175	-0.01745	8813.6032
	2.51	14.03435	1034.279	1.034279	14034.35	1.034279	-0.000178	-0.01781	8813.5718
	2.61	14.03435	1072.038	1.072038	14034.35	1.072038	-0.000178	-0.01781	8813.5718
	2.71	14.03425	1109.797	1.109797	14034.25	1.109797	-0.000185	-0.01852	8813.509
	2.81	14.0342	1147.556	1.147556	14034.2	1.147556	-0.000189	-0.01888	8813.4776
	2.91	14.0339	1185.315	1.185315	14033.9	1.185315	-0.00021	-0.02102	8813.2892
	3.01	14.03385	1223.074	1.223074	14033.85	1.223074	-0.000214	-0.02137	8813.2578
	3.11	14.03355	1260.833	1.260833	14033.55	1.260833	-0.000235	-0.02351	8813.0694
	3.21	14.0334	1298.592	1.298592	14033.4	1.298592	-0.000246	-0.02458	8812.9752
	3.31	14.0334	1336.351	1.336351	14033.4	1.336351	-0.000246	-0.02458	8812.9752
	3.41	14.03335	1374.11	1.37411	14033.35	1.37411	-0.000249	-0.02493	8812.9438
	3.51	14.03325	1411.869	1.411869	14033.25	1.411869	-0.000256	-0.02565	8812.881
	3.61	14.03325	1449.628	1.449628	14033.25	1.449628	-0.000256	-0.02565	8812.881
	3.71	14.03305	1487.387	1.487387	14033.05	1.487387	-0.000271	-0.02707	8812.7554
	3.81	14.0329	1525.146	1.525146	14032.9	1.525146	-0.000281	-0.02814	8812.6612
	3.91	14.0328	1562.905	1.562905	14032.8	1.562905	-0.000289	-0.02885	8812.5984
	4.01	14.03265	1600.664	1.600664	14032.65	1.600664	-0.000299	-0.02992	8812.5042
	4.11	14.0326	1638.423	1.638423	14032.6	1.638423	-0.000303	-0.03028	8812.4728
	4.21	14.03255	1676.182	1.676182	14032.55	1.676182	-0.000306	-0.03063	8812.4414
	4.31	14.0325	1713.941	1.713941	14032.5	1.713941	-0.00031	-0.03099	8812.41

	4.41	14.0324	1751.7	1.7517	14032.4	1.7517	-0.000317	-0.0317	8812.3472
	4.51	14.0323	1789.459	1.789459	14032.3	1.789459	-0.000324	-0.03241	8812.2844
	4.61	14.032	1827.218	1.827218	14032	1.827218	-0.000346	-0.03455	8812.096
	4.71	14.03185	1864.977	1.864977	14031.85	1.864977	-0.000356	-0.03562	8812.0018
	4.81	14.03155	1902.736	1.902736	14031.55	1.902736	-0.000378	-0.03776	8811.8134
	4.91	14.0312	1940.495	1.940495	14031.2	1.940495	-0.000403	-0.04025	8811.5936
	5.01	14.0308	1978.254	1.978254	14030.8	1.978254	-0.000431	-0.0431	8811.3424
	5.11	14.03015	2016.013	2.016013	14030.15	2.016013	-0.000477	-0.04773	8810.9342
	5.21	14.0296	2053.772	2.053772	14029.6	2.053772	-0.000516	-0.05165	8810.5888
	5.31	14.02955	2091.531	2.091531	14029.55	2.091531	-0.00052	-0.05201	8810.5574
	5.41	14.02935	2129.29	2.12929	14029.35	2.12929	-0.000534	-0.05343	8810.4318
	5.51	14.0291	2167.049	2.167049	14029.1	2.167049	-0.000552	-0.05521	8810.2748
	5.61	14.0289	2204.808	2.204808	14028.9	2.204808	-0.000566	-0.05664	8810.1492
	5.71	14.0285	2242.567	2.242567	14028.5	2.242567	-0.000595	-0.05949	8809.898
	5.81	14.0281	2280.326	2.280326	14028.1	2.280326	-0.000623	-0.06234	8809.6468
	5.91	14.0281	2318.085	2.318085	14028.1	2.318085	-0.000623	-0.06234	8809.6468
	6.01	14.02805	2355.844	2.355844	14028.05	2.355844	-0.000627	-0.06269	8809.6154
	6.11	14.02805	2393.603	2.393603	14028.05	2.393603	-0.000627	-0.06269	8809.6154
1.1	6.21	14.0279	2431.362	2.431362	14027.9	2.431362	-0.000638	-0.06376	8809.5212
· .	6.31	14.02785	2469.121	2.469121	14027.85	2.469121	-0.000641	-0.06412	8809.4898
	6.41	14.02755	2506.88	2.50688	14027.55	2.50688	-0.000663	-0.06625	8809.3014
	6.51	14.0274	2544.639	2.544639	14027.4	2.544639	-0.000673	-0.06732	8809.2072
1.00	6.61	14.0273	2582.398	2.582398	14027.3	2.582398	-0.00068	-0.06804	8809.1444
	6.71	14.02715	2620.157	2.620157	14027.15	2.620157	-0.000691	-0.0691	8809.0502
	6.81	14.02695	2657.916	2.657916	14026.95	2.657916	-0.000705	-0.07053	8808.9246
	6.91	14.0262	2695.675	2.695675	14026.2	2.69 56 75	-0.000759	-0.07587	8808.4536
	7.01	14.02615	2733.434	2.733434	14026.15	2.733434	-0.000762	-0.07623	8808.4222
	7.11	14.02615	2771.193	2.771193	14026.15	2.771193	-0.000762	-0.07623	8808.4222
	7.21	14.026	2808.952	2.808952	14026	2.808952	-0.000773	-0.0773	8808.328
	7.31	14.02585	2846.711	2.846711	14025.85	2.846711	-0.000784	-0.07837	8808.2338
1.00	7.41	14.02585	2884.47	2.88447	14025.85	2.88447	-0.000784	-0.07837	8808.2338
	7.51	14.02575	2922.229	2.922229	14025.75	2.922229	-0.000791	-0.07908	8808.171
	7.61	14.0257	2959.988	2.959988	14025.7	2.959988	-0.000794	-0.07943	8808.1396
	7.71	14.0257	2997.747	2.997747	14025.7	2.997747	-0.000794	-0.07943	8808.1396
	7.81	14.02555	3035.506	3.035506	14025.55	3.035506	-0.000805	-0.0805	8808.0454
	7.91	14.0255	3073.265	3.073265	14025.5	3.073265	-0.000809	-0.08086	8808.014
	8.01	14.02545	3111.024	3.111024	14025.45	3.111024	-0.000812	-0.08121	8807.9826
	8.11	14.0253	3148.783	3.148783	14025.3	3.148783	-0.000823	-0.08228	8807.8884
	8.21	14.02525	3186.542	3.186542	14025.25	3.186542	-0.000826	-0.08264	8807.857
	8.31	14.0252	3224.301	3.224301	14025.2	3.224301	-0.00083	-0.083	8807.8256
	8.41	14.02515	3262.06	3.26206	14025.15	3.26206	-0.000834	-0.08335	8807.7942
	8.51	14.0251	3299.819	3.299819	14025.1	3.299819	-0.000837	-0.08371	8807.7628
	8.61	14.0249	3337.578	3.337578	14024.9	3.337578	-0.000851	-0.08513	8807.6372
	8.71	14.0248	3375.337	3.375337	14024.8	3.375337	-0.000858	-0.08585	8807.5744
	8.81	14.0244	3413.096	3.413096	14024.4	3.413096	-0.000887	-0.0887	8807.3232
	8.91	14.02435	3450.855	3.450855	14024.35	3.450855	-0.000891	-0.08905	8807.2918
	9.01	14.0243	3488.614	3.488614	14024.3	3.488614	-0.000894	-0.08941	8807.2604
	9.11	14.02425	3526.373	3.526373	14024.25	3.526373	-0.000898	-0.08976	8807.229
	9.21	14.02425	3564.132	3.564132	14024.25	3.564132	-0.000898	-0.08976	8807.229

	9.31	14.0242	3601.891	3.601891	14024.2	3.601891	-0.000901	-0.09012	8807.1976
	9.41	14.02415	3639.65	3.63965	14024.15	3.63965	-0.000905	-0.09048	8807.1662
	9.51	14.024	3677.409	3.677409	14024	3.677409	-0.000915	-0.09154	8807.072
	9.61	14.024	3715.168	3.715168	14024	3.715168	-0.000915	-0.09154	8807.072
	9.71	14.02395	3752.927	3.752927	14023.95	3.752927	-0.000919	-0.0919	8807.0406
	9.81	14.02395	3790.686	3.790686	14023.95	3.790686	-0.000919	-0.0919	8807.0406
	9.91	14.0239	3828.445	3.828445	14023.9	3.828445	-0.000923	-0.09226	8807.0092
	10.01	14.02385	3866.204	3.866204	14023.85	3.866204	-0.000926	-0.09261	8806.9778
	10.11	14.02385	3903.963	3.903963	14023.85	3.903963	-0.000926	-0.09261	8806.9778
	10.21	14.02385	3941.722	3.941722	14023.85	3.941722	-0.000926	-0.09261	8806.9778
	10.31	14.0238	3979.481	3.979481	14023.8	3.979481	-0.00093	-0.09297	8806.9464
	10.41	14.02375	4017.24	4.01724	14023.75	4.01724	-0.000933	-0.09333	8806.915
	10.51	14.0237	4054.999	4.054999	14023.7	4.054999	-0.000937	-0.09368	8806.8836
	10.61	14.02365	4092.758	4.092758	14023.65	4.092758	-0.00094	-0.09404	8806.8522
	10.71	14.02365	4130.517	4.130517	14023.65	4.130517	-0.00094	-0.09404	8806.8522
	10.81	14.02365	4168.276	4.168276	14023.65	4.168276	-0.00094	-0.09404	8806.8522
	10.91	14.0236	4206.035	4.206035	14023.6	4.206035	-0.000944	-0.09439	8806.8208
	11.01	14.0236	4243.794	4.243794	14023.6	4.243794	-0.000944	-0.09439	8806.8208
	11.11	14.02355	4281.553	4.281553	14023.55	4.281553	-0.000948	-0.09475	8806.7894
	11.21	14.02345	4319.312	4.319312	14023.45	4.319312	-0.000955	-0.09546	8806.7266
	11.31	14.02345	4357.071	4.357071	14023.45	4.357071	-0.000955	-0.09546	8806.7266
1.1	11.41	14.0234	4394.83	4.39483	14023.4	4.39483	-0.000958	-0.09582	8806.6952
	11.51	14.0234	4432.589	4.432589	14023.4	4.432589	-0.000958	-0.09582	8806.6952
	11.61	14.02335	4470.348	4.470348	14023.35	4.470348	-0.000962	-0.09618	8806.6638
	11.71	14.0233	4508.107	4.508107	14023.3	4.508107	-0.000965	-0.09653	8806.6324
	11.81	14.02325	4545.866	4.545866	14023.25	4.545866	-0.000969	-0.09689	8806.601
	11.91	14.02295	4583.625	4.583625	14022.95	4.583625	-0.00099	-0.09903	8806.4126
	12.01	14.02285	4621.384	4.621384	14022.85	4.621384	-0.000997	-0.09974	8806.3498
	12.11	14.02285	4659.143	4.659143	14022.85	4.659143	-0.000997	-0.09974	8806.3498
	12.21	14.02275	4696.902	4.696902	14022.75	4.696902	-0.001004	-0.10045	8806.287
	12.31	14.02265	4734.001	4.734661	14022.65	4.734001	-0.001012	-0.10116	8806.2242
	12.41	14.0223	4//2.42	4.77242	14022.3	4.77242	-0.001037	-0.10300	8805.0044
	12.01	14.0222	4010.179	4.010179	14022.2	4.010179	-0.001044	-0.10437	0000.9410
	12.01	14.02100	4047.930	4.04/930	14021.00	4.04/930	-0.001003	0.110029	0000.0902
	12.71	14.02135	4000.097	4.000097	14021.33	4.000097	-0.001104	0 11142	0000.4070
	12.01	14.0212	4923.430	4.923430	14021.2	4.923430	-0.001113	0 11202	9905 199
	12.91	14.021	4901.215	4.901213	14021	4.901213	-0.001129	0.11292	2201 0006
	13.01	14.0207	5036 733	4.990974 5.036733	14020.7	5.036733	0.001172	0 11710	8804 8112
	13.11	14.0204	5030.733	5.030733	14020.4	5.030733	0.001172	0 11862	8804 6856
	13 31	14.0202	5112 251	5 112251	14020.2	5 112251	-0.001100	-0.11002	8804 6228
	13 41	14.0201	5150.01	5 15001	14020.1	5 15001	-0.001100	-0.11000	8804 56
	13 51	14 0199	5187 769	5 187769	14019 9	5 187769	-0.001208	-0 12075	8804 4972
	13 61	14 0199	5225 528	5 225528	14019.9	5 225528	-0.001208	-0 12075	8804 4972
	13.71	14,0196	5263,287	5.263287	14019.6	5.263287	-0.001229	-0.12289	8804.3088
	13.81	14.0196	5301.046	5.301046	14019.6	5.301046	-0.001229	-0.12289	8804.3088
	13.91	14.01955	5338.805	5.338805	14019.55	5.338805	-0.001232	-0.12325	8804.2774
	14.01	14.0195	5376.564	5.376564	14019.5	5.376564	-0.001236	-0.1236	8804.246
	14.11	14.01945	5414.323	5.414323	14019.45	5.414323	-0.00124	-0.12396	8804.2146

