

UNIVERSITAS INDONESIA

INTERNET INTERFACE FOR MICROCONTROLLER

SKRIPSI

Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik

MOHAMAD BAYU INDRA NUGRAHA

0405830067

DEPARTEMEN TEKNIK ELEKTRO PROGRAM INTERNASIONAL
FAKULTAS TEKNIK UNIVERSITAS INDONESIA

DEPOK
JANUARI 2010

 Universitas Indonesia

Halaman Pernyataan Orisinalitas

Skripsi ini adalah hasil karya saya sendiri,
dan semua sumber yang dikutip maupun dirujuk

telah saya nyatakan benar

 Nama : Mohamad Bayu Indra Nugraha
 NPM : 0405830067
 Tanda Tangan :

 Tanggal : 28 Januari 2010

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

 Universitas Indonesia

Halaman Pengesahan

Skripsi ini diajukan oleh
Nama : Mohamad Bayu Indra Nugraha
NPM : 0405830067
Program Studi : Teknik Elektro Internasional
Judul Skripsi : Internet Interface for Microcontroller

Telah berhasil dipertahankan dihadapan dewan penguji dan diterima sebagai
bagian persyaratan yang diperlukan untuk memperoleh gelar Sarjana Teknik
pada program studi Teknik Elektro Internasional, Fakultas Teknik Universitas
Indonesia.

DEWAN PENGUJI

Pembimbing : John Edward

Penguji : Dr. Abdul Muis ST, M.Eng (...............................)

Penguji : Muhammad Salman ST, MIT (...............................)

Penguji : Prof. Dr. Ir. Nji Raden Poespawati M.T. (...............................)

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

1

 Universitas Indonesia

Statement of Authorship

The work contained in this project report has not been previously submitted for a

degree or diploma at any other tertiary educational institution. To the best of my

knowledge and belief, the project report contains no material previously published or

written by another person except where due reference is made.

Signed

Date

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

2

 Universitas Indonesia

Acknowledgments

I would like to extend my appreciation to everybody who has assisted me with this

final year project throughout the course of the year. I am deeply indebted to my

supervisor, Dr. John Edward for his continual guidance, stimulating suggestion,

encouragement and motivation throughout the entire research period.

Special thanks also go to my family and friends for invaluable support to the

completion of this project as well as Khawm Hung who looked closely at the final

version of the project report for English style and grammar, correcting both and

offering suggestion of improvement.

Especially, I would like to give my special thanks to my very best friend, Melly

Indriasari, whose patient love enabled me to complete this work.

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

3

 Universitas Indonesia

Abstract

At present, network is becoming the hot point for the investigation of

embedded system. Considering the growth of data communication, connection

between embedded system platforms and the internet interfaces has been an important

development direction and indispensable functions for the embedded system in the

future and it becomes an important role if the embedded platforms can be accessible

and monitored whenever and wherever we need.

By implementing TCP/IP uIP-stack open source properties and correlative

system interfaces architecture, some internet protocol application such as web server,

ICMP and telnet server, can be integrated into the embedded systems. This paper

describes how the combination between Real Time Operating System and Embedded

Web Server Application can be established in ATMEL AT91SAM7X platform by

sending multiple packet data and processed stably in I/O hardware architectures. At

last, some real world simulations are applied in order to test system design

performances and reliability.

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

4

 Universitas Indonesia

Table of Contents

Statement of Authorship ... 1

Acknowledgments ... 2

Table of Figures .. 6

List of Abbreviation .. 8

Supplementary Material .. 9

Chapter 1- Introduction ... 10

1.1 Project Background ... 10

1.2 Project Aim, Objectives and Plan of Development .. 12

Chapter 2 - Hardware Characteristic ... 13

2.1 Atmel‟s AT91SAM7X256 .. 13

2.2 Ethernet MAC ... 16

2.3 DM9161A – 10/100 Mbps Fast Ethernet Physical Layer Single Chip Transceiver 17

2.4 Parallel Input/Output Controller ... 24

Chapter 3 - Communication Protocol ... 27

3.1 Protocol Hierarchies .. 27

3.2 Service Primitive ... 28

3.3 TCP/IP Reference Model .. 29

3.4 TCP Protocol ... 31

Chapter 4 – Real Time Operating System .. 33

4.1 RTOS Concept .. 33

4.2 The differences between Task and Co-routines .. 36

4.3 FreeRTOS Open-Source Application Demonstration ... 39

Chapter 5 – TCP/IP Stack ... 42

5.1 Main Control Loop ... 43

5.2 Architecture Specific Functions .. 43

5.3 The uIP raw API ... 45

5.4 uIP Simple Application ... 46

Chapter 6 – Algorithm and Design Implementation ... 49

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

5

 Universitas Indonesia

6.1 General Program Loop .. 50

6.2 PIO Algorithm .. 54

Chapter 7 – Software Demonstration .. 59

7.1 Possible Network Diagrams .. 59

7.2 ICMP and ARP ... 61

7.3 Web Server .. 62

Summaries and Conclusion ... 65

Bibliography ... 67

Appendix ... 68

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

6

 Universitas Indonesia

Table of Figures

Figure 1 - AT91SAM7X-EK Hardware .. 13
Figure 2 - AT91SAM7X256 Block Diagram ... 15
Figure 3 - EMAC Block Diagram ... 16
Figure 4 - DM9161A Chip General Functional Description 18
Figure 5 - DM9161A Schematic ... 18
Figure 6 - Specfic Functional Description .. 19
Figure 7 - NRZ to NRZI Encoding Example .. 21
Figure 8 - MLT-3 Converter ... 21
Figure 9 - Manchester Encoding Example .. 23
Figure 10 - PIO Schematic .. 25
Figure 11 - Example Information Flow Supporting Virtual Communication............. 27
Figure 12 - Packet sent in a simple client-server interaction on a network 28
Figure 13 - the difference between OSI and TCP/IP Reference Model 29
Figure 14 - Protocol and Networks in the TCP/IP model ... 30
Figure 15 - Conventional VS Multitasking ... 34
Figure 16 - Scheduling Example ... 34
Figure 17 - Task States .. 36
Figure 18 - Co-Routine States ... 38
Figure 19 - uIP basic ICMP Demo .. 46
Figure 20 - uIP Basic Telnet Server Demo ... 47
Figure 21 - uIP Basic Web Server Demo .. 48
Figure 22 - General Program Loop ... 50
Figure 23 - Reading Joystick Algorithm ... 54
Figure 24 - Algorithm to Set LED Status ... 55
Figure 25 - Algorithm to toggle the LED ... 57
Figure 26 - Web Address .. 58
Figure 27 - Host to Host Network ... 59
Figure 28 - Local Area Network ... 60
Figure 29 - Wide Area Network ... 60
Figure 30 - ICMP and ARP Result ... 61
Figure 31 - Web Server - RTOS Page Stats .. 62
Figure 32 - Web Server - TCP Stats ... 63
Figure 33 - Web Server - Connection Page .. 64
Figure 34 - Web Server - IO Page ... 64

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

7

 Universitas Indonesia

List of Table

Table 1 - Busses Function in MII Interface .. 20

Table 2 - PIO Register Mapping ... 26

Table 3 - FreeRTOS Function ... 41

Table 4 - uIP Interface Function ... 46

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

8

 Universitas Indonesia

List of Abbreviation
API - Application Programming Interface

ARP - Address Resolution Protocol

BSD - Berkerley Software Distribution

DMA - Direct Memory Access

FTP - File Transfer Protocol

ICMP - Internet Control Message Protocol

IP - Internet Protocol

LED - Light Emitting Diode

GUI - Good User Interface

MAC Layer - Media Access Control Layer

MDIO - Management Data Input Output

MII - Media Independent Interface

PHY Layer - Physical Layer

PIO - Parallel Input Output

RMII - Reduced Media Independent Interface

TCP - Transmission Control Protocol

UDP - User Datagram Protocol

UTP - Unshielded Twisted Pair

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

9

 Universitas Indonesia

Supplementary Material

1. Abstract

2. Poster

3. Presentation Slide

4. Final Year Project Code Files

5. Several necessary E-books and Reference Manuals

6. Technical Documentation

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

10

 Universitas Indonesia

Chapter 1- Introduction

1.1 Project Background
As the World Wide Web (or Web) continues to evolve, it is clear that

its underlying technologies are useful for much more than just browsing the

Web. Web browsers have become the standard user interface for a variety of

applications because Web browsers can provide a GUI interface to various

client/server applications without having to implement a separate client.

General Web server, which were developed for general purpose

computers such as NT servers or Unix workstations, typically require

megabytes of memory, a fast processor, a pre-emptive multitasking operating

system, and other resources. A web server can be embedded in a device to

provide remote access to the device from a Web browser if the resource

requirements of the Web server are reduced. The result typically a portable set

of code that can run on embedded system with limited resources. [1]

Embedded Web Server are used to convey the state information of

embedded systems, such as a systems working statistic, operation result and

transfer user commands from a Web browser to an embedded system. The

state information is extracted from an embedded system application and the

control command is implemented through the embedded system application.

Atmel‟s AT91SAM7X256 ARM7 Based is the hardware that student

used to implement embedded Web Server because it contains a large set of

peripherals, including an 802.3 Ethernet MAC. So, by combining the ARM

processor with on-chip Flash and SRAM, and a wide range of peripheral

function, including USART, SPI, CAN Controller on it, it become cost-

effective solution to many embedded control application in real world

requiring communication over internet, for example, CAN wired and Zigbee

wireless network. [2]

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

11

 Universitas Indonesia

In order to establish communication between the hardware and each

other across a network, we need a protocol suitable between those as a

convention or standard that enables the connection. TCP/IP protocol suite has

become a global standard protocol communication used for web page

transfers, e-mail transmission, file transfer, and peer-to-peer networking over

Internet. Traditional TCP/IP implementations have required too much

resources of code size and memory usage for 8 or 16-bit systems. To solve

this problem, student used open-source uIP implementation that is designed to

have only absolute minimal set of features needed for a full TCP/IP stack. uiP

implementation can only handle a single network interface and contain IP,

ICMP, UDP and TCP Protocol. [4]

 Real Time Operating System management also will be discussed in

this report. The purpose is to allow user to do multiple tasks to a single

processor attached at the hardware simultaneously without the system

becoming unresponsive. The scheduling algorithm is used to finish and

complete real-time function within a given time without any failure in the

system. As a result, the combination of establishing data communication via

Ethernet and RTOS implementation in Atmel‟s AT91SAM7X256 ARM7

board will be discussed in this report.

C languages will be used in GCC platform by the student. Even

though, there is a software development tools for embedded systems called

IAR systems that should be easier to be managed, it has some limitations that

will be explained later. GCC is the leading free (open source) compiler

environment, widely used in the industry. Though, it‟s really hard to be

implemented and waste of time, there are no issues of confidentiality and

limitations for sharing information in the joint research. FreeRTOS and uIP

TCP/IP Stack open sources will be combined by the student as a mini Real

Time Kernel routine and TCP/IP protocol stack respectively.

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

12

 Universitas Indonesia

1.2 Project Aim, Objectives and Plan of Development
The fundamental aim of this project is to design and program

AT91SAM7X ARM Based for networking purposes. As the result, the embedded

platform can be accessed through a web server that can be used to control,

transmit, and receive data to the Input Output peripherals remotely.

 The project has four primary goals:

1. Analyzing the hardware characteristic and functional descriptions

of AT91SAM7X256 as embedded platform chip and DM9161A as

power transceiver for Ethernet.

2. Observing Real Time Operating System Algorithm that can be

implemented into a single processor.

3. Investigating uIP TCP/IP stack to build several TCP applications

in small resources. Transmitting and Receiving data will be tested.

4. Controlling Input Output Peripherals in the hardware. User LED

and Joystick will be involved.

 The remainder of this report is organized as follows. Chapter 1 is the

introduction of the report. Chapter 2 briefly describes the hardware characteristic

of Atmel AT91SAM7X256 as an embedded platform and its functional

description. Chapter 3 will explain about the TCP/IP Protocol fundamental.

Chapter 4 and 5 will discuss about Real Time Operating System that will be set

up by using FreeRTOS open source and TCP/IP Stack respectively. The

Embedded Server implementation and algorithm design explanation will be in

Chapter 6 and the Software demonstration will be describe in Chapter 7.

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

13

 Universitas Indonesia

Chapter 2 - Hardware Characteristic

2.1 Atmel’s AT91SAM7X256
Atmel‟s AT91SAM7X256 is a member of a series of highly integrated flash

microcontrollers based on the 32-bit ARM RISC processor. It features 256 Kbyte

high-speed Flash and 64 Kbyte SRAM, a large set of peripherals, including an 802.3

Ethernet MAC and CAN controller, USART, SPI. [2]

The embedded Flash memory can be programmed by downloading the source code

via JTAG-ICE interface or via parallel interface on a production programmer prior to

mounting. Built-in lock bits and a security bit protect the firmware from accidental

overwrite and preserve its confidentiality.

As we can see, to fulfill the requirement of this project, student needs to evaluate the

hardware characteristic of EMAC, Davicom DM9161A chip, and PIO Controller to

be synchronized with real time operating systems to ARM processor.

Figure 1 - AT91SAM7X-EK Hardware

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

14

 Universitas Indonesia

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

15

 Universitas Indonesia

Figure 2 - AT91SAM7X256 Block Diagram

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

16

 Universitas Indonesia

2.2 Ethernet MAC
The EMAC module implements a 10/100 Ethernet MAC compatible with the IEEE

802.3 standard using an address checker, statistic and control register, receive and

transmit blocks, and a DMA interface.

Figure 3 - EMAC Block Diagram

As we can see from figure 2, the explanation the functional description should be like

student mention below:

 Address Checker. It will recognize four specific 48-bit addresses and

contains a 64-bit hash register to match between multicast and unicast

addresses, and then copy all frames to the memory and act on an external

address match signal.

 Statistic Register. It contains registers for counting various types of event

associated with transmit and receive operations, for example network

management statistics.

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

17

 Universitas Indonesia

 Control Register. It setups up DMA activity, start frame transmission and

select modes of operation such as full or half duplex.

 Receive Block. It checks for a valid preamble, FCS, alignment and length,

and presents received frames to the address checking block and DMA

interface.

 Transmit Block. It takes data from the DMA interface, adds preamble end,

pad and FCS and transmits data according to the CSMA/CD (Carrier Sense

Multiple Access with Collision Detection). The start of transmission is

deferred if CRS (Carrier Sense) is active. If the system is in full duplex mode,

the Carrier Sense and Collision have no effect because full duplex because

transmitting and receiving path are split into 2 channels.

 DMA Interface. The DMA block connects to external memory through its

ASB bus interface and contains of Transmit and Receive FIFOs for buffering

frame data. It loads the transmit FIFO and empties the receive FIFO. Receive

data will not be sent to the memory until the address checker has determined

that the frame should be copied. The length of Receive buffers is 128 bytes

and Transmit buffers range in length between 0 and 2047 bytes. As

summaries, DMA block manages transmit and receive frame buffer queues

and can hold multiple frames.

2.3 DM9161A – 10/100 Mbps Fast Ethernet Physical Layer

Single Chip Transceiver
The DM9161A Fast Ethernet single chip transceiver, providing the

functionality as specified in IEEE 802.3u, integrates a complete 100 Base-TX module

with Unshielded Twisted Pair Category 5 Cable (UTP5) and a complete 10 Base-T

Module with UTP5/UTP3. Through the Media Independent Interface (MII), it can be

connected to the Medium Access Control (MAC) layer. Figure 4 shows the major

functional blocks implemented in the DM9161A chip and figure 5 describes the

complete tasks how each block works.

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

18

 Universitas Indonesia

Figure 4 - DM9161A Chip General Functional Description

Figure 5 - DM9161A Schematic

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

19

 Universitas Indonesia

Figure 6 - Specfic Functional Description

 MII Interface. The purpose of Media Independent Interface (MII) is to

provide a simple, easy to implement connection between the MAC

reconciliation layer and the PHY. The MII is designed to make the differences

between various media transparent to the MAC sub-layer.

MII Interface consists of a nibble wide receive data bus, a nibble wide

transmit bus, and control signals for data transfer between PHY and the

reconciliation layer. Table 1 shows the important bus in MII interface.

BUS Function

TXD (transmit

data)

A nibble of data that synchronous with respect of

TXCLK.

TXCLK (transmit

clock)

Continuous clock that provides the timing reference for

the transmission transfer.

TXEN (transmit

enable)

A nibble of data being presented on the MII for

transmission.

TXER (transmit Error detected somewhere in the frame being

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

20

 Universitas Indonesia

error) transmitted.

RXD (receive data) A nibble of data that synchronous with respect of

RXCLK.

RXCLK (receive

clock)

Continuous clock that provides the timing reference for

receiving transfer.

RXDV (receive

data valid)

PHY is presenting decoded nibbles to the MAC

reconciliation sub-layer.

RXER (receive

error)

Error detected somewhere in the frame transmission for

the PHY to the reconciliation layer.

CRS (carrier sense) CRS is asserted when either transmit or receive medium

is being processed.
Table 1 - Busses Function in MII Interface

 100Base-TX Transmitter.

As shown in figure 5, 100Base-TX Transmitter consists of the functional

block that converts a nibble synchronous data provided by the MII to a

scrambled MLT-3 125, a million symbols per second data stream. It contains

the following functional diagram:

1. 4B5B Encoder

It converts 4-bit nibble data from MAC reconciliation layer into 5-bit code

group for transmission. This conversion is required for control and packet

data to be combined in code groups. To convert them, see appendix table

4B5B as a reference.

2. Scrambler

The scrambler is required to control the radiated emission so that the total

energy presented to the cable is distributed over a wide frequency range.

