

UNIVERSITAS INDONESIA

UJI KEAKURATAN PROGRAM SIMULATOR SUGAR DALAM SIMULASI PERPINDAHAN MEMS AKSELEROMETER KAPASITIF BERDASARKAN PEMBERIAN TEGANGAN DENGAN MENGGUNAKAN PENDEKATAN LINEAR

SKRIPSI

MARTHIN SUR YA SETIAWAN 0606074110

FAKULTAS TEKNIK UNIVERSITAS INDONESIA DEPARTEMEN TEKNIK ELEKTRO DEPOK JUNI 2010

Uji keakuratan..., Marthin Surya Setiawan, FT UI, 2010

UNIVERSITAS INDONESIA

UJI KEAKURATAN PROGRAM SIMULATOR SUGAR DALAM SIMULASI PERPINDAHAN MEMS AKSELEROMETER KAPASITIF BERDASARKAN PEMBERIAN TEGANGAN DENGAN MENGGUNAKAN PENDEKATAN LINEAR

SKRIPSI

Diajukan sebagai salah satu syarat untuk memperoleh gelar sarjana

MARTHIN SUR YA SETIAWAN 0606074110

FAKULTAS TEKNIK UNIVERSITAS INDONESIA DEPARTEMEN TEKNIK ELEKTRO DEPOK JUNI 2010

HALAMAN PERNYATAAN ORISINALITAS

Skripsi ini adalah hasil karya saya sendiri, dan semua sumber baik yang dikutip maupun dirujuk telah saya nyatakan dengan benar.

: Marthin Surya Setiawan
: 0606074110
: 14 Juni 2010

HALAMAN PENGESAHAN

Skripsi ini diajukan oleh :Nama: Marthin Surya SetiawanNPM: 0606074110Program Studi: Teknik ElektroJudul Skripsi: Uji Keakuratan Program Simulator Sugar DalamSimulasi Perpindahan Mems Akselerometer Kapasitif Berdasarkan PemberianTegangan Dengan Menggunakan Pendekatan Linear

Telah berhasil dipertahankan di hadapan Dewan Penguji dan diterima sebagai bagian persyaratan yang diperlukan untuk memperoleh gelar Sarjana Teknik pada Program Studi Teknik Elektro, Fakultas Teknik, Universitas Indonesia.

DEWAN PENGUJI

Pembimbing

monnong

(Dr. Ir. Agus Santoso Tamsir MT)

(Dr. Ir. Arman D. Diponegoro)

Penguji

Penguji

(Chairul Hudaya ST, M.Sc)

Ditetapkan di

: Depok

Tanggal

: 9 Juli 2010

iv

UCAPAN TERIMA KASIH

Puji syukur saya panjatkan Tuhan yang Maha Esa sehingga saya dapat menyelesaikan skripsi ini. Saya menyadari bahwa skripsi ini tidak akan terselesaikan tanpa bantuan dari berbagai pihak. Oleh karena itu, saya mengucapkan terima kasih kepada :

- Bapak DR.Ir. Agus Santoso Tamsir MT selaku pembimbing skripsi ini, yang telah meluangkan waktunya, serta masukan-masukan selama bimbingan sehingga skripsi ini dapat berjalan dengan lancar;
- Bapak Dr. Ir. Ridwan Gunawan MT yang telah bersedia meluangkan waktu untuk memberikan bimbingan dan pengetahuan baru kepada penulis;
- Taufiq Mardiansyah, Cindy Chairunissa, Teddy Febrianto, Fauzi Dwi Reza Aditya, Muhammad Firdauz Syawaludin Lubis, Abdul Aziz, Suria, Jepry, M. Apriyudi Syaputra, Maria Widayanti, keluarga, serta teman-teman lainnya yang turut membantu dan memberikan dukungan kepada penulis sehingga skripsi ini dapat terselesaikan dengan baik;
- 4. Dan seluruh Sivitas Akademik Departemen Teknik Elektro yang tidak dapat saya sebutkan satu persatu.

Semoga skripsi ini bermanfaat bagi perkembangan ilmu pengetahuan.

Depok, Juni 2010

Marthin Surya Setiawan

HALAMAN PERNYATAAN PERSETUJUAN PUBLIKASI TUGAS AKHIR UNTUK KEPENTINGAN AKADEMIS

Sebagai sivitas akademika Universitas Indonesia, saya bertanda tangan di bawah

ini :

Nama	: Marthin Surya Setiawar
NPM	: 0606074110
Program studi	: Teknik Elektro
Departemen	: Teknik Elektro
Fakultas	: Teknik
Jenis karya	: Skripsi

demi pengembangan ilmu pengetahuan, menyetujui untuk memberikan kepada Universitas Indonesia **Hak Bebas Royalti Noneksklusif** (*Non-exclusive Royalty Free Right*) atas karya ilmiah saya yang berjudul :

UJI KEAKURATAN PROGRAM SIMULATOR SUGAR DALAM SIMULASI PERPINDAHAN MEMS AKSELEROMETER KAPASITIF BERDASARKAN PEMBERIAN TEGANGAN DENGAN MENGGUNAKAN PENDEKATAN LINEAR

Beserta perangkat yang ada (jika diperlukan). Dengan Hak Bebas Royalti Non Eksklusif ini Universitas Indonesia berhak menyimpan, mengalihmedia / formatkan, mengelola dalam bentuk pangkalan data (*database*), merawat, dan mempublikasikan tugas akhir saya selama tetap mencantumkan nama saya sebagai penulis/pencipta sebagai pemegang Hak Cipta. Demikian pernyataan ini saya buat dengan sebenarnya.

> Dibuat di : Depok Pada tanggal : 14 Juni 2010 Yang menyatakan

Marthin Surya Setiawan`

ABSTRACT

Name: Marthin Surya SetiawanMajor: Electrical EngineeringTitle: SUGAR simulator precision testing on simulating displacement of capacitive
accelerator MEMS based on applied voltage using linear approach

MEMS accelerometer simulators have been used since the advancement in MEMS technology has been so great lately. However, most of the simulators are licensed and will cost too much. Such things are constraining the advancement of students and researchers in MEMS world. Therefore, in this minithesis we introduce SUGAR simulator as one of the realistic solution because this program is an open-source program. This simulator program is easy to use since it is programmed in MATLAB. Moreover, MATLAB functions can also be used with SUGAR to support SUGAR simulation. Therefore, the writer suggests the topic of SUGAR simulator reliability testing to explore more of its reliability.

Key words : MEMS accelerometer, simulator, SUGA R, simulation

ABSTRAK

: Marthin Surya Setiawan

: Teknik Elektro

Program studi Judul

Nama

: Uji keakuratan program simulator SUGAR dalam simulasi perpindahan MEMS akselerometer kapasitif berdasarkan pemberian tegangan dengan menggunakan pendekatan linear

Program-program simulator MEMS akselerometer telah banyak muncul dikarenakan perkembangan teknologi MEMS yang cenderung pesat dewasa ini. Namun, kebanyakan dari program-program simulator tersebut berlisensi dan berharga sangat mahal. Hal-hal tersebut menjadi kendala bagi perkembangan pelajar-pelajar maupun kalangan-kalangan peneliti yang berkecimpung di dalam dunia MEMS. Oleh karena itu, dalam skripsi ini akan diperkenalkan sebuah program simulator bernama SUGAR yang akan menjadi salah satu alternatif yang realistis karena program ini bersifat *open-source*. Program simulator ini juga cukup mudah untuk digunakan karena telah terprogram dalam MATLAB. Bahkan, fungsi-fungsi MATLAB dapat digunakan untuk menunjang keakuratan dari SUGAR. Oleh karena itu, penulis mengangkat tema uji keakuratan simulator SUGAR dengan pendekatan linear untuk mengeksplor lebih lanjut keakuratan dari program simulator tersebut.

Kata kunci : MEMS akselero meter, simulator, SUGA R, simulasi

DAFTAR ISI

HALAMAN JUDUL	ii
HALAMAN PERNYATAAN ORISINALIAS	iii
HALAMAN PENGESAHAN	iv
UCAPAN TERIMA KASIH	v
HALAMAN PERNYATAAN PERSETUJUAN PUBLIKASI TUGAS AKHIR	
UNTUK KEPENTINGAN AKADEMIS	vi
ABSTRACT	vii
ABSTRAK	viii
DAFTAR ISI	ix
DAFTAR GAMBAR	xi
DAFTAR GRAFIK	xii
1. PENDAHULUAN	1
1.1. Latar belakang	1
1.2. Tujuan	2
1.3. Pembatasan masalah	2
1.4. Sistematika penulisan	2
2. DASAR TEORI	4
2.1. Akselerometer MEMS kapasitif	4
2.1.1. Konsep dasar	4
2.1.1.1. Damping	7
2.1.1.1.1. Squeeze Film Damping	7
2.1.1.2. Konstanta pegas	8
2.1.1.3. Pemodelan dari aktuator elektrostatik	10
2.2. Simulator SUGAR	12
2.2.1. Representasi MEMS dalam SUGAR	13
2.2.2. Residual Stress	17
2.2.3. <i>Gap</i> Elektrostatik	18
2.2.4. Analisis	18
3. METODOLOGI PENELITIAN	20
3.1. Rancangan penelitian.	20
3.2. Lokasi dan waktu penelitian	22
3.3 Input simulasi	23
3.4 Langkah-langkah penelitian	.23
3.5 Analisis data	27
4. HASIL DAN ANALISIS PENELITIAN	29
4.1. Analisa grafik	.29
4.1.1. Variasi lebar <i>proofmass</i>	29
4.1.2. Variasi panjang <i>proofmass</i>	32
4.1.5. Variasi panjang tether	
4.1.4. Variasi lebar <i>lether</i>	10
4.1.5. Variasi tebal decein	40 12
4.1.0. Variasi con Iracil	43 16
4.1.7 Variasi gap keen	40
4.1.6 Variasi gap desar	48

KNIK *

4.1.9 Variasi panjang <i>finger</i>	
4.1.10 Variasi tebal finger	
5. KESIMPULAN	
DAFTAR REFERENSI	
LAMPIRAN	60

DAFTAR GAMBAR

Gambar 2.1. Struktur akselerometer	5
Gambar 2.2. (a) squeeze film damping dan (b) viscious film damping	7
Gambar 2.3. Plot dari fungsi (W/L) berbanding dengan nilai rasio perbandin	ngan
sisiplat yang bergerak (W/L)	8
Gambar 2.4. Desain pegas crab-leg dengan penopang lurus	9
Gambar 2.5. Struktur skematik dari plat kapasitor paralel	10
Gambar 3.1. Bentuk umum desain MEMS akselerometer kapasitif yang	
disimulasikan	21

DAFTAR GRAFIK

Grafik 4.1. Grafik perpindahan dari variasi lebar proofmass	30
Grafik 4.2. Grafik persentase kesalahan dari variasi lebar proofmass	31
Grafik 4.3. Grafik perpindahan dari variasi lebar proofmass	33
Grafik 4.4. Grafik persentase kesalahan dari variasi panjang proofmass	34
Grafik 4.5. Grafik perpindahan dari variasi panjang tether berukuran 50 µm,	
100μm dan150μm	35
Grafik 4.6. Grafik perpindahan dari variasi panjang tether berukuran 200 µn	n dan
250 μm	36
Grafik 4.7. Grafik persentase kesalahan dari variasi panjang tether	
Grafik 4.8. Grafik perpindahan dari variasi lebar <i>tether</i> berukuran 2 µm dan	
3 μm	38
Grafik 4.9. Grafik perpindahan dari variasi lebar tether berukuran 4 µm, 5 µ	m dan
6μm	39
Grafik 4.10. Grafik persentase kesalahan dari variasi lebar tether	40
Grafik 4.11. Grafik perpindahan dari variasi tebal tether berukuran 0.5 µ	m dan
1 μm	41
Grafik 4.12. Grafik perpindahan dari variasi tebal tether berukuran 1.5 µm, 2	μm
dan 2.5 µm	42
Grafik 4.13. Grafik persentase kesalahan dari variasi lebar tether	43
Grafik 4.14. Grafik perpindahan dari variasi tinggi desain	44
Grafik 4.15. Grafik persentase kesalahan dari variasi tinggi desain	45
Grafik 4.16. Grafik perpindahan dari variasi gap kecil	47
Grafik 4.17. Grafik persentase kesalahan dari variasi gap kecil	48
Grafik 4.18. Grafik perpindahan dari variasi gap besar	49
Grafik 4.19. Grafik persentase kesalahan dari variasi gap besar	50
Grafik 4.20. Grafik perpindahan dari variasi panjang <i>finger</i> berukuran 25 µm	ı dan
50 μm	51
Grafik 4.21. Grafik perpindahan dari variasi panjang <i>finger</i> berukuran 75 µm	۱,
100μm dan 125μm	52
Grafik 4.22. Grafik persentase kesalahan dari variasi panjang finger	53
Grafik 4.23. Grafik perpindahan dari variasi tebal finger	54
Grafik 4.24 Grafik persentase kesalahan dari variasi tebal finger	55

BAB 1 PENDAHULUAN

1.1. Latar belakang

Dalam beberapa dekade terakhir, aplikasi *microelectromechanical systems* (MEMS) telah berkembang dengan sangat pesat. Hal ini terlihat dari kemunculan-kemunculan divais-divais baru yang merupakan miniaturisasi dari divais-divais yang berfungsi serupa. Namun, perancangan desain dari berbagai divais tersebut merupakan hal yang sulit. Oleh karena itu, alat bantu CAD (*computer-aided design*) sangat diperlukan untuk mendukung pendesainan sistem-sistem divais tersebut [1].

Pada dua dekade akhir ini bidang *microelectromechanical systems* (MEMS) berkembang dari penciptaan divais sederhana menjadi penciptaan divais yang memiliki sistem yang lebih kompleks. Melihat arah perkembangan ini, alat bantu *computer-aided engineering* (CAE) untuk MEMS memegang peranan yang semakin penting. *Tool* CAE telah berhasil mensimulasi divais-divais sederhana. Namun, pada desain yang lebih kompleks, meskipun simulasi berhasil dilakukan tetapi waktu yang diperlukan sangat lama [14]. Karena kapabilitas dari simulator-simulator konvensional tersebut sangat rendah, maka para desain-desain yang dibuat [1]. Selain itu, program-program simulator MEMS tersebut sulit untuk diperoleh karena harganya yang sangat mahal.

Program simulator alternatif, SUGAR, yang tersedia dengan gratis menjadi salah satu simulator alternatif bagi para desainer MEMS untuk melakukan simulasi perpindahan pada MEMS. Simulator SUGAR menggunakan program MATLAB sebagai basis untuk menjalankan fungsi-fungsinya. Program MATLAB sendiri telah menjadi salah satu program yang lazim dipakai oleh individu yang berkecimpung di dalam bidang *engineering* sehingga para desainer MEMS tidak akan mengalami kendala untuk menjalankan simulator SUGAR. Selain itu, fungsi-fungsi SUGAR yang telah terintegrasi dalam MATLAB dan tergolong fungsi-fungsi yang cukup sederhana. Bahkan, beberapa fungsi-fungsi dari MATLAB bisa dipakai untuk mendukung proses-proses simulasi. Kelebihan-kelebihan ini didukung oleh sifat SUGAR yang *open-source* sehingga mudah didapatkan. Kelebihan-kelebihan ini menjadikan SUGAR sebagai salah satu alternatif simulator MEMS yang baik dan cocok bagi kalangan akademis maupun pengembang-pengembang MEMS. Oleh karena itu, pada skripsi ini penulis mengangkat tema uji keakuratan simulator SUGAR dengan pendekatan linear dalam mengkaji lebih dalam tingkat keakuratan simulator SUGAR.

1.2. Tujuan

Tujuan dari penulisan skripsi ini adalah untuk mengidentifikasi dan mengeksplorasi keakuratan dari program simulator SUGAR dalam simulasi perpindahan yang terjadi pada desain-desain akselerator MEMS kapasitif ketika diaplikasikan tegangan. Hal-hal yang akan dievaluasi dalam skripsi ini adalah karakteristik-karakteristik umum dari alat bantu simulasi yang baik, yaitu keakuratan hasil simulasi, kecepatan simulasi, fleksibilitas terhadap desain, kemampuan menangani beberapa simulasi fisika secara bersamaan, serta kemampuan mengevaluasi efek fisik yang bagus.

1.3. Pembatasan masalah

Materi dari skripsi meliputi eksplorasi keakuratan program simulator SUGAR dalam simulasi perpindahan desain akselerator MEMS kapasitif akibat pemberian tegangan. Pembahasan difokuskan pada eksplorasi keakuratan SUGAR dengan membandingkan hasil simulasi SUGAR dengan hasil kalkulasi. Hasil kalkulasi yang digunakan sebagai mater perbandingan didapat melalui hasil kalkulasi dengan pendekatan linear. Eksplorasi keakuratan simulator tersebut kemudian diuji lebih lanjut dengan memvariasikan parameter-parameter desain.

1.4. Sistematika penulisan

Penulisan skripsi ini terbagi dalam lima bab. Pembahasan bab-bab tersebut dapat dijabarkan sebagai berikut :

• Bab 1 : Pendahuluan

Bab ini membahas tentang latar belakang, tujuan, pembatasan masalah, dan sistematika penulisan dari penulisan skripsi ini.

Bab 2 : Dasar Teori

Bab ini membahas tentang konsep-konsep dasar dari akselerator MEMS dan program simulator SUGAR.

- Bab 3 : Metodologi penelitian
 Bab ini membahas mengenai materi dan proses dari penelitian.
- Bab 4 : Hasil percobaan
 Bab ini membahas mengenai analisis hasil-hasil simulasi dan kalkulasi yang dilakukan.
- Bab 5 : Kesimpulan

Bab ini menyimpulkan keseluruhan hasil yang didapat dari proses percobaan yang dilakukan.

BAB 2 DASAR TEORI

- 2.1. Akselerometer MEMS kapasitif
- 2.1.1. Konsep dasar

Akselerometer MEMS kapasitif banyak diaplikasikan dewasa ini karena sederhana dan aplikatif. *Interface* kapasitif pada akselerometer tersebut memiliki beberapa fitur-fitur yang menarik. Pada kebanyakan teknologi mesin mikro, proses tambahan umumnya tidak lagi diperlukan dalam fabrikasi. Kapasitor-kapasitor tersebut dapat befungsi sebagai sensor dan aktuator. Kapasitor memiliki sensitivitas yang bagus dan mekanisme transduksi yang tahan terhadap temperatur. Pendeteksian kapasitif tidak bergantung pada material dasar, melainkan bergantung pada variasi kapasitansi ketika geometri dari kapasitor berubah [13]. Dengan mengabaikan efek *fringing*, kapasitansi dari plat yang pararel adalah :

$$C_o = \epsilon_0 \epsilon_d^A = \epsilon_A \frac{1}{d} \tag{1}$$

Dimana nilai $\epsilon_A = \epsilon_0 \epsilon A$ dan A merupakan luas penampang dari elektroda, dmerupakan jarak antar plat elektrostatik dan ϵ merupakan permitivitas dari material di antara kedua plat elektroda tersebut. Perubahan pada salah satu parameter ini akan mengakibatkan perubahan kapasitansi dan variasi dari setiap variabel ini telah diaplikasikan dalam aplikasi sensor MEMS. Secara umum, variasi dari aplikasi akselerometer terbagi dua, yakni akselerometer yang berprinsip pada perubahan nilai d dan akselerometer yang berprinsip pada pergerakan A [12]. Kedua akselerometer tersebut berbeda dalam hal arah pergerakan yang terjadi akibat pengaplikasian gaya.

Akselerometer MEMS pada umumnya terbentuk dari *proofmass* yang dapat bergerak. *Proofmass* terpasang di sistem suspensi mekanik pada kerangka seperti pada gambar 2.1. Plat-plat yang dapat digerakkan dan plat-plat luar yang tetap merepresentasikan kapasitor-kapasitor pada sistem tersebut. Defleksi dari *proofmass* dapat diukur dengan menggunakan selisih kapasitansi [13].

Gambar 2.1. Struktur akselerometer [13]

Kapasitansi udara di antara plat yang dapat digerakkan dan dua plat luar yang tetap C_1 dan C_2 merupakan fungsi dari perpindahan x_1 dan x_2 :

$$C_1 = \epsilon A \frac{1}{x_1} = \epsilon A \frac{1}{d+x} = C_0 - \Delta C$$
, $C_2 = \epsilon A \frac{1}{x_2} = \epsilon A \frac{1}{d-x} = C_0 - \Delta C$ (2)

Jika akselerasi yang terjadi bernilai nol, kapasitansi C_1 dan C_2 akan sama karena nilai $x_1 = x_2$. Perpindahan dari x ini diakibatkan oleh akselerasi yang terjadi. Jika nilai $x \neq 0$, selisih kapasitansi akan dapat di hitung seperti berikut :

$$C_2 - C_1 = 2\Delta C = 2\epsilon A \frac{x}{d^2 - x^2}$$
 (3)

Peneliti-peneliti menfokuskan dalam pemodifikasian bentuk geometris dari akselerometer MEMS untuk menvariasikan metode pendeteksian kapasitifnya agar dihasilkan performa maksimal. Performa dari akselerometer MEMS kapasitif dimaksimalkan berdasarkan sistem *mass-spring-damp* sehingga terdapat tiga parameter utama yang dapat dimodifikasi (massa, konstanta pegas, dan koefisien *damping*). Salah satu contoh sederhana dari bentuk geometri dari *proofmass* adalah bentuk *Fishbone*. Bentuk *proofmass* dari MEMS bergeometri *fishbone* tediri atas *finger-finger* yang berbentuk seperti tulang ikan (*fishbone*) atau sisir. (Park et al. 1998,1999)[4]. Bentuk geometri ini akan tampak seperti pada gambar 2.1. Bentuk geometri demikian merupakan modifikasi dari bentuk geometri *fishbone* yang sederhana dengan menggunakan dua baris elektroda berbentuk sisir. Setiap sensor pada MEMS tersebut memiliki banyak kapasitor. Struktur hanya dapat bergerak naik turun. Namun, pada kasus lain pergerakan ke arah lain dapat terjadi tergantung dari desain akselerometer tersebut. Plat yang bergerak dan tidak bergerak akan berfungsi untuk menciptakan kapasitansi. Seluruh kapasitor-kapasitor bagian atas dihubungkan paralel dengan sebuah sumber tegangan, *Vo*, sedangkan untuk bagian bawah dihubungkan pada sumber tegangan, *-Vo*. Jika hal ini tidak dilakukan, selisih kapasitansi tidak dapat terdeteksi [5].