14.21	14.0194	5452.082	5.452082	14019.4	5.452082	-0.001243	-0.12432	8804.1832
14.31	14.0194	5489.841	5.489841	14019.4	5.489841	-0.001243	-0.12432	8804.1832
14.41	14.0192	5527.6	5.5276	14019.2	5.5276	-0.001257	-0.12574	8804.0576
14.51	14.01905	5565.359	5.565359	14019.05	5.565359	-0.001268	-0.12681	8803.9634
14.61	14.01905	5603.118	5.603118	14019.05	5.603118	-0.001268	-0.12681	8803.9634
14.71	14.0189	5640.877	5.640877	14018.9	5.640877	-0.001279	-0.12788	8803.8692
14.81	14.0188	5678.636	5.678636	14018.8	5.678636	-0.001286	-0.12859	8803.8064
14.91	14.01875	5716.395	5.716395	14018.75	5.716395	-0.001289	-0.12895	8803.775
15.01	14.0187	5754.154	5.754154	14018.7	5.754154	-0.001293	-0.1293	8803.7436
15.11	14.01865	5791.913	5.791913	14018.65	5.791913	-0.001297	-0.12966	8803.7122
15.21	14.01835	5829.672	5.829672	14018.35	5.829672	-0.001318	-0.1318	8803.5238
15.31	14.01815	5867.431	5.867431	14018.15	5.867431	-0.001332	-0.13322	8803.3982
15.41	14.018	5905.19	5.90519	14018	5.90519	-0.001343	-0.13429	8803.304
15.51	14.01785	5942.949	5.942949	14017.85	5.942949	-0.001354	-0.13536	8803.2098
15.61	14.01775	5980.708	5.980708	14017.75	5.980708	-0.001361	-0.13607	8803.147
15.71	14.0177	6018.467	6.018467	14017.7	6.018467	-0.001364	-0.13643	8803.1156
15.81	14.0173	6056.226	6.056226	14017.3	6.056226	-0.001393	-0.13928	8802.8644
15.91	14.0173	6093.985	6.093985	14017.3	6.093985	-0.001393	-0.13928	8802.8644
16.01	14.017	6131.744	6.131744	14017	6.131744	-0.001414	-0.14141	8802.676
16.11	14.01685	6169.503	6.169503	14016.85	6.169503	-0.001425	-0.14248	8802.5818
16.21	14.0167	6207.262	6.207262	14016.7	6.207262	-0.001436	-0.14355	8802.4876
16.31	14.01655	6245.021	6.245021	14016.55	6.245021	-0.001446	-0.14462	8802.3934
16.41	14.01635	6282.78	6.28278	14016.35	6.28278	-0.00146	-0.14604	8802.2678
16.51	14.01635	6320.539	6.320539	14016.35	6.320539	-0.00146	-0.14604	8802.2678
16.61	14.01635	6358.2 98	6.358298	14016.35	6.358298	-0.00146	-0.14604	8802.2678
16.71	14.01635	6396.057	6.396057	14016.35	6.396057	-0.00146	-0.14604	8802.2678
16.81	14.01625	6433.816	6.433816	14016.25	6.433816	-0.001468	-0.14676	8802.205
16.91	14.0158	6471.575	6.471575	14015.8	6.471575	-0.0015	-0.14996	8801.9224
 17.01	14.01555	6509.3 <mark>3</mark> 4	6.509334	14015.55	6.509334	-0.001517	-0.15174	8801.7654
17.11	14.0154	6547.093	6.547093	14015.4	6.547093	-0.001528	-0.15281	8801.6712
17.21	14.01535	6584.852	6.584852	14015.35	6.584852	-0.001532	-0.15317	8801.6398
17.31	14.01525	6622.611	6.622611	14015.25	6.622611	-0.001539	-0.15388	8801.577
17.41	14.01515	6660.37	6.66037	14015.15	6.66037	-0.001546	-0.15459	8801.5142
17.51	14.015	6698.129	6.698129	14015	6.698129	-0.001557	-0.15566	8801.42
17.61	14.01485	6735.888	6.735888	14014.85	6.735888	-0.001567	-0.15673	8801.3258
17.71	14.0148	6773.647	6.773647	14014.8	6.773647	-0.001571	-0.15709	8801.2944
17.81	14.01455	6811.406	6.811406	14014.55	6.811406	-0.001589	-0.15887	8801.1374
17.91	14.01445	6849.165	6.849165	14014.45	6.849165	-0.001596	-0.15958	8801.0746
18.01	14.0143	6886.924	6.886924	14014.3	6.886924	-0.001606	-0.16065	8800.9804
18.11	14.0142	6924.683	6.924683	14014.2	6.924683	-0.001614	-0.16136	8800.9176
18.21	14.01405	6962.442	6.962442	14014.05	6.962442	-0.001624	-0.16243	8800.8234
18.31	14.01395	7000.201	7.000201	14013.95	7.000201	-0.001631	-0.16314	8800.7606
18.41	14.0138	7037.96	7.03796	14013.8	7.03796	-0.001642	-0.16421	8800.6664
18.51	14.01345	7075.719	7.075719	14013.45	7.075719	-0.001667	-0.1667	8800.4466
18.61	14.0134	7113.478	7.113478	14013.4	7.113478	-0.001671	-0.16706	8800.4152
18.71	14.01335	7151.237	7.151237	14013.35	7.151237	-0.001674	-0.16742	8800.3838
18.81	14.01315	7188.996	7.188996	14013.15	7.188996	-0.001688	-0.16884	8800.2582
18.91	14.01295	7226.755	7.226755	14012.95	7.226755	-0.001703	-0.17027	8800.1326
19.01	14.01285	7264.514	7.264514	14012.85	7.264514	-0.00171	-0.17098	8800.0698

19.11	14.01265	7302.273	7.302273	14012.65	7.302273	-0.001724	-0.1724	8799.9442
19.21	14.01245	7340.032	7.340032	14012.45	7.340032	-0.001738	-0.17383	8799.8186
19.31	14.01245	7377.791	7.377791	14012.45	7.377791	-0.001738	-0.17383	8799.8186
19.41	14.0124	7415.55	7.41555	14012.4	7.41555	-0.001742	-0.17418	8799.7872
19.51	14.01225	7453.309	7.453309	14012.25	7.453309	-0.001753	-0.17525	8799.693
19.61	14.01215	7491.068	7.491068	14012.15	7.491068	-0.00176	-0.17597	8799.6302
19.71	14.01155	7528.827	7.528827	14011.55	7.528827	-0.001802	-0.18024	8799.2534
19.81	14.0114	7566.586	7.566586	14011.4	7.566586	-0.001813	-0.18131	8799.1592
19.91	14.01125	7604.345	7.604345	14011.25	7.604345	-0.001824	-0.18238	8799.065
20	14.0108	7638.328	7.638328	14010.8	7.638328	-0.001856	-0.18558	8798.7824

Sintesa dan..., Markorijasti, FMIPA UI, 2008 Universitas Indonesia

Data Resistansi, Resistivitas, dan MR untuk Arus 0,5 mA, P = 3000 psi.

