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ABSTRACT

The change of lateral rock properties such as porosity, density, fluid saturation etc
are reflected in seismic impedance changing. It is known widely that seismic inversion
allows us for correlation investigation in the impedance domain which often highlights
uniquely the change of rock properties. However the analysis of the early P-wave full-
stack seismic inversion data alone can lead to ambiguous conclusions in many
exploration situations.

Answering this problem, performing simultaneous inversion will bring us to a less
ambiguous interpretation of our inversion results in which we are able to estimate
Density, P and S-impedance which have sufficiently different response to discriminate
fluid and lithology effects. Utilizing the mathematical concept of AVO inversion,
simultaneous inversion use partial angle stack data which can be inverted simultaneously
using wavelet extracted from each offset.

Later, these parameters combined with rock physics technique analysis can be
used as a tool to predict sand, porosity and saturation distribution. Also, they can be
transformed to Lambda-Rho (Ap) that is used for pore fluid content indicator. Finally by
analyzing the rock properties distribution map overlaid by structure map and producer
well, we can identify the potential area for further development strategy to optimize the
hydrocarbon recovery of the study area.

ABSTRAK

Perubahan sifat-sifat batuan seperti porositas, densitas, saturasi dan lain-lain
terefleksikan oleh perubahan impedansi seismik. Seperti diketahui, inversi seismik
memungkinkan kita untuk mencari korelasinya pada domain impedansi, yang secara unik
sering mencirikan perubahan sifat-sifat batuan. Namun demikian, analisa dari seismic
inversi full stack gelombang-P membawa kita pada kesimpulan yang membingungkan
pada banyak situasi explorasi.

Dengan melakukan inversi simultan, kita diarahkan pada interpretasi hasil inversi
yang lebih pasti dimana kita dapat mengestimasi densitas, impedansi P dan S yang
memberikan respon yang cukup berbeda dalam memisahkan pengaruh lithology dan
fluida. Dengan menggunakan konsep matematika inversi AVO, inversi simultan
menggunakan data partial angle stack yang kemudian diinversikan secara bersamaan
menggunakan wavelet yang di extract dari setiap offset.

Kemudian dengan mengkombinasikan parameter-parameter ini dengan teknik
analisa rock physics yang dapat digunakan sebagai alat untuk memprediksi distribusi
lithology, porositas dan saturasi. Kemudian parameter-parameter ini juga dapat
ditransformasikan menjadi Lambda-Rho yang dapat digunakan sebagai indikator
kandungan fluida di pori batuan. Akhirnya dengan menganalisa peta distribusi sifat
batuan yang di overlay dengan peta struktur dan sumur produksi, kita dapat
mengidentifikasi area potensial untuk strategi pengembangan lebih lanjut untuk
mengoptimalkan pengurasan hidrokarbon pada area studi.
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Chapter One:
INTRODUCTION

1.1 Background

Recently most of the obvious structural traps have been tested by exploration
activities over the past 80 years. Explorationists have now begun to focus on the more
subtle trap types. The most significant of these traps are stratigraphic and or combination
stratigraphic-structural traps. These traps were formed by laterally changing in
depositional environment and associated with facies changes which reflected in changing
rock properties such as porosity, density, fluid saturation etc which have unique rock
physics properties. In seismic data this changes are reflected by changing in seismic
impedance laterally and furthermore it is known widely that seismic inversion allows us
for correlation investigation in the impedance domain which often highlights uniquely
rock properties changing and which then characterize the reservoir which include
delineating, correlating and describing the reservoir both in quality and or quantity.

Seismic inversion is a technique that has been used by geophysicists for almost 30
years for reservoir characterization. Early inversion techniques transformed the seismic
data into P-Impedance (the product of density and P-wave velocity), from which we were
able to make predictions about lithology and porosity. However, these predictions were
somewhat ambiguous since P-Impedance is sensitive to combined effect of lithology,
fluid and porosity effects, and it is difficult to separate the influence of each effect.

Answering this challenge, Seismic Simultaneous Inversion method is designed to
perform a less ambiguous interpretation of our inversion results, in which we estimate P-
Impedance, S-Impedance (the product of density and S-Wave velocity) and density
simultaneously. The reason for this is that the P and S-Wave response of the subsurface is
sufficiently different to allow us to see the difference between fluid and lithology effects.
We have now progressed to the point where inversion for P-Impedance, S-Impedance and

density is feasible.
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Utilizing the mathematical concept of AVO inversion, Seismic Simultaneous
Inversion method use partial angle stack data (near, mid, far offset stack) and each partial
angle stack was inverted simultaneously using wavelet extracted from each offset to
estimate P and S-impedance (Zp and Zs) and furthermore very reliable density (p)
estimates can be derived from this inversion, which have proven very useful in prediction
of certain lithology and fluid saturation. Those 3 inversion results can be then
transformed to Lambda-Rho (4p) — which known as Incompressibility that is used for
pore fluid content indicator in this case hydrocarbon potential and Mu-Rho (pup) — known
as Rigidity that can be used for Lithology indicator since this parameter is sensitive to
rocks matrix character. Additionally, a Vp/Vs volume is also generated from P and S
impedance to eliminate the density effect to see how this parameter can distinguish the
fluid effect.

RAF Field is setted at tertiary fluvio-deltaic depositional environment system
which contains mutiple pay zones and vary in sand quality and distribution. A
conventional seismic interpretation technique may have been very uncertain in this
deposition environment. For this reason, this study is intending to reduce this uncertainty
as well as a proof of concept to show how the Seismic Simultaneous Inversion method
result and its derivatives combined with rock physics analysis technique will lead us to a
delineation of hydrocarbon bearing distribution prediction. Further, this delineation may

support development strategy in optimizing hydrocarbon recovery from this field.

1.2 Thesis Objectives

The main objective of this study is to perform Seismic Simultaneous Inversion
method as a proof of concept and provide a better image for predicting gas distribution at
Upper Gabus Formation of RAF Field, West Natuna Basin — Indonesia. Going forward
with this prediction result, it can be identified several potential areas for further
development extension to optimize hydrocarbon recovery.

This study is also performed to partially fulfill the requirements for the master
degree of Science in Reservoir Geophysics Graduate program, Faculty of Mathematics

and Natural Sciences, Department of Physics, University of Indonesia.
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1.3 Thesis Scope

This study will cover the estimation of Impedance (P and S) and Density volume
through Seismic Simultaneous Inversion method following the workflow which will be
explained later in Chapter IV. These volumes and its derivatives, such as Lambda-Rho,
Mu-Rho and Vp/Vsg, are used and analyzed to delineate and predict the gas and porosity
distribution. This prediction will be used to identify and locate the potential area for next
development extension which requires more integrated study. This thesis will not

generate any numbers of reserves as it is not allowed by company and MIGAS policy.

1.4 Object and Study Area

The object of this study is Upper Gabus Formation of RAF Field which will be
analyzed based on observation of well logs, seismic data and its derivatives.

RAF Field is situated at West Natuna Basin and located in the southwestern part
of the South China Sea. It is about 1100 km north of the Jakarta, approximately 300 km
northeast of Singapore, and just west of Natuna Island, in the shallow waters between

Indonesia and Malaysia on the Sunda Shelf (figure 1.1).

Figure 1.1 Study area located at West Natuna B Block, South China Sea
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1.5 Hypothesis

In this study, there are some hypotheses that will be attested, they are:

= There is a relationship between rock physics (Zp, Zs, Vp/Vs, Ap, pp) and rock
properties (Density, Porosity, Gas saturation, Shale Volume) in the data of the
study area.

= Seismic Simultaneous inversion method is feasible to be applied in this study area
and can be used to estimate a reliable P-impedance, S-impedance and Density
volumes

= Jts derivative products and combination with rock physics allow us to carry out
qualitative and quantitative analysis to predict and estimate the desired reservoir

characters: porosity, gas distribution, its geometry and connectivity.

1.6 Data Availability and Assumptions

This study will use RAF Field dataset: Well and Seismic data. For well data, this
field has 4 exploration wells and 3 development wells (table 1.1). However, only 2 of
them: RAF-3 and NE RAF-1 will be considered to be used for the simultaneous inversion
since both compressional and shear sonic are only available at these wells and the other
wells such as RAF-2, RAF-A01 and RAF-A02 will be used for blind well testing. For
seismic data, this study use a part of 3D seismic survey which are clipped at Inline 6200 —
8950 and Xline 4600 — 5400 to cover only RAF field (figure 1.2). This survey has set of
Full and Partial angle stack seismic volumes: Near Stack (5°-15°), Mid Stack (15°-25°)
and Far stack (25°-35°) of Western Geco 2005 reprocessing.

All well logs and 3D seismic data that are used in this study are assumed that have

been through valid environment correction, calculation and or conditioning process.

4
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WELL NAME| TYPE 2one CKS| GAMIMA|_RESSTVITY |} CALI DENSITY|NEUTRON WATER| EFF | SHALE
COMPJSHEAR|VSP] RAY | SHALLOW |DEEP SAT |PORO|] VOLUME

RAF-1 Vertical No data due to drilling problem at 3800'

RAF-2 Vertical DT - v GR RTS RTD| CAL| DEN NPHI SW | PHIE| VSHL

RAF-A01 Slant - - - GR RTS RTD RHOB NPHI SW | PHIE] VSHL

RAF-A02 Slant - - - GR RTS RTD RHOB NPHI SW | PHIE] VSHL

RAF-A04 Horizontal Can not be used

Table 1.1 Well data availability which are required for this study

Clipped 3D Seismic Survey
used for study

Figure 1.2 3D seismic data which are clipped at limited area for this study

5
University of Indonesia

Prediction of gas..., Lukman Hidayat, FMIPA Ul, 2009



Chapter Two:
REGIONAL AND FIELD GEOLOGY

2.1 Regional Geology

RAF Field is located at the northern part of West Natuna B Block and situated at
West Natuna Basin. The present day configuration of the West Natuna basin (figure 2.1)
was mainly composed by 2 main tectonic regimes: extensional regime, which produced
Eosen — Oligosen graben phase and compressional regime, which produced Miocene
sinistral and dextral wrench fault phase. Two major tectonic events (Tapponier, 1982
opcite Daines et al., 1985) which responsible for these regimes history are:
= The collision of Indian and Eurasian plates during the Middle Eocene.
= The collision of the Australian continental shelf with the Philippine Sea plate

during the Early Miocene.

