
Universitas Indonesia

UNIVERSITAS INDONESIA

CALCULATOR PROJECT USING VHDL

SKRIPSI

MOHAMAD SANDI SURIAGEMILANG

0405830075

DEPARTEMEN TEKNIK ELEKTRO

FAKULTAS TEKNIK UNIVERSITAS INDONESIA

DEPOK

JANUARI, 2010

Universitas Indonesia

UNIVERSITAS INDONESIA

CALCULATOR PROJECT USING VHDL

SKRIPSI

Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik

MOHAMAD SANDI SURIAGEMILANG

0405830075

DEPARTEMEN TEKNIK ELEKTRO

FAKULTAS TEKNIK UNIVERSITAS INDONESIA

DEPOK

JANUARI, 2010

Universitas Indonesia

HALAMAN PERNYATAAN ORISINALITAS

Skripsi ini adalah hasil karya saya sendiri,

dan semua sumber baik yang dikutip maupun dirujuk

 telah saya nyatakan dengan benar

Nama : Mohamad Sandi Suriagemilang

NPM : 0405830075

Tanda Tangan :

Tanggal : 21 Januari 2010

ii

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

HALAMAN PENGESAHAN

Skripsi ini diajukan oleh :

Nama : Mohamad Sandi Suriagemilang

NPM : 0405830075

Program Studi : Teknik Elektro Internasional

Judul Skripsi : Calculator Project Using VHDL

Telah berhasil dipertahankan dihadapan Dewan Penguji dan diterima sebagai

bagian persyaratan yang diperlukan untuk memperoleh gelar Sarjana Strata 1

pada Program Studi Teknik Elektro, Fakultas Teknik, Universitas Indonesia.

DEWAN PENGUJI

Pembimbing : Muhammad Salman, ST., MIT ()

Penguji : Abdul Muis, ST ()

Penguji : Prof. Dr. Ir. NR. Poespawati, MT. ()

Ditetapkan di : Depok

Tanggal : 6 Januari 2010

iii

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

KATA PENGANTAR

Puji syukur penulis sampaikan kepada Allah SWT atas segala karunia dan Rahmat-

Nya sehingga skripsi ini dapat terselesaikan. Saya menyadari bahwa tanpa bantuan

dan bimbingan dari berbagai pihak, dari masa perkuliahan sampai pada penyusunan

skripsi ini, sangatlah sulit bagi saya untuk memperoleh gelar sarjana. Penulis

mengucapkan terima kasih kepada :

1. Dr. Jasmine Banks dari Queensland University of Technology (QUT) dan

Muhammad Salman, ST., MIT sebagai dosen pembimbing yang telah

meluangkan waktunya untuk memberikan arahan, bimbingan dan diskusi

sehingga skripsi ini dapat terselesaikan dengan baik.

2. Orangtua yang tidak kenal lelah untuk selalu mendukung dan membuka

wawasanku, kakak dan adik-adikku yang selalu memberikan motivasi

3. Rekan satu tim dalam skripsi ini, Faristama Aryasa yang telah membantu saya

dalam mengerjakan skripsi ini

4. Seluruh civitas akademika Departemen Elektro Universitas Indonesia yang tidak

dapat disebutkan satu persatu.

Akhir kata, semoga Allah SWT. Membalas segala kebaikan semua pihak yang telah

membantu penyusunan skripsi ini dengan balasan yang setimpal. Semoga skripsi ini

dapat berguna bagi siapa saja yang membacanya

Depok, 21 Januari 2010

 Penulis

iv

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

HALAMAN PERSETUJUAN PUBLIKASI KARYA ILMIAH

UNTUK KEPENTINGAN AKADEMIS

Sebagai civitas akademika Universitas Indonesia, saya yang bertanda tangan di

bawah ini :

Nama : Mohamad Sandi Suriagemilang

NPM : 0405830075

Program Studi : Elektro Program Internasional

Departemen : Elektro

Fakultas : Teknik

Jenis Karya : Skripsi

Demi pengembangan ilmu pengetahuan, menyetujui untuk memberikan kepada

Universitas Indonesia Hak Bebas Royalti Noneksklusif (Non-Exclusive Royalty-

Free Right) atas karya ilmiah saya yang berjudul :

CALCULATOR PROJECT USING VHDL

Dengan Hak Bebas Royalti Non Eksklusif ini Universitas Indonesia berhak

menyimpan, mengalihmedia/formatkan, mengelola dalam bentuk Basis Data,

merawat dan mempublikasikan tugas akhir saya selama tetap mencantumkan nama

saya sebagai penulis / pencipta dan sebagai pemilik Hak Cipta.

Demikian pernyataan ini saya buat dengan sebenarnya

Dibuat di : Depok

Pada tanggal : 21 Januari 2010

Yang menyatakan

(Mohamad Sandi Suriagemilang)

v

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

ABSTRAK

Nama : Mohamad Sandi Suriagemilang

Program Studi : Teknik Elektro Internasional

Judul : Calculator Project Using VHDL

Skripsi ini membahas kemampuan mahasiswa Fakultas Teknik UI angkatan 2005

dalam membuat suatu program kalkulator digital dengan menggunakan VHDL.

Percobaan ini adalah percobaan kualitatif dengan desain rekayasa pemrograman.

Hasil percobaan menunjukan bahwa program kalkulator dapat terselesaikan dengan

mengacu kepada prinsip-prinsip digital dan pemrograman assembly. Terdapat

setidaknya empat keuntungan dalam pemrograman menggunakan VHDL : spesifikasi

exekusi, ketidakbergantungan pada teknologi dan peralatan, data desain yang dapat

dibawa-bawa, dan mensimulasikan secara awal dan cepat

Kata kunci :

program kalkulator digital, prinsip – prinsip digital dan pemrograman assembly.

vi

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

ABSTRACT

Name : Mohamad Sandi Suriagemilang

Study Program : Teknik Elektro Internasional

Title : Calculator Project Using VHDL

The focus of this study is the freshmen student of Department of Electrical

Engineering at University of Indonesia experience of making a digital calculator

program by using VHDL. The result of this project shows that calculator program can

be made based on digital principals and assembly programming. There are at least

four benefits by programming using VHDL : executable specification, technology

and tool independence, portable design data , and simulate early and fast.

Keywords:

digital calculator program, digital principals and assembly programming

vii

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

DAFTAR ISI

HALAMAN PERNYATAAN ORISINALITAS ..ii

HALAMAN PENGESAHAN ..iii

KATA PENGANTAR ..iv

HALAMAN PERSETUJUAN PUBLIKASI KARYA ILMIAH UNTUK

KEPENTINGAN AKADEMIS ...v

ABSTRAK ...vi

CHAPTER I INTRODUCTION ..1

CHAPTER II LITERATURE REVIEW ..2

 2.1. Introduction ..2

 2.1.1. FPGA ...2

 2.1.2 VHDL ..2

2.2. PicoBlaze...3

2.4. Implementation of PicoBlaze onto the Spartan-3E FPGA....4

2.4. Spartan-3E Development Board ...4

CHAPTER III VHDL ..8

3.1. Introduction to VHDL ..8

3.1.2. VHDL Language Concepts ...10

3.1.2.1 Entity ...10

3.1.2.2 Architecture ...11

3.1.2.3 Package ..11

CHAPTER IV SIMULATION AND RESULT ..12

 4.1 Theoritical Analysis ..12

4.1.1 ALU ...12

4.1.2 MEM ..13

4.1.3 CTRL_FSM ...16

4.1.4 COMP ..22

4.1.5 My Calc Module ..22

viii

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

4.2 Experimental Procedure or Design Procedure22

4.2.1 ALU ...22

4.2.2 MEM ..25

4.2.3 CTRL_FSM ...28

4.2.4 COMP ..34

4.2.5 CALC ...39

4.3. Results or Final Design ...45

4.3.1 Result of ALU ..45

4.3.2 Result of MEM ...47

4.3.3 Result of CTRL_FSM...50

4.3.4 Result of COMP ...50

4.3.5 Result of CALC ...51

CHAPTER V DISCUSSION ..54

5.1 ALU ..54

 5.2 MEM ..53

 5.3 CTRL_FSM ..54

 5.4 COMP ...58

 5.5 CALC ..59

CHAPTER VI CONCLUSION ...60

BIBLIOGRAPHY ...61

APPENDIX A VHDL CODES ...63

ix

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

CHAPTER I

INTRODUCTION

As part of their Engineering Degree undergraduate students at Queensland

University of Technology. undertaking EEB839-2, were allocated into groups or

single person to complete a supervised project

The initial aim of this project is to create FPGA through the use of Xilinx’s

Spartan-E development board Starter kit. The author had done it for EEB989-1, but

because of one, reason, the supervisor of this project changed the title become

Calculator Project Using VHDL. The reason was the author hadn't taken ENB.344

which was the requirement to do the project.

 Students were, to interact with their d present to them regular progress

reports. The scope of each project encompassed: the definition of the project topic,

completion of literature review, formulation of the project specification, planning and

timetabling of the project for the completion of tasks, a. discussion of the obtained

results, and a submission of final report for assessment.