	I (A)	V (mV)	H (Oe)	H (kOe)	R (Ohm)	H (kOe)	MR	MR (%)	Rho (Ohm.cm)
	0.11	1.5726	128.06	0.12806	3145.28	0.128063	0	0	1975.23584
	0.21	1.5717	165.82	0.16582	3143.32	0.165822	-0.00062	-0.06232	1974.00496
	0.31	1.5716	203.58	0.20358	3143.1	0.203581	-0.00069	-0.06931	1973.8668
	0.41	1.5712	241.34	0.24134	3142.42	0.24134	-0.00091	-0.09093	1973.43976
	0.51	1.5709	279.1	0.2791	3141.86	0.279099	-0.00109	-0.10873	1973.08808
	0.61	1.5707	316.86	0.31686	3141.48	0.316858	-0.00121	-0.12082	1972.84944
	0.71	1.5706	354.62	0.35462	3141.26	0.354617	-0.00128	-0.12781	1972.71128
	0.81	1.5705	392.38	0.39238	3141	0.392376	-0.00136	-0.13608	1972.548
	0.91	1.5703	430.13	0.43013	3140.54	0.430135	-0.00151	-0.1507	1972.25912
	1.01	1.5701	467.89	0.46789	3140.2	0.467894	-0.00162	-0.16151	1972.0456
	1.11	1.5699	505.65	0.50565	3139.88	0.505653	-0.00172	-0.17169	1971.84464
	1.21	1.5697	543.41	0.54341	3139.42	0.543412	-0.00186	-0.18631	1971.55576
	1.31	1.5695	581.17	0.58117	3138.94	0.581171	-0.00202	-0.20157	1971.25432
	1.41	1.5693	618.93	0.61893	3138.64	0.61893	-0.00211	-0.21111	1971.06592
1.1	1.51	1.5691	656.69	0.65669	3138.24	0.656689	-0.00224	-0.22383	1970.81472
·· · · · ·	1.61	1.569	694.45	0.69445	3137.92	0.694448	-0.00234	-0.234	1970.61376
	1.71	1.5689	732.21	0.73221	3137.7	0.732207	-0.00241	-0.241	1970.4756
	1.81	1.5687	769.97	0.76997	3137.32	0.769966	-0.00253	-0.25308	1970.23696
1.1	1.91	1.5685	807.72	0.80772	3136.9	0.807725	-0.00266	-0.26643	1969.9732
	2.01	1.5683	845.48	0.84548	3136.5	0.845484	-0.00279	-0.27915	1969.722
	2.11	1.5675	883.24	0.88324	3134.96	0.883243	-0.00328	-0.32811	1968.75488
	2.21	1.5675	921	0.921	3134.96	0.921002	-0.00328	-0.32811	1968.75488
	2.31	1.5669	958.76	0.95876	3133.88	0.958761	-0.00362	-0.36245	1968.07664
	2.41	1.5668	996.52	0.99652	3133.64	0.99652	-0.0037	-0.37008	1967.92592
	2.51	1.5667	1034.3	1.03428	3133.32	1.034279	-0.0038	-0.38025	1967.72496
1.00	2.61	1.5666	1072	1.07204	3133.1	1.072038	-0.00387	-0.38725	1967.5868
	2.71	1.5664	1109.8	1.1098	3132.86	1.109797	-0.00395	-0.39488	1967.43608
	2.81	1.5664	1147.6	1.14756	3132.7	1.147556	-0.004	-0.39996	1967.3356
	2.91	1.5663	1185.3	1.18531	3132.56	1.185315	-0.00404	-0.40442	1967.24768
	3.01	1.5662	1223.1	1.22307	3132.44	1.223074	-0.00408	-0.40823	1967.17232
	3.11	1.5662	1260.8	1.26083	3132.4	1.260833	-0.0041	-0.4095	1967.1472
	3.21	1.5662	1298.6	1.29859	3132.4	1.298592	-0.0041	-0.4095	1967.1472
	3.31	1.5662	1336.4	1.33635	3132.38	1.336351	-0.0041	-0.41014	1967.13464
	3.41	1.566	1374.1	1.37411	3132.06	1.37411	-0.0042	-0.42031	1966.93368
	3.51	1.5658	1411.9	1.41187	3131.62	1.411869	-0.00434	-0.4343	1966.65736
	3.61	1.5656	1449.6	1.44963	3131.2	1.449628	-0.00448	-0.44765	1966.3936
	3.71	1.5654	1487.4	1.48739	3130.74	1.487387	-0.00462	-0.46228	1966.10472
	3.81	1.5651	1525.1	1.52515	3130.2	1.525146	-0.00479	-0.47945	1965.7656
	3.91	1.5644	1562.9	1.5629	3128.84	1.562905	-0.00523	-0.52269	1964.91152
	4.01	1.5644	1600.7	1.60066	3128.84	1.600664	-0.00523	-0.52269	1964.91152
	4.11	1.5644	1638.4	1.63842	3128.7	1.638423	-0.00527	-0.52714	1964.8236
	4.21	1.5642	1676.2	1.67618	3128.34	1.676182	-0.00539	-0.53858	1964.59752
	4.31	1.5642	1713.9	1.71394	3128.3	1.713941	-0.0054	-0.53986	1964.5724
	4.41	1.5641	1751.7	1.7517	3128.14	1.7517	-0.00545	-0.54494	1964.47192
	4.51	1.5639	1789.5	1.78946	3127.82	1.789459	-0.00555	-0.55512	1964.27096

4.61	1.5637	1827.2	1.82722	3127.4	1.827218	-0.00568	-0.56847	1964.0072
4.71	1.5636	1865	1.86498	3127.26	1.864977	-0.00573	-0.57292	1963.91928
4.81	1.5635	1902.7	1.90274	3127.02	1.902736	-0.00581	-0.58055	1963.76856
4.91	1.5634	1940.5	1.94049	3126.84	1.940495	-0.00586	-0.58628	1963.65552
5.01	1.5634	1978.3	1.97825	3126.78	1.978254	-0.00588	-0.58818	1963.61784
5.11	1.5633	2016	2.01601	3126.66	2.016013	-0.00592	-0.592	1963.54248
5.21	1.5633	2053.8	2.05377	3126.54	2.053772	-0.00596	-0.59581	1963.46712
5.31	1.563	2091.5	2.09153	3126.08	2.091531	-0.0061	-0.61044	1963.17824
5.41	1.5627	2129.3	2.12929	3125.46	2.12929	-0.0063	-0.63015	1962.78888
5.51	1.5624	2167	2.16705	3124.86	2.167049	-0.00649	-0.64923	1962.41208
5.61	1.5623	2204.8	2.20481	3124.62	2.204808	-0.00657	-0.65686	1962.26136
5.71	1.5623	2242.6	2.24257	3124.56	2.242567	-0.00659	-0.65876	1962.22368
5.81	1.5618	2280.3	2.28033	3123.52	2.280326	-0.00692	-0.69183	1961.57056
5.91	1.5617	2318.1	2.31808	3123.46	2.318085	-0.00694	-0.69374	1961.53288
6.01	1.5617	2355.8	2.35584	3123.34	2.355844	-0.00698	-0.69755	1961.45752
6.11	1.5616	2393.6	2.3936	3123.24	2.393603	-0.00701	-0.70073	1961.39472
6.21	1.5616	2431.4	2.43136	3123.22	2.431362	-0.00701	-0.70137	1961.38216
6.31	1.5615	2469.1	2.46912	3122.9	2.469121	-0.00712	-0.71154	1961.1812
6.41	1.5614	2506.9	2.50688	3122.88	2.50688	-0.00712	-0.71218	1961.16864
6.51	1.5614	2544.6	2.54464	3122.82	2.544639	-0.00714	-0.71409	1961.13096
6.61	1.5614	2582.4	2.5824	3122.74	2.582398	-0.00717	-0.71663	1961.08072
6.71	1.5614	2620.2	2.62016	3122.72	2.620157	-0.00717	-0.71727	1961.06816
6.81	1.5613	2657.9	2.65792	3122.62	2.657916	-0.0072	-0.72044	1961.00536
6.91	1.5613	2695.7	2.69567	3122.54	2.695675	-0.00723	-0.72299	1960.95512
7.01	1.5611	2733.4	2.73343	3122.2	2.733434	-0.00734	-0.7338	1960.7416
7.11	1.561	2771.2	2.77119	3122.04	2.771193	-0.00739	-0.73888	1960.64112
7.21	1.561	2809	2.80895	3121.94	2.808952	-0.00742	-0.74206	1960.57832
7.31	1.5607	2846.7	2.84671	3121.34	2.846711	-0.00761	-0.76114	1960.20152
7.41	1.5604	2884.5	2.88447	3120.88	2.88447	-0.00776	-0.77577	1959.91264
7.51	1.5603	2922.2	2.92223	3120.54	2.922229	-0.00787	-0.78658	1959.69912
7.61	1.5601	2960	2.95999	3120.1	2.959988	-0.00801	-0.80056	1959.4228
7.71	1.56	2997.7	2.99775	3120.06	2.997747	-0.00802	-0.80184	1959.39768
7.81	1.56	3035.5	3.03551	3120.04	3.035506	-0.00802	-0.80247	1959.38512
7.91	1.56	3073.3	3.07326	3119.96	3.073265	-0.00805	-0.80502	1959.33488
8.01	1.56	3111	3.11102	3119.94	3.111024	-0.00806	-0.80565	1959.32232
8.11	1.56	3148.8	3.14878	3119.9	3.148783	-0.00807	-0.80692	1959.2972
8.21	1.5598	3186.5	3.18654	3119.64	3.186542	-0.00815	-0.81519	1959.13392
8.31	1.5597	3224.3	3.2243	3119.3	3.224301	-0.00826	-0.826	1958.9204
8.41	1.5596	3262.1	3.26206	3119.26	3.26206	-0.00827	-0.82727	1958.89528
8.51	1.5596	3299.8	3.29982	3119.26	3.299819	-0.00827	-0.82727	1958.89528
8.61	1.5596	3337.6	3.33758	3119.2	3.33/5/8	-0.00829	-0.82918	1958.8576
8.71	1.5595	33/5.3	3.37534	3119.06	3.375337	-0.00834	-0.83363	1958.76968
8.81	1.5595	3413.1	3.4131	3119.02	3.413096	-0.00835	-0.8349	1958.74456
8.91	1.5594	3450.9	3.45085	3118.74	3.450855	-0.00844	-0.8438	1958.56872
9.01	1.0093	3488.6	3.40001	3110.08	3.400014	-0.00846	-0.045/1	1958.53104
9.11	1.5593	3526.4	3.52637	2110.58	3.5203/3	-0.00849	-0.04009	1908.40824
9.21	1.0092	2604.1	3.30413	2110.32	3.304132		-0.00/10	1938.30490
9.31	1.5592	2620.6	3.00109	2117.60	3.001091	0.00070	0 07014	1930.30490
9.4I	1.0000	2029.0	2.02903	5117.00	2.02902	-0.00078	-0.07014	1907.09040