Aplikasi MEMS cocok dalam aplikasi-aplikasi optik karena divaisdivais tersebut dapat dicocokkan dengan panjang gelombang optik dan dapat diproduksi dalam jumlah besar [6]. Karakteristik-karakteristik MEMS yang menjadi keunggulannya mulai menggantikan switches dalam pengiriman data optik dan filter. Hal ini dilakukan melalui MEMS aktuator [8]. Proses yang paling umum dalam divais-divais MEMS adalah aktuasi di mana memanfaatkan gerakan mekanik, gaya-gaya, maupun bekerja berdasarkan sistem di sekitarnya akibat dari pemberian tegangan atau arus. Salah satu tipenya adalah elektrostatik. Divais-divais berbasis MEMS telah banyak digunakan dalam beberapa aplikasi seperti sensor biomedikal, miniatur alat-alat biomedikal, sistem pengaturan kardiak, stimulasi syaraf, kontrol dorongan pada mesin, keamanan otomotif, sistem rem dan suspensi, komponen-komponen telekomunikasi optik, sistem penyimpanan data, proses sinyal elektromekanik, serta aplikasi militer. Mekanisme dari divais-divais tersebut bekerja dengan memanfaatkan sebuah sumber tegangan konstan atau sumber arus konstan agar terjadi aktuasi elektrostatik atau pendeteksian kapasitif [2].

Gaya elektrostatik yang terjadi akibat pemberian tegangan yang naik secara konstan akan bernilai non-linear, dan menyebabkan sebuah fenomena

yang dikenal dengan istilah ,*pull-in*' apabila telah mencapai sebuah nilai tegangan tertentu yang disebut dengan tegangan *pull-in*. Penentuan tegangan *pull-in* yang akurat sangat penting dalam sebuah proses desain untuk menentukan tingkat sensitivitas, respon terhadap frekuensi, ketidakstabilan, distorsi, dan cakupan dinamik dari divais [9]. Oleh karena itu, simulasi secara ekstensif dilakukan dengan cara mengvariasikan dimensi dari desain-desain divais tersebut agar tercipta sebuah desain yang ideal dan stabil [2].

2.1.1.1. Damping

Damping merupakan sebuah mekanisme disipasi yang dominan pada struktur mikron yang beroperasi dalam domain tekanan udara [15]. Damping yang tejadi pada desain *fish-bone* diak ibatkan oleh gerakan vertikal atau gerakan saling mendekati antar plat-plat elektroda pada desain *fish-bone*. Gerakan tersebut akan menciptakan sebuah tekanan pada udara yang berada pada *gap* diantara plat-plat finger.

Terdapat dua macam *damping*, yakni *squeeze film damping* dan *viscous drag damping*. Kedua jenis *damping* ini berlaku bergantung pada gerakan dari gerakan elemen inersial dan elektroda relatif terhadap struktur yang tidak bergerak. *Squeeze film damping* merupakan mekanisme yang dominan pada struktur pendekteksian yang beroperasi dengan penvariasian *gap*, sedangkan *viscious drag damping* beroperasi dengan menvariasikan luas permukaan struktur [15].

Gambar 2.2. (a) squeeze film damping dan (b) viscious film damping [15]

2.1.1.1.1. Squeeze Film Damping

Damping squeeze merupakan jenis damping yang terjadi akibat perubahan gap antara kedua plat elektroda seperti yang diilustrasikan pada gambar 2.2. (a). Plat yang bergerak turun akan menekan udara yang terdapat dalam gap sehingga terjadi *squeeze film damping*. Faktor *damping* b pada kasus tersebut dapat kita rumuskan dalam persamaan :

$$b = f(\frac{W}{L})\mu \frac{W^{3}L}{d^{3}}$$
(4)

di mana, μ merupakan nilai viskositas absolut dari zat lingkungan yang mengelilingi massa, *d* merupakan jarak antara kedua plat eletrostatik, *W* dan *L* merupakan sisi kecil dan besar dari luas penampang plat yang berbentuk persegi. Fungsi f(W/L) merupakan sebuah angka koefisiensi yang bergantung pada aspek rasio perbandingan dari dimensi plat seperti yang terliat pada gambar 2.3 [14].

2.1.1.2. Konstanta pegas

Sensitivitas dari sebuah akselerometer sangat bergantung pada nilai konstanta pegas. Konstanta pegas harus bernilai lebih kecil pada arah

pendeteksian akselerasi [14]. Sebaliknya, pada arah lainnya nilai dari konstanta pegas harus bernilai sangat besar agar tidak mempengaruhi nilai sensitivitas dari arah pendeteksian yang diinginkan. Pemakaian struktur *beam* dikarenakan strukturnya yang mudah untuk di-mesin mikro. Defleksi kecil, seperti pada kebanyakan keluaran dari divais-divais MEMS, pada struktur *beam* proporsional secara linear dengan gaya deformasi yang diberikan. Hal ini menjadi alasan pemakaian struktur *beam* [14].

Bentuk-bentuk pegas-pun dibuat bermacam-macam tergantung pengaplikasiannya. Aplikasi MEMS akselerometer kapasitif memerlukan bentuk pegas yang lebih seimbang seperti desain *bridged*, *folded beams* atau *crab-leg*. Untuk aplikasi akselerometer dengan pergerakan lateral, desain *folded beams* merupakan desain yang paling cocok dibandingkan dengan desain *crab-leg* yang mengvariasikan nilai *spring constant* dengan merotasi struktur yang tersuspensi [14]. Oleh karena itu, desain pegas yang dipakai dalam simulasi merupakan desain *folded beams* dengan penopang lurus seperti pada gambar 2.4.

Gambar 2.4. Desain pegas crab-leg dengan penopang lurus

$$k_{x} = \frac{12 EI}{L_{b}^{3}} \frac{(2+\alpha\beta)}{(1+2\alpha\beta)}$$
(5)

$$k_y = \frac{48EI_b}{L_t^3\left(\frac{6}{\beta} + \alpha\right)} \tag{6}$$

2.1.1.3. Pemodelan dari aktuator elektrostatik

Aktuator elektrostatik memiliki respon yang cepat serta konsumsi daya yang rendah. Aktuator elektrostatik lebih kurang sensitif terhadap kondisi lingkungan dibandingkan dengan aktuator lainnya sehingga gangguan dari luar tidak memberikan pengaruh yang signifikan pada sensitivitas desain. Struktur dari aktuator ini terdiri atas dua metal yang dipisahkan oleh *gap* udara seperti yang terlihat pada gambar 3.5. Kemudian tegangan bias akan diberikan di antara kedua struktur metal tersebut sehingga tercipta perbedaan muatan. Hal ini akan menciptakan gaya elektrostatik yang dapat digunakan untuk mengurangi gap di antara plat-plat tersebut seperti yang terlihat pada gambar 3.5 [2].

Gambar 2.5. Struktur skematik dari plat kapasitor paralel [2]

Kedua plat tersebut memiliki luas penampang yang saling tumpang tindih sebesar A dan berjarak sebesar d. Konstanta dielektrik atau permitivitas elektrik relatif dari media di antara kedua plat tersebut dinotasikan ε_r . Permitivitas dari media adalah $\varepsilon = \varepsilon_r \varepsilon_o$, di mana ε_o merupakan permitivitas dari ruang vakum [10]. Pada umumnya, nilai permitivitas yang diperhitungkan hanya nilai permitivitas ruang vakum di antara kedua plat tersebut.

Nilai kapasitansi C, diantara kedua plat paralel tersebut dapat ditulis dalam persamaan :

$$C = \frac{\varepsilon A}{d} \tag{7}$$

Jika plat tersebut bergerak, *gap* di antara kedua plat tersebut akan berubah dan besar dari gaya yang diberikan dapat kita tuliskan seperti persamaan berikut :

$$F = \left|\frac{\partial U}{\partial x}\right| = \frac{1}{2}\frac{\varepsilon A}{d^2}V^2 = \frac{1}{2}\frac{CV^2}{d}$$
(8)

di mana dimensi normal berubah dari x menjadi d [2].

Dalam keadaan setimbang, pemodelan sistem perpindahan dari desain dapat dituliskan dalam persamaan :

$$M\frac{d^2x}{dt^2} + b\frac{dx}{dt} + kx = F_{electric}$$
(9)

Dengan metode Laplas dan deret Taylor didapatkan persamaan perpindahan x dalam domain s, yaitu :

$$x(s) = \frac{k_1 d_1 - k_2 d_2}{[Ms^3 + bs^2 + (k - k_1 + k_2)s]}$$
(10)

Perpindahan tersebut akan terjadi hingga tegangan yang diberikan menyebabkan sistem mencapai keadaan setimbang. Pemberian tegangan yang melebihi tegangan pada saat keadaan setimbang akan mengakibatkan terjadinya kondisi *pull-in*, di mana kedua plat elektrostatik yang berdekatan akan terjadi kontak. Tegangan yang menciptakan kondisi tersebut merupakan sebuah tegangan bias yang disebut dengan tegangan *pull-in*. Nilai tegangan *pull-in* dapat dirumuskan dalam persamaan berikut :

$$\nu_{pi} = \frac{2d}{3} \sqrt{\frac{K_m d}{1.5\varepsilon A}} \tag{1}$$

2.2. Simulator SUGAR

SUGAR merupakan sekumpulan fungsi-fungsi yang diintegrasikan dalam MATLAB [17] yang mengimplementasikan pendekatan analisis nodal dalam simulasi MEMS. Masukan dari SUGAR merupakan sebuah *file* berisi teks yang menggambarkan blok-blok bangunan geometri, serta informasi-informasi seperti tegangan, gaya, serta karakteristik-karakteristik dari desain. Format umum dari masukan adalah tipe blok, titik, geometri dan parameter. Tipe-tipe blok dan fungsi umum yang telah tersedia meliputi *beam* planar, *anchor*, *gap* elektrostatik, dan pemberi gaya. [16].

Model-model balok yang tersedia pada simulator SUGAR adalah :

• Model anchor

Anchor merupakan pilar mekanik yang mendukung struktur-struktur tersuspensi. Blok-blok ini merupakan elemen tersuspensi yang digabungkan dengan struktur yang dapat bergerak. Seperti namanya, anchor berfungsi sebagai sebuah elemen yang tidak bergerak pada desain. Oleh karena itu, model anchor pada SUGAR dirancang sebagai sebuah elemen kaku yang ideal dengan kekakuan senilai tak terhingga. Dengan demikian, tidak akan terjadi perpindahan pada titik-titik pada elemen anchor tersebut[22].

• Model beam

Model ini merupakan blok-blok yang dapat bergerak. Model *beam* merupakan elemen penting dalam desain MEMS tersuspensi karena memiliki karakteristik seperti sebuah pegas. *Beam* memiliki sifat-sifat mekanik yang berasal dari efek-efek fisik seperti pembengkokan, torsi, kompresi, dan

1)

13

sebagainya. Karakteristik ini penting untuk menentukan sifat dari *beam* ketika diberikan masukan gaya atau tegangan. Titik-titik pembentuk blok *beam* akan bergerak menuju titik-titik translasi apabila diberikan masukan tegangan ataupun gaya [22]. Translasi dari poin-poin tersebut merepresentasikan perpindahan yang terjadi akibat dari pemberian tegangan atau gaya.

2.2.1. Representasi MEMS dalam SUGAR

Dalam sebuah skema desain pada SUGAR, setiap elemen blok pada desain direpresentasikan oleh sekumpulan titik [23]. Titik-titik tersebut akan dihubungkan satu dengan lainnya dengan prinsip-prinsip yang telah terimplementasikan dalam SUGAR untuk membentuk bentuk fisik dari blokblok desain. Penggabungan dari blok-blok tersebut akan membentuk geometri dari desain dari akselerometer.

Pada *file-file* desain-desain MEMS, karateristik dari setiap elemen blok yang terbentuk bergantung pada parameter-parameter karakteristik material seperti modulus Young dan kerapatan [22]. Informasi-informasi seperti ketebalan lapisan, modulus Young dan konstanta-konstanta lainnya tersebut akan didefiniskan dalam *file* netlist. Dengan informasi tersebut, SUGAR akan menciptakan matriks-matriks secara individual untuk massa, *damping*, dan *stiffness* untuk setiap struktur blok yang didefinisikan dalam *file netlist* [16]. Persamaan dari gerakan dinamik pada sistem yang dibangun tersebut dapat dijabarkan dalam bentuk persamaan yang familiar, yaitu [20]:

$$M\{q^{\,\,\prime}\} + D\{q^{\,\prime}\} + K\{q\} = \{F\}$$
(12)

di mana koefisien-koefisien *M*, *D*, dan *K* merepresentasi matriks massa, *damping* dan derajat kekakuan sistem. Matriks $\{q\}$ pada persamaan tersebut merepresentasikan perpindahan yang terjadi pada titik-titik dalam desain. Isi dari matriks $\{q\}$ adalah $\{x_1y_1\theta_1...x_Ny_N\theta_N\}$. Matriks *q* merupakan sebuah matriks vektor dengan jumlah kolom 1x3N dan *N* merupakan jumlah dari noda yang terdapat pada desain [16]. Matriks $\{F\}$ merepresentasi gaya yang diaplikasikan pada titik-titik yang terdapat pada desain. Matriks ini juga merupakan sebuah matriks

vektor dengan kolom berjumlah 1x3N. Isi dari matriks ini adalah $\{F_{xl}, F_{yl}, M_{l}, ..., F_{xN}, F_{yN}, M_{N}\}$ di mana N merupakan jumlah dari titik-titik dinamik yang tidak dalam keadaan tersuspensi atau dapat bergerak [20].

Parameterisasi elemen-elemen M, K dan D untuk model linear dapat dijabarkan dalam bentuk matriks seperti berikut [16] :

$$\begin{array}{c} \left[\frac{1}{3} \\ \frac{1}{35} \\ \frac{1}{34} \\ \frac{1}{1} + \frac{1}{1_{1}} \\ \frac{1}{200} \\ \frac{1}{10} \\ \frac{1}{10}$$

$$\left[\begin{array}{c} \frac{E^{i}}{L} \\ \frac{1}{L^{i}} \\ \frac{12E_{i}}{L^{i}} \\ \frac{12E_{$$

Universitas Indonesia Uji keakuratan..., Marthin Surya Setiawan, FT UI, 2010

(15)

di mana :	
$\mu = viskositas$	$\Delta = \text{gap}$
L = panjang <i>beam</i>	w = lebar
h/t = ketebalan desain	I = momen inersia
E = modulus Young	J = Momen polar dari area
v = Rasio Poisson	D = Matriks damping 3D, [B]
A = tw, luas penampang	$\rho = kerapatan material$

Matriks-matriks representasi elemen pada persamaan (13), (14) dan (15) merupakan elemen lokal atau individu dari sistem koordinat. Tiap-tiap elemen memiliki orientasi masing-masing sehingga perlu untuk dirotasikan menjadi sebuah sistem koordinat global yang sama sebelum dibentuk dalam sebuah sistem matriks-matriks. Transformasi tersebut dilakukan dengan menggunakan sebuah matriks transformasi T_i . Transformasi tersebut dapat ditemukan dengan persamaan berikut :

$$q_{i,global} = T_i q_{i,local} \tag{16}$$

$$F_{i,global} = T_i^T F_{i,local} \tag{17}$$

$$M_{i,global} = T_i^T M_{i,local} T_i$$
(18)

$$D_{i,global} = T_i^T D_{i,local} T_i$$
⁽¹⁹⁾

$$K_{i,global} = T_i^T K_{i,local} T_i$$
⁽²⁰⁾

di mana matriks transformasi, T_i dari persamaan (16) hingga (20) merupakan sebuah matriks kosinus [18]. Matriks kosinus itu dapat dijabarkan seperti berikut [20] :

$$[T] = \begin{bmatrix} \cos\theta & \sin\theta & 0 & 0 & 0 & 0 \\ -\sin\theta & \cos\theta & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & \cos\theta & \sin\theta & 0 \\ 0 & 0 & 0 & -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$
(21)

di mana θ merupakan orientasi dari struktur yang diukur berlawanan dengan arah jarum jam dari sumbu x positif.

2.2.2. Residual Stress

Metode yang digunakan untuk menentukan nilai dari keseimbangan statik akibat dari *stress* dan *strain gradient* adalah :

static deflection,
$$q = -K^{-1}F_{stress}$$
 (22)

$$F_{stress} = A\sigma \tag{23}$$

Universitas Indonesia

Uji keakuratan..., Marthin Surya Setiawan, FT UI, 2010

dimana $\sigma > 0$ menandakan *beam* memendek dan $\sigma < 0$ menandakan *beam* memanjang [18].

2.2.3. Gap Elektrostatik

Gaya yang terdistribusi sepanjang beam akibat dari gaya elektrostatik harus dirubah kedalam bentuk gaya node ekuivalen dan momen-momen karena SUGAR beroperasi berdasarkan node. Hal ini dilakukan dengan cara mengintegrasi nilai dari beban elektrostatik p(x) dikalikan dengan fungsi bentuk Hermitian H(x) sepanjang *beam* [16].

$$F_{Electrostatic,i} = \int_0^L p(x) H_i(x) dx$$
 (24)

$$p(x) = -\frac{1}{2} \frac{\varepsilon_0 h V^2 \alpha(d(x))}{d(x)^2}$$
(25)

di mana :

 $H_i(x) = Fungsi bentuk Hermitian$ p(x) = beban elektrostatik V = tegangan d(x) = jarak gap $\varepsilon_0 = permitivitas dari ruang hampa$ h = ketebalan lapisan $\alpha(x) = faktor fringing field$

2.2.4. Analisis

Analisis planar seperti analisis DC, *steady-state* dan transien dari desain MEMS pada SUGAR juga dikerjakan dengan sejumlah fungsi-fungsi MATLAB. Dengan memakai fungsi $dq = cho_dc(netlist)$, SUGAR akan mengaplikasikan analisis DC pada desain *netlist* yang didefinisikan pada fungsi tersebut. Analisis tersebut akan mencari kondisi kesetimbangan dari sistem sehingga bisa didefinisikan besar perpindahan nodal yang terjadi saat desain *netlist* tersebut diberikan sebuah gaya mekanikal atau elektrostatik [16].

Dalam analisis DC, posisi setimbang akibat dari gaya mekanikal dan tegangan dapat direpresentasikan dalam sebuah persamaan sederhana [16]:

$$[K]{q} - {F} = 0 (26)$$

dengan menggunakan persamaan tersebut dapat didefinisikan besar perpindahan yang terjadi pada desain jika desain diberikan sebuah gaya mekanikal maupun elektrostatik. Terdapat beberapa metode untuk menyelesaikan persamaan tersebut. SUGAR menggunakan modifikasi algoritma Newton-Raphson untuk menemukan keadaan seimbang dan perpindahan desain ketika satu atau lebih elemen non-linear atau eksitasi-eksitasi diaplikasikan pada netlist.

SUGAR menyelesaikan persamaan perpindahan bukan berdasarkan persamaan (19), melainkan dengan persamaan yang lebih sederhana yaitu :

$$f(\{q\}) = 0 \tag{27}$$

Persamaan tersebut merepresentasikan sebuah keadaan di mana setiap nodal dari gaya, momen dan arus listrik berjumlah nol [18]. Secara umum, solusi iterasi pendekatan yang dipakai dalam metode pendekatan Newton-Raphson adalah :

$$\{q_{n+1}\} = \{q_n\} - [f'(\{q_n\})]^{-1}\{f(\{q_n\})\}$$
(28)

di mana $[f'(\{q_n\})]$ merupakan matriks sistem Jacobian. Iterasi akan berlanjut terus hingga tercapai kondisi :

$$\|q_{n+1} - q_n\| < \zeta \tag{29}$$

di mana ζ merupakan nilai toleransi.

BAB 3 METODOLOGI PENELITIAN

3.1. Rancangan penelitian

Jenis penelitian yang digunakan dalam penelitian ini merupakan penelitian kuantitatif, di mana data yang digunakan atau yang dianalisis merupakan data-data numerik (angka). Cara penganalisaan juga dilakukan dengan cara matematis [19].

Jenis penelitian yang dipilih disesuaikan dengan tujuan dari penelitian, yaitu mengeksplor keakuratan dari program simulator SUGAR dalam mensimulasi desain-desain dari MEMS akselerometer kapasitif. Dengan metode penelitian kuantitatif akan didapatkan gambaran mengenai keakuratan dari program SUGAR. Dari penelitian tersebut, diharapkan nantinya akan terdefinisikan seberapa akurat hasil simulasi dari program MEMS dibandingkan dengan hasil kalkulasi yang dilakukan secara manual.

Penggunaan pendekatan matematis yang digunakan dalam penelitian didasarkan pada beberapa pertimbangan berikut :

- Angka-angka yang dijadikan acuan pembanding didapat melalui hasil kalkulasi sehingga mudah untuk dibandingkan dengan hasil-hasil yang didapat melalui simulasi.
- 2. Angka-angka hasil kalkulasi merupakan sebuah nominal pasti yang didapatkan melalui persamaan-persamaan yang telah ada sehingga dapat dipertanggung jawabkan.
- 3. Hasil-hasil simulasi yang ditampilkan dalam bentuk angka lebih mudah diamati serta lebih akurat dibandingkan dengan hasil pengamatan dalam bentuk animasi geometri.

Metode yang digunakan dalam kalkulasi merupakan metode pelaplasan dengan pendekatan linear. Alasan penggunaan metode ini adalah :

- Pelaplasan fungsi kuadrat dari perpindahan, x(t), yang tidak memungkinkan untuk dilakukan dengan metode konvolusi
- 2. Nilai x berbanding d yang kecil sehingga bisa diabaikan

21

Gambar 3.1. Bentuk umum desain MEMS akselerometer kapasitif yang disimulasikan

3.2. Lokasi dan waktu penelitian

Penelitian yang dilakukan berlangsung dari bulan Februari 2010 hingga bulan Juni 2010. Penelitian bersifat simulasi dan perbandingan data sehingga lokasi dari penelitian ini dapat dilakukan di mana saja dengan menggunakan sebuah unit komputer atau laptop.

3.3. Input simulasi

Pengambilan sampel masukan dari penelitian yang dilakukan bersifat *cluster sampling,* di mana pengambilan sampel yang dilakukan berasal dari kelompok-kelompok kecil yang sifat antar kelompok tersebut tidak menunjukkan tingkatan. Anggota-anggota kelompok ini tidaklah homogen. Pengelompokan dalam proses pengambilan sampel hanya ditujukan untuk mempermudah proses penelitian [19]. Metode proses pengambilan sampel ini dipakai untuk memaksimalkan hasil simulasi. Seperti yang telah disebutkan sebelumnya, tujuan dari simulasi adalah untuk mengeksplor keakuratan program simulator. Oleh karena itu, pengvariasian dari masukan desain simulasi sangat membantu dalam proses perbandingan hasil-hasil simulasi dan hasil-hasil kalkulasi.