In conclusion, Mohamad Sandi Suryagemilang and Faristama Aryasa, after

discussion with their supervisor, decided to research Field Programmable Gate

Arrays (FPGAs), in particular making calculator via VHDL(VHSIC Hardware

Description Language).

1
Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

CHAPTER II

LITERATURE REVIEW

2.1 Introduction

FPGA refers, to Field Programmable Gate Arrays, It has a ability of complete

re. programmability

Initially, in this project, the writer used FPGA through the use, of Xilinx's

Spartan-3E development board starter kit, and afterward it would go to a more

complex project e.g. uploading the Pico Blaze microcontroller.

2.1.1 FPGA

In industry applications, there ax two types of chips that are commonly used

in, The first one is FPGA and second one is Application Spec
i
fic Integrated Circuit

(ASIC)

FPGA was PCB contained many transistors came from logic units like adders,

counters, ;mixes and even microconrollers.

11.2 VHDL

VHDL is abbreviation of VHSIC (Very High Speed Integrated Circuits)

Hardware Description Language. It is a programming language as link of FPGAs and

ASICs

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

ENTITY dff is - Entity declaration

Port (d, clk : IN STD LOGIC - Two inputs of the type Std Logis

q.qbar: OUT STND_LOGIC) - Two outputs of the type Std_Logic

END dff; - End of entity declaration

Keyword such as entiry, port, ht, out and are reserved words and comments are

preceded by a (-)

The operation of the D Filip-Flop is specified by the architecture declaration. The

code uses conditional statements to emulate the flip flop.

ARCHITECTURE behavioral OF dff IS - Architechure of the Entity begn

Output Process - Process named output declared

Wait Until (clk EVENT AND clk = ‘I’) - Continues when clock rises q<d:

qbar <= NOT d; - input is also generated

END PROCESS OUTPUT - Process terminates and waits

END behavioral : - End of Archirecture

Note that architecnture name “behavioral” is arbitary but the entity name “dff must

match the entity declaration (5)

This project will cover mainly on VHDL, the writer will explain it furhermore in next

chapter

2.2. PicoBlaze

 Xilinx’s PicoBlaze is a microcontroller designe to be embedded into Sparatan-

3 gamily of FPGAs. One of its benefits is the ability to modify components of

microcontroller.

2

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

2.3. Implementation of PicoBlaze onto the Spartan-3E FPGA

 Unlike dedicated microcontrollers supplied by companies like ATMEL where

programs written in assembly language are compiled and uploaded onto the chip,

assembly programs for Pieoblaze are uploaded in HDI. and are included with the

instructions for the design of the microcontroller This is achieved by using any text

editor to write an assembly Program with a psm file extension and then compiling

the Program using KCPSm3.exe (supplied by Xilinx). This in turn creates a H'DL file

to lie included with the microcontroller kepsm3. vhd file for compiling and uploading

onto the FPGA PROM (programmable read-onlyd-only memory). The PROM is a

separate on-board memor
y
 component which is used to program the FPGA at start up.

Features of PicoBlazc

• load-store architecture

• contains 16 internal 8 bit registers

• program size a maximum of 1024 instructions

• multiple processors can be connected for increased performance

• stack can support 31 levels of subroutine nesting

• only 57 instructions

2.4 Spartan-3E Development Board

There are several components in board that writer used in EF11889-1, they are

LCD screen, pushbuttons and serial communications between the board and a

computer.

There arc some advantages in using the Spartan Chip-,

1. Integrated external system component s C,

Power regulator and in line filters arc no longer needed in PCB

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

2. Large IP Library

I will reduce the time spent on product development

The PCB includes: LCD screen, 21 pushbutton and swich inputs and 8 LED

outputs. We can see front diagraw below:

Gambar

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

The chip communicates with the LCD screen using 7 pains as shown below

Fiqure 4 Connection of LCD to Spratan-3E (14,p43)

The top 4 pains are he data pains the bottom 3 pins are interface pins; these must

switch on and off in specific patterns while the display is configured.

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

The FPGA connects to the LEDs using the following pins:

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

CHAPTER III

 VHDL

3.1 Introduction to VHDL

VHDL is an abbreviation of VHSIC Hardware Description Language.

Furthermore, VHSIC stands for Very High-Speed Integrated Circuit. VHDL is the

toot for hardware modeling. It had been used for simulation or to synthesis.

There are many benefits using VHDL The first is: executable specification. A

VHDL specification can be executed in order to achieve, a high level of confidence in

its correctness before commencing design, and may simulate one to two orders of

magnitude faster than a gate level description. The second is: Technolo
g
y and tool

independence (though FPGJA features may be unexploited). VHDL permits

technology independent design through support for top down design and logic

synthesis. - To move a design to a new technology you need not start from scratch or

reverse-engineer a specification - instead yew go back up the design tree to a

behavioural VHDL description, then implement that in the new technology knowing

that the correct functionality will be preserved. The third one is: portable design data

(Protect investment). VHDL descriptions of hardware design and test benches are

portable between design tools, and portable between design centres and project.

partners. You can safely invest in VHDL modelling effort and training, knowing that

you will not be tied in to a single tool vendor, but will be free to preserve your

investment across tools and platforms. Also, the design automation tool vendors are

themselves making a large investment in VHDL, ensuring a continuing supply of

state-of-the-art VHDL tools. The fourth one is: Simulate early and fast (Manage

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

complexity). Behavioural simulation can reduce design time by allowing design

problems to be detected early on, avoiding the aced to rework designs at gate level.

Behavioural simulation also permits design optimization by exploring alternative

architectures, resulting in better designs. With all those benefits, therefore, VHDL

activies have received aplenty of attentions.

HDL Description Levels

The are 4 rules regarding partitioning a design for VHDL design entry:

• Must be consistent with RTL coding structure

• Minimize the number of clocks per block

• Maintain critical signals within a block

• Make a quick, relatively simple test bench for each submodule

8

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

Recommended Design Verification Stages

There are there levels of design verification in VHDL:

• Behavioral/RTL simulation: Execute RTL source code and the testbench

• Post-synthesis VHDL simulation: Execution VHD file and the testbench

• VHDL timing simulation: Execute post-layout structural VHD and SDF file

and the testbech

3.1.0. VHDL Language Concepts

VHDL is composed of design units, they are :

• Entity

• Architecture

• Package

• Package Body

• Configuration

3.1.2.1 Entity

 An entity describes the external interface to the hardware module

 Entitiy Half_ADD is

 Port (A, B : in std_logic;

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

 SUM, CARRY : out std_logic) ;

 End entity HALF_ADD

3.1.2.2 Architecture

 An architecture describes the internal operation of is associated (primary)

entity

3.1.2.3. Package

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

 A package stores the data that will be used repeatedly throughout a design,

project or organization

CHAPTER IV

SIMULATIONS AND RESULT

4.1. Theoritical Analysis

The purpose of this project was to create a simple calculator project. The

calculator project consisted of 4 parts: ALU, MEM. CTRL_FS M. COMP with

MY_CALC_MODULE as a package far all of them. All of that parts was divided for

two persons, Faristama Aryasa explained about ALU and MEM and Mohammad

Sandi Suryagemilang explained about CTRl_,FSM, COMP and

MY_CALC_MODULE..

4.1.1. ALU

ALU: Arithmetic Logic Unit is one of the blocks that consist in the project.

The basic knowledge for operators is compulsory. The Logic has their calculation on

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

its block. The block performs calculation such as arithmetic and logical operation. It

is one of the essential blocks. Fundamental operations were calculated in this block.

Depending on the, input which in this case. is the OP_CODE the ALU takes A and B

two bits operand, as well as carry input C_IN, and it will do 32 operation with 2 types,

one with the carry in and the other is not. The calculation will he helpful for the

whole system once it has boon done.

While the testbench is on
,
 the appendix

The 32 operations are:

12

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

Operation OP_CODE & C_in Carry in Result

txa 00000 0 A

xta 00001 1 A

inc 00010 0 A + 1

inc 00011 1 A + 1

add 00100 0 A + B

add 00101 1 A + B

addc 00110 0 A + B + C_IN

addc 00111 1 A + B + C_IN

sub 01000 0 A + not B + 1

sub 01001 1 A + not B + 1

comp 01010 0 not A

comp 01011 1 not A

neg 01100 0 not A + 1

neg 01101 1 not A + 1

dec 01110 0 A – 1

dec 0111 1 A – 1

txb 10000 0 B

txb 10001 1 B

and 10010 0 A and B

and 10011 1 A and B

or 10100 0 A or B

or 10101 1 A or B

xor 10110 0 A xor B

xor 10110 1 A xor B

sl 11000 0 A (2 downto 0) & ‘0’ Shift left

sl 11001 1 A (2 downto 0) & ‘0’ Shift left

sr 11010 0 0’ shift right & A (3 downto 0)

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

sr 11011 1 0’ shift right & A (3 downto 0)

Par 11100 0 000 & ((A(3) xor A(2)) xor

(A(1) Xor A(0)))

par 11101 1 & ((A(3) xor A(2)) xor (A(1)

Xor A(0)))

zero 11110 0 0

zero 11111 1 0

 All operation is a basic operation although view syntax of VHDL language

might occur. A wide description of the operation will be revealed.