	9.51	1.5588	3677.4	3.67741	3117.56	3.677409	-0.00881	-0.88132	1957.82768
	9.61	1.5586	3715.2	3.71517	3117.16	3.715168	-0.00894	-0.89404	1957.57648
	9.71	1.5584	3752.9	3.75293	3116.7	3.752927	-0.00909	-0.90866	1957.2876
	9.81	1.5582	3790.7	3.79069	3116.48	3.790686	-0.00916	-0.91566	1957.14944
	9.91	1.5582	3828.4	3.82844	3116.44	3.828445	-0.00917	-0.91693	1957.12432
	10	1.5582	3866.2	3.8662	3116.42	3.866204	-0.00918	-0.91757	1957.11176
	10.1	1.5581	3904	3.90396	3116.28	3.903963	-0.00922	-0.92202	1957.02384
	10.2	1.5581	3941.7	3.94172	3116.26	3.941722	-0.00923	-0.92265	1957.01128
	10.3	1.5581	3979.5	3.97948	3116.1	3.979481	-0.00928	-0.92774	1956.9108
	10.4	1.558	4017.2	4.01724	3115.92	4.01724	-0.00933	-0.93346	1956.79776
	10.5	1.5579	4055	4.055	3115.82	4.054999	-0.00937	-0.93664	1956.73496
	10.6	1.5579	4092.8	4.09276	3115.8	4.092758	-0.00937	-0.93728	1956.7224
	10.7	1.5579	4130.5	4.13052	3115.78	4.130517	-0.00938	-0.93791	1956.70984
	10.8	1.5579	4168.3	4.16828	3115.74	4.168276	-0.00939	-0.93919	1956.68472
	10.9	1.5578	4206	4.20603	3115.52	4.206035	-0.00946	-0.94618	1956.54656
	11	1.5576	4243.8	4.24379	3115.24	4.243794	-0.00955	-0.95508	1956.37072
	11.1	1.5575	4281.6	4.28155	3115.08	4.281553	-0.0096	-0.96017	1956.27024
	11.2	1.5575	4319.3	4.31931	3115.08	4.319312	-0.0096	-0.96017	1956.27024
1.1	11.3	1.5575	4357.1	4.35707	3114.94	4.357071	-0.00965	-0.96462	1956.18232
- 6	11.4	1.5575	4394.8	4.39483	3114.92	4.39483	-0.00965	-0.96526	1956.16976
	11.5	1.5574	4432.6	4.43259	3114.82	4.432589	-0.00968	-0.96844	1956.10696
	11.6	1.5574	4470.3	4.47035	3114.76	4.470348	-0.0097	-0.97034	1956.06928
1.0	11.7	1.5574	4508.1	4.50811	3114.74	4.508107	-0.00971	-0.97098	1956.05672
	11.8	1.5574	4545.9	4.54587	3114.72	4.545866	-0.00972	-0.97161	1956.04416
	11.9	1.5574	4583.6	4.58362	3114.72	4.583625	-0.00972	-0.97161	1956.04416
	12	1.5574	4621.4	4.62138	3114.72	4.621384	-0.00972	-0.97161	1956.04416
	12.1	1.5573	4659.1	4.65914	3114.66	4.659143	-0.00974	-0.97352	1956.00648
	12.2	1.5573	4696.9	4.6969	3114.64	4.696902	-0.00974	-0.97416	1955.99392
	12.3	1.5573	4734.7	4.73466	3114.6	4.734661	-0.00975	-0.97543	1955.9688
	12.4	1.5573	4772.4	4.77242	3114.58	4.77242	-0.00976	-0.97607	1955.95624
	12.5	1.5573	4810.2	4.81018	3114.56	4.810179	-0.00977	-0.9767	1955.94368
	12.6	1.5573	4847.9	4.84794	3114.54	4.847938	-0.00977	-0.97734	1955.93112
	12.7	1.5572	4885.7	4.8857	3114.48	4.885697	-0.00979	-0.97925	1955.89344
	12.8	1.5572	4923.5	4.92346	3114.46	4.923456	-0.0098	-0.97988	1955.88088
	12.9	1.5572	4961.2	4.96121	3114.46	4.961215	-0.0098	-0.97988	1955.88088
	13	1.5572	4999	4.99897	3114.46	4.998974	-0.0098	-0.97988	1955.88088
	13.1	1.5572	5036.7	5.03673	3114.46	5.036733	-0.0098	-0.97988	1955.88088
	13.2	1.5572	5074.5	5.07449	3114.34	5.074492	-0.00984	-0.9837	1955.80552
	13.3	1.5572	5112.3	5.11225	3114.3	5.112251	-0.00985	-0.98497	1955.7804
	13.4	1.5572	5150	5.15001	3114.3	5.15001	-0.00985	-0.98497	1955.7804
	13.5	1.55/1	5187.8	5.18///	3114.18	5.187769	-0.00989	-0.98878	1955.70504
	13.6	1.55/1	5225.5	5.22553	3114.14	5.225528	-0.0099	-0.99005	1955.67992
	13.7	1.55/1	5263.3	5.26329	3114.1	5.263287	-0.00991	-0.99133	1955.6548
	13.8	1.557	5301	5.30105	3114.08	5.301046	-0.00992	-0.99196	1955.64224
	13.9	1.55/	5358.8	5.3388	3113.90	5.338805	-0.00996	-0.995/8	1955.50688
	14	1.557	5414.0	5.37050	3113.9	5.3/0504	0.00998	-0.99/09	1900.0292
	14.1	1.0009	5414.3	5.41432	3113.00	5.414323	0.00999	0.00050	1955.50408
	14.2	1.5509	5452.1	5.45208	2112.04	5.452082	-0.01	1 00096	1900.49102
	14.3	1.0009	0409.0	J.40904	5113.0	J.40904	-0.01001	-1.00000	1900.4004

	14.4	1.5569	5527.6	5.5276	3113.78	5.5276	-0.01002	-1.0015	1955.45384
	14.5	1.5569	5565.4	5.56536	3113.74	5.565359	-0.01003	-1.00277	1955.42872
	14.6	1.5569	5603.1	5.60312	3113.7	5.603118	-0.01004	-1.00404	1955.4036
	14.7	1.5568	5640.9	5.64088	3113.68	5.640877	-0.01005	-1.00468	1955.39104
	14.8	1.5568	5678.6	5.67864	3113.62	5.678636	-0.01007	-1.00659	1955.35336
	14.9	1.5568	5716.4	5.71639	3113.58	5.716395	-0.01008	-1.00786	1955.32824
	15	1.5568	5754.2	5.75415	3113.58	5.754154	-0.01008	-1.00786	1955.32824
	15.1	1.5568	5791.9	5.79191	3113.58	5.791913	-0.01008	-1.00786	1955.32824
	15.2	1.5568	5829.7	5.82967	3113.56	5.829672	-0.01008	-1.0085	1955.31568
	15.3	1.5568	5867.4	5.86743	3113.54	5.867431	-0.01009	-1.00913	1955.30312
	15.4	1.5568	5905.2	5.90519	3113.52	5.90519	-0.0101	-1.00977	1955.29056
	15.5	1.5568	5942.9	5.94295	3113.5	5.942949	-0.0101	-1.0104	1955.278
	15.6	1.5568	5980.7	5.98071	3113.5	5.980708	-0.0101	-1.0104	1955.278
	15.7	1.5567	6018.5	6.01847	3113.48	6.018467	-0.01011	-1.01104	1955.26544
	15.8	1.5567	6056.2	6.05623	3113.44	6.056226	-0.01012	-1.01231	1955.24032
	15.9	1.5567	6094	6.09398	3113.36	6.093985	-0.01015	-1.01485	195 5.19008
	16	1.5566	6131.7	6.13174	3113.26	6.131744	-0.01018	-1.01803	1955.12728
	16.1	1.5566	6169.5	6.1695	3113.26	6.169503	-0.01018	-1.01803	1955.12728
1.1	16.2	1.5566	6207.3	6.20726	3113.24	6.207262	-0.01019	-1.01867	1955.11472
· .	16.3	1.5566	6245	6.24502	3113.24	6.245021	-0.01019	-1.01867	1955.11472
	16.4	1.5566	6282.8	6.28278	3113.24	6.28278	-0.01019	-1.01867	1955.11472
	16.5	1.5566	6320.5	6.32054	3113.18	6.320539	-0.01021	-1.02058	1955.07704
	16.6	1.5566	6358.3	6.3583	3113.18	6.358298	-0.01021	-1.02058	1955.07704
	16.7	1.5566	6396.1	6.39606	3113.18	6.396057	-0.01021	-1.02058	1955.07704
	16.8	1.5566	6433.8	6.43382	3113.12	6.433816	-0.01022	-1.02248	1955.03936
	16.9	1.5565	6471.6	6.47157	3113.04	6.471575	-0.01025	-1.02503	1954.98912
	17	1.5565	6509.3	6.50933	3113.04	6.509334	-0.01025	-1.02503	1954.98912
	17.1	1.5565	6547.1	6.54709	3113	6.547093	-0.01026	-1.0263	1954.964
	17.2	1.5565	6584.9	6.58485	3112.94	6.584852	-0.01028	-1.02821	1954.92632
	17.3	1.5564	6622.6	6.62261	3112.84	6.622611	-0.01031	-1.03139	1954.86352
	17.4	1.5564	6660.4	6.66037	3112.82	6.66037	-0.01032	-1.03202	1954.85096
	17.5	1.5564	6698.1	6.69813	3112.82	6.698129	-0.01032	-1.03202	1954.85096
	17.6	1.5564	6735.9	6.73589	3112.8	6.735888	-0.01033	-1.03266	1954.8384
	17.7	1.5564	6773.6	6.77365	3112.76	6.773647	-0.01034	-1.03393	1954.81328
	17.8	1.5564	6811.4	6.81141	3112.74	6.811406	-0.01035	-1.03457	1954.80072
	17.9	1.5564	6849.2	6.84916	3112.74	6.849165	-0.01035	-1.03457	1954.80072
	18	1.5564	6886.9	6.88692	3112.72	6.886924	-0.01035	-1.0352	1954.78816
	18.1	1.5564	6924.7	6.92468	3112.7	6.924683	-0.01036	-1.03584	1954.7756
	18.2	1.5564	6962.4	6.96244	3112.7	6.962442	-0.01036	-1.03584	1954.7756
	18.3	1.5563	7000.2	7.0002	3112.66	7.000201	-0.01037	-1.03711	1954.75048
	18.4	1.5563	7038	7.03796	3112.64	7.03796	-0.01038	-1.03775	1954.73792
	18.5	1.5563	7075.7	7.07572	3112.64	7.075719	-0.01038	-1.03775	1954.73792
	18.6	1.5563	7113.5	7.11348	3112.62	7.113478	-0.01038	-1.03838	1954.72536
	18.7	1.5563	7151.2	7.15124	3112.6	7.151237	-0.01039	-1.03902	1954.7128
	18.8	1.5563	7189	7.189	3112.58	7.188996	-0.0104	-1.03965	1954.70024
	18.9	1.5563	7226.8	7.22675	3112.58	7.226755	-0.0104	-1.03965	1954.70024
	19	1.5563	7264.5	7.26451	3112.56	7.264514	-0.0104	-1.04029	1954.68768
	19.1	1.5562	7302.3	7.30227	3112.48	7.302273	-0.01043	-1.04283	1954.63744
	19.2	1.5562	7340	7.34003	3112.4	7.340032	-0.01045	-1.04538	1954.5872

19.3	1.5562	7377.8	7.37779	3112.38	7.377791	-0.01046	-1.04601	1954.57464
19.4	1.5561	7415.5	7.41555	3112.28	7.41555	-0.01049	-1.04919	1954.51184
19.5	1.5561	7453.3	7.45331	3112.24	7.453309	-0.0105	-1.05046	1954.48672
19.6	1.5561	7491.1	7.49107	3112.22	7.491068	-0.01051	-1.0511	1954.47416
19.7	1.5561	7528.8	7.52883	3112.22	7.528827	-0.01051	-1.0511	1954.47416
19.8	1.5561	7566.6	7.56659	3112.14	7.566586	-0.01054	-1.05364	1954.42392
19.9	1.556	7604.3	7.60434	3112	7.604345	-0.01058	-1.05809	1954.336
20	1.556	7638.3	7.63833	3111.94	7.638328	-0.0106	-1.06	1954.29832