The result is a data stream with sufficient randomization to decrease

radiated emission at critical frequencies.

3. Parallel to Serial Converter

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

21

 Universitas Indonesia

It receives 5-bit scrambled data. In order to be able operated by NRZ to

NRZI Encoder, the parallel data stream should be serialized.

4. NRZ to NRZI Encoder

Data stream should be converted from serialized NRZ that receive from

parallel to serial converter, to NRZI for TP-PDM standard compatibility

over Category -5 unshielded twisted pair cable.

Figure 7 - NRZ to NRZI Encoding Example

5. NRZI to MLT-3

Then MLT-3 conversion is accomplished by converting the NRZI data

stream into two binary data stream with alternately phased logic one

events.

6. MLT-3 Driver

The two binary data streams are fed to the twisted pair output driver that

will be compatible of the transmit transformer‟s primary winding,

resulting in a minimal current MLT-3 Signal.

Figure 8 - MLT-3 Converter

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

22

 Universitas Indonesia

 100Base-TX Receiver

Data stream received by the chip should have converted to synchronous 4-bit

nibble data, so that can be processed by the MII. It contains the following

functional diagram:

1. Signal Detect

It should have met the specifications mandated by ANSI XT12 TP-PMD

100Base-TX Standards for both voltage threshold and timing parameters.

2. Adaptive Equalizer

When receiving data from copper twisted at high speed, attenuation based

on frequency can affect the randomness of the scrambled data stream. This

variation in signal attenuation caused by frequency variations must be

compensated for to ensure the integrity of the received data. Moreover, it

should have to be adaptive to ensure proper condition of received signal.

3. MLT-3 to NRZI Decoder

Then MLT-3 to NRZI applied as shown in Figure 7.

4. Clock Recovery Module

Clock Recovery Module will lock onto the current data stream and extract

reference clock, so that the data stream can be processed at NRZI to NRZ

Decoder.

5. NRZI to NRZ Decoder

Data stream is required to be decoded to NRZ signal to be presented to the

Serial to parallel conversion block.

6. Serial to Parallel

The NRZ data stream then will be converted to parallel to be presented to

the descrambler

7. Descrambler

Because the data stream is scrambled in order to minimize radiated

emission for transmission data, it should have to be descrambler and

present to the Code Group Alignment group before it can be processes in

MII interface.

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

23

 Universitas Indonesia

8. Code Group Alignment

Un-aligned 5B data from descrambler will be converted to 5B code group

data in order to make aligned subsequent data on a fixed boundary.

9. 4B5B Decoder

Finally, Conversion from 5-bit data to 4-bit nibble data is accomplished by

4B5B decoder to be ready presented to the reconciliation layer by MII

interface.

 10 Base-T Operation

When 10 Base-T Mode is operated, for transmission, a nibble data format will

be converted to a serial bit stream then encoded my Manchester encoder.

When receiving, the data stream will be decoded and converted to nibble

format to be presented to the MII interface.

Figure 9 - Manchester Encoding Example

 Carrier Sense

CRS is used in half-duplex operation during transmission or reception of data

in order to avoid collision in traffic.

 Collision Detection

Collision Detection also works in half-duplex operation when transmit and

receive channels are active at the same time. It will be reported by COL signal

on the MII interface.

 Auto Negotiation

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

24

 Universitas Indonesia

The function of Auto-negotiation is to provide a means to exchange

information between segment linked devices and to automatically configure

both devices to take maximum advantages of their abilities.

 MII Serial Management

MII serial management interface consists of a data interface, basic register set,

and a serial management interface to configure multiple PHY devices, get

status and error information, and also determine the type and capabilities of

the attached PHY device. The serial control interface uses a simple two wired

serial interface to obtain and control physical layer. It consists of MDC

(Management Data Clock), and MDI/O (Management Data Input/Output)

signals which pin is bi-directional and shared up to 32 devices.

 Auto MDIX

Common Ethernet network cables are straight and crossover cable. This

Ethernet network cable is made of 4 pair high performance cable that consist

twisted pair conductor that used for data transmission. Auto MDIX is used to

detect cable connection type, so that those cables still can be worked into

Ethernet interface.

2.4 Parallel Input/Output Controller
 PIO controller provides multiplexing up to two peripheral functions on a

single pin. Peripheral A and peripheral B represent Joystick Input and User LED

respectively. PIO Controller manages up to 32 fully programmable input/output lines.

Each I/O line dedicated as a general-purpose I/O or be assigned to a function of an

embedded peripheral.

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

25

 Universitas Indonesia

Figure 10 - PIO Schematic

Each pin is configurable according to product definition so programmer must

carefully determine the configuration of the PIO controller required by their

application. There are some aspects that should be consider controlling the PIO such

as Pull-up resistor control, Peripheral Function Selection, Output Control,

Synchronous Data output, Input data, Input Change Interrupt, etc. Table 2 describes

PIO controller that associated with a bit in each of the PIO Controller User Interface

Register.

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

26

 Universitas Indonesia

Table 2 - PIO Register Mapping

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

27

 Universitas Indonesia

Chapter 3 - Communication Protocol
To establish connection between the embedded platform and other devices,

we need to consider how they actually communicate each other. In this section

student will explain about the protocol hierarchies, service primitive, TCP/IP

Reference Model.

3.1 Protocol Hierarchies
 Basically Protocol is an agreement between the communicating parties on

how communication is to proceed. To reduce the design complexity, most networks

are organized as a stack of layers or levels, each one built upon the one below it. The

purpose of each later is to offer certain services to the higher layers, shielding those

layers from the detail of how the offered services are actually implemented. Each

layer is a kind of virtual machine, offering certain services to the layer above it.

Figure 11 - Example Information Flow Supporting Virtual Communication

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

28

 Universitas Indonesia

As illustrated in Figure 11, no data are directly transferred from layer n on one

machine to layer n on another machine. Instead, each layer passes data to the layer

immediately below it, until the data reach to the lowest layer. Layer 1 is the physical

medium which actual communication occurs.

The entities comprising the corresponding layers on different machines are

called peers. The peers may be processes or hardware devices. In other words, it is

the peers that communicate by using the protocol. Between each pair of layers is an

interface. The interface defines which primitive operations and services the lower

layer makes available to the upper one.

3.2 Service Primitive
A service is formally specified by a set of primitives (operations) available to

a user process to access the service. These primitives tell the service to perform some

action or report on an action taken by a peer entity. If the protocol stack is located in

the operating system, as it often is, the primitives are normally system calls. These

calls cause a trap to kernel mode, which then turns control of the machine over to the

operating system to send the necessary packet. [5]

Figure 12 - Packet sent in a simple client-server interaction on a network

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

29

 Universitas Indonesia

These primitives might be used as follows. First, the server executes LISTEN

to indicate that it is prepared to accept incoming connections. Next, the client process

executes CONNECT to establish a connection with the server (1). The CONNECT

call needs to specify who to connect to, so it might have a parameter giving the

server‟s address. When the packet arrives at the server, it is processed by server‟s

operating system to see if there is a listener and send back the acknowledgment (2).

The next step is for the server to execute RECEIVE to prepare to accept the

first request. Normally, the server does this immediately upon being released from the

LISTEN, before acknowledgement can get back to the client. Then the client executes

SEND to transmit its request (3) followed by the execution of RECEIVE to get the

reply. After the arrival of the request packet at the server machine will process the

request by uses SEND to return the answer to client (4).If it is done, it can use

DISCONNECT to terminate the connection. It used a handshake scheme to end

communication between server and client.

3.3 TCP/IP Reference Model

Figure 13 - the difference between OSI and TCP/IP Reference Model

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

30

 Universitas Indonesia

Figure 14 - Protocol and Networks in the TCP/IP model

Application Layer

 The TCP/IP model does not have session and presentation layer like OSI

model. Therefore, it is not necessary for both layers to be perceived, so they were not

included. Application layer contains all the higher-level protocol, for example virtual

terminal (Telnet), File Transfer Protocol (FTP), electronic mail (SMTP), protocol for

fetching pages (HTTP) etc.

Transport Layer

 Transport Layer is designed to allow peer entities on the source and

destination hosts to carry on a conversation. As shown in Figure 13, there are 2

protocols that have been defined; TCP and UDP. TCP (Transmission Control

Protocol) is a reliable connection-oriented protocol that allows a byte stream

originating on one machine to be delivered without error. UDP (User Datagram

Protocol) is an unreliable, connectionless protocol application that does not want

TCP‟s sequencing or flow control and wish to provide their own.

Internet Layer

 The internet layer defines an official packet format and protocol called IP

(Internet Protocol). The job of the internet layer is to deliver IP packets where they

are supposed to go and select the best path through the network for packet to travel.

ICMP, ARP also operated at this layer.

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

31

 Universitas Indonesia

Host-to-network layer

 TCP/IP reference model does not really say much about what happen in this

layer, except that the host has to connect to the network using some protocol so it can

send IP packets to it. This protocol is not define and varies from host to host and

network to network.

3.4 TCP Protocol
Transmission Control Protocol that referred at transport layer in TCP/IP

reference model is used in this implementation. It provides reliable end-to-end

delivery service including data transmission and flow control. Using the reliable

service, there must not any data loss and the frame has to be reassembled in the right

places and makes up for Internet Protocol‟s (IP) deficiencies. TCP adds a great deal

of functionality to the IP service compare to UDP is layered over:

 Reliable Delivery and Round Trip Estimation. Sequence numbers are used to

coordinate which data has been transmitted and received. TCP will arrange for

retransmission if it determines that data has been lost in expected time period.

 Network Adaptation. TCP will dynamically learn the delay characteristics of a

network and adjust its operation to maximize throughput without overloading

the network

 Flow Control. TCP manages data buffers, and coordinates traffic so its buffer

will never overflow. Fast senders will be stopped periodically to keep up with

slower receivers.

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

32

 Universitas Indonesia

TCP is provided through three mechanisms:

1. Acknowledgment.

When a receiver gets a message from a transmitter, the receiver has to

acknowledge the message by sending acknowledgment to the transmitter.

2. Sliding Windows

The receiver stop the transmitter from sending messages if a message was

dropped. Then the receiver tells the transmitter the number of message

was expected to be continued.

3. Sequence Number

TCP uses a 32-bit sequence number that counts bytes in the data stream.

Each TCP packet contains the starting sequence number of the data in that

packet, and the sequence number of the last byte received from the remote

peer. With this information, a sliding window is implemented and each

TCP peer must track both its own sequence numbering and the numbering

being used by the remote peer. If the number received is not in sequence,

the receiver will tell the transmitter that the number was wrong and gave it

expected number to be retransmitted.

 And also when the client want to terminate the established connection it uses

a handshake scheme to end communication. Client will send message with FIN flag

set to indicate that the client want to terminate the connection. When server receives

the message, it will send the acknowledgment first and then terminate its connection.

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

33

 Universitas Indonesia

Chapter 4 – Real Time Operating System
GCC environment is decided to use in this project, therefore open source

called FreeRTOS is used to implement a scale-able real time kernel that designed

specifically for small embedded systems. It means that routine and some modules in

the program implementation are based on this open-source. There are some

advantages using FreeRTOS open-source are [11]:

 Preemptive, cooperative and hybrid configuration options.

 Designed to be small, simple and easy to use.

 Very portable code structure predominantly written in C.

 Support both tasks and co-routines.

 Stack-overflow detection options.

4.1 RTOS Concept
In order to develop FreeRTOS to be satisfied to our needs, it is essential to

know the fundamental and the background of RTOS concept. Student will write

RTOS concept such as Multitasking, Scheduling, Context Switching, and how they

will be processed in running task and co-routines.

Multitasking

A conventional processor can only execute a single task at a time, on the other

hand by rapidly switching between tasks a multitasking operation system can make it

appear as if each task is executing concurrently. Figure 14 explain the execution

pattern of three tasks with respect to time. The upper diagram demonstrates the

perceived concurrent execution pattern and the lower the actual multitasking

execution pattern.

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

34

 Universitas Indonesia

Figure 15 - Conventional VS Multitasking

Scheduling

The scheduler is part of the kernel that is responsible to decide which task

should be executed at any particular time. The scheduling policy is the algorithm used

by the scheduler to decide which task to execute at a specific time.

Figure 16 - Scheduling Example

Referring to the numbers in figure above:

 At (1) task 1 is executing.

 At (2) the kernel suspends task 1.

 At (3) resumes task 2.

 While task 2 is executing (4), it locks a processor peripheral for its own

exclusive access.

 At (5) the kernel suspends task 2.

 At (6) resumes task 3.

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

35

 Universitas Indonesia

 Task 3 tries to access the same processor peripheral, finding it locked task 3

cannot continue so suspends itself at (7).

 At (8) the kernel resumes task 1.

 The next time task 2 is executing (9) and it finishes.

 The next time task 3 is executing (10) and it finishes.

Context Switching

As a task executes, it utilizes the microcontroller registers and accesses RAM

and ROM just as any other program. These resources such as processor register,

stack, etc comprise the task execution context. While the task is suspended, other task

will execute and may modify the processor register values. Upon resumption, the task

will not know that the processor have been altered and result in an incorrect value.

The operating system kernel is responsible to ensure saving the context of a

task as it is suspended. So, when the task is being resumed, its saved context is

restored and task will continue in a correct value.

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

36

 Universitas Indonesia

4.2 The differences between Task and Co-routines
 There are several API references such as Task creation control utilities,

Kernel Control, Queues, Semaphore/Mutexes and Co-routines those being used in

FreeRTOS open-source as a default. However, student only added and modified some

aspects that can fulfill the project requirements in Task management and Co-

Routines. Therefore, student will explain the differences between those two.

TASK

 In a real time application that uses an RTOS can be structured as a set of tasks

and each task executes within its own context. Unfortunately, only one task within

the application can be executed at any point in time and real time scheduler is

responsible for deciding which task should be executed. Therefore, scheduler

repeatedly starts and stops each task, and as a task has no knowledge of the scheduler

activity, scheduler also responsible for context switching process when a task is being

swapped out and swapped in. To achieve this one, each task is provided with its own

stack, so the context will be saved to the stack of that task. As a result, it will use high

RAM usage.

Figure 17 - Task States

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

37

 Universitas Indonesia

A task can exist in one of the following states:

 Running

When a task is actually executing, it is said to be in the Running state. It is

currently utilizing the processor.

 Ready

Ready tasks are those that are able to execute but are not executing because a

different task of equal or higher priority is already in the running state. They

are not blocked or suspended.

 Blocked

A task is said to be in the blocked state if it is currently waiting for either a

temporal or external event and it will block until the delay period has expired.

Blocked tasks are not available for scheduling.

 Suspended

Task in Suspended state are also not available for scheduling. Tasks will only

enter or exit the Suspended state when explicitly commanded to do, so there

are going to have two functions; Suspend and Resume.

 Each task is assigned a priority. The scheduler will ensure that a task in the

ready or running state will always be given processor time in preference to tasks of a

lower priority that are also in the ready state. In order words, the task given

processing time will always be the highest priority task that able to run.

Co-Routine

 All the co-routines within an application share a single stack. This reduces the

amount RAM usage compare with tasks. Co-routines use prioritized cooperative

scheduling with respect to other co-routines and also its implementation is provided

through a set of macros.

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

38

 Universitas Indonesia

Figure 18 - Co-Routine States

A co-routine can exist in one of the following states:

 Running

When a co-routine is actually executing it is said to be in the running state. It

is currently utilizing the processor.

 Ready

Ready co-routine are those that are able to execute (they are not blocked) but

are not currently executing. A co-routine may be in the ready state because of

2 reasons:

1. Another co-routine of equal or higher priority is already in the running

state.

2. If the application uses both tasks and co-routines, a co-routine might be in

the ready state when the task is in the running state.

 Blocked

A co-routine is said to be in the Blocked state if it is currently waiting for

either a temporal or extended event.

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

39

 Universitas Indonesia

4.3 FreeRTOS Open-Source Application Demonstration

The table below lists the files that make up the demo projects along with a brief

indication of the RTOS features demonstrated and describes each task and co-routine

within the demo project.

File Features Demonstrated

main.c

 Starting/Stopping the kernel

 Using the trace visualisation utility

 Allocation of priorities

dynamic.c

 Passing parameters into a task

 Dynamically changing priorities

 Suspending tasks

 Suspending the scheduler

BlockQ.c

 Inter-task communications

 Blocking on queue reads

 Blocking on queue writes

 Passing parameters into a task

 Pre-emption

 Creating tasks

ComTest.c

 Serial communications

 Using queues from an ISR

 Using semaphores from an ISR

 Context switching from an ISR

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

40

 Universitas Indonesia

 Creating tasks

CRFlash.c

 Creating co-routines

 Using the index of a co-routine

 Blocking on a queue from a co-routine

 Communication between co-routines

CRHook.c

 Creating co-routines

 Passing data from an ISR to a co-routine

 Tick hook function

 Co-routines blocking on queues

Death.c

 Dynamic creation of tasks (at run time)

 Deleting tasks

 Passing parameters to tasks

Flash.c

 Delaying

 Passing parameters to tasks

 Creating tasks

Flop.c

 Floating point math

 Time slicing

 Creating tasks

Integer.c

 Time slicing

 Creating tasks

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

41

 Universitas Indonesia

PollQ.c

 Inter-task communications

 Manually yielding processor time

 Polling a queue for space to write

 Polling a queue for space to read

 Pre-emption

 Creating tasks

Print.c

 Queue usage

Semtest.c

 Binary semaphores

 Mutual exclusion

 Creating tasks

Table 3 - FreeRTOS Function

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

42

 Universitas Indonesia

Chapter 5 – TCP/IP Stack

The uIP stack that student used for TCP/IP stack is an open source that is

intended to make it possible to communicate using TCP/IP protocol suite even on

small 8-bit micro-controllers. The size of the code is only up to a few kilobytes and

RAM usage can be configured to be as low as a few hundred bytes.