Masukan dari simulasi merupakan sebuah *file netlist* yang mendeskripsikan bentuk dari MEMS akselerometer kapasitif yang akan disimulasikan. *File netlist* tersebut berisi teks yang menggambarkan blok-blok bangunan geometri, tegangan, serta hambatan dari desain MEMS yang dibuat [16]. Dalam *file netlist* tersebut juga ditentukan sifat-sifat dari material, serta konstanta-konstanta tetap yang dipakai seperti nilai viskositas, ephsilon, kerapatan, phi, poisson, modulus Young, permitivitas, dan konstanta-konstanta lainnya. Terdapat beberapa fungsi SUGAR yang dipakai dalam pembuatan bentuk-bentuk geometeri desain *file* netlist, yaitu :

1. Beam3de

Membentuk *beam* elektrostatik berbentuk balok. Dalam fungsi ini ditentukan material, panjang, lebar, tinggi, dan resistansi dari *beam* yang dimunculkan.

2. Mfanchor

Membentuk sebuah *anchor* berbentuk balok. Seperti namanya, balok yang terbentuk berfungsi layaknya sebuah jangkar yang mensuspensi *beam* dalam posisi kaku dan *fixed* atau tidak bergerak. Dalam fungsi ini ditentukan material, panjang, lebar, tinggi, dan resistansi dari *anchor* yang dimunculkan.

3. Mfgap2de

Membentuk sepasang *finger* dengan *gap* tertentu. Kedua *finger* tersebut akan memiliki panjang yang sama. Dalam fungsi ini akan ditentukan material, panjang, lebar *finger* pertama, lebar *finger* kedua, tinggi *finger*, *gap*, serta resistansi dari kedua *finger* tersebut.

4. Mfeground

Mendefinisikan sebuah titik sebagai ground.

5. Mfvsrc

Mendefinisikan sebuah titik sebagai titik diberikannya tegangan sumber.

Dengan mengkombinasi penggunaan fungsi-fungsi SUGAR yang tersebut, akan terbentuk sebuah desain MEMS akselerometer kapasitif. Bentuk umum dari tampilan desain yang dibentuk untuk penelitian ini tampak pada gambar 3.1. Alasan penggunaan desain demikian adalah pengaplikasiannya yang luas, integrasi yang baik dengan komponen-komponen elektronik lainnya dalam SoC (*systems-on-chip*), serta mudah untuk divariasikan bentuknya [22].

3.4. Langkah-langkah penelitian

Tahap-tahap yang digunakan dalam penelitian adalah sebagai berikut :

1. Metode pengumpulan data

Metode yang digunakan untuk mengumpulkan data adalah metode studi pustaka. Desain-desain yang dibuat dibentuk berdasarkan ukuran desain dari referensi-referensi yang didapat, serta hasil-hasil kalkulasi hingga didapatkan desain yang ideal untuk menjalankan simulasi yang diinginkan. Bagian-bagian dari desain yang disesuaikan agar terbentuk desain ideal adalah : • Tether Beam

Ukuran dari *tether beam* dibentuk berdasarkan hasil perhitungan agar ideal untuk aplikasi MEMS akselerometer kapasitif dengan pergerakan searah sumbu aksis x.

Tinggi dari *tether beam* ditambah, sedangkan panjang tiang penopangnya dikurangi agar nilai dari konstanta pegas k_x kecil. Sebaliknya, desain tersebut akan menghasilkan *tether* dengan nilai konstanta pegas k_y yang bernilai besar. Hal ini menyebabkan gerakan searah sumbu x merupakan gerakan yang paling dominan dalam desain ini.

Ketebalan atau lebar dari *beam tether* juga dikurangi untuk mengurangi nilai dari tegangan *pull-in* untuk memudahkan simulasi.

• Finger

Finger dari akselerometer juga dibuat lebih panjang agar nilai dari tegangan *pull-in* lebih kecil akibat dari penambahan luas penampang.

Kemudian, desain ideal yang terbentuk akan divariasikan bentuk geometrinya untuk mengetahui perubahan karakteristik yang terjadi. Variasi-variasi dari parameter yang diaplikasikan pada desain adalah :

• Tebal *tether*

Ketebalan dari *tether* pada desain divariasikan dari 0,5 µm hingga 2,5 µm dengan kenaikan sebesar 0,5 µm di setiap desainnya.

• Panjang tether

Panjang dari *tether* pada desain divariasikan dari 50µm hingga 250µm dengan kenaikan sebesar 50µm di setiap desainnya.

• Lebar *tether*

Lebar dari *tether* pada desain, atau disebut juga dengan batang penopang dari *tether*, divariasikan dari 5µm hingga 8µm dengan kenaikan sebesar 1µm di setiap desainnya.

• Panjang *finger*

Panjang dari *finger* pada desain divariasikan dari 25 µm hingga 125 µm dengan kenaikan sebesar 25 µm di setiap desainnya.
• Lebar *finger*

Lebar dari *finger* pada desain divariasikan dari $1 \mu m$ hingga $2 \mu m$ dengan kenaikan sebesar $0.5 \mu m$ di setiap desainnya.

• Ketinggian atau ketebalan desain

Ketinggian atau ketebalan dari desain divariasikan antara 30µm, 15µm dan 60µm. Kedua desain terakhir merupakan kelipatan setengah dan dua dari desain awal yang menjadi desain acuan yang digunakan.

• Panjang proofmass

Panjang dari *proofmass* pada desain divariasikan antara 40µm, 67µm dan 100µm.

• Lebar *proofmass*

Lebar dari *proofmass* pada desain divariasikan antara 28µm, 14µm dan 56µm. Kedua desain terakhir merupakan kelipatan setengah dan dua dari desain awal yang menjadi desain acuan yang digunakan.

• Gap

Gap kecil (g1) dan *gap* besar (g2) di antara *finger-finger* pada desain akan divariaskan.

Variasi pada *gap* kecil dilakukan dengan kombinasi g1-g2 : 5 μ m-8 μ m, 3 μ m-8 μ m, dan 2 μ m-8 μ m, sedangkan variasi pada *gap* besar dilakukan dengan kombinasi g1-g2 : 2 μ m-3 μ m, 2 μ m-4 μ m, dan 2 μ m-6 μ m.

Setelah parameter-parameter dari desain divariasikan, masukan tegangan diaplikasikan pada desain-desain tersebut. Masukan tegangan yang diberikan dimulai dari nilai 0V hingga mencapai tegangan *pull-in* atau perpindahan yang terjadi pada desain akibat pemberian gaya elektrostatik mencapai nilai sepertiga dari *gap* kecil. Pengambilan data hasil perpindahan dilakukan setiap kenaikan 1V tegangan yang diaplikasikan pada desain baik itu pengambilan data simulasi maupun pengambilan data hasil kalkulasi. Namun, untuk pengambilan data hasil perpindahan dengan nilai tegangan *pull-in* yang sangat besar, pengambilan data hasil perpindahan diambil setiap kenaikan tegangan sebesar 2V. Pengambilan data akan dilakukan

hingga perpindahan yang terjadi pada desain mencapai atau melewati nilai sepertiga dari nilai *gap* kecil desain.

2. Simulasi

File-file netlist yang telah dibentuk akan disimulasikan dengan fungsi-fungsi yang ditulis dalam M-file MATLAB. Fungsi-fungsi yang dipakai dalam M-file MATLAB adalah :

Cho_load

Fungsi ini berfungsi untuk mengidentifikasi *file netlist* yang akan disimulasikan

• Cho_display

Fungsi ini berfungsi untuk menampilkan bentuk desain yang disimulasikan baik sebelum atau sesudah diaplikasikan gaya. Tampilan desain yang ditampilkan bergantung pada peletakan penulisan dari cho_display pada M-file MATLAB itu sendiri.

• Cho_dc

Fungsi ini berfungsi untuk menjalankan analisis statik pada *file netlist* yang telah didefinisikan sebelumnya dengan fungsi cho load.

• Dqval

Fungsi ini berfungsi untuk mendefinisikan dan menampilkan nominal dari perpindahan yang terjadi pada sebuah titik dalam desain yang telah diaplikasikan analisis statik dengan fungsi cho_dc. Titik serta aksis arah perpindahan yang ingin dicari dapat didefinisikan dalam fungsi dqval.

3. Pendataan

Hasil simulasi yang didapatkan untuk setiap desain akan dicatat. Pada tahap ini, ukuran-ukuran dari masing-masing desain juga didefinisikan agar memudahkan proses pada tahap-tahap selanjutnya.

4. Perbandingan serta analisis data-data hasil penelitian

Pada fase ini, hasil-hasil simulasi yang dicatat akan dibandingkan dengan hasil-hasil yang didapatkan dari kalkulasi. Data-data tersebut akan

dibandingkan satu sama lainnya dan kemudian dihitung persen perbedaannya. Kemudian, dari data-data yang didapatkan bisa dianalisis seberapa handal program yang dipakai dalam mensimulasi desain-desain tersebut. Dari hasil-hasil analisis tersebut, akan didapatkan sebuah generalisasi atau kesimpulan untuk membuktikan keakuratan program simulator yang dipakai.

5. Tahap penulisan laporan

Tahap ini merupakan tahap terakhir dari penelitian yang dilakukan setelah menyelesaikan tahap-tahap sebelumnya. Penulisan laporan ini bertujuan untuk studi akademis.

Penulisan laporan hasil penelitian ini ditulis berpedoman pada syarat-syarat penulisan laporan tugas akhir atau skripsi yang telah ditentukan oleh Fakultas Teknik Universtas Indonesia.

3.5. Analisis data

Analisis data dalam penelitian ini berupa pencatatan hasil simulasi, pengelompokan hasil-hasil sesuai desain, pembandingan hasil simulasi yang didapatkan dengan hasil kalkulasi, sampai verifikasi hasil analisis yang dilakukan.

Data-data yang didapatkan dari hasil simulasi akan dibandingkan dengan hasil-hasil yang didapat dari hasil kalkulasi. Kemudian, hasil-hasil perbandingan tersebut dianalisis untuk menyimpulkan keefektifan proses simulasi yang dikerjakan oleh program simulator SUGAR.

Hasil-hasil kalkulasi yang dijadikan acuan pembanding didapatkan melalui penurunan rumus gaya elektrostatik yang dihasilkan oleh tegangan *pull-in*. Penurunan rumus ini telah dijabarkan pada bab lampiran.

Beberapa tahap kegiatan analisis data yang dikerjakan dapat dibagi dalam beberapa tahapan, yaitu :

1. Pencatatan

Hasil-hasil yang didapat dari simulasi akan didata satu per satu sesuai dengan desain-desainnya. Ukuran-ukuran dari desain yang

XNIK *

disimulasikan juga didefinsikan satu per satu untuk memudahkan proses perbandingan dan penganalisaan hasil penelitian.

2. Pembandingan

Hasil-hasil yang telah didata tersebut akan dibandingkan dengan hasil-hasil yang didapatkan melalui kalkulasi. Kemudian dari persen perbedaan yang dihitung, dianalisis dan disimpulkan kinerja dari program simulator yang dipakai

3. Verifikasi hasil

Verifikasi kebenaran dari hasil-hasil yang didapatkan. Tahapan ini diperlukan untuk menguji kebenaran dari hasil-hasil maupun kesimpulan yang diambil. Verifikasi hasil ini dilakukan sepanjang proses analisis data dilakukan.

BAB 4 ANALISIS PENELITIAN

Dalam pengujian ketelitian pengukuran dengan menggunakan simulator SUGAR, hasil yang didapatkan dari simulator SUGAR dengan simulasi berbasis metode pendekatan Newton-Raphson akan dibandingkan dengan hasil kalkulasi dengan pemakaian metode pelaplasan dengan pendekatan linear seperti yang telah dijabarkan dalam bab lampiran. Observasi dilakukan dengan memvariasikan beberapa parameter pada desain MEMS akselerometer kapasitif. Kemudian, observasi dilanjutkan ke penganalisaan grafik hasil perpindahan kalkulasi dan SUGAR, serta grafik persentase kesalahan yang terjadi.

4.1. Analisa grafik

4.1.1. Variasi lebar proofmass

Variasi parameter lebar *proofmass* pada desain diaplikasikan pada desain 6, desain 1 dan desain 5. Ukuran lebar *proofmass* dari desain-desain tersebut secara berurutan adalah 14 µm, 28 µm dan 56 µm. Perbedaan antara hasil perpindahan simulasi dengan kalkulasi dapat terlihat pada grafik-grafik pada grafik 4.1.

Pada grafik 4.1, perpindahan hasil dari kalkulasi menunjukkan hasil yang konstan. Hal ini disebabkan oleh penambahan lebar dari *proofmass* yang tidak akan memberikan pengaruh yang signifikan terhadap nilai perpindahan yang terjadi. Perubahan lebar dari *proofmass* hanya akan menyebabkan pertambahan nilai dari massa desain. Pada representasi persamaan sistem perpindahan desain, nilai massa bernilai kecil dibandingkan dengan nilai lain seperti nilai konstanta pegas sehingga penambahan dari nilai massa tersebut tidak akan begitu mempengaruhi nilai dari perpindahan yang terjadi.

Berbeda dengan hasil pada kalkulasi, hasil SUGAR menunjukkan pertambahan nilai dari perpindahan dengan bertambahnya nilai dari lebar *proofmass*. Hal ini disebabkan oleh representasi matriks desain pada SUGAR yang kurang sempurna. Hal ini terlihat ketika pergeseran dari posisi *finger* desain yang terjadi akibat penambahan lebar dari *proofmass*. Ketika posisi *finger*

Grafik 4.1. Grafik perpindahan dari variasi lebar proofmass

pada desain tersebut berubah, nilai perpindahan yang harusnya tidak bergeser tersebut menurun seiring penambahan ukuran dari lebar *proofmass*.

Grafik perbandingan hasil simulasi dan perhitungan menunjukkan bahwa perbedaan antara hasil simulasi dan perhitungan pada awalnya tidak begitu besar. Persentase kesalahan tersebut terus naik seiring bertambahnya ukuran dari lebar *proofmass*. Hal ini disebabkan oleh representasi matriks desain yang kurang sempurna pada SUGAR sehingga menyebabkan perubahan nilai perpindahan.

Selain persentase kesalahan mayor akibat representasi matriks desain, persentase kesalahan minor yang terjadi pada desain disebabkan oleh :

- Penggunaan metode pendekatan Newton-Raphson sehingga hasil pengukuran kurang akurat;
- Mesh pada simulator yang mempengaruhi banyaknya jumlah nodal yang dipakai dalam simulasi perpindahan sehingga mempengaruhi tingkat keakuratan dari simulasi;
- Pembulatan hingga empat angka di belakang koma dari angka-angka yang dipakai dalam kalkulasi;
- 4. Pendekatan linear yang dipakai dalam kalkulasi sehingga menyebabkan bentuk grafik persentase kesalahan terlihat naik pada beberapa tegangan awal, dan kemudian mengecil hingga kemudian naik lagi akibat dari pendekatan linear yang dipakai.

Grafik 4.2. Grafik persentase kesalahan dari variasi lebar proofmass

4.1.2. Variasi panjang proofmass

Variasi parameter panjang *proofmass* pada desain dilakukan pada desain 1, desain 2 dan desain 26. Ukuran panjang *proofmass* dari desain-desain tersebut secara berurutan adalah 40 µm, 67 µm dan 100 µm. Perbedaan antara hasil perpindahan simulasi dengan kalkulasi dapat terlihat pada grafik-grafik pada grafik 4.3.

Pada grafik 4.3, perpindahan hasil dari kalkulasi menunjukkan hasil yang konstan atau hampir tidak mengalami perubahan perpindahan akibat dari penambahan panjang *proofmass*. Hal ini disebabkan oleh penambahan panjang *proofmass* yang tidak akan memberikan pengaruh yang signifikan terhadap nilai perpindahan yang terjadi. Pada representasi persamaan sistem perpindahan desain, nilai massa bernilai kecil dibandingkan dengan nilai konstanta pegas sehingga perubahan dari nilai desain tidak akan begitu mempengaruhi nilai dari perpindahan yang terjadi. Kondisi yang sama juga terlihat pada grafik hasil simulasi SUGAR di mana pertambahan dari panjang *proofmass* tidak berpengaruh banyak terhadap nilai perpindahan yang terjadi.

Seperti pada grafik 4.3, grafik persentase kesalahan pada grafik 4.4 juga menunjukkan bahwa hasil simulasi dan kalkulasi tidak memiliki selisih yang besar. Persentase kesalahan yang terjadi tersebut disebabkan oleh :

- Penggunaan metode pendekatan Newton-Raphson sehingga hasil pengukuran kurang akurat;
- 2. *Mesh* pada simulator yang mempengaruhi banyaknya jumlah nodal yang dipakai dalam simulasi perpindahan sehingga mempengaruhi tingkat keakuratan dari simulasi;
- 3. Pembulatan hingga empat angka di belakang koma dari angka-angka yang dipakai dalam kalkulasi;
- 4. Pendekatan linear yang dipakai dalam kalkulasi sehingga menyebabkan bentuk grafik persentase kesalahan terlihat naik pada beberapa tegangan awal, dan kemudian mengecil hingga kemudian naik lagi akibat dari pendekatan linear yang dipakai.

Grafik 4.4. Grafik persentase kesalahan dari variasi panjang proofmass

4.1.3. Variasi panjang tether

Variasi parameter panjang *tether* pada desain dilakukan pada desain 10, desain 1, desain 21, desain 9 dan desain 26. Ukuran panjang *tether* dari desaindesain tersebut secara berurutan adalah 50 μ m, 100 μ m, 150 μ m, 200 μ m dan 250 μ m. Perbedaan antara hasil perpindahan simulasi dengan kalkulasi dapat terlihat pada grafik-grafik pada grafik 4.5 dan 4.6.

Pada grafik 4.5 dan 4.6, perpindahan hasil dari kalkulasi menunjukkan peningkatan nilai dari perpindahan dengan bertambahnya ukuran dari panjang *tether*. Hal ini disebabkan oleh nilai dari konstanta pegas K_x yang akan menurun seiring bertambahnya ukuran dari panjang *tether*. Oleh karena itu, perpindahan terhadap sumbu x pada desain lebih mudah terjadi.

Kondisi yang sama juga terlihat pada grafik hasil simulasi perpindahan SUGAR. Grafik 4.5 dan 4.6 menunjukkan bahwa perbedaan antara hasil dari simulasi dan perhitungan tidak begitu besar. Grafik persentase kesalahan pada grafik 4.7 juga menunjukkan kecenderungan yang sama, kecuali grafik desain ke-10 yang memiliki nilai tegangan *pull-in* yang lebih besar dari desain-desain lainnya. Perbedaan tersebut diakibatkan oleh pendekatan linear yang digunakan dalam kalkulasi sehingga gaya elektrostatik yang seharusnya naik secara eksponensial dianggap naik secara linear.

Grafik 4.6. Grafik perpindahan dari variasi panjang *tether* berukuran 200 µm dan 250 µm

Persentase kesalahan minor lain yang terjadi disebabkan oleh :

- 1. Penggunaan metode pendekatan Newton-Raphson sehingga hasil pengukuran kurang akurat
- 2. Mesh pada simulator yang mempengaruhi banyaknya jumlah nodal yang dipakai dalam simulasi perpindahan sehingga mempengaruhi tingkat keakuratan dari simulasi
- Pembulatan hingga empat angka di belakang koma dari angka-angka yang dipakai dalam kalkulasi

4. Pendekatan linear yang dipakai dalam kalkulasi sehingga menyebabkan bentuk grafik persentase kesalahan terlihat naik pada beberapa tegangan awal, dan kemudian mengecil hingga kemudian naik lagi akibat dari pendekatan linear yang dipakai seperti pada desain pertama. Terdapat pula grafik persentase kesalahan yang hanya naik secara eksponensial akibat dari perbedaan yang terjadi antara hasil kalkulasi pendekatan linear dengan hasil simulasi.

Grafik 4.7. Grafik persentase kesalahan dari variasi panjang tether

4.1.4 Variasi lebar tether

Variasi parameter lebar *tether* pada desain dilakukan pada desain 7, desain 1, desain 4, desain 8 dan desain 20. Ukuran lebar *tether* dari desaindesain tersebut secara berurutan adalah $2\mu m$, $3\mu m$, $4\mu m$, $5\mu m$ dan $6\mu m$. Perbedaan antara hasil perpindahan simulasi dengan kalkulasi dapat terlihat pada grafik-grafik pada grafik 4.8 dan 4.9.

Perpindahan hasil dari kalkulasi menunjukkan peningkatan nilai dari perpindahan dengan bertambahnya ukuran dari lebar *tether*. Hal ini disebabkan oleh penambahan ukuran lebar *tether* yang akan menyebabkan penurunan nilai dari konstanta pegas K_y , sedangkan nilai konstanta pegas K_x tidak banyak

terpengaruh oleh perubahan lebar dari *tether* ini. Oleh karena itu, perpindahan desain terhadap sumbu X tidak banyak mengalami perubahan walau terdapat sedikit penurunan nilai perpindahan terhadap sumbu X akibat dari penambahan lebar *tether* tersebut. Kondisi tersebut terlihat jelas pada grafik 4.8 dan 4.9 yang menggambarkan kondisi tersebut. Kedua grafik tersebut juga menunjukkan bahwa perbedaan antara hasil simulasi dan perhitungan tidak begitu besar. Kondisi yang sama juga terlihat pada grafik 4.10 yang menunjukkan nilai persentase kesalahan yang terjadi.

Grafik 4.8. Grafik perpindahan dari variasi lebar *tether* berukuran 2 µm dan 3 µm

Grafik 4.9. Grafik perpindahan dari variasi lebar *tether* berukuran 4 µm, 5 µm dan 6 µm

Persentase kesalahan yang terjadi tersebut disebabkan oleh :

- 1. Penggunaan metode pendekatan Newton-Raphson
- 2. Mesh pada simulator yang kurang akurat
- Pembulatan hingga empat angka di belakang koma dari angka-angka yang dipakai dalam kalkulasi
- 4. Pendekatan linear yang dipakai dalam kalkulasi sehingga grafik persentase error naik pada awal dan akhir.

Grafik 4.10. Grafik persentase kesalahan dari variasi lebar tether

4.1.5. Variasi tebal tether

Variasi parameter tebal *tether* pada desain dilakukan pada desain 4, desain 2, desain 18, desain 3 dan desain 19. Ukuran tebal *tether* dari desain-desain tersebut secara berurutan adalah $0.5 \,\mu\text{m}$, $1 \,\mu\text{m}$, $1.5 \,\mu\text{m}$, $2 \,\mu\text{m}$ dan $2.5 \,\mu\text{m}$. Perbedaan antara hasil perpindahan simulasi dengan kalkulasi dapat terlihat pada grafik-grafik pada grafik 4.11 dan 4.12.