 As known that every single block have to run into each test benches according

to their block.

 The test benches apply on the simulation only, they are also important to

design a process. Since the simulation only, they are also important to design should

be checked first before it works correctly. This testing can also be carried out for the

RTL schematic.

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

The RTL Schematic shows that A, B, C and OP_CQDE (4 bits) are the inputs

along clock and the carrier, while the Output will be in form of 4 bits, It later on will

useful for the circuit analyzing.

The test bench already existed. However some addition to fulfill the

requirement of all operations had to be completed, Exact coding will be discussed on

the next part. See Appendix for ALU test bench.

4.1.2 MEM

MEM: Memory management system is a block that implements the MY_ROM

which is the memory temp that every sin
g
le input should have the same output, as in

the Memory management, The MEM would create output with exact match for what

the aiding says in the MY_ROM, The Addresses were counted by the NICK Where

when certain address with certain OP_CODE and time were delivered. Output

generates a memory management to construct the A, B, C_in, the expected output to

march the OP_CODE.

This MEM block also store 32 memory arrays,. This 32 memory corresponds

to the address that we compute from 0 to 31. As in ALU, this block is also important

for the whole system. At the end the control finite state machine control al the process

for combining these, blocks.

As shown above, the expected results for certain OP_CODE has been

determined. These will shows how the output going to be. The test bench again will

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

do the testing simulation for its block, The RTL schematic model could be delivered,

The A and B are default outputs which are determined.

The behavioral simulation will deliver the data frame output which contains all

the output, from that data frame the checking of an appropriate memory management

should be done, 17he discussion for checking of the data frame would
be

presented

furthermore.

4.13 CTRL_FSM

In this part, the writer implemented CTRI_-FSM and a test bench for it. FSM

stands for Finite State Machine.

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

 The first thing when coding an FSM in VHDL is whether it has Mealy

outputs, Moore, outputs or both. The difference of them is in how their outputs are

computed. Outputs of Mealy FSM's arc a function of both its inputs and its present

state. Because of this, the outputs of a mealy FSM can change as soon as any of is

inputs change. However, its state still cannot change until a triggering clock edge. A

Moore FSM's outputs are a function of only its present state. Since a Moore FSM’s

outputs are a function of only is present state, they Can change only at a triggering

clock edge. Generally, any sequential function can be implemented by either Mealy

FSM or a Moore FSM, bu also it can be a combination of both, having sonic outputs

that depend on the present state and present inputs (Mealy outputs) and other outputs

depend only the present state (Moore outputs)

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

Multiprocess FSM is very recommended. Multiprocess means separate

processes to model the sequential, combinational an output logic is used. It requires

less coding, because big coding is seperated into small picces. Furthermore, because

the coding is separated, it also can be more readable and intuitive. The last benefit is

it can allow more compiler optimization by no forcing registered outputs.

Multiprocess FSM

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

 VHDL process block described both synchronous and combinational logic

portions of FSM.

Architecture RTL of FSM is begin….

SYNC process (CLK, RST) begin

If (RST = ‘1’) then

Current_State<=Init;

Elsif rising_edge (CLK) then

Current_State<=Next_State end if;

End process Sync;

Current state logic described by syanchronous process

Archilocture Rtl of FSM is begin ….

Case (Current_State) is when Init =>

Out1_Sig <= ‘0’

Status_Reg <= ‘10’;

When Load =>

Out1_SIG <= ‘1’;

Status_Reg <= “0”;

Moore Qutputs in next state logic

Architecture RTL of FSM is begin ….

Process (Current_State, IN1, In2, In3) begin

Case (Current_State) is when Init =>

If (IN1 and In2) = ‘1’ then

Out1_Sig <= ‘0’

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

Status_Reg <= “0”;

When Load = >

Mealy Outputs Next State Logic (Inputs are inserted in process)

 FSM can also coded by single clocked process, but it’s no recommended

because it consuming more resources that resulted by all outputs are registered. The

second reason is because state events usually occurred one clock cycle after entering

the state.

Single Process FSM

 Furthermore, in single clocked process, there is another registers on the output

that increase amount of next state combinational logic necessary to drive them.

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

Single_Process Block

4.1.4. Comp

 A comp or comparator a block that takes two numbers as input in binary form

and determines whether one input greater than, less than or equal to the other input.

 The operation of a single bit digital comparator can be expressed as a truth

table:

Inputs Outputs

A B A<B A=B A>B

0 0 0 1 0

0 1 1 0 0

1 0 0 0 1

1 1 0 1 0

 That means the binary variable (A=B) is 1 only if all pairs of digits of the two

numbers are same, furthermore, (A>B) and (A<B) are output binary variables, which

are equal to 1 when A>B or A<B.

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

4.1.5 My Calc Module

 My Calc Module had a purpose to Complete the calculator project. In

this section, he author combined the submodules that were created in the

previous lab exercises to complete the SIMPLE—CALC module.

4.2. Experimental Procedure or Design Procedure

4.2.1 ALU

The procedure to do the ALU is first to create the coding with VHD file.

There ar The test bench for the ALU Rick- and the calculation to do the

calculation. The V11D called ALU.VHD, the test bench called ALU_TB.VHD and

the calculator is MY_CALC_PACKAGE.VHD. After the entire file complete, a

test bench could be simulated!

Since the, entire file had been generated, the, project can be build with:

• Click the Xilinx ISE 92. Software then clicks the project navigator.

• At the opened window, click the file tab -> new project until -> new project

wizard window appeared

• Type,

ALU_AB (means that it has been tested as the project name -> choose HDL

as the top level source type -> then click next.

• Keep clicking next until a new window called add existing code has appear ->

click add source and chums the three files of the VHD files, The calculation,

ATJJ, and the test bench for the ALU -> Click next again.

• Now the ALU block project has been created. The window will appear like

this.

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

Gambar

 Clicking the source code, either ALU_TB or the unit under test will result as a

coding for the test bench and also the VHD. To see through the RTL schemantic,

simply put the source for synthesis/implementation and expand the synthesize XST

then click the view RTL schematic on the processes window.

The RTL schematic will appear as:

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

Clicking the RTL schematic gets the schematic to the inside as if like as a circuit with

gates

 Discover the simulation for behavioral model

• Change the source for behavioral again -> expand the Xilinx ISE simulator ->

click the simulate behavioral model.

• Wait for a while to check the syntax of the system -> a new window called

simulation should appear. The outputs are expandable to unsure manual

checking for the operation of ALU (Arithmetic Logic Unit).

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

42.2 M E M

The MEM block project also needs 3 kinds of files. The files are MEM. VHD,

MEM_TB.VHD, and also the MY_CALC_PACKAGE.VHD. Same as before, the

steps to make the project are:

• Click the Xilinx ISE 92, Software then clicks
,
 the project navigator.

• At the opened window, click the file tab -> new project until -> a new project

wizard window appeared,

• Type MEM_TB (means that it has been tested) as the project name -> choose

HDL. as the top level source type -> then click next.

• Keep clicking next until a new window called add existing code has appear click

add source and choose the three files of the VHD files, MEM.VHD, MEM_TB.

and, and also the MY_CALC_PACKAGE.VHD -> Click next again. Remember

that the 3 files are there,

• Now the ALU block project has been created. The window will appear like this

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

The RTL Schematic for, can be maximized and shown through these steps:

• On the Top left window-> change the source for synthesis/implementation.

• Expand the synthesize-XST on the processes window -> then click on View

RTL schematic -> click again on schematic to reveal the register transfer

level.

• The window should appear as this.

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

 Furthermore, same procedure to show the simulation behavior: and in this

case is the data frame of the MEM memory management:

• Change the source for behavioral again -> expand the Xilinx ISE simulator ->

click the simulate behavioral model.

• Wait for a while to check the syntax of the system - > a new window called

simulation should appear. The output are expandable to help manual checking

for the operation of NEM (Arithmetic Logic Unit).

• The data frame should appear as below:

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

The data frame can be expandable so the bits will show. At the end, simulation

will be used for checking the error for the block and also the Memory management of

the. MEM. The data frame output should match with the OP-CODE which we stored

all the value in MY_ROM array.

4.23. CTRL_FSM

In this project the writer implemented CTRL_FSNM and made a test bench

for it, 3 files was put together in
,
 a project called “CTRL_FSM_TB”. They are

MY_ALC_PACKAGE. vhd, CNML_FSM_TB.vhd and C'I'R_FSM,vhd. Simulation

code wrote in CTRL_FSM_TB.VHD.

Firstly, the author made a project called "CTRL_FSM_TB”. Initially, The

author went to start menu and then clicked Xilinx ISE 9.2 I, and then clicked Project

Navigator.