 The uIP TCP/IP stack becomes one of alternatives free open-source to

substitute the business version that has a very expensive price in correspondence.

Although the effect of business version is perfect, programmers choose some free

TCP/IP stacks and improve them to satisfy their needs. The uIP stack can be run

either as a task in a multitasking system, or as the main program in a single tasking

system.

 This uIP TCP/IP Stack has the following features: [4]

 Well documented and well commented source code

 Very small code size

 Very low RAM usage, configurable at compile time

 ARP, SLIP, IP, UDP, ICMP, and TCP protocols.

 Includes a set of example applications: web server, web client, SMTP client,

Telnet server, DNS hostname resolver.

 Any number of concurrently active TCP connections.

 Any number of passively listening (server) TCP.

 Free for both commercial and non-commercial use.

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

43

 Universitas Indonesia

5.1 Main Control Loop

The main control loop in uIP stack does two things repeatedly:

 Check if a packet has arrived from the network. (Using function uip_input()).

 Check if a periodic timeout has occurred. (Using function uip_periodic()).

5.2 Architecture Specific Functions
uIP requires a few functions to be implemented specifically for the architecture to

run. C language implementations are given as part of the uIP distribution. Below is

the basic function of uIP stack:

1. Checksum Calculation

The TCP and IP protocols implement a checksum that covers the data and header

portions of the TCP and IP packets. Since the calculation of this checksum is made

over all bytes in every packet being sent and received it is important that the function

that calculates the checksum is efficient.

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

44

 Universitas Indonesia

While uIP includes a generic checksum function, it also leaves it open for an

architecture specific implementation of the two functions uip_ipchksum() and

uip_tcpchksum().

2. 32-bit Arithmetic

The TCP protocol uses 32-bit sequence numbers, and a TCP implementation will

have to do a number of 32-bit additions as part of the normal protocol processing.

Since 32-bit arithmetic is not natively available on many of the platforms for which

uIP is intended, uIP leaves the 32-bit additions to be implemented by the architecture

specific module and does not make use of any 32-bit arithmetic in the main code

base.

While uIP implements a generic 32-bit addition, there is support for having an

architecture specific implementation of the uip_add32() function.

3. Memory Management

The uIP stack does not use explicit dynamic memory allocation. Instead, it uses a

single global buffer for holding packets and has a fixed table for holding connection

state. The global packet buffer is large enough to contain one packet of maximum

size. When a packet arrives from the network, the device driver places it in the global

buffer and calls the TCP/IP stack. If the packet contains data, the TCP/IP stack will

notify the corresponding application. Because the data in the buffer will be

overwritten by the next incoming packet, the application will either have to act

immediately on the data or copy the data into a secondary buffer for later processing.

The total amount of memory usage for uIP depends heavily on the applications of

the particular device in which the implementations are to be run. The memory

configuration determines both the amount of traffic the system should be able to

handle and the maximum amount of simultaneous connections.

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

http://www.sics.se/~adam/uip/uip-1.0-refman/a00150.html#g2addf34c7d457c1a7899a7e2171ef1e9
http://www.sics.se/~adam/uip/uip-1.0-refman/a00150.html#g85b65e38aa74eba18979156f97a94a87
http://www.sics.se/~adam/uip/uip-1.0-refman/a00150.html#g6832e4d2d046536b6472f7ac92340f68

45

 Universitas Indonesia

4. Application Program Interface (API)

The Application Program Interface (API) defines the way the application

program interacts with the TCP/IP stack. The most commonly used API for TCP/IP is

the BSD socket API which is used in most Unix systems and has heavily influenced

the Microsoft Windows WinSock API. Because the socket API uses stop-and-wait

semantics, it requires support from an underlying multitasking operating system.

Since the overhead of task management, context switching and allocation of stack

space for the tasks might be too high in the intended uIP target architectures, the BSD

socket interface is not suitable for our purposes.

5.3 The uIP raw API
 The "raw" uIP API uses an event driven interface where the

application is invoked in response to certain events. An application running on top of

uIP is implemented as a C function that is called by uIP in response to certain events.

uIP calls the application when data is received, when data has been successfully

delivered to the other end of the connection, when a new connection has been set up,

or when data has to be retransmitted. The application is also periodically polled for

new data. The application program provides only one callback function; it is up to the

application to deal with mapping different network services to different ports and

connections. Because the application is able to act on incoming data and connection

requests as soon as the TCP/IP stack receives the packet, low response times can be

achieved even in low-end systems.

Interface function Application event

uip_listen() Start listening on a port

uip_send() Send data on the current connection

uip_acked() Sent data has been acknowledged

uip_newdata() Remote host has sent new data

uip_datalen() The size of the incoming data

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

46

 Universitas Indonesia

uip_connect() Connect to a remote host

uip_connected() The current connection has just been connected

uip_poll() Application is being polled

uip_close() Close the current connection

uip_abort() Abort the current connection

uip_stop() Stop the current connection

Table 4 - uIP Interface Function

5.4 uIP Simple Application
Hello World (ICMP)

Hello World uIP application is an example showing how to write applications with

protosockets function. The protosocket library in uIP provides functions for sending

data without having to deal with retransmissions and acknowledgements, as well as

functions for reading data without having to deal with data being split across more

than one TCP segment.

Figure 19 - uIP basic ICMP Demo

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

47

 Universitas Indonesia

Telnet

The purpose of this application is to provide a TCP bidirectional interactive

communications facility in port 23. Typically, telnet provides access to a command-

line interface on a remote host via a virtual terminal connection which consists of an

8-bit byte oriented data connection over the Transmission Control Protocol (TCP).

User data is interspersed in-band with TELNET control information.

Figure 20 - uIP Basic Telnet Server Demo

Web Server

The application that responsible for accepting HTTP requests from clients (user

agents such as web browsers), and serving them HTTP responses along with optional

data contents, which usually are web pages such as HTML documents.

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

48

 Universitas Indonesia

Figure 21 - uIP Basic Web Server Demo

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

49

 Universitas Indonesia

Chapter 6 – Algorithm and Design Implementation
 There are 4 development environment options that can be used in

implementation;

1. YAGARTO

2. uC/OS-II Micrium

3. IAR

4. Rowley Crossworks for ARM

Except for option 3, these environments are all built around the free compiler

tool-chain GCC. Furthermore, YAGARTO is being used in this project since it is free

open-source software, has some technical documentation done by software

developers and there is no memory limitation issue compare with other. Student

chose GCC environment because there are more references on building various API

applications even though it is more complicated than other development software.

Since it is completely free to experiment and deploy pre-configured demo

applications to ensure student to start with a known good and working project,

student could develop them until they meet the objectives of the project.

Student use 2 GCC open-sources with C language as a basic demo

applications. There are:

1. FreeRTOS, a mini Real Time Kernel

2. uIP stack, TCP/IP stack that provides TCP/IP connectivity

Both open-sources are licensed by GNU General Public that guarantees the

freedom to share and change them. Student is responsible to obey GNU General

Public restriction by still showing the copyright of the software and offer the license

which give the student legal permission to copy, distribute and modify the software.

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

50

 Universitas Indonesia

The new module is created from the combination of FreeRTOS and uIP stack.

Several API applications that student have been used to achieve the requirement of

the project is discussed in this section. Some ineffective API‟s that work during the

implementation will not be removed since it will make the code structure become

unbalance.

6.1 General Program Loop

Figure 22 - General Program Loop

Figure 22 describes how the whole program works with infinity loop. The brief

explanation of the operations are:

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

51

 Universitas Indonesia

Initialization

Initialize the interrupt. When using JTAG debugger, the hardware is not always

initialized to the correct default state. Make sure that issue does not make all interrupt

to be masked at the start.

Enable the peripheral clock. It is essential to turn on the clock at peripherals Port A,

Port B and the EMAC in order to be able to change bit state at clock transitions in

specific time. By “Turn off” the clock mean we block the clock signal to that

peripheral.

 Initialize Output LED and Input Joystick. To make I/O peripheral to be

able work properly, some register in PIO control peripheral need to be

enabled. This section will be discussed later.

Create a task to enable uIP TCP/IP Stack. This is how student combine the

FreeRTOS and uIP stack by creating a task that provided by FreeRTOS that

implement uIP TCP/IP Stack in API function.

EMAC Initialization. To be able to establish the connection and synchronization

between EMAC to DM9161A chip, it is necessary to do some general steps for the

EMAC initialization;

 Initialize both Tx and Rx descriptor used by the EMAC.

 Enable the Management Data Input/Output bit in MAC Control Register.

 Function to be able read and write value into a PHY register.

 Function to detect MAC and PHY

 EMAC initialization to initialize the Ethernet.

 EMAC initialization to receive packets.

 EMAC initialization to be able to send a packet through EMAC and PHY.

 ICMP, IP, TCP Checksum Calculation.

 Function to be able to send and receive frames.

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

52

 Universitas Indonesia

Building Web Server. Web Server is build by developing the basic web server demo

in uIP TCP/IP stack. There are some C project files those become fundamental of the

web server in this project;

 Httpd.c:. This file contains of the macro, or a rule that specifies how a certain

input sequence used in HTTPD CGI function. Furthermore, Web server

initialization is stored in this file by setting up TCP application in port 80.

 httpd-fsdata.c: This file stores HTML script to create web server design. The

implementation in this file is using hexadecimal code so that can be read by

the processor. As a result ASCII HTML script needs to be manually

converted.

 httpd-fs.c: This file stores the network statistic that monitored in port 80.

 httpd-cgi.c: This file stores web server script interface that can be inserted to

httpd-fsdata.c. Student uses functions here in order to create some

input/output applications at the web-server.

 uIP-Task.c: This file stores the implementation functions that become a

bridge from the web server to the embedded platform register.

Start the standard demo from FreeRTOS mini time real time kernel. Several

task, co-routine, queue and semaphores are being looped and priorities will be

implemented.

Main Loop

Every 2 second: The web server will check the Data Status Register in particular bit

in order to check the User LED and Joystick Input status. The web server will be

refreshed every 2 second to minimize the load of the network.

Every Tick in Approximately 1 ms

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

53

 Universitas Indonesia

Check an Input user interface from the web server to turn on/turn off or toggle

the LED: The bit status for I/O peripheral can be controlled from web server. Student

uses 1ms tick to read input user interface status and then update the particular I/O

peripheral status.

Check Joystick Input Data Register Status: It has the same concept with above

operation. Student uses 1ms tick to read Input from joystick and then update the

particular I/O peripheral status and the status at web-server.

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

54

 Universitas Indonesia

6.2 PIO Algorithm
A. Reading Joystick Input

Figure 23 - Reading Joystick Algorithm

Initialization for the input algorithm is executed during hardware initialization at the

very beginning of the program. The brief explanations of figure 22 are:

 Point to the particular bit: There are 6 wires for Joystick Input those

represent the 5 data directions and a ground. Student defines those bits those

have bit address PIOA21, PIOA22, PIO23, PIO24, and PIO25 as North,

South, West, East, and Push respectively.

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

55

 Universitas Indonesia

 Enable PIOA Control (PER): The purpose is to enable the PIO controller

and ready to be used in the implementation.

 Disable Output Register (ODR): The purpose of disabling the output

register is to restrict the data status register so that it only can be updated by

controlling the joystick manually.

 Enable Pull-up Resistor (PUER): When a joystick contact is closed, it will

connect the related port bit to ground. Otherwise the port bit will be floating.

The floating status can be avoided by enabling the internal pull-up resistor.

 Check Data Status Register: In every 1 ms tick, each Data Status Register

will be monitored and also will be uploaded to the web-server.

B. Set the LED Status to turn on/turn off the LED

Figure 24 - Algorithm to Set LED Status

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

56

 Universitas Indonesia

Initialization for the input algorithm is executed during hardware initialization at the

very beginning of the program. The brief explanation should be like below:

 Point to the particular bit. There are 4 address bit that stand for the LEDs;

PIOB 19, PIOB20, PIOB21, PIOB22. They are representing LED DS1, DS2,

DS3 and DS4 respectively.

 Enable PIOB Control (PER). The purpose is to enable the PIO controller

and ready to be used in the implementation.

 Enable Output Register (EOR). The purpose enabling this register is to be

able to update the LED status as an output.

 Set Output Enable Register (SODR). The purpose is to make sure the LED

is being turned off for the initialization.

 Set the LED Status. First, LED which wants to be turned on/off should be

defined. Assigning Clear Output Data Register will turn on the LED and

assigning Set Output Data Register will turn off the LED.

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

57

 Universitas Indonesia

C. Toggle LED

Figure 25 - Algorithm to toggle the LED

 The delay will be done by controlling the tick port in particular time.

 When calling this toggle function, first it will check the LED Data Status

Register and then do the opposite operation from it. The operation will still

work until there is an input from Input User Interface to stop calling this

toggle function.

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

58

 Universitas Indonesia

D. Transmitting buffer data in Web Server User interface as an input

Figure 26 - Web Address

 uIP TCP/IP stack is allow us to control the web address as shown in figure 25.

As we can see the value of LED and ON are 1 and 0 respectively. By separating these

numbers from the web address string and sending those into Peripheral I/O control

function, then the LED peripheral can be controlled remotely from the web server. In

the figure case, the web server will turn the LED DS1 on.

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

59

 Universitas Indonesia

Chapter 7 – Software Demonstration

The following operations are going to be demonstrated:

 Possible Network Diagrams

 ICMP and ARP

 Web Server Page RTOS Stats

 Web Server Page TCP Stats

 Web Server Page Connection

 Web Server Page IO

7.1 Possible Network Diagrams
There are some real world cases that can be implemented so that the microcontroller

can be accessed remotely. The figures below show network diagrams that is suitable

for the network implementation.

Figure 27 - Host to Host Network

Figure 26 shows the implementation of
host to host network. The Davicom
D9161A supports Auto MDIX (Cable type
detection). Therefore any type of UTP
cables can be used to establish the
connection. Cross-Over UTP cable is
used in this project to avoid traditional
issue.

Both IP address are assigned in the
same subnet.

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

60

 Universitas Indonesia

Figure 28 - Local Area Network

Figure 29 - Wide Area Network

By adding a switch into network
diagram, it is still possible to access
the embedded platform through
Local Area Network.

All IP addresses must be in the
same subnets so that all electronic
devices can be communicated each
other.

By adding a router as a
gateway, student also could
access the embedded platform
from Wide Area Network.

The router should be
configured to forward the
embedded platform’s port so
that the microcontroller has a
public/internet IP address.

It means if the public IP
address is accessed, basically
it will point to the local
embedded platform IP
address.

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

61

 Universitas Indonesia

7.2 ICMP and ARP
Ping is a command that uses ICMP Protocol to check connectivity through

network. It is important to check connectivity between a host and embedded platform

before performing any other task. Note that if the ping command shows no

connectivity, it simply means the packets cannot be delivered. The Address

Resolution Protocol (ARP) is the method for finding a host's link layer (hardware)

address when only its IP address or some other network layer address is known. So it

simply means MAC address of the hardware can be detected.

In order to test the system, we can examine by using ping and arp-a

command in Command Prompt Window. Figure 29 shows the connection between

host and embedded platform was successful. However, the ARP shows that the MAC

address of the embedded platform is 00:00:00:00:00:00 due to the combination error

between FreeRTOS and uIPstack. As long student could just broadcast the packet, the

packet will still delivered, but that will also clog our network with unnecessary

broadcasts.

Figure 30 - ICMP and ARP Result

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

62

 Universitas Indonesia

7.3 Web Server
Web Server Page – RTOS Stats

In this web server page, student put 3 statistics that represent the LED Output

Status, Joystick Input status and Task statistic. Those statistics will be updated every

2 seconds instead of 1 second to minimize the network load. LED Output Status and

Joystick Input Status will read and receive the Data Status Register from particular

I/O peripheral bit. And, Task statistic is read from FreeRTOS‟s function called

vTasklist() that show the FreeRTOS tasks that executed in running state.

Figure 31 - Web Server - RTOS Page Stats

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

63

 Universitas Indonesia

Web Server – TCP stats

This page shows the uIP statistic about the network performances that defines in

uip_stats() in default. It determines the IP, ICMP, and TCP packets status from

Ethernet traffic network.

Figure 32 - Web Server - TCP Stats

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

64

 Universitas Indonesia

Web Server – Connection Page

This page shows the embedded platform‟s network traffic and service discovery. It

determines the statistic log of activity in Ethernet-based network.

Figure 33 - Web Server - Connection Page

Web Server – IO Page

This page shows the GUI Interface that able to send buffers into the embedded

platform by clicking the „update IO‟ options. Student built two GUI interfaces to send

bytes to turn on/off and toggle LED. The LED status can be seen in RTOS stats page.

Figure 34 - Web Server - IO Page

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

65

 Universitas Indonesia

Summaries and Conclusion
Atmel‟s AT91SAM7X256 is a member of a series of highly integrated flash

microcontrollers based on the 32-bit ARM RISC processor including an 802.3

Ethernet MAC. Therefore we can design and program the platform to be accessed

through a web server that can be used to control, transmit, and receive data to the

Input Output peripherals at the board remotely. Evaluation of EMAC, Davicom

DM9161A chip, and PIO Controller are needed to be synchronized with real time

operating systems to ARM processor.

 Transmission Control Protocol that referred at transport layer in TCP/IP

reference model is used in this implementation. It provides reliable end-to-end

delivery service including data transmission and flow control. Using the reliable

service, there must not any data loss and the frame has to be reassembled in the right

places and makes up for Internet Protocol‟s (IP) deficiencies.