Perpindahan hasil dari kalkulasi menunjukkan penurunan nilai dari perpindahan dengan bertambahnya ukuran dari tebal *tether*. Hal ini diakibatkan oleh penambahan tebal *tether* yang akan meningkatkan nilai konstanta pegas K_x dan K_y . Dengan demikian, perpindahan menjadi lebih sulit terjadi akibat dari

40

peningkatan nilai konstanta pegas tersebut. Kondisi serupa juga terlihat pada grafik hasil simulasi perpindahan SUGAR.

Grafik 4.11 dan 4.12 menunjukkan bahwa perbedaan antara hasil simulasi dan perhitungan tidak begitu besar. Grafik persentase kesalahan pada grafik 4.13 juga menunjukkan hal yang sama.

Grafik 4.11. Grafik perpindahan dari variasi tebal *tether* berukuran 0.5 µm dan 1 µm

Grafik 4.12. Grafik perpindahan dari variasi tebal *tether* berukuran 1.5 μm, 2 μm dan 2.5 μm

Persentase kesalahan yang terjadi disebabkan oleh :

- 1. Penggunaan metode pendekatan Newton-Raphson
- 2. *Mesh* yang digunakan pada simulator sehingga mempengaruhi tingkat keakuratan dari hasil simulasi
- Pembulatan hingga empat angka di belakang koma dari angka-angka yang dipakai dalam kalkulasi
- Pendekatan linear yang dipakai dalam kalkulasi sehingga pada desain dengan nilai tegangan *pull-in* yang tinggi seperti pada desain 3 dan desain 19, grafik akan memiliki persentase kesalahan yang tinggi.

Grafik 4.13. Grafik persentase kesalahan dari variasi lebar tether

4.1.6. Variasi tebal desain

Variasi parameter tebal desain pada desain dilakukan pada desain 16, desain 1, dan desain 15. Ukuran tebal desain dari desain-desain tersebut secara berurutan adalah 15µm, 30µm, dan 60µm. Perbedaan antara hasil perpindahan simulasi dengan kalkulasi dapat terlihat pada grafik-grafik pada grafik 4.14.

Perpindahan hasil dari kalkulasi menunjukkan hasil yang konstan atau hampir tidak terjadi perubahan. Hal ini disebabkan perubahan tebal desain yang akan mempengaruhi nilai dari massa, koefisien *damping*, luas permukaan,

Grafik 4.14. Grafik perpindahan dari variasi tinggi desain

momen inersia, kapasitansi dan konstanta pegas dari desain. Akan tetapi, parameter-parameter tersebut saling mengkompensasi sehingga tidak terjadi banyak perubahan pada desain ketika diberi tegangan.

Berbeda dengan hasil pada kalkulasi, hasil SUGAR menunjukkan penurunan nilai dari perpindahan dengan bertambahnya nilai dari tebal desain. Hal ini disebabkan oleh faktor-faktor seperti :

- Simulasi dengan metode pendekatan Newton-Raphson sehingga hasil yang didapatkan kurang akurat
- 2. Pengabaian beberapa parameter akibat dari simulasi dengan metode pendekatan Newton-Raphson
- 3. Pendekatan linear yang dipakai dalam kalkulasi sehingga gaya elektrostatik yang eksponensial dianggap linear. Hal ini menyebabkan perbedaan yang lumayan besar dalam *slope* kemiringan grafik persentase kesalahan antara hasil kalkulasi dengan hasil simulasi

Grafik perbandingan hasil simulasi dan perhitungan menunjukkan bahwa perbedaan antara hasil simulasi dan perhitungan yang terjadi cukup besar. Hal ini terlihat jelas pada grafik 4.15 di mana persentase kesalahan bernilai sangat tinggi. Persentase kesalahan yang terjadi disebabkan oleh faktor- faktor yang telah disebutkan sebelumnya. Persentase-persentase kesalahan minor juga terjadi. Persentase kesalahan minor tersebut umumnya disebabkan oleh *mesh* yang dipakai simulator kurang akurat dan pembulatan angka-angka yang dipakai dalam kalkulasi.

4.1.7. Variasi gap kecil

Variasi parameter *gap* kecil pada desain dilakukan pada desain 28, desain 29, dan desain 5. Ukuran *gap* kecil dari desain-desain tersebut secara berurutan adalah $2\mu m$, $3\mu m$, dan $5\mu m$. Perbedaan antara hasil perpindahan simulasi dengan kalkulasi dapat terlihat pada grafik-grafik pada grafik 4.16.

Perpindahan hasil dari kalkulasi menunjukkan penurunan nilai dari perpindahan dengan bertambahnya ukuran dari *gap* kecil. Hal ini disebabkan oleh penambahan *gap* yang mengakibatkan peningkatan nilai tegangan *pull-in* serta penurunan nilai dari gaya elektrostatik yang terjadi. Oleh karena itu, dengan tegangan masukan yang sama nilai perpindahan yang terjadi pada *gap* yang bernilai lebih besar akan lebih kecil daripada desain yang memiliki ukuran *gap* lebih kecil. Kondisi yang sama juga terjadi pada hasil simulasi SUGAR.

Grafik persentase kesalahan 4.17 menunjukkan persentase kesalahan yang cukup tinggi, terutama pada desain dengan nilai tegangan *pull-in* yang besar. Hal ini disebabkan oleh pendekatan linear yang dipakai dalam kalkulasi sehingga perpindahan hasil kalkulasi dan simulasi memiliki perbedaan *slope* yang cukup besar. Selain itu, persentase kesalahan minor lain yang terjadi disebabkan oleh:

- 1. Penggunaan metode pendekatan Newton-Raphson sehingga mempengaruhi tingkat keakuratan dari hasil simulasi.
- 2. *Mesh* pada simulator yang mempengaruhi keakuratan hasil dari simulasi perpindahan
- Pembulatan hingga empat angka di belakang koma dari angka-angka yang dipakai dalam kalkulasi

Grafik 4.16. Grafik perpindahan dari variasi gap kecil

Grafik 4.17. Grafik persentase kesalahan dari variasi gap kecil

4.1.8. Variasi gap besar

Variasi parameter *gap* besar pada desain dilakukan pada desain 2, desain 27, dan desain 28. Ukuran *gap* besar dari desain-desain tersebut secara berurutan adalah $3\mu m$, $4\mu m$, dan $8\mu m$. Perbedaan antara hasil perpindahan simulasi dengan kalkulasi dapat terlihat pada grafik-grafik pada grafik 4.18.

Perpindahan hasil dari kalkulasi menunjukkan kenaikan nilai dari perpindahan dengan bertambahnya ukuran dari *gap* besar. Hal ini disebabkan oleh pengaruh gaya elektrostatik pada *gap* besar yang akan mereduksi gaya elektrostatik yang terjadi pada *gap* kecil sehingga gaya elektrostatik resultan yang terjadi menjadi lebih kecil dengan pertambahan ukuran dari *gap* besar ini. Namun, hasil pada SUGAR menunjukkan kecenderungan yang berbeda di mana pemvariasian dari nilai *gap* besar tidak mempengaruhi nilai perpindahan yang terjadi. Kondisi ini disebabkan oleh pendekatan metode Newton-Raphson yang kurang akurat dalam mensimulasi efek dari perubahan *gap* besar yang berukuran lebih besar. Hal ini terlihat pada grafik persentase kesalahan 4.19 yang mununjukkan persentase kesalahan yang cukup bagus pada desain 2, sedangkan pada kedua desain lain yang memiliki *gap* besar yang lebih besar persentase kesalahannya bernilai cukup besar.

Grafik 4.18. Grafik perpindahan dari variasi gap besar

Persentase kesalahan-kesalahan yang terjadi tersebut disebabkan oleh :

- 1. Penggunaan metode pendekatan Newton-Raphson yang kurang akurat dalam mensimulasi perpindahan dari variasi parameter gap *besar*
- 2. Pendekatan linear yang dipakai dalam kalkulasi sehingga terjadi kenaikan persentase yang cukup banyak pada tegangan-tegangan awal. Pada grafik desain 2, grafik yang ditunjukkan cukup bagus di mana hasil menunjukkan bahwa hasil kalkulasi mirip dengan hasil simulasi.

Kesalahan-kesalahan minor lainnya dalam persentase kesalahan disebabkan oleh :

1. Mesh pada simulator yang kurang akurat

2. Pembulatan angka-angka yang dipakai dalam simulasi

Grafik 4.19. Grafik persentase kesalahan dari variasi gap besar

4.1.9. Variasi panjang finger

Variasi parameter panjang *finger* pada desain dilakukan pada desain 12, desain 1, desain 23, desain 11, dan desain 24. Ukuran panjang *finger* dari desaindesain tersebut secara berurutan adalah 25 µm, 50 µm, 75 µm, 100 µm dan 125 µm. Perbedaan antara hasil perpindahan simulasi dengan kalkulasi dapat terlihat pada grafik-grafik pada grafik 4.20 dan 4.21.

Perpindahan hasil dari kalkulasi menunjukkan pertambahan nilai dari perpindahan dengan bertambahnya ukuran dari panjang *finger*. Hal ini disebabkan oleh pertambahan ukuran dari panjang *finger* yang akan mempengaruhi nilai dari koefisien *damping*, luas penampang, dan kapasitansi dari desain. Pertambahan ukuran dari panjang finger akan meningkatkan nilai dari luas penampang sehingga perpindahan yang terjadi akan bertambah. Grafik hasil simulasi SUGAR juga menunjukkan kecenderungan yang sama di mana penambahan dari panjang *finger* akan menurunkan nilai perpindahan.

Grafik 4.21. Grafik perpindahan dari variasi panjang *finger* berukuran 75 μm, 100 μm dan 125 μm

Grafik 4.20 dan 4.21 menunjukkan bahwa perbedaan antara hasil simulasi dan perhitungan tidak begitu besar. Grafik persentase kesalahan juga menunjukkan hal yang sama. Persentase kesalahan yang terjadi disebabkan oleh:

- 1. Penggunaan metode pendekatan Newton-Raphson
- 2. Mesh pada simulator yang mempengaruhi keakuratan hasil
- Pembulatan hingga empat angka di belakang koma dari angka-angka yang dipakai dalam kalkulasi

4. Pendekatan linear yang dipakai dalam kalkulasi

Grafik 4.22. Grafik persentase kesalahan dari variasi panjang finger

4.1.10 Variasi tebal finger

Variasi parameter tebal *finger* pada desain dilakukan pada desain 2, desain 27, dan desain 14. Ukuran tebal *finger* dari desain-desain tersebut secara berurutan adalah $3\mu m$, $4\mu m$, dan $8\mu m$. Perbedaan antara hasil perpindahan simulasi dengan kalkulasi dapat terlihat pada grafik-grafik pada grafik 4.23.

Perpindahan hasil dari kalkulasi menunjukkan perubahan tebal *finger* tidak mempengaruhi nilai perpindahan. Hal itu dikarenakan pergerakan desain yang searah sumbu x sehingga perubahan dari tebal *finger* tidak terlalu mempe-

Grafik 4.23. Grafik perpindahan dari variasi tebal finger

ngaruhi nilai perpindahan dari desain. Begitu pula dalam simulasi SUGAR. Grafik 4.24 juga menunjukkan bahwa perbedaan antara hasil simulasi dan perhitungan tidak begitu besar. Persentase kesalahan yang terjadi disebabkan oleh :

- 1. Penggunaan metode pendekatan Newton-Raphson
- 2. Mesh pada simulator yang mempengaruhi keakuratan hasil
- Pembulatan hingga empat angka di belakang koma dari angka-angka yang dipakai dalam kalkulasi
- 4. Pendekatan linear yang dipakai dalam kalkulasi

Grafik 4.24. Grafik persentase kesalahan dari variasi tebal finger

BAB 5 KESIMPULAN

- Dari hasil analisis percobaan, dapat disimpulkan bahwa simulator SUGAR merupakan program simulator yang cukup mampu dalam mensimulasi desain MEMS akselerometer kapasitif yang berfungsi sebagai aktuator. Kondisi pencapaian nilai tegangan *pull-in* pada saat perpindahan bernilai sepertiga dari *gap* antar elektroda tersimulasi dengan baik dalam SUGAR.
- Simulator SUGAR telah memenuhi kriteria-kriteria sebuah simulator yang baik yakni memiliki tingkat keakuratan yang cukup baik, kecepatan desain yang cepat, mempertimbangkan efek-efek fisika seperti nilai kapasitansi dan elektrosatik, serta memperlihatkan efek-efek fisik yang cukup merepresentasikan perpindahan yang terjadi pada desain walaupun desain hasil simulasi yang ditampilkan kurang terdeskripsikan dengan detil.
- Akan tetapi, simulator SUGAR mengalami kendala dalam kriteria fleksibilitas. Simulator SUGAR mengalami kesulitan dalam mensimulasi perpindahan desain dengan variasi parameter ketebalan desain, *gap* besar dan lebar *proofmass*. Berdasarkan analisa, penulis menyimpulkan bahwa kendala tersebut muncul karena faktor :
 - 1. Representasi matriks SUGAR yang kurang sempurna
 - 2. Pemakaian metode pendekatan Newton Raphson dalam simulasi yang dilakukan oleh SUGAR
- Penulis menyimpulkan bahwa metode analisa keakuratan simulasi melalui kalkulasi dengan pendekatan linear tidak dapat digunakan sebagai acuan yang akurat, karena faktor-faktor yang diabaikan dapat mempengaruhi *slope* perubahan dari grafik perpindahan sehingga perbandingan antara hasil simulasi dan kalkulasi sulit untuk dilakukan. Oleh karena itu, penulis menyarankan penggunaan kalkulasi yang memperhitungkan elemen berorde lebih dari satu dalam pelaplasan deret Taylor yang dipakai untuk mewakilkan persamaan gaya elektrostatik.

DAFTAR REFERENSI

- David Bindel, Jason Clark, Ningning Zhou, "SUGAR 3.0: A MEMS Simulation Program (User's Guide)", p. 01. 2002.
- [2] D.Mohana Geeta dan M.Madheswaran, "Performance Analysis and Optimization of Lumped of Electrostatic Actuators for Optical MEMS Switches", International Journal of Computer Science and Information Security. Vol 7, No. 1. Kumaraguru college of Technology dan Muthayammal Engineering College : Department of Electronics and Communication Engineering. India. 2010.
- [3] G.K. Fedder, S. Santhanam, M.L. Reed, S.C. Eagle, D.F. Guillou, M.Lu, L.R. Carley, "Laminated high-aspect-ratio microstructures in a conventional CMOS process", Sensors and Actuators A, vol.A57, no.2, p.103-110.
- [4] Agus Santoso Tamsir, "Differential Capacitive MEMS Accelerometer with Non-crossing Sensing Element for Airbag Application." Bangi : Universiti Kebangsaan Malaysia. 2005.
- [5] Matej Andrejaši, "MEMS accelerometers." University of Ljubljana : Department of physics. 2008.
- [6] Jinghong Chen, Member, IEEE, Wendelin Weingartner, Alexi Azarov, dan Randy C. Giles, "Tilt-Angle Stabilization of Electro statically Actuated Micromechanical Mirrors Beyond the Pull-In Point". Journal of Microelectromechanical Systems, Vol. 13, No. 6. Desember 2004.
- [7] H. Baltes, O. Brand, A. Hierlemann, D. Lange, and C. Hagleitner, "CMOS MEMS - present and future", The Fifteenth IEEE International Conference on MicroElectro Mechanical Systems. Las Vegas, NV, pp. 459-466. 2002.
- [8] Marcel W. Pruessner, Kuldeep Amarnath, Madhumita Datta, Daniel P. Kelly, S. Kanakaraju, Ping-Tong Ho, Reza Ghodssi, murid-murid, dan anggota IEEE, "InP-Based Optical Waveguide MEMS Switches With Evanescent Coupling Mechanism" Journal of Microelectromechanical Systems, Vol. 14, No. 5. Oktober 2005.
- [9] Sazzadur Chowdhury, M. Ahmadi, W. C. Miller "A Comparison of Pull-in Voltage Calculation Methods for MEMS-Based Electrostatic Actuator

Design"1st International Conference on Sensing Technology. Palmerston North, New Zealand. 21-23 November 2005.

- [10] Chang Liu, "foundations of MEMS", Illinois ECE series. Pearson International edition 2006.
- [11] J. M. Bustillo, R. T. Howe, dan R. S. Muller, "Surface micromachining for microelectromechanical systems", Proceedings of the IEEE, vol. 86, pp.1552-1574. 1998.
- [12] F. Chollet, H. Liu, "A (not so) short introduction to MEMS", Singapore : Nanyang Technological University. 2008.
- [13] S. E. Lyshevski, "Mems and Nems: systems, devices and structures." CRC Press LLC, USA. 2002.
- [14] Selvakumar, Arjun, "A Multifunctional Silicon Micromachining Technology for High Performance Microsensors and MicroActuators." The University of Michigan. 2007.
- [15] Gary Keith Fedder, "Simulation of Microelectromechanical System", pp.71. Berkeley : University of California. 1994.
- [16] Jason Vaughn Clark, Ningning Zhou, dan K. S. J. Pister, "MEMS Simulation Using Sugar v0.5." Berkeley Sensor and Actuator Center. Berkeley : University of California. 1998.
- [17] Matlab, "Matlab High-Performance Numeric Computation and Visualization Software Reference Guide." The Math Works Inc., 24 Prime Park Way Natick, Mass. 1992.
- [18] J.V. Clark, N. Zhou, Dbonder, L. Schenato, W. Wu, J. Demmel, dan K. S. J.
 Pister, "3D MEMS Simulation Modeling Using Modified Nodal Analysis".
 Berkeley Sensor and Actuator Center. Berkeley : University of California.
- [19] http://mepow.wordpress.com/2009/06/24/tips-menyusun-metodologi-metode -penelitian-skripsi-tesis/, "Tips Menyusun Metodologi / Metode Penelitian Skripsi / Tesis". Pukul 16.00 WIB, 20 Mei 2010.
- [20] Ningning Zhou, Jason Vaugn Clark dan K. S. J. Pister, "Nodal Analysis for MEMS design using SUGAR v0.5." Berkeley.

[21] Qi Jing, "Modeling and Simulation for Design of Suspended MEMS."Pittsburg, Pennsylvania : Carnegie Mellon University. May 21, 2003.

Lampiran A Konstanta pegas

Seperti yang telah dijelaskan sebelumnya, bentuk-bentuk dari pegas yang dipakai dibuat bergantung pada pengaplikasiannya. Aplikasi MEMS akselerometer kapasitif dengan pergerakan lateral memerlukan bentuk pegas yang lebih seimbang dan cocok yakni *folded beams* seperti pada gambar A1 (b) dan (c).

A.1. Desain dengan penopang lurus

Salah satu dari bentuk dari desain *folded beams* adalah bentuk desain dengan penopang yang lurus seperti pada gambar A1 (b). Bentuk diagram dari salah satu dari empat *beam* dapat diperhatikan pada gambar A2.

Dari diagram gambar A2, persamaan yang didapat adalah :

$$M_{b1} = M_o - F_x \xi \tag{A1}$$

$$M_t = M_o - F_x L_b - F_y \xi \tag{A2}$$

$$M_{b2} = M_o - F_x L_b - F_y L_t + F_x \xi$$
(A3)

Di mana M_{b1} , M_t dan M_{b2} adalah momen-momen pada *beam* 1 dan 2 serta pada penopang; M_o merupakan momen pada mass ketika terjadi defleksi; F_x dan F_y
merupakan masukan gaya pada beam; L_b dan L_t merupakan panjang *beam* serta penopangnya [14].

Gambar A2. Diagram salah satu dari empat beam [14]

Untuk menemukan nilai dari K_x, pertama-tama perlu untuk mengetahui persamaan dari M_o dan F_y dalam F_x. Kemudian, M_o dan F_y dieliminasi dengan memakai persamaan yang didapati pada saat kondisi *boundary*, yakni $\Theta = 0$ dan $\delta_v = 0$. Dengan memakai kondisi rotasi nol [14]:

$$\Theta = \frac{dU}{dM_o} = 0 \tag{A4}$$

pada teorema Castigliano kita dapatkan [14]:

$$M_{o} = F_{x} L_{b} \frac{(L_{b} + \alpha L_{t})}{(2L_{b} + \alpha L_{t})} + F_{y} \frac{L_{t}}{2}$$
(A5)

di mana $\alpha = I_b/I_t$. Kemudian, dengan memakai persamaan kondisi *boundary* yang lain ($\partial y = 0$) [14]:

$$\delta_y = \frac{dU}{dF_y} = 0 \tag{A6}$$

kita dapatkan [14]:

$$F_{y} = 0 \tag{A7}$$

Selanjutnya dengan menggunakan persamaan (A6) kita dapatkan [14]:

$$\delta_x = F_x \frac{L_b^3}{3EI} \frac{(L_b + 2\alpha L_t)}{(2L_b + \alpha L_t)}$$
(A8)

dan untuk sebuah folded beam dengan 4 bagian, total konstanta pegas Kx adalah :

$$K_x = 4K_{x,4} = 4\frac{F_x}{\delta_x}$$
(A9)

atau :

$$k_{x} = \frac{12EI}{L_{b}^{3}} \frac{(2+\alpha\beta)}{(1+2\alpha\beta)}$$
(A10)

di mana $\beta = L_t/L_b$

Perhatikan pula nilai β sangat kecil akibat dari panjang tiang penopang yang sangat kecil dibandingkan dengan panjang dari *beam*. Konstanta pegas K_y juga didapatkan dengan cara yang sama. Kondisi *boundary* yang dipakai adalah persamaan (A6).

Karena M_o telah didapatkan, hanya perlu ditemukan nilai F_x dalam F_y . Dengan cara yang sama, yaitu memakai persamaan (A6) kita dapatkan persamaan :

$$F_{\chi} = F_{y} \frac{3\beta}{2} \frac{(1+\alpha\beta)(2+\alpha\beta)}{(1+2\alpha\beta)}$$
(A11)

Kemudian dengan menyelesaikan persamaan :

$$\delta_{\rm y} = \frac{dU}{dF_{\rm y}} \tag{A12}$$

Didapatkan :

$$\delta_{y} = F_{y} \frac{L_{t}^{3}}{2EI_{b}} \left[\frac{1}{\beta} + \frac{\alpha}{6} \right]$$
(A13)

Dengan memakai bentuk persamaan yang sama dengan persamaan (A9) didapatkan persamaan K_y :

$$k_y = \frac{48EI_b}{L_t^3\left(\frac{6}{\beta} + \alpha\right)} \tag{A14}$$

Lampiran B

Tegangan Pull-in

Kondisi *pull-in* merupakan kondisi di mana kedua plat elektrostatik paralel saling menyentuh. Kondisi ini terjadi jika tegangan yang diberikan pada plat elektrostatik tersebut melebihi dari nilai tegangan *pull-in*.

