ANALISIS SEBARAN RADIASI HAMBUR DARI PASIEN PADA PESAWAT FLUOROSKOPI DENGAN METODE MONTE CARLO DAN PENGUKURAN

TESIS

Adi Dradjat Noerwasana 0806420713

UNIVERSITAS INDONESIA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM MAGISTER FISIKA KEKHUSUSAN FISIKA MEDIS JAKARTA DESEMBER 2010

Analisis sebaran..., Adi Dradjat Noerwasana, FMIPA UI, 2010.

ANALISIS SEBARAN RADIASI HAMBUR DARI PASIEN PADA PESAWAT FLUOROSKOPI DENGAN METODE MONTE CARLO DAN PENGUKURAN

TESIS

Diajukan sebagai salah satu syarat untuk memperoleh gelar Magister Fisika

> Adi Dradjat Noerwasana 0806420713

UNIVERSITAS INDONESIA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM MAGISTER FISIKA KEKHUSUSAN FISIKA MEDIS JAKARTA DESEMBER 2010

HALAMAN PERNYATAAN ORISINALITAS

Tesis ini adalah hasil karya saya sendiri, dan semua sumber baik yang dikutip maupun dirujuk telah saya nyatakan dengan benar

Nama	: Adi Dradjat Noerwasana
NPM	: 0896420713
Tanda Tangan	: Gh
Tanggal	: 22 Desember 2010

HALAMAN PENGESAHAN

Telah diajukan oleh Nama NPM Program Sutudi Judul

:

Adi Dradjat Noerwasana 0806420713 Fisika Medis Analisis Sebaran Radiasi Hambur dari Pasien pada Pesawat Fluoroskopi dengan Metode Monte Carlo dan Pengukuran

Telah berhasil dipertahankan di hadapan Dewan Penguji dan diterima sebagai bagian persyaratan yang diperlukan untuk memperoleh gelar Magister Fisika pada Program Studi Fisika Medis, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Indonesia

DEWAN PENGUJI

Pembimbing I

(Prof. DR. Djarwani S. Soejoko)

Pembimbing II

(DR. Rer.nat Freddy Haryanto)

Penguji

Ulisont.

(Dr. Musaddiq Musbach)

Penguji

(Dr. Warsito)

Penguji

(Dr. Agung Alfiansyah)

Ditetapkan di

Jakarta

Tanggal

22 Desember 2010

Analisis sebaran..., Adi Dradjat Noerwasana, FMIPA UI, 2010.

KATA PENGANTAR

Alhamdulillahirobbil 'alamin, atas karunia Allah SWT saya akhirnya dapat menyelesaikan penyusunan tugas akhir S2 dengan baik. Selesainya tulisan ini bukanlah hanya kerja saya sendiri tetapi banyak pihak yang telah membantu baik secara nyata maupun secara dukungan moril, banyak nama yang tidak dapat saya sebutkan satu per satu.

Kepada Prof. Dr. Djarwani S. Soedjoko sebagai Pembimbing I, dan Dr. rer.nat Freddy Haryanto sebagai Pembimbing II, terima kasih atas bimbingan dan arahan sebelum, pada saat dan sesudah penyusunan tulisan ini.

Kepada yang sangat berarti dalam hidup saya, istriku tercinta Mutia Khanifah, anak-anakku Nabiel, Najma dan Najib, terima kasih atas dukungan moril selama ini.

Kepada para dokter dan staf bagian radiologi diagnostik Rumah Sakit Pusat Pertamina, dan teman saya Dea dan mas Arief terima kasih banyak atas bantuan dalam pengukuran/pengambilan dalam penelitian ini, dan maaf kami telah merepotkan dan mengganggu teman-teman, Bapak dan Ibu sekalian.

Kepada rekan seperjuangan Titik Kartika terima kasih atas bantuan den kerjasamanya. Tak lupa kepada rekan-rekan S2 Fisika Medis angkatan 2008 terima kasih atas dukungan dan bantuannya.

Akhirnya semoga tulisan ini dapat bermanfaat.

Adi Dradjat N.

HALAMAN PERNYATAAN PERSETUJUAN PUBLIKASI TUGAS AKHIR UNTUK KEPENTINGAN AKADEMIS

Sebagai sivitas akademik Universitas Indonesia, saya yang bertanda tangan di bawah ini

Nama	:	Adi Dradjat Noerwasana
NPM	1	0806420713
Program Studi	:	Magister Fisika
Departemen	: •	Fisika
Fakultas	:	Matematika dan Ilmu Pengetahuan Alam
Jenis Karya	:	Tesis

Demi pengembangan ilmu pengetahuan, menyetujui untuk memberikan kepada Universitas Indonesia Hak Bebas Royalti Noneksklusif (Non-exclusive Royalty Free Right) atas karya ilmiah saya yang berjudul : Analisis Sebaran Radiasi Hambur dari Pasien pada Pesawat Fluoroskopi dengan Metode Monte Carlo dan Pengukuran, beserta perangkat yang ada (jika diperlukan). Dengan Hak Bebas Royalti Noneksklusif ini Universitas Indonesia berhak menyimpan, mengalih media/format mengelola dalam bentuk pangkalan data (database), merawat, dan mempublikasikan Tesis saya selama tetap mencantumkan nama saya sebagai penulis/pencipta dan sebagai pemilik Hak Cipta. Demikian pernyataan ini saya buat dengan sebenarnya.

Dibuat di : Jakarta

Pada Tanggal : 22 Desember 2010

ang menyatakan. Adi Dfadjat Noerwasana

V

ABSTRAK

ANALISIS SEBARAN RADIASI HAMBUR DARI PASIEN PADA PESAWAT FLUOROSKOPI DENGAN METODE MONTE CARLO DAN PENGUKURAN

Adi Dradjat Noerwasana^{*)}

Departemen Fisika FMIPA Universitas Indonesia Depok 16424 (Tesis Magister, 48+ xii Halaman, 19 Gambar, 3 Tabel, Tahun 2010)

Perhitungan besarnya hamburan dari pasein dalam pesawat fluoroskopi dengan tabung di atas merupakan sesuatu yang penting dalam proteksi radiasi. Sebuah user kode Monte Carlo yaitu DOSXYZnrc digunakan untuk menghitung rasio hamburan terhadap entrance surface dose (ESD). Hasil perhitungan kemudian dibandingkan dengan pengukuran untuk menunjukkan adanya hamburan dalam fluoroskopi tersebut. Pemodelan dalam DOSXYZnrc dan pengukuran dilakukan dengan menggunakan sebuah pesawat fluoroskopi, phantom, dan lithium fluoride thermoluminescent dosimeter (TLD). TLD ditempatkan pada jarak 50 cm dengan sumbu berkas sinar-x dalam beberapa sudut dari pusat phantom dan juga pada tubuh staf yaitu di dekat mata, leher, dada, pinggang dan kaki pada saat melakukan tindakan. Radiasi hambur pada jarak 50 cm dari sumbu berkas diperkirakan menyebar tertinggi pada sudut 140[°] dari tubuh pasien atau jika staf yang memiliki tinggi 160 cm akan pada bagian matanya. Selanjutnya dosis akan berkurang untuk sudut yang lebih kecil atau bagian yang lebih ke bawah yaitu leher, dan dada. Pada pengukuran TLD dosis pada kaki meningkat karena pengaruh dari hamburan balik dari permukaan lantai. Bagian mata untuk staf dengan tinggi 160cm dan arah sudut 140⁰ menerima dosis paling tinggi karena radiasi hambur dan kaki menerima dosis yang lebih karena adanya tambahan hamburan balik dari permukaan lantai.

Kata kunci: fluoroskopi, hamburan, Monte Carlo, pengukuran *) a.drajat@bapeten.go.id

ABSTRACT

DISTRIBUTION ANALYSIS OF SCATTERED RADIATION FROM PATIENT ON X-RAY FLUOROSCOPY WITH MONTE CARLO METHOD AND MEASUREMENT

Adi Dradjat Noerwasana^{*)}

Department of Physics FMIPA Indonesia University Depok 16424 (Thesis Magister, 48+ xii Pages, 19 Pictures, 3 Tableses, 2010)

Calculation of scattering from a patient in fluoroscopy with upper tube is an important part on determining the radiation protection requirements. A software based on Monte Carlo Method named DOSXYZnrc was used to calculate the percentage of scatter radiation from entrance surface dose (ESD). Calculations have been compared with measurements to show that simulation result are representative of scatter found in fluoroscopy. Modeling in DOXYZnrc and measurement were performed using a X-ray fluoroscopy, some phantom, and some lithium fluoride thermoluminescent dosimeter (TLD). TLD's were placed at 50 cm from x-ray beam axis in some angle of phantom center and also on the staff's body near to eyes, neck, chest, waist and legs. The radiation scattered at the distance of 50 cm from the beam axis with the highest predicted spread angle 140° of the patient's body or if the 160 cm staff tall will be in the eye. Furthermore, the dose will be reduced in a smaller angle or decreased on neck, and chest. In the TLD dose measurement in legs was increased because of the back-scattering influence from the surface of the floor behind. The eye in the 160cm staff tall and direction on the angle of 140° receiving the highest dose due to the scattering from a patient, and then feet receive higher doses because of the additional back-scattering from the surface of the floor behind.

*) a.drajat@bapeten.go.id

DAFTAR ISI

			Halaman
JUDUL .			i
HALAM	AN PERN	IYATAAN ORISINALITAS	ii
HALAM	AN PENC	JESAHAN	iii
KATA P	ENGANT	AR	iv
HALAM	AN PERN	IYATAAN PERSETUJUAN PUBLIKASI	
TUGAS .	AKHIR U	NTUK KEPENTINGAN AKADEMIS	V
ABSTRA	К		vi
DAFTAF	R ISI		viii
DAFTAF	R GAMBA	AR	Х
DAFTAF	R TABEL		xi
DAFTAF	R LAMPIF	RAN	xii
BAB I	PENDA	HULUAN	1
I.1.	Latar Be	lakang	1
I.2.	Rumusar	n Masalah	2
I.3.	Batasan	Masalah	2
I.4.	Tujuan Penelitian 3		
BAB II	TINJAUAN PUSTAKA		
II.1.	Pesawat Fluotroskopi		
II.2.	Interaksi Foton dengan Materi		
II.3.	Radiasi "Nyasar" (Stray Radiation)10		
II.4	Fraksi Hambur (Scatter Fraction)11		
II.5.	Termolu	minescenct Detector (TLD)	12
II.6.	Metode	Monte Carlo	13
	II.6.1.	EGSnrc	14
	II.6.2.	DOSXYZnrc User Code	16
	II.6.3.	STATDOSE Interface	17
	II.6.4.	DOSXYZ_SHOW Interface	18
II.7.	SpekCale	c	18
BAB III	METODE PENELITIAN		

III.1	Peralatan	20
III.2	Metode Pengukuran	21
III.3	Simulasi Monte Carlo	23
III.4.	Pengolahan Data	30
BAB IV	HASIL PENELITIAN	33
IV.1.	Hasil Simulasi Monte Carlo	33
IV.2.	Hasil Pengukuran Dosis Radiasi Hambur	36
IV.3.	Perbandingan Hasil Simulasi dan Pengukuran	37
IV.3.	Hasil Pengukuran Dosis pada Staf Fluoroskopi	38
BAB V	PEMBAHASAN	40
BAB VI	KESIMPULAN DAN SARAN	45
VI.1.	Kesimpulan	45
VI.2.	Saran	45
DAFTAR	PUSTAKA	47

DAFTAR GAMBAR

Gambar 2.1.	Skema Sinar-X fluoroskopi	6
Gambar 2.2.	Skema radiasi "nyasar" dalam fluoroskopi	10
Gambar 2.3.	Fraksi Hambur, <i>a</i> 1	11
Gambar 2.4.	Fraksi Hambur pada beberapa sudut hambur θ	12
Gambar 2.5.	Diagram alir EGSnrc	15
Gambar 2.6.	Contoh model phantom	17
Gambar 2.7.	Antarmuka SpecCalc	19
Gambar 3.1.	Pengukuran dosis dengan TLD	22
Gambar 3.2.	Diagram Alir Proses Pengukuran	23
Gambar 3.3.	Skema pengukuran dan skema model phantom	27
Gambar 3.4.	Source type: parallel beam from the front	29
Gambar 3.5.	Diagram Alir Proses Simulasi	30
Gambar 3.6.	Skala Normalisasi Fraksi Hambur, <i>a</i> ₁	31
Gambar 4.1.	Grafik Hasil Simulasi Monte Carlo dengan Variasi FSD	33
Gambar 4.2.	Grafik Hasil Simulasi Monte Carlo dengan Variasi Luas Lapangan	34
Gambar 4.3.	Grafik Hasil Simulasi Monte Carlo dengan Variasi Ketebalan Phantom	35
Gambar 4.4.	Grafik Hasil Simulasi Monte Carlo dengan Variasi Tegangan Tabung	35
Gambar 4.5.	Grafik Fraksi Hambur Hasil Pengukuran dengan Phantom	36
Gambar 4.6.	Grafik Hasil Simulasi Monte Carlo, Pengukuran dan Fig. C.1. hal. 137 NCRP Report No. 147	38

DAFTAR TABEL

Halaman

Tabel 4.1.	Tabel Hasil Simulasi Monte Carlo, Pengukuran dan Fig.C.1. hal. 137 NCRP Report No. 147	37
Tabel 4.2.	Dosis Staf Pada Beberapa Tindakan Flouroskopi	39
Tabel 4.3.	Laju Dosis Staf Pada Beberapa Tindakan Flouroskopi	39

DAFTAR LAMPIRAN

Lampiran A1 Desain Pengukuran dan Pemodelan Phantom dalam Simulasi

Lampiran A2 Diagram Alir Perhitungan dengan Metode Monte Carlo

Lampiran B1 Spesifikasi Teknis Pesawat Sinar-X

Lampiran B2 Data Uji Fungsi Pesawat Sinar-X

Lampiran C1 Data Pengukuran Dosis Hambur

Lampiran C2 Hasil Pengukuran Dosis Staf

Lampiran C3 Hasil Pengukuran Laju Dosis Staf

Lampiran D1 Tabel Hasil Simulasi Monte Carlo dengan Variasi FSD

Lampiran D2 Tabel Hasil Simulasi Monte Carlo dengan Variasi Lapangan Radiasi

- Lampiran D3 Tabel Hasil Simulasi Monte Carlo dengan Ketebalan Phantom
- Lampiran D4 Tabel Hasil Simulasi Monte Carlo dengan Tegangan Tabung
- Lampiran D5 Tabel Perbandingan Hasil Pengukuran, Monte Carlo dan Referensi
- Lampiran D6 Tampilan Hasil Simulasi Monte Carlo di dosxyz_show

Lampiran D7 Simulasi Monte Carlo untuk 70 kV, Tebal phantom 20 cm, 30x30cm²

BAB I PENDAHULUAN

I.1. Latar Belakang

Pesawat Fluoroskopi merupakan pesawat radiologi diagnostik yang menghasilkan pencitraan sinar-X *real time* untuk melihat gerakan organ, cairan dan struktur dalam tubuh, dan dapat memandu prosedur intervensional pada radiologi intervensional dengan resolusi temporal cukup tinggi. Di Indonesia, walaupun sudah keluar pesawat CT-Scan yang mampu menggantikan beberapa tindakan fluoroskopi, tetapi di beberapa rumah sakit penggunaan pesawat fluoroskopi masih cukup banyak. Pada tahun 1996 di Amerika Serikat lebih dari 700.000 pasien memperoleh perlakuan fluoroskopi dan tindakan intervensi dan pada tahun 2001 mencapai 1 juta pasien [1]. Beberapa pesawat fluoroskopi menggunakan tabung sinar-X pada posisi di atas.

Resiko radiasi pada tindakan fluoroskopi lebih besar dibandingkan dengan radiologi diagnostik lainnya, terutama resiko radiasi yang diterima oleh staf yang melakukan tindakan atau prosedur intervensional yang kadang-kadang memerlukan waktu lama, tergantung pada kompleksnya tindakan. Dosis radiasi staf berasal dari radiasi hambur dari pasien, peralatan lain di ruang operasi, langit-langit dan dinding ruangan. Staf fluoroskopi sangat mungkin terkena radiasi hambur saat mereka bekerja. Dari hasil analisis, kardiolog dan perawat diperkirakan menerima dosis radiasi 43 – 77 % dari NBD untuk pekerja radiasi sebesar 50 mSv/tahun. Sedangkan menurut BSS-115, dosis yang diterima kardiolog dan perawat melebihi NBD untuk pekerja radiasi sebesar 20 mSv/tahun.

[2]. Pemahaman yang baik tentang radiasi hambur membuat lebih baik dalam hal manajemen keselamatan radiasi.

I.2. Rumusan Masalah

Berdasarkan latar belakang di atas dapat dirumuskan masalah penelitian sebagai berikut:

- I.2.1. Bagaimana distribusi radiasi hambur di sekitar pesawat fluoroskopi pada arah vertikal sejajar sumbu berkas utama atau posisi dimana radiolog/staf berdiri, dan jarak 50 cm dari pusat pasien/phantom, dalam beberapa variasi luas lapangan tebal phantom dan tegangan tabung dengan simulasi Monte Carlo DOSXYZnrc?
- I.2.2. Bagaimana perbandingan distribusi radiasi hambur di sekitar pesawat fluoroskopi pada arah vertikal sejajar sumbu berkas utama atau posisi dimana radiolog/staf berdiri, dan jarak 50cm dari pusat pasien/phantom?
- I.2.3. Bagaimana verifikasi dosis staf dengan melakukan perbandingan terhadap pengukuran maupun dengan simulasi Monte Carlo DOSXYZnrc?

