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ABSTRACT 

 X-ray computed tomography (CT) has been playing an important role in 
current medical practice for diagnostic procedure. Beside its delicate technology, 
the ‘hidden’ software of CT image reconstruction has contributed almost half of 
total cost of a CT-scanner unit. Since Algebraic Reconstruction Technique (ART) 
is a basic to understand an iterative method of CT image reconstruction algortihm, 
and since it is difficult to find a clear description of fan beam ART algorithm in 
university literatures, it is important to develop an own algorithm and to begin a 
basic systematic research of this iterative method. After a long term of trial and 
error work, the research had succeded in developing an ART algorithm  for third 
generation CT image reconstruction. By comparing the result of the research with 
more popular technique like Filtered Back Projection (FBP), the algorithm has 
been proved applicable to reconstruct a low dimension object matrix (32x32 and 
64x64). By the resulted computer program, then basically a simple and low cost 
third generation CT-scanner can be designed for medical physics or biomedical 
imaging research. Finding a way of shortening the massive number of iterations 
process then, will be able to open the possibility of using the software for higher 
object matrix dimensions. 
 
Keywords: Iterative method, Algebraic Reconstructive Technique (ART) 
reconstruction algortithm, Filtered Back Projection (FBP) technique, matrix 
dimension, Matlab program. 
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CHAPTER I 

INTRODUCTION 
 

Background 

In the early 1930s the Italian radiologist Alessandro Vallebona proposed a 

method to represent a single slice of the body on the radiographic film. This 

method was known as tomography (tomos means slice). The first commercially 

CT scanner was invented by Sir Godfrey Newbold Hounsfield in Hayes, United 

Kingdom at EMI (Electric and Musical Industries) Central Research Laboratories 

using X-rays. Hounsfield introduced his idea in 1967, and it was announced in 

1972. Allan McLeod Cormack of Tufts University, Massachusetts, USA 

independently invented a similar process, and both Hounsfield and Cormack 

shared the 1979 Nobel Prize in Medicine. 

 
Figure 1.1. A historic EMI-Scanner [22]

 

Questions of The Research 

The questions of the research are: 

1. How to develop a complete algorithm of image reconstruction from a third 

generation CT-Scanner projection based on simultaneous linear equations 

solving (simple backprojection technique)? How to create an efficient 

computer program based on the algorithm? 

2. What are the optimal value of input parameters of the program to achieve 

an eficient reconstruction process and best resulting image? 
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3. How is the quality of the resulting image reconstructed by Algebraic 

Reconstructive Technique (ART) compared to those reconstructed by 

more popular Filtered Back Projection (FBP) technique. 

 

Purpose of The Research 

 To answer the questions of the research, the purposes of the research are: 

1. To create an efficient computer program for CT image reconstruction that 

based on Algebraic Reconstructive Technique (ART) using Matlab 

programming. 

2. To optimize main parameters value for the program. The parameters are: 

i. Beam shape (parallel and fan) 

ii. Angular width (beam and ray) 

iii. Reconstruction time 

iv. Number of iterations (filtering process) 

3. To conduct an experiment to implement the optimized parameters of CT 

image reconstruction using Algebraic Reconstructive Technique (ART) 

and then comparing  the result with Filtered Back Projection (FBP) 

technique. 

 

Originality of the Research 

 The originalities of the research are: 

1. Development of ART algorithm based on a quadrant rotation technique for 

fan beam projection. 

2. Matlab programming of CT image reconstruction based on ART 

algorithm. 

3. Conducting simulations to provide optimized parameters for CT fan beam 

projections and experiments to know the performance of the computer 

program. 
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CHAPTER II 

T H E O R Y 

 
II.1.  Physical Interpretation of CT Projection 

 A photon of intensity I0 that emerges when a narrow beam of 

monoenergetic photons with energy E passes throught a homogeneous absorber of 

thickness x cna be experessed as [1]: 

 I = I0 exp [-μ(ρ, Z, E)x] 

Where μ, ρ and Z are the linear attenuation coefficient, density of the absorber and 

atomic number, respectively. In the energy region there most commercial X-ray 

CT system are existing for medical tomography (≅  70 keV), two types of 

interaction are dominant. They are photoelectric absorption and Compton 

scattering. 

 In photoelectric interaction the X-ray photon is completely absorbed by 

transferring all of its energy to an element. In Compton scattering, scattered X-

rays undergo both a directional and energy change. By directing a monochromatic 

X-ray beam in the y direction, for instance, the output X-ray intensity I(x) can be 

written as: 

I(x) = I0(x) exp [ ]∫μ− dy)y,x(  (2-1) 

Where I0 and μ(x,y) are the incident X-ray intensity and X-ray attenuation 

coefficient, respectively. By taking the logarithm from above equation, projection 

data p(x) can be otained: 

 p(x) = – ln ⎥
⎦

⎤
⎢
⎣

⎡
)x(I

)x(I

0
 (2-2) 

  = ∫μ  (2-3) dy)y,x(

Where p(x) is equivalent to a simple integration or summation of the total 

attenuation coefficient along the X-ray path (i.e., y direction). In digital form, 

above equation becomes: 

p(x) = , N = 1, 2, 3,…, N (2-4) Σ
=

=

Ni

1i
)y,x(iμ
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 In X-ray CT the contrast is associated with the differrent attenuation 

coefficient of the material involved. Since each set of projection data represents 

the integral value of the attenuation coefficients along the path, the projection data 

taken at different views are the basic for tomographic image reconstruction. An 

example of a projection of four voxels in x direction can be seen below: 

 

 
Figure 2.1. Attenuation process from initial intensity (I0) to final 

intensity (I1) of photons passing a slice of four voxels of total length x 

and attenuation constants µ1, µ2, µ3 and µ4  respectively. Since the 

voxels thickness are the same, each µ will be the value of a pixel. 

  

II.2. Radon Transform 

The mathematical principles of CT were first developed by Radon in 

1917. Radon transform has proved that an image of an unknown object could 

be produced if one had an infinite number of projections through the object, 

we can understand the basic idea behind tomographic imaging with an 

example taken from radiography. 

Projection function in Radon transform is interpreted as a set of line 

integrals of  straight lines (y’) that projecting the object area by angle φ. Each line 

integral, in practice, represents a physical property of a strip with a finite width 

which is determined mainly by the detector width. At each view a set of line-

integral data is obtained. Complete projection data sets can be obtained by 

repeated assessment of the data round 180' or 360° with a specified angular 

indices. 
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Fig.2.2. Radon Transform 

 

The Radon transfom equation is:  

Pφ(x’)  ≡ R [f(x,y)] 

=  (2-5) dydxxyxyxf .).'sin.cos.().,( −+
∞

∞−
∫ ∫ φφδ

=  (2-6) ').cos'.sin',sin'.cos'.( dyyxyxf φφφφ +−
∞

∞−
∫

Where  coordinate (x’,y’) resulted from rotating coordinate (x,y) by φ is: 

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
Y
X

Y
X

.
cossin
sincos

'
'

φφ
φφ

 (2-7) 

So, the initial (x,y) coordinate related to coordinate (x’,y’) will be:  

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡
'
'

.
cossin
sincos

Y
X

Y
X

φφ
φφ

 (2-8) 

 Since an object is a set of points in (x,y) coordinate, Radon transform will 

map all points projected by y’ into a new coordinate (φ,x’). The result is a 

sinusoidal graphic which is a characteristic of a projection set of an object.  
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II.2.1. Parallel Beam Projection 

If the projection line is replaced by a parallel beam, and the object is a 

matrix of pixels, then a pixel can be assumed as a big point with diameter similar 

as the beam width. In the sinosoidal graphic the parallel beam is now represented 

by a thin sinusoidal line, and the projection (y’) data  value is represented by the 

scaled contrast of the line The resulting sinusoidal graphic will be a set of 

multicontrast sinusoidal thin lines. This graphic is a projection data record of a CT 

projection onto an object, known as a Sinogram. Then, by backprojecting the 

Sinogram, a resulting image of the object can be achieved.  

Since in Radon transform, each pixel identity is determined only by its 

distance to central point (k), then for easier interpretation, a rectangular object 

matrix can also be imagined as a circular matrix. A spesific distance of pixels  to 

the central point will be represented by a circle line. So the resulting imaginary 

matrix will be a set of circles with radius k, projected by  P(φ,k). 

 

 
Fig.2.3. An imaginary circular matrix projected by Pφ(k) (left) and 

the original rectangular matrix (right). 

  

 Because in practical modern CT, thousands of both projections and matrix 

pixels will need massive computation of matrix operations, it will be unefficient 

to solve the Radon transform in spatial domain. Therefore  the spatial domain 

coordinate (x,y) is usually transformed first into a frequencial domain coordinate 

(kx,ky). The symbol k is popular as a unit in frequencial domain, where:  

 k = 1/Δx  (mm-1) (2-9) 

where: Δx  = a spatial distance unit (mm) 
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II.2.2. Fan Beam Projection  

 For fan beam projection used in the research, the Radon transform is not 

able to be applied directly because of two reasons: 

i. A fan beam can not be directly assumed as a line projection. 

ii. The reconstruction technique used in this research is Algebraic 

Reconstructive Technique (ART) which based on matrix operations 

where the object matrix is kept as a rectangular geometry in a Cartesian 

coordinate system. 

To answer the first problem, with a set of mathematic details, Cho [1] had 

suggested a definition of a specified positioned  fan beam of direction φ as a 

parallel beam. According to Cho, all projection rays of the fan beam can be 

defined as a function of the fan beam axis (a radius line between source and 

central point (0(0,0))). Then all the function of rays can be integrated as a single 

beam function. By the function, the beam of direction φ can be defined as a 

parallel beam which then by using Radon transform can be generated to all beam 

directions. Since they are beyond the scope of the research, the details are not 

mentioned here. However the idea of defining fan beam as a basic projection 

before generating it using Radon transform is very useful to simplify the 

algorithm developed in this research. 

 Related to the second problem, it is understood that Radon transform can 

generate projections only if the object matrix is transformed first into a circular 

shape. By this transformation, all intersection shapes formed between projection 

beam and the object will be the same and only one integral formula is needed for 

all beam directions. But for a rectangular object matrix, the intersection shape 

between projection beam and the object will much depend on the projection 

direction (φ). There is no general integral formula that can stand for all φ.  

 To solve the two problems of fan beam projection, the research suggested 

to use the symmetrical properties of a square matrix. If a square matrix was 

rotated by a factor of 900, the shape of matrix would have repetition every 900,  

where ever the rotation starting point was. So by defining a quadrant (900) part of 

a full circle projection (3600) that projecting a rectangular matrix, the matrix then 

can be assumed as a circular object. This quadrant part is called here as a quadrant 

 7 
 Computed tomography..., Ferdinan Manuel Siahaan, FMIPA UI, 2008

 



projections After defining all possible intersection shape between all fan beam 

located in the initial quadrant projections, a general integral formula can be 

generated for other three quadrants. An example of the initial quadrant projections 

can be seen in figure below: 

 

 
Figure 2.4. A quadrant projections 

900

 

 The quadrant projections will be the main technique of the reconstruction 

algorithm developed in this research to generate projection function for all 

directions. 

 
II.3. Reconstruction Method 

II.3.1. Filtered Back Projection (FBP) Technique 

 The Filtered Back Projection (FBP) or convolution backprojection 

algorithm is the most popular reconstruction method so far and is used in both 

transmission and emission CT. Its simple procedure of generating the initial 

projection for all projection angles, makes the reconstruction time relatively very 

short.  

 
II.3.1.1. Projection Data: Unfiltered Sinogram 

As described before, by using the Radon transform to generate an initial 

projection of y’= f(x’) for all projection angle, φ, a CT projection data function, 
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P(s,φ), is resumed as a sinusoidal graphic called a sinogram, which then can be 

backprojected to get the reconstructed image.  

Since in FBP technique the initial domain of a sinogram is frequencial, 

direct backprojection of the sinogram will inverse the domain to be spatial. The 

domain transformation will cause a slight mathematical distortion which will be 

accumulated to become a blurring in the reconstructed image, called as a 1/r 

blurring. In FBP technique this problem is solved by adding first a filter function 

to the sinogram before it is backprojected. General equation of the estimated 

object function, f(x,y), in FBP can be written down as: 

 f(x,y) = 1/π  (2.10) ).'sin.cos.()'(' 0
0

xyxhxpdxd −+∫ ∫
∞

∞−

φφφ
π

where h(x) is the filter function. 