Pada desain aktuator sederhana, di antara kedua plat elektrostatik yang berhadapan akan terdapat kapasitansi. Nilai kapasitansi C, diantara kedua plat paralel tersebut dapat ditulis dalam persamaan :

$$C = \frac{Q}{V} \tag{B1}$$

Dimana Q merupakan jumlah muatan dan V adalah nilai potensial elektrostatik.

Energi elektrik yang tersimpan dalam sebuah kapasitor dapat ditulis dalam persamaan :

$$U = \frac{1}{2}CV^2 = \frac{1}{2}\frac{Q^2}{C}$$
(B2)

Sesuai dengan Hukum Gauss, besar dari medan listrik E dapat ditulis dalam persamaan :

$$E = \frac{Q}{\varepsilon A} \tag{B3}$$

Besar nilai dari tegangan adalah nilai medan listrik dikali dengan jarak diantara kedua plat paralel \mathcal{A} [2].

Dari persamaan-persamaan sebelumnya, persamaan kapasitansi pada plat kapasitor paralel dapat disederhanakan menjadi persamaan :

$$C = \frac{Q}{V} = \frac{Q}{E \cdot d} = \frac{Q}{\frac{Q}{\varepsilon A}d} = \frac{\varepsilon A}{d}$$
B4)

Kapasitor dapat digunakan sebagai sebuah aktuator untuk menghasilkan gaya atau perpindahan. Akibat dari perbedaan potensial yang diberikan di antara kedua plat paralel tersebut, sebuah gaya tarik elektrostatik muncul. Besar dari gaya ini sama dengan gradien nilai energi elektrik yang tersimpan V_s terhadap variabel dimensional. Besar nilai dari gaya tersebut adalah :

$$F = \left|\frac{\partial U}{\partial x}\right| = \frac{1}{2} \left|\frac{\partial C}{\partial x}\right| V^2$$
(B5)

di mana x merupakan varibel dimensional [2].

Jika plat tersebut bergerak, *gap* di antara kedua plat tersebut akan berubah dan besar dari gaya yang diberikan dapat kita tuliskan seperti persamaan berikut :

$$F = \left|\frac{\partial U}{\partial x}\right| = \frac{1}{2} \frac{\varepsilon A}{d^2} V^2 = \frac{1}{2} \frac{C V^2}{d}$$
(B6)

di mana dimensi normal berubah dari x menjadi d [2].

Plat yang menggantung akan tertarik menuju plat di bawah akibat dari resultan gaya elektrostatik tersebut. Plat menggantung bergerak menuju plat bawah hingga terjadi sebuah keseimbangan di antara kedua plat tersebut. Plat menggantung akan bersentuhan dengan plat bawah ketika diberikan gaya elektrostatik maksimum [2].

Kapasitansi dari divais dapat digunakan untuk mengkarakteristik respon elektromekanikal dari sebuah divais [2].

Gambar B1. Model elektromekanikal

Sebuah aktuator elektrostatik dapat dimodelkan sebagai sebuah kapasitor variabel yang menggantung oleh pegas-pegas yang elastis. Sebuah

aspek desain yang penting dari aktuator jenis ini adalah penentuan jumlah perpindahan static akibat pemberian sebuah nilai tegangan bias seperti pada gambar B1. *Beam* bagian atas ditopang oleh sebuah pegas mekanik dengan konstanta pegas K_m . Gaya gravitasi dapat diabaikan karena masa dari *beam* tersebut sangat kecil [2].

Ketika sebuah tegangan diberikan, gaya elektrostatik $F_{electric}$ muncul. Besar dari $F_{electric}$ tersebut dapat dituliskan dalam persamaan :

$$\mathbf{F}_{\text{electric}} = \frac{1}{2} \frac{cV^2}{d} \tag{B7}$$

Gaya ini cenderung untuk mengurangi *gap* dan menciptakan perpindahan dan gaya restorasi mekanik [2]. Dalam keadaan seimbang, gaya elektrostatik dapat kita tuliskan dalam persamaan :

$$M\frac{d^2x}{dt^2} + b\frac{dx}{dt} + kx = F_{electric}$$
(B8)

Keadaan seimbang ini dapat kita dapatkan dalam keadaan $\frac{d^2x}{dt^2}$ dan $\frac{dx}{dt}$ bernilai 0. Dengan demikian, besar dari gaya restorasi mekanik yang bekerja dapat dirumuskan :

$$F_{mec \ hanical} = -K_m x \tag{B9}$$

Gradien kerenggangan pegas pada gaya elektrik didefinisikan sebagai konstanta pegas elektrik yang dapat dirumuskan dalam persamaan [2]:

$$K_e = \left| \frac{\partial F_{electric}}{\partial d} \right| = \left| - \left(\frac{cv^2}{d^2} \right) \right| = \frac{cV^2}{d^2}$$
(B10)

Gaya elektrostatik pada saat seimbang adalah ketika *beam* diberikan tegangan bias sehingga persamaan gaya elektrostatik akan bernilai [2]:

$$F_{electric} = \frac{1}{2} \frac{\varepsilon A V^2}{(d-x)^2}$$
(B11)

Berdasarkan rumus kesetimbangan di mana nilai dari gaya mekanik akan bernilai sama dengan gaya elektrostatik pada perpindahan x, dengan mengubah sedikit persamaan (B9), perpindahan dapat dituliskan dalam persamaan [2]:

$$-x = \frac{F_{mec\ hanical}}{K_m} = \frac{F_{electric}}{K_m} = \frac{c(x)V^2}{2(d-x)K_m}$$
(B12)

Pada tegangan bias tertentu, gaya restorasi mekanik dan elektrostatik akan saling menyeimbangkan. Dengan demikian, besar nilai dari konstanta pegas gaya elektrostatik akan bernilai sama dengan konstanta pada nilai gaya mekanik. Tegangan yang menyebabkan kejadian demikian disebut dengan tegangan *pull-in* "V_{pi}". Jika tegangan yang diberikan melebihi dari nilai tegangan *pull-in*, kondisi keseimbangan ini akan berubah sehingga nilai dari gaya elektrostatik akan meningkat terus secara tidak proporsional terhadap nilai gaya mekanik yang hanya meningkat secara linear. Kedua elektroda yang saling berhadapan tersebut akan saling tarik menarik dan terjadi kontak. Keadaan ini disebut dengan kondisi *pull-in* atau *snaps-in* [2].

Berdasarkan persamaan (B12), nilai dari tegangan *pull-in* dapat kita rumuskan seperti [2]:

$$V^{2} = -\frac{2K_{m}x(x-d)^{2}}{\epsilon A} = -\frac{2K_{m}x(d-x)}{c}$$
(B13)

Gradien dari kedua gaya tersebut pada saat kesetimbangan adalah sama dan dapat dituliskan [2] :

$$|K_e| = |K_m| \tag{B14}$$

Dengan mensubstitusikan persamaaan (B10) dan (B13), kita akan dapatkan persamaan [2]:

$$K_e = \frac{cV^2}{(d-x)^2} = -\frac{2K_m x}{(d-x)}$$
(B15)

Solusi dari x pada persamaan (B15) dapat diperoleh dengan x = -d/3.

Dari solusi persamaan (B15), dapat disimpulkan bahwa perpindahan relatif pada plat paralel akan terjadi sejauh sepertiga dari jarak antara kedua plat tersebut ketika diberi tegangan *pull-in*. Dengan demikian, dengan mensubstitusikan solusi persamaan (B15) pada persamaan (B13) tegangan *pull-in* pada aktuator dapat dituliskan dalam persamaan [2]:

$$v_{pi} = \frac{2d}{3} \sqrt{\frac{K_m d}{1.5\varepsilon A}} \tag{B16}$$

Lampiran C Perpindahan

Perpindahan pada sebuah aktuator akan terjadi apabila desain tersebut diberikan sumber tegangan. Pemodelan dari sistem tersebut dapat dirumuskan :

$$M\frac{d^2x}{dt^2} + b\frac{dx}{dt} + kx = F_{electric}$$
(C1)

di mana :

M = massa dari *proofmass* b = koefisien *damping* k = konstanta pegas F = gaya elektrostatik x = perpindahan

Gaya elektrostatik yang terjadi antar *finger-finger* pada sebuah desain MEMS akselerator kapasitif dapat dituliskan dalam persamaan :

$$F = \frac{1}{2} \varepsilon_o A V^2 \left[\frac{1}{(d_1 - x)^2} - \frac{1}{(d_2 + x)^2} \right]$$
(C2)

di mana :

F = gaya elektrostatik

 $\varepsilon_0 = nilai permitivitas$

A = luas penampang paralel

V = tegangan

 $d_1 = gap kecil$

 $d_2 = gap besar$

x = perpindahan

Dengan mensubstitusikan persamaan (C2) pada (C1), model persamaan dari sistem dapat dirumuskan menjadi :

$$M\frac{d^{2}x}{dt^{2}} + b\frac{dx}{dt} + kx = \frac{1}{2}\varepsilon_{o}AV^{2}\left[\frac{1}{(d_{1}-x)^{2}} - \frac{1}{(d_{2}+x)^{2}}\right]$$
(C3)

Dengan meggunakan deret binomial Taylor, persamaan (C2) dapat dituliskan menjadi :

$$F = \frac{1}{2}\varepsilon_{o}AV^{2} \left[\frac{1}{d_{1}^{2}} \left(1 + 2\frac{x}{d_{1}} + 3\left(\frac{x}{d_{1}}\right)^{2} + 4\left(\frac{x}{d_{1}}\right)^{3} + \cdots \right) - \frac{1}{d_{2}^{2}} \left(1 - 2\frac{x}{d_{2}} + 3\left(\frac{x}{d_{2}}\right)^{2} - 4xd13 + \dots \right) \right]$$
(C4)

Nilai perpindahan maksimal yang terjadi pada sebuah desain sebelum mencapai kondisi *pull-in* akan bernilai sebesar nilai gap dibagi dengan tiga. Dengan demikian, nilai dari x/d_1 dan x/d_2 setelah dikuadrat maupun dipangkat dengan angka yang lebih besar akan memiliki nilai yang sangat kecil. Oleh karena itu, nilai-nilai tersebut dapat diabaikan sehingga persamaan (C4) dapat dituliskan kembali menjadi :

$$F = \frac{1}{2} \varepsilon_o A V^2 \left[\frac{1}{d_1^2} \left(1 + 2\frac{x}{d_1} \right) - \frac{1}{d_2^2} \left(1 - 2\frac{x}{d_2} \right) \right]$$
(C5)

Dengan pemisalan nilai :

$$k_{1} = \frac{1}{2} \frac{\varepsilon_{o} A V^{2}}{d_{1}^{3}}$$
(C6)
$$k_{2} = \frac{1}{2} \frac{\varepsilon_{o} A V^{2}}{d_{2}^{3}}$$
(C7)

Persamaan (C6) dan (C7) dapat disubstitusikan pada persamaan (C5) menjadi :

$$F = k_1(d_1 + 2x) - k_2(d_2 - 2x)$$
(C8)

Uji keakuratan..., Marthin Surya Setiawan, FT UI, 2010

$$M\frac{d^2x}{dt^2} + b\frac{dx}{dt} + kx = k_1(d_1 + 2x) - k_2(d_2 - 2x)$$
(C9)

atau

$$M\frac{d^2x}{dt^2} + b\frac{dx}{dt} + (k - k_1 + k_2)x = k_1d_1 - k_2d_2$$
(c10)

Dengan metode laplas, perpindahan dalam domain s dapat dituliskan seperti berikut :

$$x(s) = \frac{k_1 d_1 - k_2 d_2}{[Ms^3 + bs^2 + (k - k_1 + k_2)s]}$$
(c11)

persamaan (c11) bisa di-invers laplas untuk mendapatkan persamaan perpindahan dalam domain waktu (t).

LAMPIRAN D

Spesifikasi Desain

Desain	Panjang proofmass	Lebar proofmass	Panjang finger	Tebal finger	Lebar tether	Panjang tether	Tebal tether	Tinggi desain	<i>Gap</i> kecil	Gap besar
1	<u>(µm)</u> 40	<u>(µIII)</u> 28	(μm) 50	(µm) 1	(µIII) 3	(µm) 100	(µm) 1	(µm) 30	(µIII) 2	(µIII) 3
2	67	28	50	1	3	100	1	30	2	3
3	67	28	50	1	3	100	2	30	2	3
4	67	28	50	1	3	100	1	30	2	3
5	40	56	50	1	3	100	1	30	2	3
6	40	14	50	1	3	100	1	30	2	3
7	40	28	50	1	2	100	2	30	2	3
8	40	28	50	1	5	100	5	30	2	3
9	40	28	50	1	3	100	1	30	2	3
10	40	28	50	1	3	200	1	30	2	3
11	40	28	100	1	3	50	1	30	2	3
12	40	28	25	1	3	100	1	30	2	3
13	67	28	50	1	3	100	1	30	5	3
14	67	28	50	2	3	100	1	30	2	3
15	40	28	50	1	3	100	1	60	2	3
16	40	28	50	1	3	100	1	15	2	3
17	67	28	50	1	3	100	1	30	2	3
18	67	28	50	1	3	100	1	30	2	3
19	40	28	50	1	4	100	4	30	2	3
20	40	28	50	1	6	100	6	30	2	3
21	40	28	50	1	3	150	1	30	2	3
22	40	28	50	1	3	250	1	30	2	3
23	40	28	75	1	3	100	1	30	2	3
24	40	28	125	1	3	100	1	30	2	3
25	67	28	50	1.5	3	100	1	30	2	3
26	100	28	50	1	3	100	1	30	2	4
27	67	28	50	1	3	100	1	30	2	3
28	67	28	50	1	3	100	1	30	2	8
29	67	28	50	1	3	100	1	30	3	8

LAMPIRAN E

Grafik Perubahan Parameter

1. Lebar proofmass

2. Panjang proofmass

"

3. Panjang tether

4. Lebar *tether*

5. Tebal *tether*

6. Tinggi desain

Universitas Indonesia Uji keakuratan..., Marthin Surya Setiawan, FT UI, 2010

7. *Gap* kecil

8. Gap besar

Universitas Indonesia Uji keakuratan..., Marthin Surya Setiawan, FT UI, 2010

9. Panjang *finger*

10. Tebal finger

1		MA L'11	Tabel	11451110	i pinua.		11 Iasi gu	<i>p</i> Kech	L
v	Desa	ain 28 (2µ	m)	Desa	in 29 (3μ	m)	Desa	ain 13 (5µ	um)
	Kalkulasi	Sugar	%error	Kalkulasi	Sugar	%error	Kalkulasi	Sugar	%error
0	0	0	0	0	0	0	0	0	0,0
1	0,0005	0,0003	34,6		0,0002			0,0001	
2	0,0020	0,0013	34,7	0,0008	0,0007	9,8	0,0002	0,0004	80,3
3	0,0045	0,0029	34,7		0,0016			0,0008	
4	0,0081	0,0053	34,8	0,0033	0,0029	9,9	0,0008	0,0015	80,3
5	0,0127	0,0082	34,9	0.0074	0,0046	0.0	0.0010	0,0023	80.3
7	0,0183	0,0119	35,0	0,0074	0,0000	9,9	0,0019	0,0034	80,3
8	0,0231	0.0214	35.5	0.0132	0,0000	10.0	0.0033	0,0040	80.3
9	0,0423	0,0272	35,7	0,000	0,0150	3,0	0,0000	0,0076	
10	0,0528	0,0338	35,9	0,0207	0,0186	10,2	0,0052	0,0094	80,3
11	0,0647	0,0412	36,2		0,0225			0,0114	
12	0,0780	0,0495	36,5	0,0300	0,0269	10,3	0,0075	0,0136	80,2
13	0,0929	0,0587	36,8		0,0317			0,0159	
14	0,1095	0,0688	37,2	0,0412	0,0369	10,5	0,0103	0,0185	80,2
15	0,1280	0,0799	37,6	0.0544	0,0425	10.5		0,0213	
16	0,1484	0,0921	37,9	0,0544	0,0486	10,7	0,0134	0,0242	80,2
17	0,1711	0,1055	20,5	0.0607	0,0551	10.0	0.0171	0,0274	80.1
10	0,1902	0,1202	39.1	0,0097	0.0695	10,9	0,0171	0,0307	80,1
20	0.2549	0,1541	39.6	0.0872	0,0774	11.2	0.0211	0,0381	80.1
21	0,2892	0,1736	40,0	0,001-	0,0859	,	-,	0,0420	,-
22	0,3270	0,1953	40,3	0,1071	0,0949	11,4	0,0257	0,0462	80,0
23	0,3700	0,2195	40,7		0,1044			0,0506	
24	0,4178	0,2467	40,9	0,1296	0,1145	11,6	0,0307	0,0552	80,0
25	0,4715	0,2778	41,1		0,1252			0,0600	
26	0,5322	0,3139	41,0	0,1549	0,1368	11,7	0,0361	0,0650	80,0
27	0,6010	0,3572	40,6	0.400.4	0,1485	10.1		0,0703	
28	0,6798	0,4123	39,3	0,1834	0,1612	12,1	0,0421	0,0758	79,9
29	0,7700	0,4924	36,1	0.2152	0,1746	12.2	0.0486	0,0815	70.0
31				0,2133	0,1888	12,5	0,0486	0,0874	/9,9
32				0.2510	0,200	123	0.0556	0,0990	79.8
33	-			0,2510	0.2366	12,5	0,0550	0,1066	77,0
34				0,2911	0,2546	12,5	0,0631	0,1135	79,8
35					0,2737			0,1206	
36				0,3360	0,2941	12,5		0,1280	
37					0,3159			0,1357	
38				0,3865	0,3393	12,2	0,0799	0,1436	79,8
39					0,3644			0,1518	
40				0,4434	0,3917	11,7		0,1602	
41	-		-	0.5076	0,4213	10.6	0.0990	0,1690	70.8
42				0,3070	0,4339	10,0	0,0990	0,1780	/9,0
44				0.5806	0.5308	8.6		0.1969	
45				0,0000	0,5776	-,-		0,2069	
46				0,6638	0,6334	4,6	0,1207	0,2171	79,9
47								0,2277	
48				0,7594				0,2386	
49								0,2499	
50							0,1452	0,2615	80,1
51			11		-			0,2735	
52								0,2859	1
54							0 1728	0,2980	80.4
55							0,1720	0.3254	00,1
56								0,3394	N
57	3	1						0,3539	
58							0,2038	0,3689	81,0
59								0,3844	
60		The						0,4004	
61								0,4169	
62			1				0,2385	0,4340	82,0
63			100					0,4518	
64								0,4701	
65							0.2752	0,4892	04.0
66							0,2752	0,5089	84,9
68								0,5294	
69								0.5730	
70	1						0.3212	0,5961	85.6
							-,		. 00,0

LAMPIRAN F.1. Tabel Hasil Perpindahan Variasi gap Kecil

V	De	esain 2 (3µm))	De	sain 27 (4µm)	Desain 28 (8µm)			
_	Kalkulasi	Sugar	%error	Kalkulasi	Sugar	%error	Kalkulasi	Sugar	%error	
0	0	0	0	0	0	0	0	0		
1	0,0003	0,0003	10,3	0,0004	0,0003	18,3	0,0005	0,0003	34,	
2	0,0012	0,0013	10,2	0,0016	0,0013	18,3	0,0020	0,0013	34,	
3	0,0027	0,0029	10,0	0,0036	0,0029	18,4	0,0045	0,0029	34,	
4	0,0048	0,0053	9,7	0,0065	0,0053	18,6	0,0081	0,0053	34,	
5	0,0075	0,0082	9,4	0,0101	0,0082	18,8	0,0127	0,0082	34,	
6	0,0109	0,0119	9,0	0,0147	0,0119	19,0	0,0183	0,0119	35,	
7	0,0150	0,0163	8,4	0,0202	0,0163	19,3	0,0251	0,0163	35,3	
8	0,0198	0,0214	7,8	0,0266	0,0214	19,6	0,0331	0,0214	35,	
9	0,0254	0,0272	7,2	0,0340	0,0272	20,0	0,0423	0,0272	35,	
10	0,0318	0,0338	6,4	0,0425	0,0338	20,4	0,0528	0,0338	35,	
11	0,0391	0,0412	5,6	0,0521	0,0412	20,9	0,0647	0,0412	36,3	
12	0,0473	0,0494	4,4	0,0630	0,0495	21,4	0,0780	0,0495	36,	
13	0,0566	0,0587	3,6	0,0751	0,0587	21,9	0,0929	0,0587	36,	
14	0,0671	0,0688	2,5	0,0887	0,0688	22,5	0,1095	0,0688	37,2	
15	0,0788	0,0799	1,4	0,1039	0,0799	23,1	0,1280	0,0799	37,6	
16	0,0920	0,0921	0,1	0,1208	0,0921	23,7	0,1484	0,0921	37,9	
17	0,1068	0,1055	1,2	0,1396	0,1055	24,4	0,1711	0,1055	38,3	
18	0,1235	0,1202	2,7	0,1606	0,1202	25,2	0,1962	0,1202	38,	
19	0,1423	0,1363	4,2	0,1840	0,1363	25,9	0,2240	0,1363	39,1	
20	0,1635	0,1541	5,8	0,2102	0,1541	26,7	0,2549	0,1541	39,6	
21	0,1876	0,1736	7,5	0,2394	0,1736	27,5	0,2892	0,1736	40,0	
22	0,2151	0,1953	9,2	0,2723	0,1953	28,3	0,3270	0,1953	40,3	
23	0,2466	0,2195	11,0	0,3094	0,2195	29,1	0,3700	0,2195	40,	
24	0,2830	0,2467	12,8	0,3514	0,2467	29,8	0,4178	0,2467	40,9	
25	0,3253	0,2778	14,6	0,3992	0,2778	30,4	0,4715	0,2778	41,	
26	0,3751	0,3140	16,3	0,4539	0,3139	30,8	0,5322	0,3139	41,0	
27	0,4343	0,3572	17,7	0,5171	0,3572	30,9	0,6010	0,3572	40,	
28	0,5058	0,4123	18,5	0,5907	0,4123	30,2		0,4123		
29	0,5935	0,4924	17,0		0,4924	1		0,4924		