LAMPIRAN 5

	I (A)	V (mV)	H (Oe)	H (kOe)	R (Ohm)	H (kOe)	MR	MR (%)	Rho (Ohm.cm)
	0.11	0.47569	128.063	0.12806	475.69	0.12806	0	0	298.73332
	0.21	0.47483	165.822	0.16582	474.83	0.16582	-0.00181	-0.18079	298.19324
	0.31	0.47406	203.581	0.20358	474.06	0.20358	-0.00343	-0.34266	297.70968
	0.41	0.47389	241.34	0.24134	473.89	0.24134	-0.00378	-0.3784	297.60292
	0.51	0.47356	279.099	0.2791	473.56	0.2791	-0.00448	-0.44777	297.39568
	0.61	0.47319	316.858	0.31686	473.19	0.31686	-0.00526	-0.52555	297.16332
	0.71	0.47283	354.617	0.35462	472.83	0.35462	-0.00601	-0.60123	296.93724
	0.81	0.47253	392.376	0.39238	472.53	0.39238	-0.00664	-0.6643	296.74884
	0.91	0.4723	430.135	0.43013	472.3	0.43013	-0.00713	-0.71265	296.6044
	1.01	0.47209	467.894	0.46789	472.09	0.46789	-0.00757	-0.7568	296.47252
	1.11	0.47185	505.653	0.50565	471.85	0.50565	-0.00807	-0.80725	296.3218
	1.21	0.47166	543.412	0.54341	471.66	0.54341	-0.00847	-0.84719	296.20248
	1.31	0.4715	581.171	0.58117	471.5	0.58117	-0.00881	-0.88083	296.102
	1.41	0.47136	618.93	0.61893	471.36	0.61893	-0.0091	-0.91026	296.01408
	1.51	0.4712	656.689	0.65669	471.2	0.65669	-0.00944	-0.94389	295.9136
A	1.61	0.47109	694.448	0.69445	471.09	0.69445	-0.00967	-0.96702	295.84452
	1.71	0.47099	732.207	0.73221	470.99	0.73221	-0.00988	-0.98804	295.78172
	1.81	0.4709	769.966	0.76997	470.9	0.76997	-0.01007	-1.00696	295.7252
100	1.91	0.47081	807.725	0.80772	470.81	0.80772	-0.01026	-1.02588	295.66868
	2.01	0.47074	845.484	0.84548	470.74	0.84548	-0.01041	-1.04059	295.62472
	2.11	0.47066	883.243	0.88324	470.66	0.88324	-0.01057	-1.05741	295.57448
	2.21	0.47058	921.002	0.921	470.58	0.921	-0.01074	-1.07423	295.52424
	2.31	0.47052	958.761	0.95876	470.52	0.95876	-0.01087	-1.08684	295.48656
	2.41	0.47045	996.52	0.99652	470.45	0.99652	-0.01102	-1.10156	295.4426
	2.51	0.4704	1034.28	1.03428	470.4	1.03428	-0.01112	-1.11207	295.4112
	2.61	0.47036	1072.04	1.07204	470.36	1.07204	-0.0112	-1.12048	295.38608
	2.71	0.47032	1109.8	1.1098	470.32	1.1098	-0.01129	-1.12889	295.36096
	2.81	0.47026	1147.56	1.14756	470.26	1.14756	-0.01141	-1.1415	295.32328
	2.91	0.47021	1185.31	1.18531	470.21	1.18531	-0.01152	-1.15201	295.29188
	3.01	0.47016	1223.07	1.22307	470.16	1.22307	-0.01163	-1.16252	295.26048
	3.11	0.47011	1260.83	1.26083	470.11	1.26083	-0.01173	-1.17303	295.22908
	3.21	0.47007	1298.59	1.29859	470.07	1.29859	-0.01181	-1.18144	295.20396
	3.31	0.47002	1336.35	1.33635	470.02	1.33635	-0.01192	-1.19195	295.17256
	3.41	0.46998	1374.11	1.37411	469.98	1.37411	-0.012	-1.20036	295.14744
	3.51	0.46994	1411.87	1.41187	469.94	1.41187	-0.01209	-1.20877	295.12232
	3.61	0.46992	1449.63	1.44963	469.92	1.44963	-0.01213	-1.21297	295.10976
	3.71	0.46988	1487.39	1.48739	469.88	1.48739	-0.01221	-1.22138	295.08464
	3.81	0.46984	1525.15	1.52515	469.84	1.52515	-0.0123	-1.22979	295.05952
	3.91	0.46981	1562.9	1.5629	469.81	1.5629	-0.01236	-1.2361	295.04068
	4.01	0.46979	1600.66	1.60066	469.79	1.60066	-0.0124	-1.2403	295.02812
	4.11	0.46975	1638.42	1.63842	469.75	1.63842	-0.01249	-1.24871	295.003
	4.21	0.46973	1676.18	1.67618	469.73	1.67618	-0.01253	-1.25292	294.99044
	4.31	0.46969	1713.94	1.71394	469.69	1.71394	-0.01261	-1.26133	294.96532
	4.41	0.46964	1751.7	1.7517	469.64	1.7517	-0.01272	-1.27184	294.93392
	4.51	0.46961	1789.46	1.78946	469.61	1.78946	-0.01278	-1.27814	294.91508

	4.61	0.46959	1827.22	1.82722	469.59	1.82722	-0.01282	-1.28235	294.90252
	4.71	0.46958	1864.98	1.86498	469.58	1.86498	-0.01284	-1.28445	294.89624
	4.81	0.46956	1902.74	1.90274	469.56	1.90274	-0.01289	-1.28865	294.88368
	4.91	0.46953	1940.49	1.94049	469.53	1.94049	-0.01295	-1.29496	294.86484
	5.01	0.46953	1978.25	1.97825	469.53	1.97825	-0.01295	-1.29496	294.86484
	5.11	0.46951	2016.01	2.01601	469.51	2.01601	-0.01299	-1.29917	294.85228
	5.21	0.46948	2053.77	2.05377	469.48	2.05377	-0.01305	-1.30547	294.83344
	5.31	0.46947	2091.53	2.09153	469.47	2.09153	-0.01308	-1.30757	294.82716
	5.41	0.46945	2129.29	2.12929	469.45	2.12929	-0.01312	-1.31178	294.8146
	5.51	0.46944	2167.05	2.16705	469.44	2.16705	-0.01314	-1.31388	294.80832
	5.61	0.4694	2204.81	2.20481	469.4	2.20481	-0.01322	-1.32229	294.7832
	5.71	0.46936	2242.57	2.24257	469.36	2.24257	-0.01331	-1.3307	294.75808
	5.81	0.46935	2280.33	2.28033	469.35	2.28033	-0.01333	-1.3328	294.7518
	5.91	0.46934	2318.08	2.31808	469.34	2.31808	-0.01335	-1.3349	294.74552
	6.01	0.4693	2355.84	2.35584	469.3	2.35584	-0.01343	-1.34331	294.7204
	6.11	0.4693	2393.6	2.3936	469.3	2.3936	-0.01343	-1.34331	294.7204
	6.21	0.46929	2431.36	2.43136	469.29	2.43136	-0.01345	-1.34541	294.71412
	6.31	0.46926	2469.12	2.46912	469.26	2.46912	-0.01352	-1.35172	294.69528
1.1	6.41	0.46925	2506.88	2.50688	469.25	2.50688	-0.01354	-1.35382	294.689
- A.	6.51	0.46926	2544.64	2.54464	469.26	2.54464	-0.01352	-1.35172	294.69528
	6.61	0.46925	2582.4	2.5824	469.25	2.5824	-0.01354	-1.35382	294.689
	6.71	0.46922	2620.16	2.62016	469.22	2.62016	-0.0136	-1.36013	294.67016
1	6.81	0.46921	2657.92	2.65792	469.21	2.65792	-0.01362	-1.36223	294.66388
	6.91	0.4692	2695.67	2.69567	469.2	2.69567	-0.01364	-1.36433	294.6576
	7.01	0.46918	2733.43	2.73343	469.18	2.73343	-0.01369	-1.36854	294.64504
1 mar.	7.11	0.46918	2771.19	2.77119	469.18	2.77119	-0.01369	-1.36854	294.64504
	7.21	0.46917	2808.95	2.80895	469.17	2.80895	-0.01371	-1.37064	294.63876
	7.31	0.46914	2846.71	2.84671	469.14	2.84671	-0.01377	-1.37695	294.61992
	7.41	0.46914	2884.47	2.88447	469.14	2.88447	-0.01377	-1.37695	294.61992
	7.51	0.46913	2922.23	2.92223	469.13	2.92223	-0.01379	-1.37905	294.61364
	7.61	0.46912	2959.99	2.95999	469.12	2.95999	-0.01381	-1.38115	294.60736
	7.71	0.4691	2997.75	2.99775	469.1	2.99775	-0.01385	-1.38536	294.5948
	7.81	0.46911	3035.51	3.03551	469.11	3.03551	-0.01383	-1.38325	294.60108
	7.91	0.46908	3073.26	3.07326	469.08	3.07326	-0.0139	-1.38956	294.58224
	8.01	0.46906	3111.02	3.11102	469.06	3.11102	-0.01394	-1.39376	294.56968
	8.11	0.46904	3148.78	3.14878	469.04	3.14878	-0.01398	-1.39797	294.55712
	8.21	0.46901	3186.54	3.18654	469.01	3.18654	-0.01404	-1.40428	294.53828
	8.31	0.46902	3224.3	3.2243	469.02	3.2243	-0.01402	-1.40217	294.54456
	8.41	0.469	3262.06	3.26206	469	3.26206	-0.01406	-1.40638	294.532
	0.01	0.409	3299.02	3.29902	409	3.29902	-0.01400	-1.40030	294.002
	0.01	0.40097	2275 24	2 27521	400.97	2 27524	-0.01413	1 41260	294.51510
	0.71	0.40097	2/12 1	2 / 121	400.97	2 / 121	0.01413	1 41269	294.51510
	0.01 8.01	0.40097	3413.1	3.4131	400.97	3 4 5 0 8 5	0.01413	1 / 1680	294.51510
	0.91	0.40095	3/88 61	3 48861	400.95	3 48861	0.01417	1 / 222	294.3000
	9.01 9.11	0 46801	3526 37	3 52637	468 01	3 52637	-0 01425	-1 4253	204.40170
	9.11	0 46801	3564 12	3 56413	468 04	3 56413	-0.01420	-1 41800	207.77040
	9.21	0 46803	3601.80	3 60180	468 93	3 60180	-0 01421	-1 42100	204.404
	9 4 1	0 46803	3639 65	3 63965	468 93	3 63965	-0 01421	-1 42100	204.40004
	0.71	5. 10000	5555.05	5.55500	100.00	5.55500	0.01-121	1.12100	L0 1.70007