DIAN
STRALIA

Figure 2.1 Present plate tectonic overview of study area (Daines et al, 1985).
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The basin was initially formed during the Eocene-Oligocene along the Eastern
border of South Asia which characterized by oblique extensional rifting that generated
northeast-southwest trending faults systems (White et al., 1978). These fault systems
occur at different scales and are characterized by down to the northwest half grabens
formed by northwest dipping, planar, domino-style faults. The graben margins appear to
be controlled by northwest-southeast trending basement structures. The origins of this
structure are not well understood, although they are possibly related to left-lateral strike
slip faults formed by the extrusion tectonics of Southeast Asia. Predominantly granitic
basement provided the provenance for coarse continental clastics, which filled in the
basin. Belut and Gabus sediments were deposited in fluvial and lacustrine environments
during this period.

From Late Oligocene to Middle Miocene, a compressive and wrenching phase
caused structural inversion of the basin. This produced fault-related folds on the re-
activated extensional northeast-southwest-trending fault systems. This structural
inversion phase was probably caused by Indonesian-Australian plate collision and
subduction east of Sulawesi. Many original half-grabens were inverted into faulted
anticlines which now are major exploration targets. While deposition continued in a
marginal marine/estuarine setting with fluvial and marginal marine deposits of the
Udang, Barat and Upper Arang Formations.

The compression was then ceased by the end of Middle Miocene and a regional
unconformity developed. Subsequently a regional sag phase dominated the structural
regime. This period was resulting Muda Shales which generally is considered to be open
shelf, shallow marine deposits.

Ginger et al., (1993) divided the West Natuna basin into 4 (four) major tectono-
stratigraphic units: Syn-Rift, Post-Rift, Syn-Inversion, and Post-Inversion.

= Syn-Rift Stratigraphy

The Syn-Rift stratigraphic sequence is characterized by divergent seismic

reflection geometries that thicken onto the rift border faults and shows poor

continuity from one half graben to others. Syn-rift stratigraphic sequence is
dominated by non-marine fan delta, coarse alluvial fan, fluvial and lacustrine

deposits. There are 2 intervals of potential source rock could be identified at this
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sequence, they are deep lacustrine shale of early syn-rift and shallow lacustrine
shale of late syn-rift which known as Belut Formation.

Post-Rift Stratigraphy

The Post-Rift stratigraphic sequence is characterized by a gradual, stratigraphic
thickening toward the deepest parts of the inactive half-grabens and a relatively
thin section over flexural highs. The post-rift sequence is generally nonmarine,
characterized by widespread fluvial braided channel systems. The lower part of
this sequence is dominated by lacustrine facies which interpreted was deposited
on large and shallow lake (Ginger et al., 1993). This interval is known as Keras
Shale member. Subsequently, Upper Gabus formation was conformably deposited
over Keras Shale member and showing the early environment changing from
lacustrine to prograding plain delta and fluvial braided channel system. The
indicator of marine influence is seen at Upper Gabus and Barat formation which
contain Miliammina foraminifera in mudstone of these both formations (Ginger et
al., 1993).

Syn-Inversion Stratigraphy

The Syn-Inversion sequence represents a period of lacustrine to nonmarine
deposition to open marine conditions due to the connection to the sea from the
northeast. Syn-Inversion deposit that found in this basin is Barat formation which
then overlaid by Arang formation on fluctuated environment between shallow
marine and coal swamp-dominated coastal plains (Ginger et al., 1993). This
fluctuation is interpreted, was controlled by inversion events and regional relative
sea level changing. The general configuration of this sequence is stratigraphic
thinning sediment package due to erosion and/or non-deposition toward the crest
of the inversion anticlines and thickening toward the flanks. Understanding local
sediment dispersal distribution caused by the uplift and erosion of the inversion
anticlines is important because it directly affects reservoir quality distribution and
paleogeography.

Post-Inversion Stratigraphy

The Post-Inversion stratigraphy is characterized by predominantly shallow marine
deposition. It is easily recognized on seismic data by a basal regional
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unconformity. In this sequence, Muda formation was deposited unconformable
over Arang formation. Predominantly, Muda formation was deposited on shallow
marine environment which fluctuated due to regional relative sea level changing
(Ginger et al., 1993). This section is an important seal interval; it provides key

source-rock maturation overburden in some areas (Wongsosantiko et al., 1984).

A summary of stratigraphic and tectonic relationships in the basin is shown in

figure 2.2.
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Figure 2.2.Tectono-Stratigraphy of West Natuna Basin (Modified from Daines, 1985).
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2.2 RAF Field Summary

RAF field is located in West Natuna B Block, at South China Sea. Water depth is
approximately 300 ft. It comprises of 2 structures: RAF structure, 4.5 km long by 3 km
wide and NE RAF structure, 2.5 km long and 1.75 km wide. The structures are inverted
fault blocks, NE-SW anticline with 4 way dip closure, bounded by a major reverse fault
on the south and cut by a series of smaller faults perpendicular to the anticlinal axis.
Figure 2.3 shows structure map of Top Upper Gabus Formation.

RAF structure was tested in 1979 by RAF-2 exploration well and discovered the
hydrocarbon accumulation. A total of 4 wells have been drilled to date — 2 exploration
and 2 development wells (table 2.1). It contains multiple stacked pay zones in the Upper
Gabus (UG 1A, 1B, 1C, and UG Massive), Gabus Zone-3 (Z3), and Lower Gabus (LG)
reservoir sands. Figure 2.4 is showing hydrocarbon distribution over RAF field prior
developed.

RAF is predominantly a gas accumulation and Upper Gabus is introduced Lowest
Known Gas. Gas water contact was generated from pressure plots (figure 2.5). Appraisal
well RAF-3 confirmed reservoir continuity and fluid contacts. Oil is present in LG Sands,
41 API gravity, waxy, 90-95 °F pour point and contains up to 3% CO2. The average
reservoir pressures are 1,780; 2,100 and 2,450 psig for UG, Z-3 and LG respectively.

No| Wells Type Spud Date Status

1 |RAF-2 exploration Sept, 1979 |P&A, oil and gas well
2 |RAF-3 exploration May,2000 |P&A, oil and gas well
3 |NE RAF-1 |exploration Nov, 2002 |P&A, gas well

4 |RAF-A01 |development Mar 2005 |Gas producing well

5 |RAF-A02 |development Apr, 2005 |Gas producing well

6 |[RAF-A04 |development May,2005 |Gas producing well

Table 2.1 RAF Field drilling history

NE RAF structure is faulted anticline located at the north east of RAF structure.
The total size is 2.5 km long and 1.75 km wide (figure 2.3). Exploration well NE RAF-1,
drilled in November 2002, was to establish hydrocarbon type and reservoir sand quality

on a structural nose trending NE — SW adjacent to RAF structure. RDT data confirmed
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that NE RAF has separate fluid contacts from RAF reservoir although fluid analyses
showed that NE RAF gas is similar to RAF in composition.

Figure 2.3 Top Upper Gabus (UG-1A) Structure map

RAF Field

RAF-2

p Bosger Gabus

Figure 2.4 Shows hydrocarbon distribution over RAF field prior developed
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Figure 2.5 RAF-3 and NE RAF-1 Pressure Plots Showing Reservoir Fluid Contacts

2.3 Upper Gabus (UG) Reservoir Properties

Four hydrocarbon bearing sand reservoirs in Upper Gabus Formation are UG-1A,
UG-1B, UG-1C, and UG Massive (figure 2.6). These sands have been penetrated by all
the wells in the field. Conventional cores UG-1B were taken from RAF-2 well and
sidewall cores were extensively taken both from RAF-2 and RAF-3 wells. In RAF
structure, the main reservoir is UG-1A, UG-1B, and UG Massive Sand. While in NE
RAF structure, gas bearing sands in Upper Gabus Formation is only UG-1B. NE RAF-1
exploration well was drilled on November 2002. Conventional cores were taken from
UG-1B, sidewall cores were taken from UG-1A, UG-1B, UG-1C, and UG Massive from

the well.

The Upper Gabus formation is interpreted to be deposited in a fluvial to deltaic
environment; this can be observed from wire line logs and conventional cores. The zone
is composed mainly fluvial channel deposit with mouth bar deposits. The fine to coarse

grain size with moderate to well sorted texture, the fining-upward cycles, and also the
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presence planar cross-bedding, low to high angle cross-bedding, trough cross-bedding,
parallel bedding and climbing ripples suggest that the UG-1B and UG Massive sand were
deposited in a low sinuosity to anastomosing channel system. The GR profiles also
support this interpretation. Most of the UG 1A-1C and UG Massive sands show fining-
upward to blocky log motives, with the exception of coarsening-upward UG-1A sands in
NE RAF-1 well that suggest the sands were deposited as mouth bar deposits in a delta-
front environment The Upper Gabus 1A, 1B and 1C comprised of alternating interbedded
sandstone, shale, and minor siltstone. The sand is white to light gray quartz sandstone,
very fine to coarse grain. It is moderately well cemented, slightly calcareous in some
interval, common fine carbonaceous dissemination, occasionally fine coal in laminations,

poor to fair visible porosity.

The Upper Gabus Massive sand is thick sand with shale interbedded at the bottom
part of the Upper Gabus Formation. The sand is fairly homogeneous white to light grey,
or light olive grey, with pale yellowish brown, clear to translucent quartz grains. It is
typically varied from medium to coarse grain although occasionally fine grained, friable
to loose, sub rounded to rounded and poor to moderate sorted. It is moderate to strongly
cemented, with traces of carbonaceous material and non calcareous cement, very finely
disseminated pyrite, chlorite, and lithic fragments. Porosity derived from cores indicates
that these sands have a good primary porosity and secondary porosity.

A summary of petrophysical properties of RAF reservoirs can be seen in Table

2.2
Petrophysical Log Analysis Core Data
Avg Gross | Avg Net Pay | Avg Net Pay | Avg Por | Avg Sw
Reservoir Wells Thickness | Thickness | to Gross @Pay | @Pay AV(%/I;N Avg(DI/D;e m Note
(f) (f) (%) 0 | o) : ;
Upper Gabus:  |RAF-2,RAF-3,
IAIBIC  [NERAF-1 He = * B Core from
26 728 UG-1B of

. RAF-2,RAF-3, NE RAF-1

UG Massive NE RAE-1 187 29 15 20 51
Table 2.2 RAF Petrophysical Properties Summary
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Figure 2.6 Well correlation shows Upper Gabus Formation: UG-1A, UG-1B, UG-1C and UG Massive
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Chapter Three:
BACKGROUND THEORY

3.1 Seismic Reflection Theory

Seismic reflection theory covers a very wide topic; therefore below we will only
discuss a bit, some basic seismic reflection theories that relate to the thesis topic and the
method itself.