 

II.3.1.2. Filtered Sinogram 

In frequencial domain the 1/r blurring is interpreted as a function of 

frequencial distance unit (k = 0,1,2,3,..K) of the object points position to the 

center. Since the blurring function is divided in three cathegories of k value (zero, 

even or odd), Ramachandran-Lakhsmirayan [2] suggested an alternative filter 

function which will add different negative value for each of the three cathegories 

of k value. This filter function is called as a Ram-Lak filter. By applying the 

Nyquist sampling criteria with uniformly spaced Δx=1/(2B), the sampled 

(discrete) version of Ram-Lak filter is: 

 hRL(0)  = B2 = 1/(4 Δx2)  (if k=0) (2.11a) 

 hRL(k)  = 0 (if k even) (2.11b) 

 hRL (k) = -4B2/( π2k2) = -1/( π2k2 Δx2)  (if k odd) (2.11c) 

By convoluting this filter function with the projection function, then it can 

be safely generated for all projection angle, φ, to get a filtered projection data 

function, Pf(s,φ), which is represented in a filtered sinogram. The sinogram then 

can be safely backprojected to a filtered reconstructed image. Although in the FBP 

technique, the Ram-Lak filter is simple and very effective to decrease general 1/r 

blurring, it can not completely solve the blurring caused by small density 

difference of two neighbouring object mediums (eq: tumour and tissue). Other 
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filter functions then can be used to solve this problem, like Shepp-Logan or 

Hamming filter function. So in medical application of CT imaging, the choice of 

filter function to be used in the FBP technique also considerating the diagnostic 

priority of the CT scanning. A series of figures of a sinogram, its Ram-Lak filter 

and filtered sinogram can be seen below. 
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Figure 2.5c. Filtered Sinogram of (a) 

 

 Using this filtered sinogram, a backprojection process can directly be 

conducted without any added filter. This direct backprojection process is a benefit 

of the FBP since the filtering process has been conducted along with projection 

function. 
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II.3.2. Algebraic Reconstruction Technique (ART) 

 The ART is one of some iterative techniques used in CT image 

reconstruction. Iterative techniques are often used in image reconstruction as an 

alternative reconstruction method. The ART was first of its kind based on the 

iterative procedures and was first used in the EMI brain scanner developed by 

Hounsfield.  Currently the ART algorithm is used only in some spesific 

application, such as the case of limited view angle reconstruction. Its relative clear 

resulting image can compensate the drawback of its inefficiency computing 

operations. Therefore it is suitable enough for research and educating experiments 

which involve limited object matrix dimensions.  

  

II.3.2.1. Projection Matrix 

 In an EMI scanner a parallel beam which determine a view (direction) of 

the projection will be measured by a detector array consisting of a number of 

detectors, which will determine the number of samplings of the beam. Each 

detector of the array will have its own projection data according to a part of the 

beam (photon intensity) that succeeded in passing the object medium of its path 

and strike the detector window. Since the X-ray source can be assumed as a point, 

each part of the beam that pass a small fan shaped track can be assumed as a small 

beam itself. A small beam here is simply called as a ray. So a projection beam 

(view) consists of many projection rays (samplings). A figure of three views of 

parallel beam projection of an EMI scanner can be seen below: 

 

Figure 2.6. Three views of parallel beam projection of an EMI scanner 
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 Since the research uses fan beam projection, a fan beam consisting of rays 

can also be figured from the above parallel beam description, as can be seen 

below. 

 

Figure 2.7. A fan beam consisting of rays  

 

A complete CT projection will have a total number of sampling data 

resulted from total number of projection rays (M). So there will be M known 

values of sampling data. Since a CT projection is meant to solve N pixels value of 

an object matrix, then there will be M known data used to solve N unknown pixels 

value. A matrix operation of a complete CT projection can be shown as below: 

 

W(MxN) . A(Nx1) = P(Mx1)  (2-12) 
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Where: W = projection matrix as the projection function (line integrals) 

  A  = reshaped object matrix as the object function (f(x,y) 

  P  =  projection data matrix of projection data function (p(x)) 

 

Since projection data, P, is a measured data matrix and object matrix, A, is 

unknown, from the above matrix operation it is then understood that the 

projection matrix, W, will be the main key of CT image reconstruction using the 

ART. An ART algorithm then must be started by solving the definition of 

projection matrix, W, before a backprojection process can be conducted. And 

since there is still no ART algorithm of fan beam projection, the research must 

start all the ART algorithm development by solving first the definition of 

projection matrix, W, as can be seen in the Chapter IV.  

 

II.3.2.2. Backprojection: Initial Guess  

From the matrix operation above, it can be interpreted as a simulataneous 

linear equations where there are M equations with N variables. But direct solving 

of the simultaneous linear equations with a simple backprojection: 

Ar = W-1.P (2-13)  

where Ar is the resulting image value, will yield a very noisy resulting image and 

is very inefficient for a massive matrix operation. Therefore in an iterative 

reconstruction technique, the direct inversing backprojection is replaced with a 

more ‘step to step’ reconstruction process which is started with a nearest initial 

guess of Ar.  

Since an inverse of W (=W-1) consists of a matrix determinant and W-

transpose (=WT) and since the determinant is a complex parameter which will 

determine the gradient (difference)  between WT and W-1, the initial guess used in 

the research are taken by simply replacing the W-1 with its transpose (WT). Then 

by filtering the first resulting image value, resulted from initial guess, in an 

iterative process, the final resulting image value Ar, will be achieved. This 

filtering process is a converging process of adjusting the closest gradient of WT to 

W-1, resulting closest value of Ar to its origin value A. So if the initial guess of Ar 

is Ar0, then: 
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Ar0 = WT.P (2-14) 

where Ar0 is an initial guess of image matrix value and W’ is the transpose of 

projection matrix W. 

 

I.3.2.3. Blurring and Iterative Filtering Technique 

 Like the FBP technique, CT image reconstruction using the ART will 

suffer blurring in its resulting image. The blurring is naturally existing as a 

consequency of mathematical inverse when backprojection is started. Since in the 

ART, a backprojection process involved an inverse of projection matrix (W-1), and 

since W is a spatial domain value, then inversing it will automatically change the 

domain to be frequencial. The changing of domain will cause a slight difference 

between resulting value and its origin, and when W-1 is used to solved the image 

value, the value will also suffer distortion from its origin. The accumulation of 

this distortion will be displayed as a blurring of the resulting image. So, like in 

FBP technique, the ART also suffer 1/r blurring.  

 Physical interpretation of the blurring function can be explained by a 

figure below: 

 
  (a)  (b) 

Figure 2.8.a. Four fan beam projecting a cyllindrical rod. 

 b. Backprojection of (a) will cause a star like blurring around the rod 

boundary 

  

 If  the object value is defined as A and the resulting image is Ar , then the 

blurring function f(b), can be written down as :  

f(b) = (A-Ar)   (2.15) 
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Since original object value is unknown, in physical measurement, this 1/r blurring 

value exists as a difference between measured data and first simulated data values:  

f(b) =  λ.(P– P1)  (2.16) 

Where: 

 f(b) = blurring function 

A  = initial object value  

Ar  = resulting object value after backprojection process 

P  = measured projection data 

P1 =  first simulated data 

λ = an adjusted parameter 

And from both above definitions of blurring function, the filtering process can be 

written down as: 

Ar1 – Ar2 = λ. (P1 – P2)  (2.17) 

 Ar2 =  Ar1 – λ.(P1 – P2) (2.18) 

And since from projetion operation it is known that P = W.A, then : 

 Ar2 =  Ar1 – λ.(W.A1 – P2) (2.19) 

For general number of j iteration, it will be: 

 Arj+1=  Arj – λ.(W.Aj – Pj+1) (2.20) 

 This is the iterative operation for solving filtered image value, but above 

equation can not be solved if W is not a square dimension projection matrix 

(views ≠ samplings). To solve the problem, Van Cittert [10] suggested a 

‘reblurred’ multiplier WT (W-transpose) to bringback the dimension of resulting 

matrix ΔP to be the same with dimension of the initial matrix Ar, and adjust a new 

λ value. So the equation then can be generalized for any dimension of projection 

matrix W, as: 

 Arj+1=  Arj – λ. WT.(W.Aj – Pj+1) (2.21) 

 This is the general iterative equation to achieve a filtered image started 

from initial guess value where j = 0. The λ value will determine the convergence 

speed and stability of the process. A too small value of λ will lead to slow 

convergence and too many iterations needed, while a very large value of λ will 

make the process unstable with a wide range among successive iterations.By 

adjusting the right λ value, a more converging value of Ar will be gained without 
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too many iterations. The initial guess of image value, λ adjustment and the 

number of iterations needed are the main parameters of an iteration operation. 

 This iterative filtering process has been the main issue of CT imaging. 

Since a filtering function is an iterative process and the iterations number can 

reach thousands to achieve an optimal resulting image, the duration of a filtering 

process will play a major part of the whole reconstruction process. The duration of 

a filtering process will mostly determine the reconstruction time. So beside its 

benefit in image filtering process, an iterative technique will suffer a drawback of 

longer reconstruction time than another technique like Filtered Back Projection 

(FBP) which doesn’t need to conduct an iterative process. 

 

II.4. Image Quality: Mean Square Error (MSE) 

 Since the research used simulated objects, to know the performance of the 

computer program, it can be analysed from both qualitative and quantitative point 

of view. Qualitatively, the analysis is conducted by simply observing blurring 

level of the resulting images and comparing the look of important small objects in 

the images. However as compared images are almost similarly blurred, then they 

will also need a quantitative value as a comparing parameter. A popular 

quantitative value in simulated CT imaging is Mean Square Error (MSE)/pixel 

which can tell relative error level of the resulting image. MSE can be counted 

from difference between image pixels value (ar) and object pixels value (a), as: 

Δak = ak –  ark (2-22) 
Where :  Δak = difference between k-pixel values of object and image matrix. 

     ak  = k-pixel value of object matrix  

  ark = k-pixel value of resulting image matrix 

and Mean Square Error (MSE)/pixel will be: 

MSE/pixel  =  (2-23) 
2N

1k
k |a|)N/1( ∑

=

Δ

where:MSE/pixel = Mean Square Error 

 N = Number of object pixels 

k  = pixels number  = 1, 2, 3, ..., N 
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CHAPTER III 

METHODOLOGY 
 

 To achieve the purpose of the researh mentioned in the introduction, the 

methodology consists of: 

1. Matlab 6,0 Programming: 

1.1. Algorithm: to develop the algorithm of a third generation CT image 

reconstruction based on Algebraic Reconstructive Technique (ART). 

1.2. Programming: to otomatize the reconstruction using Matlab 

programming based on the developed algorithm. 

 

2. Parameter Optimization 

 Conducting image reconstructions of a simulated object to optimize input 

parameters for best performance of the computer program. All simulations were 

processed by: a notebook computer, processor: Intel Core(TM)2 Duo CPU 

T7300@2.00 GHz, RAM 1014 MB. All projections based on a Third (3rd) 

generation CT projection design as figured below: 

 

 
Figure 3.1. Projection design of a third generation CT-Scanner 

 

Simulations was conducted on four main parameters, which are: 

 2.1. Beam shape 
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 Changing parameter : beam shape 

i. Parallel beam of  M=20x20 projecting object of N=20x20 

ii. Fan beam of  M=16x16 projecting object of N=16x16 

2.2. Angular width 

i. Beam : (m .Δβ) = 2.arc.tan (a /(R+ a )) (3-1) β 0 0

 where: 

 m  = number of rays per beam β

 Δβ = angular width of a ray 

  a0 = half width of square object matrix  

  R = radius of CT system  

  Changing parameter = mβ

• m  = 16  β

• m  =32 β

 

 

Figure 3.2. Angular width of a beam (mβ.Δβ) based on matrix width 

 

ii. Ray  : Δβ = arc.tan (d/(R+(a0 – f.d)), (3-2) 

 where: 

mβ.Δβ Δβ 

a0a0

R R 
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Δβ = angular width of a ray 

a0 = half width of a simulated square object matrix  

R = radius of CT system  

 d = width of a pixel 

 f = a changing integer  

 Changing parameter = f 

• Objec of N = 16 x 16 was projected for f = 0; 1; 2; 3; 4 and 5 

• Object of N = 32 x 32 was projected for f = 1 and f = 8 

• Object of N = 64 x 64 was projected for f =1 

 

 

 

 

 
 

 

 

 

 

Figure 3.3 Angular width of a ray (Δβ) based on a pixel width 

 

2.3. Reconstruction time ( t )  

Reconstruction time ( t ) was measured by a timer which is started as the 

backprojection program was runned and stopped as the resulting image 

had been displayed on the screen.. 

Changing parameter: number of pixels (N) and number of projections (M) 

i. N = 16 x 16 and  

R R 

a0 a0

d

d

Δβ 
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• M = 16 x 16  

• M = 32 x 32 

ii. N= 32 x32 and  

•  M = 32 x 32  

•  M = 64 x 64 

iii. N =64 x 64 amd M = 64 x64 

 

2.4. Number of iterations ( j ) 

Changing parameter: j = 0; 10; 100; 1000; 10.000 and 20.000 

 

3. Experiment 

3.1. Implementation of the optimized parameters to reconstruct an image of a 

Shepp-Logan phantom of: 

i. N = 32 x 32 using M = 64 x 64 projections  

 
Figure 3.4. A Shepp-Logan phantom of  N = 32 x32 

 

Changing parameters:  

• Convergence speed ( λ ) 

• Number of iterations ( j ) 

 

ii. N = 64 x 64 using M= 128 x 64 projections 
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Figure 3.4. A Shepp-Logan phantom of  N = 64 x 64 

 

Changing parameters:  

• Convergence speed ( λ )  

• Number of iterations ( j )  

 

3.2. Comparison of Algebraic Reconstruction Technique (ART) with Filtered 

Back Projection (FBP) technique. 