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

After that, the author clicked file and then clicked new project

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

And then, the writer typed project name which was CTRL_FSM_TB

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

 Furthermore, the writer was kept clicking was kept clicking next until he

found window of new project wizard-Add existing sources. When he got there, he

inserted those there files and then he clicked next and finish.

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

The screen became like this below:

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

After that, the writer expanded Xilink ISE Simula tor and double-clicked simulate

model

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

4.2.4 COMP

 Moreover in this part, the writer created a file called comp_tb.vhd and wrote

code for the test bench for it using a file called COMP.vhd.

 Furthermore, the writer created a project called comp_tb and add comp-tb.vhd

and COMP.vhd into comp_tb. And then, writer ran the test bench simulation.

 Firstly, the author made a project called “comp_tb”. Initially, the author went

to start menu and then clicked Xilinx ISE 9.2.I, and then clicked project navigator.

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

Gambar

After that, the author clicked file and then clicked new project

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

Gambar

And then, the writer typed project name which was comp_tb

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

Gambar

 Furthermore, the writer was kept clicking next until he found window of new

project wizard add existing sources. When he got there, he inserted those two files

and then he clicked next and finish.

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

Gambar

The screen became like this below:

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

After that, the writer expanded Xilink ISE simulator and doble clicked simulate

behavioral model

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

4.2.5 CALC

 For he next task, the writer made a project with my_cale.vhd as well as his

completed files ALU.vhd, CNTRL_FSM.vhd, MEM.vhd, COMP.vbd and

MY_CALC_PACKAGE.vhd.

 After that, the writer made a yest bench MY_CALC_TB.vhd for this project.

 Firstly, the author made a project called “MY_CALC_TB”. Initially, the

author went to start menu and then clicked Xilinx ISE 9.2.I and then clicked project

navigator.

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

Gambar

After that, the author clicked file and then clicked new project

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

Gambar

And then, the writer typed project name which was MY_CALC_TB

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

 Furthermore, the writer was kept clicking next unit he found window of new

project wizard add existing sources. When he got there, the inserted those seven and

then he clicked next and finish.

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

The screen became like this below:

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

4.3 Results or Final Design

4.3.1 ALU

 Checking the ALU test bench should refer on the operation of the operators.

There are 16 operators to be used, in the case of checking from the test bench project.

 The ALU performs a very well test bench_ 31 operators including with carry

done, success parity. In this case the parity with carrier sets to 0. The same coding

for the parity without carrier cannot be applied on this operator. Some other coding

should be implemented. In the test bench, the A and B have a default value of

‘0111’ and ‘0011’

In this report, 10 Results can be

observed white the rest results could be taken

from the CD that includes the, report.

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

Operator:

1. Txa: The ALIT. output is simply the value of A default. Both same with or

without carrier. Certain OP_CODE & C IN, in example of 00000,

OP_CODE & C_IN: 00000

A : 0111

B : 0011

ALL_OUT: 0 111

2. Txb: The ALU output is simply the v aloe of B default. Both same with or

without earlier. Certain OR-CODE & C-IN, in example of 00001,

OP-CODE &C-M- 00001

A. 0111

B. 0011

ALU_OUT: 0011

3. OR.
:
The ALU output is A ‘OR’ B

OP_CODE & C_IN: 10101

ALU OUT : 0111

4. AND The A117 output is A 'AND' B

OP_CODE & C_TN: 0010

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

ALU_OUT: 0011

5. COMPLEMENT: The ALU output is NOTA

OP_CODE: 01100

ALU_OUT:1000

 6. XOR: The ALL output is A.'XOR"B

OP_CODE: 101 10

ALU_OUT: 0100

7. SL : The ALL, output is shift left A

 OP_CODE: 11000

 ALU_OUT: 1110

 8. DEC: The ALU output is A-1

 OP_CODE: 01110

 ALU_OUT: 0110

9. INC: The INC output is A-1

 OP_CPDE : 00010

 ALU_OUT : 1000

10. ADD: The. ADD output is A + 1

 OP_CODE : 00100

 ALU_OUT : 1010

4.3.2 MEM

On the IMLIM block the checkin
g
 is more focusing on the memory

management. The storage MY_ROM give the clue of how the results going to be

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

depend on the input. In this case again. a test bench shows the MEM data frame

output, which will carry on for the whole project of calculation package with 4

blocks.

The array MY_ROM has 32 addresses and with A (0111) and B (0011) for the

default test bench. The 10 results are being presented while the other result can he

checked through the CD within.

1. Txa : for txa address ‘o’ (00000)

 Data frame :

 OP_CODE : 0000

 EXP_OUT : 0111

2. Txb : for txb address ‘16’ (10000)

 Data frame

 OP_CODE : 1000

 EXP_OUT : 0011

3. OR : for OR address ‘20’ (10100)

 Data frame

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

OP_CODE : 10010

 EXP_OUT : 00111

4. AND : for AND address ‘18’ (10010)

 Data frame :

OP_CODE : 1001

 EXP_OUT : 0011

5. COMP : for COMPLEMENT address ‘10’ (01010)

 Data frame :

OP_CODE : 0101

 EXP_OUT : 1000

6. XOR : for XOR address ‘22’ (10110)

 Data frame :

OP_CODE : 1011

 EXP_OUT : 0100

7. SL : for Shift left address ‘24’ (11000)

 Data frame :

OP_CODE : 1100

 EXP_OUT : 1110

8. DEC : for decrement address ‘14’ (01110)

 Data frame :

OP_CODE : 0111

 EXP_OUT : 0110

9. INC : for Increment address ‘2’ (00010)

 Data frame :

OP_CODE : 0001

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

 EXP_OUT : 1000

10. ADD : for Adder address ‘4’ (00100)

 Data frame :

OP_CODE : 0010

 EXP_OUT : 1010

4.3.3 Result of CTRL_FSM

This is the result of Simulation of CTRL_FSM_TB.vhd

4.3.4 Result of COMP

This is the result of simulation of comp_tb.vhd

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

4.3.5 Result of CALC

This is the result of simulation of MY_CALC.vhd

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

CHAPTER V

DISCUSSION.

5.1 ALU

The results show that ALU works well enough aside from I of the operation

was being, failed. Affect of that particular operation is not very significant. The

whole project should still he working without that operation, The, top 2 levels of

HDL description level have reached a successful project. The behavioral and RTL

goes well.

The abstraction levels with view details and simulation were achieved by

doing the test bench before the implementation. In order to get a correct project for

implementation, the pre synthesize state should be done. In this ease Synthesizable

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

code and hardware modeling were completed.

As for the results for the test bench, for

• Txa : The output was 0111 -> which is correctly operated by ALU since 0111 is

the default value of A.

• Txb - The output was 0011 -> which is correctly operated by ALU since 0011 is

the default value of &

• OR . The output was 0111 -> which is correctly operated by

ALU since. OR

become true if either one of the operands are true.

A (0111) OR B (0011) => ALU_OUT (0111)

AND: output was 0011 -> which is correctly operated by ALU since AND become

false if either one of the operands are true.

A (0111) AND B (0011) => ALU_OUT (0111)

• COMP. The output was IWO -> which is correctly operated by ALU since it is A

complement, Complement A (0111) ALU_0UT (1110)

• XOR : The output was 01W -> which is correctly operated by ALU since XOR

become true if true if one and only one of the operands are true.

A (0111) XOR 11 (0011) => ALU_OUT (01 00)

• SL: The output was 1110 -> which is correctly operated by ALU since SL shift

the bits to the lfet, with an extra bill "0'.

Shift left A (0111) => ALU-_OUT (1110)

• DEC : The output vas 0110 ->which is correctly operated by ALU since the, A

was decresed by one

A (0111) – I => ALU_OUI (01 10)

•••• INC : The output was 1000 -> which is correctly operatd by ALU since the A was

increased by one T,

A. (0111) 11.) + => ALU_OLTT (1000)

• ADD :The output was 1010 -> which is correctly operated by ALU by using

A + B was

5.2 MEM

54

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

In the test bench, the MEM black works perfectly. There was not any mistake

in the syntax or even on the output. Tile MY_ ROM arrays have matched the

specification, wwhenever the specific input come the output data frame consist of A

B C _ in and. the OP–CODE.

Txa : Data frame match with, MY_ROM storage.

Txb : Data frame match with MY_ROM storage.

OR : Data frame match with MY_ROM storage.

AND : Data frame match with MY–ROM storage.

COMP : Data frame match with MY ROM storage.

XOR : Data frame match with MY_ROM storage.

SL : Data frame match with MY_ROM storage,

DEC. : Data frame match with MY_ROM storage.

INC : Data frame match with MY_ROM storage.

ADD : Data frame match with MY_ROM storage.