F.2. Tabel Hasil Perpindahan Variasi gap Besar

V	De	esain 6 (14µr	n)	De	esain 1 (28µm)	De	esain 5 (56µm)
v	Kalkulasi	Sugar	%error	Kalkulasi	Sugar	%error	Kalkulasi	Sugar	%error
0	0	0	0	0	0	0	0	0	0
1	0,0003	0,0003	1,7	0,0003	0,0003	10,3	0,0003	0,0004	40,3
2	0,0012	0,0012	1,8	0,0012	0,0013	10,3	0,0012	0,0017	40,1
3	0,0027	0,0026	2,0	0,0027	0,0029	10,0	0,0027	0,0038	40,0
4	0,0048	0,0047	2,3	0,0048	0,0053	9,7	0,0048	0,0067	39,7
5	0,0075	0,0073	2,7	0,0075	0,0082	9,3	0,0075	0,0105	39,4
6	0,0109	0,0106	3,1	0,0109	0,0119	9,0	0,0109	0,0152	39,0
7	0,0150	0,0145	3,6	0,0150	0,0163	8,5	0,0150	0,0208	38,5
8	0,0198	0,0190	4,2	0,0198	0,0214	7,9	0,0198	0,0273	38,0
9	0,0254	0,0242	4,8	0,0254	0,0272	7,2	0,0254	0,0349	37,4
10	0,0318	0,0300	5,6	0,0318	0,0338	6,4	0,0318	0,0434	36,7
11	0,0391	0,0366	6,4	0,0391	0,0412	5,6	0,0391	0,0531	35,9
12	0,0473	0,0438	7,3	0,0473	0,0495	4,6	0,0473	0,0639	35,1
13	0,0566	0,0519	8,3	0,0566	0,0587	3,7	0,0566	0,0760	34,3
14	0,0671	0,0607	9,6	0,0671	0,0688	2,5	0,0671	0,0895	33,4
15	0,0788	0,0705	10,6	0,0789	0,0799	1,3	0,0788	0,1044	32,4
16	0,0920	0,0811	11,9	0,0920	0,0921	0,1	0,0920	0,1210	31,5
17	0,1068	0,0927	13,2	0,1068	0,1055	1,2	0,1068	0,1394	30,5
18	0,1235	0,1053	14,7	0,1235	0,1202	2,7	0,1235	0,1599	29,5
19	0,1423	0,1191	16,3	0,1423	0,1363	4,2	0,1423	0,1829	28,5
20	0,1635	0,1342	17,9	0,1635	0,1541	5,8	0,1635	0,2088	27,7
21	0,1876	0,1507	19,7	0,1877	0,1736	7,5	0,1876	0,2383	27,0
22	0,2151	0,1688	21,5	0,2150	0,1953	9,2	0,2151	0,2724	26,7
23	0,2466	0,1886	23,5	0,2465	0,2195	11,0	0,2466	0,3128	26,9
24	0,2830	0,2106	25,6	0,2829	0,2467	12,8	0,2830	0,3626	28,2
25	0,3253	0,2351	27,7	0,3253	0,2778	14,6	0,3253	0,4292	31,9
26	0,3751	0,2627	30,0	0,3752	0,3139	16,3	0,3751	0,5459	45,5
27	0,4343	0,2941	32,3	0,4345	0,3572	17,8	0,4343	0,5820	34,0
28	0,5058	0,3308	34,6	0,5056	0,4123	18,5	0,5058		
29	0,5935	0,3751	36,8	0,5934	0,4924	17,0	0,5935		
30		0,4322							~
31		0,5196							

F.3. Tabel Hasil Perpindahan Variasi gap Kecil Lebar Proofmass

V	De	sain 1 (40µ	lm)	De	sain 2 (67µ	ım)	Desain 26 (100μm)			
v	Kalkulasi	Sugar	%error	Kalkulasi	ulasi Sugar %		Kalkulasi	Sugar	%error	
0	0	0	0	0	0	0	0	0	0	
1	0,0003	0,0003	10,3	0,0003	0,0003	10,3	0,0003	0,0003	8,2	
2	0,0012	0,0013	10,3	0,0012	0,0013	10,2	0,0012	0,0013	8,1	
3	0,0027	0,0029	10,0	0,0027	0,0029	10,0	0,0027	0,0029	7,9	
4	0,0048	0,0053	9,7	0,0048	0,0053	9,7	0,0048	0,0052	7,6	
5	0,0075	0,0082	9,3	0,0075	0,0082	9,4	0,0075	0,0081	7,3	
6	0,0109	0,0119	9,0	0,0109	0,0119	9,0	0,0109	0,0117	6,8	
7	0,0150	0,0163	8,5	0,0150	0,0163	8,4	0,0150	0,0160	6,3	
8	0,0198	0,0214	7,9	0,0198	0,0214	7,8	0,0198	0,0209	5,7	
9	0,0254	0,0272	7,2	0,0254	0,0272	7,2	0,0254	0,0267	5,0	
10	0,0318	0,0338	6,4	0,0318	0,0338	6,4	0,0318	0,0331	4,2	
11	0,0391	0,0412	5,6	0,0391	0,0412	5,6	0,0391	0,0404	3,4	
12	0,0473	0,0495	4,6	0,0473	0,0494	4,4	0,0473	0,0485	2,4	
13	0,0566	0,0587	3,7	0,0566	0,0587	3,6	0,0566	0,0574	1,4	
14	0,0671	0,0688	2,5	0,0671	0,0688	2,5	0,0671	0,0673	0,3	
15	0,0789	0,0799	1,3	0,0788	0,0799	1,4	0,0788	0,0781	0,9	
16	0,0920	0,0921	0,1	0,0920	0,0921	0,1	0,0920	0,0900	2,2	
17	0,1068	0,1055	1,2	0,1068	0,1055	1,2	0,1068	0,1030	3,6	
18	0,1235	0,1202	2,7	0,1235	0,1202	2,7	0,1235	0,1173	5,1	
19	0,1423	0,1363	4,2	0,1423	0,1363	4,2	0,1423	0,1329	6,6	
20	0,1635	0,1541	5,8	0,1635	0,1541	5,8	0,1635	0,1500	8,3	
21	0,1877	0,1736	7,5	0,1876	0,1736	7,5	0,1876	0,1688	10,0	
22	0,2150	0,1953	9,2	0,2151	0,1953	9,2	0,2151	0,1896	11,9	
23	0,2465	0,2195	11,0	0,2466	0,2195	11,0	0,2466	0,2126	13,8	
24	0,2829	0,2467	12,8	0,2830	0,2467	12,8	0,2830	0,2384	15,8	
25	0,3253	0,2778	14,6	0,3253	0,2778	14,6	0,3253	0,2675	17,8	
26	0,3752	0,3139	16,3	0,3751	0,3140	16,3	0,3667	0,3010	17,9	
27	0,4345	0,3572	17,8	0,4343	0,3572	17,7	0,4343	0,3403	21,6	
28	0,5056	0,4123	18,5	0,5058	0,4123	18,5	0,5058	0,3884	23,2	
29	0,5934	0,4924	17,0	0,5935	0,4924	17,0	0,5935	0,4519	23,8	
30								0,5594		

F.4. Tabel Hasil Perpindahan Variasi gap Kecil Panjang Proofmass

V	Desa	ain 16 (15µm)		D	esain 1 (30µm)		De	sain 15 (60µm)	
v	Kalkulasi	Sugar	%error	Kalkulasi	Sugar	%error	Kalkulasi	Sugar	%error
0) 0	0	0	— 0	0	0	0	0	0
1	0,0003	0,0007	120,7	0,0003	0,0003	10,3	0,0003	0,0002	44,8
2	0,0012	0,0026	120,7	0,0012	0,0013	10,3	0,0012	0,0007	44,9
3	8 0,0027	0,0059	120,7	0,0027	0,0029	10,0	0,0027	0,0015	45,1
4	0,0048	0,0106	120,7	0,0048	0,0053	9,7	0,0048	0,0026	45,3
5	0,0075	0,0166	120,7	0,0075	0,0082	9,3	0,0075	0,0041	45,5
E	0,0109	0,0241	120,7	0,0109	0,0119	9,0	0,0109	0,0059	45,9
7	0,0150	0,0331	120,7	0,0150	0,0163	8,5	0,0150	0,0081	46,2
8	0,0198	0,0437	120,8	0,0198	0,0214	7,9	0,0198	0,0106	46,7
ç	0,0254	0,0561	120,9	0,0254	0,0272	7,2	0,0254	0,0134	47,2
10	0,0318	0,0703	121,2	0,0318	0,0338	6,4	0,0318	0,0166	47,7
11	0,0391	0,0866	121,6	0,0391	0,0412	5,6	0,0391	0,0202	48,4
12	0,0473	0,1051	122,1	0,0473	0,0495	4,6	0,0473	0,0241	49,1
13	0,0566	0,1262	123,0	0,0566	0,0587	3,7	0,0566	0,0284	49,8
14	0,0671	0,1504	124,2	0,0671	0,0688	2,5	0,0671	0,0331	50,6
15	0,0788	0,1791	127,2	0,0789	0,0799	1,3	0,0788	0,0382	51,5
16	0,0920	0,2102	128,4	0,0920	0,0921	0,1	0,0920	0,0437	52,5
17	0,1068	0,2479	132,1	0,1068	0,1055	1,2	0,1068	0,0497	53,5
18	0,1235	0,2935	137,7	0,1235	0,1202	2,7	0,1235	0,0561	54,6
19	0,1423	0,3511	146,8	0,1423	0,1363	4,2	0,1423	0,0630	55,8
20	0,1635	0,4314	163,8	0,1635	0,1541	5,8	0,1635	0,0703	57,0
21	0,1876	0,6338	237,8	0,1877	0,1736	7,5	0,1876	0,0782	58,3
22	0,2151		_	0,2150	0,1953	9,2	0,2151	0,0866	59,8
23	0,2466			0,2465	0,2195	11,0	0,2466	0,0955	61,3
24	0,2830			0,2829	0,2467	12,8	0,2830	0,1051	62,9
25	0,3253			0,3253	0,2778	14,6	0,3253	0,1153	64,6
26	o,3751			0,3752	0,3139	16,3	0,3751	0,1262	66,3
27	0,4343			0,4345	0,3572	17,8	0,4343	0,1379	68,2
28	8 0,5057	1000		0,5056	0,4123	18,5	0,5057	0,1504	70,3
29	0,5934	111		0,5934			0,5934	0,1637	72,4
30)	C. C. E.	1.00					0,1781	
31								0,1935	
32								0,2102	N
33	}		-					0,2282	× 1
34								0,2479	
35	5		15					0,2696	
36	5		1					0,2935	
37	7							0,3204	
38	3							0,3511	
39							-	0,3871	
40)	~ · · ·						0,4314	
41		1. 2.					N.	0,4915	
42			- L		-			0,6338	

F.5. Tabel Hasil Perpindahan Variasi Tebal Desain

N		Desain 2 (1µm)	Des	ain 27 (1.5μm)	Desain 14 (2µm)			
V	Kalkulasi	Sugar	%error	Kalkulasi	Sugar	%error	Kalkulasi	Sugar	%error	
0	0	0	0	0	0	0	0	0	0	
1	0.0002961	0.00032667	10.321012	0.00029611	0.00032046	8.224912	0.000296	0.000319	7.714959	
2	0.0011869	0.00130797	10.202485	0.00118688	0.0012831	8.107348	0.001187	0.001277	7.593393	
3	0.0026799	0.00294793	10.002806	0.00267987	0.00289163	7.901959	0.00268	0.0028779	7.390741	
4	0.0047871	0.00525327	9.7369655	0.00478714	0.00515247	7.631325	0.004787	0.0051279	7.118843	
5	0.0075279	0.0082335	9.3724568	0.00752795	0.00807453	7.260769	0.007528	0.0080359	6.747128	
6	0.0109245	0.0119027	8.9544903	0.01092445	0.01167	6.824622	0.010924	0.0116137	6.308959	
7	0.0150073	0.01627267	8.4314494	0.01500766	0.015953	6.299064	0.015008	0.0158753	5.781551	
8	0.019814	0.02136667	7.8362193	0.0198135	0.02094267	5.698955	0.019814	0.02084	5.18079	
9	0.0253884	0.02720733	7.1644142	0.0253881	0.02666133	5.015085	0.025388	0.0265283	4.491218	
10	0.0317855	0.03382167	6.4059955	0.03178469	0.03313367	4.244118	0.031785	0.0329663	3.717659	
11	0.0390685	0.04124433	5.5692678	0.03906886	0.040392	3.386694	0.039069	0.0401847	2.856008	
12	0.0473148	0.049392	4.3901648	0.04731562	0.048472	2.443969	0.047316	0.048233	1.938849	
13	0.0566121	0.05867167	3.6379656	0.0566107	0.05741667	1.423693	0.056611	0.0571117	0.884925	
14	0.067076	0.06878467	2.5473433	0.06707601	0.06727733	0.300141	0.067076	0.066912	0.244515	
15	0.0788242	0.07990633	1.3728103	0.07882509	0.07811267	0.903803	0.078825	0.0776783	1.454812	
16	0.0920192	0.092119	0.1084246	0.09201923	0.08999367	2.201238	0.092019	0.08948	2.759455	
17	0.1068337	0.10551	1.2390487	0.10683482	0.10300667	3.583249	0.106835	0.1024033	4.147983	
18	0.1235022	0.12020333	2.6710785	0.12255372	0.11725	4.327671	0.123501	0.11654	5.636045	
19	0.1422897	0.13633	4.1884408	0.14228837	0.13285	6.633269	0.142288	0.1320133	7.221277	
20	0.1635155	0.15406333	5.7805894	0.16352016	0.14996333	8.290617	0.16352	0.1489833	8.889931	
21	0.1876286	0.17362467	7.4636377	0.18763062	0.16878667	10.04311	0.187631	0.1676267	10.66135	
22	0.2150999	0.19531	9.2003096	0.21510124	0.18955667	11.87561	0.215105	0.1881867	12.51397	
23	0.2466106	0.21949333	10.995998	0.24660883	0.21261333	13.78519	0.246609	0.2109767	14.44886	
24	0.2829783	0.24672	12.813087	0.2829802	0.23839667	15.755	0.28298	0.2364267	16.45116	
25	0.3253266	0.27778	14.615024	0.32532827	0.26754	17.76306	0.325328	0.2651367	18.5018	
26	0.3751205	0.31396667	16.302452	0.37511972	0.30099667	19.75984	0.37512	0.298	20.55869	
27	0.4343212	0.35724333	17.746746	0.43432033	0.34032333	21.64232	0.43432	0.3364667	22.5303	
28	0.5057681	0.41229	18.482397	0.52422281	0.38839667	25.91	0.505767	0.3831367	24.24641	
29	0.5934594	0.49238667	17.031118	0.59346064	0.45192667	23.84892	0.593461	0.4438333	25.21268	
30					0.55941667			0.53973		
31								0.60388	, X.	

F.6. Tabel Hasil Perpindahan Variasi Tebal Finger

V	Des	ain 12 (25µ	um)	De	esain 1 (50µ	ım)	De	sain 23 (75	μm)	Des	ain 11 (100)μm)	Des	ain 24 (125	μm)
V	Kalkulasi	Sugar	%error	Kalkulasi	Sugar	%error	Kalkulasi	Sugar	%error	Kalkulasi	Sugar	%error	Kalkulasi	Sugar	%error
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1		0,0002		0,0003	0,0003	10,3	0,0004	0,0005	14,5	0,0006	0,0007	21,5	0,0008	0,0010	32,2
2	0,0006	0,0006	8,2	0,0012	0,0013	10,3	0,0018	0,0021	14,3	0,0024	0,0029	21,3	0,0030	0,0040	32,0
3		0,0014	0.2	0,0027	0,0029	10,0	0,0041	0,0046	14,0	0,0054	0,0066	21,0	0,0068	0,0090	31,7
4	0,0023	0,0025	8,0	0,0048	0,0053	9,7	0,0073	0,0083	13,6	0,0098	0,0118	20,5	0,0123	0,0162	31,3
5		0,0039		0,0075	0,0082	9,3	0,0115	0,0130	13,1	0,0155	0,0186	19,9	0,0196	0,0256	30,7
6	0,0053	0,0057	7,6	0,0109	0,0119	9,0	0,0167	0,0188	12,5	0,0227	0,0270	19,2	0,0288	0,0374	30,1
7		0,0077		0,0150	0,0163	8,5	0,0231	0,0258	11,8	0,0314	0,0372	18,3	0,0401	0,0519	29,4
8	0,0095	0,0101	7,0	0,0198	0,0214	7,9	0,0306	0,0340	10,9	0,0420	0,0493	17,4	0,0540	0,0694	28,7
9		0,0129		0,0254	0,0272	7,2	0,0395	0,0435	10,0	0,0546	0,0635	16,3	0,0707	0,0904	27,9
10	0,0150	0,0159	6,3	0,0318	0,0338	6,4	0,0499	0,0543	8,9	0,0695	0,0800	15,1	0,0907	0,1155	27,3
11		0,0194		0,0391	0,0412	5,6	0,0619	0,0666	7,7	0,0870	0,0991	13,8	0,1149	0,1432	24,6
12	0,0219	0,0231	5,4	0,0473	0,0495	4,6	0,0757	0,0806	6,4	0,1077	0,1212	12,5	0,1441	0,1831	27,1
13		0,0273		0,0566	0,0587	3,7	0,0917	0,0962	5,0	0,1322	0,1469	11,1	0,1796	0,2305	28,3
14	0,0304	0,0318	4,4	0,0671	0,0688	2,5	0,1101	0,1139	3,5	0,1613	0,1771	9,8	0,2232	0,2955	32,4
15		0,0367		0,0789	0,0799	1,3	0,1314	0,1338	1,8	0,1960	0,2132	8,7	0,2776	0,4104	47,8
16	0,0406	0,0419	3,2	0,0920	0,0921	0,1	0,1561	0,1563	0,1	0,2381	0,2574	8,1	0,3468		
17		0,0476		0,1068	0,1055	1,2	0,1848	0,1819	1,6	0,2895	0,3149	8,8	0,4372	11	
18	0,0527	0,0537	1,8	0,1235	0,1202	2,7	0,2187	0,2112	3,4	0,3535	0,4002	13,2	0,5592		
19		0,0602		0,1423	0,1363	4,2	0,2587	0,2455	5,1	0,4348					
20	0,0670	0,0672	0,3	0,1635	0,1541	5,8	0,3067	0,2864	6,6	0,5410					
21		0,0747		0,1877	0,1736	7,5	0,3649	0,3373	7,6						
22	0,0839	0,0827	1,4	0,2150	0,1953	9,2	0,4367	0,4063	6,9						
23		0,0912		0,2465	0,2195	11,0	0,5272	0,5349	1,5						
24	0,1037	0,1002	3,3	0,2829	0,2467	12,8	0,6445								
25		0,1099		0,3253	0,2778	14,6									
26	0,1270	0,1202	5,4	0,3752	0,3139	16,3									
27		0,1311		0,4345	0,3572	. 17,8									
28	0,1546	0,1428	7,6	0,5056	0,4123	18,5									
29		0,1553		0,5934	0,4924	17,0									
30	0,1875	0,1686	10,1												~
31		0,1829													
32	0,2270	0,1979	12,8											1	_
33		0,2148			1	1.									
34	0,2751	0,2327	15,4										1	2	
35	C \s	0,2521											4	≤ 2	
36	0,3344	0,2734	18,2									1.10			
37	1	0,2969													
38	0,4090	0,3231	21,0	h											
39		0,3528			200										
40	0,5053	0,3872	23,4				0				1				
41		0,4289													
42	0,6337	0,4830	23,8												
43		0,5716													
44		0,6011													

F.7. Tabel Hasil Perpindahan Variasi Panjang Finger

1 to ruber rubit i er pritaunan variabit unjung i ente	F.8	Tabel	Hasil	Perpin	dahan	Variasi	Panjang	Tether
--	------------	-------	-------	--------	-------	---------	---------	--------