_									
	9.51	0.46894	3677.41	3.67741	468.94	3.67741	-0.01419	-1.41899	294.49432
	9.61	0.46893	3715.17	3.71517	468.93	3.71517	-0.01421	-1.42109	294.48804
	9.71	0.4689	3752.93	3.75293	468.9	3.75293	-0.01427	-1.4274	294.4692
	9.81	0.4689	3790.69	3.79069	468.9	3.79069	-0.01427	-1.4274	294.4692
	9.91	0.4689	3828.44	3.82844	468.9	3.82844	-0.01427	-1.4274	294.4692
	10	0.46887	3866.2	3.8662	468.87	3.8662	-0.01434	-1.43371	294.45036
	10.1	0.46887	3903.96	3.90396	468.87	3.90396	-0.01434	-1.43371	294.45036
	10.2	0.46888	3941.72	3.94172	468.88	3.94172	-0.01432	-1.4316	294.45664
	10.3	0.46887	3979.48	3.97948	468.87	3.97948	-0.01434	-1.43371	294.45036
	10.4	0.46888	4017.24	4.01724	468.88	4.01724	-0.01432	-1.4316	294.45664
	10.5	0.46889	4055	4.055	468.89	4.055	-0.0143	-1.4295	294.46292
	10.6	0.46888	4092.76	4.09276	468.88	4.09276	-0.01432	-1.4316	294.45664
	10.7	0.46886	4130.52	4.13052	468.86	4.13052	-0.01436	-1.43581	294.44408
	10.8	0.46883	4168.28	4.16828	468.83	4.16828	-0.01442	-1.44212	294.42524
	10.9	0.46884	4206.03	4.20603	468.84	4.20603	-0.0144	-1.44001	294.43152
	11	0.46884	4243.79	4.24379	468.84	4.24379	-0.0144	-1.44001	294.43152
	11.1	0.46882	4281.55	4.28155	468.82	4.28155	-0.01444	-1.44422	294.41896
1.1	11.2	0.46883	4319.31	4.31931	468.83	4.31931	-0.01442	-1.44212	294.42524
1.1	11.3	0.46882	4357.07	4.35707	468.82	4.35707	-0.01444	-1.44422	294.41896
·	11.4	0.46881	4394.83	4.39483	468.81	4.39483	-0.01446	-1.44632	294.41268
	11.5	0.46881	4432.59	4.43259	468.81	4.43259	-0.01446	-1.44632	294.41268
	11.6	0.46879	4470.35	4.47035	468.79	4.47035	-0.01451	-1.45052	294.40012
1.1	11.7	0.46878	4508.11	4.50811	468.78	4.50811	-0.01453	-1.45263	294.39384
	11.8	0.46878	4545.87	4.54587	468.78	4.54587	-0.01453	-1.45263	294.39384
	11.9	0.46879	4583.6 <mark>2</mark>	4.58362	468.79	4.58362	-0.01451	-1.45052	294.40012
	12	0.46876	4621.38	4.62138	468.76	4.62138	-0.01457	-1.45683	294.38128
	12.1	0.46873	4659.14	4.65914	468.73	4.65914	-0.01463	-1.46314	294.36244
	12.2	0.46871	4696.9	4.6969	468.71	4.6969	-0.01467	-1.46734	294.34988
	12.3	0.46871	4734.66	4.73466	468.71	4.73466	-0.01467	-1.46734	294.34988
	12.4	0.46871	4772.42	4.77242	468.71	4.77242	-0.01467	-1.46734	294.34988
	12.5	0.46868	4810.18	4.81018	468.68	4.81018	-0.01474	-1.47365	294.33104
	12.6	0.46868	4847.94	4.84794	468.68	4.84794	-0.01474	-1.47365	294.33104
	12.7	0.46868	4885.7	4.8857	468.68	4.8857	-0.01474	-1.47365	294.33104
	12.8	0.46867	4923.46	4.92346	468.67	4.92346	-0.01476	-1.47575	294.32476
	12.9	0.46866	4961.21	4.96121	468.66	4.96121	-0.01478	-1.47785	294.31848
	13	0.46865	4998.97	4.99897	468.65	4.99897	-0.0148	-1.47996	294.3122
	13.1	0.46865	5036.73	5.03673	468.65	5.03673	-0.0148	-1.47996	294.3122
	13.2	0.46864	5074.49	5.07449	468.64	5.07449	-0.01482	-1.48206	294.30592
	13.3	0.46865	5112.25	5.11225	468.65	5.11225	-0.0148	-1.47996	294.3122
	13.4	0.46865	5150.01	5.15001	468.65	5.15001	-0.0148	-1.47996	294.3122
	13.5	0.46863	5187.77	5.18777	468.63	5.18777	-0.01484	-1.48416	294.29964
	13.6	0.46862	5225.53	5.22553	468.62	5.22553	-0.01486	-1.48626	294.29336
	13.7	0.4686	5263.29	5.26329	468.6	5.26329	-0.0149	-1.49047	294.2808
	13.8	0.46859	5301.05	5.30105	468.59	5.30105	-0.01493	-1.49257	294.27452
	13.9	0.46861	5338.8	5.3388	468.61	5.3388	-0.01488	-1.48836	294.28708
	14	0.4686	5376.56	5.37656	468.6	5.37656	-0.0149	-1.49047	294.2808
	14.1	0.46861	5414.32	5.41432	468.61	5.41432	-0.01488	-1.48836	294.28708
	14.2	0.46861	5452.08	5.45208	468.61	5.45208	-0.01488	-1.48836	294.28708
	14.3	0.46858	5489.84	5.48984	468.58	5.48984	-0.01495	-1.49467	294.26824

	14.4	0.46858	5527.6	5.5276	468.58	5.5276	-0.01495	-1.49467	294.26824
	14.5	0.46857	5565.36	5.56536	468.57	5.56536	-0.01497	-1.49677	294.26196
	14.6	0.46856	5603.12	5.60312	468.56	5.60312	-0.01499	-1.49888	294.25568
	14.7	0.46856	5640.88	5.64088	468.56	5.64088	-0.01499	-1.49888	294.25568
	14.8	0.46856	5678.64	5.67864	468.56	5.67864	-0.01499	-1.49888	294.25568
	14.9	0.46855	5716.39	5.71639	468.55	5.71639	-0.01501	-1.50098	294.2494
	15	0.46853	5754.15	5.75415	468.53	5.75415	-0.01505	-1.50518	294.23684
	15.1	0.46855	5791.91	5.79191	468.55	5.79191	-0.01501	-1.50098	294.2494
	15.2	0.46855	5829.67	5.82967	468.55	5.82967	-0.01501	-1.50098	294.2494
	15.3	0.46854	5867.43	5.86743	468.54	5.86743	-0.01503	-1.50308	294.24312
	15.4	0.46854	5905.19	5.90519	468.54	5.90519	-0.01503	-1.50308	294.24312
	15.5	0.46853	5942.95	5.94295	468.53	5.94295	-0.01505	-1.50518	294.23684
	15.6	0.46852	5980.71	5.98071	468.52	5.98071	-0.01507	-1.50728	294.23056
	15.7	0.4685	6018.47	6.01847	468.5	6.01847	-0.01511	-1.51149	294.218
	15.8	0.46851	6056.23	6.05623	468.51	6.05623	-0.01509	-1.50939	294.22428
	15.9	0.4685	6093.98	6.09398	468.5	6.09398	-0.01511	-1.51149	294.218
	16	0.4685	6131.74	6.13174	468.5	6.13174	-0.01511	-1.51149	294.218
	16.1	0.46847	6169.5	6.1695	468.47	6.1695	-0.01518	-1.5178	294.19916
1.1	16.2	0.46845	6207.26	6.20726	468.45	6.20726	-0.01522	-1.522	294.1866
·	16.3	0.46845	6245.02	6.24502	468.45	6.24502	-0.01522	-1.522	294.1866
	16.4	0.46844	6282.78	6.28278	468.44	6.28278	-0.01524	-1.5241	294.18032
	16.5	0.46844	6320.54	6.32054	468.44	6.32054	-0.01524	-1.5241	294.18032
1.1	16.6	0.46844	6358.3	6.3583	468.44	6.3583	-0.01524	-1.5241	294.18032
	16.7	0.46844	6396.06	6.39606	468.44	6.39606	-0.01524	-1.5241	294.18032
	16.8	0.46842	6433.82	6.43382	468.42	6.43382	-0.01528	-1.52831	294.16776
	16.9	0.46841	6471.57	6.47157	468.41	6.47157	-0.0153	-1.53041	294.16148
	17	0.4684	6509.33	6.50933	468.4	6.50933	-0.01533	-1.53251	294.1552
	17.1	0.46839	6547.09	6.54709	468.39	6.54709	-0.01535	-1.53461	294.14892
	17.2	0.46837	6584.85	6.58485	468.37	6.58485	-0.01539	-1.53882	294.13636
	17.3	0.46836	6622.61	6.62261	468.36	6.62261	-0.01541	-1.54092	294.13008
	17.4	0.46834	6660.37	6.66037	468.34	6.66037	-0.01545	-1.54512	294.11752
	17.5	0.46836	6698.13	6.69813	468.36	6.69813	-0.01541	-1.54092	294.13008
	17.6	0.46836	6735.89	6.73589	468.36	6.73589	-0.01541	-1.54092	294.13008
	17.7	0.46835	6773.65	6.77365	468.35	6.77365	-0.01543	-1.54302	294.1238
	17.8	0.46833	6811.41	6.81141	468.33	6.81141	-0.01547	-1.54723	294.11124
	17.9	0.46831	6849.16	6.84916	468.31	6.84916	-0.01551	-1.55143	294.09868
	18	0.46831	6886.92	6.88692	468.31	6.88692	-0.01551	-1.55143	294.09868
	18.1	0.46831	6924.68	6.92468	468.31	6.92468	-0.01551	-1.55143	294.09868
	18.2	0.46832	6962.44	6.96244	468.32	6.96244	-0.01549	-1.54933	294.10496
	18.3	0.46833	7000.2	7.0002	468.33	7.0002	-0.01547	-1.54723	294.11124
	18.4	0.46831	7037.96	7.03796	468.31	7.03796	-0.01551	-1.55143	294.09868
	18.5	0.46833	7075.72	7.07572	468.33	7.07572	-0.01547	-1.54723	294.11124
	18.6	0.46833	7113.48	7.11348	468.33	7.11348	-0.01547	-1.54723	294.11124
	18.7	0.46833	7151.24	7.15124	468.33	7.15124	-0.01547	-1.54723	294.11124
	18.8	0.46835	7189	7.189	468.35	7.189	-0.01543	-1.54302	294.1238
	18.9	0.46835	7226.75	7.22675	468.35	7.22675	-0.01543	-1.54302	294.1238
	19	0.46835	7264.51	7.26451	468.35	7.26451	-0.01543	-1.54302	294.1238
	19.1	0.46837	7302.27	7.30227	468.37	7.30227	-0.01539	-1.53882	294.13636
	19.2	0.46837	7340.03	7.34003	468.37	7.34003	-0.01539	-1.53882	294.13636

19.3	0.46834	7377.79	7.37779	468.34	7.37779	-0.01545	-1.54512	294.11752
19.4	0.46832	7415.55	7.41555	468.32	7.41555	-0.01549	-1.54933	294.10496
19.5	0.46834	7453.31	7.45331	468.34	7.45331	-0.01545	-1.54512	294.11752
19.6	0.46834	7491.07	7.49107	468.34	7.49107	-0.01545	-1.54512	294.11752
19.7	0.46832	7528.83	7.52883	468.32	7.52883	-0.01549	-1.54933	294.10496
19.8	0.46831	7566.59	7.56659	468.31	7.56659	-0.01551	-1.55143	294.09868
19.9	0.46829	7604.34	7.60434	468.29	7.60434	-0.01556	-1.55563	294.08612
20	0.46826	7638.33	7.63833	468.26	7.63833	-0.01562	-1.56194	294.06728

LAMPIRAN 6

Data Resistansi, Resistivitas	, dan MR untuk I = 0.5 mA .	P = 5000 psi, T = 1100C
-------------------------------	---------------------------------------	--------------------------