I.3. Batasan Masalah

Penelitian ini dibatasi pada hal-hal sebagai berikut:

I.3.1. Pemodelan phantom tiga dimensi pada simulasi Monte Carlo DOSXYZnrc hanya berbentuk balok dengan ukuran 65x30x200 cm³ yang berisi udara, di dalamnya terdapat akrilik dengan ukuran 30x30 cm² dengan ketebalan yang divariasikan, dan 14 (empat belas) set TLD Universitas Indonesia (*thermo-luminescence dosemeter*) dengan 13 set TLD di posisi sumbu Z (posisi radiolog/staf berdiri) yaitu pada arah 30^{0} , 40^{0} , 50^{0} , 60^{0} , 70^{0} , 80^{0} , 90^{0} , 100^{0} , 110^{0} , 120^{0} , 130^{0} , 140^{0} , 150^{0} dari arah berkas utama, dan 1 TLD di permukaan akrilik.

- I.3.2. Analisis perhitungan dosis dengan simulasi Monte Carlo DOSXYZnrc dengan memvariasikan FSD (*focus-skin distance*), luas lapangan 15x15 cm², 20x20 cm², 25x25 cm², 30x30 cm², dan tegangan tabung 60 kV, 70 kV, 80 kV, 90 kV, serta ketebalan phantom 15cm, 20cm, 25cm.
- I.3.3. Pengukuran dosis dilakukan dengan menggunakan TLD dengan menempatkannya di udara pada arah vertikal sejajar sumbu berkas utama atau posisi dimana radiolog/staf berdiri untuk posisi sudut dari pusat phantom 30⁰, 40⁰, 50⁰, 60⁰, 70⁰, 80⁰, 90⁰, 100⁰, 110⁰, 120⁰, 130⁰, 140⁰, 150⁰, dan pada permukaan phantom. Pengukuran dengan TLD juga dilakukan pada tubuh staf pada bagian mata, leher, dada di luar apron, dada di dalam apron, pinggang di luar apron, dan kaki

I.4. Tujuan Penelitian

I.4.1. Untuk mengetahui distribusi radiasi hambur pada pesawat fluoroskopi pada arah vertikal sejajar sumbu berkas utama atau posisi dimana radiolog/staf berdiri, dan jarak 50 cm dari pusat phantom, dalam luas lapangan 15x15 cm², 20x20 cm², 25x25 cm², 30x30 cm², dan tegangan tabung 60 kV, 70 kV, 80 kV, 90 kV, serta ketebalan phantom 15cm, 20cm, 25cm dengan simulasi Monte Carlo DOSXYZnrc dan pengukuran.

I.4.2. Untuk menentukan fraksi hambur (*scatter fraction*) dan memperkirakan dosis radiasi hambur pada bagian tubuh staf fluoroskopi dalam variasi arah sudut.

BAB II TINJAUAN PUSTAKA

II.1. Pesawat Fluoroskopi

Fluoroskopi merupakan pencitraan sinar X *real time* untuk melihat dalam tubuh pasien dengan resolusi temporal tinggi. Sistem fluoroskopi modern menggunakan *image intesifier* (II), yang ukurannya meningkat dengan kemajuan teknologi. Pada mulanya ukuran diameter II 15 cm (6 inch), dan saat ini dapat ditemui II dengan ukuran diameter 40 cm (16 inch). Tambahan lagi sistem fluoroskopi saat ini dilengkapi pula dengan kamera TV modern yang mempunyai kualitas super dan resolusi tinggi. Dengan frame rate pulsed fluoroskopi yang variabel, dosis pasien dapat dikurangi dengan memperoleh citra yang lebih baik dibanding dengan fluoroskopi tahun 70 – 80 an. [3, 22, 23]

Pencitraan *real time* umumnya 30 frames/second (standard frame rate TV di US). Sistem fluoroskopi untuk general purpose umumnya menggunakan TV dengan 30 frame rate/second. Untuk fluoroskopi berurutan yang digunakan dalam kateterisasi dapat menggunakan sistem frame rate lebih tinggi. Pembuatan citra radiografi berurutan dibuat dengan menggunakan frame rate tinggi pada saat untuk merekan pemberian media kontras dalam suatu pembuluh atau rongga tubuh. Untuk merekam citra jantung, *cine camera* menggunakan sistem kamera dengan frame rate mencapai 120 frame/second untuk *cine film*. Selain itu digital cine juga dikenal dalam interventional cardiology. [22, 23]

Dalam prosedur fluoroskopi, sekitar 10 menit diperoleh sekitar 18 000 citra individual. Jumlah citra yang tinggi dibutuhkan untuk mengamati gerakan organ, namun jumlah citra tinggi juga mengakibatkan dosis pasien tinggi. Oleh karenanya untuk mengurangi dosis pasien, memerlukan detektor yang sangat sensitif. *Image Intensifier* memiliki sensitivitas ribuan kali sensitivitas filmscreen. Umumnya fluoroskopi standard menggunakan 1 sampai 5 μ R yang jatuh pada II untuk satu citra, sedangkan film-screen dengan kecepatan 400 membutuhkan 600 μ R untuk memperoleh densitas optik 1.0. [22]

Gambar 2.1. Skema Sinar-X fluoroskopi

Gambar 2.1. menunjukkan gambar skematik sinar-X yang melewati pasien dan ditangkap oleh *Image Intensifier* untuk diproses menjadi citra yang mampu ditampilkan dalam monitor.

II.2. Interaksi Foton dengan Materi

Tegangan tabung yang digunakan dalam prosedur fluoroskopi adalah 25-150 kV yang akan menghasilkan sinar-X dengan energi berkisar antara 25-150 keV. Interaksi sinar-X yang dominan dalam rentang energi tersebut yaitu hamburan koheren (*Reyleigh/Coherent Scattering*) dan hamburan compton (*Compton Scattering*), kemudian satu lagi adalah interaksi fotolistrik akibat dari penyerapan energi sinar-X. [22].

II.2.1. Hamburan Koheren

Hamburan koheren merupakan interaksi non ionisasi antara sinar-x dan jaringan tubuh. Energi sinar-X diubah menjadi gerakan harmonis dari elektron dalam atom jaringan, kemudian atom meradiasikan energi sinar-X ke segala arah secara acak dengan dengan panjang gelombang sama dengan sinar-X yang masuk. Oleh karena itu, hamburan koheren tidak hanya mengurangi intensitas sinar-X, tetapi juga mengubah lintasan sinar-X. Probabilitas hamburan koheren ($P_{koheren}$) dari peristiwa hamburan koheren diberikan dengan rumus:

$$P_{koheren} \propto \frac{\left(Z_{eff}\right)^{8/3}}{E^2}$$

Dimana E adalah energi sinar-X yang datang dan Z_{eff} adalah nomor atom efektif jaringan. Otot memiliki Z_{eff} sekitar 7.4, sedangkan tulang yang mengandung atom calcium dapat mencapai sekitar 20. [8, 24]

II.2.2. Hamburan Compton

Hamburan Compton adalah tumbukan antara sebuah sinar-X dengan sebuah elektron bebas. Sinar-X yang datang dibelokkan arahnya dengan sudut θ terhadap arah sebelumnya. Sinar-X mentransfer sebagian energinya ke elektron diam yang dikenal sebagai elektron *recoil*. Karena besarnya sudut θ bisa sembarang, maka energi yang ditransfer besarnya antara nol sampai dengan besarnya fraksi energi sinar-X. (8)

Gambar diatas menggambarkan sinar-X dengan panjang gelobang λ dan energinya *hv* menumbuk sebuah elektron bebas, panjang gelombang dan energi setelah menumbuk menjadi λ ' dan *hv*', dengan sudut beloknya θ , elektron terpental dengan sudut Φ .

Untuk $\theta = 180^{\circ}$ harga cos $180^{\circ} = -1$, berarti sinar-X akan dihamburkan balik, elektron akan memperoleh energi maksimum dan energi sinar-X hambur menjadi minimum.

$$E_{\max} = h\nu \cdot \frac{2\alpha}{1+2\alpha}$$
$$h\nu'_{\min} = h\nu \cdot \frac{1}{1+2\alpha}$$

Di lain pihak, bila $\theta \approx 0^0$ yang berarti cos $0^0 = 1$, sehingga harga $(1 - \cos \theta) = 0$. Kondisi demikian mengakibatkan E = 0, dan berarti elektron tidak menyerap energi sinar-X, berarti energi sinar-X hambur sama dengan energi sinar-X datang. [8, 24]

II.2.3. Interaksi Fotolistrik

Interaksi fotolistrik adalah interaksi antara sebuah sinar-X dan sebuah loncatan atom elektron. Sebagai hasil dari interaksi, sinar-X menghilang dan salah satu dari atom elektron dilepaskan sebagai elektron bebas yang disebut fotoelektron. Fotoelektron memiliki energi kinetik sebesar : [8, 24]

$$T = E_{\gamma} - BE$$

Dimana, E_{γ} = energi sinar-X

BE = energi ikat dari elektron

Probabilitas terjadinya interaksi ini disebut sebagai *photoelectric cross section* atau *photoelectric coeficient*. Dengan persamaan ; [3, 9].

$$\tau(m^{-1}) = aN \frac{Z^n}{E_{\gamma}^{3.5}}$$

di mana,

 τ = probabilitas terjadinya efek fotolistrik per unit jarak yang dilalui sinar-X.

a = konstanta

n = konstanta tergantung pada nilai Eg

N = jumlah atom per m³ untuk material yang dilalui sinar-X bergerak

Z = nomor atom material

II.3. Radiasi "Nyasar" (Stray Radiation)

Ketika pesawat sinar-X dioperasikan terjadi sebagian kecil radiasi bocor (*leakage radiation*) yang keluar dari sekeliling tabung sinar-X, dan berkas sinar-X yang berguna untuk menghasilkan citra menumbuk pasien kemudian terhambur ke segala arah sebagai radiasi hambur (*scattered radiation*).

Gambar 2.2. Skema radiasi "nyasar" dalam fluoroskopi

Dalam kondisi normal radiasi hambur sangat lebih besar daripada radiasi bocor. Selain hal itu radiasi hambur dan radiasi bocor akan menumbuk dinding, lantai dan peralatan-peralatan lain dalam ruangan kemudian sebagian

dipantulkan kembali yang dikenal sebagai radiasi hamburan balik (*back-scattering radiation*). Radiasi nyasar yang mungkin mengenai staf fluoroskopi adalah merupakan radiasi gabungan dari radiasi bocor, radiasi hambur dan radiasi hamburan balik. [24]

II.4. Fraksi Hambur (Scatter Fraction)

Intensitas radiasi hambur yang dihamburkan tubuh pasien tergantung pada sudut hamburan θ (didefinisikan dari arah pusat balok utama untuk sebuah sinar menunjuk ke daerah yang diduduki), jumlah sinar-X primer yang sampai ke pasien, energi sinar-X, dan lokasi berkas sinar x-ray pada pasien. Fraksi hambur rasio dari kerma udara pada titik dengan jarak 1 meter dari pusat pantom dengan kerma udara pada jarak 1 meter dari pusat tabung sinar-X. [19, 20]

Gambar 2.3. Fraksi Hambur, *a*₁ [20]

Fig. C.1. The scatter fraction $a_1 \times 10^{-6}$ (*i.e.*, multiply graph value by 10^{-6}) per cm² of primary beam area at 1 m. [Data of Trout and Kelley (1972) reanalyzed by Simpkin and Dixon (1998) for tungsten anode, aluminum-filtered beams. Data of Simpkin (1996b) for molybdenum anode, molybdenum filtered mammographic beams.]

Gambar 2.4. Fraksi Hambur pada beberapa sudut hambur θ

II.5. Thermoluminescenct Detector (TLD)

TLD adalah alat ukur dosis personal yang bekerja berdasarkan adanya proses lumenisensi. Prinsip kerjanya seperti efek fotolistrik. Ketika bahan TLD mendapatkan dosis radiasi dengan energi tertentu, maka elektron-elektron dalam kristalnya akan naik ke level energi yang lebih tinggi. Kebanyakan elektron tersebut akan kembali ke level energi awalnya (keadaan dasar), namun ada beberapa elektron yang terjebak dalam impuritas. Apabila bahan TLD dipanaskan, maka elektron yang terjebak tersebut akan terangkat ke level energi yang lebih tinggi dimana dari sana elektron-elektron tersebut akan kembali ke keadaan dasar dengan energi yang terserap dari pemberian dosis radiasi. Beberapa bahan TLD yang bersifat luminisense tersebut antara lain CaSO4:Mn,Dy; LiF:Mg,Ti; dan LiF:Mg, Cu,P. [21, 22]

II.6. Metode Monte Carlo

Metode Monte Carlo merupakan teknik stokastik yang prinsipnya berdasar pada penggunaan bilangan random dan kebolehjadian statistik dalam menyelesaikan masalah. Metode Monte Carlo tidak menyelesaikan persamaan eksplisit melainkan mendapatkan jawaban dengan cara mensimulasikan sinar-X/foton secara individu dan merekam beberapa aspek (perhitungan) dari sifat ratarata foton tersebut. Metode Monte Carlo merupakan produk era komputer modern. Foton-foton individual dari radiasi foton yang melewati media dengan membuat beberapa tumbukan dengan elektron-elektron atau atom-atom dalam lintasannya dapat dibuat simulasi numeriknya. Untuk memperoleh representasi statistik yang baik dari kejadian fisis, sejarah foton dilacak mulai foton tersebut muncul sampai akhirnya hilang karena penyerapan ataupun karena degenarasi energi. [6].

Monte Carlo merupakan metoda yang digunakan untuk mensimulasikan suatu proses random. Metoda ini menggunakan teori peluang, dan dalam Monte Carlo setiap kejadian dipandang sebagai keadaan yang berdiri sendiri dan berbeda dari keadaan sebelumnya. Ini disebut sebagai keadaan *stochastic*. Monte Carlo memiliki kemampuan untuk mensimulasikan jejak partikel dalam transport radiasi. Hal ini dilakukan dengan sejumlah sampel yang diperlukan dari distribusi probabilitas utama dari proses fisik secara individual. Kuantitas seperti fluence,

spektrum energi dan distribusi dosis serap dapat dihitung dengan mensimulasikan sejumlah partikel. [13]

II.6.1. EGSnrc Code

Versi pertama dari kode Monte Carlo EGS ditulis pada awal tahun 1960, berkembang menjadi EGS4, selanjutnya berkembang menjadi EGSnrc untuk platform sistem operasi Linux, dan kemudian menjadi EGSnrcMP oleh *National Research Council of Canada* (NRC), di mana MP adalah singkatan untuk multiplatform. EGS (*Electron Gamma Shower*) adalah suatu sistem kode komputer yang secara umum bisa digunakan untuk berbagai tujuan. EGS menggunakan simulasi Monte Carlo untuk transport elektron dan foton pada geometri tertentu. Kode ini telah dirancang untuk mensimulasikan partikel (elektron/foton) dalam berbagai interaksi melalui dengan media yang dilalui pada rentang energi elektron 10 eV sampai 100 GeV dan energi foton 1 eV sampai 100 GeV. [10,13].

Gambar 2.5. Diagram alir EGSnrc [10]

EGSnrc menggunakan Monte Carlo dalam mengikuti jejak partikel dengan menghitung peluang suatu partikel untuk berpindah dari satu titik ke titik yang lain. EGSnrc juga menggunakan Monte Carlo untuk menentukan interaksi apa yang terjadi saat foton menumbuk sebuah elektron, apakah hamburan koheren, Compton, fotolistrik ataukah produksi pasangan. Interaksi ini ditentukan dengan melihat peluangnya. Yang dijadikan fungsi peluang dalam EGSnrc adalah *cross section* dari reaksi. Dalam proses transport foton atau elektron di dalam medium (phantom) terjadi berbagai interaksi, hal ini dapat dilihat pada gambar 2.5. di atas. [10]

II.6.2. DOSXYZnrc User Code

DOSXYZnrc adalah salah satu kode simulasi yang ada di dalam EGSnrc. DOSXYZnrc adalah kode yang dapat mensimulasikan transport elektron maupun foton dalam suatu model phantom berbentuk balok (sumbu X, Y, dan Z). DOSXYZnrc mensimulasikan transport foton dan menghitung sebaran dosis pada phantom di kedalaman tertentu dengan menggunakan voxel (*volume pixel*) yaitu volume terkecil phantom. Jumlah maksimum voxel yang diperbolehkan untuk sumbu X dan Y masing-masing 128 voxel dan untuk sumbu Z adalah 56 voxel. Contoh model phantom ditunjukkan pada gambar 2.6. [11]

Input data pada DOSXYZnrc perlu didefinisikan beberapa parameter yaitu geometri dan ukuran phantom, jumlah dan ukuran voxel pada arah sumbu X, Y, dan Z, arah berkas sumber foton, spektrum berkas foton, media yang dilewati di dalam phantom, dan banyaknya partikel yang akan disimulasikan. Sesuai dengan karakteristik interaksi antara foton dan materi maka untuk mensimulasikan berkas foton diperlukan paling kurang 300 juta partikel. Data spektrum berkas foton didefinisikan dan dibuat dengan bantuan kode *SpekCalc*.