The fundamental concept of seismic exploration is to send into the earth a short
time signal, which is then reflected back from a boundary between two units called
reflector. The big advantage of the seismic method over other methods is fine horizontal
resolution. The signals is transmitted through the earth as an elastic wave and bring back
to the receiver kind of subsurface information such as geological structure, lithology and
fluid through travel time, reflection amplitude and phase variation. A seismic reflection
occurs whenever there is a change in acoustic impedance as a function of velocity (V)

and density (p) which could be then interpreted as lithology contrast. At perpendicular

incidence, that is, when ray path strikes a reflecting interface at right angle, the familiar

basic equation of the reflection coefficient is:

— pi+1Vi+1 i ini
= (1)
P i+1 Vi+1 + ,D i Vz
where:
o = density of layer i"
Vi = velocity of later i"

The signal received in a seismic trace is content of wiggle wave series. This
seismic trace is assumed by convolution of wavelet of the source with the reflection
series of the earth reflectors. Seismic wavelet itself is a clipped oscillation curve form

like sinusoidal (Suprajitno, 2000).
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In mathematical relationship this convolution can be written as:

S(t) = W(t) * RC(t) + n(t) )
where : S(t) = seismic trace, W(t) = seismic wavelet,
RC(t) = reflection coefficient, n(t) =noise

3.1.1 Compressional Velocity (Vp) and Shear Velocity (Vs)

As discussed above, the seismic wave is transmitted through the earth as an elastic
wave. Commonly, based on the travel medium, elastic wave is classified as (1) Body
wave, where the wave propagates through the body of the medium and (2) Surface wave,
where the wave propagates along a boundary of the medium and the amplitude is weaken
when going through the medium (Suprajitno, 2000). Body wave may be either P-wave
(also called primary or compressional or longitudinal wave) or S-wave (also called shear
or transversal wave). Surface wave may travel by several modes, the most common of
which are Rayleigh waves, Love waves and Stoneley waves.

However in this section we will only focus to discuss the body waves: P-wave, in
which the direction of particle motion is in the same direction as the wave movement and
S-wave, in which the direction of particle motion is at right angles to wave movement
(figure 3.1). Both of these waves have a certain velocity when they propagate through the
earth and its value is depend on the traveled media elasticity. However, S-wave is
typically slower (lower velocity) than P-wave and one thing that can be noted is S-wave
can not travel in fluid medium. Compressional (Vp) and Shear velocity (Vs) can be

simply presented as:

’ 4
igan V7.
Vp = [A+2u _ 3 3)
P P

vs=_ |2 (4)
Yo,
dimana : 4 : lambda coefficient = K + 2/3 u, (%)
K : bulk modulus, M : shear modulus,
p : density
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Figure 3.1 Illustration of particle movement trajectory of (a) P-wave and (b) S-wave

The ratio of Vp and Vg can be presented by Possion’s Ratio (o) as:

=7 = 22 5
7/ —_—
2
Where : y = (%J (7)

It is widely known that Vp/Vs can be used as lithology indicator (Avseth et al,

2005). Clay, if assumed isotropic is always having higher Vp/Vy ratio than sand.

In

carbonate, Vp/Vs can be used to discriminate limestone from dolomite. Later Vp/Vs,

using AVO method can be also used as DHI (Direct Hydrocarbon Indicator) since Vs is

not sensitive to fluid changing while V5 is sensitive to lithology and fluid changing which

resulting changing in Vp/Vs.

3.1.2 Rigidity (up) and Incompressibility (Ap)

Based on equation (3) and (4) of the above section, mathematically those

parameters, Vp and Vs, could be transformed to other rock physic parameters: Rigidity

and Incompressibility.

Vp = At2u and VS:\/Z
P P
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SO Zé = (pVS )2 =up = Mu-Rho (ngldlty) (8)
and Z:=(pVo ) =(A+2u)p 9)

Then p=22-2272 = Lamda-Rho (Incompressibility) (10)

Mu-Rho or Rigidity can be described as the physical properties of rock matrix
(changing in form) when it is given the stress. Rigidity is sensitive to rock matrix and not
influenced by fluid therefore it can be used as a lithology indicator. The denser the rock
matrix, the easier it gets to slide over each other then it is said that lithology has high
rigidity value. Low rigidity values represent coal and or shales while sand or carbonates
are characterized by high values. Lamda-Rho or Incompressibility is a measure of the
physical response of the rock matrix and its interstitial fluids (changing in volume) for a
given stress. The easier the medium are compressed, the lower the incompressibility
value will be. This changing is more caused by changing in pore rather than changing in
grain size. Lamda-Rho is a good indicator for lithology and pore fluid. Low

incompressibility values are associated with gas sand (Goodway et al., 1997).

Table below is showing rock physic analysis presented by Goodway et al., 1997
indicating that A/ is the most sensitive to variation in rock properties going from shale to

gas sand.

TABLE 1 | Vp (m/s)|Vs (m/s)| p (g/cc)|VpIVS|(Vp/Vs)’] O |A+2p| p Al ANp

Shale 2898 1290 2425 | 2.25 5.1 0.38] 20.37 14.035{12.3] 3.1

Gas Sand 2857 1666 2275 | 1.7 29 10.24| 18.53 |6.314] 59| 0.9

Avg. Change| 1.40% 25% 6.40% | 27% 55% |45%] 9.20% | 44% | 70%| 110%

(moduli A, U are in GPa's)

Table 3.1 Rock physics analysis using Lame’ parameter (Goodway et al., 1997)
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3.1.3 Density

Density in a simple way can be described as ratio between mass (kg) to volume
(m’). Density is used in Vp, Vs and impedance equation where they all influence the

response of seismic wave. The effect of density can be modeled in Wyllie equation:

P =Pu(1=P+p,S,0+p,(1-5,)¢ (an
where:
pb =bulk density pm = matrix density
pf = fluid density ¢ = porosity
Sw = water saturation pw = water density (close to 1 g/cm’)

phc = hydrocarbon density.

Figure 3.2 Illustrate that density of reservoir decrease dramatically in gas zone
compares to in oil zone. This character is important in seismic interpretation for the

reservoir.

SW vs Density (Wyllie's Formula)

Phi = 25% Matrix Density =
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Figure 3.2 Sw vs Density. Application of Wyllie equation in oil and gas reservoir

(Russell, 1999)
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3.2 Amplitude Variation with Offset (AVO)

Initially the AVO method was addressed as the technique to validate the
amplitude anomaly in seismic associated with gas presence in a reservoir. This anomaly
appears as the result of reflection coefficient decrease drastically in gas reservoir compare
to surrounding layers. This phenomenon is called “bright spot”. In practical, not all bright
spot will show gas presence since coal, porous or fractured layer, salt, conglomerate,
turbidite and tuning effect of thin layer can also showing this anomaly (Pendrel et al.,

2000). AVO was developed to reduce this ambiguity.

The basic principle of AVO was started from the anomaly of the increasing
amplitude of reflection signal to the increasing offset, the distance from seismic source to
receiver when seismic wave is reflected by layer contain gas. This offset relate to
incidence angle of reflection surface. The bigger offset, the bigger incidence angle will
be. AVO is caused by energy partition at the surface reflector. Some of the energy are
reflected and some are transmitted. When the wave is coming to layer boundary at the
non-zero incidence angle then P wave is converted to S wave. The amplitude of reflected
and transmitted energy depends on rock physics of surface reflector. As the consequence,
reflection coefficient becomes a function of compressional velocity (Vp), Shear velocity
(Vs), density of each layer and incidence angle (0,). Therefore there are 4 curve that can
derived: P wave reflected amplitude, P wave transmitted amplitude, S wave reflected
amplitude and S wave transmitted amplitude as it shown in figure 3.3 below.

Reflected

Incident S-Wave
P-Wave Rpg Reflected
¢ P-Wave
1 Rep
Medium 1
Vo1t Vsqr Py 0
Interface
02
. Transmitted
Medium 2 P-Wave
Vp2‘ Vs2' Ps ™~ Top

Transmitted
S-Wave

Tes

Figure 3.3 Seismic energy partition at surface reflector (Russel, 1999)
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The first AVO equation was introduced by Zoeppritz, 1919 (opcite Aki et al.,

2002) which described that reflection and transmission coefficient as the function of Vp,

Vs, density and incidence angle on elastic media. The equation can be written as:

—sin 6 —cos ¢ sin 62
Rr(6)) cos & —sin ¢ cos 6>
Rs(6h 2

() =| sin26: Vi cos2¢ M cos 24
Tr(61) Vsi P Vs Ve
Ts(0) —cos 2¢ L sin 2¢ pale: cos2¢p>
i Ve Joll 43
where :

Rp(8,) = Reflected P-wave amplitude
Rp(6,) = Reflected S-wave amplitude
Ty(0,) = Transmitted P-wave amplitude
Ts(6,) = Transmitted S-wave amplitude
Vp
Vs

= P-wave velocity

= S-wave velocity

-1

cos 02
—sin ¢2 sin 61
p2Vs2Vpi cos &
————cos?2 12
piVsi® cos 242 sin 26: (12)
Qrs2 . 2 cos 24
yoll 43 |

0, = P-wave reflection angle
0, = P-wave refraction angle
¢, = S-wave reflection angle
¢, = S-wave refraction angle

p = density

Aki, Richard and Frasier then approximated the Zoeppritz equation into 3 terms.

First term incorporate density, second incorporate Vp and third incorporate Vs.

i
o

where:
a=1/(cos’0) = 1 + tan’0;
Ve =(Vp1 + Vm)/2;  Vs=(Vsi+ Vs)/2;

AVg= Vg1 —Vgy; Ap =p1 - p2;

b=0.5—[(2Vs*/Vp) sin’);

p=(p1+p2)/2;

(13)

¢ = -(4Vs*/Vp?) sin6;

AVp = Vp - Vpy;

0=(0; +0,)/2; 0,=arcsin[(Vpy/ Vp;) sin 6;]
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The P-wave reflection coefficient formulation of Zoeppritz was then simplified by

Shuey, 1985 (opcite Aki et al., 2002):

R(©O) =R +[R A +—2 (1 _sin 0+/ (tan® 0 — sin’ .9)] (14)
Ac
where: JZM; 4= B-201+ B2 and B:A‘
2 - Ao/ A7
a P
with: o = average Poisson ratio
Ao = o, -0,
+
a = average Vp= %
Aa = a, —q
- : 0, +06,
6@ = average incidence angle and transmitted angle = ———=
p = average formation density = ﬁ%

Ap = p,—p

From the final result, it can be concluded that AVO response is strongly
influenced by Rp at low angle and also influenced by Ao at fairly high angle. Qualitative
AVO analysis is done in common-mid-point-gather (or super-gather or common offset
gather etc). Every amplitude value from every offset in gather simply linearly regressed
to get simplified relationship between amplitude vs offset. From this point we get the
AVO attribute: Intercept and Gradient which describe relationship between amplitude
response and incidence angle.