Comparison parameter: 

• Qualitative: blurring level 

• Quantitative: Mean Square Error (MSE) / pixel 

 

3.3. Comparison of Algebraic Reconstruction Technique (ART) with another 

iterative technique with different initial guess method (from [10]). 
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CHAPTER IV 

ALGEBRAIC RECONSTRUCTIVE TECHNIQUE (ART) 

ALGORITHM 
 

IV.1. Third Generation CT-Scanner Projection Plan 

In a simplified projection mechanism of a third generation CT, a wave of 

high energy electron (≈ 70 keV) emmited by the cathode of an X-ray tube is 

striked into the anode (made of heavy atomic number medium, eq.Tungsten). The 

physical interaction will cause the emission of a wave of X-ray (photon) beam 

with straight direction to a detector array that consists of a number of detectors 

(mβ). This photon beam is first shaped by a hole, called as a focal spot, producing 

a wide fan shape photon beam with a specific angle (300 – 600). The fan beam 

produced from the focal spot then shaped again by a collimator to limit the 

thickness (3rd dimension side) of the target slice.  

 

 
Figure 4.1. A Third Generation CT-Scanner[22]

 

If succeeded in passing the target, the fan beam will be measured by a 

detector array. The measured data of the non projecting part of the fan beam will 

become a reference intensity of photon beam (I0) while the measured data of the 

projecting part will become a projection data (I ). The length of each detector of 1
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the detector array are the same and will determine the angular width of a 

projection ray (Δβ). 

A position of the source-detector couple for one projection is identified as 

a projection direction/view (α). After measured by the detector array and a 

projection data array is processed and saved, then the position of source-detector 

couple is shiftly turned  by a small angle (Δα) to get another projection data array. 

This shifting process is then repeated several times to get total number of 

projection direction from 00 to 3600 (mα), and all saved array data will become 

total projection data (sampling data) of the target slice. A computer program of 

image reconstruction can be executed after all sampling data is completed. 

 

IV.2. Projection Data Matrix (P) 

All resulting data arrays are simultaneously put into a total data array, 

P(Mx1), with M is the total number of sampling data, where: 

 M = mα . mβ 

where: mα = total number of views ( beam projection directions) 

 = total number of samplings (ray projection directions in a beam) mβ

  

Each sampling data is a logarithmic function of the relative photon intensity of m-

projection ray. 
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

=

=

=

=

mβmα

ji

31

21

11

raybeam0M

raybeam0m

raybeam0 3

raybeam02

raybeam0 1

/IIln  P

/IIln   P

/IIln   P

/IIln   P

/IIln   P

.

Μ

Μ

 

 

 

  
 

 

 

 

where: P = a projection data array of M samplings (Mx1)  

= a projection data of sampling m  Pm   

 I0  = initial photon intensity (measured by reference detector) 
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 Ibeam-i ray-j  = measured photon intensity of beam-i and ray-j 

 i   = counter for beams (views)  = 1, 2, 3,..., mα

 j   = counter for rays (samplings) in a beam = 1, 2, 3,..., mβ 

 m   = counter for total samplings  = 1, 2, 3, ..., M 

 

IV.3. Object Matrix (A) 

The target object is divided into many slices depending on the prior target 

size and diagnostic need. Every slice is put exactly at the center of an imaginary 

table that also put at the center of the source-detector circle. The table is divided 

by n rows and n columns forming a square matrix (n x n) consisting of N pixels. 

The CT system is then assumed to be a Cartesian coordinate system.  

Each pixel of the matrix is a square resulted from intersection beetwen four 

lines, which are: Y = y , Y = y , X = xs s+1 r and X = x , with :  r+1

= pixel width  = x – x (r = 1,2,3,..., M), d r    r+1

– y  = pixel height  = ys+1 s   (s = 1,2,3,..., N) 

 

IV.3.1. Pixel Numbering 

Since in CT projection, the object matrix consists of pixels, identification 

of each pixel is the basic definition of an object function. The numbering order of 

pixel-1 to N can be figured as below: 

 

 

Figure 4.2. A matrix of N pixels, k is the pixel number, k=1,2,3,…,N 
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To identify each pixel position in the Cartesian coordinate system, first the 

pixel number (k) must be defined as a function of its row (r) and column (s) 

number, and a definition of k is:  

 

k = (n-1).r +s 

 

where: r  = column number of pixels in object matrix 

 = 1,2,3,…, n 

s  = row number of pixels in object matrix 

 = 1,2,3,…,n 

n = number of rows or columns of the object matrix 

In Matlab programming, an alternative definition of  k is used. A short syntax 

using ‘round’ function has been effective to number matrix pixels. The short 

syntax is: 

======================================================== 
… 
for k=1:N                                  
            r=round(k/n-0.5001)+1; 
            s=rem(k,n); 
            if s==0 
                s=r-1; 
                s=n; 
            end 
end 
… 

======================================================== 
 
Here the 0.5001 constant instead of 0.5 is used to make sure that all non-integer k 

values will be rounded down  to smaller integer.  

 Although this Matlab syntax is already effective, the previous definition of k 

as f(r,s) is very important because later it will be the key of  object matrix back 

rotation method used in the research. 

If the width of a square matrix is 2a0 and the width of a pixel is d then the 

coordinate of pixels can be defined as: 

 + d.(r-1) X(r) = -a0

Y(s) = -a0 + d.(s-1) 
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IV.4.  Projection Function  

IV.4.1. Ray Linear Equation 

A beam is emmited by a point source (S) which distance from central 

point 0 OS is (0,0)  (radius). The beam direction is α which is defined as the angle 

between line OS OYand . The beam consists of rays which each is shaped by two 

lines, defined as Y1 (=f(x)1) and Y (=f(x)2 2). The direction of a ray is β,defined as 

the angle between OS  and Y1. Figure of a ray projecting a pixel can be seen 

below 

 

Figure.4.3. A ray projecting a pixel  

The general equation of Y  and Y  are : 1 2

Y1 = m X + y  and Y  = m X + y1 01 2 2 02,  

where: 

 m = - cotg (α1  + β) 

   = - cotg (φ) 

and :  

 m = - cotg ((α2  + β) + Δβ) 

  =  - cotg (φ + Δβ) 
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And if  

OS = R,  

then : 

y01= R.(cos(α) + m1.sin(α)) 

y02= R.(cos(α) + m2.sin(α)) 

where :  

y01= ordinate of intersection point betwen Y  and X=0 1

y02= ordinate of intersection point betwen Y2 and X=0 

 

IV.4.2. Intersection Points 

The position of intersection points (a,b,c,d,e,f,g and h) will determine the 

intersection shape, where:  

• a (xa,y )  : intersection point between Y  and Y = ys+1 1 s+1 

• b (xb,y )  :  intersection point between Y  and Y = ys+1 2 s+1 

• c (xr,yc)  :  intersection point between Y  and X= x1 r 

• d (xr,y )  :  intersection point between Y  and X= xd 2 r 

• e (xc,y )  :  intersection point between Ys 1 and Y = yr  

• f (x ,y )  :  intersection point between Y  and Y= yd s 2 r 

• g (x ,y )  :  intersection point between Y  and X = xr+1 g 1 r+1 

• h (x ,y )  :  intersection point between Y  and X = x  r+1 h 2 r+1

 

And definition of intersection points can be solved as: 

xa = 1/m  (y1 s+1 - y01) 

  xb = 1/m  (y  - y2 s+1 02) 

  xe = 1/m  (y - y1 s 01) 

  xf = 1/m  (y2 s  - y01) 

  yc =  m x1 r + y01 

  y  =  m xd 2 r + y02 

  y  =  m x  + yg 1 r+1 01 

  y  =  m x + yh 2 r+1 02 
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IV.4.3. Intersection Shape 

The most important step of defining a projection function is the 

identification of all possible intersection shapes  between a ray and a pixel. Since 

it is the ray direction that will determine the shape and since the direction of a ray 

is a combination of beam direction (α) and ray direction referenced to the beam 

(β), so the direction of ray will be determined by the addition of both angle (φ = α 

+ β). So the ray direction is identic with φ and it will be cathegorized by the angle.  

Since for each quadrant, the most complete ray directions of a beam is 

existing for beam direction of α = 00, 900, 1800 0 and 270 , then one of these four 

beam direction will be able to represent all ray directions. For practical reason, the 

beam direction of α = 900 is taken here as  the reference to cathegorize ray 

directions, as seen in figure below: 

 

 
Figure 4.4. A beam direction of α = 900, 
with three cathegories of ray direction 

 

As seen in above figure  there are three ray direction cathegories of: 

1.  0  < Φ < (π/2 - Δβ) 

2. (π/2 - Δβ) ≤ Φ  ≤ (π/2) 

3.  (π/2) < Φ < (π - Δβ) 

 

Each cathegory can be seen clearly in three separated figures below: 
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Figure 4.5a. Direction cathegory 1: 0 < Φ < (π/2 - Δβ) 

 

 
Figure 4.5b. Direction cathegory 2: (π/2 - Δβ) ≤ Φ ≤ (π/2) 
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Figure 4.5c. Direction cathegory 3: (π/2) < Φ < (π - Δβ) 

 

 Each direction of ray will determine the slope of the ray which then can be 

used to define the position of intersection points. As can be seen in above figures, 

the intersection points of a, b, e and f respectively will have three possible 

positions referenced to range of x = x(r)→ x (r+1), which are : 

a. x  = x  , if x < x(r) n 1 n

b. x  = x  , if x(r) < xn 2 n< x(r+1)   

                        c. x  = x  , if x(r+1) < xn 3 n

 By combinating all possible positions of the four intersection points, then 

total number of all possible combinations will be: 

; x xa1-3 b1-3; x ;e1-3  xf1-3 = xan ∩ xbn ∩ x  ∩ xen fn  

 = 3 x 3 x 3 x 3 

 = 81 combinations 

 Then by implementing slope conditions to each direction cathegory, these 

combinations can be sorted to get final combinations of the intersections points 

position that fulfill the conditions. An example for the resulting tables of the 

sorting for cathegory 1 can be seen in the table A1 at Appendices. Using this 

tables, all intersection shapes of the three cathegories can be defined. By 

illustrating the shapes figures from their definitions, the area of the shapes then 
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can be solved as described in the next section. All resulting shapes illustration 

figures and their area for each cathegory can be seen in table A2 at Appendices. 

 

IV.4.4. Intersection Area 

 The area of intersection shape of figure 4.3 can be solved by substracting 

the main area (wU) by both top and under rest area (wa and wb respectively): 

    

 = ∫ ∫  
+ +

+−+=
1i 1ix

x

x

x
0212 )} dx  yx  (m)  yx  {(m dx)Y-Y( 0112wU

2  = {½ (m2 - m1)( xr+1  – xr
2) + (y02 – y01)( x x )}  r+1 - r

 x   xb b 
wa  = ∫ (Y  – Y ) dx  =  ∫ {(m x + y2 s+1 2 02) – y } dx  s+1
 xr    xr     
  
  =  ½ (m2)(xb

2- xr
2) + (y02 – y )( x  - xs+1 b r) 

 x  xr+1 r+1 
w  = ∫ (Yb r – Y ) dx  =  ∫ {y1 s – (m x + y1 01) } dx  
 xe  xe      
  = - ½ (m

   
2

1)(xr+1 - xe
2) + (y ys - 01)( x - xr+1 e) 

 

 And the projection function element of a ray projecting a pixel can be 

solved as the intersection area between the two as : 

 w =  wU – (wa + w  b  ) 

Since intersection shape of a hexagonal geometry is the most complex 

shape  with top and bottom rest area, this shape will become the reference shape 

for solving a general area integral formula. Other intersection geometry will be 

less complete. So from the resulting area integral formula above, a general 

formula can be solved by simply changing all area integral limits to general limits. 

And the general area integral formula in definitive form will be: 

wU   = ½ (m2 – m1).( x2U
2

 – x1U
2) + (y02 – y01).(x – x2U 1U) 

 wa  =  ½ (m2).(x2a
2 – x1a

2) + (y02 – y ).(xs+1 2a– x1a) 

 wb  = ½ (m1).(x2b
2– x1b

2) +  (ys – y01).(x2b– x1b) 

And  

w =  wU – (w  + w ) a b

Where: 
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= first integral limit of wx1U U

x2U = second integral limit of wU

x = first integral limit of w1a 1

x = second integral limit of w 2a 

= first integral limit of wx1b 1

  x = second integral limit of w2b  U

 

By defining the area integral limits of all possible intersection shapes of 

the three projection direction cathegories (1,2 and 3 respectively), this general 

area integral formula becomes a general projection function for the three 

cathegories. 