5.3. CTRL_FSM

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

Schematic for a simple calculator circuit

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

Schematic of CTRL_TB.vhd

It can tic seen from 2 diagrams above, here are 7 inputs 0 CTRL_FSM block,

they are: DATA_FRAME_A_IN, DATA_FRAME_B_IN, DATA_FRAME_C_IN

DATA-FRAME_OP_CODE, DATA _FRAME_EXP_OUT, CLK and reset (3:0)

means 3 downs, to zero as we can see in CTRL_FSM_TB.vhd, or we can say it is 4

bits code. All DATA_FRAMEs is output of MEM block. Clock is useful as a timing

signal. It controls '.when all the, memory elements

can change state, Reset is

synonymus wilt clear, Any synchronous inputs must be kept unasserted for normal

synchronous operation., Furthermore, them are 9 outputs going out from C:I'RL

FSM block. They are: A-IN, B_IN, C_IN, OP_CODE, ALU_EN, COMP_EN, EXP,

MEM_EN, ADDR, A_IN, B_IN, C_IN, OP_CODE and ALU_EN goto ALU

BLOCK, COMP_EN and EXP go to MEM block and CTRL_FSM block involving

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

their inputs and outputs. It means, CTRL_FSM output become MEM inputs and vice

versa.

 The two diagram above is the state of CTRL_FSM. It shows transition from

one state to another.

1. SO Init

This is the first step of this process. From two diagrams above , we can see that

Initial state happened when MEM_FSM = 0, ALU_EN = 0 and COMP_EN = 0 in

other words, we can say that init is intial state when it is reset

2. S1 FETCH

In this state, CTRL_FSM get the next instruction from the MEM , From two

diagrams above, we can see that this state is happened when MAM_EN = 1

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

ALU_EN = 0 and COMP_EN = 0

3. S2 ALU

In this state, CTRL_FSM block execute the instruction on the ALU. From two

diagrams above we can see that Initial state is happened when, MEM_EN = 0,

ALU_EN = 1 and COMP_EN =0

4. S3 COMP

In this state, CTRL_FSM compares the result from. the ALU with the expected

result . From two diagrams above, we can see that Initial state is happened when

MEM_EM = 0, ALU_EN = 0 and COMP_EM = 1

5. S4 DONE

In this state, CTRL_FSM checks if we have gone through all instructions, if not,

return to FETCH otherwise, we are finished, stay in DONE., FEOM two diagrams

above, we can see that Initial state is happened when. MEM_EM = 0, ALU_EN =

0 and COMP_EN = 0

Those sequences above was repeated 31 times, because it should happened 32

times (from ADDR 00000 to ADDR. 11111)

The red box with a letter inside
in

on the graph above means the Stale was still

undefined. Furthermore. we can see from CTRL_FSM_TB.vhd that RESET <= '0%1'

after 25ns,T after 500ns,0 after 525ns, it was proved from the diagram above

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

5.4. COMP

It can be seen. from a diagram above, there axe 4 inputs of COMP block, they

are: ALU_OUT_EXPECTED, CLK, COMP_EN. (3:0) means 3 downs to zero as we

zero as we can see in COMP_TB.vhd, or we can say it is 4 bits code. COMP_EN and

EXPECTED are output of CRTL_FSM block ALU_OUT is output of ALU block.

Clock is useful as a timing signal. It controls whwn all the memory elements can

change state.

 Inside COMP block, there is a process of comparison between ALU_OUT

and EXPECTED. If both of them equal to 1, then the result is 1. otherwise, it will

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

become zero. The result become the output the output calculation.

 In COMP_TB.vhd, there is a line of EXPECTED<= “0010” after 100ns, it

made the RESULT became zero after 100ns because EXPECTED was not equal to

0001. we can see it on the result section.

5.5. CALC_TB

 CALC_TB is a tenchbench to combine all four vhds, ALU, MEM,

CTEL_FSM and COMP. as da diagram above, there are two inputs of it, CLK and

reset. Furthermore the only output is result. In this CTRL_FSM became UUT1, ALU

became UUT 2, MEM became UUT 3, COMP became UUT 4, UUT means Unit

Under Test.

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

CHAPTER VI

CONCLUSION

1. Being able to understand the key concepts to create a VHDL project fulfilling the

pre-requirement. The blocks are Important to be tested first before going to

implementation.

2. VHDL language has been studied throughout the whole process. The basic

programming style can be developed more to ge the real tolls such as Spartan 3e.

3. The project was held successfully since minor mistake did not have any

significant matter to the project and test benching for all the 4 blocks uphold the

project to be called as a succesfull project thus the comparison between the block

are being presented.

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

BIBLIOGRAPHY

 R. wain. (Nov. 2006) An Overview of FPGAS and FPGA programming.

 http://www.cse.scitech.ac.uk/disco/publications/FPGA_overview.pdf. Accessed

 Aug 08

 FPGA4Fun. (Feb. 2008) How FPGAs Work.

 http://www.fpga4fun.com/FPGAinfo2.html. Accessed Aug 08

 A.J. Coppola, (Oct. 1993), PLD. Complex PLD, and FPGA applications using

 VHDL, IEEE, Portland Oregon.

 Department of Computer Science, University of Regina.
 http://www.es.uregina.ca/Links/class-info/301/register/lecture.html. accessed Aug 08

 C.H. Roth, (1977) Digital Systems Design Using VHDL. PWS Publishing Company.

 ISBN 0-534-95099

 M. Predko, Programming and customizing PICmicro MCU microcontroller

 McGraw-Hill ISBN 0-07-136172-3

 M68HC11, (July, 2005) Freescale Semiconductor [Online] Available:

 http://www.freescale.com Accessed Sept. 2008

 T. Jamil, (Aug-Sep, 1995), RISC versus CISC Potentials, IEEE Volume 14, Issue 3,

Page (s): 13-16

 K. Champan, Xilinx user community forums [Online] Available:

 http://forums.xilinx.com/xlnx/board/message?board.id=PicoBlaze&message.id=24

 Accessed 2008, Aug 22

 K. Chapman. Creating Embedded Microcontrollers (Programmable State Machines)
 [Online] Available: http://www.xilinx.com. Accessed Sept. 2008

 Prof E. Roberts, The Intellectual Excitement of Computer Science RISC

Architecture [Online] Available: http://cse.stanford.edu/class/sophomore-

college/projects-00/rise/risccise/, Accessed Sept. 2008

 K. Chapman. (2003, Oct) PicoBlaze KCPSM3 8-bit Microcontroller for Spartan-3

 Xilinx Ltd, rev 7, www.xilinx.com. Accessed Spet. 2008

 PicoBlaze 8-bit Embedded Microcontroller User Guide for Spartan-3, VIrtex-II, and

Virtex-II Pro FPGAs UG129 (vl.1.2) June 24, 2008 [online] Available:

 http://www.xilinx.com. Accessed Aug 08

 “Spartan-3E FPGA Starter Kit Board User Guide”, ug230 vl.1 June 20, 2008, Xilinx

Inc. http://www.Xilinx.com. Accessed Sept. 2008

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

 W. Kilroy, M. Baker, M. Grace. FPGA Project Report, 2008: QUT.

 http://en.wikipedia.org/wiki/digital_comparator. Accessed August 2009

 Armstrong J.R. and F.G. Gray, VHDL Design Representation and Synthesis,

Englewood Cliffs, NJ: Prentice Hall, 2
nd

 Edition, 2000.

 Bhasker J., VHDL Primer, Englewood Cliffs, NJ: Prentice Hall, 3
rd

 Edition, 1999

 Yalamanchi S, VHDL Starter’s Guide, Englewood Cliffs, NJ: Prentice Hall, 1998

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

Appendix A : VHDL Codes

1. MY_CALC_PACKAGE.vhd :

Library IEEE;

Use IEEE.STD_CALC_PAK is

Package MY_CALC_PAK is

Type MY_ RECORD is

Record

 OP_CODE : std_logic_vector(3 downto 0); -- opcode

A_IN : std_logic_vector(3 downto 0); -- A operand

B_IN : std_logic_vector(3 downto 0); -- B operand

C_IN : std_logic: -- C_In operand

 Exp_out : std_logic_vector(3 downto 0); -- expected output

End record;

end MY_CALC_PAK;

2. CTRL_FSM_TB.vhd

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

USE ieee.std_logic_unsigned.all;

USE ieee.numeric_std.ALL;

use CALC1_PAK.ALL;

ENTITY CNTRL_FSM_TB-vhd IS

END CNTRL_FSM_TB_vhd;

ARCHITECTUTER behavior OF CNTRL_FSM_TB-vhd IS

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

-- Component Declaration for the Unit Under Test (UUT)

COMPONENT CNTRL_FSM

PORT(

DATA_FRAME : IN MY_RECORD;

CLK : IN std_logic;

RESET : IN std_logic;

MEM_EN : OUT std_logic;

ADDR : OUT std_logic_vector(3 downto 0);

ALU_EN : OUT std-logic;

A_IN : OUT std_logic_vector(3 downto 0);

B_IN : OUT std_logic_vector(3 downto 0);

OP_CODE : OUT std_logic_vector(3 downto 0);

C_IN : OUT std_logic;

COMP_EN : OUT std_logic;

EXP : OUT std_logic_vector(3 downto 0);

);

END COMPONENT;

--Inputs

SIGNAL DATA_FRAME : MY-RECORD :=

(A_IN=>*0111*,B_IN=>”0011*,OP_CODE=>*0000*,C_IN=>’0’,EXP_OUT=>”0111”);

SIGNAL CLK : std_logic :=’0’;

SIGNAL RESET : std_logic :=’0’;

--Outputs

SIGNAL MEM_EN : std_logic;

SIGNAL ADDR : std_logic_vector(3 downto 0);

SIGNAL ALU_EN : std_logic;

SIGNAL A_IN : std_logic_vector(3 downto 0);

SIGNAL B_IN : std_logic_vector(3 downto 0);

SIGNAL OP_CODE : std_logic_vector(3 downto 0);

SIGNAL C_IN : std_logic;

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

SIGNAL COMP_EN : std_logic;

SIGNAL EXP : std_logic_vector(3 downto 0);

BEGIN

-- Instantiate the Unit Under Test (UUT)

uut: CNTRL_FSM PORT MAP(

DATA_FRAME => DATA_FRAME,

CLK => CLK

RESET => RESET.