Salah satu parameter penting dalam simulasi yang dapat mempengaruhi efisiensi waktu perhitungan yaitu global ECUT (*Electron Cutoff Energy*) dan global PCUT (*Photon Cutoff Energy*). Global ECUT adalah batas energi terendah dimana simulasi akan menghentikan transport partikel apabila energi elektron berada di bawah nilai global ECUT. Sedangkan Global PCUT adalah batas energi terendah dimana simulasi akan menghentikan transport partikel apabila energi photon berada di bawah nilai global PCUT. [11, 13]

Gambar 2.6. Contoh model phantom

Ekstensi file keluaran/output dari DOSXYZnrc adalah *.3ddose. NRC telah membuat antarmuka (*interface*) untuk mengekstrak dan memvisualisasikan keluaran DOSXYZnrc (file *.3ddose) yaitu Statdose dan dosxyz_show.

II.6.3. STATDOSE Interface

Statdose adalah antarmuka komputer interaktif untuk menganalisa sebaran dosis dalam bentuk tiga dimensi yang dihasilkan oleh DOSXYZnrc. Statdose dapat digunakan untuk melakukan plotting sebaran dosis satu dimensi menggunakan *xvgr/xmgr* dari sebaran dosis tiga dimensi yang dihasilkan DOSXYZnrc. Fungsi Statdose meliputi normalisasi, plotting, rebinning, dan analisis sebaran dosis. Selain itu Statdose juga dapat membandingkan sebaran dosis baik secara statistik maupun grafik. [12].

II.6.4. DOSXYZ_SHOW Interface

Hasil sebaran dosis yang dihasilkan oleh DOSXYZnrc dapat divisualisasikan menggunakan antarmuka dosxyz_show. Antarmuka ini memerlukan file-file keluaran DOSXYZnrc yaitu file *.3ddose dan file *.egsphant. Densitas media dalam phantom di-ilustrasikan dalam skala keabuabuan.

DOSXYZ_SHOW menyajikan beberapa pilihan pengguna untuk melihat geometri: mengubah slice, memilih bidang yang ditinjau XY, XZ atau YZ, *zoom in, zoom out*, normalisasi dosis, isoline tingkat, ekspansi gambar, nilai dosis setiap titik, representasi warna dan rentang densitas. [13, 18]

II.7. SpekCalc

SpekCale adalah sebuah kode komputer yang disajikan untuk perhitungan spektrum sinar-X dari yang dihasilkan tabung sinar-X dengan bahan anoda tungsten. SpekCale dirancang terutama untuk digunakan dalam konteks fisika medis, baik untuk keperluan penelitian dan pendidikan, tetapi juga mungkin menarik untuk mereka yang bekerja dengan tabung sinar-X industri. SpekCale dapat memodelkan tabung sinar-X rentang tegangan tabung (40-300 kVp) dan sudut anoda disarankan: 6°-30°. Karakteristik kode ini berpotensi berguna bagi mereka yang bekerja di superfisial/radioterapi orthovoltage, serta radiologi diagnostik. [13]

Gambar 2.7. Antarmuka SpecCalc

BAB III METODE PENELITIAN

Penelitian ini terdiri dari dua bagian. Bagian pertama berupa metode eksperimental dengan melakukan pengukuran dosis menggunakan pesawat fluoroskopi merk Philips RO 1750 ROT 360 milik Rumah Sakit Pusat Pertamina. Bagian kedua berupa metode simulasi menggunakan kode Monte Carlo DOSXYZnrc dengan kondisi seperti pada pengukuran, selanjutnya hasil pengukuran, dan simulasi diperbandingkan.

III.1. Peralatan

Pesawat fluoroskopi yang digunakan dalam penelitian ini adalah pesawat fluoroskopi merk Philips RO 1750 ROT 360 dengan spesifikasi teknik sebagai berikut:

REF/Model	: 9890 000 86111
Nomor Seri	: 26994 A 227148
REF/Model tabung	: 9890 000 85271
Nomor seri tabung	: 227148
kV/mAs maksimur	m : 150/300
Filtrasi permanen	: 2,5 mm Al
Sudut Anoda	: 13 ⁰

Spesifikasi lengkap pesawat fluoroskopi yang digunakan dapat dilihat pada lampiran B1

TLD yang digunakan ada dua kelompok, yaitu TLD milik Badan Tenaga Atom Nasional (BATAN) dan TLD milik Jurusan Fisika, Universitas Indonesia

(UI), dari bahan LiF berukuran 3.175 x 3.175 x 0.889 mm³ buatan Harshaw, USA, nomor atom efektif 8.2, spektrum thermoluminiscence 3500-6000 A, dan tingkat pemudarannya 5% per tahun. TLD milik BATAN dikalibrasi menggunakan Cs-137 dengan energi foton sebesar 662 kV sedangkan TLD milik UI dikalibrasi dengan sinar-X diagnostik.

Dalam penelitian ini digunakan phantom sederhana merupakan susunan 15–20 lapisan akrilik milik RSPP, dengan ukuran phantom adalah 1x1 ft² (\approx 30.5x30.5 cm²), dan ketebalan masing-masing lapisan 1 cm.

Perhitungan untuk mendapatkan distribusi dosis dengan menggunakan metode Monte Carlo yang dilakukan dengan kode DOSXYZnrc. Peralatan yang digunakan Notebook dengan spesifikasi RAM 2GB, Intel(R) Core(TM)2 Duo CPU T6600 @ 2.20GHz, sistem operasi openSUSE 11.3 (i586) KDE 4.4.4.

III.2. Metode Pengukuran

Pengukuran dosis radiasi hambur dilakukan dengan 2 (dua) metode, yaitu:

- 1. Pengukuran dengan phantom;
- 2. Pengukuran dengan pasien.

III.2.1. Uji fungsi pesawat fluoroskopi

Sebelum pengambilan data dimulai, dilakukan proses uji fungsi pada pesawat fluoroskopi yang akan digunakan, dengan menggunakan phantom akrilik dan Detektor *unforce* milik BATAN. Uji fungsi dilakukan menggunakan variasi ketebalan phantom 12, 15, 18, 21, dan 24 cm, dan variasi luas lapangan 10x10 cm, 15x15 cm, dan 20x20 cm. Jarak sumber ke *image intensifier* 115 cm.

III.2.2. Pengukuran dengan phantom

Pengukuran dosis hambur dengan phantom dilakukan dengan menggunakan TLD yang ditempatkan di udara pada arah vertikal sejajar sumbu berkas utama atau posisi dimana radiolog/staf berdiri untuk posisi sudut dari pusat phantom θ yaitu: 30⁰, 40⁰, 50⁰, 60⁰, 70⁰, 80⁰, 90⁰, 100⁰, 110⁰, 120⁰, 130⁰, 140⁰, 150⁰. Sudut θ adalah sudut yang dibentuk oleh sumbu utama berkas dengan garis penghubung TLD dengan pusat phantom. Jarak antara sumbu utama berkas dengan TLD sebesar 50cm. Gambar skematik ditunjukkan pada Lampiran 1. Alat ukur dosis TLD ditempelkan pada titik-titik di benang dengan jarak vertikal yang telah ditentukan (Gambar 3.1.). Pengukuran dilakukan dengan waktu fluoroskopi 30 detik, ketebalan phantom 15 cm dan 20 cm. Dosis latar belakang (*background*) juga diukur dengan menempatkan satu titik pengukuran di luar ruangan fluoroskopi.

Gambar 3.1. Pengukuran dosis dengan TLD

III.2.3. Pengukuran dengan pasien

Pengukuran dengan TLD juga dilakukan pada tubuh staf pada bagian mata, leher, dada di luar apron, dada di dalam apron, pinggang di luar apron, dan kaki saat yang bersangkutan di dalam ruang fluoroskopi melakukan tindakan. Tindakan fluoroskopi yang dilakukan adalah Histerosalpingografi (HSG), Colon, Urethography, Oesophagus Maag Duodenum (OMD) dan Myelography. Rentang tegangan dan arus tabung, tebal pasien, dan waktu fluoroskopi dicatat dalam formulir (Lampiran 2). Waktu fluoroskopi dicatat menggunakan *stop watch* berupa waktu efektif staf berada di dalam ruangan.

Gambar 3.2. Diagram Alir Proses Pengukuran

III.3. Simulasi Monte Carlo

III.3.1. Prinsip Simulasi Monte Carlo

Dalam simulasi Monte Carlo, partikel radiasi dipresentasikan dengan suatu "partikel" yang perjalanannya diatur oleh suatu distribusi bilangan random. Perilaku dan perjalanan dari masing-masing partikel akan diamati terus sampai partikel itu lolos atau diserap oleh materi. Perilaku masing-masing
partikel dan keadaan partikel tersebut selalu dikaitkan dengan bilangan random. Penggunaan bilangan random sangat sesuai karena perjalanan partikel radiasi saat melewati materi bersifat random/acak.

Persamaan dasar matematik yang dipecahkan dalam penentuan dosis serap dalam metode Monte Carlo,

$$Dosis\,serap = \sum_{i} \left(\frac{\mu_{a}(E_{i})}{\rho}\right) E_{i} w_{i} \Phi_{i}$$
(3.1)

Persamaan 3.1 adalah penentuan dosis serap untuk suatu peristiwa ke-i pada suatu lapisan tertentu, dimana μ_a = koefisien atunuasi absorbsi dari materi lapisan, ρ = densitas materi, E_i dan Φ_i adalah energi dan fluks foton, serta w_i adalah faktor bobot yang didefinisikan sebagai,

$$w_{i} = \left(\mu_{c}(E)/\mu(E)\right) * w_{i-1}$$
(3.2)

Besarnya jarak bebas rata-rata partikel melewati medium, l

$$l = -\frac{1}{\mu} \ln r \tag{3.3}$$

dimana, μ = koefisien atenuasi dan r adalah bilangan random yang dihasilkan oleh bahasa pemrograman.

Penentuan sudut hambur φ dan posisi foton dalam materi berdasarkan sistem koordinat di bawah adalah:

$$\varphi = r. 2\pi$$

$$x = x_o + l \sin \theta \cos \varphi$$

$$y = y_o + l \sin \theta \sin \varphi$$

$$z = z_o + l \cos \theta$$
(3.4)

Interaksi foton dengan materi yang dilaluinya yaitu: hamburan Rayleigh, efek fotolistrik ataupun hamburan Compton. Untuk hamburan Compton, energi foton setelah terjadi hamburan Compton, E' mengikuti persamaan berikut:

$$E' = \frac{E}{1+sr+(2E-s)r^3}$$
(3.5)

dengan r = bilangan random dan s = E/(1 + 0.5625E) dan $E \le 2MeV$

Asumsi yang digunakan adalah photon hanya akan mengalami interaksi efek Fotolistrik dan Compton dan setiap kali terjadi interaksi maka faktor bobot akan berkurang. Selain itu dua macam kondisi dimana perjalanan foton tidak perlu diperhatikan lagi adalah, jika energi yang dimiliki foton mempunyai nilai di bawah energi minimum untuk terjadinya interaksi, dan jika foton tersebut telah menembus materi yang dilaluinya, atau melewati voxel yang diperhatikan.

Tahapan penentuan dosis serap dalam simulasi Monte Carlo, Pertamatama, memberikan besarnya energi awal dari foton, jumlah foton yang diamati (*number of histories*), dan panjangnya masing-masing daerah pada materi. Kedua, memberikan kondisi-kondisi awal dari foton saat keluar dari sumber yaitu: arah foton, faktor bobot dengan harga awal sama dengan satu, dan pencacah untuk menentukan dosis serap dimulai dengan angka 1. Ketiga, mengikuti perjalanan foton satu per satu sejak foton keluar dari sumber sampai kondisi-kondisi yang membuat foton itu tidak diperhatikan lagi. Kondisi untuk menentukan jarak bebas rata-rata menggunakan persamaan (3.3), menentukan posisi dari foton setelah mengalami interaksi menggunakan persamaan (3.5);

Selanjutnya untuk menentukan besarnya dosis serap menggunakan persamaan (3.1). Diagram Alir perhitungan Monte Carlo ditunjukkan pada Lampiran A3.

III.3.2. Tahapan Simulasi dengan DOSXYZnrc

Dalam penelitian ini tabung sinar-X tidak dilakukan pemodelan melainkan menggunakan kode SpekCalc untuk membuat file *.spektrum sebagai *input source parameter*. SpekCalc memungkinkan untuk membuat spectrum pada tegangan tabung sesuai yang dikehendaki. Spektrum sinar-X yang dibuat adalah spektrum yang dihasilkan pada energi maksimum 60 keV, 70 keV, 80 keV, dan 90 keV. Filtrasi maksimum disesuaikan dengan pesawat fluoroskopi yang diukur yaitu sebesar 2.5mmAl. Bagian yang perlu diperhatikan adalah penentuan global ECUT sebesar 0.521 MeV dan global PCUT sebesar 0.01 MeV.

Pemodelan phantom tiga dimensi pada simulasi Monte Carlo DOSXYZnrc berbentuk balok dengan ukuran 65x30x200 cm³ yang berisi udara, di dalamnya terdapat akrilik dengan ukuran 30x30 cm² dengan ketebalan yang divariasikan, dan 14 set TLD dengan 13 set TLD di posisi sumbu Z (vertikal sejajar radiolog/staf pada saat berdiri) dan 1 set TLD di permukaan akrilik. Ukuran 1 set TLD adalah 0.3x0.9x0.1 cm³. Skema phantom ditunjukkan pada Gambar 3.3. dan Lampiran A

Tahap *Define phantom* adalah menentukan dimensi masing-masing voxel pada arah sumbu X, Y, dan Z. Penentuan ukuran voxel dilakukan dengan memperhatikan tujuan simulasi yaitu menghitung dosis pada 14 titik yang

ditempati set TLD sehingga untuk mempermudah perhitungan titik-titik tersebut dimodelkan sebagai suatu voxel tersendiri. Sumbu X dengan sepanjang 65 cm dibagi menjadi 5 voxel, pada sumbu Y dibagi menjadi 3 voxel, dan sumbu Z dibagi menjadi 29 voxel. Ukuran masing-masing voxel berbeda-beda.

Gambar 3.3. Skema pengukuran dan skema model phantom

Tahap *define media* adalah menentukan media di dalam phantom yang digunakan yaitu udara, akrilik dan set TLD. Udara menggunakan AIR521ICRU, akrilik menggunakan POLYSTY521ICRU, dan set TLD (bahan LiF) menggunakan LIF521ICRU. Masing-masing voxel didefinisikan dengan jenis media yang digunakan.

Tahap *source parameter* menentukan *incident particle* dan *source type*. Incident particle dipilih photon karena yang akan mensimulasikan radiasi photon melewati model phantom. Sedangkan *source type* yang digunakan adalah ISOURCE=0 yaitu *parallel beam from the front. Source type* ini yang paling memungkinkan sesuai dengan model phantom yang dibuat. Geometri *source type* untuk *parallel beam from the front* ditunjukkan pada gambar 3.4. di bawah. Penentuan thetax, thetay, dan thetaz disesuaikan dengan metode pengukuran TLD sehingga dibuat nilai thetax=90⁰, thetay=90⁰, dan thetaz=0⁰. Nilai xinu, xinl, yinu, dan yinl ditentukan berdasarkan luas lapangan yang akan digunakan.

Pada tahap *simulation parameter* yang ditentukan adalah *number of histories* yang menunjukkan jumlah partikel yang akan berinteraksi dalam kode komputer ini. Banyaknya jumlah partikel akan mempengaruhi akurasi dan presisi hasil perhitungan. Pada simulasi Monte Carlo DOSXYZnrc ini dipilih *number of histories* sebesar 500 juta partikel.

Setelah semua tahap ditentukan/didefinisikan maka simulasi Monte Carlo DOSXYZnrc dilanjutkan dengan *compile* dan *run* untuk menjalankan simulasi. Hasil simulasi dijalankan dalam antarmuka STATDOSE untuk membuat

plotting dan melihat nilai dosis pada voxel-voxel yang dikehendaki. Selain itu hasil perhitungan dosis melalui simulasi ini dan visualisasi phantom yang dimodelkan dapat dilihat dalam antar muka DOSXY_SHOW. Nilai-nilai yang dikehendaki menjadi mudah dipilih dan diolah dengan MS Excel.

Gambar 3.4. Source type: parallel beam from the front

Variasi simulasi Monte Carlo yang dilakukan adalah sebagai berikut:

- variasi FSD (*focus skin distance*), yaitu 100 cm, 70 cm, dan 40 cm pada energi sinar-X 70 keV, ketebalan phantom 20 cm, dan luas lapangan 25x25 cm²;
- variasi luas lapangan, yaitu 15x15 cm², 20x20 cm², 25x25 cm², dan 25x25 cm² pada FSD 100 cm, energi sinar-X 70 keV, dan ketebalan phantom 20 cm;

- variasi ketebalan phantom, yaitu 15cm, 20, dan 20 cm pada FSD 100 cm, energi sinar-X 70 keV, dan luas lapangan 30x30 cm²;
- variasi tegangan tabung atau energi sinar-X, yaitu 60 kV, 70 kV, 80 kV, dan 90 kV pada FSD 100 cm, luas lapangan 30x30 cm², dan ketebalan phantom 20 cm.