 

IV.5. Initial Quadrant Projections 

Since a square matrix has four symmetrical properties (horizontal, vertical 

and two diagonals), then by dividing the matrix to four quadrants, it can be 

assumed as a circle consisting of four equal shape geometries. Then by solving the 

definition of all projections in the initial quadrant, it can be generated for other 

three quadrants. The question is which part of the projection circle will be the 

initial quadrant with  minimal number of definitions.  

To answer the question, the reference parameter used here is the beam 

direction. By choosing a right beam direction of any quadrant, the ray directions 

of the chosen beam should be able to represent all ray directions existing in a 

quadrant. This is the representative requirement of the beam. This represented 

quadrant then will become the initial quadrant.  

By a simple logic it can be found that the representative requirement is met 

by four beam directions of α = 00, 900, 1800 0 and 270 . For practical reason the 

beam direction of  900 is chosen in the research. The beam direction can be seen 

as below: 
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α 

Figure 4.6. A representative beam direction of α = 900

With this position, the beam has all three ray directions (φ) of cathegory 1, 

2 and 3 mentioned before. And as can be seen in the figure 2.4, these direction 

cathegories can represent all possible ray directions of the quadrant limited by 

diagonals of  α = 450 to α = 1350. This quadrant will be the initial quadrant 

(Quadrant 1) and following α direction the next quadrants will be quadrant 2, 3 

and 4 respectively. All quadrants position can be seen in figure below. 

 

Quadrant 4 

α

Quadrant 3 Quadrant 1 

Quadrant 2

 

Figure 4.7 Four quadrants positions, Quadrant 1 is the initial quadrant. 
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From the figure, the angular width of each quadrant will be: 
0i. Quadrant 1 : 45   ≤ α < 1350 

0ii. Quadrant 2 : 135  ≤ α < 2250 
 0iii. Quadrant 3 : 225  ≤ α < 3150 
 0iv. Quadrant 4 : 315  ≤ α < 450 

After the initial quadarant is solved, then all ray projection directions of this 

quadrant can be cathegorized into the three cathegories (1, 2 and 3) mentioned 

before. So the general area integral formula of these cathegories will become 

projection function of the initial quadrant. 

 

IV.6. Radon Transform: Imaginary Object Matrix Back Rotation  

After solving the projection function of Quadrant 1, according to Radon 

transform the area integral formula now can be generated by simply rotating the 

initial quadrant beams to next quadrant, but eventhough the geometry of resulting 

intersection shapes are the same, the coordinate of intersection points will change. 

It means the intersection points (a,b,c,d,e,f,g,h) will be different, so the result of 

area integral formula will be different and it is fail to be generated. 

The answer to the problem is an imaginary object matrix back rotation 

while the quadran projections stay still. Since the rectangular object matrix now 

can be assumed as a circle, then rotating the quadrant beams to one direction 

while the object matrix stays still is the same as rotating the object matrix by a 

factor of 900 to opposite direction while the quadrant beams stay still.  
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=

 
Figure 4.8. Rotating a quadrant projections when the object matrix is fixed (left) 
is the same as rotating object matrix to opposite direction by a factor of 900 when 
the quadrant projections is fixed (right) 
 

If the initial coordinate of object matrix is the same as the resulting 

projection coordinate (X’,Y’) and the resulting coordinate of φ rotated object 

matrix is the same as the initial projection coordinate (X,Y) then according to 

Radon Transform: 

⎥
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And since the coordinate of pixels is (X(r),Y(s)), the imaginary new pixels 

coordinate will be: 

X(r)  = X’(r).cos(φ) – Y’(s).sin(φ)  

Y(s)  = X’(r).sin(φ)  – Y’(s).cos(φ) 

And since the resulting projection coordinate (X’,Y’) is fixed in Quadrant 

1, the resulting projection coordinate will be alwas be the same as (X(r1),Y(s1)). 

And the equation can be rewritten as: 

X(r)  = X(r1).cos(φ) – Y(s1).sin(φ)  

).sin(φ)  – Y(s ).cos(φ) Y(s)  = X(r1 1

And now by using this new pixels coordinate, new quadrant pixels number 

of kq (q =1,2,3,4) can be defined and the φ rotated object matris coordinate now 

has been adjusted.  

 

IV.6.1. A Quadrant – Object Matrix Back Rotation  
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Rotating all beams of Quadrant 1 to Quadrant 2 is the same as rotating the 

objet matrix to opposite direction by φ = –900 when the beams are fixed. The 

previous columns/rows of the matrix in Quadrant 1 will become the rows/columns 

on Quadrant 4. And the new coordinate of pixels will be: 

X(r4)  = X(r1).cos(-900) – Y(s ).sin(-900)  1

Y(s4)  = X(r1).sin(-900)  – Y(s ).cos(-900) 1

:So: X(r4)  = Y(s ) 1

)  = – X(r ) Y(s4 1

resulting: 

r4  = s1

s4 = – r1

where: r4 = imaginary columns number in Quadrant 4 

s4  = imaginary rows number in Quadrant 4 

s1  = original rows number in Quadrant 1 

r1 = original columns number in Quadran 1  

And by defining k = f(r,s), pixels number in Quadrant 4 (k4) can be easily defined 

as a function of initial (r ,s1 1) as: 

k4 = (n.s1 – r1) + 1 

where: n  = number of rows/columns. 

 = imaginary pixels number in Quadrant 4 k4

 

IV.6.2. A Half Circle – Object Matrix Back Rotation 

After projection function of Quadrant 4 have been solved, the object 

matrix now can proceed the rotation to Quadrant 3 and 2 and pixels number of the 

quadrants can be defined as in previous process. 

But more efficient way is sugested here by a half circle rotation of object 

matrix. By putting back both the object matrix and the two quadrant beams to its 

original position in Quadrant 1, the two quadrant (1 and 2) projections now 

become a half circle projections. And by the same logic as the quadrant 

projections rotation, the object matrix coordinate for the other half circle can be 

solved by 1800 back rotation of the object matrix. And using again the Radon 

transform for φ = – 1800, the new coordinate (X(r),Y(s)) of object matrix will be: 
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X(r2,3)  = X(r1,4).cos(-1800) – Y(s1,4).sin(-1800)  

Y(s2,3)  = X(r1,4).sin(-1800)  – Y(s4,1).cos(-1800) 

So: 

 X(r23) = –  X(r14) 

Y(23)  = – Y(r14) 

resulting : 

r2,3 = – r1,4

s2,3 = – s1,4 

And by defining k23 as a function of the initial (r s1,4, 1,4) and since k1,4 is the same 

as the initial k  then it can be found that: 1

k23 = – k14 

And since it is impossible for pixels number k to be a negative value, it can be 

interpreted that pixels number of k23 are taken by reversing order of k14. So since 

k = 1,2,3,…,N then k = N, (N-1), (N-2),…,1 from which the definition of k14 , 23 , 23 

as a function of k14 will be: 

 k23 = N – k14 +1 

where: N  = number of pixels 

k23 = imaginary pixels number of Quadrant 2 and 3  

k14 = original pixels number (= k1) of Quadrant 1 and 4 

 

IV.7. Projection Matrix  

After solving all the resulting pixels number of the imaginary φ rotated 

object matrix, then a projection function for all quadrants have been solved. It will 

be in form of a three dimension projection matrix W(mα x mβ x N), which elements 

are wi.j.k where:  

 i  =  counter for beam directions (α) 

  = 1, 2, 3, …,mα 

 j =  counter for ray directions in a beam (β) 

  = 1, 2, 3, …,mβ 

 k  =  pixels number 

  = 1, 2, 3, …, N 

= total number of beam directions And: mα  
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 m   = total number of ray directions in a beam β

 

To be used in a backprojection matrix operation, the 3D projection matrix, 

W must be first reshaped to a 2D matrix, W), (mα.mβ x k)(mα x mβ x k)  , and the element 

notation is redefined from wi.j.k to wij.k. The resulting 2D matrix will be  : 

 

W(mα x mβ x k) = W(mα.mβ x k)  

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

Nmmkmmmmmmmm

ij

wwwww

wwwww

wwwww
wwwww
wwwww

ijNkijijij

Nk

Nk

Nk

βαβαβαβαβα ΚΚ
ΚΚΚΚΚΚΚ

ΚΚ
ΚΚΚΚΚΚΛ

ΚΚ
ΚΚ
ΚΚ

321

1

131

121

111

32

1313133132

1212123122

1111113112

=  

 And since each element wij.k of above matrix represents a j-ray of a i-beam 

projecting a k-pixel, then it can be rewritten as an element wm.k which represents a 

m-ray of total M-ray in CT system, projecting a k-pixel.  

W(mα.mβ x k)  = W(M x k) 

 =  

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

NMkM3M2M1M

mNmk3m2m

N3k33332

N2k22322

N1k1131211

wwwww

wwwww

wwwww
wwwww
wwwww

1m

31

21

ΚΚ
ΚΚΚΚΚΚΚ

ΚΚ
ΚΚΚΚΚΚΛ

ΚΚ
ΚΚ
ΚΚ

Where:  

w  = wm.k ij.k

 m = row number 

   = f(i,j) 

 + j    = (i-1)mα

    = counter for ray directions (φ) in CT system  
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    = 1, 2, 3, …,M 

 

IV.7.1. Initial Projection from A Projection Matrix: Practical Use 

From the resulting projection matrix W(M x k) above, it is unavoided that 

the initial projection of the CT projection plan will be the beam of i =1. So the 

inital projection of the research will be the beam of  α  = 450
1 . But since in 

practical use, it will be mechanically difficult to start the projection exactly from 

α1 = 450, and since the rays of initial beam is represented in the matrix by the first 

rows of i =1, then by choosing the right i, more comfortable position to start the 

projection can be achieved.  
The equation for renumbering the rows of a projection matrix to a new row 

number can be written down as :  

 = m + (αmn 1n  – α1) / Δα 

Where: 

  = new row number mn

m  = previous row number 

α1n  = new initial projection direction  

α1  = previous initial projection direction 

Δα  = indices of beam direction 

 

For example if an initial projection direction (α1) of the research want to be 

replaced from 450 to 900 and if  indices (Δα) is 50, then a new row number will be: 

 = m + (αmp 1n  – α1) / Δα 

  = m + (900 – 450) / 50

  = m + 9 

 = practical row number where: mp

 m = research row number 

 The result of above renumbering operation is a new projection matrix 

which elements and their columns number are exactly the same as the previous, 

but with different rows number. From the example, changing the starting position 

from α1 = 450 to 900  will change the initial row of the projection matrix from row 

1 to row 10, while the order of the rows is still the same.  
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IV.8.  Backprojection 

Since the research used simulated objects, A, with known pixels value, 

then a first simulated projection data matrix, P0, can be solved by projecting A 

with projection matrix, W, as: 

P0 (Mx1) = W(MxN) .A(Nx1) 

Where: 

P0 (Mx1)  = simulated projection data matrix  

W(MxN)  = projection matrix 

A(Nx1)  = simulated object matrix 

 

, Then using this first simulated projection data matrix, P0  a first resulting 

image matrix, Ar , can be achieved by an initial guess: 0

Ar0 (Nx1) = WT
(NxM) . P(Mx1)

Where : 

Ar0 (Nx1)  = resulting first image matrix  

WT
 (MxN) = transpose of projection matrix W. 

 

IV.8.1. Iterative Filtering Process 

From the theory it has been mentioned that a backprojection process will 

cause a 1/r blurring which in the image is represented by the difference between 

each resulting image pixel value and its origin. An iterative filter function then 

can be started by determining an initial guess of the resuting image value, Ar0, 

using the W-transpose (WT) replacing the direct W-1. This very blurred initial 

guess is then filtered (subtracted) by adjusted convergence speed parameter, λ, 

multiplied by difference between first simulated projection data, P0, and second  

simulated data, P , resulting a first filtered image value, Ar1  1, which is then filtered 

again by the same process resulting a second filtered image value, Ar2. This 

iterative filtering procedure is then repeated again in a sufficient number of 

iterations to achieve an optimal resulting image, Ar. The step to step filtering 

process can be described as follows: 

1. Initial guess: 
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Ar0 = WT. P0 

2. First simulated projection data (P ) will be: 1

P1 = W .Ar0 

Blurring : 

f(b) = Ar0-Ar1  

 =  λ.(P0– P ) 1

So :   Ar1 =  Ar0 – λ.(P0 – P ) 1

4. Second simulated projection data (P ) will be: 2

P2 = W .Ar1 

Blurring : 

f(b) = Ar1-Ar2  

 =  λ.(P1– P ) 2

So :   Ar2 =  Ar1 – λ.(P1 – P ) 2

And for (j+1) iterations, a general filtering operations can be written as: 

= ArArj+1 j – λ.(W.Ar  – P ) j j+1

And as mentioned in the theory, for M (projections) ≠ N (pixels), above equation 

can not be solved, therefore according to Van Cittert, the ΔP should be ‘reblurred’ 

by WT (W-transpose) to equalize the dimension with ΔA, while the λ value can be 

readjusted. And the resulting iterative filtering function will be: 
TAr = Ar – λ. W .(W.Arj+1 j j – P ) j+1

Where λ. is a new adjusted convergence speed of the iterations. The 

number of iterations, j, is tightly influenced by the chosen λ value. Accurate 

choosing of λ value will make Ar value converging fast and stable with not too 

many iterations needed. In this research λ. will be simulated from 0.5 to 50 to 

know its influence to image quality and number of iterations needed.  