Relay Lor Lor <thlor< th=""> <thlor< t<="" th=""><th></th><th>V</th><th>Desain 10</th><th>(50µm)</th><th></th><th>Desain 1 (1</th><th>L00μm)</th><th></th><th>Desain 21</th><th>(150µm)</th><th></th><th>Desain 9 (2</th><th>200µm)</th><th></th><th>Desain 22</th><th>(250µm)</th><th></th></thlor<></thlor<>		V	Desain 10	(50µm)		Desain 1 (1	L00μm)		Desain 21	(150µm)		Desain 9 (2	200µm)		Desain 22	(250µm)	
0 0			Kalkulasi	Sugar	%error	Kalkulasi	Sugar	%error	Kalkulasi	Sugar	%error	Kalkulasi	Sugar	%error	Kalkulasi	Sugar	%error
1 0.0000 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.0002 0.0002 0.0001 0.0002 0.0001 0.0002 0.0001 0.0002 0.0001		0	0	0	0	0	0	0.0	0	0	0	0	0	0	0	0	0
2 0.0002 650 0.0012 0.001 0.0		1		0.00006		0.0003	0.0003	10.3	0.0010	0.0010	1.4	0.0024	0.0022	6.6	0.0047	0.0042	9.7
3 0.00055 0.0022 0.002 0.0005 0.0008 0.21 0.0024 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.00124 0.00124 0.00124 0.00124 0.00124 <td></td> <td>2</td> <td>0.00015</td> <td>0.00024</td> <td>65.0</td> <td>0.0012</td> <td>0.0013</td> <td>10.3</td> <td>0.0040</td> <td>0.0040</td> <td>1.8</td> <td>0.0097</td> <td>0.0090</td> <td>7.6</td> <td>0.0193</td> <td>0.0171</td> <td>11.5</td>		2	0.00015	0.00024	65.0	0.0012	0.0013	10.3	0.0040	0.0040	1.8	0.0097	0.0090	7.6	0.0193	0.0171	11.5
4 0.0009 6650 0.0026 0.0029 0.012 0		3		0.00055		0.0027	0.0029	10.0	0.0092	0.0090	2.5	0.0224	0.0204	9.1	0.0461	0.0394	14.6
3 0.0015 0.0075 0.0025 0.0125 0.0125 0.0026 0.0026 0.0026 0.0026 0.0226		4	0.00059	0.00098	65.0	0.0048	0.0053	9.7	0.0166	0.0160	3.4	0.0415	0.0368	11.4	0.0894	0.0724	19.0
0 0.0014 0.0012 0.0119 0.01084 0.0184 0.011 0.0119 0.01084 0.0114 0.0119 0.01084 0.0119 <td></td> <td>5</td> <td></td> <td>0.00153</td> <td></td> <td>0.0075</td> <td>0.0082</td> <td>9.3</td> <td>0.0265</td> <td>0.0253</td> <td>4.7</td> <td>0.0687</td> <td>0.0589</td> <td>14.3</td> <td>0.1583</td> <td>0.1188</td> <td>25.0</td>		5		0.00153		0.0075	0.0082	9.3	0.0265	0.0253	4.7	0.0687	0.0589	14.3	0.1583	0.1188	25.0
1 0.0030 0.0030 0.0130 0.0130 0.0072 0.0072 0.0072 0.130		6	0.00134	0.00220	64.8	0.0109	0.0119	9.0	0.0392	0.0368	6.1	0.1064	0.08/3	17.9	0.2/21	0.1835	32.6
9 0.0007 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0007 0.0008 0.0007 0.0008 0.0007 0.0008 0.0007 0.0008 0.0007 0.0008 0.0007 0.00007 0.0007 0.0007		/	0 00220	0.00300	64.9	0.0150	0.0163	8.5	0.0552	0.0509	7.9	0.1590	0.1235	22.3	0.4806	0.2779	42.2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		٥ ۵	0.00238	0.00392	04.8	0.0198	0.0214	7.9	0.0751	0.0676	10.0	0.2343	0.1090	27.0			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		10	0.00373	0.00437	64.7	0.0234	0.0272	6.4	0.0337	0.0074	15.1	0.5470	0.2234	41 1	-		
12 0.0039 0.0058 0.64 0.0495 0.4 0.0298 0.210 Image: Constraint of the		10	0.00575	0.00745	04.7	0.0391	0.0412	5.6	0.1683	0.1377	18.2	0.5200	0.5110	41.1			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		12	0.00539	0.00888	64.6	0.0473	0.0495	4.6	0.2164	0.1698	21.6						
14 0.0073 0.0713 0.0780 0.0798 0.0798 0.0798 0.0792 0.0324 0.336 Image: constraint of the second of the sec		13		0.01044		0.0566	0.0587	3.7	0.2784	0.2079	25.3						
15 0.01396 0.0789 0.0799 1.1 0.0320 0.321 0.331 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.00000000 0.0000000000000 0.00000000000000000000000000000		14	0.00737	0.01213	64.5	0.0671	0.0688	2.5	0.3603	0.2542	29.5						
16 0.0080 0.052 0.01 0.032 0.321 3.8.1 0 0 0 18 0.0123 0.0204 0.42 0.123 0.120 2.7 0 0 0 0 0 19 0.0222 0.142 0.135 0.151 5.8 0		15		0.01396		0.0789	0.0799	1.3	0.4724	0.3126	33.8						
17 0.01801 0.008 0.025 1.2		16	0.00968	0.01592	64.4	0.0920	0.0921	0.1	0.6337	0.3921	38.1						
18 0.0123 0.0204 6.12 0.1232 0.1243 0.1343 <		17		0.01801		0.1068	0.1055	1.2									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		18	0.01233	0.02024	64.2	0.1235	0.1202	2.7									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		19		0.02262		0.1423	0.1363	4.2		1.1.1							
1 0.02/20 0.0387 0.1360 0.136 0.235 0.2465 0.2150 0.1353 0.2 23 0.03365 0.2465 0.2150 0.1357 0.2470 12.8		20	0.01532	0.02514	64.0	0.1635	0.1541	5.8									
24 00.0001 0.383 0.2450 0.2195 11.0 Image: constraint of the second se		21	0.01000	0.02780	60 G	0.1877	0.1736	7.5								-	
23 0.0335/ 0.0495 0.0310 0.0638 0.0505 0.0493 0.0513 0.0505 0.0493 0.0525 0.0505 0.0493 0.0525 0.0505 0.0493 0.0525 0.0505 0.0493 0.0525 0.0505 0.0525 0.0505 0.021 0.0505 0.0505 0.021 0.0505 0.0505 0.021 0.0505 0.0505 0.021 0.0505 0.0505 0.021 0.0505 0.0505 0.021 0.0505 0.0507 0.0507 0.0507 0.0507 0.0507 0.0507 0.0507 0.021 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.00100 0.00100	100	22	0.01868	0.03061	63.8	0.2150	0.1953	9.2		-							
12 0.03030 0.0303 0.0203		23	0 02242	0.03357	62.7	0.2405	0.2195	11.0									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		24	0.02242	0.03009	05.7	0.2629	0.2407	12.0									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		25	0.02655	0.03337	63 5	0.3253	0.2778	14.0		-							
28 0.03110 0.05079 63.3 0.5306 0.4123 18.5	1.000	27	0.02033	0.04701	05.5	0.3732	0.3133	17.8									
29 0.0587 0.5934 0.4924 17.0 Image: Constraint of the second sec	_	28	0.03110	0.05078	63.3	0.5056	0.4123	18.5									
30 0.03609 0.0888 63.1 0		29		0.05473		0.5934	0.4924	17.0									
31 0.06318 0<	100	30	0.03609	0.05886	63.1												
320.041550.0778062.9000000340.047500.0773062.7000 <td< td=""><td></td><td>31</td><td></td><td>0.06318</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		31		0.06318													
33 0.0723 0.0737 6.27 0.08242 0.08333 0.08333 0.08333 0.08333 0.0833 0.08333 0.08343 0.0844 0.08343 0.0844 0.08343 0.0844 0.08343 0.0844		32	0.04155	0.06768	62.9												
34 0.04750 0.0730 62.7 0		33		0.07239													
35 0.08242		34	0.04750	0.07730	62.7												
36 0.05397 0.66 0 <td< td=""><td>100</td><td>35</td><td></td><td>0.08242</td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td></td<>	100	35		0.08242	_									-			
37 0.0938 0 </td <td>- 10</td> <td>36</td> <td>0.05397</td> <td>0.08777</td> <td>62.6</td> <td></td> <td>1.10</td>	- 10	36	0.05397	0.08777	62.6												1.10
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		37	0.001.01	0.09335	62.5			_									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		38	0.06101	0.09916	62.5												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		39	0.06966	0.10523	62 5												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		40	0.00800	0.11130	02.5	100											
43 0.13229 0<		42	0.07696	0.12508	62 5	11											
44 0.08598 0.13983 62.6		43	2.27 0000	0.13229	52.5												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		44	0.08598	0.13983	62.6												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		45		0.14769												. X.	
47 0.16465		46	0.09576	0.15598	62.9												
48 0.10637 0.17374 63.3 0		47		0.16465													
49 0.1833		48	0.10637	0.17374	63.3												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		49		0.18333													
51 0.20398 0<		50	0.11792	0.19336	64.0	_									1		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		51	0.4324-	0.20398											1		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		52	0.13046	0.21521	65.0										- V-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		53	0 1 4 4 1 4	0.22/13	CC 4									-			
55 0.2330 0.2330 0 <t< td=""><td></td><td>54</td><td>0.14414</td><td>0.23981</td><td>66.4</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td></t<>		54	0.14414	0.23981	66.4								-				
57 0.28363		55	0 15904	0.25330	68 5												
58 0.17534 0.30074 71.5		57	0.13504	0.20791	00.3							-					
59 0.31963		58	0.17534	0.30074	71 5					1						-	
60 0.19318 0.34055 76.3 Image: Constraint of the system of the sy		59	0.17004	0.31963	, 1.5			1	-								
61 0.36441		60	0.19318	0.34055	76.3												
62 0.21277 0.39236 84.4		61		0.36441													
63 0.42688 <th< th=""> <th< th=""> <th<< td=""><td></td><td>62</td><td>0.21277</td><td>0.39236</td><td>84.4</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<<></th<></th<>		62	0.21277	0.39236	84.4												
64 0.23434 0.47503 102.7		63		0.42688													
		64	0.23434	0.47503	102.7												

V	De	esain 7 (2μ	m)	De	esain 1 (3μ	m)	De	sain 19 (4µ	.m)	De	esain 8 (5µ	m)	De	sain 20 (6µ	ım)
v	Kalkulasi	Sugar	%error												
0	0	0	0	0	0	0	0	0	0	0	0	0,0	0	0	0
1	0,0003	0,0003	14,2	0,0003	0,0003	10,3	0,0003	0,0003	8,0	0,0003	0,0003	6,5	0,0003	0,0003	5,7
2	0,0011	0,0013	14,1	0,0012	0,0013	10,3	0,0012	0,0013	7,9	0,0013	0,0013	6,4	0,0013	0,0014	5,5
3	0,0026	0,0029	13,9	0,0027	0,0029	10,0	0,0028	0,0030	7,6	0,0028	0,0030	6,2	0,0029	0,0031	5,3
4	0,0046	0,0052	13,6	0,0048	0,0053	9,7	0,0050	0,0053	7,4	0,0051	0,0054	5,9	0,0052	0,0054	5,0
5	0,0072	0,0081	13,3	0,0075	0,0082	9,3	0,0078	0,0083	7,0	0,0080	0,0084	5,5	0,0082	0,0085	4,6
6	0,0104	0,0118	12,9	0,0109	0,0119	9,0	0,0113	0,0120	6,6	0,0116	0,0122	5,1	0,0118	0,0123	4,2
7	0,0143	0,0161	12,4	0,0150	0,0163	8,5	0,0155	0,0165	6,0	0,0160	0,0167	4,5	0,0163	0,0169	3,6
8	0,0189	0,0211	11,8	0,0198	0,0214	7,9	0,0205	0,0216	5,4	0,0211	0,0219	3,9	0,0215	0,0222	3,0
9	0,0242	0,0269	11,2	0,0254	0,0272	7,2	0,0263	0,0275	4,7	0,0270	0,0279	3,2	0,0276	0,0282	2,3
10	0,0302	0,0334	10,4	0,0318	0,0338	6,4	0,0330	0,0342	3,9	0,0339	0,0347	2,4	0,0346	0,0351	1,4
11	0,0371	0,0407	9,6	0,0391	0,0412	5,6	0,0405	0,0418	3,1	0,0417	0,0423	1,5	0,0426	0,0428	0,5
12	0,0449	0,0489	8,8	0,0473	0,0495	4,6	0,0491	0,0501	2,1	0,0505	0,0508	0,5	0,0517	0,0514	0,5
13	0,0537	0,0579	7,8	0,0566	0,0587	3,7	0,0588	0,0594	1,1	0,0605	0,0602	0,6	0,0619	0,0609	1,6
14	0,0636	0,0679	6,8	0,0671	0,0688	2,5	0,0697	0,0697	0,1	0,0718	0,0706	1,7	0,0735	0,0715	2,8
15	0,0746	0,0788	5,7	0,0789	0,0799	1,3	0,0820	0,0810	1,3	0,0845	0,0820	3,0	0,0866	0,0831	4,1
16	0,0870	0,0909	4,5	0,0920	0,0921	0,1	0,0959	0,0934	2,6	0,0989	0,0946	4,3	0,1013	0,0958	5,4
17	0,1008	0,1041	3,2	0,1068	0,1055	1,2	0,1114	0,1070	4,0	0,1150	0,1084	5,8	0,1180	0,1098	6,9
18	0,1164	0,1185	1,9	0,1235	0,1202	2,7	0,1290	0,1219	5,5	0,1333	0,1236	7,3	0,1368	0,1252	8,5
19	0,1338	0,1344	0,4	0,1423	0,1363	4,2	0,1488	0,1383	7,1	0,1540	0,1402	9,0	0,1582	0,1421	10,2
20	0,1534	0,1518	1,0	0,1635	0,1541	5,8	0,1713	0,1563	8,8	0,1775	0,1586	10,7	0,1826	0,1608	11,9
21	0,1756	0,1689	3,8	0,1877	0,1736	7,5	0,1970	0,1762	10,5	0,2044	0,1789	12,5	0,2105	0,1815	13,8
22	0,2007	0,1923	4,2	0,2150	0,1953	9,2	0,2263	0,1984	12,4	0,2353	0,2014	14,4	0,2427	0,2045	15,7
23	0,2294	0,2159	5,9	0,2465	0,2195	11,0	0,2601	0,2231	14,2	0,2710	0,2266	16,4	0,2800	0,2302	17,8
24	0,2622	0,2426	7,5	0,2829	0,2467	12,8	0,2994	0,2509	16,2	0,3126	0,2552	18,4	0,3236	0,2594	19,8
25	0,3002	0,2728	9,1	0,3253	0,2778	14,6	0,3454	0,2828	18,1	0,3617	0,2879	20,4	0,3752	0,2931	21,9
26	0,3444	0,3078	10,6	0,3752	0,3139	16,3	0,3998	0,3201	19,9	0,4201	0,3264	22,3	0,4371	0,3328	23,9
27	0,3963	0,3496	11,8	0,4345	0,3572	17,8	0,4652	0,3652	21,5	0,4908	0,3733	23,9	0,5123	0,3816	25,5
28	0,4582	0,4019	12,3	0,5056	0,4123	18,5	0,5449	0,4232	22,3	0,5777	0,4348	24,7	0,6056	0,4469	26,2
29	0,5329	0,4752	10,8	0,5934	0,4924	17,0	0,6441	0,5119	20,5		0,5349			0,5642	
30	0,6248					-									77

F.9. Tabel Hasil Perpindahan Variasi Lebar Tether

F.10. Tabel Hasil Perpindahan	Variasi Tebal Tether
-------------------------------	----------------------

	Desain 4 (0.5µm)			Desain 2 (1µm)			Desain 18 (1.5µm)			Desain 3 (2µm)			Desain 19 (2.5µm)		
V	Kalkulasi	Sugar	%error	Kalkulasi	Sugar	, %error	Kalkulasi	Sugar	%error	Kalkulasi	Sugar	%error	Kalkulasi	Sugar	%error
0	0	0) 0	0	0	0	0	0	0	0	0	C	0	0	0
1	0.0026	0.0025	2.0	0.0003	0.0003	10.3		0.0001		0.0001	0.00004	70.2		0.00002	
2	0.0105	0.0102	3.1	0.0012	0.0013	10.2	0.0003	0.0004	15.3		0.0002	,	0.0001	0.0001	69.2
3	0.0244	0.0232	4.8	0.0027	0.0029	10.0	.,	0.0009	-,-	0.0005	0.0004	33.0	.,	0.0002	,
4	0.0453	0.0420	7.2	0.0048	0.0053	9.7	0.0013	0.0015	15.2		0.0007			0.0003	
5	0.0753	0.0674	10.4	0.0075	0.0082	9.4		0.0024		0.0012	0.0010	17.4		0.0005	
6	0.1175	0.1005	14.4	0.0109	0.0119	9.0	0.0030	0.0035	15.0	-,	0.0015	· · · ·	0.0006	0.0008	14.4
7	0.1774	0.1432	19.3	0.0150	0.0163	8.4	-,	0.0048	-,-	0.0022	0.0020	9.0		0.0010	,
8	0.2654	0.1988	25.1	0.0198	0.0214	7.8	0.0054	0.0062	14.7	-,	0.0026	- / -		0.0014	
9	0.4020	0.2741	31.8	0.0254	0.0272	7.2	-,	0.0079	, in the second se	0.0035	0.0033	3.8		0.0017	
10	0,6363	0,3883	39,0	0,0318	0,0338	6,4	0,0085	0,0098	14,4	-,	0,0041	-/-	0,0017	0,0021	0,2
11				0.0391	0.0412	5.6		0.0118		0.0050	0.0050	0.4		0.0026	,
12				0.0473	0.0494	4.4	0.0124	0.0141	14.0		0.0059			0.0031	
13				0.0566	0.0587	3.6		0.0166		0.0068	0.0070	2.1		0.0036	
14	-			0,0671	0,0688	2,5	0,0171	0,0194	13,5		0,0081	· ·	0,0034	0,0042	6,2
15				0,0788	0,0799	1,4		0,0223		0,0089	0,0093	3,9		0,0048	
16				0,0920	0,0921	0,1	0,0226	0,0255	12,9		0,0106			0,0055	
17				0,1068	0,1055	1,2		0,0289		0,0114	0,0120	5,3		0,0062	
18				0,1235	0,1202	2,7	0,0289	0,0325	12,3		0,0135		0,0056	0,0069	9,8
19				0,1423	0,1363	4,2		0,0364		0,0141	0,0150	6,4		0,0077	
20				0,1635	0,1541	5,8	0,0363	0,0405	11,6		0,0167			0,0086	
21				0,1876	0,1736	7,5		0,0449		0,0172	0,0185	7,2		0,0095	
22				0,2151	0,1953	9,2	0,0447	0,0496	10,8		0,0203		0,0085	0,0104	12,2
23				0,2466	0,2195	11,0		0,0545		0,0207	0,0223	7,8		0,0011	
24				0,2830	0,2467	12,8	0,0543	0,0597	9,9		0,0243			0,0125	
25				0,3253	0,2778	14,6		0,0652		0,0245	0,0265	8,3		0,0136	
26				0,3751	0,3140	16,3	0,0652	0,0711	9,0		0,0287		0,0119	0,0147	13,8
27				0,4343	0,3572	17,7		0,0772		0,0286	0,0311	8,6		0,0159	
28				0,5058	0,4123	18,5	0,0775	0,0837	8,0		0,0336			0,0171	
29		-		0,5935	0,4924	17,0		0,0906		0,0332	0,0362	8,9		0,0184	10
30							0,0914	0,0978	7,0		0,0388		0,0160	0,0198	15,0
31								0,1054		0,0382	0,0417	9,1		0,0211	
32							0,1071	0,1135	5,9		0,0446			0,0226	
33					1			0,1220		0,0436	0,0476	9,2		0,0241	
34					11		0,1249	0,1310	4,8		0,0508		0,0208	0,0257	15,9
35					11			0,1405		0,0495	0,0541	9,3		0,0273	
36							0,1452	0,1506	3,7		0,0575			0,0289	
37	1							0,1613		0,0559	0,0611	9,3		0,0307	
38		1					0,1683	0,1726	2,6		0,0648		0,0263	0,0325	16,7
39								0,1848		0,0628	0,0687	9,3		0,0343	
40		/					0,1947	0,1977	1,5		0,0727			0,0362	
41								0,2116		0,0703	0,0768	9,3	62.	0,0382	
42			- N				0,2252	0,2266	0,6		0,0812		0,0325	0,0403	17,4
43				N				0,2429		0,0784	0,0857	9,2	~ ~	0,0424	
44			1	1			0,2605	0,2606	0,0		0,0903			0,0446	
45				1				0,2801		0,0872	0,0952	9,2	×	0,0468	
46						1	0,3018	0,3019	0,0		0,1003		0,0396	0,0491	18,1
47					100			0,3266		0,0967	0,1055	9,2		0,0515	
48						-	0,3505	0,3554	1,4		0,1110			0,0540	
49								0,3905		0,1070	0,1168	9,2		0,0566	
50							0,4088	0,4375	7,0		0,1227		0,0476	0,0592	18,7
51								0,5320		0,1181	0,1290	9,2		0,0619	

LAMPIRAN G Source Code

1. Netlist Desain 1

use("std2cvt.net")

```
pi = 3.1415926535897932385
poly = material {
  Poisson = 0.42,
  thermcond = 1.5,
  viscosity = 1.81e-5,
  fluid = 2e-6,
  density = 2300,
  Youngsmodulus = 160e9,
  permittivity = 8.854e-12,
  sheetresistance = 20,
  stress = 0,
  straingradient = 0,
  thermalexpansion = 29,
  ambienttemperature = 0
p1 = material {
  parent = poly,
  h = 2e - 6,
  Poisson = 0.42,
  thermcond = 1.5,
  viscosity = 1.81e-5,
  fluid = 2e-6,
  density = 2300,
  Youngsmodulus = 160e9,
  permittivity = 8.854e-12,
  sheetresistance = 20,
  stress = 0,
  straingradient = 0,
  thermalexpansion = 29,
  ambienttemperature = 0
}
```

```
p2 = material {
  parent = poly,
  h = 1.5e-6,
  Poisson = 0.42,
  thermcond = 2.33,
 viscosity = 1.81e-5,
  fluid = 2e-6,
  density = 2300,
 Youngsmodulus = 160e9,
  permittivity = 8.854e-12,
  sheetresistance = 20,
  stress = 0,
  straingradient = 0,
  thermalexpansion = 29,
  ambienttemperature = 0
}
```