GCC environment is decided to use in this project, therefore student use 2 GCC

open-sources with C language as a basic demo application. There are:

1. FreeRTOS, a mini Real Time Kernel

2. uIP stack, TCP/IP stack that provides TCP/IP connectivity

FreeRTOS is used to implement a scale-able real time kernel that designed

specifically for small embedded systems. It means that routine and some modules in

the program implementation are based on this open-source. There are some

advantages using FreeRTOS open-source are:

 Preemptive, cooperative and hybrid configuration options.

 Designed to be small, simple and easy to use.

 Very portable code structure predominantly written in C.

 Support both tasks and co-routines.

 Stack-overflow detection options.

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

66

 Universitas Indonesia

The uIP stack that student used for TCP/IP stack is an open source that is

intended to make it possible to communicate using TCP/IP protocol suite even on

small 8-bit micro-controllers. uIP requires a few functions to be implemented

specifically for the architecture to run based on Transmission Control Protocol. C

language implementations are given as part of the uIP distribution.

As the result, Peripheral I/O can be controlled remotely from the web server

by combining FreeRTOS and uIP stack. Furthermore, via testing, this web server

worked stably. Data can be transmitted and received into embedded platform reliably

and it is suitable for mini web LAN.

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

67

 Universitas Indonesia

Bibliography
[1]

http://ieeexplore.ieee.org.ezp02.library.qut.edu.au/stamp/stamp.jsp?tp=&arnumber=8

30384&isnumber=18005

[2] http://www.atmel.com/dyn/resources/prod_documents/6120s.pdf

[3] http://www.atmel.com/dyn/resources/prod_documents/doc6120.pdf

[4] http://www.msc-ge.com/download/atmel/pdf_arm9/SAM7XC-user_guide.pdf

[5] http://www.sics.se/~adam/download/uip-1.0-refman.pdf

[6] Andrew S. Tanenbaum, Computer Networks. Prentice Hall.2003

[7] http://en.wikipedia.org/wiki/Manchester_code

[8] http://www.lincoln.edu/math/rmyrick/ComputerNetworks/InetReference/83.htm

[9] QUT Blackboard – ENB346 Digital Communication

[10] QUT Blackboard – ENB241 Software System Design

[11] QUT Blackboard – ENB244 Microprocessor and Digital System

[12]

http://abstract.cs.washington.edu/~shwetak/classes/ee472/assignments/lab2/timers.pd

f

[13] http://www.ethernut.de/nutwiki/AT91SAM7X-EK_Port_I/O

[14] http://www.mynetwatchman.com/pckidiot/arp.htm

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

http://ieeexplore.ieee.org.ezp02.library.qut.edu.au/stamp/stamp.jsp?tp=&arnumber=830384&isnumber=18005
http://ieeexplore.ieee.org.ezp02.library.qut.edu.au/stamp/stamp.jsp?tp=&arnumber=830384&isnumber=18005
http://www.atmel.com/dyn/resources/prod_documents/6120s.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc6120.pdf
http://www.msc-ge.com/download/atmel/pdf_arm9/SAM7XC-user_guide.pdf
http://www.sics.se/~adam/download/uip-1.0-refman.pdf
http://en.wikipedia.org/wiki/Manchester_code
http://www.lincoln.edu/math/rmyrick/ComputerNetworks/InetReference/83.htm
http://abstract.cs.washington.edu/~shwetak/classes/ee472/assignments/lab2/timers.pdf
http://abstract.cs.washington.edu/~shwetak/classes/ee472/assignments/lab2/timers.pdf
http://www.ethernut.de/nutwiki/AT91SAM7X-EK_Port_I/O
http://www.mynetwatchman.com/pckidiot/arp.htm

68

 Universitas Indonesia

Appendix

HTML SCRIPT
Final Year Project Code\Demonstration\webserver\httpd-fsdata.c

/*

Final Year Project

Internet Interface for Microcontroller

Mohamad Bayu Indra Nugraha

n6420125

*/

404.html

<html>

 <body bgcolor="white">

 <center>

 <h1>404 - file not found</h1>

 <h3>Go here instead.</h3>

 </center>

 </body>

</html>

index.html
<html>

 <head>

 <title>EEB889-Internet Interface for Microcontroller</title>

 </head>

 <BODY

onLoad="window.setTimeout("location.href='index.shtml'",10

00)"bgcolor="#FFFFCC">

Final Year Project

Internet Interface for Microcontroller

Mohamad Bayu Indra Nugraha - n6420125
<p>

Loading index.shtml. Click here if not

automatically redirected.

</body>

</html>

index.shtml
<html>

 <head>

 <title>EEB889-Internet Interface for Microcontroller</title>

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

69

 Universitas Indonesia

 </head>

 <BODY

onLoad="window.setTimeout("location.href='index.shtml'",10

00)"bgcolor="#FFFFCC">

Final Year Project

Internet Interface for Microcontroller

Mohamad Bayu Indra Nugraha - n6420125
<p>

RTOS Stats | TCP Stats | Connections | IO

<p>

<hr>

<p>

<h2>LED Output Status</h2>

%! led-io

<h2>Joystick Input Status</h2>

*% joystick-status

<h2>Task statistics</h2>

Page will refresh evey 2 seconds.<p>

<pre>Task State Priority Stack

 #
**

%! rtos-stats

</pre>

</body>

</html>

Stats.shtml

<html>

 <head>

 <title>EEB889-Internet Interface for Microcontroller</title>

 </head>

 <BODY bgcolor="#FFFFCC">

Final Year Project

Internet Interface for Microcontroller

Mohamad Bayu Indra Nugraha - n6420125
<p>

RTOS Stats | TCP Stats | Connections | IO

<p>

<hr>

<p>

<h2>Network statistics</h2>

<table width="300" border="0">

<tr><td align="left"><pre>

IP Packets dropped

 Packets received

 Packets sent

IP errors IP version/header length

 IP length, high byte

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

70

 Universitas Indonesia

 IP length, low byte

 IP fragments

 Header checksum

 Wrong protocol

ICMP Packets dropped

 Packets received

 Packets sent

 Type errors

TCP Packets dropped

 Packets received

 Packets sent

 Checksum errors

 Data packets without ACKs

 Resets

 Retransmissions

 No connection avaliable

 Connection attempts to closed ports

</pre></td><td><pre>%! net-stats

</pre></table>

</body>

</html>

Tcp.shtml

<html>

 <head>

 <title>EEB889-Internet Interface for Microcontroller</title>

 </head>

 <BODY bgcolor="#FFFFCC">

Final Year Project - Internet Interface for Microcontroller

Mohamad Bayu Indra Nugraha - n6420125
<p>

RTOS Stats | TCP Stats | Connections | IO

<p>

<hr>

<h2>Network connections</h2>

<p>

<table>

<tr><th>Local</th><th>Remote</th><th>State</th><th>Retransmissions</

th><th>Timer</th><th>Flags</th></tr>

%! tcp-connections

</pre>

</body>

</html>

Io.shtml

<html>

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

71

 Universitas Indonesia

 <head>

 <title>EEB889-Internet Interface for Microcontroller</title>

 </head>

 <BODY bgcolor="#FFFFCC">

Final Year Project

Internet Interface for Microcontroller

Mohamad Bayu Indra Nugraha - n6420125
<p>

RTOS Stats | TCP Stats | Connections | IO

<p>

<hr>

LED IO

<p>

Use the check box to set the LED state, then click "Update IO" to

send the new state to the microcontroller.

<p>

<form name="aForm" action="/io.shtml" method="get">

%! led-io

<p>

<input type="submit" value="Update IO">

</form>

<p>

</body>

</html>

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

72

 Universitas Indonesia

GUI Interface
\Final Year Project Code\Demonstration\webserver\httpd-cgi.c

Network Stats
/*

Final Year Project

Internet Interface for Microcontroller

Mohamad Bayu Indra Nugraha

n6420125

*/

static unsigned short

generate_tcp_stats(void *arg)

{

 struct uip_conn *conn;

 struct httpd_state *s = (struct httpd_state *)arg;

 conn = &uip_conns[s->count];

 return snprintf((char *)uip_appdata, UIP_APPDATA_SIZE,

"<tr><td>%d</td><td>%u.%u.%u.%u:%u</td><td>%s</td><td>%u</td><td>%u<

/td><td>%c %c</td></tr>\r\n",

 htons(conn->lport),

 htons(conn->ripaddr[0]) >> 8,

 htons(conn->ripaddr[0]) & 0xff,

 htons(conn->ripaddr[1]) >> 8,

 htons(conn->ripaddr[1]) & 0xff,

 htons(conn->rport),

 states[conn->tcpstateflags & UIP_TS_MASK],

 conn->nrtx,

 conn->timer,

 (uip_outstanding(conn))? '*':' ',

 (uip_stopped(conn))? '!':' ');

}

/*--

---------*/

static

PT_THREAD(tcp_stats(struct httpd_state *s, char *ptr))

{

 PSOCK_BEGIN(&s->sout);

 for(s->count = 0; s->count < UIP_CONNS; ++s->count) {

 if((uip_conns[s->count].tcpstateflags & UIP_TS_MASK) !=

UIP_CLOSED) {

 PSOCK_GENERATOR_SEND(&s->sout, generate_tcp_stats, s);

 }

 }

 PSOCK_END(&s->sout);

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

73

 Universitas Indonesia

}

uIP Stats – IP TCP ICMP Checksum

char *pcStatus4,*pcStatus3,*pcStatus2,*pcStatus1;

unsigned long ulString;

/*--

---------*/

static unsigned short

generate_net_stats(void *arg)

{

 struct httpd_state *s = (struct httpd_state *)arg;

 return snprintf((char *)uip_appdata, UIP_APPDATA_SIZE,

 "%5u\n", ((uip_stats_t *)&uip_stat)[s->count]);

}

static

PT_THREAD(net_stats(struct httpd_state *s, char *ptr))

{

 PSOCK_BEGIN(&s->sout);

#if UIP_STATISTICS

 for(s->count = 0; s->count < sizeof(uip_stat) /

sizeof(uip_stats_t);

 ++s->count) {

 PSOCK_GENERATOR_SEND(&s->sout, generate_net_stats, s);

 }

#endif /* UIP_STATISTICS */

 PSOCK_END(&s->sout);

}

/*--

---------*/

FreeRTOS Stats

extern void vTaskList(signed char *pcWriteBuffer);

static char cCountBuf[32];

long lRefreshCount = 0;

static unsigned short

generate_rtos_stats(void *arg)

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

74

 Universitas Indonesia

{

 lRefreshCount++;

 sprintf(cCountBuf, "<p>
Refresh count = %ld",

lRefreshCount);

 vTaskList(uip_appdata);

 strcat(uip_appdata, cCountBuf);

 return strlen(uip_appdata);

}

/*--

---------*/

static

PT_THREAD(rtos_stats(struct httpd_state *s, char *ptr))

{

 PSOCK_BEGIN(&s->sout);

 PSOCK_GENERATOR_SEND(&s->sout, generate_rtos_stats, NULL);

 PSOCK_END(&s->sout);

}

/*--

---------*/

Input User Interface – LED Turn on/Off

char *Input1ON, *Input1OFF;

generate_input(void *arg)

{

 sprintf(uip_appdata,

 "<select name=\"LED\"><option value=\"0\">LED

DS1</option><option value=\"1\">LED DS2</option><option

value=\"2\">LED DS3</option><option value=\"3\">LED

DS4</option></select><select name=\"ON\"><option value=\"0\">Turn

On</option><option value=\"1\">Turn Off</option></select>",Input1ON,

Input1OFF);

 return strlen(uip_appdata);

}

static

PT_THREAD(led_input(struct httpd_state *s, char *ptr))

{

 PSOCK_BEGIN(&s->sout);

 PSOCK_GENERATOR_SEND(&s->sout, generate_input, NULL);

 PSOCK_END(&s->sout);

}

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

75

 Universitas Indonesia

Input User Interface – Toggle LED

generate_toogle(void *arg)

{

sprintf(uip_appdata,

 "<select name=\"Tog\"><option value=\"0\">Toogle

DS1</option><option value=\"1\">Toogle DS2</option><option

value=\"2\">Toogle DS3</option><option value=\"3\">Toogle

DS4</option></select><input type=\"textarea\" name=\"De\"

value=\"0\" %s>",Input1ON, Input1OFF);

 return strlen(uip_appdata);

}

static

PT_THREAD(led_toogle(struct httpd_state *s, char *ptr))

{

 PSOCK_BEGIN(&s->sout);

 PSOCK_GENERATOR_SEND(&s->sout, generate_toogle, NULL);

 PSOCK_END(&s->sout);

}

LED Stats

char *pcStatus4,*pcStatus3,*pcStatus2,*pcStatus1;

//extern unsigned long uxParTextGetLED(unsigned long uxLED);

static unsigned short generate_io_state(void *arg)

{

 if(GetLED(4)){

 pcStatus4 = "checked";

 }

 else{

 pcStatus4 = "";

 }

 if(GetLED(3)){

 pcStatus3 = "checked";

 }

 else{

 pcStatus3 = "";

 }

 if(GetLED(2)){

 pcStatus2 = "checked";

 }

 else{

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

76

 Universitas Indonesia

 pcStatus2 = "";

 }

 if(GetLED(1)){

 pcStatus1 = "checked";

 }

 else{

 pcStatus1 = "";

 }

 sprintf(uip_appdata,

 "<input type=\"checkbox\" name=\"LED1\" value=\"1\"

%s>LED DS1, <input type=\"checkbox\" name=\"LED2\" value=\"1\"

%s>LED DS2,<input type=\"checkbox\" name=\"LED3\" value=\"1\" %s>LED

DS3,<input type=\"checkbox\" name=\"LED0\" value=\"1\" %s>LED DS4,

"\

 "<p>",

 pcStatus1, pcStatus2, pcStatus3, pcStatus4);

 return strlen(uip_appdata);

}

static PT_THREAD(led_io(struct httpd_state *s, char *ptr))

{

 PSOCK_BEGIN(&s->sout);

 PSOCK_GENERATOR_SEND(&s->sout, generate_io_state, NULL);

 PSOCK_END(&s->sout);

}

Joystick Stats

char *North ,*South,*East,*West, *Push , *InputStatus;

static unsigned short generate_joystick(void *arg)

{

 if(GetJoystick(5)){

 Push = "checked";

 }

 else{

 Push = "";

 }

 if(GetJoystick(4)){

 East = "checked";

 }

 else{

 East = "";

 }

 if(GetJoystick(3)){

 West = "checked";

 }

 else{

 West = "";

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

77

 Universitas Indonesia

 }

 if(GetJoystick(2)){

 South = "checked";

 }

 else{

 South = "";

 }

 if(GetJoystick(1)){

 North= "checked";

 }

 else{

 North = "";

 }

 sprintf(uip_appdata,

 "<input type=\"checkbox\" name=\"West\" value=\"1\"

%s>West, <input type=\"checkbox\" name=\"North\" value=\"1\"

%s>North,<input type=\"checkbox\" name=\"East\" value=\"1\"

%s>East,<input type=\"checkbox\" name=\"South\" value=\"1\"

%s>South, <input type=\"checkbox\" name=\"Push\" value=\"1\"

%s>Push"\

 "<p>",

 West, North, East, South, Push);

 return strlen(uip_appdata);

}

static PT_THREAD(joystick_status(struct httpd_state *s, char *ptr))

{

 PSOCK_BEGIN(&s->sout);

 PSOCK_GENERATOR_SEND(&s->sout, generate_joystick, NULL);

 PSOCK_END(&s->sout);

}

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

78

 Universitas Indonesia

Reading Web Address and Separate value
we want
/*

Final Year Project

Internet Interface for Microcontroller

Mohamad Bayu Indra Nugraha

n6420125

*/

int nLEDNum;

int nLEDOn;

void vProcessInput(char *pcInput)

{

char *c,*LED, *Temp, *ON, *To, *De;

//ToogleInput LED;

 /* Turn the LED on or off depending on the checkbox status. */

 /*Check the address website*/

 c = strstr(pcInput, "?");

 LED= strstr(pcInput, "LED=");

 ON = strstr(pcInput, "ON=");

 To = strstr(pcInput, "Tog=");

 De = strstr(pcInput, "De=");

 if(c){

 if(LED && ON){

 nLEDNum = atoi(LED+4);

 nLEDOn = atoi(ON+3);

 SetLED(nLEDNum,nLEDOn);

 }

 if(To && De){

 nLEDNumber = atoi(To+4);

 nTickRate = atoi(De+3);

 }

 }

}

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

79

 Universitas Indonesia

Delay to Toggle LEDs
/*

Final Year Project

Internet Interface for Microcontroller

Mohamad Bayu Indra Nugraha

n6420125

*/

void vApplicationTickHook(void)

{

 if(nTickRate != 0){

static unsigned portLONG Count = 0, ErrorFound = pdFALSE;

/* The rate at which LEDs will toggle if an error has been found in

one or

more of the standard demo tasks. */

const unsigned portLONG ErrorFlashRate = 1000*nTickRate /

portTICK_RATE_MS;

/* The rate at which LEDs will toggle if no errors have been found

in any

of the standard demo tasks. */

 const unsigned portLONG NoError = nTickRate*1000 /

portTICK_RATE_MS;

 Count++;

 if(ErrorFound != pdFALSE)

 {

 /* We have already found an error, so flash the LED with

the appropriate

 frequency. */

 if(Count > ErrorFlashRate){

 Count = 0;

 ToggleLED(nLEDNumber);

 }

 }

 else

 {

 if(Count > NoError)

 {

 Count = 0;

 ToggleLED(nLEDNumber);

 }

 }

}

}

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

80

 Universitas Indonesia

Main Program
/* Standard includes. */

#include <stdlib.h>

/* Scheduler includes. */

#include "FreeRTOS.h"

#include "task.h"

/* Demo application includes. */

#include "parallelIO.h"

#include "uip_task.h"

#include "BlockQ.h"

#include "blocktim.h"

#include "flash.h"

#include "QPeek.h"

#include "dynamic.h"

#include "httpd.h"

#include "uIP_Task.h"

#include "httpd-cgi.h"

/* Priorities for the demo application tasks. */

#define UIP_PRIORITY (tskIDLE_PRIORITY +

2)

#define mainUSB_PRIORITY (

tskIDLE_PRIORITY + 2)

#define mainBLOCK_Q_PRIORITY (tskIDLE_PRIORITY +

1)

#define mainFLASH_PRIORITY (tskIDLE_PRIORITY + 2)

#define mainGEN_QUEUE_TASK_PRIORITY (tskIDLE_PRIORITY)

/* The task allocated to the uIP task is large to account for its

use of the

sprintf() library function. Use of a cut down printf() library

would allow

the stack usage to be greatly reduced. */

#define UIP_STACK (configMINIMAL_STACK_SIZE * 6)

/*---*/

/*

 * Configure the processor for use with the Atmel demo board. Setup

is minimal

 * as the low level init function (called from the startup asm file)

takes care

 * of most things.