Gambar 3.5. Diagram Alir Proses Simulasi

III.4. Pengolahan Data

Data hasil simulasi Monte Carlo adalah data dosis pada voxel TLD berada. Nilai dosis TLD ini dipilih dengan bantuan antarmuka STATDOSE yang selanjutnya disebut dosis TLD. Dosis yang dihasilkan adalah dosis serap (D) dengan satuan *grey*/partikel (Gy/partikel). Jadi jika dikonversi menjadi dosis ekuivalen (H) maka harus dikalikan dengan factor bobot (w_r).

H = D. w_r Sievert/partikel

Jumlah partikel yang disimulasikan adalah 5 x 10^8 , jadi H = D w_r . 5 x 10^8 Sv Faktor bobot untuk sinar-X adalah 1.

Gambar 3.6. Skala Normalisasi Fraksi Hambur, a₁ [20]

Sebagai skala normalisasi digunakan fraksi hambur (*scatter fraction*) yang dihitung dengan menganalogikan Gambar 2.3. dan Gambar 3.4. Fraksi hambur, a_1 adalah rasio antara dosis hambur (Ds) dengan dosis primer (Dp). Ds adalah dosis pada jarak 100cm dari pusat phantom. Dp adalah dosis pada permukaan phantom pada FSD (*focus-skin distance*) 100cm, juga merupakan *entrance surface doses* (ESD) dikalikan luas lapangan yang digunakan, dan digunakan sebagai titik referensi. Dan untuk menghilangkan ketergantungan pada luas lapangan Dp yang memiliki satuan dosis ekuivalen (Sv) dikonversi menjadi Sv.cm² sesuai hubungan

$$ESD \propto \frac{DAP}{field \ size} \rightarrow Dp(Sv.\ cm^2) = Dp(Sv).\ luas \ lapangan$$

Dan untuk mempermudah dalam analisa, maka fraksi hambur diberikan dalam per-satu juta $(x10^{-6})$.

Fraksi hambur
$$(a_1) = \frac{Ds.10^6}{Dp.(luas lapangan)} (10^{-6}/cm^2)$$

Universitas Indonesia

Analisis sebaran..., Adi Dradjat Noerwasana, FMIPA UI, 2010.

Dosis TLD dan ESD yang diperoleh dari simulasi maupun pengukuran dikonversi menjadi Ds maupun Dp melalui perhitungan *invers square law*.

Data hasil pengukuran dengan phantom adalah data hasil evaluasi bacaan TLD. Data hasil bacaan dengan satuan nC dikonversi menjadi dosis serap dengan mengalikan dengan faktor kalibrasi dan faktor ketergantungan energi. Dosis ekuivalen (Sievert) dikalikan faktor bobot. Dosis TLD adalah data perhitungan TLD dikurangi dengan dosis latar belakang. Perhitungan Ds, Dp, dan fraksi hambur secara analogi sama dengan pengolahan data hasil simulasi Monte Carlo pada alenia di atas.

Data hasil pengukuran dosis pada anggota badan staf fluoroskopi dihitung dan diolah menjadi dosis ekuivalen dan laju dosis ekuivalen.

BAB IV HASIL PENELITIAN

IV.1. Hasil Simulasi Monte Carlo

Model phantom dalam Simulasi Monte Carlo menyesuaikan kondisi pengukuran dimana TLD ditempatkan pada arah vertikal sejajar arah berkas utama atau pada posisi berdirinya radiolog/staf fluoroskopi.

Data hasil simulasi Monte Carlo dengan variasi panjang FSD disajikan dalam Gambar 4.1. FSD yang disimulasikan adalah untuk panjang 80 cm dan 50 cm. Radiasi hambur pada segala sudut pada FSD 80 cm lebih kecil daripada pada FSD 50 cm.

IV.1.2. Variasi Luas Lapangan Radiasi dengan Metode Monte Carlo

Variasi luas lapangan radiasi disajikan dalam Gambar 4.2. Radiasi hambur pada segala arah sudut semakin besar sejalan kenaikan luas lapangan radiasi.

Gambar 4.2. Grafik Hasil Simulasi Monte Carlo dengan Variasi Luas Lapangan

IV.1.3. Variasi Ketebalan Phantom dengan Metode Monte Carlo

Variasi ketebalan phantom disajikan dalam Gambar 4.3. Radiasi hambur pada sudut-sudut 30° - 120° semakin kecil dengan semakin tebalnya phantom, sebaliknya setelah sudut 120° hamburan pada ketebalan 25 cm cenderung semakin naik.

Gambar 4.3. Grafik Hasil Simulasi Monte Carlo dengan Variasi Ketebalan Phantom

IV.1.4. Variasi Tegangan Tabung dengan Metode Monte Carlo

Gambar 4.4. Grafik Hasil Simulasi Monte Carlo dengan Variasi Tegangan Tabung

Variasi tegangan tabung disajikan dalam Gambar 4.4. radiasi hambur pada segala sudut semakin besar seiring kenaikan tegangan. Perbedaan kenaikan tegangan yang sedikit membuat grafik terlihat agak berimpit.

IV.2. Hasil Pengukuran Dosis Radiasi Hambur

Pengukuran dilakukan pada luas lapangan dan FSD tetap sebesar 25x25cm² dan 100cm, sedangkan ketebalan phantom diukur pada 15cm dan 20cm.

Gambar 4.5. Grafik Fraksi Hambur Hasil Pengukuran dengan Phantom

Dari Gambar 4.5. di atas dapat dilihat bahwa pada berbagai arah sudut, secara umum radiasi hambur pada ketebalan phantom 20 cm lebih besar dibanding pada ketebalan phantom 20 cm.

IV.3. Perbandingan Hasil Simulasi Monte Carlo dan Pengukuran

Hasil simulasi Monte Carlo cenderung lebih kecil dibanding hasil pengukuran karena simulasi Monte Carlo yang dilakukan hanya memperhitungkan phantom sebagai media penghambur dan mengabaikan sumbersumber penghambur lain yang terdapat dalam ruang fluoroskopi, seperti dinding, lantai, meja dan pesawat fluoroskopi sendiri. Perbandingan hasilnya ditunjukkan pada Tabel 4.1. dan Gambar 4.6..

No.	Sudut	Fraksi	Hambur, a ₁ (.10	0 ⁻⁶ /cm ²)
		Pengukuran	Monte Carlo	NCRP 147
1	30°	12.15	1.83	6.39
2	40°	14.20	1.77	5.80
3	50°	10.61	1.84	5.38
4	60°	8.50	2.79	5.10
5	70°	6.88	2.83	5.07
6	80°	3.21	3.51	5.14
7	90°	5.45	3.69	5.38
8	100°	1.68	3.44	5.73
9	110°	4.45	4.36	6.18
10	120°	10.39	5.20	6.81
11	130°	10.86	5.34	7.43
12	140°	22.13	7.78	8.23
13	150°	19.49	6.36	

Tabel 4.1. Tabel Hasil Simulasi Monte Carlo, Pengukuran dan Fig. C.1. hal. 137 NCRP Report No. 147

Gambar 4.6. Grafik Hasil Simulasi Monte Carlo, Pengukuran dan Fig. C.1. hal. 137 NCRP Report No. 147

IV.4. Hasil Pengukuran Dosis Radiasi Hambur pada staf fluoroskopi

Pengukuran dosis staf dilakukan pada prosedur Myelography, Urethography, Histerosalpingografi (HSG), Oesophagus Maag Duodenum (OMD), dan Colon. Hasil pengukuran ditunjukkan pada Tabel 4.2. dan Tabel 4.3.

Tabel 4.2. dan Tabel 4.3. memperlihatkan dosis yang terukur mempunyai kecenderungan yang sama dengan pengukuran menggunakan phantom. Bagian mata cenderung memperoleh dosis lebih tinggi kemudian menurun ke bagian leher, dada, dan pinggang kemudian membesar lagi pada bagian kaki karena pengaruh hamburan balik dari permukaan lantai.

	Tinggi	jarak	Jenis	Waktu			Dosis pada bagian tubuh (mSv)					
No.	staf (cm)	staf-pasien	Pemeriksaan	(detik)	kV	mA	kaki	pinggang	da	da	leher	mata
		(cm)							luar apron	balik apron		
1	165	50	Myelography	44	42 - 71	0.2 - 1.7	-	0.01 ± 0.006	0.02 ± 0.002	0.00	0.03 ± 0.002	0.05 ± 0.002
2	167	100	Myelography	44	42 - 71	0.2 - 1.7	-	-	0.00 ± 0.004	0.00	-	-
3	152	50	Urethography	38	66 - 68	1.4 - 1.6	-	0.00	0.07 ± 0.051	0.00	0.05 ± 0.005	0.05 ± 0.004
4	167	100	Urethography	38	66 - 68	1.4 - 1.6	-	(=	0.02 ± 0.004	0.00	-	-
5	160	50	HSG	75	61 - 66	1.2 - 1.5	0.21 ± 0.037	0.12 ± 0.025	0.27 ± 0.020	0.03 ± 0.044	0.12 ± 0.024	0.07 ± 0.010
6	165	50	HSG	47	63 - 67	1.2 - 1.5	0.06 ± 0.011	0.14 ± 0.004	0.14 ± 0.015	0.03 ± 0.004	0.07 ± 0.020	0.04 ± 0.005
7	160	50	HSG	15	73 - 76	1.6 - 2.1	0.04 ± 0.020	0.03 ± 0.015	0.11 ± 0.045	0.05 ± 0.016	0.07 ± 0.021	0.06 ± 0.013
8	155	50	HSG	14	69 - 77	1.4 - 1.7	0.04 ± 0.004	0.00 ± 0.002	0.07 ± 0.068	0.00 ± 0.000	0.00 ± 0.000	0.11 ± 0.007
9	165	50	HSG	32	68 - 76	1.5 - 2.6	0.01 ± 0.006	0.03 ± 0.002	0.07 ± 0.069	0.03 ± 0.008	0.04 ± 0.023	0.00 ± 0.000
10	165	50	HSG	26	63 - 67	1.2 - 1.5	0.02 ± 0.009	0.00 ± 0.000	0.14 ± 0.137	0.01 ± 0.007	0.04 ± 0.003	0.06 ± 0.039
11	160	50	HSG	20	72 - 77	1.8 - 2.3	0.05 ± 0.001	0.03 ± 0.007	0.02 ± 0.021	0.00 ± 0.000	0.03 ± 0.003	0.09 ± 0.002
12	163	50	HSG	25	66 - 73	1.4 - 2.3	0.05 ± 0.002	0.04 ± 0.005	0.05 ± 0.002	0.04 ± 0.004	0.06 ± 0.004	0.07 ± 0.002
13	167	50	OMD	14	55 - 57	0.8 - 1.0	0.00 ± 0.018	0.01 ± 0.010	0.12 ± 0.004	0.01 ± 0.005	0.03 ± 0.010	0.07 ± 0.007
14	167	50	Colon	34	55 - 85	0.8 - 1.4	0.01 ± 0.013	0.08 ± 0.007	0.06 ± 0.035	0.03 ± 0.008	0.10 ± 0.011	0.15 ± 0.007
15	152	50	Colon	80	57 - 79	0.8 - 2.2	0.22 ± 0.00	0.21 ± 0.01	0.15 ± 0.03	0.17 ± 0.02	0.16 ± 0.00	0.14 ± 0.02

Dosis Staf Pada Beberapa Tindakan Flouroskopi

Tabel 4.2. Dosis Staf Pada Beberapa Tindakan Flouroskopi

Laju Dosis Staf P	ada Beberapa	Tindakan Flo	ouroskopi
-------------------	--------------	--------------	-----------

	Tinggi	jarak	Jenis			Laju Dosis pada bagian tubuh (mSv/jam)					
No.	staf (cm)	staf-pasien	Pemeriksaan	kV	mA	kaki	pinggang	da	da	leher	mata
		(cm)						luar apron	balik apron		
1	165	50	Myelography	42 - 71	0.2 - 1.7	- 1-	1.03 ± 0.006	1.24 ± 0.124	0.00	2.20 ± 0.171	4.23 ± 0.131
2	167	100	Myelography	42 - 71	0.2 - 1.7		_	0.17 ± 0.300	0.00	_	-
3	152	50	Urethography	66 - 68	1.4 - 1.6		0.00	6.38 ± 4.840	0.00	4.57 ± 0.478	5.05 ± 0.381
4	167	100	Urethography	66 - 68	1.4 - 1.6	-		2.09 ± 0.382	0.00	-	-
5	160	50	HSG	61 - 66	1.2 - 1.5	10.04 ± 1.782	5.65 ± 1.195	12.91 ± 0.948	1.60 ± 2.110	5.81 ± 1.147	3.28 ± 0.462
6	165	50	HSG	63 - 67	1.2 - 1.5	4.61 ± 0.850	10.38 ± 0.340	10.66 ± 1.142	2.06 ± 0.299	5.71 ± 1.542	2.75 ± 0.376
7	160	50	HSG	73 - 76	1.6 - 2.1	8.69 ± 4.711	8.19 ± 3.646	26.81 ± 10.783	11.21 ± 3.812	17.04 ± 5.154	14.02 ± 3.136
8	155	50	HSG	69 - 77	1.4 - 1.7	11.41 ± 0.994	0.40 ± 0.550	17.61 ± 0.719	0.00 ± 0.000	0.00 ± 0.000	27.12 ± 1.805
9	165	50	HSG	68 - 76	1.5 - 2.6	1.52 ± 0.702	3.84 ± 0.173	7.71 ± 0.950	3.32 ± 0.956	4.43 ± 2.640	0.00 ± 0.000
10	165	50	HSG	63 - 67	1.2 - 1.5	2.32 ± 1.240	0.00 ± 0.000	18.99 ± 2.687	0.95 ± 0.952	5.32 ± 0.458	8.36 ± 5.361
11	160	50	HSG	72 - 77	1.8 - 2.3	9.45 ± 0.234	6.07 ± 1.311	3.74 ± 0.977	0.00 ± 0.000	5.33 ± 0.629	15.74 ± 0.407
12	163	50	HSG	66 - 73	1.4 - 2.3	7.53 ± 0.002	5.86 ± 0.726	6.88 ± 0.302	6.10 ± 0.544	8.48 ± 0.512	10.39 ± 0.002
13	167	50	OMD	55 - 57	0.8 - 1.0	0.89 ± 4.668	3.42 ± 2.625	30.61 ± 1.149	2.08 ± 1.268	7.16 ± 2.602	18.82 ± 1.695
14	167	50	Colon	55 - 85	0.8 - 1.4	1.27 ± 1.327	8.57 ± 0.769	6.41 ± 3.695	3.61 ± 0.884	10.65 ± 1.120	15.46 ± 0.776
15	152	50	Colon	57 - 79	0.8 - 2.2	9.98 ± 0.224	9.41 ± 0.252	6.80 ± 1.281	7.70 ± 0.992	7.18 ± 0.223	6.43 ± 0.745

Tabel 4.3. Laju Dosis Staf Pada Beberapa Tindakan Flouroskopi

BAB V PEMBAHASAN

Dalam tindakan fluoroskopi dosis radiasi yang diterima oleh staf lebih tinggi dibanding dengan yang diterima oleh staf personil radiologi lainnya. Karena prosedur fluoroskopi mengharuskan staf berada dekat pasien di dalam ruang radiologi selama tindakan. Staf fluoroskopi akan menerima radiasi hambur dari pasiennya sendiri dan peralatan-peralatan lain yang ada dalam ruangan. Beberapa model pesawat fluoroskopi yang ada di rumah sakit memiliki tabung sinar-X dengan posisi di atas meja pasien. Posisi tabung demikian memungkinkan radiasi hambur yang mengenai staf cenderung lebih besar daripada pesawat dengan posisi tabung di bawah meja pasien. Karena tubuh bagian atas staf akan menerima hamburan dari pasien dan tidak adanya tirai timbal (Pb). Oleh karena itu analisis radiasi hambur pada model pesawat fluoroskopi ini dilakukan dengan melakukan simulasi Monte Carlo dan pengukuran.

Beberapa variasi dalam simulasi Monte Carlo dimaksudkan untuk menganalisa ketergantungan dosis hambur terhadap variabel yang divariasikan. Variabel yang divariasikan adalah FSD, luas lapangan, ketebalan phantom dan tegangan tabung. Dosis TLD didefinisikan sebagai dosis-dosis pada posisi vertikal sejajar sumbu utama berkas sinar-X dengan arah sudut-sudut 30°, 40°, 50°, 60°, 70°, 80°, 90°, 100°, 110°, 120°, 130°, 140°, dan 150°. Dp yang merupakan perkalian antara ESD dan luas lapangan yang digunakan sebagai titik referensi dalam normalisasi (Gambar 3.6.).

Dalam variasi FSD dengan metode Monte Carlo, FSD yang semakin pendek menyebabkan radiasi hambur dari phantom yang semakin besar, yang ditunjukkan dalam Gambar 4.1. Fraksi hambur tinggi pada FSD 20 cm atau pada jarak pusat tabung sinar-X dan permukaan phantom 20 cm disebabkan pada jarak yang lebih pendek, intensitas yang menumbuk phantom lebih banyak, sehingga fraksi yang akan dihamburkan menjadi lebih banyak.