Zoeppritz and Shuey equation are the function of incidence angle, however
seismic is recorded as the function of offset distance. Therefore it need conversion from
offset distance to angle of incidence. Figure 3.4 and 3.5 show simple approach using

straight ray.
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Figure 3.4 AVO response (a) and its transformation to AVA (Amplitude versus Angle)
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Figure 3.5 Geometry of seismic ray track for one shot-receiver on media with constant

velocity (Russel, 1999)

Relationship between offset and angle can be presented as:

tan 0 = X/2Z (15)
where: 0 = angle
X = offset
Z = depth
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If we know the velocity of the media, we can then write the equation as:
Z=V.t,/2 (16)
Where: V = velocity (RMS or average)

T = time at zero-offset

By substituting equation (18) into (21), we will get:
tan 0 = X/V.¢, (17)
So 0 = tan ' [X/V.t,] (18)
Using this equation, offset can be transformed into angle.
Although AVO analysis is based on increasing reflection amplitude versus offset,
however there is a maximum offset which should fit to critical angle. When the angle
exceeds the critical angle, the reflected signal behavior will not follow the reference

theorem in AVO analysis.
3.3 AVO Classification

Rutherford and Williams, 1989 (opcite Sukmono, 2002) devided three (3) classes
of gas sandstone which are: Class-1, high impedance gas-sandstone ; Class-2, near zero
contrast gas-sandstone ; Class-3, low impedance gas sandstone. Castanga (1998) then
introduced sandstone Class-4 from AVO crossplot based on Rutherford and Williams

classification (figure 3.6)

R(6)

High - Impedance Sands

Class 1

Class 2

Figure 3.6 Plot of reflection coefficient versus angle of incidence for gas layer top sand

based on Rutherford and Williams (1989) and Castagna (1998) classification
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Below is the description of 4 (four) AVO classes of gas-sandstone
classification:

. Class-1 Anomaly - High Acoustic Impedance Sandstone with decreasing AVO

Typically class-1 sandstone has relatively high acoustic impedance compare to the
seal layer which usually shale. Boundary between shale and sand will have high
reflection coefficient (Rg). The zero-offset reflection coefficient on this class-1
sandstone will have a positive value and along with offset increase, the absolute
amplitude value will decrease. Amplitude changing versus offset is known as

Gradient where gradient for class 1 usually is higher than gradient class 2 and 3.

. Class-2 Anomaly — Near Zero Acoustic Impedance Contrast Sandstone

Class-2 sandstone has a close acoustic impedance value to its seal layer. Typically
this sandstone is compact and well consolidated. Class-2 gradient is usually high
but still lower than class 1 gradient, where going farther from the offset,
amplitude value is getting smaller. Class-2 sandstone is divided into 2: Class-2
and Class-2p. Class-2p has a positive reflection coefficient at zero offset and
normally reversed polarity occurs at near offset. While Class-2 sandstone has zero
reflection coefficient at zero offset.

Class-3 Anomaly - Low Accoustic Impedance Sandstone with increasing AVO
Class-3 sandstone has lower acoustic impedance compare to its seal layer.
Normally this sandstone is less compact and less consolidated. On seismic stack,
Class-3 sandstone typically has large amplitude value and high reflection
coefficient at all offset, its gradient is usually high but still lower than Class-1 and
Class-2. Reflection coefficient at normal incidence angle is always negative.
Class-4 Anomaly - Low Accoustic Impedance Sandstone with decreasing AVO
Class-4 sandstone is usually marked by anomaly with positive reflection
coefficient as offset increase. It usually occurs on porous sandstone which
bounded by high velocity lithology, such as: hard shale (eg. Siliceous or

calcareous), siltstone, tighly cemented sand or carbonate.
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3.4 Seismic Inversion

There are two ways of geophysical modeling: Forward modeling and Inverse
modeling (figure 3.7). Forward modeling is calculating or predicting geophysical
response from earth model while inverse modeling is calculating or predicting earth
model from geophysical response. Therefore Seismic Inversion is defined as geological
subsurface modeling technique using seismic data as input and well data as control
(Sukmono, 2002). The output model by this seismic inversion is impedance model such
as Al (Zp), SI (Zs) which are parameters of lithology layer but not the parameter on
lithology boundary as reflection coefficient. Seismic inversion is much easier
understandable and easier to interpret. Impedance model can also be correlated
quantitatively with well reservoir rock properties such as porosity, water saturation etc. If
it is well correlated then the inversion result can be used to map those well reservoir rock

properties on the seismic data to get better understanding its lateral prediction.

Forward Modeling Inverse Modeling
Input Earth Model Seismic
l Response
P Modeling l
rocess Algorithm Inversion
l Algorithm
o - Seismic l
utpu
B Response Earth Model

Figure 3.7 Two ways of geophysical modeling

Basically seismic inversion method is a process of transforming seismic
amplitude value to impedance value. This is done by de-convolution process which
transforms seismic trace to earth’s reflectivity. Based on type of seismic data used,
seismic inversion method can be divided into 2 types (Russel, 1999) (figure 3.8), they
are: Post-stack seismic inversion and Pre-stack seismic inversion. Post-stack seismic data
assumed that seismic amplitude is only represented by Ry, therefore Post-stack seismic

inversion can only produce Al (Zp). While Pre-stack seismic data still contains R
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information, so Pre-stack seismic inversion can produce parameters Al (Zp), SI (Zs) and
its derivatives such as: Vp/Vs, Lamda-rho, Mu-rho etc. However in this study, we will not
discuss post-stack inversion method, we will later discuss pre-stack inversion method,

particularly Seismic Simultaneous Inversion method in more detail.

SEISMIC INVERSION
METHODS
| i
PRESTACK FPOSTSTACK
INWERSION INVERSION
[ |
TRAVELTIME AMPLITUDE
INVERSION INVERSION
(TOMOGRAPHY) (=}
AMPLITUDE | wavEFIELD
INVERSION INVERSION
I :
[ | ]
BAND- SPARSE- l MODEL-
LIMITED SPIKE BASED

Figure 3.8 Seismic Inversion methods (Russel, 1988)

3.4.1 Acoustic Impedance (Al or P-impedance or Zp)

Seismic trace is a convolution of earth’s reflectivity (RC) with seismic wavelet

plus noise component in time domain. It can be written as:

S(t) = W(t) * RC(t) + n(t) (19)
Where: S(t) = seismic trace, W(t) = wavelet seismic,
RC(t) = earth’s reflectivity, n(t) = noise.

If noise is assumed zero, then:

S(t) = W(t) * RC(t) (20)

RC or reflection coefficient is a function of impedance contrast in earth, therefore
RC is a value which represent boundary of two layers that have different impedance.

Mathematically, RC on layer boundary can be defined as:
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_ Alm _Ali
CTAL, + Al

i+1

RC 21)

Where i = i" layer and over the (i +1) layer

So that Al value can be estimated from reflection amplitude. The bigger amplitude, the
more contrast the Al. Al is the multiplication between density and P-wave velocity.

Al =pxV,, (22)

Where p = density,

V, = P-wave velocity.

Al is one of rock physic parameters which influenced by type of lithology,
porosity, fluid content, depth, pressure and temperature. That is why Al can be used to
identify lithology, porosity and hydrocarbon indicator and since velocity has bigger order
than density, so Al value is more controlled by seismic velocity rather than density.

Figure 3.9 shows some of factors that influenced seismic velocity.

- —
: \ " 7
POROSITY DENSITY TEMPERATURE
————————
v v v
GRAIN SIZE GAS SATURATION FREQUENCY
v / ! \ v
DIFF. PRESS CONSTANT]
EXTERNAL PRESSURE PORE PRESSURE PRESSURE

Figure 3.9 Some of factors that influenced seismic velocity (Hiltermann, 1977, opcite,

Sukmono, 2002)

However characterization based on Al has some limitations in distinguish lihology
and fluid effect. The low Al value due to hydrocarbon fluid is often overlapping with low

Al of lithology effect.
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3.4.2 Shear Impedance (SI or S-impedance or Zs)

In general shear impedance is just the same with acoustic impedance, the only
different is the velocity used for the multiplication with density is S-wave velocity (Vs).
It can be written as:

SI=p Vs (28)
where : SI : shear impedance

p : density

Vs : S-wave velocity

Since S-wave only measures the rigidity of rock matrix, therefore the fluid in the
reservoir is undetectable. This wave will only pass through the solid medium, however
when S-impedance is combined analysis with P-impedance, it can be used to predict and

estimate the lithology and fluid content changing.

3.5 Seismic Simultaneous Inversion

The AVO method has become a foundation in Seismic Simultaneous Inversion
and other AVO Inversion technique development such as Elastic inversion and other
independent inversion. It is called independent inversion, because the first step is to
extract independently estimation of the zero-offset P (Rpp) and S reflectivity (Rgp) from
the seismic gathers or partial stacks. While Simultaneous inversion is considered as
dependent inversion since it work dependently and simultaneously when estimate P and S
impedance.

Figure 3.10 shows the typical workflow of simultaneous inversion by Fugro-
Jason. In this workflow, simultaneous inversion is done by combining partial seismic
angle stack simultaneously with low frequency model and convoluted by wavelets which
extracted from each angle stack to obtain angle dependent quantities such as P-
Impedance, S- Impedance and Density. Later these quantities can be transformed to VpVg

ratio, Lambda Rho and Mu Rho.
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This method is actually the improvement to resolve the problem in the angle
independent calculation which does not use rock property relationships between variables
for the background case. Problem also appears in the angle independent calculation when

combining the data with the different frequency as it will create noise.

Figure 3.10 Shows the typical workflow of simultaneous inversion by Fugro-Jason
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Started from Aki Richard equation (13) above, Fatti et al (1994) re-formulate the

equation to a function of zero-offset P-wave reflectivity (Rpg), zero-offset S-wave

reflectivity (Rsp) and density reflectivity (Rp) in the form.