MEM_EN => MEM_EN.

ADDR => ADDR.

ALU_EN => ALU_EN,

A_IN => A_IN,

B_IN => B_IN,

OP_CODE => OP_CODE,

C_IN => C_IN,

COMP_EN => COMP_EN,

EXP => EXP

);

CLK <= not CLK after 1 Ons; -- 50 MHz clock

RESET <= ‘0’.’1’ after 1 ons, ‘0’ after 25ns, ‘1’ after 800ns, ‘0’ after 825ns;

--test_proc : PROCESS

--BEGIN

-- test bench code here

tb : PROCESS

BEGIN

DATA_FRAME <= (“1000”, “0100”, “0000”, “0000”);

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

wait for 100 ns;

DATA_FRAME <=(“1000”,”0100”,”0101”,”0”,”0000”);

wait for 100 ns;

DATA_FRAME <=(“1000”,”0100”,”0101”,”0”,”0000”);

Wait; - will wait forever

--END PROCESS test-proc;

END;

3. CTRL_FSM.vhd :

library ieee;

use IEEE.STD_LIGIC_1164.ALL;

use IEEE.STD_LIGIC_ARITH.ALL;

use IEEE.STD_LIGIC_UNSIGNED.ALL;

use MY_CALC_PAK.ALL

entity CNTRL_FSM is

port (DATA_FRAME : in MY_RECORD;

CLK : in STD_LOGIC;

RESET : in STD_LOGIC;

MEM-EN : out STD_LOGIC;

ADDR : out STD_LOGIC_VECTOR(4 downto 0);

ALU_EN : out STD_LOGIC;

A_IN : out STD_LOGIC_VECTOR(3 downto 0);

B_IN : out STD_LOGIC_VECTOR(3 downto 0);

OP_CODE : out STD_LOGIC_VECTOR(3 downto 0);

C_IN : out STD_LOGIC;

COMP_EN : out std_logic;

EXP : out std_logic_vector(3 downto 0);

end CNTRL_FSM;

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

architecture Behavioral of CNTRL_FSM is

type State is (INIT, FETCH, ALU, COMP, DONE);

signal Curr_State, Next_State: State;

signal ADDR_INT : std_logic_vector(4 downto 0);

signal ADDR_Q : std_logic_vector(4 downto 0);

begin

ADDR <= ADDR_Q

Sync: process (CLK.RESET)

begin

if RESET = T then

Curr_State <= Next_State;

ADDR_Q <= (others => ‘0’)

elsif rising_edge(CLK) then

curr_State <= Next_State;

ADDR_Q <= ADDR_INT;

end if;

end process Syne;

find_Next_State: process (Curr_State,DATA_FRAME,ADDR_Q)

begin

A_IN <= DATA_FRAME.A_IN;

B_IN <= DATA_FRAME.B_IN;

C_IN <= DATA_FRAME.C_IN;

OP_CODE <= DATA_FRAME.OP_CODE;

ADDR_INT <= ADDR_Q

EXP <= DATA_FRAME.EXP_OUT;

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

case (Curr_State) is

when INIT => -- set up initial defaults

MEM_EN <= ‘0’;

Alu_en <= ‘0’;

COMP_EN <= ‘0’;

ADDR_INT <= (others => ‘0’);

Next_State <= FETCH;

when FETCH =>

MEM_EN <= ‘1’;

ALU_EN <= ‘0’;

COMP_EN <= ‘0’;

Next_State <= ALU;

when ALU =>

MEM_EN <= ‘0’;

ALU_EN <= ‘1’;

COMP_EN <= ‘0’;

Next_State <= COMP;

when COMP =>

MEM_EN <= ‘0’;

ALU_EN <= ‘0’;

COMP_EN <= ‘1’;

when DONE =>

MEM_EN <= ‘0’;

ALU_EN <= ‘0’;

COMP_EN <= ‘0’;

IF ADDR_Q < “11111” then

ADDR_INT <= ADDR_Q + ‘1’;

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

Next_State <= FETCH;

else

Next_State <= DONE;

end if;

when others =>

MEM_EN <= ‘0’;

ALU_EN <= ‘0’;

COMP_EN <= ‘0’;

Next_State <= INIT;

end case;

end process Find_Next_State;

end Bhavioral;

4. COMP.vhd :

library IEEE;

use IEEE.STD_LIGIC_1164.ALL;

use IEEE.STD_LIGIC_ARITH.ALL;

use IEEE.STD_LIGIC_UNSIGNED.ALL;

entity COMP is

port (COMP_EN : in STD_LOGIC;

CLK : in STD_LOGIC;

EXPECTED : in STD_LOGIC_VECTOR(3 downto 0);

ALU_OUT : in STD_LOGIC_VECTOR(3 downto 0);

RESULT : out STD_LOGIC;

End COMP;

Architecture RTL of COMP is

Begin

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

Process (CLK)

Begin

If rising_edge(CLK) then

If comp_en = ‘I’ then

If ALU_OUT = EXPECTED then

RESULT <= ‘1’;

Else

RESULT <= ‘0’;

End if;

End if;

End if;

End process;

End RTL;

5. comp_tb.vhd :

LIBRARY ieee;

USE ieee.std_ligic_1164.ALL;

USE ieee.std_ligic_unsigned.all;

USE ieee.numeric_std.ALL;

ENTITY COMP_TB_vhd IS

END COMP_TB_vhd;

ARCHITECTURE test OF COMP_TB_vhd IS

-- Component Declaration for the Unit Under Test (UUT)

COMPONENT COMP

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

PORT(

COMP_EN : in STD_LOGIC;

CLK : in STD_LOGIC;

EXPECTED : in STD_LOGIC_VECTOR(3 downto 0);

ALU_OUT : in STD_LOGIC_VECTOR(3 downto 0);

RESULT : out STD_LOGIC

);

END COMPONENT;

--Inputs

SIGNAL COMP_EN: std_logic : = ‘1’

SIGNAL CLK : std_logic : = ‘0’

SIGNAL EXPECTED : std_logic_vector(3 downto 0);= “0001”;

SIGNAL ALU_OUT : std_logic_vector(3 downto 0);= “0001”;

--Output

SIGNAL RESULT : std_logic;

BEGIN

-- Instantiate the Unit Under Test (UUT)

uut: COMP PORT MAP(

COMP_EN => COMP_EN,

CLK => CLK,

EXPECTED => EXPECTED,

ALU_OUT => ALU_OUT,

RESULT => RESULT

);

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

CLK <= not CLK after 10ns;

test_proc : PROCESS

BEGIN

Wait for 5ns;

Expected <= “0010” after 100ns

Wait;

END PROCESS test_proc;

END;

6. MY_CALC.vhd :

library IEEE;

use IEEE.STD_LIGIC_1164.ALL;

use IEEE.STD_LIGIC_ARITH.ALL;

use IEEE.STD_LIGIC_UNSIGNED.ALL;

use MY_CALC_PAK.ALL;

---- Uncomment the following library declaration if instantiating

---- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

Entity MY_CALC is

--generic (SYNTH : Boolean := false);

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

Port (CLK : in STD_LOGIC;

RESET : in STD_LOGIC;

RESULT : out STD_LOGIC;

and MY_CALC;

architecture Structural of MY_CALC is

component MEM

port (CLK : in STD_LOGIC;

ADDR : in STD_LOGIC_VECTOR (4 downto 0);

READ_EN : in STD_LOGIC;

DATA_FRAME : out MY_ RECORD);

End component;

Component CNTRL_FSM

Port (DATA_FRAME : in MY_RECORD

CLK : in STD_LOGIC;

RESET : in STD_LOGIC;

MEM_EN : out STD_LOGIC

ADDR : out STD_LOGIC_VECTOR(4 downto 0);

ALU_EN : out STD_LOGIC

A_IN : out in STD_LOGIC_VECTOR(3 downto 0);

B_IN : out STD_LOGIC_VECTOR(3 downto 0);

OP_CODE : out STD_LOGIC_VECTOR(3 downto 0);

C_IN : out STD_LOGIC

COMP_EN : out std_logic;

EXP : out std_logic_vector(3 downto 0);

End component;