Dalam variasi luas lapangan radiasi dengan metode Monte Carlo yang ditunjukkan pada Gambar 4.2, sudut >90° fraksi hambur dari phantom lebih tinggi pada luas lapangan yang lebih kecil. Efek fotolistrik menyebabkan pada luas lapangan yang lebih kecil radiasi yang diserap lebih sedikit daripada yang dihamburkan. Sebaliknya pada sudut <90° fraksi hambur dari phantom lebih tinggi pada luas lapangan yang lebih besar, karena pada luas lapangan yang lebih besar hamburan maju lebih besar daripada luas lapangan yang lebih kecil.

Dalam Gambar 4.3. memperlihatkan grafik yang hampir berimpit. Pada Apendik VII Technical Reports Series (TRS) No. 457 menyebutkan bahwa pada setelah ketebalan 15 cm untuk bahan akrilik hamburan balik (*backscatter*) mencapai tingkat jenuh. Dalam gambar tersebut, ditunjukkan untuk phantom dengan ketebalan 20 cm memberikan dosis hambur sedikit lebih besar dibanding penggunaan phantom pada ketebalan 15 cm pada segala arah sudut. Sedangkan untuk ketebalan 25 cm dosis hambur sedikit paling besar pada sudut >90°.

Pengaruh perbedaan tegangan tabung terhadap radiasi hambur dari phantom diamati dalam simulasi dengan ketebalan phantom dibuat tetap, ditunjukkan dalam Gambar 4.4. Nilai fraksi hambur dari phantom pada segala Universitas Indonesia arah sudut semakin tinggi dengan kenaikan tegangan tabung, karena pada energi radiasi untuk radiologi diagnostik hamburan semakin besar dengan kenaikan tegangan tabung.

Hasil simulasi Monte Carlo yang mengasumsikan phantom sebagai pasien menunjukkan bahwa radiasi hambur dari pasien tergantung pada luas lapangan radiasi, tebal pasien, FSD, dan tegangan tabung yang digunakan.

Sebagai persiapan pengukuran sebelum pengambilan data dimulai, dilakukan proses uji fungsi terhadap pesawat sinar-X yang digunakan. Hasil Uji fungsi ditunjukkan pada Lampiran B2. Hasil uji terhadap keakurasian *kilovoltage* diperoleh perbedaan (%error) antara kVp yang ditunjukkan pada kontrol panel dan kVp yang terukur berkisar 0.1 – 1.5 %, dan terhadap *beam quality* (HVL) diperoleh nilai HVL masih diatas HVL minimum yang dipersyaratkan dalam *guidance level* menurut AAPM report No. 74 dan EPA No. 6 [25, 26]. Uji fungsi tersebut menunjukkan pesawat dalam kondisi baik.

Hasil pengukuran pada ketebalan phantom 15 cm dan 20 cm ditunjukkan pada Gambar 4.5. Dari gambar tersebut diperlihatkan distribusi fraksi hambur pada θ >90° memiliki kecenderungan yang sama dengan distribusi hasil simulasi Monte Carlo. Akan tetapi θ <90° distribusi dosis hasil pengukuran cenderung meningkat, karena pada pengukuran selain hamburan dari pasien, terdapat tambahan dari hamburan balik dari lantai, dinding, langit-langit dan peralatan lain dalam ruangan. Sedangkan pada simulasi Monte Carlo lantai, dinding, langitlangit dan peralatan lain dalam ruangan di abaikan.

Dalam Tabel 4.1. dan Gambar 4.6 menunjukkan distribusi hamburan yang mendekati sama dengan temuan dari Trout and Kelley pada pernyataan dalam Figure C.1. halaman 137 NCRP Report No. 147. terutama untuk θ >90° [19]. Sedangkan hasil pengukuran terlihat menyimpang pada θ <90° karena kedekatannya dengan lantai mudah untuk terpengaruh dari hamburan balik dari lantai dan peralatan *image intensifier* yang berada di dekatnya. Pada sudut 30°, walaupun posisinya jauh dari tabung sinar-X, namun nilai dosis hambur tetap besar karena posisinya dekat sekali dengan lantai.

Dalam Gambar 4.6. distribusi dosis relatif besar pada sudut 150° dan 30° terutama dari hasil pengukuran dalam penelitian ini dan dalam NCRP 147. Pada sudut 150°, sinar-X energi rendah (< 100keV) dominan mengalami hamburan reyleigh dan dapat pula mengalami pantulan balik dengan tanpa kehilangan energi. Pada sudut 30° terlihat besar karena dominan adanya sinar-X yang mengalami hamburan compton dan sinar-X yang terhambur mampu melewati phantom dengan arah sudut tersebut.

Hasil pengukuran dalam Gambar 4.6. terdapat perbedaan signifikan dengan hasil simulasi Monte Carlo karena dalam pengukuran selain hamburan dari phantom, terdapat tambahan dari hamburan balik dari meja pasien, lantai, dinding, langit-langit dan peralatan lain dalam ruangan. Sedangkan dalam Metode Monte Carlo hanya memperhitungkan hamburan dari phantom dan mengabaikan peralatan-peralatan yang ada dalam ruangan tersebut.

Tabel 4.2. dan Tabel 4.3. memperlihatkan nilai dosis dan laju dosis di bagian tubuh dalam beberapa tindakan fluoroskopi. Bagian-bagian tubuh tersebut Universitas Indonesia berada pada berbagai sudut terhadap pusat phantom. Misalnya pada ketinggian staf sekitar 160 cm bagian mata pada sudut 140° dan kaki pada sudut 30°. Kedua tabel tersebut memperlihatkan dosis yang terukur mempunyai kecenderungan yang sama dengan hasil simulasi Monte Carlo. Pada Simulasi dan pengukuran sudut 140° menunjukkan fraksi hambur maksimum, sedangkan pada pengukuran pada bagian tubuh staf nilai maksimum tergantung pada ketinggian staf. Jika tinggi staf 160cm dosis tertinggi terdapat pada bagian mata, bagian mata memperoleh dosis lebih tinggi kemudian menurun ke bagian leher, dada, dan pinggang kemudian membesar lagi pada bagian kaki karena pengaruh hamburan balik dari permukaan lantai.

BAB VI KESIMPULAN DAN SARAN

VI.1. Kesimpulan

Dari penelitian ini, dapat diambil kesimpulan sebagai berikut :

- 1. Hasil simulasi Monte Carlo menunjukkan nilai FSD yang semakin pendek menyebabkan radiasi hambur dari pasien semakin besar;
- 2. Hasil simulasi Monte Carlo menunjukkan pada $\theta > 90^\circ$ radiasi hambur dari pasien meningkat dengan penurunan luas lapangan radiasi;
- Hasil simulasi Monte Carlo dan pengukuran menunjukkan pada θ>90°, radiasi hambur dari pasien meningkat dengan kenaikan ketebalan pasien;
- Berdasarkan simulasi Monte Carlo arah sudut 140° menerima dosis paling tinggi;
- Ketinggian staf mempengaruhi besarnya dosis hambur yang diterima masing-masing bagian tubuhnya;
- Staf yang memiliki tinggi badan 160cm diperkirakan menerima dosis hambur tertinggi pada bagian mata.

VI.2. Saran

 Pada penelitian selanjutnya sebaiknya pengukuran radiasi hambur dari pasien tidak hanya pada posisi tertentu saja, dapat juga dilakukan pengukuran melingkar sekitar pesawat fluoroskopi;

2. Perlu alat ukur yang mampu menerima radiasi dari arah tertentu saja untuk melakukan pengukuran radiasi hambur dari pasien yang lebih teliti.

DAFTAR PUSTAKA

- Wagner L. K., R. L. Tanner, W. R. Hendee (moderator), States should develop regulations to require monitoring of radiation dosis during interventional fluoroscopy, Med. Phys. Vol. 28(10), 2001, 1999 – 2001.
- 2. Endang Murniati, Rusmanto, Evin Yuliati, *Kajian Potensi Radiasi di Fasilitas Radiologi Intervensional*, P2STPFRZR-BAPETEN, 2006.
- 3. Djarwani S. Soejoko, *Proteksi Radiasi pada Intervensi Kardiovaskular*, Departemen Fisika FMIPA UI, 2008.
- 4. ICRP Publication 60: *Recommendation of the International Commission on Radiological Protection*, Pergamon Press, 1990.
- IAEA Training Material on Radiation Protection in Diagnostic and Interventional Radiology, Part 16.2: Optimization of Protection in Fluoroscopy, 2003.
- Briemeister, J.F., MCNP TM A General Monte Carlo N Particle Transport Code, Manual Program, Version 4B, Los Alamos Laboratory(1997).
- IAEA Safety Series No. 115, International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources, International Atomic Energy Agency, Vienna, 1996.
- KNOLL, G.F., *Radiation Detection And Measurement*, John Wiley And Sons, New York. (1988), 50-57.
- TSOULFANIDIS, N., Measurement And Detection of Radiation, Hemisphere Publishing Corporation, New York. (1983), 48–50, 141-154.
- 10. I. Kawrakow, E. Mainegra-Hing and D. W. O. Rogers, *EGSnrcMP: the multiplatform environment for EGSnrc*, National Research Council of Canada Ottawa, 2006
- B. Walters, I. Kawrakow, and D. W. O. Rogers, *DOSXYZnrc User Manual*, National Research Council of Canada Ottawa, 2009;
- H.C.E. McGowan, B.A. Faddegon and C-M Ma, STATDOSE for 3D dose distributions, National Research Council of Canada Ottawa, 2007;
- 13. Florentina Baluti, *Monte Carlo Simulations of Chemical Vapour Deposition Diamond Detectors*, University of Canterbury Christchurch, New Zealand, 2009

- G Poludniowski, G Landry, F DeBlois, P M Evans and F Verhaegen SpekCalc: a program to calculate photon spectra from tungsten anode x-ray tubes, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, UK, 2009;
- Sarini Arifah, Analisis Pengaruh Spin Elektron Terhadap Dosis Relatif Menggunakan Simulasi Monte Carlo, Dept. Fisika, Institut Teknologi Bandung, 2005
- Pusat Pendidikan dan Pelatihan BATAN, Statistik Pencacahan Radiasi, Jakarta, 2009;
- Freddy Haryanto, Metode Monte Carlo untuk Penentuan Faktor Buildup Dosis dan Persentasi Dosis Kedalaman dari Sumber Radiasi Co⁶⁰, Fakultas Pascasarjana, Institut Teknologi Bandung, 1996;
- I. Kawrakow, *The dose visualization tool dosxyz show*, Ionizing Radiation Standards, National Research Council of Canada Ottawa, 2007;
- NCRP REPORT No. 147, Structural Shielding Design for Medical X-Ray Imaging Facilities, National Council on Radiation Protection and Measurement, 2004;
- Douglas J. Simpkin, Ph.D., *Diagnostic Shielding Update Here At Last!*, Aurora HealthCare-St. Luke's Med Ctr. Milwaukee, www.aapm.org/meetings/04AM/pdf/14-2347-98919.pdf;
- 21. Technical Reports Series (TRS) No. 457, *Dosimetry in Diagnostic Radiology:* An International Code of Practice, International Atomic Energy Agency, 2007;
- Jerrold T. Bushberg, J. Anthony Seibert, Edwin M. Leidholdt, JR., John M. Boone, *The Essential Physics of Medical Imaging, Second Edition*, Lippincott Williams and Wilkins, Philadelphia, 2002: 231-232;
- 23. Beth A. Scheuler, *The AAPM/RSNA Physics Tutorial for Residents General Overview of Fluoroscopic Imaging*, RadioGraphics 2000;20: 1115 – 1126
- 24. The Encyclopaedia of Medical Imaging, Volume I, Physics, Techniques, and Procedures, *Scattered Radiation*, Isis Medical Media, The Nicer Institute, 1998;
- AAPM REPORT NO. 74, "Quality Control in Diagnostic Radiology", American Association of Physicists in Medicine by Medical Physics Publishing, July 2002;
- Radiation Guideline No. 6, *Fluoroscopy &Radiography*, NSW Environment Protection Authority, Sydney, 2004.

Lampiran A1 Desain Pengukuran dan Pemodelan Phantom dalam Simulasi

Lampiran A2 Diagram Alir Perhitungan dengan Metode Monte Carlo

Lampiran B1 Spesifikasi Teknis Pesawat Sinar
--

1	Nominal X-ray tube voltage Symmetrical with respect to ground, 6- and 12- pulse equivalent or DC	kV	1	50	
2	Anode material Rhenium alloyed tungsten compound anode: RT / TZM				
3	Location of focal spots: Superimposed		2		
4	Nominal focal spot values, superimposed (IEC 60336)		0.6 ***	1.2 ***	
5	Nominal anode input power, based on 0.1 s (IEC 60613) 20 W equivalent anode input power 250 W equivalent anode input power	kW	21 17	60 50	
6	Max. anode heat content	kJ kHU	23	20 00	
7	Max. continuous heat dissipation Rotating anode Non-rotating anode	w	450 350		
8	Max. anode heat dissipation (Not for continuous operation)	W HU/min	105	1300 5300	
9	Anode disk diameter	mm		90	
10	Anode angle	0		13	
11	Max. usable X-ray field in 100 cm SID	cm	43	x 43	
12	Nominal acceleration time	s	0.4 -	1.2 *	
13	Nominal braking time	S.	min.	1.0 *	
14	Nominal anode rotation speed	RPM	3000	/ 3600	
15	Momentum of inertia of rotor with anode	g x cm ²	6150 counter-clockwise		
16	Sense of anode rotation (Seen from cathode side)	_			
17	Filament diameter	μm	250		
18	Max. filament current CP generator OPTIMUS/Velara/Iconia generator	A *	5.8 ** 6.3 **	6.4 ** 6.7 **	
19	Max. filament voltage CP generator OPTIMUS/Velara/Iconia generator	v	9.40 ** 10.8 **	13.2 ** 14.5 **	
20	Weight of tube	kg	2.	25	
	1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20	Nominal X-ray tube voltage Symmetrical with respect to ground, 6- and 12- pulse equivalent or DC Anode material Rhenium alloyed tungsten compound anode: RT / TZM Location of focal spots: Superimposed Nominal focal spot values, superimposed (IEC 60336) Nominal anode input power, based on 0.1 s (IEC 60613) 20 W equivalent anode input power 250 W equivalent anode 250 W equivalent voltage 250 W equivalent voltage 250 W equit of tube	Nominal X-ray tube voltage kV Symmetrical with respect to ground, kV Anode material kV Rhenium alloyed tungsten compound anode: RT / TZM Location of focal spots: Superimposed Nominal focal spot values, superimposed Nominal anode input power, based on 0.1 s kW IEC 60336) 20 W equivalent anode input power Nominal anode input power, based on 0.1 s kW Max. anode heat content kJ Max. continuous heat dissipation W Max. anode heat dissipation W Max. anode heat dissipation W Nominal acceleration time s None disk diameter mm Anode disk diameter mm Anode angle ° Nominal anode rotation speed RPM Nominal anode rotation speed RPM Nominal anode rotation speed Nominal anode rotation speed Nominal anode rotation speed Nominal anode rotation speed Momentum of Inertia of rotor with anode g x cm ² Sense	1 Nominal X-ray tube voltage Symmetrical with respect to ground, 6- and 12- pulse equivalent or DC kV 1 2 Anode material Rhenium alloyed tungsten compound anode: RT / TZM 3 Location of focal spots: Superimposed 4 Nominal focal spot values, superimposed 5 IEC 60336) 0.6 *** 0.6 *** 6 Max. anode input power, based on 0.1 s (IEC 60613) kW 20 W equivalent anode input power 250 W equivalent anode input power kJ 7 Max. continuous heat dissipation (Not for continuous operation) Rotating anode Non-rotating anode W 8 Max. anode heat dissipation (Not for continuous operation) W 43 10 Anode angle ° ? 11 Max. usable X-ray field in 100 cm SID cm 43 12 Nominal acceleration time s 0.4 13 Nominal anode rotation (Seen from cathode side) 61 14 Max. filament current (Seen from cathode side) CP generator (Seen from cathode side) 16 Sense of anode rotation (Seen from cathode side) CP generator (A <td< td=""></td<>	

*) Depending on rotor control unit.

**) Values are for adaptation and also depending on generator control.

***) For the determination of the nominal focal spot values special arrangements according to IEC 60336 may have been used.

A4 08-06-10 AT R0_1750_R0T_360_21_1__21_4.fm

RO 1750 ROT 360 © 2004 Koninklijke Phillips Electronics N.V. ALL RIGHTS RESERVED

(08.0)

X-ray tube Z-1.1

Technical data of

1	$\begin{array}{llllllllllllllllllllllllllllllllllll$	w	250 350 N/A
2	Max. working pressure	kPa	N/A
3	Max. oil temperature	°C	+ 85
4	Overtemperature protection	The (swit	ermal safety switch tch opens at 85 °C)
5	Max. heat content (T _{amb.} ≤ 25 °C)	kJ kHU	1260 1700
6	Total filtration (min.) (IEC 60522)	mm Al kV	2.5 75
7	Radiation leakage technique factors (IEC 60601-1-3)	kV / kW mAs/h	150 / 0.35 8400
8	Distance: Focus <> Collimator coupling flange	mm inch	64 ± 2 2.52 ± 0.08
9	Stator data, phase/phase	Se table	ee chapter 5.2.3, "Stator connection".
10	Safety classification (IEC 60601-1)		Class 1, type B
11	Ambient temperature in operation Minimum Maximum	°C	+ 10 + 40 *
12	Temperature limits for storage and transportation Minimum Maximum	°C	- 25 + 70
13	Weight of X-ray tube assembly	kg	approx. 23
14	HV cable connector (IEC 60526)		03
15	Max. accelerations per minute		2

Lampiran B1 Spesifikasi Teknis Pesawat Sinar-X

*) With reduced heat dissipation.