	I (A)	V (mV)	H (Oe)	H (kOe)	R (Ohm)	H (kOe)	MR	MR (%)	Rho (Ohm.cm)
	0.11	0.16284	128.063	0.12806	325.67	0.12806	-1.0473E-15	-1E-13	204.52076
	0.21	0.16249	165.822	0.16582	324.974	0.16582	-0.00213849	-0.21385	204.0833953
	0.31	0.16237	203.581	0.20358	324.733	0.20358	-0.00287589	-0.28759	203.93258
	0.41	0.16223	241.34	0.24134	324.469	0.24134	-0.00368704	-0.3687	203.766683
	0.51	0.16219	279.099	0.2791	324.373	0.2791	-0.00398201	-0.3982	203.7063569
	0.61	0.16208	316.858	0.31686	324.157	0.31686	-0.00464568	-0.46457	203.570623
	0.71	0.16197	354.617	0.35462	323.941	0.35462	-0.00530934	-0.53093	203.4348891
	0.81	0.16186	392.376	0.39238	323.725	0.39238	-0.00597301	-0.5973	203.2991553
	0.91	0.16178	430.135	0.43013	323.557	0.43013	-0.0064892	-0.64892	203.1935845
	1.01	0.16169	467.894	0.46789	323.389	0.46789	-0.00700538	-0.70054	203.0880137
	1.11	0.16161	505.653	0.50565	323.22	0.50565	-0.00752157	-0.75216	202.9824429
	1.21	0.16156	543.412	0.54341	323.124	0.54341	-0.00781653	-0.78165	202.9221168
	1.31	0.16151	581.171	0.58117	323.028	0.58117	-0.0081115	-0.81115	202.8617906
	1.41	0.16144	618.93	0.61893	322.884	0.61893	-0.00855394	-0.85539	202.7713014
1.1	1.51	0.16138	656.689	0.65669	322.764	0.65669	-0.00892265	-0.89226	202.6958937
· A.	1.61	0.16132	694.448	0.69445	322.644	0.69445	-0.00929135	-0.92914	202.620486
	1.71	0.16129	732.207	0.73221	322.572	0.73221	-0.00951257	-0.95126	202.5752414
	1.81	0.16115	769.966	0.76997	322.308	0.76997	-0.01032372	-1.03237	202.4093444
1	1.91	0.16112	807.725	0.80772	322.236	0.80772	-0.01054495	-1.05449	202.3640998
	2.01	0.16113	845.484	0.84548	322.26	0.84548	-0.0104712	-1.04712	202.3791814
	2.11	0.16111	883.243	0.88324	322.212	0.88324	-0.01061869	-1.06187	202.3490183
	2.21	0.16108	921.002	0.921	322.164	0.921	-0.01076617	-1.07662	202.3188552
	2.31	0.16106	958.761	0.95876	322.116	0.95876	-0.01091365	-1.09136	202.2886921
	2.41	0.16102	996.52	0.99652	322.044	0.99652	-0.01113487	-1.11349	202.2434475
	2.51	0.16099	1034.28	1.03428	321.972	1.03428	-0.01135609	-1.13561	202.1982029
	2.61	0.16095	1072.04	1.07204	321.9	1.07204	-0.01157732	-1.15773	202.1529583
	2.71	0.16093	1109.8	1.1098	321.852	1.1098	-0.0117248	-1.17248	202.1227952
	2.81	0.1609	1147.56	1.14756	321.804	1.14756	-0.01187228	-1.18723	202.0926321
	2.91	0.16085	1185.31	1.18531	321.707	1.18531	-0.01216724	-1.21672	202.0323059
	3.01	0.16084	1223.07	1.22307	321.683	1.22307	-0.01224099	-1.2241	202 .0172244
	3.11	0.1609	1260.83	1.26083	321.804	1.26083	-0.01187228	-1.18723	202.0926321
	3.21	0.16079	1298.59	1.29859	321.587	1.29859	-0.01253595	-1.25359	201.9568982
	3.31	0.16078	1336.35	1.33635	321.563	1.33635	-0.01260969	-1.26097	201.9418167
	3.41	0.16075	1374.11	1.37411	321.491	1.37411	-0.01283091	-1.28309	201.8965721
	3.51	0.16073	1411.87	1.41187	321.467	1.41187	-0.01290465	-1.29047	201.8814906
	3.61	0.16073	1449.63	1.44963	321.467	1.44963	-0.01290465	-1.29047	201.8814906
	3.71	0.16071	1487.39	1.48739	321.419	1.48739	-0.01305213	-1.30521	201.8513275
	3.81	0.16069	1525.15	1.52515	321.371	1.52515	-0.01319962	-1.31996	201.8211644
	3.91	0.16069	1562.9	1.5629	321.371	1.5629	-0.01319962	-1.31996	201.8211644
	4.01	0.16065	1600.66	1.60066	321.299	1.60066	-0.01342084	-1.34208	201.7759198
	4.11	0.16064	1638.42	1.63842	321.275	1.63842	-0.01349458	-1.34946	201.7608382
	4.21	0.16063	1676.18	1.67618	321.251	1.67618	-0.01356832	-1.35683	201.7457567
	4.31	0.16061	1713.94	1.71394	321.227	1.71394	-0.01364206	-1.36421	201.7306752
	4.41	0.1606	1751.7	1.7517	321.203	1.7517	-0.0137158	-1.37158	201.7155936
	4.51	0.16059	1789.46	1.78946	321.179	1.78946	-0.01378954	-1.37895	201.7005121

	4.61	0.16058	1827.22	1.82722	321.155	1.82722	-0.01386328	-1.38633	201.6854305
	4.71	0.16057	1864.98	1.86498	321.131	1.86498	-0.01393703	-1.3937	201.670349
	4.81	0.16054	1902.74	1.90274	321.083	1.90274	-0.01408451	-1.40845	201.6401859
	4.91	0.16052	1940.49	1.94049	321.035	1.94049	-0.01423199	-1.4232	201.6100228
	5.01	0.16051	1978.25	1.97825	321.011	1.97825	-0.01430573	-1.43057	201.5949413
	5.11	0.16051	2016.01	2.01601	321.011	2.01601	-0.01430573	-1.43057	201.5949413
	5.21	0.16049	2053.77	2.05377	320.987	2.05377	-0.01437947	-1.43795	201.5798598
	5.31	0.16048	2091.53	2.09153	320.963	2.09153	-0.01445321	-1.44532	201.5647782
	5.41	0.16046	2129.29	2.12929	320.915	2.12929	-0.01460069	-1.46007	201.5346151
	5.51	0.16046	2167.05	2.16705	320.915	2.16705	-0.01460069	-1.46007	201.5346151
	5.61	0.16045	2204.81	2.20481	320.891	2.20481	-0.01467443	-1.46744	201.5195336
	5.71	0.16043	2242.57	2.24257	320.867	2.24257	-0.01474817	-1.47482	201.5044521
	5.81	0.16041	2280.33	2.28033	320.819	2.28033	-0.01489566	-1.48957	201.474289
	5.91	0.1604	2318.08	2.31808	320.795	2.31808	-0.0149694	-1.49694	201.4592074
	6.01	0.16035	2355.84	2.35584	320.699	2.35584	-0.01526436	-1.52644	201.3988813
	6.11	0.16035	2393.6	2.3936	320.699	2.3936	-0.01526436	-1.52644	201.3988813
	6.21	0.1604	2431.36	2.43136	320.795	2.43136	-0.0149694	-1.49694	201.4592074
	6.31	0.16037	2469.12	2.46912	320.747	2.46912	-0.01511688	-1.51169	201.4290444
1.1	6.41	0.16036	2506.88	2.50688	320.723	2.50688	-0.01519062	-1.51906	201.4139628
- A	6.51	0.16035	2544.64	2.54464	320.699	2.54464	-0.01526436	-1.52644	201.3988813
	6.61	0.16033	2582.4	2.5824	320.651	2.5824	-0.01541184	-1.54118	201.3687182
	6.71	0.1603	2620.16	2.62016	320.603	2.62016	-0.01555932	-1.55593	201.3385551
1.1	6.81	0.1603	2657.92	2.65792	320.603	2.65792	-0.01555932	-1.55593	201.3385551
	6.91	0.1603	2695.67	2.69567	320.603	2.69567	-0.01555932	-1.55593	201.3385551
	7.01	0.16029	2733.43	2.73343	320.579	2.73343	-0.01563307	-1.56331	201.3234736
1.0	7.11	0.16029	2771.19	2.77119	320.579	2.77119	-0.01563307	-1.56331	201.3234736
	7.21	0.16025	2808.95	2.80895	320.507	2.80895	-0.01585429	-1.58543	201.278229
	7.31	0.16024	2846.71	2.84671	320.483	2.84671	-0.01592803	-1.5928	201.2631474
	7.41	0.16023	2884.47	2.88447	320.459	2.88447	-0.01600177	-1.60018	201.2480659
	7.51	0.16022	2922.23	2.92223	320.435	2.92223	-0.01607551	-1.60755	201.2329843
	7.61	0.16021	2959.99	2.95999	320.411	2.95999	-0.01614925	-1.61493	201.2179028
	7.71	0.16021	2997.75	2.99775	320.411	2.99775	-0.01614925	-1.61493	201.2179028
	7.81	0.16018	3035.51	3.03551	320.363	3.03551	-0.01629673	-1.62967	201.1877397
	7.91	0.16018	3073.26	3.07326	320.363	3.07326	-0.01629673	-1.62967	201.1877397
	8.01	0.16017	3111.02	3.11102	320.339	3.11102	-0.01637047	-1.63705	201.1726582
	8.11	0.16017	3148.78	3.14878	320.339	3.14878	-0.01637047	-1.63705	201.1726582
	8.21	0.16016	3186.54	3.18654	320.315	3.18654	-0.01644422	-1.64442	201.1575766
	8.31	0.16016	3224.3	3.2243	320.315	3.2243	-0.01644422	-1.64442	201.1575766
	8.41	0.16016	3262.06	3.26206	320.315	3.26206	-0.01644422	-1.64442	201.1575766
	8.51	0.16015	3299.82	3.29982	320.291	3.29982	-0.01651796	-1.6518	201.1424951
	8.61	0.16013	3337.58	3.33758	320.267	3.33758	-0.0165917	-1.65917	201.1274136
	8.71	0.16012	3375.34	3.37534	320.243	3.37534	-0.01666544	-1.66654	201.112332
	8.81	0.16011	3413.1	3.4131	320.219	3.4131	-0.01673918	-1.67392	201.0972505
	8.91	0.1601	3450.85	3.45085	320.195	3.45085	-0.01681292	-1.68129	201.0821689
	9.01	0.16009	3488.61	3.48861	320.171	3.48861	-0.01688666	-1.68867	201.0670874
	9.11	0.16005	3526.37	3.52637	320.098	3.52637	-0.01710788	-1.71079	201.0218428
	9.21	0.16006	3564.13	3.56413	320.122	3.56413	-0.01703414	-1.70341	201.0369243
	9.31	0.16006	3601.89	3.60189	320.122	3.60189	-0.01703414	-1.70341	201.0369243
	9.41	0.16005	3639.65	3.63965	320.098	3.63965	-0.01710788	-1.71079	201.0218428