Rpp (0) = ¢iRpp + 2Rg0 + ¢3Rp

Where: and

¢, =1+tan’ @
c,=—8y’sin’ 0

cy = —%tan2 0+2y*sin’ @

}/:

SIS

AV,
VP

{A v,

+
+

v

Yo,
Yo,
7
P

And Rpp = total reflectivity,
Rs = S-wave reflectivity,
Vp = the P-wave velocity,

p = the density.

Rp = the P-wave reflectivity,
Rp = density reflectivity,

Vs = S-wave velocity and

(29)

Russel et al. (2005) extended the work of Fatti et al. and developed a new

approach that allows us to invert directly from reflectivity for P-impedance, S-

impedance, and density. It started by defining a new variable Lp = In (Zp), which is the

normal log of the acoustic Impedance, Zp.

Rp () =1/2 [Lp (i + 1) - Lp ()]

Or written in the matrix as follows:

Rp = (1/2)DLp or

Re(l) 11 0 Le(1)
R(2)| 1/0 -1 1 0] Lr2)
ol 200 0 -1 1|
Re(N) 0 0 0 Le(N)

Prediction of gas..., Lukman Hidayat, FMIPA Ul, 2009
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Then wavelet effect is added in matrix equation:

T=WRp or

(1) wi o0 0 -1 1 o ..TLe)
TQ)|[_1[W2 Wi 0 0 —1 1 0] Le(2) 32
: 2\ws w2 wi o-l0 0 -1 1| °:

T(N) 0 Ws W2 |0 0 0 -|Lo(N)

Where T = the seismic trace

W = the seismic wavelet

The same operation is applied for the Ls = In (Zs) and Lp = In (Zp) where Zs is the S-

Impedance and Zp, is the density. Now Aki-Richards equation can be written as follows:
T (6) =(1/2) ¢sW (0) DLp + (1/2) ¢ W (0) DLs+ ¢3 W (0) DLy (33)

In the above equation (33), it model seismic trace, T on the 6 angle as a function
of impedance and density. This equation is also possible to implement for different
wavelet with different angle.

To estimate P-Impedance, S-Impedance and density, it should be considered the
fact that the density and impedance related to one another. The equation is expected
representing the wet trend by assuming that the wet conditions can be modeled as the

constant Vp/Vg ratio:

Vp/ Vg = Yy = constant

=2 In (Zs) =1n (Zp) + In () (34)
Then by assuming Gardner equation (Russel et al., 2005) connects between the density
and P-Impedance:

p=aVs’
In(a) (35)
1+b

— In(p) = b In(Zr) +
1+b

where p =density, Vp=the P-wave velocity,  a and b = constant.
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From two assumptions above, it was then revealed that there are the linier
relationships between In Zp (Lp) and In Zg (Ls) and between Lp and In p (Lp) as it is

expressed at the following equation:

In (Zs) =Kk In (Zp) + ke + ALg (36)
In (Zp) =m In (Zp) + mec + ALp (37)

where the coefficients k, kc, m, and mc will be determined by analyzing the well log data.
Figure 3.10 illustrate the relationship between In (Zp) vs In (Zs) and In (Zp) vs In
(Density) of the well log data. The regression coefficient obtained by drawing a straight
line on the interesting trend of the data. The deviations away from this straight line, ALp

and ALs, are the desired fluid anomalies.

Ln(p) [P

0875

0,850

0826 4———

o =

Y. =====

L
0150 4—— A

e

0300 F T

0ers e e
——

o

T
.00 10.10 10.20

Figure 3.11 Crossplots of (a) In(Zp) vs In(Zp) and (b) In(Zs) versus In(Zp) where, in both

cases, a best straight line fit has been added.

33
University of Indonesia
Prediction of gas..., Lukman Hidayat, FMIPA Ul, 2009



Next by substituting equation (36) and (37) into equation (33), Aki-Richard

equation becomes:

T(0)=c W (0)DLr + ¢ 2W(0)DALs +¢™ W (6)DALp (38)

where:
c 1=(*2)ci + (Y2)key + mes;
cr=-("2)c
W(6= wavelet at angle 0
D = Derivative operator

Lp =In (Zp)

In the matrix form, with the assumption the number of trace is N from various angles, the

equation present as:

T(6) c (W (@)D c W (6D ¢ ()W (6:1)D
7(6-2) 3 c (@)W (02)D ¢ 202)W(02)D ¢ 3(6)W (62)D ALs | (39)

T(h) | |c ()W (ON)D ¢ 2AWW (VD ¢ (V)W (6v)D
Additionally, initial guess is determined and incorporated within the equation:

[Lr ALs ALb| =[log(Zs) 0 oOf (40)

Finally, a reliable P-impedance, S impedance and density can be estimated:

Zp = exp (Lp)
Zs = exp (kLp + k. + ALg)
p=exp (mLp + m, + ALy)
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Chapter Four:
METHODOLOGY AND DATA PROCESSING

In general, the workflow used for this study to accomplish the objectives is
summarized in figure (4.1). In a series, the workflow of this study and its steps in data
processing can be listed as follows:

1. Data Preparation
Feasibility study
Well Seismic Tie and Wavelet Estimation
Horizon and Fault Interpretation
Low Frequency Model
Pre-Inversion QC Analysis

Simultaneous Inversion

COEE - .

Analysis and Interpretation

4.1 Data Preparation

The first thing in this step is to select and collect the required well and seismic
data and other supported documents such as final well report, field study report and or
published paper related to RAF Field. Next, prepare the data by QC’ing the data validity
such well header, directional survey, time-depth data, top markers, logs, seismic survey
and data etc and load them into database system which are Landmark-OpenWorks and

HRS-GeoView.

4.1.1 Well Data

As it mentioned in Chapter-1 and summarized in Table 1.1, there are 7 wells
located at RAF Field: 5 wells are located at RAF stucture and 2 wells are located at NE
RAF structure. Based on well class, 4 wells are exploration wells: RAF-1, RAF-2,
RAF-3, NE RAF-1 and 3 development wells: RAF-AO1, RAF-A02 and RAF-A04.
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However among those wells, 2 wells will not be used in this study: RAF-1, this well has
only data up to 3800 ft due to drilling problem and RAF-A04, instead of this well has no
both P and S sonic log and time-depth data, this well is a horizontal well which

experienced having difficulty in calculation and display.

Data Preparation
Select, Collect and QC G = = = = -
Seismic & Well Data and Reports

Search for
another dataset

\ 4

Feasibility Study
Rock Physics Cross-Plot,
Lithology and fluid zonation,
Log frequency filter

iscriminate
Fluid &
Lithology?

v

Well Seismic Tie
Wavelet Estimation
| Input : Full, Far, Mid, Near Stack .
GR, RHOB, DT, Checkshot, Picks
Output : Wavelets, TD tables, Synthetics

\ 4

Horizon and Fault

1

I

I

|

1 Interpretation
1 \___Output : Horizon and Fault
I

I

1

|

1

!

Low Freq. Model
Input : DT, P & S imp, RHOB,Horz
L Output : Low Freq. Model

\ 4

High
Correlation

(Pre-lnversion QC Analysis
L Plot inverted result vs original data

A

v

Simultaneous Inversion
»|Input :Sim. Inv parameters, wavelets,
low freq model, partial stacks
Output : Zp, Zs, Vp/Vs, Density vol

'

Analysis & Interpretation
Transformations, Cross plot, Section,
Slicing and mapping analysis

Figure 4.1 General workflow used for the study

35
University of Indonesia
Prediction of gas..., Lukman Hidayat, FMIPA Ul, 2009



The method of this study requires well data to have: both Compressional (P) and
Shear (S) sonic for generating some rock physics parameter and elastic properties,
Checkshot or VSP data for well seismic tie and other standard and petrophysical logs
such as: Gamma Ray, Caliper, Resistivity, Neutron, Effective Porosity, Water Saturation,
Shale Volume etc for defining reservoir properties. Therefore among of the 7 wells
located in RAF Field; only 2 wells fulfill these requirements, they are RAF-3 and NE
RAF-1. Figure 4.2 and 4.3 show RAF-3 and NE RAF-1 at interested interval of the object
study; Upper Gabus formation and its logs standard and its derivatives.

From figures 4.2 and 4.3, at this interval it is seen that Caliper log which reading
the borehole diameter shown good shape of well borehole. So it is concluded that logs

reading in this interval is considered to be valid and no need any further borehole

correction.
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Figure 4.2 RAF-3 at the interested interval of the object study; Upper Gabus formation

and its logs standard and its derivatives

36
University of Indonesia
Prediction of gas..., Lukman Hidayat, FMIPA Ul, 2009



NE RAF-1
GR RTS *RHOB HOT pricy WPVS_Ratio
!] Alr;! 'Iﬂl I[I? ohm- ’A'.ﬂl ?Bﬁ g.lb 255l ?SCI] .1m I[I ‘mul !J urllreﬁ 4I
I,\::m) CALl RTD HWPHI WMOT Ir Computed Pai PHE = LR MR LM_Ratio
surface lﬂ l'l\ |lllJ :12 ohim- Z‘Cﬂl .DB 9& D‘ ISCGJ lzuumk F l50:!31]I F unlfes EISI Fl ’ﬁ: D.{l 1 U.S‘w Dl P (GP‘a'y SDl Fl (GF’IQ"QESI :1 |lllI
Tl wy T a b
- MR HEH = e
o .r 14l 1 ) X ‘;_ { 1
HEEER2 HiF ERIELS
b o8 Ve = &
3000 | - Al ! de 4 o
L | s % Ea X
T I = T3
5 1n__| -._'h f & [ 4] ,_- 1 -g- k
4000 i 14 4 . | H }
I S ] T ; T £ s'
G_1 -f-‘.:—— E u - .-
4100 1 [ T 174
I'r f i =
[EEE| (5N S RE £lL
ol |1 e o | L 4— > =" —
4200 gi If N >t
h | Y L] [ | I |
a3 A e 3
3 = -*"‘E ! BT L=l 13
h TR ! { t H g } g § 3
J deldl 4 4 41 il J " 4 |
¥ EEES ' g L L X - ama

Figure 4.3 NE RAF-1 at the interested interval of the object study; Upper Gabus

formation and its logs standard and its derivatives

4.1.2 Seismic Data

As it also mentioned in Chapter-1, this study use a part of 3D seismic survey
shown in figure 1.2 which clipped at Inline 6200 — 8950 and Xline 4600 — 5400 to cover
only RAF field. This survey has set of Full stack migrated and Partial stack migrated
seismic volumes: Near angle stack (5°-15°), Mid angle stack (15°-25°) and Far angle
stack (25°-35°) which loaded in 32 bit format and 2 ms sample rate. With assumption a
valid processing and conditioning have been applied to this seismic dataset by seismic
processing company, so in this study, there is no any seismic conditioning conducted.