 */

static void HardwareInit(void);

/*---*/

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

81

 Universitas Indonesia

/*

 * Starts all the other tasks, then starts the scheduler.

 */

int main(void)

{

 /* Setup any hardware that has not already been configured by

the low

 level init routines. */

 HardwareInit();

 /* Start the task that handles the TCP/IP and WEB server

functionality. */

 xTaskCreate(vuIP_Task, "uIP", UIP_STACK, NULL, UIP_PRIORITY,

NULL);

 /* Start the standard demo tasks. */

 vStartBlockingQueueTasks(mainBLOCK_Q_PRIORITY);

 vCreateBlockTimeTasks();

 vStartLEDFlashTasks(mainFLASH_PRIORITY);

 vStartGenericQueueTasks(mainGEN_QUEUE_TASK_PRIORITY);

 vStartQueuePeekTasks();

 vStartDynamicPriorityTasks();

 /*Start the scheduler*/

 vTaskStartScheduler();

 /* We should never get here as control is now taken by the

scheduler. */

 return 0;

}

/*---*/

static void HardwareInit(void)

{

 portDISABLE_INTERRUPTS();

 /* When using the JTAG debugger the hardware is not always

initialised to

 the correct default state. This line just ensures that this

does not

 cause all interrupts to be masked at the start. */

 AT91C_BASE_AIC->AIC_EOICR = 0;

 /* Most setup is performed by the low level init function

called from the

 startup asm file. */

 /* Enable the peripheral clock. */

 AT91C_BASE_PMC->PMC_PCER = 1 << AT91C_ID_PIOA;

 AT91C_BASE_PMC->PMC_PCER = 1 << AT91C_ID_PIOB;

 AT91C_BASE_PMC->PMC_PCER = 1 << AT91C_ID_EMAC;

 /* Initialise the LED outputs for use by application tasks.*/

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

82

 Universitas Indonesia

 LEDInitialise();

 JoystickInitialise();

}

Parallel IO Controller
/*

Final Year Project

Internet Interface for Microcontroller

Mohamad Bayu Indra Nugraha

n6420125

*/

/* Scheduler includes. */

#include "FreeRTOS.h"

/* Demo application includes. */

#include "parallelIO.h"

/*---

 * Simple parallel port IO routines for the LED's. LED's can be

set, cleared

 * or toggled.

 ---/

/* Joystick inputs used*/

#define North (1 << 21) /* PA21 */

#define South (1 << 22) /* PA22 */

#define East (1 << 23) /* PA23 */

#define West (1 << 24) /* PA24 */

#define Push (1 << 25) /* PA25 */

/*LED Outputs used*/

#define DS1 (1 << 19) /* PB19 */

#define DS2 (1 << 20) /* PB20 */

#define DS3 (1 << 21) /* PB21 */

#define DS4 (1 << 22) /* PB22 */

/*Put The I/O Parts into an Array to make me writing program

easier*/

#define LEDs (nLED_Mask[0] | nLED_Mask[1] |

nLED_Mask[2] | nLED_Mask[3])

#define Joystick (nJoy_Mask[0] | nJoy_Mask[1] | nJoy_Mask[2]

| nJoy_Mask[3] | nJoy_Mask[4])

/*Pointing each array to the particular bit*/

const unsigned portLONG nLED_Mask[4]= { DS1, DS2, DS3, DS4

};

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

83

 Universitas Indonesia

const unsigned portLONG nJoy_Mask[5] = { North, South, East,

West, Push };

/* LED Initialization */

void LEDInitialise(void)

{

 /* Configure the PIO Lines corresponding to LED1 to LED4 to be

outputs. */

 AT91C_BASE_PIOB->PIO_PER = LEDs; // Enable The PIOB Control

 AT91C_BASE_PIOB->PIO_OER = LEDs; // Output Enable Register

 /* Start with all LED's off. */

 AT91C_BASE_PIOB->PIO_SODR = LEDs; // Set Output Enable Register

}

/* Joystick Initialization */

void JoystickInitialise(void)

{

 /*Configure the PIO Lines correspoding to Joystick to be

inputs*/

 AT91C_BASE_PIOA->PIO_PER = Joystick; // Enable The PIOA

Control

 AT91C_BASE_PIOA->PIO_ODR = Joystick; // Output Disable

Register to closed the Joystick contact

 AT91C_BASE_PIOA->PIO_PPUER = Joystick; // Enabling Intenal

pull-up resistor

}

void SetLED(unsigned portBASE_TYPE nLED, signed portBASE_TYPE Value

)

{

 /*Check if LED number is not bigger than 4*/

 if(nLED < (portBASE_TYPE) 4)

 {

 /*if Value is not equal to zero, it will turn off the

LED*/

 /*else it will turn on the LED*/

 if(Value){

 AT91C_BASE_PIOB->PIO_SODR = nLED_Mask[nLED];

 }

 else{

 AT91C_BASE_PIOB->PIO_CODR = nLED_Mask[nLED];

 }

 }

}

/*---*/

void ToggleLED(unsigned portBASE_TYPE nLED)

{

 /*Check if LED number is not bigger than 4*/

 if(nLED < (portBASE_TYPE) 4){

 if(AT91C_BASE_PIOB->PIO_PDSR & nLED_Mask[nLED]){

 AT91C_BASE_PIOB->PIO_CODR = nLED_Mask[nLED];

 }

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

84

 Universitas Indonesia

 else{

 AT91C_BASE_PIOB->PIO_SODR = nLED_Mask[nLED];

 }

 }

}

/*---*/

/*This Function is to check the LED Status*/

unsigned portBASE_TYPE GetLED(int nLED)

{

 return !(AT91C_BASE_PIOB->PIO_PDSR & nLED_Mask[nLED -

1]);

}

/*This Function is to check the Joystick Input Status*/

unsigned portBASE_TYPE GetJoystick(int nJoystick)

{

 return !(AT91C_BASE_PIOA->PIO_PDSR & nJoy_Mask [

nJoystick - 1]);

}

void ControlLEDfromJoystick (void)

{

 /*if North is pressed, then LED DS2 will turn on*/

 if(GetJoystick(1)){

 SetLED(1,0);

 }

 /*if South is pressed, then LED DS4 will turn on*/

 else if(GetJoystick(2)){

 SetLED(3,0);

 }

 /*if West is pressed, then LED DS1 will turn on*/

 else if(GetJoystick(3)){

 SetLED(0,0);

 }

 /*if East is pressed, then LED DS3 will turn on*/

 else if(GetJoystick(4)){

 SetLED(2,0);

 }

 /*if Push is pressed, then All LEDs will turn off*/

 else if(GetJoystick(5)){

 SetLED(0,1);

 SetLED(1,1);

 SetLED(2,1);

 SetLED(3,1);

 }

}

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

Abstract

At present, network is becoming the hot point for the investigation of
embedded system. Considering the growth of data communication, connection
between embedded system platforms and the internet interfaces has been an
important development direction and indispensable functions for the embedded
system in the future and it becomes an important role if the embedded platforms can
be accessible and monitored whenever and wherever we need.

By implementing TCP/IP uIP-stack open source properties and correlative
system interfaces architecture, some internet protocol application such as web
server, ICMP and telnet server, can be integrated into the embedded systems. This
paper describes how the combination between Real Time Operating System and
Embedded Web Server Application can be established in ATMEL AT91SAM7X
platform by sending multiple packet data and processed stably in I/O hardware
architectures. At last, some real world simulations are applied in order to test system
design performances and reliability.

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

Chapter 1- Introduction

1.1 Project Background
As the World Wide Web (or Web) continues to evolve, it is clear that its

underlying technologies are useful for much more than just browsing the Web. Web

browsers have become the standard user interface for a variety of applications because

Web browsers can provide a GUI interface to various client/server applications without

having to implement a separate client.

General Web server, which were developed for general purpose computers such

as NT servers or Unix workstations, typically require megabytes of memory, a fast

processor, a pre-emptive multitasking operating system, and other resources. A web

server can be embedded in a device to provide remote access to the device from a Web

browser if the resource requirements of the Web server are reduced. The result typically a

portable set of code that can run on embedded system with limited resources. [1]

Embedded Web Server are used to convey the state information of embedded

systems, such as a systems working statistic, operation result and transfer user commands

from a Web browser to an embedded system. The state information is extracted from an

embedded system application and the control command is implemented through the

embedded system application.

Atmel’s AT91SAM7X256 ARM7 Based is the hardware that student used to

implement embedded Web Server because it contains a large set of peripherals, including

an 802.3 Ethernet MAC. So, by combining the ARM processor with on-chip Flash and

SRAM, and a wide range of peripheral function, including USART, SPI, CAN Controller

on it, it become cost-effective solution to many embedded control application in real

world requiring communication over internet, for example, CAN wired and Zigbee

wireless network. [2]

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

In order to establish communication between the hardware and each other across a

network, we need a protocol suitable between those as a convention or standard that

enables the connection. TCP/IP protocol suite has become a global standard protocol

communication used for web page transfers, e-mail transmission, file transfer, and peer-

to-peer networking over Internet. Traditional TCP/IP implementations have required too

much resources of code size and memory usage for 8 or 16-bit systems. To solve this

problem, student used open-source uIP implementation that is designed to have only

absolute minimal set of features needed for a full TCP/IP stack. uiP implementation can

only handle a single network interface and contain IP, ICMP, UDP and TCP Protocol. [4]

 Real Time Operating System management also will be discussed in this report.

The purpose is to allow user to do multiple tasks to a single processor attached at the

hardware simultaneously without the system becoming unresponsive. The scheduling

algorithm is used to finish and complete real-time function within a given time without

any failure in the system. As a result, the combination of establishing data

communication via Ethernet and RTOS implementation in Atmel’s AT91SAM7X256

ARM7 board will be discussed in this report.

C languages will be used in GCC platform by the student. Even though, there is a

software development tools for embedded systems called IAR systems that should be

easier to be managed, it has some limitations that will be explained later. GCC is the

leading free (open source) compiler environment, widely used in the industry. Though,

it’s really hard to be implemented and waste of time, there are no issues of confidentiality

and limitations for sharing information in the joint research. FreeRTOS and uIP TCP/IP

Stack open sources will be combined by the student as a mini Real Time Kernel routine

and TCP/IP protocol stack respectively.

1.2 Project Aim, Objectives and Plan of Development
The fundamental aim of this project is to design and program AT91SAM7X ARM

Based for networking purposes. As the result, the embedded platform can be accessed

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

through a web server that can be used to control, transmit, and receive data to the Input

Output peripherals remotely.

 The project has four primary goals:

1. Analyzing the hardware characteristic and functional descriptions of

AT91SAM7X256 as embedded platform chip and DM9161A as power

transceiver for Ethernet.

2. Observing Real Time Operating System Algorithm that can be implemented

into a single processor.

3. Investigating uIP TCP/IP stack to build several TCP applications in small

resources. Transmitting and Receiving data will be tested.

4. Controlling Input Output Peripherals in the hardware. User LED and Joystick

will be involved.

 The remainder of this report is organized as follows. Chapter 1 is the introduction

of the report. Chapter 2 briefly describes the hardware characteristic of Atmel

AT91SAM7X256 as an embedded platform and its functional description. Chapter 3 will

explain about the TCP/IP Protocol fundamental. Chapter 4 and 5 will discuss about Real

Time Operating System that will be set up by using FreeRTOS open source and TCP/IP

Stack respectively. The Embedded Server implementation and algorithm design explanation

will be in Chapter 6 and the Software demonstration will be describe in Chapter 7.

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

Chapter 2 - Hardware Characteristic

2.1 Atmel’s AT91SAM7X256
Atmel’s AT91SAM7X256 is a member of a series of highly integrated flash microcontrollers

based on the 32-bit ARM RISC processor. It features 256 Kbyte high-speed Flash and 64 Kbyte

SRAM, a large set of peripherals, including an 802.3 Ethernet MAC and CAN controller,

USART, SPI. [2]

The embedded Flash memory can be programmed by downloading the source code via JTAG-

ICE interface or via parallel interface on a production programmer prior to mounting. Built-in

lock bits and a security bit protect the firmware from accidental overwrite and preserve its

confidentiality.

As we can see, to fulfill the requirement of this project, student needs to evaluate the hardware

characteristic of EMAC, Davicom DM9161A chip, and PIO Controller to be synchronized with

real time operating systems to ARM processor.

Figure 1 - AT91SAM7X-EK Hardware

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

Figure 2 - AT91SAM7X256 Block Diagram

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

2.2 Ethernet MAC
The EMAC module implements a 10/100 Ethernet MAC compatible with the IEEE 802.3

standard using an address checker, statistic and control register, receive and transmit blocks, and

a DMA interface.

Figure 3 - EMAC Block Diagram

As we can see from figure 2, the explanation the functional description should be like student

mention below:

 Address Checker. It will recognize four specific 48-bit addresses and contains a 64-bit

hash register to match between multicast and unicast addresses, and then copy all frames

to the memory and act on an external address match signal.

 Statistic Register. It contains registers for counting various types of event associated

with transmit and receive operations, for example network management statistics.

 Control Register. It setups up DMA activity, start frame transmission and select modes

of operation such as full or half duplex.

 Receive Block. It checks for a valid preamble, FCS, alignment and length, and presents

received frames to the address checking block and DMA interface.

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

 Transmit Block. It takes data from the DMA interface, adds preamble end, pad and FCS

and transmits data according to the CSMA/CD (Carrier Sense Multiple Access with

Collision Detection). The start of transmission is deferred if CRS (Carrier Sense) is

active. If the system is in full duplex mode, the Carrier Sense and Collision have no effect

because full duplex because transmitting and receiving path are split into 2 channels.

 DMA Interface. The DMA block connects to external memory through its ASB bus

interface and contains of Transmit and Receive FIFOs for buffering frame data. It loads

the transmit FIFO and empties the receive FIFO. Receive data will not be sent to the

memory until the address checker has determined that the frame should be copied. The

length of Receive buffers is 128 bytes and Transmit buffers range in length between 0

and 2047 bytes. As summaries, DMA block manages transmit and receive frame buffer

queues and can hold multiple frames.

2.3 DM9161A – 10/100 Mbps Fast Ethernet Physical Layer Single

Chip Transceiver
The DM9161A Fast Ethernet single chip transceiver, providing the functionality as

specified in IEEE 802.3u, integrates a complete 100 Base-TX module with Unshielded Twisted

Pair Category 5 Cable (UTP5) and a complete 10 Base-T Module with UTP5/UTP3. Through the

Media Independent Interface (MII), it can be connected to the Medium Access Control (MAC)

layer. Figure 4 shows the major functional blocks implemented in the DM9161A chip and figure

5 describes the complete tasks how each block works.

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

Figure 4 - DM9161A Chip General Functional Description

Figure 5 - DM9161A Schematic

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

Figure 6 - Specfic Functional Description

 MII Interface. The purpose of Media Independent Interface (MII) is to provide a simple,

easy to implement connection between the MAC reconciliation layer and the PHY. The

MII is designed to make the differences between various media transparent to the MAC

sub-layer.

MII Interface consists of a nibble wide receive data bus, a nibble wide transmit bus, and

control signals for data transfer between PHY and the reconciliation layer. Table 1 shows

the important bus in MII interface.

BUS Function

TXD (transmit data) A nibble of data that synchronous with respect of TXCLK.

TXCLK (transmit

clock)

Continuous clock that provides the timing reference for the

transmission transfer.

TXEN (transmit

enable)

A nibble of data being presented on the MII for transmission.

TXER (transmit

error)

Error detected somewhere in the frame being transmitted.

RXD (receive data) A nibble of data that synchronous with respect of RXCLK.

RXCLK (receive Continuous clock that provides the timing reference for receiving

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

clock) transfer.

RXDV (receive data

valid)

PHY is presenting decoded nibbles to the MAC reconciliation

sub-layer.

RXER (receive error) Error detected somewhere in the frame transmission for the PHY

to the reconciliation layer.

CRS (carrier sense) CRS is asserted when either transmit or receive medium is being

processed.
Table 1 - Busses Function in MII Interface

 100Base-TX Transmitter.

As shown in figure 5, 100Base-TX Transmitter consists of the functional block that

converts a nibble synchronous data provided by the MII to a scrambled MLT-3 125, a

million symbols per second data stream. It contains the following functional diagram:

1. 4B5B Encoder

It converts 4-bit nibble data from MAC reconciliation layer into 5-bit code group for

transmission. This conversion is required for control and packet data to be combined

in code groups. To convert them, see appendix table 4B5B as a reference.