				1					
	9.51	0.16005	3677.41	3.67741	320.098	3.67741	-0.01710788	-1.71079	201.0218428
	9.61	0.16004	3715.17	3.71517	320.074	3.71517	-0.01718162	-1.71816	201.0067612
	9.71	0.16001	3752.93	3.75293	320.026	3.75293	-0.01732911	-1.73291	200.9765982
	9.81	0.16	3790.69	3.79069	320.002	3.79069	-0.01740285	-1.74028	200.9615166
	9.91	0.16	3828.44	3.82844	320.002	3.82844	-0.01740285	-1.74028	200.9615166
	10	0.15999	3866.2	3.8662	319.978	3.8662	-0.01747659	-1.74766	200.9464351
	10.1	0.15998	3903.96	3.90396	319.954	3.90396	-0.01755033	-1.75503	200.9313535
	10.2	0.15998	3941.72	3.94172	319.954	3.94172	-0.01755033	-1.75503	200.9313535
	10.3	0.15997	3979.48	3.97948	319.93	3.97948	-0.01762407	-1.76241	200.916272
	10.4	0.15997	4017.24	4.01724	319.93	4.01724	-0.01762407	-1.76241	200.916272
	10.5	0.15997	4055	4.055	319.93	4.055	-0.01762407	-1.76241	200.916272
	10.6	0.15997	4092.76	4.09276	319.93	4.09276	-0.01762407	-1.76241	200.916272
	10.7	0.15997	4130.52	4.13052	319.93	4.13052	-0.01762407	-1.76241	200.916272
	10.8	0.15995	4168.28	4.16828	319.906	4.16828	-0.01769781	-1.76978	200.9011905
	10.9	0.15991	4206.03	4.20603	319.81	4.20603	-0.01799277	-1.79928	200.8408643
	11	0.15992	4243.79	4.24379	319.834	4.24379	-0.01791903	-1.7919	200.8559459
	11.1	0.15992	4281.55	4.28155	319.834	4.28155	-0.01791903	-1.7919	200.8559459
	11.2	0.15991	4319.31	4.31931	319.81	4.31931	-0.01799277	-1.79928	200.8408643
1.1	11.3	0.15989	4357.07	4.35707	319.786	4.35707	-0.01806651	-1.80665	200.8257828
· •	11.4	0.15989	4394.83	4.39483	319.786	4.39483	-0.01806651	-1.80665	200.8257828
	11.5	0.15989	4432.59	4.43259	319.786	4.43259	-0.01806651	-1.80665	200.8257828
	11.6	0.15988	4470.35	4.47035	319.762	4.47035	-0.01814026	-1.81403	200.8107012
1.0	11.7	0.15987	4508.11	4.50811	319.738	4.50811	-0.018214	-1.8214	200.7956197
	11.8	0.15987	4545.87	4.54587	319.738	4.54587	-0.018214	-1.8214	200.7956197
	11.9	0.15987	4583.62	4.58362	319.738	4.58362	-0.018214	-1.8214	200.7956197
	12	0.15987	4621.38	4.62138	319.738	4.62138	-0.018214	-1.8214	200.7956197
	12.1	0.15985	4659.14	4.65914	319.69	4.65914	-0.01836148	-1.83615	200.7654566
	12.2	0.15986	4696.9	4.6969	319.714	4.6969	-0.01828774	-1.82877	200.7805382
	12.3	0.15985	4734.66	4.73466	319.69	4.73466	-0.01836148	-1.83615	200.7654566
	12.4	0.15983	4772.42	4.77242	319.666	4.77242	-0.01843522	-1.84352	200.7503751
	12.5	0.15985	4810.18	4.81018	319.69	4.81018	-0.01836148	-1.83615	200.7654566
	12.6	0.15983	4847.94	4.84794	319.666	4.84794	-0.01843522	-1.84352	200.7503751
	12.7	0.15982	4885.7	4.8857	319.642	4.8857	-0.01850896	-1.8509	200.7352935
	12.8	0.15981	4923.46	4.92346	319.618	4.92346	-0.0185827	-1.85827	200.720212
	12.9	0.1598	4961.21	4.96121	319.594	4.96121	-0.01865644	-1.86564	200.7051305
	13	0.15979	4998.97	4.99897	319.57	4.99897	-0.01873018	-1.87302	200.6900489
	13.1	0.15979	5036.73	5.03673	319.57	5.03673	-0.01873018	-1.87302	200.6900489
	13.2	0.1598	5074.49	5.07449	319.594	5.07449	-0.01865644	-1.86564	200.7051305
	13.3	0.1598	5112.25	5.11225	319.594	5.11225	-0.01865644	-1.86564	200.7051305
	13.4	0.1598	5150.01	5.15001	319.594	5.15001	-0.01865644	-1.86564	200.7051305
	13.5	0.15979	5187.77	5.18777	319.57	5.18777	-0.01873018	-1.87302	200.6900489
	13.6	0.15977	5225.53	5.22553	319.546	5.22553	-0.01880392	-1.88039	200.6749674
	13.7	0.15977	5263.29	5.26329	319.546	5.26329	-0.01880392	-1.88039	200.6749674
	13.8	0.15977	5301.05	5.30105	319.546	5.30105	-0.01880392	-1.88039	200.6749674
	13.9	0.15977	5338.8	5.3388	319.546	5.3388	-0.01880392	-1.88039	200.6749674
	14	0.15976	5376.56	5.37656	319.522	5.37656	-0.01887766	-1.88777	200.6598858
	14.1	0.15975	5414.32	5.41432	319.498	5.41432	-0.0189514	-1.89514	200.6448043
	14.2	0.15975	5452.08	5.45208	319.498	5.45208	-0.0189514	-1.89514	200.6448043
	14.3	0.15974	5489.84	5.48984	319.474	5.48984	-0.01902515	-1.90251	200.6297228

r									
	14.4	0.15975	5527.6	5.5276	319.498	5.5276	-0.0189514	-1.89514	200.6448043
	14.5	0.15974	5565.36	5.56536	319.474	5.56536	-0.01902515	-1.90251	200.6297228
	14.6	0.15974	5603.12	5.60312	319.474	5.60312	-0.01902515	-1.90251	200.6297228
	14.7	0.15974	5640.88	5.64088	319.474	5.64088	-0.01902515	-1.90251	200.6297228
	14.8	0.15971	5678.64	5.67864	319.426	5.67864	-0.01917263	-1.91726	200.5995597
	14.9	0.15971	5716.39	5.71639	319.426	5.71639	-0.01917263	-1.91726	200.5995597
	15	0.1597	5754.15	5.75415	319.402	5.75415	-0.01924637	-1.92464	200.5844781
	15.1	0.15971	5791.91	5.79191	319.426	5.79191	-0.01917263	-1.91726	200.5995597
	15.2	0.1597	5829.67	5.82967	319.402	5.82967	-0.01924637	-1.92464	200.5844781
	15.3	0.1597	5867.43	5.86743	319.402	5.86743	-0.01924637	-1.92464	200.5844781
	15.4	0.15969	5905.19	5.90519	319.378	5.90519	-0.01932011	-1.93201	200.5693966
	15.5	0.1597	5942.95	5.94295	319.402	5.94295	-0.01924637	-1.92464	200.5844781
	15.6	0.15968	5980.71	5.98071	319.354	5.98071	-0.01939385	-1.93939	200.5543151
	15.7	0.15966	6018.47	6.01847	319.33	6.01847	-0.01946759	-1.94676	200.5392335
	15.8	0.15968	6056.23	6.05623	319.354	6.05623	-0.01939385	-1.93939	200.5543151
	15.9	0.15966	6093.98	6.09398	319.33	6.09398	-0.01946759	-1.94676	200.5392335
	16	0.15966	6131.74	6.13174	319.33	6.13174	-0.01946759	-1.94676	200.5392335
	16.1	0.15966	6169.5	6.1695	319.33	6.1695	-0.01946759	-1.94676	200.5392335
1.1	16.2	0.15965	6207.26	6.20726	319.306	6.20726	-0.01954133	-1.95413	200.524152
· · ·	16.3	0.15965	6245.02	6.24502	319.306	6.24502	-0.01954133	-1.95413	200.524152
	16.4	0.15964	6282.78	6.28278	319.282	6.28278	-0.01961507	-1.96151	200.5090704
	16.5	0.15964	6320.54	6.32054	319.282	6.32054	-0.01961507	-1.96151	200.5090704
1.1	16.6	0.15964	6358.3	6.3583	319.282	6.3583	-0.01961507	-1.96151	200.5090704
	16.7	0.15963	6396.06	6.39606	319.258	6.39606	-0.01968881	-1.96888	200.4939889
	16.8	0.15962	6433.82	6.43382	319.234	6.43382	-0.01976255	-1.97626	200.4789074
	16.9	0.15962	6471.57	6.47157	319.234	6.47157	-0.01976255	-1.97626	200.4789074
	17	0.1596	6509.33	6.50933	319.21	6.50933	-0.0198363	-1.98363	200.4638258
	17.1	0.1596	6547.09	6.54709	319.21	6.54709	-0.0198363	-1.98363	200.4638258
	17.2	0.1596	6584.85	6.58485	319.21	6.58485	-0.0198363	-1.98363	200.4638258
	17.3	0.1596	6622.61	6.62261	319.21	6.62261	-0.0198363	-1.98363	200.4638258
	17.4	0.15959	6660.37	6.66037	319.186	6.66037	-0.01991004	-1.991	200.4487443
	17.5	0.15957	6698.13	6.69813	319.138	6.69813	-0.02005752	-2.00575	200.4185812
	17.6	0.15957	6735.89	6.73589	319.138	6.73589	-0.02005752	-2.00575	200.4185812
	17.7	0.15958	6773.65	6.77365	319.162	6.77365	-0.01998378	-1.99838	200.4336627
	17.8	0.15958	6811.41	6.81141	319.162	6.81141	-0.01998378	-1.99838	200.4336627
	17.9	0.15958	6849.16	6.84916	319.162	6.84916	-0.01998378	-1.99838	200.4336627
	18	0.15957	6886.92	6.88692	319.138	6.88692	-0.02005752	-2.00575	200.4185812
	18.1	0.15954	6924.68	6.92468	319.09	6.92468	-0.020205	-2.0205	200.3884181
	18.2	0.15954	6962.44	6.96244	319.09	6.96244	-0.020205	-2.0205	200.3884181
	18.3	0.15954	7000.2	7.0002	319.09	7.0002	-0.020205	-2.0205	200.3884181
	18.4	0.15953	7037.96	7.03796	319.066	7.03796	-0.02027874	-2.02787	200.3733366
	18.5	0.15954	7075.72	7.07572	319.09	7.07572	-0.020205	-2.0205	200.3884181
	18.6	0.15953	7113.48	7.11348	319.066	7.11348	-0.02027874	-2.02787	200.3733366
	18.7	0.15951	7151.24	7.15124	319.018	7.15124	-0.02042622	-2.04262	200.3431735
	18.8	0.15951	7189	7.189	319.018	7.189	-0.02042622	-2.04262	200.3431735
	18.9	0.15952	7226.75	7.22675	319.042	7.22675	-0.02035248	-2.03525	200.358255
	19	0.15951	7264.51	7.26451	319.018	7.26451	-0.02042622	-2.04262	200.3431735
	19.1	0.1595	7302.27	7.30227	318.994	7.30227	-0.02049996	-2.05	200.328092
	19.2	0.15948	7340.03	7.34003	318.97	7.34003	-0.0205737	-2.05737	200.3130104

19.3	0.1595	7377.79	7.37779	318.994	7.37779	-0.02049996	-2.05	200.328092
19.4	0.1595	7415.55	7.41555	318.994	7.41555	-0.02049996	-2.05	200.328092
19.5	0.1595	7453.31	7.45331	318.994	7.45331	-0.02049996	-2.05	200.328092
19.6	0.1595	7491.07	7.49107	318.994	7.49107	-0.02049996	-2.05	200.328092
19.7	0.15948	7528.83	7.52883	318.97	7.52883	-0.0205737	-2.05737	200.3130104
19.8	0.15948	7566.59	7.56659	318.97	7.56659	-0.0205737	-2.05737	200.3130104
19.9	0.15947	7604.34	7.60434	318.946	7.60434	-0.02064744	-2.06474	200.2979289
20	0.15948	7638.33	7.63833	318.97	7.63833	-0.0205737	-2.05737	200.3130104