Component ALU

Port (A : in STD_LOGIC_VECTOR(3 downto 0);

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

B : in STD_LOGIC_VECTOR(3 downto 0);

C_IN : in STD_LOGIC

OP_CODE : in STD_LOGIC_VECTOR(3 downto 0);

CLK : in STD_LOGIC

ALU_EN : in STD_LOGIC

ALU_OUT : out STD_LOGIC_VECTOR(3 downto 0);

End component;

Component COMP

Port (COMP_EN : in STD_LOGIC;

CLK : in STD_LOGIC

EXPECTED : in STD_LOGIC_VECTOR(3 downto 0);

ALU_OUT : in STD_LOGIC_VECTOR(3 downto 0);

RESULT : out STD_LOGIC);

End component;

Signal DATA_FRAME_SIG : MY_RECORD;

Signal ADDR_SIG : STD_LOGIC_VECTOR(4 downto 0);

Signal MEM_EN_SIG, ALU_EN_SIG, COMP_EN_SIG, C_IN_SIG : std_logic;

Signal A-IN_SIG, B_IN_SIG, OP_CODE_SIG, EXP_OUT_SIG, ALU_OUT_SIG;

STD_LOGIC_VECTOR(3 downto 0);

Begin

U1 : MEM port map

(CLK=>CLK.ADDR=>ADDR_SIG.READ_EN=>MEM_EN_SIG.DATA_FRA

ME=>DATA_PRAME_SIG):

U2 : CNTRL_FSM port map

(DATA_FRAME=>DATA_FRAME_SIG,CLK=>CLK,RESET=>RESET,MEM

_EN=>MEM_EN_SIG,

ADDR=>ADDR_SIG,ALU_EN=>ALU_SIG,A_IN=>A_IN_SIG,B_IN=>B_IN_

SIG,OP_CODE=>OP_CODE_SIG.

C_IN=>C_IN_SIG,COMP_EN=>COMP_EN_SIG,EXP=>EXP_OUT_SIG);

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

U3 : ALU port map

(A=>A_IN_SIG,B=>B_IN_SIG,CLK=>CLK,EXPECTED=>EXP_OUT_SIG,AL

U_OUT=>ALU_OUT_SIG,

RESULT=>RESULT);

End Structural;

7. MY_CALC_TB.vhd

LIBRARY ieee;

USE ieee.std_ligic_1164.ALL;

USE ieee.std_ligic_unsigned.all;

USE ieee.numeric_std.ALL;

ENTITY MY_CALC_TB_vhd IS

END MY_CALC_TB_vhd;

ARCHITECTURE test OF MY_CALC_TB_vhd IS

--Components Declaration for the Unit Under Test (UUT)

COMPONENT MY_CALC

PORT(

CLK_IN : IN std_logic;

RESET : IN std_logic;

RESULT_OUT : OUT std_logic

);

END COMPONENT;

--Input

SIGNAL CLK : std_logic : = ‘0’;

SIGNAL RESET_TB : std_logic : = ‘0’;

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

--Output

SIGNAL RESULT : std_logic;

BEGIN

--Instantiate the Unit Under Test (UUT)

Uut: MY_CALC PORT MAP(

CLK_IN=>CLK_TB,

RESET=>RESET_TB

RESULT_OUT=>RESULT

);

CLK_TB <= not CLK_TB after 10ns;

RESET_TB <= T after 15ns, ‘0’ after 25ns, T after 700ns, ‘0’ after 725 ns;

End architecture TEST;

7. ALU,VHD file

USE ieee.std_ligic_1164.ALL; --Library Declaration

USE ieee.std_ligic_unsigned.all; --Packages std_logic_vector

USE ieee.numeric_std.ALL; --Packages numeric operation

ENTITY ALU_TB_VHD IS --Primary design unit

END ALU_TB_VHD;

Architecture behavior OF ALU_TB_vhd IS

--Component Declaration for the Unit Unver Test (UUT)

COMPONENT ALU

PORT(

A : IN std_logic_vector(3 downto 0); --Block port

B : IN std_logic_vector(3 downto 0);

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

C_IN : IN std_logic;

OP_CODE : IN std_logic_vector(3 downto 0);

CLK : IN std_logic;

ALU_EN : IN std_logic;

ALU_OUT : OUT std_logic_vector(3 downto 0);

);

END COMPONENT;

--Input

SIGNAL C_IN : std_logic : = ‘0’; --input signals

SIGNAL CLK : std_logic : = ‘0’;

SIGNAL ALU_ EN : std_logic : = ‘1’;

SIGNAL A : std_logic_vector(3 downto 0) : = “0111”;

SIGNAL B : std_logic_vector(3 downto 0) : = “0011”;

SIGNAL OP_CODE : std_logic_vector(3 downto 0) : = (others=> ‘0’);

--Output

SIGNAL alu_out : std_logic_vector(3 downto 0); --Output signal

BEGIN

--Instantiate the Unit Under Test (UUT)

Uut: ALU PORT MAP(

A => A

B => B,

C_IN => C_IN,

OP_CODE => OP-CODE,

CLK => CLK,

ALU_EN => ALU_EN,

ALU_OUT => ALU_OUT

);

CLK <= not CLK after 5ns;

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

Test_proc : PROCESS

BEGIN

OP_CODE (3 downto 0) <= “0000”; --txa

C_IN <= ‘0’;

wait for 20ns;

OP_CODE (3 downto 0) <= “0001”; --txa

C_IN <= ‘1’;

wait for 20ns;

OP_CODE (3 downto 0) <= “0001”; --inc

C_IN <= ‘0’;

wait for 20ns;

OP_CODE (3 downto 0) <= “0001”; --inc

C_IN <= ‘1’;

wait for 20ns;

OP_CODE (3 downto 0) <= “0010”; --add

C_IN <= ‘0’;

wait for 20ns;

OP_CODE (3 downto 0) <= “0010”; --add

C_IN <= ‘1’;

wait for 20ns;

OP_CODE (3 downto 0) <= “0011”; --adde

C_IN <= ‘0’;

wait for 20ns;

OP_CODE (3 downto 0) <= “0011”; --adde

C_IN <= ‘1’;

wait for 20ns;

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

OP_CODE (3 downto 0) <= “0100”; --sub

C_IN <= ‘0’;

wait for 20ns;

OP_CODE (3 downto 0) <= “0100”; --sub

C_IN <= ‘1’;

wait for 20ns;

OP_CODE (3 downto 0) <= “0101”; --comp

C_IN <= ‘0’;

wait for 20ns;

OP_CODE (3 downto 0) <= “0101”; --comp

C_IN <= ‘1’;

wait for 20ns;

OP_CODE (3 downto 0) <= “0110”; --neg

C_IN <= ‘0’;

wait for 20ns;

OP_CODE (3 downto 0) <= “0110”; --neg

C_IN <= ‘1’;

wait for 20ns;

OP_CODE (3 downto 0) <= “0111”; --dec

C_IN <= ‘0’;

wait for 20ns;

OP_CODE (3 downto 0) <= “0111”; --dec

C_IN <= ‘1’;

wait for 20ns;

OP_CODE (3 downto 0) <= “1000”; --txb

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

C_IN <= ‘0’;

wait for 20ns;

OP_CODE (3 downto 0) <= “1000”; --txb

C_IN <= ‘1’;

wait for 20ns;

OP_CODE (3 downto 0) <= “1001”; --and

C_IN <= ‘0’;

wait for 20ns;

OP_CODE (3 downto 0) <= “1001”; --and

C_IN <= ‘1’;

wait for 20ns;

OP_CODE (3 downto 0) <= “1010”; --or

C_IN <= ‘0’;

wait for 20ns;

OP_CODE (3 downto 0) <= “1010”; --or

C_IN <= ‘1’;

wait for 20ns;

OP_CODE (3 downto 0) <= “1011”; --xor

C_IN <= ‘0’;

wait for 20ns;

OP_CODE (3 downto 0) <= “1011”; --xor

C_IN <= ‘1’;

wait for 20ns;

OP_CODE (3 downto 0) <= “1100”; --sl

C_IN <= ‘0’;

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

wait for 20ns;

OP_CODE (3 downto 0) <= “1100”; --sl

C_IN <= ‘1’;

wait for 20ns;

OP_CODE (3 downto 0) <= “1101”; --sr

C_IN <= ‘0’;

wait for 20ns;

OP_CODE (3 downto 0) <= “1101”; --sr

C_IN <= ‘1’;

wait for 20ns;

OP_CODE (3 downto 0) <= “1110”; --par

C_IN <= ‘0’;

wait for 20ns;

OP_CODE (3 downto 0) <= “1111”; --zero

C_IN <= ‘0’;

wait for 20ns;

OP_CODE (3 downto 0) <= “1111”; --zero

C_IN <= ‘1’;

wait for 20ns;

wait;

END PROCESS tes_proc;

END;

8. MEM_TB.VHD file

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

library IEEE; --Library Declaration

use IEEE.STD_LIGIC_1164.ALL; --Packed Declaration

use IEEE.STD_LIGIC_ARITH.ALL; --Packed operation and function

use IEEE.STD_LIGIC_UNSIGNED.ALL; --Packages std_logic_vector

use work. MY_CALC_PAK.ALL;