Seismic well section of Full migrated stack at well RAF-3 and NE RAF-1
location are shown in figure 4.4, while figure 4.5 and 4.6 show seismic well section of

Near, Mid and Far angle stack.
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Figure 4.4 Seismic well section of Full stack migrated at RAF-3 and NE RAF-1 well
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Figure 4.5 Seismic well section of Near, Mid and Far stack migrated at RAF-3 well
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Figure 4.6 Seismic well section of Near, Mid and Far stack migrated at NE RAF-1 well

4.2 Feasibility Study

Once we have been confident with data validity and quality, next we will do the
sensitivity test by cross-plotting some rock physic parameters generated from well such
as VpVs ratio, P and S Impedance, Porosity, Water Saturation, Lambda-Rho, Mu-Rho
etc. This is done to check whether the used dataset have the quantity relationship and
sensitive to discriminate lithology and fluid effect and also feasible for the further
process. In addition, a feasibility check is also conducted to check whether seismic
resolution can highlight the reservoir thickness by applying well log frequency filter on
key curves refer to dominant frequency contained in the seismic data. As in the
workflow, this is the important phase whether we continue to use this dataset or not. If
the sensitivity result does not discriminate lithology and fluid effect then suggested to get
other dataset which will produce relationship for those above rock physic parameters and
or if the log frequency filter is not resolved in seismic dominant frequency then we can
go to get other dataset.

Figure 4.7 and 4.8 show cross plot of Vp/Vs vs Zp and Zg vs Zp at RAF-3 and NE
RAF-1 well that demonstrate fluid and simplified lithology (sand — shale) discrimination
at the interval of Upper Gabus Formation.
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Figure 4.7 show cross plot of Vp/Vg vs P-impedance at RAF-3 well that demonstrate the

fluid and litology discrimination at the interval of Upper Gabus Formation.

Qualitatively, from this above cross-plot, shale can be discriminated at VpVs

ratio: 1.9 — 2.6 and Gas sand at 1.6 — 1.8. These values are consistently close to or in the

range of Goodway’s (1997) values table of rock physics analysis using Lame’ parameter

as showed on table 3.1 repeated from Chapter 3.

TABLE 1_|Vp (m/s)|Vs (mis)| p (gicc)|Vp/Vs|(VpIVs))| o [A+2u| p | A | A
Shale 2898 1290 2425 | 2.25 5.1 0.38| 20.37 |4.035(12.3] 3.1
Gas Sand 2857 1666 2275 || 1.71 | 29 0.24| 18.53 |6.314] 59| 0.9
Avg. Change| 1.40% 25% 6.40% | 27% 55% 145%]| 9.20% | 44% 1 70%]| 110%

(moduli A, M are in GPa's)

Table 3.1 Rock physics analysis using Lame’ parameter (Goodway’s, 1997)
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Figure 4.8 show cross plot of S-imp vs P-imp at RAF-3 well that demonstrate simplified

litology (sand — shale) discrimination at the interval of Upper Gabus Formation
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Figure 4.9 show cross plot of S-imp vs P-imp at NE RAF-1 well that demonstrate
simplified litology discrimination at the interval of Upper Gabus Formation
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In addition, a feasibility check has also been conducted to check whether seismic
vertical resolution can highlight the reservoir thickness. By the theory, seismic vertical
resolution is about 4 A where A = v / f. With v: average velocity at reservoir interval 8660
ft/s and f: dominant frequency 30 Hz, minimum reservoir thickness which can be
resolved by seismic resolution is 72 ft at the minimum. However instead of quantitative
estimation, it is also checked qualitatively by log frequency filtering. Several log
frequency filtering were applied to VpVg ratio curve of RAF-3 and NE RAF-1 (figure
4.10 and 4.11) in relation with dominant frequency contained in the seismic data. Figure
4.12 show that dominant frequency was populated on frequency 30 Hz at RAF-3 and 35
Hz at NE RAF-1. From figure 4.10, it can be concluded that some reservoir resolution

still can be resolved at seismic dominant frequency range of 30 - 35 Hz.

RAF-3
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Figure 4.10 Frequency filter applied on VpVs ratio curve of RAF-3 show that some

reservoir sand still can be resolved at Seismic Dominant Freq Range of 30 Hz

This feasibility study has given a confirmation that on this dataset, cross plot of
rock physics parameters are able to discriminate the effect of lithology and fluid at the
interval of Upper Gabus Formation for and the theses are feasible to carry on and

furthermore the reservoir still can be resolved at dominant frequency of seismic data.
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NE RAF-1
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Figure 4.11 Frequency filter applied on VpVs ratio curve of NE RAF-1 show that some

reservoir sand still can be resolved at Seismic Dominant Freq Range — 35 Hz
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Figure 4.12 Extracted wavelets were from seismic data at RAF-3 and NE RAF-1 with

interval 1 — 2.2 sec show dominant frequency range 30 - 35 Hz and its zero phase
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4.3 Well-Seismic Tie and Wavelets Estimation

Subsequently, in this step, well data is tying to seismic data which in practical
work means tying seismic event in time domain to well geological event in depth domain.
This is done by correlating the real seismic trace at the well location with a synthetic
seismogram obtained from convolution of wavelet with reflection coefficients. Wavelet
itself is a transient signal which has limited amplitude and time interval. A simplification
is common used in any inversion process by assuming that there is only a single wavelet

as in fact wavelet varies in time and has a complex form.

4.3.1 Synthetic Seismogram

Synthetic seismogram is generated by convolving reflection coefficient with
wavelet at the well location. The used wavelet should be appropriate in order to produce
the best match or correlation between Synthetic seismogram and the real seismic trace
which in this case, full stack migrated volume is used for well-seismic tying purpose. The
goal of this correlation is to get best match qualitatively and quantitatively by the highest
correlation coefficient (0 — 1).

Wavelet can be generated from several common methods such as Ricker wavelet:
dominant frequency value as the input; Bandpass wavelet: Low-High cut and pass
frequency values as the input; Statistical wavelet: extracting wavelet from seismic data
around the well target zone; Well wavelet: extracting wavelet from seismic data along the
bore hole in the target zone interval. However from some trial and error, in this study,
Ricker wavelet has already produced a good correlation for well-seismic tying with some
time shift applied.

In this study, the correlation window was set at 1000 — 1500 ms, in order to focus
on the interested interval. From the correlation window, using the original time-depth
data available in the well, it found that it only required 8 ms time shift to get 0.726
correlation coefficient at RAF-3 (figure 4.13) and 2 ms time shift to get 0.819 correlation
coefficient at NE RAF-1 (figure 4.14). As the other result of this process, a corrected

time-depth table was saved for further process.
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Figure 4.13 Seismic synthetic to trace correlation at RAF-3 using Ricker wavelet 30 Hz.
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Figure 4.14 Seismic synthetic to trace correlation at NE RAF-1 using Ricker wavelet 30 Hz.

From the correlation windows above, it can be seen that some of top reservoirs
were not consistently falls on the same seismic event. This is possibly due to disparity in
lithology, porosity, thickness or its fluid content between RAF-3 and NE RAF-1
especially at UG-1A, UG-1B and UG-1C sand. However, after reviewing at larger area of
the seismic data, therefore based on seismic event continuity as well as consider its
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consistency and its easiness to pick, it was decided that Top UG 1A falls at Zero
Crossing; Top UG 1B at Zero Crossing; Top UG 1C at Peak; Top UG Massive at

Trough and Base UG Massive at Peak and this become the reference in horizon picking.

4.3.2 Wavelet Estimation

Next stage is a critical task to do in this workflow which is wavelet estimation
from every partial angle stack: near, mid and far angle stack. These wavelets later
become the important input in the simultaneous inversion algorithm. Wavelet estimation
is generated in two (2) steps. First, estimate wavelet by Statistical extraction method to
get the first pass of estimation and second, estimate wavelet by Well extraction method to
get finer estimation and higher correlation coefficient.

Wavelets were extracted from seismic data at an interval of 1000 — 1500 ms with
a wave length 100 and taper length 25 to minimize the unwanted side lobes. After
conducting some trial and errors of wavelet extraction to get the highest correlation
coefficient for each wavelet used for the correlation, it could be concluded that well
extracted wavelets of NE RAF-1 give the higher correlation coefficient than wavelets
extracted from RAF-3 (table 3.2). Figure 4.15 show wavelet plot in time and frequency
response of RAF-3 and NE RAF-1 for every partial angle stack, it is shown that NE
RAF-1 well extracted wavelets are closer to zero phase which is consistent to the used
seismic phase. Therefore this is justified to use NE RAF-1 well extracted wavelet for
simultaneous inversion process later.

Additional test was also conducted which using NE RAF-1 wavelet to RAF-3
synthetic to trace correlation to check whether it still give a good result or not. Figure
4.16 show that NE RAF-1 wavelet was still give good correlation coefficient when it was

used to RAF-3 synthetic to trace correlation.

Well Statistical Extraction Well Extraction
Volume|] Near Mid Far Near Mid Far

RAF-3 0.760 0.734 0.758 0.774 0.808 0.798

NE RAF-1 0.868 0.864 0.751 0.910 0.907 0.789

Table 4.1 Correlation coefficient resulted from statistical and well extraction

Prediction of gas..., Lukman Hidayat, FMIPA Ul, 2009
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Figure 4.15 show wavelet plot in time and frequency response of RAF-3 and NE RAF-1

for every partial angle stack
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Figure 4.16 show that NE RAF-1 well extracted wavelet was still give good correlation

coefficient when used for RAF-3 synthetic to trace correlation.
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4.4 Horizon and Fault Interpretation

Using full stack migrated volume, first step in this stage is interpreting the fault
framework. Fault picking was done at per 10 xlines and 50 ilines then correlated between
fault segments. Next, seismic horizons of the seismic event can be picked refer to
geological well event using corrected time-depth curve resulted from well seismic tie
step. Horizon picking was also done at the same increment as fault interpretation. It was
initially picked at arbitrary line between RAF-3 and NE RAF-1 (figure 4.17) and
combining with inline and xline looping technique. Then it was interpolated to populate
them laterally. In this study, there are 5 interpreted horizons: Top UG 1A, Top UG 1B,
Top UG _1C, Top UG Massive and Base UG Massive. Figure 4.20 shows these 5

interpolated horizons.