2. Scrambler

The scrambler is required to control the radiated emission so that the total energy

presented to the cable is distributed over a wide frequency range. The result is a data

stream with sufficient randomization to decrease radiated emission at critical

frequencies.

3. Parallel to Serial Converter

It receives 5-bit scrambled data. In order to be able operated by NRZ to NRZI

Encoder, the parallel data stream should be serialized.

4. NRZ to NRZI Encoder

Data stream should be converted from serialized NRZ that receive from parallel to

serial converter, to NRZI for TP-PDM standard compatibility over Category -5

unshielded twisted pair cable.

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

Figure 7 - NRZ to NRZI Encoding Example

5. NRZI to MLT-3

Then MLT-3 conversion is accomplished by converting the NRZI data stream into

two binary data stream with alternately phased logic one events.

6. MLT-3 Driver

The two binary data streams are fed to the twisted pair output driver that will be

compatible of the transmit transformer’s primary winding, resulting in a minimal

current MLT-3 Signal.

Figure 8 - MLT-3 Converter

 100Base-TX Receiver

Data stream received by the chip should have converted to synchronous 4-bit nibble data,

so that can be processed by the MII. It contains the following functional diagram:

1. Signal Detect

It should have met the specifications mandated by ANSI XT12 TP-PMD 100Base-TX

Standards for both voltage threshold and timing parameters.

2. Adaptive Equalizer

When receiving data from copper twisted at high speed, attenuation based on

frequency can affect the randomness of the scrambled data stream. This variation in

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

signal attenuation caused by frequency variations must be compensated for to ensure

the integrity of the received data. Moreover, it should have to be adaptive to ensure

proper condition of received signal.

3. MLT-3 to NRZI Decoder

Then MLT-3 to NRZI applied as shown in Figure 7.

4. Clock Recovery Module

Clock Recovery Module will lock onto the current data stream and extract reference

clock, so that the data stream can be processed at NRZI to NRZ Decoder.

5. NRZI to NRZ Decoder

Data stream is required to be decoded to NRZ signal to be presented to the Serial to

parallel conversion block.

6. Serial to Parallel

The NRZ data stream then will be converted to parallel to be presented to the

descrambler

7. Descrambler

Because the data stream is scrambled in order to minimize radiated emission for

transmission data, it should have to be descrambler and present to the Code Group

Alignment group before it can be processes in MII interface.

8. Code Group Alignment

Un-aligned 5B data from descrambler will be converted to 5B code group data in

order to make aligned subsequent data on a fixed boundary.

9. 4B5B Decoder

Finally, Conversion from 5-bit data to 4-bit nibble data is accomplished by 4B5B

decoder to be ready presented to the reconciliation layer by MII interface.

 10 Base-T Operation

When 10 Base-T Mode is operated, for transmission, a nibble data format will be

converted to a serial bit stream then encoded my Manchester encoder. When receiving,

the data stream will be decoded and converted to nibble format to be presented to the MII

interface.

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

Figure 9 - Manchester Encoding Example

 Carrier Sense

CRS is used in half-duplex operation during transmission or reception of data in order to

avoid collision in traffic.

 Collision Detection

Collision Detection also works in half-duplex operation when transmit and receive

channels are active at the same time. It will be reported by COL signal on the MII

interface.

 Auto Negotiation

The function of Auto-negotiation is to provide a means to exchange information between

segment linked devices and to automatically configure both devices to take maximum

advantages of their abilities.

 MII Serial Management

MII serial management interface consists of a data interface, basic register set, and a

serial management interface to configure multiple PHY devices, get status and error

information, and also determine the type and capabilities of the attached PHY device.

The serial control interface uses a simple two wired serial interface to obtain and control

physical layer. It consists of MDC (Management Data Clock), and MDI/O (Management

Data Input/Output) signals which pin is bi-directional and shared up to 32 devices.

 Auto MDIX

Common Ethernet network cables are straight and crossover cable. This Ethernet network

cable is made of 4 pair high performance cable that consist twisted pair conductor that

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

used for data transmission. Auto MDIX is used to detect cable connection type, so that

those cables still can be worked into Ethernet interface.

2.4 Parallel Input/Output Controller
 PIO controller provides multiplexing up to two peripheral functions on a single pin.

Peripheral A and peripheral B represent Joystick Input and User LED respectively. PIO

Controller manages up to 32 fully programmable input/output lines. Each I/O line dedicated as a

general-purpose I/O or be assigned to a function of an embedded peripheral.

Figure 10 - PIO Schematic

Each pin is configurable according to product definition so programmer must carefully

determine the configuration of the PIO controller required by their application. There are some

aspects that should be consider controlling the PIO such as Pull-up resistor control, Peripheral

Function Selection, Output Control, Synchronous Data output, Input data, Input Change

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

Interrupt, etc. Table 2 describes PIO controller that associated with a bit in each of the PIO

Controller User Interface Register.

Table 2 - PIO Register Mapping

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

Chapter 3 - Communication Protocol
To establish connection between the embedded platform and other devices, we need to

consider how they actually communicate each other. In this section student will explain about the

protocol hierarchies, service primitive, TCP/IP Reference Model.

3.1 Protocol Hierarchies
 Basically Protocol is an agreement between the communicating parties on how

communication is to proceed. To reduce the design complexity, most networks are organized as a

stack of layers or levels, each one built upon the one below it. The purpose of each later is to

offer certain services to the higher layers, shielding those layers from the detail of how the

offered services are actually implemented. Each layer is a kind of virtual machine, offering

certain services to the layer above it.

Figure 1 - Example Information Flow Supporting Virtual Communication

As illustrated in Figure 11, no data are directly transferred from layer n on one machine

to layer n on another machine. Instead, each layer passes data to the layer immediately below it,

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

until the data reach to the lowest layer. Layer 1 is the physical medium which actual

communication occurs.

The entities comprising the corresponding layers on different machines are called peers.

The peers may be processes or hardware devices. In other words, it is the peers that communicate

by using the protocol. Between each pair of layers is an interface. The interface defines which

primitive operations and services the lower layer makes available to the upper one.

3.2 Service Primitive
A service is formally specified by a set of primitives (operations) available to a user

process to access the service. These primitives tell the service to perform some action or report

on an action taken by a peer entity. If the protocol stack is located in the operating system, as it

often is, the primitives are normally system calls. These calls cause a trap to kernel mode, which

then turns control of the machine over to the operating system to send the necessary packet. [5]

Figure 2 - Packet sent in a simple client-server interaction on a network

These primitives might be used as follows. First, the server executes LISTEN to indicate

that it is prepared to accept incoming connections. Next, the client process executes CONNECT

to establish a connection with the server (1). The CONNECT call needs to specify who to

connect to, so it might have a parameter giving the server’s address. When the packet arrives at

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

the server, it is processed by server’s operating system to see if there is a listener and send back

the acknowledgment (2).

The next step is for the server to execute RECEIVE to prepare to accept the first request.

Normally, the server does this immediately upon being released from the LISTEN, before

acknowledgement can get back to the client. Then the client executes SEND to transmit its

request (3) followed by the execution of RECEIVE to get the reply. After the arrival of the

request packet at the server machine will process the request by uses SEND to return the answer

to client (4).If it is done, it can use DISCONNECT to terminate the connection. It used a

handshake scheme to end communication between server and client.

3.3 TCP/IP Reference Model

Figure 3 - the difference between OSI and TCP/IP Reference Model

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

Figure 4 - Protocol and Networks in the TCP/IP model

Application Layer

 The TCP/IP model does not have session and presentation layer like OSI model.

Therefore, it is not necessary for both layers to be perceived, so they were not included.

Application layer contains all the higher-level protocol, for example virtual terminal (Telnet),

File Transfer Protocol (FTP), electronic mail (SMTP), protocol for fetching pages (HTTP) etc.

Transport Layer

 Transport Layer is designed to allow peer entities on the source and destination hosts to

carry on a conversation. As shown in Figure 13, there are 2 protocols that have been defined;

TCP and UDP. TCP (Transmission Control Protocol) is a reliable connection-oriented protocol

that allows a byte stream originating on one machine to be delivered without error. UDP (User

Datagram Protocol) is an unreliable, connectionless protocol application that does not want

TCP’s sequencing or flow control and wish to provide their own.

Internet Layer

 The internet layer defines an official packet format and protocol called IP (Internet

Protocol). The job of the internet layer is to deliver IP packets where they are supposed to go and

select the best path through the network for packet to travel. ICMP, ARP also operated at this

layer.

Host-to-network layer

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

 TCP/IP reference model does not really say much about what happen in this layer, except

that the host has to connect to the network using some protocol so it can send IP packets to it.

This protocol is not define and varies from host to host and network to network.

3.4 TCP Protocol
Transmission Control Protocol that referred at transport layer in TCP/IP reference model

is used in this implementation. It provides reliable end-to-end delivery service including data

transmission and flow control. Using the reliable service, there must not any data loss and the

frame has to be reassembled in the right places and makes up for Internet Protocol’s (IP)

deficiencies. TCP adds a great deal of functionality to the IP service compare to UDP is layered

over:

 Reliable Delivery and Round Trip Estimation. Sequence numbers are used to coordinate

which data has been transmitted and received. TCP will arrange for retransmission if it

determines that data has been lost in expected time period.

 Network Adaptation. TCP will dynamically learn the delay characteristics of a network

and adjust its operation to maximize throughput without overloading the network

 Flow Control. TCP manages data buffers, and coordinates traffic so its buffer will never

overflow. Fast senders will be stopped periodically to keep up with slower receivers.

TCP is provided through three mechanisms:

1. Acknowledgment.

When a receiver gets a message from a transmitter, the receiver has to acknowledge

the message by sending acknowledgment to the transmitter.

2. Sliding Windows

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

The receiver stop the transmitter from sending messages if a message was dropped.

Then the receiver tells the transmitter the number of message was expected to be

continued.

3. Sequence Number

TCP uses a 32-bit sequence number that counts bytes in the data stream. Each TCP

packet contains the starting sequence number of the data in that packet, and the

sequence number of the last byte received from the remote peer. With this

information, a sliding window is implemented and each TCP peer must track both its

own sequence numbering and the numbering being used by the remote peer. If the

number received is not in sequence, the receiver will tell the transmitter that the

number was wrong and gave it expected number to be retransmitted.

 And also when the client want to terminate the established connection it uses a handshake

scheme to end communication. Client will send message with FIN flag set to indicate that the

client want to terminate the connection. When server receives the message, it will send the

acknowledgment first and then terminate its connection.

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

Chapter 4 – Real Time Operating System
GCC environment is decided to use in this project, therefore open source called

FreeRTOS is used to implement a scale-able real time kernel that designed specifically for small

embedded systems. It means that routine and some modules in the program implementation are

based on this open-source. There are some advantages using FreeRTOS open-source are [11]:

 Preemptive, cooperative and hybrid configuration options.

 Designed to be small, simple and easy to use.

 Very portable code structure predominantly written in C.

 Support both tasks and co-routines.

 Stack-overflow detection options.

4.1 RTOS Concept
In order to develop FreeRTOS to be satisfied to our needs, it is essential to know the

fundamental and the background of RTOS concept. Student will write RTOS concept such as

Multitasking, Scheduling, Context Switching, and how they will be processed in running task

and co-routines.

Multitasking

A conventional processor can only execute a single task at a time, on the other hand by

rapidly switching between tasks a multitasking operation system can make it appear as if each

task is executing concurrently. Figure 14 explain the execution pattern of three tasks with respect

to time. The upper diagram demonstrates the perceived concurrent execution pattern and the

lower the actual multitasking execution pattern.

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

Figure 1 - Conventional VS Multitasking

Scheduling

The scheduler is part of the kernel that is responsible to decide which task should be

executed at any particular time. The scheduling policy is the algorithm used by the scheduler to

decide which task to execute at a specific time.

Figure 2 - Scheduling Example

Referring to the numbers in figure above:

 At (1) task 1 is executing.

 At (2) the kernel suspends task 1.

 At (3) resumes task 2.

 While task 2 is executing (4), it locks a processor peripheral for its own exclusive access.

 At (5) the kernel suspends task 2.

 At (6) resumes task 3.

 Task 3 tries to access the same processor peripheral, finding it locked task 3 cannot

continue so suspends itself at (7).

 At (8) the kernel resumes task 1.

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

 The next time task 2 is executing (9) and it finishes.

 The next time task 3 is executing (10) and it finishes.

Context Switching

As a task executes, it utilizes the microcontroller registers and accesses RAM and ROM

just as any other program. These resources such as processor register, stack, etc comprise the

task execution context. While the task is suspended, other task will execute and may modify the

processor register values. Upon resumption, the task will not know that the processor have been

altered and result in an incorrect value.

The operating system kernel is responsible to ensure saving the context of a task as it is

suspended. So, when the task is being resumed, its saved context is restored and task will

continue in a correct value.

4.2 The differences between Task and Co-routines
 There are several API references such as Task creation control utilities, Kernel Control,

Queues, Semaphore/Mutexes and Co-routines those being used in FreeRTOS open-source as a

default. However, student only added and modified some aspects that can fulfill the project

requirements in Task management and Co-Routines. Therefore, student will explain the

differences between those two.

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

TASK

 In a real time application that uses an RTOS can be structured as a set of tasks and each

task executes within its own context. Unfortunately, only one task within the application can be

executed at any point in time and real time scheduler is responsible for deciding which task

should be executed. Therefore, scheduler repeatedly starts and stops each task, and as a task has

no knowledge of the scheduler activity, scheduler also responsible for context switching process

when a task is being swapped out and swapped in. To achieve this one, each task is provided

with its own stack, so the context will be saved to the stack of that task. As a result, it will use

high RAM usage.

Figure 3 - Task States

A task can exist in one of the following states:

 Running

When a task is actually executing, it is said to be in the Running state. It is currently

utilizing the processor.

 Ready

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

Ready tasks are those that are able to execute but are not executing because a different

task of equal or higher priority is already in the running state. They are not blocked or

suspended.

 Blocked

A task is said to be in the blocked state if it is currently waiting for either a temporal or

external event and it will block until the delay period has expired. Blocked tasks are not

available for scheduling.

 Suspended

Task in Suspended state are also not available for scheduling. Tasks will only enter or

exit the Suspended state when explicitly commanded to do, so there are going to have

two functions; Suspend and Resume.

 Each task is assigned a priority. The scheduler will ensure that a task in the ready or

running state will always be given processor time in preference to tasks of a lower priority that

are also in the ready state. In order words, the task given processing time will always be the

highest priority task that able to run.

Co-Routine

 All the co-routines within an application share a single stack. This reduces the amount

RAM usage compare with tasks. Co-routines use prioritized cooperative scheduling with respect

to other co-routines and also its implementation is provided through a set of macros.

Figure 4 - Co-Routine States

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

A co-routine can exist in one of the following states:

 Running

When a co-routine is actually executing it is said to be in the running state. It is currently

utilizing the processor.

 Ready

Ready co-routine are those that are able to execute (they are not blocked) but are not

currently executing. A co-routine may be in the ready state because of 2 reasons:

1. Another co-routine of equal or higher priority is already in the running state.

2. If the application uses both tasks and co-routines, a co-routine might be in the ready

state when the task is in the running state.

 Blocked

A co-routine is said to be in the Blocked state if it is currently waiting for either a

temporal or extended event.

4.3 FreeRTOS Open-Source Application Demonstration

The table below lists the files that make up the demo projects along with a brief indication of the

RTOS features demonstrated and describes each task and co-routine within the demo project.

File Features Demonstrated

main.c

 Starting/Stopping the kernel

 Using the trace visualisation utility

 Allocation of priorities

dynamic.c

 Passing parameters into a task

 Dynamically changing priorities

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

 Suspending tasks

 Suspending the scheduler

BlockQ.c

 Inter-task communications

 Blocking on queue reads

 Blocking on queue writes

 Passing parameters into a task

 Pre-emption

 Creating tasks

ComTest.c

 Serial communications

 Using queues from an ISR

 Using semaphores from an ISR

 Context switching from an ISR

 Creating tasks

CRFlash.c

 Creating co-routines

 Using the index of a co-routine

 Blocking on a queue from a co-routine

 Communication between co-routines

CRHook.c

 Creating co-routines

 Passing data from an ISR to a co-routine

 Tick hook function

 Co-routines blocking on queues

Death.c

 Dynamic creation of tasks (at run time)

 Deleting tasks

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

 Passing parameters to tasks

Flash.c

 Delaying

 Passing parameters to tasks

 Creating tasks

Flop.c

 Floating point math

 Time slicing

 Creating tasks

Integer.c

 Time slicing

 Creating tasks

PollQ.c

 Inter-task communications

 Manually yielding processor time

 Polling a queue for space to write

 Polling a queue for space to read

 Pre-emption

 Creating tasks

Print.c

 Queue usage

Semtest.c

 Binary semaphores

 Mutual exclusion

 Creating tasks

Table 1 - FreeRTOS Function

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

Chapter 5 – TCP/IP Stack

The uIP stack that student used for TCP/IP stack is an open source that is intended to

make it possible to communicate using TCP/IP protocol suite even on small 8-bit micro-

controllers. The size of the code is only up to a few kilobytes and RAM usage can be configured

to be as low as a few hundred bytes.

 The uIP TCP/IP stack becomes one of alternatives free open-source to substitute the

business version that has a very expensive price in correspondence. Although the effect of

business version is perfect, programmers choose some free TCP/IP stacks and improve them to

satisfy their needs. The uIP stack can be run either as a task in a multitasking system, or as the

main program in a single tasking system.

 This uIP TCP/IP Stack has the following features: [4]

 Well documented and well commented source code

 Very small code size

 Very low RAM usage, configurable at compile time

 ARP, SLIP, IP, UDP, ICMP, and TCP protocols.