A4 U1-U1-U0 A1 R0_1750_R0T_360_22_1__22_4.fm

> RO 1750 ROT 360 2004 Koninklijke Philips Electronics N.V. ALL RIGHTS RESERVED

(07.0)

Technical data of X–ray tube assembly

Z-2.1

Lampiran B1 Spesifikasi Teknis Pesawat Sinar-X

Philips Medical Systems DMC GmbH Röntgenstraße 24 22335 Hamburg / Germany X - RAY TUBE HOUSING ASSEMBLY R0 1750 ROT 360 REF/Model 9890 000 86111 SN 26994 A 227148 TUBE REF/Model 9890 000 85271 SN 227148 PERMANENT FILTRATION 2,5 AV 75 Image: Strategy of the strat	PRIItps Medical Systems DMC GmbH Röntgenstraße 24 22335 Hamburg / Germany X – RAY TUBE HOUSING ASSEMBLY R0 1750 ROT 360 REF/Model 9890 000 86111 SN 26994 A 227148 TUBE REF/Model 9890 000 85271 SN 227148 PERMANENT FILTRATION 2,5 AV 75 \blacksquare 0,6 IEC 60336 THIS PRODUCT COMPLIES WITH THE DHHS REQUIREMENT OF 21 CFR SUB – CHAPTER J CC 0123 MANUFACTURED: 2009 – 11 MANUFACTURED: 2009 – 11	Prillips Medical Systems DMC GmbH Röntgenstraße 24 22335 Hamburg / Germany X - RAY TUBE HOUSING ASSEMBLY 2335 Hamburg / Germany X - RAY TUBE HOUSING ASSEMBLY BSN R0 1750 ROT 360 REF/Model 9890 000 86111 SN 26994 A 227148 TUBE REF/Model 9890 000 85271 SN 227148 PERMANENT FILTRATION 2,5 AV 75 NOMINAL VOLTAGE 0,6 IEC 60336 THIS PRODUCT COMPLIES WITH THE DHHS REQUIREMENT OF 21 CFR SUB - CHAPTER J SS LR 37323 C C 0123 MANUFACTURED: 2009 - 11 2009 - 11	PHILIPS	
X - RAY TUBE HOUSING ASSEMBLY R0 1750 ROT 360 REF/Model 9890 000 86111 SN 26994 A 227148 TUBE REF/Model 9890 000 85271 SN 227148 PERMANENT FILTRATION 2,5 AV 75 III 0,6 IEC 60336 THIS PRODUCT COMPLIES WITH THE DHHS REQUIREMENT OF 21 CFR SUB- CHAPTER J IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	X - RAY TUBE HOUSING ASSEMBLY R0 1750 ROT 360 REF/Model 9890 000 86111 SN 26994 A 227148 TUBE REF/Model 9890 000 85271 SN 227148 PERMANENT FILTRATION 2,5 AV 75 Image: 0,6 IEC 60336 SN 227148 PERMANENT FILTRATION 2,5 AV 75 Image: 0,6 IEC 60336 THIS PRODUCT COMPLIES WITH THE DHHS REQUIREMENT OF 21 CFR SUB- CHAPTER J Image: Open and the state of the stat	X - RAY TUBE HOUSING ASSEMBLY R0 1750 ROT 360 REF/Model 9890 000 86111 SN 26994 A 227148 TUBE REF/Model 9890 000 85271 SN 227148 PERMANENT FILTRATION 2,5 AV 75 Image: SN 1,2 IEC 60336 THIS PRODUCT COMPLIES WITH THE DHHS REQUIREMENT 0f 21 CFR SUB-CHAPTER J Image: SN Image: SN Image: SN <t< th=""><th>Röntgenstraße 24 22335 Hamburg / Ge</th><th>terns DMC GmbH srmany</th></t<>	Röntgenstraße 24 22335 Hamburg / Ge	terns DMC GmbH srmany
PERMANENT FILTRATION 2,5 AV 75 ■ 0,6 IEC 60336 NOMINAL VOLTAGE 150 kV ■ 1,2 IEC 60336 THIS PRODUCT COMPLIES WITH THE DHHS REQUIREMENT OF 21 CFR SUB-CHAPTER J OF 21 CFR SUB-CHAPTER J	PERMANENT FILTRATION 2,5 AV 75 ■ 0,6 IEC 60336 NOMINAL VOLTAGE 150 KV ■ 1,2 IEC 60336 THIS PRODUCT COMPLIES WITH THE DHHS REQUIREMENT OF 21 CFR SUB-CHAPTER J	PERMANENT FILTRATION 2,5 AV 75 0,6 IEC 60336 1,2 IEC 60336 THIS PRODUCT COMPLIES WITH THE DHHS REQUIREMENT OF 21 CFR SUB-CHAPTER J COP_0L R 37323 C MANUFACTURED: 2009-11 MANUFACTURED: 7	X - RAY TUBE HOUSING ASSEMBLY REF/Model 9890 000 86111 SN 26994 A 227148 TUBE REF/Model 9890 000 85271 SN 227148	R0 1750 ROT 360
THIS PRODUCT COMPLIES WITH THE DHHS REQUIREMENT OF 21 CFR SUB-CHAPTER J US US LR 37323 C US US MANUFACTURED: 2009-11	THIS PRODUCT COMPLIES WITH THE DHHS REQUIREMENT OF 21 CFR SUB-CHAPTER J CC US LR 37323 C C C 0123 MANUFACTURED: 2009-11 2009-11	THIS PRODUCT COMPLIES WITH THE DHHS REQUIREMENT OF 21 CFR SUB-CHAPTER J CC us LR 37323 C C C ort23 MANUFACTURED: 2009 - 11 Y	PERMANENT FILTRATION 2,5 AV 75 Nominal voltage 150 kv	■ 0,6 IEC 60336 ■ 1,2 IEC 60336
			THIS PRODUCT COMPLIES WITH TH OF 21 CFR SUB-CHAPT	HE DHHS REQUIREMENT TER J
			THIS PRODUCT COMPLIES WITH TH OF 21 CFR SUB-CHAPT CODE LR 37323 C US MANUFACTU 2009-11 7	HE DHHS REQUIREMENT TER J URED:

Lampiran B2 Data Uji Fungsi Pesawat Sinar-X

Source to image distance : 115 cm Detektor : Unfors

Accuracy of Kilovoltage

ATENUATOR	SET kVp	kVp MEASURE	% ERROR	HVL
cm				
15	64	63.67	-0.5	2.45
18	68	68.32	0.5	2.6
20	75	75.41	0.5	2.88
23	79	80.15	1.5	3.08
25	86	85.92	-0.1	3.3

ESD (Entrance Surface Dose)

FIELD SIZE (cm)	kVp	mA	ESD (mGy/min)
10 x 10	73	1.9	9.8
15 x 15	74	1.9	10.29
20 x 20	73	1.8	9.964

EPA GUIDANCE LEVEL :

		FIELD SIZE ESD (mGy/min)	
EPA GUIDANCE LEVEL :	%ERROR < 5%		
		> 17 <= 17	
EPA GUIDANCE LEVEL :	kVp Min. HVL	<= 17 <= 25	
	60 1.8		
	70 2.1		
	80 2.3		
	90 2.5		

No.	Sudut	Dosis T	LD (µSv)	Ds (µSv)	Dp (µS	Sv.cm ²)	Fraksi Hambu	$r, a_1 (.10^{-6}/cm^2)$
	θ	Phantom 15cm	Phantom 20cm	Phantom 15cm	Phantom 20cm	Phantom 15cm	Phantom 20cm	Phantom 15cm	Phantom 20cm
1	30°	50.18	70.15	43.95	58.70	2.60E+06	4.83E+06	16.94	12.15
2	40°	100.87	138.40	52.58	68.63	2.60E+06	4.83E+06	20.26	14.20
3	50°	110.30	145.68	40.67	51.30	2.60E+06	4.83E+06	15.67	10.61
4	60°	41.08	143.79	12.15	41.07	2.60E+06	4.83E+06	4.68	8.50
5	70°	57.38	129.45	15.00	33.23	2.60E+06	4.83E+06	5.78	6.88
6	80°	5 <mark>2.44</mark>	62.07	13.12	15.53	2.60E+06	4.83E+06	5.06	3.21
7	90°	38.47	101.31	9.83	26.34	2.60E+06	4.83E+06	3.79	5.45
8	100°	108.77	32.46	27.21	8.12	2.60E+06	4.83E+06	10.49	1.68
9	110°	86.23	83.77	22.54	21.50	2.60E+06	4.83E+06	8.69	4.45
10	120°	65.90	175.82	19.49	50.21	2.60E+06	4.83E+06	7.51	10.39
11	130°	61.93	149.02	22.83	52.47	2.60E+06	4.83E+06	8.80	10.86
12	140°	83.79	215.68	43.68	106.95	2.60E+06	4.83E+06	16.83	22.13
13	150°	100.14	112.56	87.69	94.19	2.60E+06	4.83E+06	33.79	19.49

Lampiran C1 Data Pengukuran Dosis Hambur

Lampiran C2 Hasil Pengukuran Dosis Staf

	Tinggi	jarak	Jenis	Waktu			Dosis pada bagian tubuh (mSv)								
No.	staf (cm)	staf-pasien	Pemeriksaan	(detik)	kV	mA	kaki	pinggang	da	da	leher	mata			
		(cm)							luar apron	balik apron					
1	165	50	Myelography	44	42 - 71	0.2 - 1.7		0.01 ± 0.006	0.02 ± 0.002	0.00	0.03 ± 0.002	0.05 ± 0.002			
2	167	100	Myelography	44	42 - 71	0.2 - 1.7		-	0.00 ± 0.004	0.00	-	-			
3	152	50	Urethography	38	66 - 68	1.4 - 1.6	1	0.00	0.07 ± 0.051	0.00	0.05 ± 0.005	0.05 ± 0.004			
4	167	100	Urethography	38	66 - 68	1.4 - 1.6			0.02 ± 0.004	0.00	-	-			
5	160	50	HSG	75	61 - 66	1.2 - 1.5	0.21 ± 0.037	0.12 ± 0.025	0.27 ± 0.020	0.03 ± 0.044	0.12 ± 0.024	0.07 ± 0.010			
6	165	50	HSG	47	63 - 67	1.2 - 1.5	0.06 ± 0.011	0.14 ± 0.004	0.14 ± 0.015	0.03 ± 0.004	0.07 ± 0.020	0.04 ± 0.005			
7	160	50	HSG	15	73 - 76	1.6 - 2.1	0.04 ± 0.020	0.03 ± 0.015	0.11 ± 0.045	0.05 ± 0.016	0.07 ± 0.021	0.06 ± 0.013			
8	155	50	HSG	14	69 - 77	1.4 - 1.7	0.04 ± 0.004	0.00 ± 0.002	0.07 ± 0.068	0.00 ± 0.000	0.00 ± 0.000	0.11 ± 0.007			
9	165	50	HSG	32	68 - 76	1.5 - 2.6	0.01 ± 0.006	0.03 ± 0.002	0.07 ± 0.069	0.03 ± 0.008	0.04 ± 0.023	0.00 ± 0.000			
10	165	50	HSG	26	63 - 67	1.2 - 1.5	0.02 ± 0.009	0.00 ± 0.000	0.14 ± 0.137	0.01 ± 0.007	0.04 ± 0.003	0.06 ± 0.039			
11	160	50	HSG	20	72 - 77	1.8 - 2.3	0.05 ± 0.001	0.03 ± 0.007	0.02 ± 0.021	0.00 ± 0.000	0.03 ± 0.003	0.09 ± 0.002			
12	163	50	HSG	25	66 - 73	1.4 - 2.3	0.05 ± 0.002	0.04 ± 0.005	0.05 ± 0.002	0.04 ± 0.004	0.06 ± 0.004	0.07 ± 0.002			
13	167	50	OMD	14	55 - 57	0.8 - 1.0	0.00 ± 0.018	0.01 ± 0.010	0.12 ± 0.004	0.01 ± 0.005	0.03 ± 0.010	0.07 ± 0.007			
14	167	50	Colon	34	55 - 85	0.8 - 1.4	0.01 ± 0.013	0.08 ± 0.007	0.06 ± 0.035	0.03 ± 0.008	0.10 ± 0.011	0.15 ± 0.007			
15	152	50	Colon	80	57 - 79	0.8 - 2.2	0.22 ± 0.00	0.21 ± 0.01	0.15 ± 0.03	0.17 ± 0.02	0.16 ± 0.00	0.14 ± 0.02			

Dosis Staf Pada Beberapa Tindakan Flouroskopi

Lampiran C3 Hasil Pengukuran Laju Dosis Staf

	Tinggi	jarak	Jenis			Laju Dosis pada bagian tubuh (mSv/jam)									
No.	staf (cm)	staf-pasien	Pemeriksaan	kV	mA	kaki	pinggang	da	da	leher	mata				
		(cm)					-	luar apron	balik apron						
1	165	50	Myelography	42 - 71	0.2 - 1.7	-	1.03 ± 0.006	1.24 ± 0.124	0.00	2.20 ± 0.171	4.23 ± 0.131				
2	167	100	Myelography	42 - 71	0.2 - 1.7			0.17 ± 0.300	0.00	-	=				
3	152	50	Urethography	66 - 68	1.4 - 1.6	-	0.00	6.38 ± 4.840	0.00	4.57 ± 0.478	5.05 ± 0.381				
4	167	100	Urethography	66 - 68	1.4 - 1.6	_		2.09 ± 0.382	0.00	-					
5	160	50	HSG	61 - 66	1.2 - 1.5	10.04 ± 1.782	5.65 ± 1.195	12.91 ± 0.948	1.60 ± 2.110	5.81 ± 1.147	3.28 ± 0.462				
6	165	50	HSG	63 - 67	1.2 - 1.5	4.61 ± 0.850	10.38 ± 0.340	10.66 ± 1.142	2.06 ± 0.299	5.71 ± 1.542	2.75 ± 0.376				
7	160	50	HSG	73 - 76	1.6 - 2.1	8.69 ± 4.711	8.19 ± 3.646	26.81 ± 10.783	11.21 ± 3.812	17.04 ± 5.154	14.02 ± 3.136				
8	155	50	HSG	69 - 77	1.4 - 1.7	11.41 ± 0.994	0.40 ± 0.550	17.61 ± 0.719	0.00 ± 0.000	0.00 ± 0.000	27.12 ± 1.805				
9	165	50	HSG	68 - 76	1.5 - 2.6	1.52 ± 0.702	3.84 ± 0.173	7.71 ± 0.950	3.32 ± 0.956	4.43 ± 2.640	0.00 ± 0.000				
10	165	50	HSG	63 - 67	1.2 - 1.5	2.32 ± 1.240	0.00 ± 0.000	18.99 ± 2.687	0.95 ± 0.952	5.32 ± 0.458	8.36 ± 5.361				
11	160	50	HSG	72 - 77	1.8 - 2.3	9.45 ± 0.234	6.07 ± 1.311	3.74 ± 0.977	0.00 ± 0.000	5.33 ± 0.629	15.74 ± 0.407				
12	163	50	HSG	66 - 73	1.4 - 2.3	7.53 ± 0.002	5.86 ± 0.726	6.88 ± 0.302	6.10 ± 0.544	8.48 ± 0.512	10.39 ± 0.002				
13	167	50	OMD	55 - 57	0.8 - 1.0	0.89 ± 4.668	3.42 ± 2.625	30.61 ± 1.149	2.08 ± 1.268	7.16 ± 2.602	18.82 ± 1.695				
14	167	50	Colon	55 - 85	0.8 - 1.4	1.27 ± 1.327	8.57 ± 0.769	6.41 ± 3.695	3.61 ± 0.884	10.65 ± 1.120	15.46 ± 0.776				
15	152	50	Colon	57 - 79	0.8 - 2.2	9.98 ± 0.224	9.41 ± 0.252	6.80 ± 1.281	7.70 ± 0.992	7.18 ± 0.223	6.43 ± 0.745				

Laju Dosis Staf Pada Beberapa Tindakan Flouroskopi

No.	Sudut	Dosis TL	D (µSv)	Ds (JSV)	Dp (µS	v.cm ²)	a ₁ (.10 ⁻⁶ /cm ²)		
	θ	FSD80	FSD50	FSD80	FSD50	FSD80	FSD50	FSD80	FSD50	
1	30°	0.55	0.31	0.46	0.26	3.09E+05	1.22E+05	1.49	2.15	
2	40°	0.60	0.68	0.30	0.34	3.09E+05	1.22E+05	0.96	2.76	
3	50°	1.12	0.76	0.39	0.27	3.09E+05	1.22E+05	1.27	2.20	
4	60°	1.23	1.15	0.35	0.33	3.09E+05	1.22E+05	1.13	2.70	
5	70°	1.55	1.66	0.40	0.43	3.09E+05	1.22E+05	1.29	3.49	
6	80°	1.91	2.67	0.48	0.67	3.09E+05	1.22E+05	1.54	5.46	
7	90°	2.11	1.65	0.55	0.43	3.09E+05	1.22E+05	1.77	3.51	
8	100°	1.93	1.95	0.48	0.49	3.09E+05	1.22E+05	1.56	4.00	
9	110°	2.85	3.20	0.73	0.82	3.09E+05	1.22E+05	2.37	6.73	
10	120°	2.93	3.69	0.84	1.05	3.09E+05	1.22E+05	2.71	8.63	