92

```
d2 = material {
 parent = poly,
  fluid = 0.75e-6,
  Poisson = 0.42,
 thermcond = 1.5,
  viscosity = 1.81e-5,
  fluid = 2e-6,
  density = 2300,
  Youngsmodulus = 160e9,
  permittivity = 8.854e-12,
  sheetresistance = 20,
  stress = 0,
  straingradient = 0,
  thermalexpansion = 29,
  ambienttemperature = 0
subnet mfbeam2de (a, b, material, l, w, h, R, G, resistivity,
density, fluid, viscosity, Youngsmodulus)
  local parent = material
  _currnodes["a"] = a
  currnodes["b"] = b
  l = l or (material and material.l)
  w = w or (material and material.w)
  h = h or (material and material.h)
  R = R or (material and material.R)
  G = G or (material and material.G)
  resistivity = resistivity or (material and material.resistivity)
  density = density or (material and material.density)
  fluid = fluid or (material and material.fluid)
  viscosity = viscosity or (material and material.viscosity)
  Youngsmodulus = Youngsmodulus or (material and
material.Youngsmodulus)
assert(((isdef(R)) or (isdef(G))) or (isdef(resistivity)), "R, G,
or resistivity must be defined in beam2de")
  if isdef(R) then
     mfR { n("a"), n("b"); material = parent, R = R}
                                                         else
   if isdef(G) then
        mfR { n("a"), n("b"); material = parent, G = G}
                                                             else
      if (((isdef(resistivity)) and (isdef(l))) and (isdef(w)))
and (isdef(h)) then
          mfR {_n("a"), _n("b"); material = parent, R =
((resistivity)*(l))/((w)*(h))}
                                    else
assert(0, "R, G, or resistivity must be defined")
      end
   end
end
 mfbeam2d {_n("a"), _n("b"); material = parent, l = l, w = w, h = l
h, density = density, viscosity = viscosity, Youngsmodulus =
Youngsmodulus }
end
subnet mfbeam3de (a, b, material, l, w, h, R, G, resistivity,
density, fluid, viscosity, Youngsmodulus)
 local parent = material
  currnodes["a"] = a
```

```
currnodes["b"] = b
  l = l or (material and material.l)
  w = w or (material and material.w)
  h = h or (material and material.h)
  R = R or (material and material.R)
  G = G or (material and material.G)
  resistivity = resistivity or (material and material.resistivity)
  density = density or (material and material.density)
  fluid = fluid or (material and material.fluid)
  viscosity = viscosity or (material and material.viscosity)
 Youngsmodulus = Youngsmodulus or (material and
material.Youngsmodulus)
 if isdef(R) then
      mfR { n("a"), n("b"); material = parent, R = R}
                                                        else
    if isdef(G) then
       mfR { n("a"), n("b"); material = parent, G = G}
                                                             else
      if (((isdef(resistivity)) and (isdef(l))) and (isdef(w)))
and (isdef(h)) then
         mfR { n("a"),
                        n("b"); material = parent, R =
((resistivity)*(l))/((w)*(h))} else
assert(0, "R, G, or resistivity must be defined")
      end
    end
  end
 mfbeam3d {_n("a"), _n("b"); material = parent, l = l, w = w, h = l
h, density = density, viscosity = viscosity, Youngsmodulus =
Youngsmodulus}
end
subnet mfgap2de (a, b, c, d, material, l, w, w1, w2, h, R, R1, R2,
G, G1, G2, resistivity, density, fluid, viscosity, Youngsmodulus,
gap, permittivity)
  local parent = material
  _currnodes["a"] = a
  currnodes["b"] = b
   currnodes["c"] = c
   currnodes["d"] = d
  l = l or (material and material.l)
  w = w or (material and material.w)
  w1 = w1 or (material and material.w1)
  w2 = w2 or (material and material.w2)
  h = h or (material and material.h)
  R = R or (material and material.R)
  R1 = R1 or (material and material.R1)
  R2 = R2 or (material and material.R2)
  G = G or (material and material.G)
  G1 = G1 or (material and material.G1)
 G2 = G2 or (material and material.G2)
  resistivity = resistivity or (material and material.resistivity)
  density = density or (material and material.density)
  fluid = fluid or (material and material.fluid)
  viscosity = viscosity or (material and material.viscosity)
  Youngsmodulus = Youngsmodulus or (material and
material.Youngsmodulus)
  gap = gap or (material and material.gap)
  permittivity = permittivity or (material and
```

```
material.permittivity)
```

```
assert((isdef(w)) or ((isdef(w1)) and (isdef(w2))), "Must define
beam widths")
assert((((isdef(resistivity)) or (isdef(R))) or (isdef(G))) or
((((isdef(R1)) or (isdef(G1))) and (isdef(R2))) or (isdef(G2))),
"Must define beam resistivities")
          w1 = ((isdef(w1)) and (w1) or (w))
  local
          w2 = ((isdef(w2)) and (w2) or (w))
  local
          R1 = ((isdef(R1)) and (R1) or (R))
  local
          R2 = ((isdef(R2)) and (R2) or (R))
  local
          G1 = ((isdef(G1)) and (G1) or (G))
  local
  local
          G2 = ((isdef(G2)) and (G2) or (G))
  local
          R1 = (((isdef(R1)) or (isdef(G1))) and (R1))
                                                        or
(((resistivity)*(l))/((w1)*(h))))
  local R2 = (((isdef(R2)) \text{ or } (isdef(G2))) \text{ and } (R2) \text{ or }
(((resistivity)*(l))/((w2)*(h))))
  mfbeam2de {_n("a"), _n("b"); material = parent, l = l, w = wl,
= h, density = density, fluid = fluid, viscosity = viscosity,
Youngsmodulus = Youngsmodulus, R = R1, G = G1}
  mfbeam2de {_n("c"), _n("d"); material = parent, l = l, w = w2, h
= h, density = density, fluid = fluid, viscosity = viscosity,
Youngsmodulus = Youngsmodulus, R = R1, G = G1}
  mfgap2dforce {_n("a"), _n("b"), _n("c"), _n("d"); material =
parent, 1 = 1, w1 = w1, w2 = w2, gap = gap, permittivity =
permittivity}
end
subnet mfgap3de (a, b, c, d, material, 1, w, w1, w2, h, R, R1, R2,
G, G1, G2, resistivity, density, fluid, viscosity, Youngsmodulus,
gap, permittivity)
  local parent = material
  _currnodes["a"] = a
  currnodes["b"] = b
  currnodes["c"] = c
   currnodes["d"] = d
  l = l or (material and material.l)
  w = w or (material and material.w)
  w1 = w1 or (material and material.w1)
  w^2 = w^2 or (material and material.w<sup>2</sup>)
  h = h or (material and material.h)
  R = R or (material and material.R)
  R1 = R1 or (material and material.R1)
  R2 = R2 or (material and material.R2)
  G = G or (material and material.G)
  G1 = G1 or (material and material.G1)
  G2 = G2 or (material and material.G2)
  resistivity = resistivity or (material and material.resistivity)
  density = density or (material and material.density)
 fluid = fluid or (material and material.fluid)
  viscosity = viscosity or (material and material.viscosity)
  Youngsmodulus = Youngsmodulus or (material and
material.Youngsmodulus)
  gap = gap or (material and material.gap)
  permittivity = permittivity or (material and
material.permittivity)
assert((isdef(w)) or ((isdef(w1)) and (isdef(w2))), "Must define
```

```
beam widths")
```

```
w1, h
w2, h
=
R2, G,
```

```
assert((((isdef(resistivity)) or (isdef(R))) or (isdef(G))) or
((((isdef(R1)) \text{ or } (isdef(G1))) \text{ and } (isdef(R2))) \text{ or } (isdef(G2))),
"Must define beam resistivities")
          w1 = ((isdef(w1)) and (w1) or (w))
  local
          w2 = ((isdef(w2)) and (w2) or (w))
  local
  local
          R1 = ((isdef(R1)) and (R1) or (R))
          R2 = ((isdef(R2)) and (R2) or (R))
  local
          G1 = ((isdef(G1)) and (G1) or (G))
  local
  local
          G2 = ((isdef(G2)) and (G2) or (G))
          R1 = (((isdef(R1)) \text{ or } (isdef(G1))) \text{ and } (R1) \text{ or }
  local
(((resistivity)*(l))/((w1)*(h))))
  local
          R2 = (((isdef(R2)) \text{ or } (isdef(G2))) \text{ and } (R2) \text{ or }
(((resistivity)*(l))/((w2)*(h))))
  mfbeam3de {_n("a"), _n("b"); material = parent, l = l, w = w1, h
= h, density = density, fluid = fluid, viscosity = viscosity,
Youngsmodulus = Youngsmodulus, R = R1, G = G1}
  mfbeam3de {_n("c"), _n("d"); material = parent, l = l, w = w2, h
= h, density = density, fluid = fluid, viscosity = viscosity,
Youngsmodulus = Youngsmodulus, R = R1, G = G1}
  mfgap3dforce {_n("a"), _n("b"), _n("c"), _n("d"); material =
parent, l = l, w1 = w1, w2 = w2, gap = gap, permittivity =
permittivity}
end
subnet mfgap2dV (a, b, c, d, material, l, w, w1, w2, R, R1, R2, G,
G1, G2, resistivity, density, fluid, viscosity, Youngsmodulus,
gap, permittivity, V)
  local parent = material
  _currnodes["a"] = a
   currnodes["b"] = b
   currnodes["c"] = c
   currnodes["d"] = d
  1 = 1 or (material and material.1)
  w = w or (material and material.w)
  w1 = w1 or (material and material.w1)
  w2 = w2 or (material and material.w2)
  R = R or (material and material.R)
  R1 = R1 or (material and material.R1)
  R2 = R2 or (material and material.R2)
  G = G or (material and material.G)
  G1 = G1 or (material and material.G1)
  G2 = G2 or (material and material.G2)
  resistivity = resistivity or (material and material.resistivity
  density = density or (material and material.density)
  fluid = fluid or (material and material.fluid)
  viscosity = viscosity or (material and material.viscosity
  Youngsmodulus = Youngsmodulus or (material and
material.Youngsmodulus)
  gap = gap or (material and material.gap)
  permittivity = permittivity or (material and
material.permittivity)
  V = V or (material and material.V)
  mfgap2dV {_n("a"), _n("b"), _n("c"), _n("d"); material = parent,
l = l, w = w, w1 = w1, w2 = w2, R = R, R1 = R1, R2 = R2, G = G, G1
= G1, G2 = G2, resistivity = resistivity, density = density, fluid
= fluid, viscosity = viscosity, Youngsmodulus = Youngsmodulus, gap
= gap, permittivity = permittivity}
  mfVsrc {_n("d"), _n("b"); V = V}
```
```
mfeground { n("b"); }
end
subnet mfgap3dV (a, b, c, d, material, l, w, w1, w2, R, R1, R2, G,
G1, G2, resistivity, density, fluid, viscosity, Youngsmodulus,
gap, permittivity, V)
 local parent = material
 _currnodes["a"] = a
 _currnodes["b"] = b
 currnodes["c"] = c
  currnodes["d"] = d
 l = l or (material and material.l)
 w = w or (material and material.w)
 w1 = w1 or (material and material.w1)
 w2 = w2 or (material and material.w2)
 R = R or (material and material.R)
 R1 = R1 or (material and material.R1)
 R2 = R2 or (material and material.R2)
 G = G or (material and material.G)
 G1 = G1 or (material and material.G1)
 G2 = G2 or (material and material.G2)
 resistivity = resistivity or (material and material.resistivity)
 density = density or (material and material.density)
 fluid = fluid or (material and material.fluid)
 viscosity = viscosity or (material and material.viscosity)
 Youngsmodulus = Youngsmodulus or (material and
material.Youngsmodulus)
 gap = gap or (material and material.gap)
 permittivity = permittivity or (material and
material.permittivity)
 V = V or (material and material.V)
= G1, G2 = G2, resistivity = resistivity, density = density, fluid
= fluid, viscosity = viscosity, Youngsmodulus = Youngsmodulus, gap
= gap, permittivity = permittivity}
 mfVsrc {_n("d"), _n("b"); V = V}
mfeground {_n("b"); }
end
```

```
mfanchor {_n("B"); material = p1, l = 1u, w = 1u, h = 30u, oz =
deg(90), R=1}
 mfbeam3de \{ n("A"), n("z1"); material = p1, l = 100.5u, w = 1u, 
h = 30u, oz = deg(90), R=1
 mfbeam3de {_n("z1"), _n("z2"); material = p1, l = 4u, w = 1u, h
= 30u, R=1}
 mfbeam3de { n("z1"), n("z3"); material = p1, l = 0.5u, w = 1u,
h = 30u, oz = deg(180), R=1
 mfbeam3de {_n("z2"), _n("z4"); material = p1, l = 0.5u, w = 1u,
h = 30u, R=1
 mfbeam3de {_n("z2"), _n("z5"); material = p1, l = 114.5u, w =
1u, h = 30u, oz = -(deg(90)), R=1}
 mfbeam3de {_n("z5"), _n("z6"); material = p1, l = 114.5u, w =
1u, h = 30u, oz = -(deg(90)), R=1}
  mfbeam3de {_n("z6"), _n("z7"); material = p1, l = 4u, w = 1u, h
= 30u, oz = deg(180), R=1
 mfbeam3de {_n("z7"), _n("z8"); material = p1, l = 0.5u, w = 1u,
h = 30u, oz = deg(180), R=1
 mfbeam3de {_n("z6"), _n("z9"); material = p1, l = 0.5u, w = 1u,
h = 30u, R=1
 mfbeam3de {_n("z7"), _n("B"); material = p1, l = 100.5u, w = lu,
h = 30u, oz = deg(90), R=1
 mfbeam3de { n("z5"), n("y1"); material = p1, l = 1.5u, w = 28u,
h = 30u, oz = deg(180), R=1
 mfbeam3de {_n("z5"), _n("y2"); material = p1, l = 2.5u, w = 28u,
```

```
h = 30u, R=1
```

```
mfVsrc { n("a8"), n("f"); V = 15}
mfeground { n("f"); }
mfVsrc {_n("a15"), _n("g"); V = 15}
mfeground {_n("g"); }
mfVsrc { n("c8"), n("h"); V = 15}
mfeground { n("h"); }
mfVsrc { n("c15"), n("i"); V = 15}
mfeground { n("i"); }
mfVsrc \{ n("f8"), n("j"); V = 15 \}
mfeground { n("j"); }
mfVsrc \{ n("f15"), n("k"); V = 15 \}
mfeground { n("k"); }
mfVsrc {_n("i8"), _n("l"); V = 15}
mfeground { n("l"); }
mfVsrc {_n("i15"), _n("m"); V = 15}
mfeground {_n("m"); }
mfVsrc {_n("18"), _n("n"); V
                                = 15
mfeground { n("n"); }
mfVsrc {_n("l15"), _n("o"); V = 15}
mfeground {_n("o"); }
```

```
Universitas Indonesia
Uji keakuratan..., Marthin Surya Setiawan, FT UI, 2010
```

mfanchor { n("a8"); material = p1, l = 3.5u, w = 1u, h = 30u, R = 1 } mfanchor { n("a8"); material = p1, l = 0.5u, w = 1u, h = 30u, oz = deg(180), R=1mfanchor { n("a15"); material = p1, l = 3.5u, w = 1u, h = 30u, R=1} mfanchor { n("a15"); material = p1, 1 = 0.5u, w = 1u, h = 30u, oz = deg(180), R=1mfanchor { n("c8"); material = p1, l = 3.5u, w = lu, h = 30u, R=1} mfanchor { n("c8"); material = p1, l = 3.5u, w = 1u, h = 30u, oz = deg(180), R=1mfanchor { n("c15"); material = p1, l = 3.5u, w = 1u, h = 30u, R=1} mfanchor { n("c15"); material = p1, l = 3.5u, w = 1u, h = 30u, oz = deg(180), R=1mfanchor { n("f8"); material = p1, l = 3.5u, w = 1u, h = 30u, R = 1 } mfanchor { n("f8"); material = p1, l = 3.5u, w = 1u, h = 30u, oz = deg(180), R=1mfanchor {_n("f15"); material = p1, l = 3.5u, w = 1u, h = 30u, R=1} mfanchor { n("f15"); material = p1, l = 3.5u, w = 1u, h = 30u, oz = deg(180), R=1mfanchor { n("i8"); material = p1, 1 = 3.5u, w = 1u, h = 30u, R = 1 } mfanchor { n("i8"); material = p1, l = 3.5u, w = 1u, h = 30u, oz = deg(180), R=1mfanchor { n("i15"); material = p1, l = 3.5u, w = 1u, h = 30u, R = 1mfanchor { n("i15"); material = p1, l = 3.5u, w = 1u, h = 30u, oz = deg(180), R=1mfanchor { n("18"); material = p1, l = 0.5u, w = 1u, h = 30u, R=1} mfanchor { n("18"); material = p1, l = 3.5u, w = 1u, h = 30u, oz = deg(180), R=1mfanchor { n("115"); material = p1, 1 = 0.5u, w = 1u, h = 30u} mfanchor {_n("115"); material = p1, l = 3.5u, w = 1u, h = 30u, oz = deg(180), R=1

```
mfbeam3de {_n("y2"), _n("a1"); material = p1, l = 0.5u, w = 28u,
h = 30u, R=1}
mfbeam3de {_n("a1"), _n("a10"); material = p1, l = 6.5u, w =
28u, h = 30u, R=1}
mfbeam3de {_n("a1"), _n("a2"); material = p1, l = 15u, w = 1u, h
= 30u, oz = deg(90), R=1}
mfgap2de {_n("a6"), _n("a5"), _n("a4"), _n("a2"); material = p1,
l=49u, w1=1u, w2=1u, h = 30u, gap=2u, oz=-(deg(90)), R1=1, R2=1}
mfbeam3de {_n("a6"), _n("a8"); material = p1, l = 1.5u, w = 1u,
h = 30u, oz = deg(90), R=1}
--
mfbeam3de {_n("a1"), _n("a11"); material = p1, l = 15u, w = 1u,
```

```
mfgap2de {_n("a13"), _n("a14"), _n("a11"), _n("a12"); material =
p1, l=49u, w1=1u, w2=1u, h = 30u, gap=2u, oz=-(deg(90)), R1=1,
R2=1
 mfbeam3de { n("a14"), n("a15"); material = p1, l = 1.5u, w =
1u, h = 30u, oz = -(deg(90)), R=1}
 mfbeam3de { n("a10"), n("c1"); material = p1, l = 0.5u, w =
28u, h = 30u, R=1
 mfbeam3de { n("c1"), n("c10"); material = p1, l = 6.5u, w =
28u, h = 30u, R=1
mfbeam3de { n("c1"), n("c2"); material = p1, l = 15u, w = 1u, h
= 30u, oz = deg(90), R=1
  mfgap2de { n("c6"), n("c5"), n("c4"), n("c2"); material = p1,
1=49u, w1=1u, w2=1u, h = 30u, gap=2u, oz=-(deg(90)), R1=1, R2=1}
  mfbeam3de {_n("c6"), _n("c8"); material = p1, l = 1.5u, w = lu,
h = 30u, oz = deg(90), R=1
 mfbeam3de { n("c1"), n("c11"); material = p1, l = 15u, w = 1u,
h = 30u, oz = -(deg(90)), R=1
  mfgap2de {_n("c13"), _n("c14"), _n("c11"), _n("c12"); material =
p1, l=49u, w1=1u, w2=1u, h = 30u, gap=2u, oz=-(deg(90)), R1=1,
R2=1}
 mfbeam3de { n("c14"), n("c15"); material = p1, l = 1.5u, w =
1u, h = 30u, oz = -(deg(90)), R=1}
  mfbeam3de {_n("c10"), _n("f1"); material = p1, l = 0.5u, w
28u, h = 30u, R=1
  mfbeam3de {_n("f1"), _n("f10"); material = p1, l = 6.5u, w =
28u, h = 30u, R=1
  mfbeam3de {_n("f1"), _n("f2"); material = p1, l = 15u, w = 1u, h
= 30u, oz = deg(90), R=1
  mfgap2de {_n("f6"), _n("f5"), _n("f4"), _n("f2"); material = p1,
1=49u, w1=1u, w2=1u, h = 30u, gap=2u, oz=-(deg(90)), R1=1, R2=1}
  mfbeam3de {_n("f6"), _n("f8"); material = p1, l = 1.5u, w = 1u,
h = 30u, oz = deg(90), R=1
  mfbeam3de { n("f1"), n("f11"); material = p1, l = 15u, w = 1u,
h = 30u, oz = -(deg(90)), R=1
 mfgap2de {_n("f13"), _n("f14"), _n("f11"), _n("f12"); material =
p1, 1=49u, w1=1u, w2=1u, h = 30u, gap=2u, oz=-(deg(90)), R1=1,
R2=1}
  mfbeam3de { n("f14"), n("f15"); material = p1, l = 1.5u, w =
1u, h = 30u, oz = -(deg(90)), R=1}
 mfbeam3de {_n("f10"), _n("i1"); material = p1, l = 0.5u, w =
28u, h = 30u, R=1
  mfbeam3de {_n("i1"), _n("i10"); material = p1, l = 6.5u, w =
28u, h = 30u, R=1
  mfbeam3de {_n("i1"),
                       n("i2"); material = p1, l = 15u, w = 1u, h
= 30u, oz = deg(90), R=1
  mfgap2de {_n("i6"), _n("i5"), _n("i4"), _n("i2"); material = p1,
l=49u, w1=1u, w2=1u, h = 30u, gap=2u, oz=-(deg(90)), R1=1, R2=1}
  mfbeam3de {_n("i6"), _n("i8"); material = p1, l = 1.5u, w = 1u,
h = 30u, oz = deg(90), R=1
```

```
11
```

mfbeam3de { n("i1"), n("i11"); material = p1, l = 15u, w = 1u, h = 30u, oz = -(deg(90)), R=1mfgap2de { n("i13"), n("i14"), n("i11"), n("i12"); material = p1, l=49u, w1=1u, w2=1u, h = 30u, gap=2u, oz=-(deg(90)), R1=1, R2=1} mfbeam3de { n("i14"), n("i15"); material = p1, l = 1.5u, w = 1u, h = 30u, oz = -(deg(90)), R=1} mfbeam3de { n("i10"), n("l1"); material = p1, l = 0.5u, w = 28u, h = 30u, R=1mfbeam3de {_n("l1"), _n("l10"); material = p1, l = 3.5u, w = 28u, h = 30u, R=1mfbeam3de { n("l1"), n("12"); material = p1, l = 15u, w = 1u, h = 30u, oz = deg(90), R=1} $mfgap2de \{ n("16"), n("15"), n("14"), n("12"); material = p1,$ l=49u, w1=1u, w2=1u, h = 30u, gap=2u, oz=-(deg(90)), R1=1, R2=1} mfbeam3de {_n("16"), _n("18"); material = p1, l = 1.5u, w = 1u, h = 30u, oz = deg(90), R=1mfbeam3de {_n("l1"), _n("l11"); material = p1, l = 15u, w = 1u, h = 30u, oz = -(deg(90)), R=1mfgap2de {_n("113"), _n("114"), _n("111"), _n("112"); material = p1, l=49u, w1=1u, w2=1u, h = 30u, gap=2u, oz=-(deg(90)), R1=1, R2=1mfbeam3de { n("114"), n("115"); material = p1, l = 1.5u, w = 1u, h = 30u, oz = -(deg(90)), R=1}

```
--====== Tether 2 (Done) =======--
```

```
mfeground {_n("x8"); }
mfeground { n("C");
 mfbeam3de {_n("110"), _n("x2"); material = p1, l = 2.5u, w =
28u, h = 30u, R=1
  mfbeam3de {_n("x2"), _n("x3"); material = p1, l = 1.5u, w = 28u,
h = 30u, R=1
  mfbeam3de {_n("x2"),
                       n("x4"); material = p1, l = 114.5u, w =
1u, h = 30u, oz = deg(90), R=1}
  mfbeam3de {_n("x4"), _n("x5"); material = p1, l = 4u, w = 1u, h
= 30u, R=1
  mfbeam3de {_n("x4"), _n("x6"); material = p1, l = 0.5u, w = 1u,
h = 30u, oz = deg(180), R=1
 mfbeam3de {_n("x5"), _n("x7"); material = p1, l = 0.5u, w = 1u,
h = 30u, R=1
 mfbeam3de { n("x5"), n("x8"); material = p1, l = 100.5u, w =
1u, h = 30u, oz = -(deg(90)), R=1}
  mfbeam3de { n("x9"), n("C"); material = p1, l = 100.5u, w = 1u,
h = 30u, oz = deg(90), R=1
 mfbeam3de {_n("x10"), _n("x9"); material = p1, l = 4u, w = 1u, h
= 30u, R=1}
  mfbeam3de { n("x9"), n("x11"); material = p1, l = 0.5u, w = 1u,
```

```
mfbeam3de {_n("x10"), _n("x12"); material = p1, l = 0.5u, w =
lu, h = 30u, oz = deg(180), R=1}
mfbeam3de {_n("x2"), _n("x10"); material = p1, l = 114.5u, w =
lu, h = 30u, oz = -(deg(90)), R=1}
mfanchor {_n("x8"); material = p1, l = 1u, w = 1u, h = 30u, oz =
-(deg(90)), R=1}
mfanchor {_n("C"); material = p1, l = 1u, w = 1u, h = 30u, oz =
deg(90), R=1}
```

relpos_treewalk()

2. M. File untuk menjalankan analisis DC

```
echo off
echo on; clc
pause
type desain1.net
pause
type mumps20.net
pause
net = cho_load('desain1.net');
```

figure; cho_display(net);

pause % Strike any key to continue
clc

% Static Analysis%

pause % Strike any key to analyze and display deflection at 10V

```
[dq] = cho_dc(net);
figure;
cho_display(net,dq);
title('Deflected structure at V=10v');
```

y(1) = dqval(net,dq,'z3','x')
y(1) = dqval(net,dq,'a4','x')
y(1) = dqval(net,dq,'f2','x')
y(1) = dqval(net,dq,'i10','x')

```
y(1) = dqval(net,dq,'a5','x')
pause % Strike any key to exit
echo off
disp('End of demo')
```