 Includes a set of example applications: web server, web client, SMTP client, Telnet

server, DNS hostname resolver.

 Any number of concurrently active TCP connections.

 Any number of passively listening (server) TCP.

 Free for both commercial and non-commercial use.

5.1 Main Control Loop

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

The main control loop in uIP stack does two things repeatedly:

 Check if a packet has arrived from the network. (Using function uip_input()).

 Check if a periodic timeout has occurred. (Using function uip_periodic()).

5.2 Architecture Specific Functions
uIP requires a few functions to be implemented specifically for the architecture to run. C

language implementations are given as part of the uIP distribution. Below is the basic function of

uIP stack:

1. Checksum Calculation

The TCP and IP protocols implement a checksum that covers the data and header portions of

the TCP and IP packets. Since the calculation of this checksum is made over all bytes in every

packet being sent and received it is important that the function that calculates the checksum is

efficient.

While uIP includes a generic checksum function, it also leaves it open for an architecture specific

implementation of the two functions uip_ipchksum() and uip_tcpchksum().

2. 32-bit Arithmetic

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

http://www.sics.se/~adam/uip/uip-1.0-refman/a00150.html#g2addf34c7d457c1a7899a7e2171ef1e9
http://www.sics.se/~adam/uip/uip-1.0-refman/a00150.html#g85b65e38aa74eba18979156f97a94a87

The TCP protocol uses 32-bit sequence numbers, and a TCP implementation will have to do

a number of 32-bit additions as part of the normal protocol processing. Since 32-bit arithmetic is

not natively available on many of the platforms for which uIP is intended, uIP leaves the 32-bit

additions to be implemented by the architecture specific module and does not make use of any

32-bit arithmetic in the main code base.

While uIP implements a generic 32-bit addition, there is support for having an architecture

specific implementation of the uip_add32() function.

3. Memory Management

The uIP stack does not use explicit dynamic memory allocation. Instead, it uses a single

global buffer for holding packets and has a fixed table for holding connection state. The global

packet buffer is large enough to contain one packet of maximum size. When a packet arrives

from the network, the device driver places it in the global buffer and calls the TCP/IP stack. If

the packet contains data, the TCP/IP stack will notify the corresponding application. Because the

data in the buffer will be overwritten by the next incoming packet, the application will either

have to act immediately on the data or copy the data into a secondary buffer for later processing.

The total amount of memory usage for uIP depends heavily on the applications of the

particular device in which the implementations are to be run. The memory configuration

determines both the amount of traffic the system should be able to handle and the maximum

amount of simultaneous connections.

4. Application Program Interface (API)

The Application Program Interface (API) defines the way the application program

interacts with the TCP/IP stack. The most commonly used API for TCP/IP is the BSD socket

API which is used in most Unix systems and has heavily influenced the Microsoft Windows

WinSock API. Because the socket API uses stop-and-wait semantics, it requires support from an

underlying multitasking operating system. Since the overhead of task management, context

switching and allocation of stack space for the tasks might be too high in the intended uIP target

architectures, the BSD socket interface is not suitable for our purposes.

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

http://www.sics.se/~adam/uip/uip-1.0-refman/a00150.html#g6832e4d2d046536b6472f7ac92340f68

5.3 The uIP raw API
 The "raw" uIP API uses an event driven interface where the application is invoked

in response to certain events. An application running on top of uIP is implemented as a C

function that is called by uIP in response to certain events. uIP calls the application when data is

received, when data has been successfully delivered to the other end of the connection, when a

new connection has been set up, or when data has to be retransmitted. The application is also

periodically polled for new data. The application program provides only one callback function; it

is up to the application to deal with mapping different network services to different ports and

connections. Because the application is able to act on incoming data and connection requests as

soon as the TCP/IP stack receives the packet, low response times can be achieved even in low-

end systems.

Interface function Application event

uip_listen() Start listening on a port

uip_send() Send data on the current connection

uip_acked() Sent data has been acknowledged

uip_newdata() Remote host has sent new data

uip_datalen() The size of the incoming data

uip_connect() Connect to a remote host

uip_connected() The current connection has just been connected

uip_poll() Application is being polled

uip_close() Close the current connection

uip_abort() Abort the current connection

uip_stop() Stop the current connection

Table 1 - uIP Interface Function

5.4 uIP Simple Application
Hello World (ICMP)

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

Hello World uIP application is an example showing how to write applications with protosockets

function. The protosocket library in uIP provides functions for sending data without having to

deal with retransmissions and acknowledgements, as well as functions for reading data without

having to deal with data being split across more than one TCP segment.

Figure 1 - uIP basic ICMP Demo

Telnet

The purpose of this application is to provide a TCP bidirectional interactive communications

facility in port 23. Typically, telnet provides access to a command-line interface on a remote host

via a virtual terminal connection which consists of an 8-bit byte oriented data connection over

the Transmission Control Protocol (TCP). User data is interspersed in-band with TELNET

control information.

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

Figure 2 - uIP Basic Telnet Server Demo

Web Server

The application that responsible for accepting HTTP requests from clients (user agents such as

web browsers), and serving them HTTP responses along with optional data contents, which

usually are web pages such as HTML documents.

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

Figure 3 - uIP Basic Web Server Demo

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

Chapter 6 – Algorithm and Design Implementation
 There are 4 development environment options that can be used in implementation;

1. YAGARTO

2. uC/OS-II Micrium

3. IAR

4. Rowley Crossworks for ARM

Except for option 3, these environments are all built around the free compiler tool-chain

GCC. Furthermore, YAGARTO is being used in this project since it is free open-source

software, has some technical documentation done by software developers and there is no

memory limitation issue compare with other. Student chose GCC environment because there are

more references on building various API applications even though it is more complicated than

other development software. Since it is completely free to experiment and deploy pre-configured

demo applications to ensure student to start with a known good and working project, student

could develop them until they meet the objectives of the project.

Student use 2 GCC open-sources with C language as a basic demo applications. There

are:

1. FreeRTOS, a mini Real Time Kernel

2. uIP stack, TCP/IP stack that provides TCP/IP connectivity

Both open-sources are licensed by GNU General Public that guarantees the freedom to share

and change them. Student is responsible to obey GNU General Public restriction by still showing

the copyright of the software and offer the license which give the student legal permission to

copy, distribute and modify the software.

The new module is created from the combination of FreeRTOS and uIP stack. Several

API applications that student have been used to achieve the requirement of the project is

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

discussed in this section. Some ineffective API’s that work during the implementation will not be

removed since it will make the code structure become unbalance.

6.1 General Program Loop

Figure 1 - General Program Loop

Figure 22 describes how the whole program works with infinity loop. The brief explanation of

the operations are:

Initialization

Initialize the interrupt. When using JTAG debugger, the hardware is not always initialized to

the correct default state. Make sure that issue does not make all interrupt to be masked at the

start.

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

Enable the peripheral clock. It is essential to turn on the clock at peripherals Port A, Port B and

the EMAC in order to be able to change bit state at clock transitions in specific time. By “Turn

off” the clock mean we block the clock signal to that peripheral.

 Initialize Output LED and Input Joystick. To make I/O peripheral to be able work

properly, some register in PIO control peripheral need to be enabled. This section will be

discussed later.

Create a task to enable uIP TCP/IP Stack. This is how student combine the FreeRTOS and

uIP stack by creating a task that provided by FreeRTOS that implement uIP TCP/IP Stack in API

function.

EMAC Initialization. To be able to establish the connection and synchronization between

EMAC to DM9161A chip, it is necessary to do some general steps for the EMAC initialization;

 Initialize both Tx and Rx descriptor used by the EMAC.

 Enable the Management Data Input/Output bit in MAC Control Register.

 Function to be able read and write value into a PHY register.

 Function to detect MAC and PHY

 EMAC initialization to initialize the Ethernet.

 EMAC initialization to receive packets.

 EMAC initialization to be able to send a packet through EMAC and PHY.

 ICMP, IP, TCP Checksum Calculation.

 Function to be able to send and receive frames.

Building Web Server. Web Server is build by developing the basic web server demo in uIP

TCP/IP stack. There are some C project files those become fundamental of the web server in this

project;

 Httpd.c:. This file contains of the macro, or a rule that specifies how a certain input

sequence used in HTTPD CGI function. Furthermore, Web server initialization is stored

in this file by setting up TCP application in port 80.

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

 httpd-fsdata.c: This file stores HTML script to create web server design. The

implementation in this file is using hexadecimal code so that can be read by the

processor. As a result ASCII HTML script needs to be manually converted.

 httpd-fs.c: This file stores the network statistic that monitored in port 80.

 httpd-cgi.c: This file stores web server script interface that can be inserted to httpd-

fsdata.c. Student uses functions here in order to create some input/output applications at

the web-server.

 uIP-Task.c: This file stores the implementation functions that become a bridge from the

web server to the embedded platform register.

Start the standard demo from FreeRTOS mini time real time kernel. Several task, co-

routine, queue and semaphores are being looped and priorities will be implemented.

Main Loop

Every 2 second: The web server will check the Data Status Register in particular bit in order to

check the User LED and Joystick Input status. The web server will be refreshed every 2 second

to minimize the load of the network.

Every Tick in Approximately 1 ms

Check an Input user interface from the web server to turn on/turn off or toggle the LED:

The bit status for I/O peripheral can be controlled from web server. Student uses 1ms tick to read

input user interface status and then update the particular I/O peripheral status.

Check Joystick Input Data Register Status: It has the same concept with above operation.

Student uses 1ms tick to read Input from joystick and then update the particular I/O peripheral

status and the status at web-server.

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

6.2 PIO Algorithm
A. Reading Joystick Input

Figure 2 - Reading Joystick Algorithm

Initialization for the input algorithm is executed during hardware initialization at the very

beginning of the program. The brief explanations of figure 22 are:

 Point to the particular bit: There are 6 wires for Joystick Input those represent the 5

data directions and a ground. Student defines those bits those have bit address PIOA21,

PIOA22, PIO23, PIO24, and PIO25 as North, South, West, East, and Push respectively.

 Enable PIOA Control (PER): The purpose is to enable the PIO controller and ready to

be used in the implementation.

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

 Disable Output Register (ODR): The purpose of disabling the output register is to

restrict the data status register so that it only can be updated by controlling the joystick

manually.

 Enable Pull-up Resistor (PUER): When a joystick contact is closed, it will connect the

related port bit to ground. Otherwise the port bit will be floating. The floating status can

be avoided by enabling the internal pull-up resistor.

 Check Data Status Register: In every 1 ms tick, each Data Status Register will be

monitored and also will be uploaded to the web-server.

B. Set the LED Status to turn on/turn off the LED

Figure 3 - Algorithm to Set LED Status

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

Initialization for the input algorithm is executed during hardware initialization at the very

beginning of the program. The brief explanation should be like below:

 Point to the particular bit. There are 4 address bit that stand for the LEDs; PIOB 19,

PIOB20, PIOB21, PIOB22. They are representing LED DS1, DS2, DS3 and DS4

respectively.

 Enable PIOB Control (PER). The purpose is to enable the PIO controller and ready to

be used in the implementation.

 Enable Output Register (EOR). The purpose enabling this register is to be able to

update the LED status as an output.

 Set Output Enable Register (SODR). The purpose is to make sure the LED is being

turned off for the initialization.

 Set the LED Status. First, LED which wants to be turned on/off should be defined.

Assigning Clear Output Data Register will turn on the LED and assigning Set Output

Data Register will turn off the LED.

C. Toggle LED

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

Figure 4 - Algorithm to toggle the LED

 The delay will be done by controlling the tick port in particular time.

 When calling this toggle function, first it will check the LED Data Status Register and

then do the opposite operation from it. The operation will still work until there is an input

from Input User Interface to stop calling this toggle function.

D. Transmitting buffer data in Web Server User interface as an input

Figure 5 - Web Address

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

 uIP TCP/IP stack is allow us to control the web address as shown in figure 25. As we can

see the value of LED and ON are 1 and 0 respectively. By separating these numbers from the

web address string and sending those into Peripheral I/O control function, then the LED

peripheral can be controlled remotely from the web server. In the figure case, the web server will

turn the LED DS1 on.

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

Chapter 7 – Software Demonstration

The following operations are going to be demonstrated:

 Possible Network Diagrams

 ICMP and ARP

 Web Server Page RTOS Stats

 Web Server Page TCP Stats

 Web Server Page Connection

 Web Server Page IO

7.1 Possible Network Diagrams
There are some real world cases that can be implemented so that the microcontroller can be

accessed remotely. The figures below show network diagrams that is suitable for the network

implementation.

Figure 1 - Host to Host Network

Figure 26 shows the implementation of
host to host network. The Davicom
D9161A supports Auto MDIX (Cable type
detection). Therefore any type of UTP
cables can be used to establish the
connection. Cross-Over UTP cable is
used in this project to avoid traditional
issue.

Both IP address are assigned in the
same subnet.

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

Figure 2 - Local Area Network

Figure 3 - Wide Area Network

By adding a switch into network
diagram, it is still possible to access
the embedded platform through
Local Area Network.

All IP addresses must be in the
same subnets so that all electronic
devices can be communicated each
other.

By adding a router as a
gateway, student also could
access the embedded platform
from Wide Area Network.

The router should be
configured to forward the
embedded platform’s port so
that the microcontroller has a
public/internet IP address.

It means if the public IP
address is accessed, basically
it will point to the local
embedded platform IP
address.

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

7.2 ICMP and ARP
Ping is a command that uses ICMP Protocol to check connectivity through network. It is

important to check connectivity between a host and embedded platform before performing any

other task. Note that if the ping command shows no connectivity, it simply means the packets

cannot be delivered. The Address Resolution Protocol (ARP) is the method for finding a host's

link layer (hardware) address when only its IP address or some other network layer address is

known. So it simply means MAC address of the hardware can be detected.

In order to test the system, we can examine by using ping and arp-a command in

Command Prompt Window. Figure 29 shows the connection between host and embedded

platform was successful. However, the ARP shows that the MAC address of the embedded

platform is 00:00:00:00:00:00 due to the combination error between FreeRTOS and uIPstack. As

long student could just broadcast the packet, the packet will still delivered, but that will also clog

our network with unnecessary broadcasts.

Figure 4 - ICMP and ARP Result

7.3 Web Server
Web Server Page – RTOS Stats

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

In this web server page, student put 3 statistics that represent the LED Output Status,

Joystick Input status and Task statistic. Those statistics will be updated every 2 seconds instead

of 1 second to minimize the network load. LED Output Status and Joystick Input Status will read

and receive the Data Status Register from particular I/O peripheral bit. And, Task statistic is read

from FreeRTOS’s function called vTasklist() that show the FreeRTOS tasks that executed in

running state.

Figure 5 - Web Server - RTOS Page Stats

Web Server – TCP stats

This page shows the uIP statistic about the network performances that defines in uip_stats() in

default. It determines the IP, ICMP, and TCP packets status from Ethernet traffic network.

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

Figure 6 - Web Server - TCP Stats

Web Server – Connection Page

This page shows the embedded platform’s network traffic and service discovery. It determines

the statistic log of activity in Ethernet-based network.

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

Figure 7 - Web Server - Connection Page

Web Server – IO Page

This page shows the GUI Interface that able to send buffers into the embedded platform by

clicking the ‘update IO’ options. Student built two GUI interfaces to send bytes to turn on/off

and toggle LED. The LED status can be seen in RTOS stats page.

Figure 8 - Web Server - IO Page

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

Summaries and Conclusion
Atmel’s AT91SAM7X256 is a member of a series of highly integrated flash

microcontrollers based on the 32-bit ARM RISC processor including an 802.3 Ethernet MAC.

Therefore we can design and program the platform to be accessed through a web server that can

be used to control, transmit, and receive data to the Input Output peripherals at the board

remotely. Evaluation of EMAC, Davicom DM9161A chip, and PIO Controller are needed to be

synchronized with real time operating systems to ARM processor.

 Transmission Control Protocol that referred at transport layer in TCP/IP reference model

is used in this implementation. It provides reliable end-to-end delivery service including data

transmission and flow control. Using the reliable service, there must not any data loss and the

frame has to be reassembled in the right places and makes up for Internet Protocol’s (IP)

deficiencies.

GCC environment is decided to use in this project, therefore student use 2 GCC open-sources

with C language as a basic demo application. There are:

1. FreeRTOS, a mini Real Time Kernel

2. uIP stack, TCP/IP stack that provides TCP/IP connectivity

FreeRTOS is used to implement a scale-able real time kernel that designed specifically

for small embedded systems. It means that routine and some modules in the program

implementation are based on this open-source. There are some advantages using FreeRTOS

open-source are:

 Preemptive, cooperative and hybrid configuration options.

 Designed to be small, simple and easy to use.

 Very portable code structure predominantly written in C.

 Support both tasks and co-routines.

 Stack-overflow detection options.

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

The uIP stack that student used for TCP/IP stack is an open source that is intended to

make it possible to communicate using TCP/IP protocol suite even on small 8-bit micro-

controllers. uIP requires a few functions to be implemented specifically for the architecture to

run based on Transmission Control Protocol. C language implementations are given as part of

the uIP distribution.

As the result, Peripheral I/O can be controlled remotely from the web server by

combining FreeRTOS and uIP stack. Furthermore, via testing, this web server worked stably.

Data can be transmitted and received into embedded platform reliably and it is suitable for mini

web LAN.