----any Xilinx primitives in this code,

--library UNISIM;

--use UNISIM.VComponents.all;

Entity MEM_TB is -- Primary design unit MEM

End MEM_TB; -- Close entity declaration

Architecture test of MEM_TB is -- Secondary design unit

Component MEM

Port (CLK : in STD_LOGIC;

ADDR : in STD_LOGIC_VECTOR (4 downto 0); --Port declaration

READ_EN : in STD_LOGIC;

DATA_FRAME : out MY_RECORD);

End component;

Signal CLK; std_logic ;=’0’

Signal ADDE_SIG : std_logic vector (4 downto 0) : = “0000”; --local signals

Signal READ_EN_SIG : std_logic ;= ‘1’;

Signal DATA_FRAME_SIG : MY_RECORD;

Begin -- Begin architecture

Uut: MEM port map (CLK => CLK,

ADDR => ADDR_SIG, -- unit under testing for testing

READ_EN => READ_EN_SIG,

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

DATA_FRAME =>DATA_FRAME_SIG);

CLK <= not CLK after 10ns;

Process

Begin -- Begin the process

ADDR_SIG <= “00000”; wait for 100ns;

ADDR_SIG <= “00001”; wait for 100ns;

ADDR_SIG <= “00010”; wait for 100ns;

ADDR_SIG <= “00100”; wait for 100ns;

ADDR_SIG <= “00101”; wait for 100ns;

ADDR_SIG <= “00110”; wait for 100ns;

ADDR_SIG <= “00111”; wait for 100ns;

ADDR_SIG <= “01000”; wait for 100ns;

ADDR_SIG <= “01001”; wait for 100ns;

ADDR_SIG <= “01010”; wait for 100ns; --Statements operate sequentially

ADDR_SIG <= “01011”; wait for 100ns;

ADDR_SIG <= “01100”; wait for 100ns;

ADDR_SIG <= “01101”; wait for 100ns;

ADDR_SIG <= “01110”; wait for 100ns;

ADDR_SIG <= “01111”; wait for 100ns;

ADDR_SIG <= “10000”; wait for 100ns;

ADDR_SIG <= “10001”; wait for 100ns;

ADDR_SIG <= “10010”; wait for 100ns;

ADDR_SIG <= “10011”; wait for 100ns;

ADDR_SIG <= “10100”; wait for 100ns;

ADDR_SIG <= “10101”; wait for 100ns;

ADDR_SIG <= “10110”; wait for 100ns;

ADDR_SIG <= “10111”; wait for 100ns;

ADDR_SIG <= “11000”; wait for 100ns;

ADDR_SIG <= “11001”; wait for 100ns;

ADDR_SIG <= “11010”; wait for 100ns;

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

ADDR_SIG <= “11011”; wait for 100ns;

ADDR_SIG <= “11100”; wait for 100ns;

ADDR_SIG <= “11101”; wait for 100ns;

ADDR_SIG <= “11110”; wait for 100ns;

ADDR_SIG <= “11111”; wait for 100ns;

Wait;

End process; -- End process

End architecture test; -- End the body architecture

9. The memory management in MY_ROM;

(0 =>

(OP_CODE=>”0000”,A_IN=>”0111”,B_IN=>”0011”,c_in=>’0’,EXP_OUT=>”0111”), --txa

1 =>

(OP_CODE=>”0000”,A_IN=>”0111”,B_IN=>”0011”,c_in=>’0’,EXP_OUT=>”0111”), --txa

 2 =>

(OP_CODE=>”0001”,A_IN=>”0111”,B_IN=>”0011”,c_in=>’0’,EXP_OUT=>”1000”), --inc

 3 =>

(OP_CODE=>”0001”,A_IN=>”0111”,B_IN=>”0011”,c_in=>’0’,EXP_OUT=>”1000”), --inc

 4 =>

(OP_CODE=>”0010”,A_IN=>”0111”,B_IN=>”0011”,c_in=>’0’,EXP_OUT=>”1010”), --

add

 5 =>

(OP_CODE=>”0010”,A_IN=>”0111”,B_IN=>”0011”,c_in=>’0’,EXP_OUT=>”1010”), --

add

 6 =>

(OP_CODE=>”0011”,A_IN=>”0111”,B_IN=>”0011”,c_in=>’0’,EXP_OUT=>”1010”), --

addc

 7 =>

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

(OP_CODE=>”0011”,A_IN=>”0111”,B_IN=>”0011”,c_in=>’0’,EXP_OUT=>”1011”), --

addc

 8 =>

(OP_CODE=>”0100”,A_IN=>”0111”,B_IN=>”0011”,c_in=>’0’,EXP_OUT=>”0100”), --

sub

 9 =>

(OP_CODE=>”0100”,A_IN=>”0111”,B_IN=>”0011”,c_in=>’0’,EXP_OUT=>”0100”), --

sub

 10 =>

(OP_CODE=>”0101”,A_IN=>”0111”,B_IN=>”0011”,c_in=>’0’,EXP_OUT=>”1000”), --

comp

 11 =>

(OP_CODE=>”0101”,A_IN=>”0111”,B_IN=>”0011”,c_in=>’0’,EXP_OUT=>”1000”), --

comp

 12 =>

(OP_CODE=>”0110”,A_IN=>”0111”,B_IN=>”0011”,c_in=>’0’,EXP_OUT=>”1001”), --

neg

13 =>

(OP_CODE=>”0110”,A_IN=>”0111”,B_IN=>”0011”,c_in=>’0’,EXP_OUT=>”1001”), --

neg

 14 =>

(OP_CODE=>”0111”,A_IN=>”0111”,B_IN=>”0011”,c_in=>’0’,EXP_OUT=>”0110”), --

dec

 15 =>

(OP_CODE=>”0111”,A_IN=>”0111”,B_IN=>”0011”,c_in=>’0’,EXP_OUT=>”0110”), --

dec

 16 =>

(OP_CODE=>”1000”,A_IN=>”0111”,B_IN=>”0011”,c_in=>’0’,EXP_OUT=>”0011”), --

txb

 17 =>

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

(OP_CODE=>”1000”,A_IN=>”0111”,B_IN=>”0011”,c_in=>’0’,EXP_OUT=>”0011”), --

txb

 18 =>

(OP_CODE=>”1001”,A_IN=>”0111”,B_IN=>”0011”,c_in=>’0’,EXP_OUT=>”0011”), --

and

 19 =>

(OP_CODE=>”1001”,A_IN=>”0111”,B_IN=>”0011”,c_in=>’0’,EXP_OUT=>”0011”), --

and

 20 =>

(OP_CODE=>”1010”,A_IN=>”0111”,B_IN=>”0011”,c_in=>’0’,EXP_OUT=>”0111”), --or

 21 =>

(OP_CODE=>”1010”,A_IN=>”0111”,B_IN=>”0011”,c_in=>’0’,EXP_OUT=>”0111”), --or

 22 =>

(OP_CODE=>”1011”,A_IN=>”0111”,B_IN=>”0011”,c_in=>’0’,EXP_OUT=>”0100”), --

xor

 23 =>

(OP_CODE=>”1011”,A_IN=>”0111”,B_IN=>”0011”,c_in=>’0’,EXP_OUT=>”0100”), --

xor

 24 =>

(OP_CODE=>”1100”,A_IN=>”0111”,B_IN=>”0011”,c_in=>’0’,EXP_OUT=>”1110”), --sl

 25 =>

(OP_CODE=>”1100”,A_IN=>”0111”,B_IN=>”0011”,c_in=>’0’,EXP_OUT=>”1110”), --sl

 26 =>

(OP_CODE=>”1101”,A_IN=>”0111”,B_IN=>”0011”,c_in=>’0’,EXP_OUT=>”0011”), --sr

 27 =>

(OP_CODE=>”1101”,A_IN=>”0111”,B_IN=>”0011”,c_in=>’0’,EXP_OUT=>”0011”), --sr

 28 =>

(OP_CODE=>”1110”,A_IN=>”0111”,B_IN=>”0011”,c_in=>’0’,EXP_OUT=>”0001”), --

par

 29 =>

(OP_CODE=>”1110”,A_IN=>”0111”,B_IN=>”0011”,c_in=>’0’,EXP_OUT=>”0000”), --

par

 30 =>

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

Universitas Indonesia

(OP_CODE=>”1111”,A_IN=>”0111”,B_IN=>”0011”,c_in=>’0’,EXP_OUT=>”0000”), --

zero

 31 =>

(OP_CODE=>”1111”,A_IN=>”0111”,B_IN=>”0011”,c_in=>’0’,EXP_OUT=>”0000”), --

zero

Calculator project..., Mohamad Sandi Suriagemilang, FT UI, 2010

	Cover

	Abstract

	List

	Chapter 1

	Chapter 2

	Chapter 3

	Chapter 4

	Chapter 5

	Conclusion

	References

	Apendices