 

IV.9. Otomatization: Matlab Programming 

Using the definitions resume of reconstruction algorithm, a MATLAB 

computer program for CT image reconstruction can be created. The MATLAB 

version used in the researh is MATLAB 6.0. The program consists of three (3) 

sub-programs  which can be used independently. They are: 

1. Projection function program which output is a projection matrix (W ). (M x N)
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2. Simulated projection data (P(Mx1)) program, replacing the practical measured 

data. P(Mx1) is simulated from a matrix operation of:  

P(Mx1)=W . A(M xN) (Nx1)  

 where A(Nx1) is the reshaped object matrix.. 

3. Backprojection program which output is a first resulting image (Ar(Nx1)). The 

algorithm is a matrix operation of:  

Ar(Nx1) = WT  . P (NxM) (Mx1)

 Then filtered by an inverse filtering function described before, Ar(Nx1)  can be 

iterated to get: 

Arj = Arj-1 – 2 . WT .(W.Ar j-1 - P )  j-1

 where j is the iteration number.The final Arj then be reshaped again to become 

the final resulting image a(n x n).  
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CHAPTER 5 

RESULT 
 

V.1.  Projection Matrix (W) 

Each simulation on a simulated object of dimension N(nxn) conducted will 

need a projection matrix W(MxN). Each projection matrix can be runned 

independently, so it can be used to project any object matrix of the same N value.  

To give graphic value of a projection matrix elements, two examples of 

projection matrix plot of  W(256x256) and W(1024x1024) are displayed below. 

 

 
 

Figure 5.1a. Plot of a projection matrix W(MxN), M=16x16, N=16x16 
 
 

 
 

Figure 5.1.b. Plot of a projection matrix W(MxN), M=32x32, N=32x32 
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V.2. Parameters Optimization  

V.2.1. Beam Shape  

 By comparing the images resulted from a parralel beam of 20x20x400 and 

a fan beam  of 16x16x256 projections, it is obvious that resulting image of the fan 

beam  is much sharper and the existing boundary line inside the image is clear 

compared to blurred resulting image of the parallel beam projection. 

 By understanding the spatial-frequencial domain concept mentioned in the 

literature, it’s not difficult to make analysis of this result. Since each element 

value of W(M
th

,k) is the area of intersection between a m-projection ray and a k-

numbered object pixel, the value is in mm2 unit (spatial domain). Inversing W  to 

W-1 will automatically change the domain to frequencial. So the value of image 

pixels resulted from W-1xP, where P is a no-unit projection data value, will be also 

in frequencial domain.  

 A parallel beam will intersect bigger area of an object than a fan will. 

Bigger area will result in a lower frequency which in the turn will result in a 

smaller value of the image pixels which will cause darkened blurring in the image. 

Fig.5.2a. A parallel ray projection Fig.5.2b. A fan ray projection  

 
 If the analysis go further to a ray-pixel scale, it can be predicted that 

sharper projection fan ray will intersect smaller area of an object pixel which will 

make higher frequency of W-1. If enough number of sharp rays are projected onto 

the pixel, then the pisel is defined enough to be reconstructed to be a clear and 

sharp resulting image pixel. But then there are two problems existing of the above 

analysis. Both problems are of how sharp the fan ray should be and what minimal 

number of  fan rays will be needed to well define a pixel. Next simulation result is 

an alternative answer of those two problems. 
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V.2.2. Angular Width 

 From the reference it is recommended that the width of a beam projecting 

an object is somewhat similar with the width of the object.. The recommendation 

is easy to be applied for a parralel beam projection. But to apply it in the fan beam 

projection is rather confusing since fan beam is diverging, so the projection width 

must be an angular value. The angular width will need a reference part of the 

object which width will be a reference width. And since a beam consists of rays 

and an object matrix consists of pixels, the angular width of beam based on object 

matrix width can be compared with the width of ray based on pixel width. 

 

V.2.2.1. Beam Angular Width  

If a beam direction is taken along X-axis, as seen in figure 5.3, there are 

three possible part of matrix that can become a reference width, which are: 

1. Near side boundary  

2. Middle line of the matrix 

3. Far side boundary 

X 

Y 

 
Figure 5.3. Three possible reference parts width of a matrix  

  

 From the beam shape simulation it is known that sharper beam means 

higher frequency and it will result in a more optimal resulting image. For that 

reason it is decided to conduct simulations only on highest frequency projection 

which is the beam number 3, which reference angular width is the width of far 

side boundary of the matrix.  
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 From both resulting images of N=16x16 and N=32x32, it is obviously seen 

that both images are very blurred and can not be applied in practical used. 

Especially for N=32x32, the circle shape boundary are not very clear while the 

rectangular shape boundary at both edge of the matrix is already disappear. 

Therefore it can be concluded that this beam angular width based on object matrix 

is not recommended. 

 

V.2.2.2. Ray Angular Width  

 If a beam direction is taken along X-axis, as the object matrix is put on the 

center of the CT system and the number of detectors is even, one line of each 

central rays of the beam as seen in figure 5. will go straight along the X-axis line. 

Unlike the beam-matrix case, there are more choices of pixels which width can 

become a reference width of the ray. And since rays width will be accumulated to 

be a beam width, the highest frequency rule can not be applied here.  

.  
a0

d 

X 

-fd, Figure 5.4. Possible reference pixels which positions along X-axis is a0

where f is a changing value 

  

 Due to efficiency priority, number of projection rays in a beam is limited. 

Therefore too sharp rays will cause a too sharp beam which then will reduce the 

field of view of CT system and there is a possibility that some object area will not 

be defined enough. By observing resulting image of the changing f (= 1,2,3,4 and 

5) which can be seen in appendices, it is clear that among the five resulting 

images, there are two images that are obviously sharp. Both images are of : 

1. f = 1 
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2. f = 4 

 If an analysis is taken from the highest frequency rule, it is rather 

confusing that image of f = 0 (most far side pixel boundary) is more blurred than 

the two images of less frequency (f = 1 and 4).  As mentioned in the previous 

result, the answer of this phenomena is a possibility of less defined area of the 

object matrix. Using the most far side pixel boundary mean the ray is becoming 

too sharp and accumulating also into a too sharp beam. And due to limited 

number of views, this will lead to the existing less defined area of object matrix 

that will also cause blurring. 

 Back to the two optimal image, it can be seen further that the central 

blurred pattern of image of f = 4 is even more systematic than the central blurred 

pattern of image of f = 1. Since for object matrix of N=16x16, the pixel of f=4 is 

located at the central half of the matrix and boundary of the circle shape figure 

existing in the image also located at this position, then by this coincidence an 

analysis can be made.  

 Due to the same boundary of the circle and the pixel of f=4, the inner side 

of the ray is smaller then the pixel of f=1, meaning higher frequency  area in the 

circle and lower frequency outside the circle. By a combination between enough 

number of projection and rather high frequency, the blurred at circle inner side of 

the image of f=4 is more systematic than it is of f=1. 

 How ever it is difficult in practical use to know where the boundary of an 

important target organ will be located in a CT object matrix. For example, in a 

human head scanning  it is almost impossible to know where exactly the target 

brain boundary will be in an imaginary object matrix of a CT system. So in this 

angular width simulations, it will be safe to recommend the pixel of f=1 as a 

reference width of the ray angular width. 

  

V.2.3. Reconstruction Time 

 The simulation of the reconstruction time is purposed to know the 

influence of both doubling object matrix dimensions and number of projections to 

the duration of reconstruction process. Both the resulting reconstruction time data 

and the resulting image of M projections onto N pixels can be seen in the 
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appendices. Here, to be easily analysed, the time data are transformed to 

backprojection speed value, since in an iterative reconstruction technique, the 

duration of backprojection process will take the major part of all reconstruction 

time. 

Table 5.1. Backprojection speed (iterations/seconds)  

tM x N 10.000 /  
(projections x pixels) (iterations/seconds) 
 256  x 256 222,22 
 1024  x 256 83,33 

 1024  x 1.024 15.15 

 4096  x 1024 2,32 

 4096  x 4096 0,56 
  

And from table 5.1, a simple chart can be made. 
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Figure 5.5 A chart of backprojection speed vs number of pixels (N). The 

blue line is for M (projections) = N  while the red line is for M=2N. 
  

 From the chart, a brief analysis can be made. Since doubling an object 

matrix dimension from n x n to 2n x 2n will automatically need the doubling of M 

projections dimension from m x m to 2m x 2m, due to M ≥ N requirement, the 

number of both matrix elements involved in an iteration process will be raised to 4 

x 4 (= 16)  times from the original number. And if the M projections need to be 

doubled again from 2m x 2m to 4m x 4m  to get a better resulting image, total 

matrix elements now will be raised again to 4 x 4 x 4 (= 64) times from the origin. 
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This will explain why the chart has a logarithmic trend. Of course with more data 

for other dimension expansions, more accurate chart will be gained. However the 

above chart can give a prediction of how long a reconstruction of a doubled 

dimension object matrix will take.  

 Beside the time conclusion, from the resulting images another conclusion 

also can be made. By doubling again the projection number, consequently the 

reconstruction process will be much slower but more spatial and contrast 

resolution will be achieved resulting a much sharper image. So designing a CT 

projection plan will include a decision of choosing the priority between better 

resulting image or shorter reconstruction time which each will have its own 

benefit and drawback. Conducting these parameters optimization simulations will 

give better combination of designing parameters value of a CT projection plan. 

  

V.2.4. Number of Iterations ( j ) and Filtering Process 

 This simulation is conducted to know the process of image filtering and 

the maximal number of iterations needed to give major contribution to the image 

quality. From the j = 0 iteration, it is proved that it’s not possible to conduct a 

reconstruction without filtering process. Since the research use an iterative 

technique, a step by step filtering is needed.  

 From the plot of resulting pixel value, it can be observed that significant 

result of the filtering process starts at j=1000 and raise again to maximal value at j 

= 10.000. More iterations then will not make significant result to the image. As it 

can be seen for j = 20.000, the image quality has no significan difference with the 

image quality of j =10.000.   

 So from above parameters simulations, it is recommended that optimal 

combinations of parameters value are: 

1. To choose detector size which adjust the ray angular width to f =1, 

2. To double both number of detectors and views to get: M = 4N, and 

3. To conduct filtering process up to 10.000 iterations. 
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V.3. Experiment 

For an obvious clear or blurred image, it is easy to review the result 

qualitatively, but for almost similar image quality, the effective way to review is 

by using a quantitative standard. The quantitative tool to review an image quality 

is the Mean Squared Error (MSE)/pixel. However, since the value only represents 

mean error of an image matrix, it can not tell the details of an image, and since a 

CT image is also meant to used by a non-technical person, a qualitative review by 

naked human eye is still recommended.  

 

V.3.1. Qualitative  

V.3.1.1. Object Matrix of N=32x32 and M=64x64 projections 

• Changing Parameter: Number of Iterations (j) for lambda (λ) =2 

From the experiment results of N=32x32, it can be seen that for λ =2, the 

converging process was rather slow and it was still very blurred at 100 iterations. 

The image got much better at 1000 iterations and needed 10.000 iterations to gain 

an optimal resulting image. It can also be observed that the spatial resolution of 

the image was very good since the characteristic shape of Shepp-Logan phantom 

was still matched with the original shape.  

By careful observation, it can be seen that a minor blurring still existed, 

even at 10.000 iterations. The minor blurring located at two positions. The first 

blurring was inside the brain area and the second blurring was outside the head 

boundary. Related to the small tumours of the head phantom, the tumours shape 

was clear but the contrast was almost the same with their surrounding tissue 

 
Figure 5.6. j =10.000 iterations, λ = 2 
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How ever from the general point of view, it can be concluded that the 

resulting image for λ = 2 was clear enough to be recommended. 

 

• Changing Parameter: Lambda (λ) for  j =10.000 iterations 

From the experiment results, it is obvious that the image of λ = 1 was 

blurred while the head shape was still very good. The inner blurring got missing 

along with the raising value of λ, but the outer blurring still existed and even 

mostly expanded at λ = 5. Raising again the λ to 10 made both inner and outer 

blurring totally disappear and the contrast resolution got much better. Finally at λ 

= 15, the contrast of the image was almost perfect and somewhat similar with the 

original phantom.  