Lampiran D1 Tabel Hasil Simulasi Monte Carlo dengan Variasi FSD

No.	Sudut	[Dosis TI	LD (µSv	')		Ds (µSv)			Dp (µS	Sv.cm ²)	Fraksi Hambur, a ₁ (.10 ⁻⁶ /cm ²)				
	θ	15x15	20x20	25x25	30x30	15x15	20x20	25x25	30x30	15x15	20x20	25x25	30x 30	15x15	20x20	25x25	30x30
1	30°	0.19	0.00	0.55	0.67	0.16	0.00	0.46	0.56	7.28E+04	1.34E+05	2.15E+05	3.06E+05	2.24	0.00	2.15	1.83
2	40°	0.11	0.45	0.60	1.09	0.05	0.22	0.30	0.54	7.28E+04	1.34E+05	2.15E+05	3.06E+05	0.73	1.65	1.39	1.77
3	50°	0.23	0.55	1.12	1.60	0.08	0.19	0.39	0.56	7.28E+04	1.34E+05	2.15E+05	3.06E+05	1.13	1.45	1.83	1.84
4	60°	0.27	0.64	1.23	2.99	0.08	0.18	0.35	0.85	7.28E+04	1.34E+05	2.15E+05	3.06E+05	1.05	1.36	1.63	2.79
5	70°	0.37	0.63	1.55	3.37	0.09	0.16	0.40	0.86	7.28E+04	1.34E+05	2.15E+05	3.06E+05	1.29	1.21	1.86	2.83
6	80°	0.37	1.24	1.91	4.29	0.09	0.31	0.48	1.07	7.28E+04	1.34E+05	2.15E+05	3.06E+05	1.27	2.31	2.22	3.51
7	90°	0.56	0.89	2.11	4.33	0.14	0.23	0.55	1.13	7.28E+04	1.34E+05	2.15E+05	3.06E+05	1.98	1.72	2.55	3.69
8	100°	0.68	0.92	1.93	4.20	0.17	0.23	0.48	1.05	7.28E+04	1.34E+05	2.15E+05	3.06E+05	2.34	1.71	2.25	3.44
9	110°	0.88	1.79	2.85	5.19	0.23	0.46	0.73	1.33	7.28E+04	1.34E+05	2.15E+05	3.06E+05	3.12	3.43	3.41	4.36
10	120°	1.18	2.53	2.93	5.56	0.34	0.72	0.84	1.59	7.28E+04	1.34E+05	2.15E+05	3.06E+05	4.62	5.39	3.90	5.20
11	130°	1.40	2.44	3.64	4.64	0.49	0.86	1.28	1.63	7.28E+04	1.34E+05	2.15E+05	3.06E+05	6.76	6.41	5.97	5.34
12	140°	1.08	2.08	3.25	4.79	0.53	1.03	1.61	2.38	7.28E+04	1.34E+05	2.15E+05	3.06E+05	7.33	7.68	7.51	7.78
13	150°	1.02	1.46	1.67	2.32	0.85	1.23	1.39	1.94	7.28E+04	1.34E+05	2.15E+05	3.06E+05	11.71	9.15	6.49	6.36

Lampiran D2 Tabel Hasil Simulasi Monte Carlo dengan Variasi Lapangan Radiasi
No.	Sudut	Dos	is TLD (uSv)	Ds (µSv)			Dp (µSv.cm ²)			a ₁ (.10 ⁻⁶ /cm ²)		
	θ	15cm	20cm	25cm	15cm	20cm	25cm	15cm	20cm	25cm	15cm	20cm	25cm
1	30°	0.90	0.67	0.29	0.79	0.56	0.23	537.90	530.65	537.85	2.27	1.83	0.85
2	40°	1.54	1.09	0.92	0.80	0.54	0.43	537.90	530.65	537.85	2.29	1.77	1.59
3	50°	1.58	1.60	1.42	0.58	0.56	0.48	537.90	530.65	537.85	1.67	1.84	1.75
4	60°	2.75	2.99	1.45	0.81	0.85	0.40	537.90	530.65	537.85	2.32	2.79	1.47
5	70°	3.45	3.37	2.69	0.90	0.86	0.68	537.90	530.65	537.85	2.58	2.83	2.51
6	80°	3.62	4.29	3.41	0.90	1.07	0.86	537.90	530.65	537.85	2.59	3.51	3.15
7	90°	3.72	4.33	3.93	0.95	1.13	1.04	537.90	530.65	537.85	2.72	3.68	3.83
8	100°	4.01	4.20	3.94	1.00	1.05	0.99	537.90	530.65	537.85	2.87	3.44	3.64
9	110°	4.43	5.19	3.65	1.16	1.33	0.92	537.90	530.65	537.85	3.31	4.36	3.40
10	120°	5.83	5.56	5.54	1.72	1.59	1.53	537.90	530.65	537.85	4.92	5.19	5.63
11	130°	5.11	4.64	5.27	1.89	1.63	1.77	537.90	530.65	537.85	5.39	5.34	6.51
12	140°	3.17	4.79	5.32	1.65	2.38	2.51	537.90	530.65	537.85	4.73	7.77	9.21
13	150°	3.06	2.32	3.01	2.68	1.94	2.40	537.90	530.65	537.85	7.66	6.36	8.82

Lampiran D3 Tabel Hasil Simulasi Monte Carlo dengan Ketebalan Phantom

No.	Sudut	Dosis TLD (µSv)		Ds (µSv)				Dp (µSv.cm ²)			Fraksi Hambur, a1 (.10 ⁻⁶ /cm		⁻⁶ /cm ²)				
	θ	60 kV	70 kV	80 kV	90 kV	60 kV	70 kV	80 kV	90 kV	60 kV	70 kV	80 kV	90 kV	60 kV	70 kV	80 kV	90 kV
1	30°	0.46	0.67	0.77	0.90	0.38	0.56	0.65	0.76	589.00	530.50	500.55	469.02	1.13	1.83	2.24	2.80
2	40°	0.86	1.09	0.76	1.37	0.42	0.54	0.38	0.68	589.00	530.50	500.55	469.02	1.25	1.77	1.31	2.52
3	50°	1.36	1.60	1.33	1.36	0.48	0.56	0.47	0.48	589.00	530.50	500.55	469.02	1.41	1.84	1.63	1.77
4	60°	2.62	2.99	2.43	2.28	0.75	0.85	0.69	0.65	589.00	530.50	500.55	469.02	2.21	2.79	2.41	2.41
5	70°	3.21	3.37	3.41	3.12	0.82	0.86	0.87	0.80	589.00	530.50	500.55	469.02	2.43	2.83	3.03	2.96
6	80°	3.96	4.29	4.47	3.08	0.99	1.07	1.12	0.77	589.00	530.50	500.55	469.02	2.92	3.51	3.88	2.85
7	90°	3.95	4.33	3.48	4.07	1.03	1.13	0.91	1.06	589.00	530.50	500.55	469.02	3.03	3.69	3.14	3.91
8	100°	4.13	4.20	4.13	4.27	1.03	1.05	1.03	1.07	589.00	530.50	500.55	469.02	3.05	3.44	3.58	3.95
9	110°	5.66	5.19	4.80	5.33	1.45	1.33	1.23	1.37	589.00	530.50	500.55	469.02	4.28	4.36	4.27	5.07
10	120°	5.97	5.56	5.67	3.87	1.70	1.59	1.62	1.11	589.00	530.50	500.55	469.02	5.02	5.20	5.62	4.10
11	130°	5.58	4.64	4.13	4.70	1.96	1.63	1.45	1.65	589.00	530.50	500.55	469.02	5.79	5.34	5.04	6.12
12	140°	3.73	4.79	2.88	4.96	1.85	2.38	1.43	2.46	589.00	530.50	500.55	469.02	5.46	7.78	4.95	9.10
13	150°	3.17	2.32	2.41	2.30	2.65	1.94	2.02	1.93	589.00	530.50	500.55	469.02	7.82	6.36	6.99	7.13

Lampiran D4 Tabel Hasil Simulasi Monte Carlo dengan Tegangan Tabung

No.	Sudut	Fraksi Hambur, a ₁ (.10 ⁻⁶ /cm ²)							
		Pengukuran	Monte Carlo	NCRP 147					
1	30°	12.15	1.83	6.39					
2	40°	14.20	1.77	5.80					
3	50°	10.61	1.84	5.38					
4	60°	8.50	2.79	5.10					
5	70°	6.88	2.83	5.07					
6	80°	3.21	3.51	5.14					
7	90°	5.45	3.69	5.38					
8	100°	1.68	3.44	5.73					
9	110°	4.45	4.36	6.18					
10	120°	10.39	5.20	6.81					
11	130°	10.86	5.34	7.43					
12	140°	22.13	7.78	8.23					
13	150°	19.49	6.36						

Lampiran D5 Tabel Perbandingan Hasil Pengukuran, Monte Carlo dan Referensi

Fig. C.1. The scatter fraction $a_1 \times 10^{-6}$ (*i.e.*, multiply graph value by 10^{-6}) per cm² of primary beam area at 1 m. [Data of Trout and Kelley (1972) reanalyzed by Simpkin and Dixon (1998) for tungsten anode, aluminum-filtered beams. Data of Simpkin (1996b) for molybdenum anode, molybdenum filtered mammographic beams.]

Lampiran D6 Tampilan Hasil Simulasi Monte Carlo di dosxyz_show

Lampiran D6 Tampilan Hasil Simulasi Monte Carlo di dosxyz_show

01/05/11 phantom 20cm 70kV 30x30.egslst 1 **** NRCC/UW EGSnrc user-code DOSXYZnrc (\$Revision: 1.45 \$ last edited \$Date: 2009/10/21 21:20:24 \$) ON i686-pc-linux-gnu 20:00:30 Nov 20 2010 ***** **** ** ** ** DOSXYZnrc * * ** Z pronounced zed ** ** ** ** Code developed at the National Research Council of Canada and ** ** University of Wisconsin as part of the OMEGA project ** ** ** ** This is \$Revision: 1.45 \$ last edited \$Date: 2009/10/21 21:20:24** ** ** ***** ***** **** The following parameters may be adjusted in dosxyz_user_macros.mortran Max number of media: 7 \$MXMED: \$MXSTACK: Max stack size: 15 \$IMAX,etc: Max dose scoring regions in x,y,z directions: 128 128 56 \$MAXDOSE: Max dose scoring regions consistent with above: 917505
\$DOSEZERO(=1) 1=> all doses with uncert > 50% are zeroed in .3ddose file The following parameters may be adjusted in srcxyz.macros \$INVDIM: number of elements in inverse CPD for input energy spectra = 1000 \$NENSRC: number of bins in input energy spectrum = 200 _____ Title: phantom_20cm_70kV_30x30 _____ -------_____ Number of media (min = 1, max = 7, 0 => CT data): 3 Medium 1: Medium 2: AIR521ICRU POLYSTY521ICRU Medium 3: LIF521ICRU

file:///home/adi/egsnrc_mp/dosxyznrc/phantom_20cm_70kV_30x30.egslst

01/05/11	phantom_20cm_70kV_30x30.e	egslst 2
ECUTIN,PCUTIN,(ESTEPE, 0.521	,5MAXDUMMY INPUTS): 0.010 0.000 0.00	00.000 0.000
<pre># regions in x (max= 1 (if<0,implies # groups file for dosxyz_show,</pre>	l28),y (max= 128),z (max= s of reg), IPHANT (1 to ou 0[default] to not output 30 1	56) directions utput a .egsphant this file)
Input boundaries in th	ne x-direction	
Small boundary for reg Small boundary for reg Small boundary for reg Small boundary for reg Small boundary for reg Outer boundary for reg	gion(1) gion(2) gion(3) gion(4) gion(5) gion(5)	65.000 64.900 30.000 15.150 14.850 0.000
Input boundaries in th	ne y-direction	
Small boundary for reg Small boundary for reg Small boundary for reg Outer boundary for reg	gion(1) gion(2) gion(3) gion(3)	15.000 -0.450 0.450 15.000
Input boundaries in th	ne z-direction	
Small boundary for reg Small boundary for reg	gion(1) gion(2) gion(3) gion(4) gion(5) gion(6) gion(6) gion(7) gion(8) gion(9) gion(10) gion(11) gion(12)	0.000 13.250 13.550 40.250 40.550 57.950 58.250 70.950 71.250 81.650 81.950 89.900
Small boundary for reg Small boundary for reg	gion(12) gion(13) gion(14) gion(15) gion(15) gion(16) gion(17) 1 gion(18) 1 gion(19) 1 gion(20) 1 gion(20) 1 gion(21) 1 gion(22) 1 gion(22) 1 gion(23) 1 gion(24) 1 gion(25) 1 gion(26) 1 gion(28) 1 gion(30) 1 gion(30) 1 gion(30) 1 gion(12) 1 gion(30) 1 gion(12) 1 gion(10) 1 gion(20) 1 gion(30) 1 gion	89.900 90.000 91.050 91.350 99.850 .00.150 .08.650 .08.650 .08.650 .08.650 .08.650 .08.650 .08.650 .08.650 .08.650 .08.650 .18.350 .18.350 .12.750 .12.9.050 .141.850 .42.150 .159.450 .159.750 .86.450 .86.750 .200.000
Outer boundary for reg	gion(30) 2	200.000

file:///home/adi/egsnrc_mp/dosxyznrc/phantom_20cm_70kV_30x30.egslst

01/05/11	phantom_	_20cm_70	kV_30x3	30.egsls	t			3
Total # regions inclu	ding exte	rior =	4	51				
Input groups of region Lower,upper i, j, k,	ns for wh MEDIUM, I	ich dens DENSITY	ity an (1	d mediu 5)(1	im are i 3)(not 1	defaul 30)	ts 1
Lower,upper i, j, k,	MEDIUM, I	DENSITY	(3	5)(1	3)(13	19)	2
Lower,upper i, j, k, 0.000	MEDIUM, I	DENSITY	(1	1)(2	2)(2	2)	3
Lower,upper i, j, k, 0.000	MEDIUM, I	DENSITY	(1	1)(2	2)(4	4)	3
Lower,upper i, j, k, 0.000	MEDIUM, I	DENSITY	(1	1)(2	2)(6	6)	3
Lower,upper i, j, k, 0.000	MEDIUM, I	DENSITY	(1	1)(2	2)(8	8)	3
Lower,upper i, j, k, 0.000	MEDIUM, I	DENSITY	(1	1)(· 2	2)(10	10)	3
Lower,upper i, j, k, 0.000	MEDIUM, I	DENSITY	(4	4) (2	2)(12	12)	3
Lower,upper i, j, k, 0.000	MEDIUM, I	DENSITY	(1	1)(2	2)(14	14)	3
Lower,upper i, j, k, 0.000	MEDIUM, I	DENSITY	(1	1)(2	2)(16	16)	3
Lower,upper i, j, k, 0.000	MEDIUM, I	DENSITY	(1	1)(2	2)(18	18)	3
Lower,upper i, j, k, 0.000	MEDIUM, I	DENSITY		1)(2	2)(21	21)	3
Lower,upper 1, j, k, 0.000	MEDIUM, I	DENSITY	(1	1)(2	2)(23	23)	3
Lower, upper 1, j, k, 0.000	MEDIUM, I	DENSITY			2)(25	25)	3
Lower, upper 1, j, k, 0.000	MEDIUM, I	DENSITY	(1	1)(2	2)(27	27)	3
Lower, upper 1, j, k, 0.000	MEDIUM, I	DENSITY		1)(2	2)(29	29)	3
Found blank line =:	end of	this inp	ut					
Input groups of region NB This option is disa Dummy values of lower Found blank line =:	ns for wh abled, ju ,upper i, > end of	ich ECUT st input j, k, this inp	and P 8 zer ECUT, ut	CUT are os. PCUT	e not de	efau	lts	
Enter 8 numbers on one 3 pairs defininglow for w	e line er,upper : nich resu	x,y,z in lts are	dicies to be	of dos output	se regi	ons		
IZSCAN: non-ze MAX20: if an end signaled by firs forno dose printed.	ero for z y one = 1 st pair b MAX20 is	-scan/pa , output oth zero still r	ge summa ead fr	ry of n om firs	nax 20 st line	dose	5.	