B3
-
-

Figure 4.17 Horizon picking at RAF-3 and NE RAF-1 arbitrary line

Fault polygon was generated by trimming the horizons intersection to fault
segment which then calculated its heave. This fault polygon was then used for time

structural mapping.
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Figure 4.18 Horizon and fault picking at Inline 7380 at RAF

Figure 4.19 Horizon and fault picking at Inline 7990 at NE RAF-1 well location
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Figure 4.20 Five interpolated horizons in this study

4.5 Low Frequency Model

Before stepping to inversion process, it is required to have low frequency model
which provides an initial guess in the inversion and also provides a proper selection of
log curves used in determining the regression coefficients in the well data cross plot. Low
frequency or also known as Initial Model is generated by interpolating and extrapolating
well P-impedance (Zp), S-impedance (Zs) and Density with horizons as the guidance
which then filtered in frequency. In this study, frequency filtered at high pass 5 Hz and
high cut 10 Hz. As the result, there are 3 initial models generated: Zp model, Zs model

and Density model (figure 4.21)
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Figure 4.21 Initial models section at RAF-3 well location

4.6 Pre-Inversion QC Analysis

The Inversion QC analysis performs an inversion on selected well locations,
which means testing a range of inversion parameters quickly and also used to see how
well the analysis inversion succeeded or to compare different parameters before
performing the actual inversion.

The inversion parameters are reflecting the background relationship between
In(Zp), In(Zs), and In(Density) which written on equation (36) and (37) on Chapter 3.
They are extracted from the regression linear trends drawn on cross plot In(Zp) versus
In(Zs) and In(Zp) versus In(Density) as the regression coefficient — k, k¢, m, mc, ALg,
ALp (figure 4.22). These coefficients were then used to generate the inversion QC

analysis window (figure 4.23) which giving good correlation coefficient: 0.952.
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Figure 4.22 show regression linear trend between In(ZP), In(ZS) and In(Density) and its

regression coefficient

RAF-3

(Err=2385.72) (Err= 1554 .88) (€rr=0102729) | corrm 0.852195) fErr= 0.307744)
Thrii (e 0 316578 0 130008 0 261674 ke

00

N WEEE AN 2 .

i ] ! L ™
Y I LILTRTTT M ¢ L=
1000 ik I )
- = N IR =113 i -
HEENE l? i'— I —— ™
e | I NN Y IO “
I LRI T [ W T % T
1100 7 ' . {
1 1 L
NN YNNI RNEE B EEE _tL N
= = I | Ton 116 14
— — — - -Top_UG_18_ne- :‘
T iyt
- — <Top. _new
11 ,_’_1 I - =
i ...**I* | -y o s —Base_UG_mél
= L 4 4+
j [EEEEN
™1 11 T | |
13007 £ [T
) ! 111 Ll
A= T [
| | [ | AN EEEE |2
1400
| ; gr:
1 E
1500
Tops | Ip -deviated Iz -devisted Density -deviated Synthetic & Seismic  Error -det  Horizons
Error Calculation Window —— Initial Model —— Original Log
—— Inverted Result Upper Constraint Lower Constraint

Figure 4.23 inversion QC analysis window at RAF-3 showing good correlation between
the inversion traces and the original logs
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4.7 Simultaneous Inversion

Next, after having the inversion parameters and confident with the inversion QC
analysis, simultaneous inversion can be then conducted. Simultaneous inversion process
collaborate low frequency model, partial angle stack seismic, wavelets and the inversion
parameters to generate P impedance, S impedance and Density volumes. The
simultaneous inversion target was constrained at +/- 50 ms of Top UG 1A and
Base UG Massive for the time and disk space efficiency. Inversion results at the well

section are showed at figure 4.24.

Figure 4.24 Inversion results at the RAF-3 and NE RAF-1well section

The next step in the study workflow: Analysis and Interpretation will be discussed

at Chapter 5: Analysis and Interpretation.
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Chapter Five:
ANALYSIS AND INTERPRETATION

Based on the simultaneous inversion results done in Chapter 4 which are P-
impedance, S-impedance and Density volumes, they can be analyzed for further

interpretation to achieve the thesis goals in the following ways.

5.1 Rock Physics Template

Rock physics template (RPT) was generated by plotting all parameters in the
same scale and same template for defining the rock physics model in the RAF structure
and later will be applied as a guide in mapping gas and lithology distribution on the
seismic scale. This step is started by making cross plot S-impedance and P-impedance of
RAF-3 and NE RAF-1 well data (figure 5.1) to define lithology and fluid effect
discrimination zones. Next step is overlying these zones on cross plot of S-impedance

and P-impedance extracted from inversion result at well location.
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Figure 5.1 P-impedance vs. S-impedance cross plot of RAF-3 and NE RAF-1 well
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The reason of this overlying is to test whether the inversion result can
discriminate lithology and fluid effect as well as to check whether its discrimination
zones falls consistently within zones generated from well cross plot.

Figure 5.2 confirmed that inversion result extracted at RAF-3 and NE RAF-1, at
reservoir interval, showing good discrimination of lithology and fluid effect and the
overlaid well cross plot zones are consistently fallen on the expected area. The good
overlying is seen on the Non HC Bearing zone where well cross plot zone is almost
covering all the inversion point. While Gas Bearing zones although do not cover perfectly
on the expected points, it has a consistent trend. This is understandable as seismic data
has lower vertical resolution compared to well data instead of they both have different

sample interval which 2 ms for seismic and 0.5 ft for well data.
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Figure 5.2 P-imp and S-imp cross plot of inversion result extracted at well location at

reservoir interval and overlaid with well cross plot zones.

However for further interpretation, we will customize the cross plot zones to fit
the seismic data population and distribution (figure 5.3). The well log cross section zones
are mostly showing a very good match corresponds to well log lithology and fluid

content.
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Figure 5.3 Customized cross plot zones of P-impedance and S-impedance extracted at

well location and at reservoir interval.

5.2 Cross Plot Volume
Next step is to bring this cross plot zones: Gas Bearing and Non HC bearing
zones into seismic volume as color data. As shown in figure 5.4 and 5.5, seismic sections

are overlaid by cross plot zone at RAF-3 and NE RAF-1 location.
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Figure 5.4 Seismic sections overlaid by cross plot zone at RAF-3 well location
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Figure 5.5 Seismic sections overlaid by cross plot zone at NE RAF-1 well location

From figure 5.4 and 5.5, it could be seen that the red color of RPT is consistently
coloring the gas pay zone of RAF-3 and NE RAF-1 at all Upper Gabus Massive
reservoirs except UG Massive sand which possibly due to tuning thickness. Also the
same thing, the grey color is consistently coloring the non pay zone which could be shale,
wet sand or shaly sand. The arbitrary section crossing RAF-3 to NE RAF-1 shows the red

and grey color distribution across the structures (figure 5.6)

5.2.1 Blind Well Tests

This step is done to confirm whether the RPT applied that derived from 2 wells:
RAF-3 and NE RAF-1 is also working well to predict the fluid content at the wells that
excluded from the simultaneous inversion process. They are RAF-2, RAF-A01 and RAF-
A02.

Figure 5.7 shows that the RPT has worked well to predict the fluid content on
those wells at almost all Upper Gabus Massive reservoir. However on particular reservoir
UG Massive sand at RAF-A01 and RAF-AO02 are not colored by the red, this possibly due
to overlap zone on the poor discriminated area while UG Massive sand at RAF-2 is

possibly due to tuning thickness.
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Figure 5.6 Arbitrary section crossing RAF-3 to NE RAF-1 shows the red and grey color distribution across the structures
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5.2.2 Horizons Slicing

After reviewing the gas bearing and non-HC bearing zones distribution in vertical
section, it is also a need to see the zones distribution laterally by generating horizon slice
for some horizon intervals. Figure 5.8 shows horizon slice at Top UG-1A and Top UG-
IB interval reflecting gas accumulation distribution at UG-1A sand. It is seen the

distribution forming the low sinuosity channel like trend.

UG-1A Color Key
Cross Plot Horizon Slice
¥ (m)
[ S, ‘ [ N -
490000 l = f e
4= \ - ERhE i }
] ol A= :gf 9450, 5340) Gas
439000 - ‘J N E e e * Fo ke P Bearing
1 | J s 1L 9 | Zone
P S e R
488000 | | y i | - —1— "
1 === == S
487000 Channel like trend | |—
486000 ' ! /
1 | -
] . T
485000 -;_J-&f« s - Sl
] (8950, 46007 NE RAF1 \ 2 _ Bearing
484000 - - 5: = N P —
] s B (6200, 5
483000 4 — - |
482000
481000 ‘
480000 4 — {_ ‘ e
479000 % +——
] v — | ‘ ‘
4L | 16200, 4600) | | !
4?8000 T T T T T T T T T T T T T T T .
645000 647000 649000 651000 B53000 655000 E5T000 659000
4| | i

X (m)

Figure 5.8 Horizon slice at Top UG-1A and Top UG-1B interval showing channel like

trend gas accumulation distribution.

A separated gas accumulation distribution between RAF structure and NE RAF
structure is shown on figure 5.9 which reflecting gas accumulation on stack of UG-1B
and UG-1C sand. A less of gas accumulation distribution is seen on figure 5.10 which
reflecting the gas accumulation on UG Massive sand. This is possibly due to lack of gas

content or due to tuning effect or overlap zone on the poor discriminated area cross plot.
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Figure 5.9 Show gas accumulation distribution on stack of UG-1B and UG-1C sand.
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Figure 5.10 Less gas accumulation distribution on UG Massive sand.
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5.3 Sand Prediction

Sand prediction is generated through creating VShale volume. By plotting
Density (p) against VShale and Porosity as the color point from the known logs of RAF-3
and NE RAF-1, it can be concluded that the lower left quadrant is clean sand and good
quality (porosity) sand (figure 5.11). This allows us to calculate the Sand % volume from
the Inversion Density volume by generating regression linear at clean sand trend where
minimum and maximum VShale value is constrained at 0.01 to 0.6. The program then
calculates its regression linear equation

y =0.657447x + 2.09292 or

X = (y — 2.09292)/ 0.657447

where: y = Density and x = VShale

So we will have VShale volume derived from Density volume
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Figure 5.11 Cross plot Density (p) vs VShale of RAF-3 and NE RAF-1 showing

regression linear at clean sand trend and good quality (porosity) sand zone (yellow box).
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Based on VShale volume, we can predict laterally the clean and good quality sand
distribution at reservoir levels by slicing the volume guided by the seismic horizons.
Figure 5.12 shows predicted sand distribution at UG-1A sand where dominantly
concentrated at RAF structure. While good lateral of sand distribution prediction is
demonstrated at UG-1B (figure 5.13). The predicted distribution is occupied at both RAF
and NE RAF structure. Sand distribution at NE RAF structure is getting diminished at
UG-1C and UG Massive as shown in figure 5.14 and 5.15. Th lateral sand distribution
prediction of these 4 reservoirs in RAF and NE RAF structure: UG-1A, UG-1B, UG-1C
and UG Massive are consistent to vertical sand distribution described by the well

correlation of all wells in RAF field shown in figure 2.6 of Chapter 2.
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Figure 5.12 Sand prediction at UG-1A interval where clean and good quality sand is

concentrated at RAF structure.
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Figure 5.14 Sand distribution prediction at UG-1C interval where sand diminished at NE

RAF structure
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Figure 5.15 Lesser sand distribution of UG Massive interval at RAF structure

5.4 Porosity Prediction

Porosity prediction is generated through Porosity volume created using P-
impedance volume. By plotting PHIE (Effective porosity) against P-impedance and
Saturation Water as the color point from the known logs of RAF-3 and NE RAF-1, it can
be derived 2 porosity trends: Pay and Wet trend (figure 5.16). This allows us to calculate
the Porosity volume from the Inversion P-impedance volume using regression linear

equation at the Pay trend:

y =-1.76575%10 x + 0.6303107
where y = Porosity and
x = P-impedance

And we will have Porosity volume derived from P-impedance volume.
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Figure 5.16 Two (2) Porosity trends derived from cross plot PHIE against P-impedance

As follow, based on Porosity volume, laterally we can predict good porosity sand

distribution at reservoir levels by slicing the volume guided by the seismic horizons.