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

 Appendix

GUI Interface
\Final Year Project Code\Demonstration\webserver\httpd-cgi.c

Network Stats
/*

Final Year Project

Internet Interface for Microcontroller

Mohamad Bayu Indra Nugraha

n6420125

*/

static unsigned short

generate_tcp_stats(void *arg)

{

 struct uip_conn *conn;

 struct httpd_state *s = (struct httpd_state *)arg;

 conn = &uip_conns[s->count];

 return snprintf((char *)uip_appdata, UIP_APPDATA_SIZE,

"<tr><td>%d</td><td>%u.%u.%u.%u:%u</td><td>%s</td><td>%u</td><td>%u</td><td>%

c %c</td></tr>\r\n",

 htons(conn->lport),

 htons(conn->ripaddr[0]) >> 8,

 htons(conn->ripaddr[0]) & 0xff,

 htons(conn->ripaddr[1]) >> 8,

 htons(conn->ripaddr[1]) & 0xff,

 htons(conn->rport),

 states[conn->tcpstateflags & UIP_TS_MASK],

 conn->nrtx,

 conn->timer,

 (uip_outstanding(conn))? '*':' ',

 (uip_stopped(conn))? '!':' ');

}

/*---

*/

static

PT_THREAD(tcp_stats(struct httpd_state *s, char *ptr))

{

 PSOCK_BEGIN(&s->sout);

 for(s->count = 0; s->count < UIP_CONNS; ++s->count) {

 if((uip_conns[s->count].tcpstateflags & UIP_TS_MASK) != UIP_CLOSED) {

 PSOCK_GENERATOR_SEND(&s->sout, generate_tcp_stats, s);

 }

 }

 PSOCK_END(&s->sout);

}

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

 Appendix

uIP Stats – IP TCP ICMP Checksum

char *pcStatus4,*pcStatus3,*pcStatus2,*pcStatus1;

unsigned long ulString;

/*---

*/

static unsigned short

generate_net_stats(void *arg)

{

 struct httpd_state *s = (struct httpd_state *)arg;

 return snprintf((char *)uip_appdata, UIP_APPDATA_SIZE,

 "%5u\n", ((uip_stats_t *)&uip_stat)[s->count]);

}

static

PT_THREAD(net_stats(struct httpd_state *s, char *ptr))

{

 PSOCK_BEGIN(&s->sout);

#if UIP_STATISTICS

 for(s->count = 0; s->count < sizeof(uip_stat) / sizeof(uip_stats_t);

 ++s->count) {

 PSOCK_GENERATOR_SEND(&s->sout, generate_net_stats, s);

 }

#endif /* UIP_STATISTICS */

 PSOCK_END(&s->sout);

}

/*---

*/

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

 Appendix

FreeRTOS Stats

extern void vTaskList(signed char *pcWriteBuffer);

static char cCountBuf[32];

long lRefreshCount = 0;

static unsigned short

generate_rtos_stats(void *arg)

{

 lRefreshCount++;

 sprintf(cCountBuf, "<p>
Refresh count = %ld", lRefreshCount);

 vTaskList(uip_appdata);

 strcat(uip_appdata, cCountBuf);

 return strlen(uip_appdata);

}

/*---

*/

static

PT_THREAD(rtos_stats(struct httpd_state *s, char *ptr))

{

 PSOCK_BEGIN(&s->sout);

 PSOCK_GENERATOR_SEND(&s->sout, generate_rtos_stats, NULL);

 PSOCK_END(&s->sout);

}

/*---

*/

Input User Interface – LED Turn on/Off

char *Input1ON, *Input1OFF;

generate_input(void *arg)

{

 sprintf(uip_appdata,

 "<select name=\"LED\"><option value=\"0\">LED DS1</option><option

value=\"1\">LED DS2</option><option value=\"2\">LED DS3</option><option

value=\"3\">LED DS4</option></select><select name=\"ON\"><option

value=\"0\">Turn On</option><option value=\"1\">Turn

Off</option></select>",Input1ON, Input1OFF);

 return strlen(uip_appdata);

}

static

PT_THREAD(led_input(struct httpd_state *s, char *ptr))

{

 PSOCK_BEGIN(&s->sout);

 PSOCK_GENERATOR_SEND(&s->sout, generate_input, NULL);

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

 Appendix

 PSOCK_END(&s->sout);

}

Input User Interface – Toggle LED

generate_toogle(void *arg)

{

sprintf(uip_appdata,

 "<select name=\"Tog\"><option value=\"0\">Toogle

DS1</option><option value=\"1\">Toogle DS2</option><option value=\"2\">Toogle

DS3</option><option value=\"3\">Toogle DS4</option></select><input

type=\"textarea\" name=\"De\" value=\"0\" %s>",Input1ON, Input1OFF);

 return strlen(uip_appdata);

}

static

PT_THREAD(led_toogle(struct httpd_state *s, char *ptr))

{

 PSOCK_BEGIN(&s->sout);

 PSOCK_GENERATOR_SEND(&s->sout, generate_toogle, NULL);

 PSOCK_END(&s->sout);

}

LED Stats

char *pcStatus4,*pcStatus3,*pcStatus2,*pcStatus1;

//extern unsigned long uxParTextGetLED(unsigned long uxLED);

static unsigned short generate_io_state(void *arg)

{

 if(GetLED(4)){

 pcStatus4 = "checked";

 }

 else{

 pcStatus4 = "";

 }

 if(GetLED(3)){

 pcStatus3 = "checked";

 }

 else{

 pcStatus3 = "";

 }

 if(GetLED(2)){

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

 Appendix

 pcStatus2 = "checked";

 }

 else{

 pcStatus2 = "";

 }

 if(GetLED(1)){

 pcStatus1 = "checked";

 }

 else{

 pcStatus1 = "";

 }

 sprintf(uip_appdata,

 "<input type=\"checkbox\" name=\"LED1\" value=\"1\" %s>LED DS1,

<input type=\"checkbox\" name=\"LED2\" value=\"1\" %s>LED DS2,<input

type=\"checkbox\" name=\"LED3\" value=\"1\" %s>LED DS3,<input

type=\"checkbox\" name=\"LED0\" value=\"1\" %s>LED DS4, "\

 "<p>",

 pcStatus1, pcStatus2, pcStatus3, pcStatus4);

 return strlen(uip_appdata);

}

static PT_THREAD(led_io(struct httpd_state *s, char *ptr))

{

 PSOCK_BEGIN(&s->sout);

 PSOCK_GENERATOR_SEND(&s->sout, generate_io_state, NULL);

 PSOCK_END(&s->sout);

}

Joystick Stats

char *North ,*South,*East,*West, *Push , *InputStatus;

static unsigned short generate_joystick(void *arg)

{

 if(GetJoystick(5)){

 Push = "checked";

 }

 else{

 Push = "";

 }

 if(GetJoystick(4)){

 East = "checked";

 }

 else{

 East = "";

 }

 if(GetJoystick(3)){

 West = "checked";

 }

 else{

 West = "";

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

 Appendix

 }

 if(GetJoystick(2)){

 South = "checked";

 }

 else{

 South = "";

 }

 if(GetJoystick(1)){

 North= "checked";

 }

 else{

 North = "";

 }

 sprintf(uip_appdata,

 "<input type=\"checkbox\" name=\"West\" value=\"1\" %s>West,

<input type=\"checkbox\" name=\"North\" value=\"1\" %s>North,<input

type=\"checkbox\" name=\"East\" value=\"1\" %s>East,<input type=\"checkbox\"

name=\"South\" value=\"1\" %s>South, <input type=\"checkbox\" name=\"Push\"

value=\"1\" %s>Push"\

 "<p>",

 West, North, East, South, Push);

 return strlen(uip_appdata);

}

static PT_THREAD(joystick_status(struct httpd_state *s, char *ptr))

{

 PSOCK_BEGIN(&s->sout);

 PSOCK_GENERATOR_SEND(&s->sout, generate_joystick, NULL);

 PSOCK_END(&s->sout);

}

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

 Appendix

Reading Web Address and Separate value we
want
/*

Final Year Project

Internet Interface for Microcontroller

Mohamad Bayu Indra Nugraha

n6420125

*/

int nLEDNum;

int nLEDOn;

void vProcessInput(char *pcInput)

{

char *c,*LED, *Temp, *ON, *To, *De;

//ToogleInput LED;

 /* Turn the LED on or off depending on the checkbox status. */

 /*Check the address website*/

 c = strstr(pcInput, "?");

 LED= strstr(pcInput, "LED=");

 ON = strstr(pcInput, "ON=");

 To = strstr(pcInput, "Tog=");

 De = strstr(pcInput, "De=");

 if(c){

 if(LED && ON){

 nLEDNum = atoi(LED+4);

 nLEDOn = atoi(ON+3);

 SetLED(nLEDNum,nLEDOn);

 }

 if(To && De){

 nLEDNumber = atoi(To+4);

 nTickRate = atoi(De+3);

 }

 }

}

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

 Appendix

Delay to Toggle LEDs
/*

Final Year Project

Internet Interface for Microcontroller

Mohamad Bayu Indra Nugraha

n6420125

*/

void vApplicationTickHook(void)

{

 if(nTickRate != 0){

static unsigned portLONG Count = 0, ErrorFound = pdFALSE;

/* The rate at which LEDs will toggle if an error has been found in one or

more of the standard demo tasks. */

const unsigned portLONG ErrorFlashRate = 1000*nTickRate / portTICK_RATE_MS;

/* The rate at which LEDs will toggle if no errors have been found in any

of the standard demo tasks. */

 const unsigned portLONG NoError = nTickRate*1000 / portTICK_RATE_MS;

 Count++;

 if(ErrorFound != pdFALSE)

 {

 /* We have already found an error, so flash the LED with the

appropriate

 frequency. */

 if(Count > ErrorFlashRate){

 Count = 0;

 ToggleLED(nLEDNumber);

 }

 }

 else

 {

 if(Count > NoError)

 {

 Count = 0;

 ToggleLED(nLEDNumber);

 }

 }

}

}

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

 Appendix

Main Program
/* Standard includes. */

#include <stdlib.h>

/* Scheduler includes. */

#include "FreeRTOS.h"

#include "task.h"

/* Demo application includes. */

#include "parallelIO.h"

#include "uip_task.h"

#include "BlockQ.h"

#include "blocktim.h"

#include "flash.h"

#include "QPeek.h"

#include "dynamic.h"

#include "httpd.h"

#include "uIP_Task.h"

#include "httpd-cgi.h"

/* Priorities for the demo application tasks. */

#define UIP_PRIORITY (tskIDLE_PRIORITY + 2)

#define mainUSB_PRIORITY (tskIDLE_PRIORITY + 2

)

#define mainBLOCK_Q_PRIORITY (tskIDLE_PRIORITY + 1)

#define mainFLASH_PRIORITY (tskIDLE_PRIORITY + 2)

#define mainGEN_QUEUE_TASK_PRIORITY (tskIDLE_PRIORITY)

/* The task allocated to the uIP task is large to account for its use of the

sprintf() library function. Use of a cut down printf() library would allow

the stack usage to be greatly reduced. */

#define UIP_STACK (configMINIMAL_STACK_SIZE * 6)

/*---*/

/*

 * Configure the processor for use with the Atmel demo board. Setup is

minimal

 * as the low level init function (called from the startup asm file) takes

care

 * of most things.

 */

static void HardwareInit(void);

/*---*/

/*

 * Starts all the other tasks, then starts the scheduler.

 */

int main(void)

{

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

 Appendix

 /* Setup any hardware that has not already been configured by the low

 level init routines. */

 HardwareInit();

 /* Start the task that handles the TCP/IP and WEB server functionality.

*/

 xTaskCreate(vuIP_Task, "uIP", UIP_STACK, NULL, UIP_PRIORITY, NULL);

 /* Start the standard demo tasks. */

 vStartBlockingQueueTasks(mainBLOCK_Q_PRIORITY);

 vCreateBlockTimeTasks();

 vStartLEDFlashTasks(mainFLASH_PRIORITY);

 vStartGenericQueueTasks(mainGEN_QUEUE_TASK_PRIORITY);

 vStartQueuePeekTasks();

 vStartDynamicPriorityTasks();

 /*Start the scheduler*/

 vTaskStartScheduler();

 /* We should never get here as control is now taken by the scheduler.

*/

 return 0;

}

/*---*/

static void HardwareInit(void)

{

 portDISABLE_INTERRUPTS();

 /* When using the JTAG debugger the hardware is not always initialised

to

 the correct default state. This line just ensures that this does not

 cause all interrupts to be masked at the start. */

 AT91C_BASE_AIC->AIC_EOICR = 0;

 /* Most setup is performed by the low level init function called from

the

 startup asm file. */

 /* Enable the peripheral clock. */

 AT91C_BASE_PMC->PMC_PCER = 1 << AT91C_ID_PIOA;

 AT91C_BASE_PMC->PMC_PCER = 1 << AT91C_ID_PIOB;

 AT91C_BASE_PMC->PMC_PCER = 1 << AT91C_ID_EMAC;

 /* Initialise the LED outputs for use by application tasks.*/

 LEDInitialise();

 JoystickInitialise();

}

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

 Appendix

Parallel IO Controller
/*

Final Year Project

Internet Interface for Microcontroller

Mohamad Bayu Indra Nugraha

n6420125

*/

/* Scheduler includes. */

#include "FreeRTOS.h"

/* Demo application includes. */

#include "parallelIO.h"

/*---

 * Simple parallel port IO routines for the LED's. LED's can be set, cleared

 * or toggled.

 ---/

/* Joystick inputs used*/

#define North (1 << 21) /* PA21 */

#define South (1 << 22) /* PA22 */

#define East (1 << 23) /* PA23 */

#define West (1 << 24) /* PA24 */

#define Push (1 << 25) /* PA25 */

/*LED Outputs used*/

#define DS1 (1 << 19) /* PB19 */

#define DS2 (1 << 20) /* PB20 */

#define DS3 (1 << 21) /* PB21 */

#define DS4 (1 << 22) /* PB22 */

/*Put The I/O Parts into an Array to make me writing program easier*/

#define LEDs (nLED_Mask[0] | nLED_Mask[1] | nLED_Mask[2] |

nLED_Mask[3])

#define Joystick (nJoy_Mask[0] | nJoy_Mask[1] | nJoy_Mask[2] |

nJoy_Mask[3] | nJoy_Mask[4])

/*Pointing each array to the particular bit*/

const unsigned portLONG nLED_Mask[4]= { DS1, DS2, DS3, DS4 };

const unsigned portLONG nJoy_Mask[5] = { North, South, East, West,

Push };

/* LED Initialization */

void LEDInitialise(void)

{

 /* Configure the PIO Lines corresponding to LED1 to LED4 to be outputs.

*/

 AT91C_BASE_PIOB->PIO_PER = LEDs; // Enable The PIOB Control

 AT91C_BASE_PIOB->PIO_OER = LEDs; // Output Enable Register

 /* Start with all LED's off. */

 AT91C_BASE_PIOB->PIO_SODR = LEDs; // Set Output Enable Register

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

 Appendix

}

/* Joystick Initialization */

void JoystickInitialise(void)

{

 /*Configure the PIO Lines correspoding to Joystick to be inputs*/

 AT91C_BASE_PIOA->PIO_PER = Joystick; // Enable The PIOA Control

 AT91C_BASE_PIOA->PIO_ODR = Joystick; // Output Disable Register to

closed the Joystick contact

 AT91C_BASE_PIOA->PIO_PPUER = Joystick; // Enabling Intenal pull-up

resistor

}

void SetLED(unsigned portBASE_TYPE nLED, signed portBASE_TYPE Value)

{

 /*Check if LED number is not bigger than 4*/

 if(nLED < (portBASE_TYPE) 4)

 {

 /*if Value is not equal to zero, it will turn off the LED*/

 /*else it will turn on the LED*/

 if(Value){

 AT91C_BASE_PIOB->PIO_SODR = nLED_Mask[nLED];

 }

 else{

 AT91C_BASE_PIOB->PIO_CODR = nLED_Mask[nLED];

 }

 }

}

/*---*/

void ToggleLED(unsigned portBASE_TYPE nLED)

{

 /*Check if LED number is not bigger than 4*/

 if(nLED < (portBASE_TYPE) 4){

 if(AT91C_BASE_PIOB->PIO_PDSR & nLED_Mask[nLED]){

 AT91C_BASE_PIOB->PIO_CODR = nLED_Mask[nLED];

 }

 else{

 AT91C_BASE_PIOB->PIO_SODR = nLED_Mask[nLED];

 }

 }

}

/*---*/

/*This Function is to check the LED Status*/

unsigned portBASE_TYPE GetLED(int nLED)

{

 return !(AT91C_BASE_PIOB->PIO_PDSR & nLED_Mask[nLED - 1]);

}

/*This Function is to check the Joystick Input Status*/

unsigned portBASE_TYPE GetJoystick(int nJoystick)

{

 return !(AT91C_BASE_PIOA->PIO_PDSR & nJoy_Mask [nJoystick - 1]);

}

void ControlLEDfromJoystick (void)

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

 Appendix

{

 /*if North is pressed, then LED DS2 will turn on*/

 if(GetJoystick(1)){

 SetLED(1,0);

 }

 /*if South is pressed, then LED DS4 will turn on*/

 else if(GetJoystick(2)){

 SetLED(3,0);

 }

 /*if West is pressed, then LED DS1 will turn on*/

 else if(GetJoystick(3)){

 SetLED(0,0);

 }

 /*if East is pressed, then LED DS3 will turn on*/

 else if(GetJoystick(4)){

 SetLED(2,0);

 }

 /*if Push is pressed, then All LEDs will turn off*/

 else if(GetJoystick(5)){

 SetLED(0,1);

 SetLED(1,1);

 SetLED(2,1);

 SetLED(3,1);

 }

}

Internet interface..., Mohamad Bayu Indra Nugraha, FT UI, 2010

	Cover

	Abstract

	List

	Chapter 1
	Chapter 2
	Chapter 3

	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7

	Conclusion

	References

	Appendices