 
Figure 5.7.b. λ = 15, j =10.000 iter. Figure 5.7.a. λ = 5, j =10.000 iter.  

  

 So it can be concluded that minimal recommended convergence speed for 

this experiment will be  at λ = 15.  

 

V.3.1.2. Object Matrix of N=64x64 and M=128x64 projections 

• Changing Parameter: Number of Iterations (j) for lambda (λ) =2 

From the experiment results it can be observed that the spatial and contrast 

resolution of the image was very poor until 1.000 iterations. At 10.000 iterations 

the spatial resolutions was even worse, due to broken lower and upper boundary 
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of the head shape, but the contrast resolution was much better, due to clear 

contrast difference between organs and background tissue. The small tumours 

shape were also clearly seen.  
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Figure 5. 8.b. λ = 2, j =10.000 iterations Figure 5. 8.a. λ = 2, j =1.000 iterations 

 

The poor spatial resolution was predictable since there were not enough 

samplings for the phantom. Compared to object of N=32x32 with M=64x64 

projections/samplings, which means M=4N, this object of N=64x64 was only 

projected by 128x64 projections/samplings, which means M=2N. So the phantom 

was not sufficiently defined. The above analysis become obvious at 10.000 

iterations. Instead of becoming better, the vertical head shape boundary was 

getting broken, while the horisontal boundary was not. Back to optimizing 

parameters simulation analysis, it can also be explained that since the head 

phantom was elliptical (the horisontal boundary was closer to the center than the 

vertical), the ray width of f=1 could only maximally define the center part of the 

object matrix. The broken boundary showed that some area of vertical head 

boundary which located near the matrix edge was poorly projected. The above 

analysis can also explain why the center organs of the phantom got better contrast 

resolution at j=10.000. It also proves the reference theory, that an object image 

reconstructed by a fan beam projection will have better quality at center area. 

 

• Changing Parameter: Lambda (λ) for  j =100 iterations 

From the experiment results it is obvious that the spatial and contrast 

resolution change due to the raising λ was almost similar with the iterations 
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experiment above. For higher value of  λ, it can be seen that spatial resolution was 

getting worse but the contrast resolution was getting better. The analysis then will 

be the same with previous experiments. The concern here is that even the number 

of iterations only 100, for λ = 40 the tumours shape was even better than it was for 

λ = 2 at 1000 iterations. 
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Figure 5.9.b. λ = 40, j =100 iter. Figure 5.9.a. λ = 2, j =1000 iter.  

 

From above result, it can be concluded that for object matrix of N = 

64x64, the convergence speed of  λ = 2, is still too small and it is better to adjust λ 

= 40. By this result, a further experiment was then conducted to know the result if 

value of λ was raised again to 50 and the number of iterations was maximalized to 

10.000. Below is the resulting image of the experiment: 
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Figure 5.10. λ = 50, j =10.000 iterations 
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The result was predictable. For λ = 50 and j=10.1000 iterations, the 

contrast resolution was very good and the head organs boundary was very clear, 

included the three small tumours in the head phantom. How ever it is also seen 

that the spatial resolution was still poor, espescially at the vertical head boundary, 

eventhough the broken was obviously reduced. From this experiment result, it is 

then recommended to adjust convergence speed to λ=50 for object matrix of 

N=64x64 and M=128x64. 

 

V.3.2. Quantitative: Mean Square Error (MSE) 

To give quantitative explanations of the qualitative image data, then it will 

need a standard parameter to represent the quality of the images. Below is a 

complete data table of the Mean Square Error / pixel of each resulting images 

relative to the original phantom. By using the data table, four MSE graphics can 

be made to get better understanding of the influence of raising the convergence 

speed, λ, or the number of iterations to the image quality. Both the MSE table and 

graphics can prove the previous qualitative data analysis 

  

From equation (2.21), the MSE is defined as: 

 

MSE/pixel  =  (2-21) 
2N

1k
k |a|)N/1( ∑

=

Δ

 

where:MSE/pixel = Mean Square Error 

 N = Number of object pixels 

k  = pixels number  = 1, 2, 3, ..., N 

 

And from a simple computation (which can be worked by a simple Matlab 

program), table 5.1 is achieved as: 
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Table 5.1.  Mean Square Error (MSE) / pixel 

N=32X32, M=64X64 N=64X64, M=128X64 

LAMBDA = 2  LAMBDA = 2  

ITERATIONS MSE ITERATIONS MSE 

100 0.0306 10 0.058 

500 0.0150 20 0.0554 

1000 0.0086 30 0.0532 

2000 0.0037 40 0.0513 

3000 0.0020 50 0.0497 

4000 0.0012 100 0.0444 

5000 0.0008 1000 0.0356 

10000 0.0002 10000 0.0286 

        

ITERATION = 10.000 ITERATION = 100 

LAMBDA MSE LAMBDA MSE 

1 7.58E-04 2 0.0444 

2 2.00E-04 5 0.0397 

5 9.00E-06 10 0.0376 

10 2.91E-07 20 0.0355 

15 2.09E-08 30 0.0344 

    40 0.0335  
 

 

And from the above table, graphics of MSE vs iterations (j) and MSE vs 

lambda () can be made to get better overview of the quantitative result. The 

graphics can be seen below: 
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Figure 5.11.a. A Graphic of MSE vs Iterations for λ =2. 
 Object matrix of N=32x32, M=64x64 projections 

Figure 5.11.b. A Graphic of MSE vs λ for j = 10.000 Iterations, 
  Object matrix of N=32x32, M=64x64 projections 
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Figure 5.11.c. A Graphic of MSE vs Iterations, for λ = 2  
  Object matrix of N=64x64, M=128x64 projections 

Figure 5.11.d. A Graphic of MSE vs λ for j = 100 Iterations, 
  Object matrix of N=64x64, M=128x64 projections 
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 From above graphics, a general conclusion can be made that the decrease 

of MSE in MSE vs λ graphic is faster than the decrease of MSE in MSE vs 

iterations graphic. It means that adjusting an accurate convergence speed, λ, is 

more effective than conducting so many iterations. 

 

V.3.3. Comparison of ART and FBP Technique 

 Resulting Images of the FBP technique along with filtering function and 

resulting images of the ART developed in the research. 
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Figure 5.12.a. Unfiltered sinogram  Figure 5.12.b.Ram-Lak filter 
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Figure 5.12.c. Filtered sinogram of 

(5.11.a.) 
Figure 5.12.d. Resulting Image, 

M=64x32, MSE = 0.0115 

 
Figure 5.13.Resulting image of the ART developed in the research, 

λ=15 j=10.000 iterations, MSE=2.09E-08 
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It is obvious from the result that the image quality, both spatial and contrast 

resolutions, of the ART was much better than the quality image of the FBP. The 

analysis is not difficult, because the FBP here used a parallel beam projection and 

it much depended on the object matrix dimension, N, instead of number of views 

like in the ART.  

And since in FBP, the filtering function is tightly related with the spatial 

resolution of the object matrix, and since parallel beam view is only limited in the 

range of 00 to 1800, then adding the view of the beam to an unlimited number is 

not effective any more to the image quality if the object matrix dimension is not 

upgraded.  It seems that maximal effective number of views relative to the object 

dimension is M=2N. More than that relative number, the Ram-Lak filter is not 

effective anymore, because unlike ART which more projection views means more 

definitions to pixels for more accurate initial guess in backprojection process, in 

the FBP where filtering process is conducted in forward projection, if the 

definitions of pixels are already enough, more projection views only mean more 

task for the Ram-Lak filter. 

Good example of the above analysis can be seen in the figure below, where 

the projection views of object matrix of N=32x32 is even upgraded from 

M=64x32 to M=128x32. The result is similarly blurred with the previous but from 

the MSE value, it is known that the image quality is even decreased. 
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Figure 5.14.a. Resulting Image, 
M=64x32, MSE = 0.0115 

Figure 5.14.b. Resulting Image, 
M=128x32, MSE = 0.0116 

 

V.3.4. Comparison of ART and Another Iterative Technique 

 The comparing images are taken from the result of a mastering degree 

research conducted by Abbey Mukkanancherry [10] using different iterative 
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reconstruction technique with different initial guess method. The iterative 

technique used by Mukkanancherry also used convergence speed, λ. But since the 

initial guess method was different, the convergence speed is adjusted at λ = 0,5. 

 Since all resulting images are reconstructed by a fan beam, it is obvious that both 

compared methods have the same purpose to achieve most effective value of 

convergence speed, λ,  and its influence to the number of iterations needed. Below 

is the figure of resulting images worked by Mukkanancherry compared with 

resulting images of the research. The figure is taken from electronic copy of the 

thesis publication. 

 

 
 
Figure 5.15.a. (top) M=32x32, N=32x32, fan beam, parallel source-
detector geometry, j = 1.000 iterations (left) and j = 10.000 iterations 
(right). ( from [10] ) 
Figure 5.15.b. (bottom) M=128x128, N=32x32, fan beam, clamshell 
source-detector geometry, j = 1.000 iterations(left) and j = 40.000 
iterations (right). ( from [10] ) 
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Figure 5.16.Resulting image of the research 

λ = 15  j =10.000 iterations. 
 

 First resulting image of the comparing method in figure 5.13a. are very 

blurred due to lack of filtering process while the second is much better after the 

filtering process were added. And from figure.5.13b, where the source-detector 

geometry is called clamshell, the number of projections M is 16 times of the 

number of object pixels. The changing parameter here is the number of iterations. 

Mukkananchery here wanted to show that by using the geometry, it needs only 

1.000 iterations to gain a sharp resulting image, compared to 10.000 iterations 

needed by the previous (parallel geometry). While maximal sharp of the image 

then was reached by 10.000 iterations as shown in the second image. 

 Finally from the fig.5.13c. it is obvious that the resulting image of the 

ART developed in this research is proved to be the clearest image. 
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CHAPTER VI 

SUMMARY 
 

From the result analysis of both the parameter optimization and the 

experiment, general conclusions can be taken, which are: 

1. The MATLAB program based on Algebraic Reconstruction Technique 

(ART) algorithm developed in the research has been able to be used as a 

simple CT image reconstruction program. 

2. A fan beam is much more effective to be used as a projection beam than 

the parallel beam.  

3. To get maximal performance of the ART algorithm developed in the 

research, the recommended optimized parameters of the research are: 

a. To choose the ray angular width of f =1, 

b. To double both number of detectors and views to get: M = 4N, and 

c. To conduct filtering process up to 10.000 iterations. 

4. Since the research used the ART which is an iterative technique, it is 

concluded that: 

a. For object matrix of N=32x32 and M=64x64 samplings then a minimal 

effective value of convergence speed is λ =15 

b. For object matrix of N=64x64 and M=128x64 samplings then a minimal 

effective value of convergence speed is  λ =50 

c.  Adjusting the value of λ  is not easy since taking too small value will 

make the convergence too slow but taking too big value will make the 

convergence not stable, which can result wide fluctuation of resulting 

image quality. 

d. Adjusting an accurate λ is much more effective than conducting too 

many iterations to get an optimal resulting image. 

5.  The ART developed in the research has proved to be an effective 

reconstruction method for limited dimensions of object matrix. Compared 

to FBP technique and another iterative technique the quality of its 

resulting images were even better.  
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6.  The main drawback of the ART is the limited projections/samplings, M, 

can be conducted due to its massive matrix operations in iterative process. 

 To optimize the projection of an object matrix of N= n x n, the computer 

must be able to  process projections/samplings of M= 2n x 2n.  