Figure 5.17 — 5.20 show porosity distribution prediction equivalent at UG-1A, UG-1B,

UG-1C and UG Massive interval. It looks the porosity distribution trend is following the

sand distribution prediction
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Figure 5.17 Porosity distribution prediction of UG-1A interval
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Figure 5.18 Porosity distribution prediction of UG-1B interval
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Figure 5.19 Porosity distribution prediction of UG-1C interval
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Figure 5.20 Porosity distribution prediction of UG-Massive interval
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5.5 Pore Gas Prediction

Pore gas distribution is predicted through Lamda-Rho volume which generated
from P-impedance and S-impedance volume using equation 10 in Chapter 3:
Ap=1Zp' — 27
where: Ap = Lamda-Rho Zp = P-impedance  Zg = S-impedance

As discussed in Chapter 3, Lamda-Rho or Incompressibility is a measure of the
physical response of volume changing when given the stress. This changing is more
caused by changing in pore and its fluid rather than changing in grain size. The easier the
medium are compressed, the lower the incompressibility value will be. Low
incompressibility values are associated with gas sand therefore Lamda-Rho is a good
indicator for pore gas content. Figure 5.21 — 5.24 show pore gas distribution prediction at

equivalent to the reservoir sands.

LR Gas prediction UG-1A

4 N

Figure 5.21 Pore gas distribution prediction of UG-1A interval
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Figure 5.22 Pore gas distribution prediction of UG-1B interval
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Figure 5.23 Pore gas distribution prediction of UG-1C interval
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Figure 5.24 Pore gas distribution prediction of UG-Massive interval

5.6 Water Saturation Prediction

Water saturation prediction is calculated by using the Inversion Density volume

and the Derived Porosity volume, in Wyllie’s formula (equation 11 in Chapter 2):

p=9 ((1 - SW) PGas + Sw pWater) + (1 e Q) PMatrix

where:

PGas =0.68 (avg based on PVT test) PMatrix = 2.65 Pwater = 1

or

Sw = (P - PMatrix T 9 (PMatrix - PGas) )

9 (pWater - pGas)

And we will have water saturation volume to be used for horizons slicing to predict its
lateral distribution at reservoir level. Figure 5.25 — 5.28 show water saturation

distribution prediction at equivalent to the reservoir sands.
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Figure 5.25 Water Saturation distribution prediction of UG-1A interval
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Figure 5.26 Water Saturation distribution prediction of UG-1B interval
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Figure 5.28 Water Saturation distribution prediction of UG-Massive interval
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5.7 Potential Area Identification

Based on the observation of data analysis and interpretation techniques result
above, it can be summarized that good quality sand and gas accumulation of Upper
Gabus formation at RAF field consistently are distributed widely at UG-1A and UG-1B
interval. And when these intervals are overlaid with its structural contour and fault, it can
be identified the prospective areas which potentially un-drained by the existing producing
wells which might be due to the fault trap. The existing producing wells are RAF-A02
which was designed to drain Upper Gabus formation and RAF-04: horizontal well which
was specifically designed to drain UG-1B, while RAF-A01 was designed to drain the
other lower formations at this field. This identification might support the strategy for
further development of optimizing the hydrocarbon recovery from this field.

Figure 5.29 — 5.32 show the overlying structure maps and its fault associated on
Sand and gas prediction map of UG-1A and UG-1B interval. They also show 2 potential
areas: at Eastern flank of RAF structure and at Northwest of NE RAF structure nose.
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Figure 5.29 Potential areas at UG-1A based on Sand prediction map
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Figure 5.30 Potential areas at UG-1A based on Lamda-Rho pore gas prediction map
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Figure 5.32 Potential areas at UG-1B based on Lamda-Rho pore gas prediction map
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Chapter Six:
CONCLUSION AND RECOMMENDATION

Through this thesis and its data analysis and interpretation, it can be concluded a

few things especially relate to the thesis objectives and hypothesis as mentioned in the

earlier chapter.

6.1 Hypothesis versus Result

1.

The hypothesis that there is a relationship between rock physics (Zp, Zs, Vp/Vs,
Ap, up) and rock properties (Density, Porosity, Gas saturation, Shale Volume) on
data in study area could be proven empirically through feasibility study and data
analysis where P-impedance correlate to Porosity, Lamda-rho, P and S-impedance
and also Vp/Vs crossplot are correlate indirectly to lithology and gas saturation.
The hypothesis that Seismic Simultaneous inversion method is feasible to be
applied in study area and can be used to estimate a reliable P-impedance, S-
impedance and Density volumes could be can proven through the feasibility study
where the seismic data in this study area still can resolve some main reservoirs at
the Upper Gabus formation and also through Pre-inversion QC Analysis which
giving a good coefficient correlation and similar trend between inverted result
logs and the original log at the well location. The analysis of the inversion product
including blind well tests has been proving that the result is consistent with the
actual gas presence observed from the existing wells in the study area.

The hypothesis that Seismic Simultaneous Inversion derivative product and its
combination with rock physics techniques allow us to have qualitative and
quantitative analysis to predict and estimate the desired reservoir characters such
as porosity, gas distribution, its geometry and connectivity could be achieved
through cross plot volume section and slice, Sand, Porosity, Pore gas and Water
Saturation prediction map which generated by slicing the volumes at reservoir
horizon levels.
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6.2 Objectives versus Result

1.

Simultaneous Inversion as a proof of concept and provide a better image
Seismic Simultaneous Inversion has been giving a good match correspond
to gas distribution at the Upper Gabus interval on the existing RAF wells both on
2 wells which used in the inversion and 3 wells as the blind well tests. This
promising result is a proof of concept that Seismic Simultaneous Inversion can be
used as one of the tools to approach the Hydrocarbon or Reservoir distribution
prediction. Moreover, its derivative products which combined with rock physics
techniques analysis could provide a better image to predict vertical (figure 6.1)
and lateral section of reservoir character distribution (figure 6.2) compare to

conventional seismic interpretation techniques.

Identify potential areas

Through the observation from cross plot volume section and slice, Sand,
Porosity, Pore gas and Water Saturation prediction map, it can be concluded that
good quality sand and gas accumulation of Upper Gabus formation at RAF field
consistently are distributed widely at UG-1A and UG-1B interval. These
distributions form channel-like trend feature both at UG-1A and UG-1B. From the
slices, it is seen that going northeastward, sand quality is getting poorer in
porosity and sand percentage. This can be interpreted that the sediment source
was coming from the southwest and settled into a lacustrinal deltaic system at the
northeast.

When it overlaid by structure contour and its associated fault, it can be
identified 2 potential areas: first, at Eastern flank of RAF structure and second, at
Northwest flank of NE RAF structure nose. These areas could be the potential
candidates for further integrated study.

First areas, identified at Eastern flank of RAF structure with VShale varies
at 12% - 38%, Porosity approx. vary at 27% — 38% and 4% — 49 % of water
saturation. Second area, is located at Northwest flank of NE RAF structure nose.
In this area, Porosity is ranging approx. at 27% - 34%, VShale vary at 23% - 39%

and water saturation at 12% - 49%.
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On both areas, it is expected that hydrocarbon is still trapped on this
faulted compartmentalization. By placing wells at these areas, it is expected could

optimize the gas recovery from this field.

—
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Figure 6.1 Simultaneous Inversion combined with rock physics technique analysis

provide better image of vertical section.

~ Amplitude extractio
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T

|_.

Figure 6.2 Simultaneous Inversion derivative products provide better image of lateral

section.
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6.3 Pitfalls

However, from the result observation, it is admitted that errors and uncertainties
are still remain in this inversion such as:

= A certain reservoir sands such as sands at UG-1C and UG-Massive intervals
which thickness less than 30 ft, were not identified as gas zone as expected. This
could be interpreted due to tuning thickness effect. As it is expected on the
feasibility test, some of sand units may not resolved in seismic resolution.

= Gas zone may over predict at the unexpected area particularly at down dip
structure area. This possibly could be explained due to:

— A single universal wavelet for every partial stack volume used for this
inversion. This is just an estimated wavelet while in the real; wavelet could
vary across the area.

— Overlap areas of the poor discrimination area possibly also contribute in this

uncertainty.

6.4 Recommendation

Understanding the result and pitfalls, it is considered that this study is an
alternative interpretation to investigate gas distribution over the field. It is not intending
to answer all of the problems. The result of this study could be assumed as the
preliminary identification and can not work alone. It should be followed up by other
integrated studies. Fault seal analysis study; to check whether the fault is sealed or not,
Reservoir modeling and simulation study should also be conducted further to check how
far the drainage radius affected.

On the reservoir properties, Porosity volumes was predicted from a simple linear
relationship between PHIE and P-Impedance, Sand prediction or VShale volume was also
predicted from a simple linear relationship between Density and VShale, Water
Saturation volume was generated simply from Wyllie’s equation, and Pore gas was
simply predicted from Lambda Rho. Therefore, a more comprehensive geostatistic
modeling may be required to get more accurate of lithology, porosity and water saturation

qualitative prediction.
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