 7.   A maximal effort should be done to find a mathematical solution for much 

shorter iterative process.  
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APPENDICES 
 

A1. Table of Intersection Points Position 

CATHEGORY 1:  0 < Φ < (π/2 - Δβ) 

No Xe Xf Xa Xb    Xe Xf Xa Xb    Xe Xf Xa Xb

1 Xe1 Xf1 Xa1 Xb1  28 Xe2 Xf1 Xa1 Xb1  55 Xe3 Xf1 Xa1 Xb1 
2 Xe1 Xf1 Xa1 Xb2  29 Xe2 Xf1 Xa1 Xb2  56 Xe3 Xf1 Xa1 Xb2 
3 Xe1 Xf1 Xa1 Xb3  30 Xe2 Xf1 Xa1 Xb3  57 Xe3 Xf1 Xa1 Xb3 
4 Xe1 Xf1 Xa2 Xb1  31 Xe2 Xf1 Xa2 Xb1  58 Xe3 Xf1 Xa2 Xb1 
5 Xe1 Xf1 Xa2 Xb2  32 Xe2 Xf1 Xa2 Xb2  59 Xe3 Xf1 Xa2 Xb2 
6 Xe1 Xf1 Xa2 Xb3  33 Xe2 Xf1 Xa2 Xb3  60 Xe3 Xf1 Xa2 Xb3 
7 Xe1 Xf1 Xa3 Xb1  34 Xe2 Xf1 Xa3 Xb1  61 Xe3 Xf1 Xa3 Xb1 
8 Xe1 Xf1 Xa3 Xb2  35 Xe2 Xf1 Xa3 Xb2  62 Xe3 Xf1 Xa3 Xb2 
9 Xe1 Xf1 Xa3 Xb3  36 Xe2 Xf1 Xa3 Xb3  63 Xe3 Xf1 Xa3 Xb3 

10 Xe1 Xf2 Xa1 Xb1  37 Xe2 Xf2 Xa1 Xb1  64 Xe3 Xf2 Xa1 Xb1 

11 Xe1 Xf2 Xa1 Xb2  38 Xe2 Xf2 Xa1 Xb2  65 Xe3 Xf2 Xa1 Xb2 
12 Xe1 Xf2 Xa1 Xb3  39 Xe2 Xf2 Xa1 Xb3  66 Xe3 Xf2 Xa1 Xb3 
13 Xe1 Xf2 Xa2 Xb1  40 Xe2 Xf2 Xa2 Xb1  67 Xe3 Xf2 Xa2 Xb1 

14 Xe1 Xf2 Xa2 Xb2  41 Xe2 Xf2 Xa2 Xb2  68 Xe3 Xf2 Xa2 Xb2 
15 Xe1 Xf2 Xa2 Xb3  42 Xe2 Xf2 Xa2 Xb3  69 Xe3 Xf2 Xa2 Xb3 
16 Xe1 Xf2 Xa3 Xb1  43 Xe2 Xf2 Xa3 Xb1  70 Xe3 Xf2 Xa3 Xb1 
17 Xe1 Xf2 Xa3 Xb2  44 Xe2 Xf2 Xa3 Xb2  71 Xe3 Xf2 Xa3 Xb2 
18 Xe1 Xf2 Xa3 Xb3  45 Xe2 Xf2 Xa3 Xb3  72 Xe3 Xf2 Xa3 Xb3 

19 Xe1 Xf3 Xa1 Xb1  46 Xe2 Xf3 Xa1 Xb1  73 Xe3 Xf3 Xa1 Xb1 
20 Xe1 Xf3 Xa1 Xb2  47 Xe2 Xf3 Xa1 Xb2  74 Xe3 Xf3 Xa1 Xb2 
21 Xe1 Xf3 Xa1 Xb3  48 Xe2 Xf3 Xa1 Xb3  75 Xe3 Xf3 Xa1 Xb3 
22 Xe1 Xf3 Xa2 Xb1  49 Xe2 Xf3 Xa2 Xb1  76 Xe3 Xf3 Xa2 Xb1 

23 Xe1 Xf3 Xa2 Xb2  50 Xe2 Xf3 Xa2 Xb2  77 Xe3 Xf3 Xa2 Xb2 
24 Xe1 Xf3 Xa2 Xb3  51 Xe2 Xf3 Xa2 Xb3  78 Xe3 Xf3 Xa2 Xb3 
25 Xe1 Xf3 Xa3 Xb1  52 Xe2 Xf3 Xa3 Xb1  79 Xe3 Xf3 Xa3 Xb1 
26 Xe1 Xf3 Xa3 Xb2  53 Xe2 Xf3 Xa3 Xb2  80 Xe3 Xf3 Xa3 Xb2 

27 Xe1 Xf3 Xa3 Xb3  54 Xe2 Xf3 Xa3 Xb3  81 Xe3 Xf3 Xa3 Xb3 
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A2. Table of Intersection Shapes and Area 

CATHEGORY 1 : 0 < Φ < (π/2 - Δβ) 
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CATHEGORY 2: (π/2 - Δβ) ≤ Φ ≤ (π/2) 
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CATHEGORY 3: (π/2) < Φ < (π - Δβ) 
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A3. Resulting Images of Parameters Optimization 

1 Beam Shape 
 
 

 

a.Resulting image: parallel beam (*), 
M=20x20, N=20x20, α = 0 → π, a  = (0,75).R 0

 
(*) simulated by a matlab work for parallel beam of 20x20x400 by Dr.Warsito [15] 

 

b. Resulting image: fan beam, 
M=16x16, N=16x16, α = 0 → 2π, a0 = (0,75).R 
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 = (0,5).R 2.Angular Width, a0

i. Fan Beam Angular Width (m .Δβ), where (m .Δβ) = 2.arc tan (a /(R+ a )) β β 0 0

  
a. Resulting image, M=16x16,N=16x16, 

m
b. Resulting image: M=32x32,N=32x32, 

mβ = 16 β = 32 
 

 

ii. Fan Ray Angular Width (Δβ) , with Δβ = arc tan (d/(R+a0 – f.d) 

N = 16x16 

 
a. Resulting image:  M=16x16, N=16x16, 

f = 0 
b Resulting image: M=16x16, N=16x16,  
f = 1 
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c. Resulting image: M=16x16, N=16x16, 

f = 2 d. Resulting image: M=16x16, N=16x16, 
f = 3  

 
e. Resulting image: M=16x16, N=16x16, 

f = 4 
f. Resulting image: M=16x16, N=16x16,  

f = 5 
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N = 32x32 

 

b. Resulting image: M=32x32, N=32x32, 
f = 8 

a. Resulting image: M=32x32, N=32x32, 
f = 1 

 
 

N = 64x64 

 

Resulting image:M = 64x64, N=64x64,  
f = 1 
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3. Reconstruction Time, a0 = (0,5).R 
 

b. Resulting image: M=32x32, N=16x16, a. Resulting image: M=16x16, N=16x16, 
t t = 45 seconds  = 120 seconds 

c. Resulting image: M=32x32, N=32x32, d Resulting image: M=64x64, N=32x32, 
t t =  660 seconds  = 4.200 seconds 

 
e. Resulting image: M=64x64, N=64x64, 

t  = 17.950 seconds 
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4. Number of Iterations ( j ) : Filtering Process, a0 = (0,5).R 
 

Fig.A3.4i.a. Plot of resulting image (a )  Fig.A3.4i.b. Resulting image (a ) r r
J=0 pixels value, J=0 

1a. Plot of resulting image (a )  1b Resulting image (a ) r r
pixels value, J=10 J=10 

2a. Plot of resulting image (a ) 2b. Resulting image (a ) r r
J=100  pixels value, J=100 
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3a Plot of resulting image(a )  3b Resulting image (a ) r r
J=1.000 pixels  value, J=1.000 

4a. Plot of resulting image (a ) 4b. Resulting image (a ) r r
J=10.000 pixels  value, J=10.000 

5a. Plot of resulting image (a ) 5b. Resulting image (a ) r r
J=20.000 pixels  value, J=20.000 

 
 

 76 
 Computed tomography..., Ferdinan Manuel Siahaan, FMIPA UI, 2008

 



A4. Qualitative Experimental Data 

1. N=32x32, M=64x64 

λ = 2 

j = 100 iterations j = 500 iterations 

j = 1000 iterations j = 2000 iterations 

j = 3000 iterations j = 4000 iterations 
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j = 5000 iterations j = 10000 iterations 

 

 

j = 10.000 iterations 

 
λ = 1 λ = 2 

λ = 5 λ = 10 
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λ = 15 

 

 

2. N=64x64, M=128x64 
λ =2 
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A5. MATLAB Programs 
=================================================================== 

% PROJECTION MATRIX - THESIS 

% CT PROJECTION PLAN 
R   = 2; % CT-radius  

mb   = 32; % number of rays in a beam  

ma   = 32;                     % number of beams 

dalpha= 2*pi/ma;                 % indices of beam direction 

N  = 1024;  % number of pixels of object matrix 

% OBJECT MATRIX 

n  = sqrt(N);                 % number of pixels in x or y direction 

a0    = R/2;                     % half width of matrix 

d  = 2*a0/n;  % pixel witdh 

 

%dbeta = 2/mb*atan(a0/(R+a0));% width of a beam  

dbeta=atan(d/(R+a0-d));          % width of a ray 

 

% CARTESIAN COORDINATE SYSTEM 

x     = [-a0:d:a0];   % x-axis, 

y     = [-a0:d:a0];   % y-axis, 

beta  = (-mb/2*dbeta):dbeta:(mb/2*dbeta-dbeta);     % ray directions in a beam 

 

% PROJECTION FUNCTION 

M=0; 

i=0; 

for alpha   = pi/4:dalpha:2*pi+pi/4-dalpha            % beam direction 

    i       = i+1;                                    % counter for alpha 

    for j=1:mb                                        % counter for beta 

        M=M+1;                                        % counter for pi 

        phi(j)  = alpha+beta(j);                      % ray directions in CT system 

        % RAY LINEAR EQUATION 

        m1(j)   = -1/tan(phi(j));                    % ray-Y1 gradient 

        m2(j)   = -1/tan(phi(j)+dbeta);  % ray-Y2 gradient 

        b1(j)   = R*(cos(alpha)+m1(j)*sin(alpha));   % y(x=0)ordinate of Y1  

        b2(j)   = R*(cos(alpha)+m2(j)*sin(alpha));   % y(x=0)ordinate of Y2 

        for k=1:N                                    % pixels numbering 

            r=round(k/n-0.5001)+1; 
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            s=rem(k,n); 

            if s==0 

                s=r-1; 

                s=n; 

            end 

            x(r)= -a0+d*(r-1);                    

            y(s)= -a0+d*(s-1); 

             

            % MATRIX BACK ROTATION, RADON TRANSFORM 

            % QUADRANT 1 TO 4 

            k4  = n*s-r+1;                       % pixels number in Quadrant 4 

            % QUADRANT 1&4 TO 3&2 

            k23 = N-k+1;                        % pixels number in Quadrant 2&3 

             

            % INTERSECTION POINTS 

            xa=1/m1(j)*(y(s+1)-b1(j)); % intersection: Y1 and Y= y(s+1) 

            xb=1/m2(j)*(y(s+1)-b2(j)); % intersection: Y2 and Y= y(s+1) 

            xe=1/m1(j)*(y(s)  -b1(j)); % intersection: Y1 and Y= y(s) 

            xf=1/m2(j)*(y(s)  -b2(j));           % intersection: Y2 and Y= y(s) 

            yc=m1(j)*x(r)  +b1(j);               % intersection: Y1 and X= x(r) 

            yd=m2(j)*x(r)  +b2(j); % intersection: Y2 and X= x(r) 

            yg=m1(j)*x(r+1)+b1(j);  % intersection: Y1 and X= x(r+1) 

            yh=m2(j)*x(r+1)+b2(j);  % intersection: Y1 and X= x(r+1) 

             

            % SLOPE CONDITIONS (xa;xb;xe;xf)  

            xa1=(xa<x(r)); 

            xa2=((x(r)<=xa)&(xa<=x(r+1))); 

            xa3=(x(r+1)<xa); 

            xb1=(xb<x(r)); 

            xb2=((x(r)<=xb)&(xb<=x(r+1))); 

            xb3=(x(r+1)<xb); 

            xe1=(xe<x(r)); 

            xe2=((x(r)<=xe)&(xe<=x(r+1))); 

            xe3=(x(r+1)<xe); 

            xf1=(xf<x(r)); 

            xf2=((x(r)<=xf)&(xf<=x(r+1))); 

            xf3=(x(r+1)<xf); 

            % SLOPE CONDITIONS (yc;yd;yg;yh)  

            yc1=(yc<y(s)); 
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            yc2=((y(s)<=yc)&(yc<=y(s+1))); 

            yc3=(y(s+1)<yc); 

            yd1=(yd<y(s)); 

            yd2=((y(s)<=yd)&(yd<=y(s+1))); 

            yd3=(y(s+1)<yd); 

            yg1=(yg<y(s)); 

            yg2=((y(s)<=yg)&(yg<=y(s+1))); 

            yg3=(y(s+1)<yg); 

            yh1=(yh<y(s)); 

            yh2=((y(s)<=yh)&(yh<=y(s+1))); 

            yh3=(y(s+1)<yh); 

             

 % PROJECTION FUNCTION  

            if (pi/4<=alpha)&(alpha<3/4*pi) 

                x1u=0;x2u=0; x1a=0;x2a=0; x1b=0;x2b=0; 

                % CATHEGORY 1 

                if (0<phi(j))&(phi(j)<pi/2-dbeta) 

                    if xa1&xe1&xb1&xf1                     

                        w(i,j,k)=0; 

                        %W(M,k)=w(i,j,k);  

                    end 

                    if  xa1&xe1&xb1&xf2  

                        x1u=x(r);x2u=xf; x1b=x(r);x2b=xf;  

                    end 

                    if  xa1&xe1&xb2&xf2  

                        x1u=x(r);x2u=xf; x1a=x(r);x2a=xb; x1b=x(r);x2b=xf;  

                    end 

                    if  xa1&xe1&xb1&xf3  

                        x1u=x(r);x2u=x(r+1); x1b=x(r);x2b=x(r+1);  

                    end 

                    if  xa1&xe1&xb2&xf3 

                        x1u=x(r);x2u=x(r+1); x1a=x(r);x2a=xb; x1b=x(r);x2b=x(r+1);  

                    end 

                    if  xa1&xe1&xb3&xf3  

                        w(i,j,k)=d0^2; 

                        %W(M,k)=w(i,j,k); 

                    end 

                    if xa1&xe2&xb1&xf2 

                        x1u=x(r);x2u=xf; x1b=xe;x2b=xf;  
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                    end 

                    if xa1&xe2&xb2&xf2  

                        x1u=x(r);x2u=xf; x1a=x(r);x2a=xb; x1b=xe;x2b=xf;  

                    end 

                    if xa2&xe2&xb2&xf2  

                        x1u=xa;x2u=xf; x1a=xa;x2a=xb; x1b=xe;x2b=xf;  

                    end 

                    if xa1&xe2&xb1&xf3  

                        x1u=x(r);x2u=x(r+1); x1b=xe;x2b=x(r+1);  

                    end 

                    if xa1&xe2&xb2&xf3   

                        x1u=x(r);x2u=x(r+1); x1a=x(r);x2a=xb; x1b=xe;x2b=x(r+1);  

                    end 

                    if xa1&xe2&xb3&xf3  

                        x1u=x(r);x2u=x(r+1); x1a=x(r);x2a=x(r+1); x1b=xe;x2b=x(r+1);  

                    end 

                    if xa2&xe2&xb2&xf3   

                        x1u=xa;x2u=x(r+1); x1a=xa;x2a=xb; x1b=xe;x2b=x(r+1);  

                    end 

                    if xa2&xe2&xb3&xf3  

                        x1u=xa;x2u=x(r+1); x1a=xa;x2a=x(r+1); x1b=xe;x2b=x(r+1);  

                    end 

                    if xa1&xe3&xb1&xf3  

                        x1u=x(r);x2u=x(r+1);  

                    end 

                    if xa1&xe3&xb2&xf3  

                        x1u=x(r);x2u=x(r+1); x1a=x(r);x2a=xb;  

                    end 

                    if xa1&xe3&xb3&xf3   

                        x1u=x(r);x2u=x(r+1); x1a=x(r);x2a=x(r+1);  

                    end 

                    if xa2&xe3&xb2&xf3  

                        x1u=xa;x2u=x(r+1); x1a=xa;x2a=xb;  

                    end 

                    if xa2&xe3&xb3&xf3  

                        x1u=xa;x2u=x(r+1); x1a=xa;x2a=x(r+1); 

                    end 

                    if xa3&xe3&xb3&xf3  

                        w(i,j,k)=0; 
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                        %W(M,k)=w(i,j,k);  

                    end 

                    % CATHEGORY 2 

                else if (pi/2-dbeta<=phi(j))&(phi(j)<=pi/2)  

                        if yc1&yg1&yd1&yh1 

                            w(i,j,k)=0; 

                            %W(M,k)=w(i,j,k);  

                        end 

                        if yc1&yg1&yd1&yh2 

                            x1u=xf;x2u=x(r+1); x1b=xf;x2b=x(r+1);  

                        end 

                        if yc1&yg1&yd2&yh2 

                            x1u=x(r);x2u=x(r+1); x1b=x(r);x2b=x(r+1);  

                        end 

                        if yc2&yg1&yd2&yh2 

                            x1u=x(r);x2u=x(r+1); x1b=xe;x2b=x(r+1);  

                        end 

                        if yc1&yg1&yd1&yh3 

                            x1u=xf;x2u=x(r+1); x1a=xb;x2a=x(r+1); x1b=xf;x2b=x(r+1);  

                        end 

                        if yc1&yg1&yd2&yh3 

                            x1u=x(r);x2u=x(r+1); x1a=xb;x2a=x(r+1); x1b=x(r);x2b=x(r+1);  

                        end 

                        if yc1&yg1&yd3&yh3 

                            w(i,j,k)=d0^2; 

                            %W(M,k)=w(i,j,k); 

                        end 

                        if yc2&yg1&yd2&yh3 

                            x1u=x(r);x2u=x(r+1); x1a=xb;x2a=x(r+1); x1b=xe;x2b=x(r+1);  

                        end 

                        if yc2&yg1&yd3&yh3 

                            x1u=x(r);x2u=x(r+1); x1a=x(r);x2a=x(r+1); x1b=xe;x2b=x(r+1);  

                        end 

                        if yc3&yg1&yd3&yh3 

                            x1u=xa;x2u=x(r+1); x1a=xa;x2a=x(r+1); x1b=xe;x2b=x(r+1);  

                        end 

                        if yc2&yg2&yd2&yh2 

                            x1u=x(r);x2u=x(r+1);  

                        end 
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                        if yc2&yg2&yd3&yh3 

                            x1u=x(r);x2u=x(r+1); x1a=x(r);x2a=x(r+1);  

                        end 

                        if yc2&yg2&yd2&yh3 

                            x1u=x(r);x2u=x(r+1); x1a=xb;x2a=x(r+1);  

                        end 

                        if yc3&yg2&yd3&yh3 

                            x1u=xa;x2u=x(r+1); x1a=xa;x2a=x(r+1);   

                        end 

                        if yc3&yg3&yd3&yh3 

                            w(i,j,k)=0; 

                            %W(M,k)=w(i,j,k); 

                        end 

                        % CATHEGORY 2 

                    else if (pi/2<phi(j))&(phi(j)<pi-dbeta) 

                            if xa3&xe3&xb3&xf3 

                                w(i,j,k)=0; 

                                %W(M,k)=w(i,j,k);  

                            end 

                            if  xa3&xe3&xb3&xf2 

                                x1u=xf;x2u=x(r+1);x1b=xf;x2b=x(r+1);  

                            end 

                            if xa3&xe3&xb3&xf1 

                                x1u=x(r);x2u=x(r+1);x1b=x(r);x2b=x(r+1);  

                            end 

                            if xa3&xe3&xb2&xf2 

                                x1u=xf;x2u=x(r+1); x1a=xb;x2a=x(r+1); x1b=xf;x2b=x(r+1);  

                            end 

                            if xa3&xe3&xb2&xf1 

                                x1u=x(r);x2u=x(r+1); x1a=xb;x2a=x(r+1); x1b=x(r);x2b=x(r+1);  

                            end 

                            if xa3&xe3&xb1&xf1 

                                w(i,j,k)=d0^2; 

                                %W(M,k)=w(i,j,k); 

                            end 

                            if xa3&xe2&xb3&xf2 

                                x1u=xf;x2u=x(r+1); x1b=xf;x2b=xe;  

                            end 

                            if xa3&xe2&xb3&xf1 
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                                x1u=x(r);x2u=x(r+1); x1b=x(r);x2b=xe;  

                            end 

                            if xa3&xe1&xb3&xf1 

                                x1u=x(r);x2u=x(r+1);  

                            end 

                            if xa3&xe2&xb2&xf2 

                                x1u=xf;x2u=x(r+1); x1a=xb;x2a=x(r+1); x1b=xf;x2b=xe;  

                            end 

                            if xa3&xe2&xb2&xf1  

                                x1u=x(r);x2u=x(r+1); x1a=xb;x2a=x(r+1); x1b=x(r);x2b=xe;  

                            end 

                            if xa3&xe2&xb1&xf1 

                                x1u=x(r);x2u=x(r+1); x1a=x(r);x2a=x(r+1); x1b=x(r);x2b=xe;  

                            end 

                            if xa3&xe1&xb2&xf1 

                                x1u=x(r);x2u=x(r+1); x1a=xb;x2a=x(r+1);  

                            end 

                            if xa3&xe1&xb1&xf1 

                                x1u=x(r);x2u=x(r+1); x1a=x(r);x2a=x(r+1);  

                            end 

                            if xa2&xe2&xb2&xf2 

                                x1u=xf;x2u=xa; x1a=xb;x2a=xa; x1b=xf;x2b=xe;  

                            end 

                            if xa2&xe2&xb2&xf1 

                                x1u=x(r);x2u=xa; x1a=xb;x2a=xa; x1b=x(r);x2b=xe;  

                            end 

                            if xa2&xe2&xb1&xf1 

                                x1u=x(r);x2u=xa; x1a=x(r);x2a=xa; x1b=x(r);x2b=xe;  

                            end 

                            if xa2&xe1&xb2&xf1 

                                x1u=x(r);x2u=xa; x1a=xb;x2a=xa;  

                            end 

                            if xa2&xe1&xb1&xf1 

                                x1u=x(r);x2u=xa; x1a=x(r);x2a=xa;   

                            end 

                            if xa1&xe1&xb1&xf1 

                                w(i,j,k)=0; 

                                %W(M,k)=w(i,j,k);  

                            end 
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                        end 

                    end 

                end 

                wu(i,j,k) = [0.5*(m2(j)-m1(j))*(x2u^2-x1u^2)]+[(b2(j)-b1(j))*(x2u-x1u)]; 

                wa(i,j,k)= [0.5*m2(j)*(x2a^2-x1a^2)]+[(b2(j)-y(s+1))*(x2a-x1a)]; 

                wb(i,j,k)= [-0.5*m1(j)*(x2b^2-x1b^2)]+[(y(s)-b1(j))*(x2b-x1b)]; 

                w (i,j,k)= wu(i,j,k)-wa(i,j,k)-wb(i,j,k); 

                 

            else if (3/4*pi<=alpha)&(alpha<5/4*pi) 

                    w(i,j,k)= w((i-(ma/4)),j,k4);    

                   

                else if (5/4*pi<=alpha)&(alpha<2*pi+pi/4) 

                        w(i,j,k)= w((i-(ma/2)),j,k23);    

                    end 

                end 

            end 

            W(M,k)  = w(i,j,k); 

        end 

    end 

end 

disp('Save projection matrix with filename projmat_thesis_1024.m'); 

save(['projmat_thesis_1024'],'W') 

===================================================================
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======================================================== 

% SIMULATED PROJECTION DATA 
load objmat_thesis -mat 

load projmat_thesis -mat 

A=reshape(a,1024,1); % reshaping object_matrix of 32x32 to 1024x1 

P=W*A; 

disp('Save projdat matrix with filename projdat_thesis'); 

save (['projdat_thesis'],'P') 

======================================================== 

 

======================================================== 

% BACKPROJECTION 
load objmat_thesis -mat 

load projmat_thesis -mat 

load projdat_thesis -mat 

Ar=W' *P; 

lambda=2; 

iter=10000; 

for j=1:iter; 

j 

Ar=Ar-lambda*W’ *(W*Ar-P); 

end 

ar=reshape(Ar,32,32); 

disp('Save image matrix with filename immat_thesis'); 

save (['immat_thesis'],'ar') 

imagesc (ar); 

colormap (gray(256)); 

========================================================== 
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%============================================================ 

% MEAN SQUARE ERROR GRAPHIC 

% ITERATIONS OF LAMBDA = 2 
clear 

% OBJECT MATRIX 

a=phantom('Modified Shepp-Logan',32); 

k=1:1024; 

for i=1:8 

    as(i,k)= reshape (a,1,1024); 

end 

 

% INPUT IMAGE MATRIX DATA 

load IMMAT_thesis_32phantom_i100rayb_a2 -mat; 

ars(1,k)=reshape (ar,1,1024); 

load IMMAT_thesis_32phantom_i500rayb_a2 -mat; 

ars(2,k)=reshape (ar,1,1024); 

load IMMAT_thesis_32phantom_i1000rayb_a2 -mat; 

ars(3,k)=reshape (ar,1,1024); 

load IMMAT_thesis_32phantom_i2000rayb_a2 -mat; 

ars(4,k)=reshape (ar,1,1024); 

load IMMAT_thesis_32phantom_i3000rayb_a2 -mat; 

ars(5,k)=reshape (ar,1,1024); 

load IMMAT_thesis_32phantom_i4000rayb_a2 -mat; 

ars(6,k)=reshape (ar,1,1024); 

load IMMAT_thesis_32phantom_i5000rayb_a2 -mat; 

ars(7,k)=reshape (ar,1,1024); 

load IMMAT_thesis_32phantom_i10000rayb_a2 -mat; 

ars(8,k)=reshape(ar,1,1024); 

 

% MSE  

das= abs(as-ars) 

darv=das.^2; 

for i=1:8 

sumdarv(i)=sum(darv(i,1:1024)); 
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mse(i)=sumdarv(i)/1024 

end 

save (['mse32_M32x32_lambda2'],'mse') 

 

% GRAPHIC 

iter =[100 500 1000 2000 3000 4000 5000 10000] 

plot(iter,mse) 

plot(iter,mse,'--rs','LineWidth',2,... 

    'MarkerEdgeColor','k',... 

    'MarkerFaceColor','g',... 

    'MarkerSize',10) 

%============================================================ 
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