4 4 2 2 12 12 2 0 Found blank line => end of this input

Read input energy spectrum from:

file:///home/adi/egsnrc_mp/dosxyznrc/phantom_20cm_70kV_30x30.egslst

01/05/11 phantom_20cm_70kV_30x30.egslst 4 /home/adi/EGSnrc/spectra/spectrum_SpecCalc/70kVp_SpekCalc.spectrum Have read 64 input energy bins from file Counts/MeV assumed 0.070 MeV 0.070 MeV to Energy ranges from *******WARNING****** SOME OF NORMALIZED BIN PROBABILITIES SO SMALL BINS MAY BE MISSED NCASE, IWATCH, TIMMAX, INSEED1, INSEED2, BEAM_SIZE, ISMOOTH, IRESTART, IDAT, IREJECT, ESAVE_GLOBAL, NRCYCL, IPARALLEL, PARNUM, n_split, ihowfarless 500000000 01000.00 33 97 100.00 0 0 0 0 0.00 Θ 0 0 1 0 Index ranges of beam field i index ranges over i= 3 to 5 -30.000 -0.000 j index ranges over j= 1 to -15.000 15.000 3 Angle of beam to axes(in deg, 90,90,0 is normal): 90.00 90.00 0.00 deg ***** ***** **** Summary of source parameters (srcxyznrc \$Revision: 1.25 \$) ************* **** Parallel beam incident from the front(+ve z-axis) Electric charge of the source: 0 x-boundaries: -30.0000 cm- -0.0000 cm y-boundaries: -15.0000 cm- 15.0000 cm Angle relative to +x: 90.0000 degrees 90.0000 degrees Angle relative to +y: 0.0000 degrees Angle relative to -z: ______ ------Electron/Photon transport parameter ___________ ____ si Photon cross sections default Compton cross sections 0.1000E-01 Photon transport cutoff(MeV) file:///home/adi/egsnrc_mp/dosxyznrc/phantom_20cm_70kV_30x30.egslst

01/06/11		phantom 20cm 7	'0kV 30x3	30.egslst		5			
Pair angular samplingSIMPair cross sectionsBHTriplet productionOffBound Compton scatteringOFFRadiative Compton correctionsOffRayleigh scatteringOFFAtomic relaxationsOFFPhotoelectron angular samplingOFF									
Electron transport cutoff(MeV)0.5210Bremsstrahlung cross sectionsBHBremsstrahlung angular samplingSIMSpin effectsOnElectron Impact IonizationOFFMaxium electron step in cm (SMAX)5.000Maximum fractional energy loss/step (ESTEPE)0.2500Maximum 1st elastic moment/step (XIMAX)0.5000Boundary crossing algorithmPRESTA-ISkin-depth for boundary crossing (MFP)23.33Electron-step algorithmPRESTA-II									
2222 2222 2222 2222 2222 2222 2222 2222 2222			======						
Medium AIR521IC POLYSTY5 LIF521IC No range	RU 0. 21ICRU 0. RU 0. rejection.	AE AP 521 0.010 521 0.010 521 0.001	6	*****	*****				
Histori	es to be simul	ated for this r	un 5	00000000					
Histori	es to be analy	zed after this	run 5	0000000					
******* Elapse	*************** d wall clock t	******************* ime to this poi	******* nt=	************* 0.506 s	****				
CPU ti	me so far for	this run =	0.506	5					
BATCH #	TIME-ELAPSED	TOTAL CPUTIME	RATIO	TIME OF DAY	RNG pointer	S			
1	0.0	0.0	0.00	20:00:31	ixx jxx =	97			
2	381.4	381.2	1.00	20:06:52	ixx jxx =	51			
3	762.8	762.3	1.00	20:13:14	ixx jxx =	40			
73 4	1144.3	1143.5	1.00	20:19:35	ixx jxx =	27			
60 5 80	1525.8	1524.7	1.00	20:25:56	ixx jxx =	47			
	file:///h	ome/adi/egsnrc m	p/dosxyzn	rc/phantom_20c	m_70kV_30x30	.egslst			

$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$										
6 1907.1 1905.8 1.00 20:32:18 ixx jxx = 96 32 7 2288.5 2287.0 1.00 20:38:39 ixx jxx = 1 34 8 2669.9 2668.2 1.00 20:45:01 ixx jxx = 29 62 9 3051.2 3049.3 1.00 20:51:22 ixx jxx = 57 90 10 3432.6 3430.5 1.00 20:57:43 ixx jxx = 28 61 Total CPU time for run = 3811.6 s = 1.059 hr => 472243028. hist/hr On i686-pc-linux-gnu Fraction of incident energy deposited in the phantom = 0.5334 Number of charged particle steps simulated. N_step = 1076121605 Number of charged particle steps/incident fluence = 1.93702E+03 No. of PRESTA-II steps/total no. of charged particle steps = 0.99338 1phantom_20cm_70kV_30x30 Elec/positron planar energy fluence scored in a 1cm**2 circle centered at z-axis on the phantom surface = 0.000E+00(1/cm**2) Photon planarenergy fluence scored in a 1cm**2 circle centered at z-axis on the phantom surface = 1.080E+00(1/cm**2) Elec/positron planar fluence scored in a 1cm**2 circle centered at z-axis on the phantom surface = 2.782E+05(1/cm**2) Photon planar fluence (number/beam area), F = 5.556E+05(1/cm**2) Average planar fluence (number/beam area), F = 5.556E+05(1/cm**2) for z= 89.900 to 90.000 k= 12 xbounds:-15.150 -14.850 i= 4 ybounds (-0.450) 0.450 2 1.061E-12- 1.1% 1 The dose values in 34 voxels had error > 50% and have been zeroed in the .3ddose file.	01/06/11	ph	antom_20cm_7	0kV_30x30).egslst		6			
7 2288.5 2287.0 1.00 20:38:39 ixx jxx = 1 34 8 2669.9 2668.2 1.00 20:45:01 ixx jxx = 29 62 9 3051.2 3049.3 1.00 20:51:22 ixx jxx = 57 90 10 3432.6 3430.5 1.00 20:57:43 ixx jxx = 28 61 Total CPU time for run = 3811.6 s = 1.059 hr => 472243028. hist/hr On i686-pc-linux-gnu Fraction of incident energy deposited in the phantom = 0.5334 Number of charged particle steps simulated. N_step = 1076121605 Number of charged particle steps/incident fluence = 1.93702E+03 No. of PRESTA-II steps/total no. of charged particle steps = 0.99338 1phantom_20cm_70kV_30x30 Elec/positron planar energy fluence scored in a 1cm**2 circle centered at z-axis on the phantom surface = $0.000E+000(1/cm**2)$ Photon planar fluence scored in a 1cm**2 circle centered at z-axis on the phantom surface = $2.782E+05(1/cm**2)$ Photon planar fluence (number/beam area). F = $5.55EE+05(1/cm**2)$ Average planar fluence (number/beam area). F = $5.55EE+05(1/cm**2)$ for z= 89.900 to 90.000 k= 12 xbounds: -15.150 -14.850 i= -4 yboung (-0.450) 0.450 2 1.061E-12- 1.1% 1 The dose values in 34 voxels had error > 50% and have been zeroed in the .3ddose file.	6 32	1907.1	1905.8	1.00	20:32:18	ixx jxx =	96			
8 2669.9 2668.2 1.00 20:45:01 ixx jxx = 29 62 9 3051.2 3049.3 1.00 20:51:22 ixx jxx = 57 90 10 3432.6 3430.5 1.00 20:57:43 ixx jxx = 28 61 Total CPU time for run = 3811.6 s = 1.059 hr => 472243028. hist/hr On i686-pc-linux-gnu Fraction of incident energy deposited in the phantom = 0.5334 Number of charged particle steps simulated, N_step = 1076121605 Number of charged particle steps/incident fluence = 1.93702E+03 No. of PRESTA-II steps/total no. of charged particle steps = 0.99338 1phantom_20cm_70kV_30x30 Elec/positron planar energy fluence scored in a 1cm**2 circle centered at z-axis on the phantom surface = 0.000E+00(1/cm**2) Photon planarenergy fluence scored in a 1cm**2 circle centered at z-axis on the phantom surface = 0.000E+00(1/cm**2) Elec/positron planar fluence scored in a 1cm**2 circle centered at z-axis on the phantom surface = 0.000E+00(1/cm**2) Photon planar fluence scored in a 1cm**2 circle centered at z-axis on the phantom surface = 0.000E+00(1/cm**2) Photon planar fluence scored in a 1cm**2 circle centered at z-axis on the phantom surface = 0.000E+00(1/cm**2) Average planar fluence (number/beam area), F = 5.556E+05(1/cm**2) DOSXYZnrc (\$Revision: 1.45 \$) Dose outputs (dose/F, Gy.cm**2) for z= 89.900 to 90.000 k= 12 xbounds:-15.150 -14.850 1= 4 ybounds (-0.450) 0.450 2 1.061E-12- 1.1% 1 The dose values in 34 voxels had error > 50% and have been zeroed in the .3ddose file.	7 34	2288.5	2287.0	1.00	20:38:39	ixx jxx =	1			
9 3051.2 3049.3 1.00 20:51:22 ixx jxx = 57 90 10 3432.6 3430.5 1.00 20:57:43 ixx jxx = 28 61 Total CPU time for run = 3811.6 s = 1.059 hr => 472243028. hist/hr 0 1686-pc-linux-gnu Fraction of incident energy deposited in the phantom = 0.5334 Number of charged particle steps simulated. N step = 1076121605 Number of charged particle steps/incident fluence = 1.93702E+03 No. of PRESTA-II steps/total no. of charged particle steps = 0.99338 1phantom_20cm_70kV_30x30 Elec/positron planar energy fluence scored in a 1cm**2 circle centered at z-axison the phantom surface = 0.000E+00(1/cm**2) Photon planarenergy fluence scored in a 1cm**2 circle centered at z-axis on the phantom surface = 0.000E+00(1/cm**2) Elec/positron planar fluence scored in a 1cm**2 circle centered at z-axis on the phantom surface = 2.782E+05(1/cm**2) Photon planar fluence scored in a 1cm**2 circle centered at z-axis on the phantom surface = 2.782E+05(1/cm**2) Photon planar fluence scored in a 1cm**2 circle centered at z-axis on the phantom surface = 2.782E+05(1/cm**2) DOSXYZnrc (\$Revision: 1.45 \$) Dose outputs (dose/F, Gy.cm**2) for z= 89.900 to 90.000 k= 12 xbounds:-15.150 -14.850 1= 4 ybounds (-0.450) 0.450 2 1.061E-12-1.1% 1 The dose values in 34 voxels had error > 50% and have been zeroed in the .3ddose file.	8 62	2669.9	2668.2	1.00	20:45:01	ixx jxx =	29			
<pre>10 3432.6 3430.5 1.00 20:57:43 ixx jxx = 28 61 Total CPU time for run = 3811.6 s = 1.059 hr => 472243028. hist/hr On 1686-pc-linux-gnu Fraction of incident energy deposited in the phantom = 0.5334 Number of charged particle steps simulated, N step = 1076121605 Number of charged particle steps/incident fluence = 1.93702E+03 No. of PRESTA-II steps/total no. of charged particle steps = 0.99338 Iphantom_20cm_70kV_30x30 Elec/positron planar energy fluence scored in a 1cm**2 circle centered at z-axis on the phantom surface = 0.000E+00(1/cm**2) Photon planarenergy fluence scored in a 1cm**2 circle centered at z-axis on the phantom surface = 0.000E+00(1/cm**2) Elec/positron planar fluence scored in a 1cm**2 circle centered at z-axis on the phantom surface = 2.782E+05(1/cm**2) Photon planar fluence scored in a 1cm**2 circle centered at z-axis on the phantom surface = 2.752E+05(1/cm**2) Average planar fluence (number/beam area). F = 5.556E+05(1/cm**2) DOSXYZnrc (\$Revision: 1.45 \$) Dose outputs (dose/F, Gy.cm**2) for z= 89.900 to 90.000 k= 12 xbounds:-15.150 -14.850 1= 4 ybounds (-0.450) 0.450 2 1.061E-12- 1.1% 1 The dose values in 34 voxels had error > 50% and have been zeroed in the .3ddose file.</pre>	9	3051.2	3049.3	1.00	20:51:22	ixx jxx =	57			
Total CPU time for run = 3811.6 s = 1.059 hr => 472243028. hist/hr On 1686-pc-linux-gnu Fraction of incident energy deposited in the phantom = 0.5334 Number of charged particle steps simulated. N step = 1076121605 Number of charged particle steps/incident fluence = 1.93702E+03 No. of PRESTA-II steps/total no. of charged particle steps = 0.99338 Iphantom_20cm_70kV_30x30 Elec/positron planar energy fluence scored in a 1cm**2 circle centered at z-axis on the phantom surface = 0.000E+00(1/cm**2) Photon planar fluence scored in a 1cm**2 circle centered at z-axis on the phantom surface = 0.000E+00(1/cm**2) Elec/positron planar fluence scored in a 1cm**2 circle centered at z-axis on the phantom surface = 0.000E+00(1/cm**2) Photon planar fluence scored in a 1cm**2 circle centered at z-axis on the phantom surface = 0.000E+00(1/cm**2) Photon planar fluence scored in a 1cm**2 circle centered at z-axis on the phantom surface = 2.782E+05(1/cm**2) Average planar fluence (number/beam area), F = 5.556E+05(1/cm**2) DOSXYZnrc (\$Revision: 1.45 \$) Dose outputs (dose/F, Gy.cm**2) for z= 89.900 to 90.000 k= 12 xbounds: -15.150 -14.850 1 = 4 ybounds (-0.450) 0.450 2 1.061E-12- 1.1% 1 The dose values in 34 voxels had error > 50% and have been zeroed in the .3ddose file.	10 61	3432.6	3430.5	1.00	20:57:43	ixx jxx =	28			
<pre>Fraction of incident energy deposited in the phantom = 0.5334 Number of charged particle steps simulated, N_step = 1076121605 Number of charged particle steps/incident fluence = 1.93702E+03 No. of PRESTA-II steps/total no. of charged particle steps = 0.99338 Iphantom_20cm_70kV_30x30 Elec/positron planar energy fluence scored in a 1cm**2 circle centered at z-axis on the phantom surface = 0.000E+00(1/cm**2) Photon planarenergy fluence scored in a 1cm**2 circle centered at z-axis on the phantom surface = 1.080E+04(1/cm**2) Elec/positron planar fluence scored in a 1cm**2 circle centered at z-axis on the phantom surface = 0.000E+00(1/cm**2) Photon planar fluence scored in a 1cm**2 circle centered at z-axis on the phantom surface = 2.782E+05(1/cm**2) Average planar fluence (number/beam area), F = 5.556E+05(1/cm**2) DOSXYZnrc (\$Revision: 1.45 \$) Dose outputs (dose/F, Gy.cm**2) for z= 89.900 to 90.000 k= 12 xbounds: -15.150 -14.850 i= 4 ybounds (-0.450) 0.450 2 1.061E-12- 1.1% 1 The dose values in 34 voxels had error > 50% and have been zeroed in the .3ddose file.</pre>	Total CPU On i686	time for run = -pc-linux-gnu	3811.6 s =	1.059	hr => 47224	3028. hist/h	r			
<pre>Number of charged particle steps simulated, N_step = 1076121605 Number of charged particle steps/incident fluence = 1.93702E+03 No. of PRESTA-II steps/total no. of charged particle steps = 0.99338 1phantom_20cm_70kV_30x30 Elec/positron planar energy fluence scored in a 1cm**2 circle centered at z-axison the phantom surface = 0.000E+00(1/cm**2) Photon planarenergy fluence scored in a 1cm**2 circle centered at z-axis on the phantom surface = 1.080E+04(1/cm**2) Elec/positron planar fluence scored in a 1cm**2 circle centered at z-axis on the phantom surface = 0.000E+00(1/cm**2) Photon planar fluence scored in a 1cm**2 circle centered at z-axis on the phantom surface = 2.782E+05(1/cm**2) Average planar fluence (number/beam area), F = 5.556E+05(1/cm**2) DOSXYZnrc (\$Revision: 1.45 \$) Dose outputs (dose/F, Gy.cm**2) for z= 89.900 to 90.000 k= 12 xbounds:-15.150 -14.850 i= 4 ybounds (-0.450) 0.450 2 1.061E-12- 1.1% 1 The dose values in 34 voxels had error > 50% and have been zeroed in the .3ddose file.</pre>	Fraction o	f incident ener	gy deposited	in the	phantom =	0.5334				
<pre>1phantom_20cm_70kV_30x30 Elec/positron planar energy fluence scored in a 1cm**2 circle centered at z-axison the phantom surface = 0.000E+00(1/cm**2) Photon planarenergy fluence scored in a 1cm**2 circle centered at z-axis on the phantom surface = 1.080E+04(1/cm**2) Elec/positron planar fluence scored in a 1cm**2 circle centered at z-axis on the phantom surface = 0.000E+00(1/cm**2) Photon planar fluence scored in a 1cm**2 circle centered at z-axis on the phantom surface = 2.782E+05(1/cm**2) Average planar fluence (number/beam area), F = 5.556E+05(1/cm**2) DOSXYZnrc (\$Revision: 1.45 \$) Dose outputs (dose/F, Gy.cm**2) for z= 89.900 to 90.000 k= 12 xbounds:-15.150 -14.850 i= 4 ybounds (-0.450) 0.450 2 1.061E-12- 1.1% 1 The dose values in 34 voxels had error > 50% and have been zeroed in the .3ddose file.</pre>	Number of Number of No. of PRE 0.99338	charged particl charged particl STA-II steps/tc	e steps simu e steps/inci tal no. of c	lated, dent flu harged p	N_step = ence = article step	10761216 1.93702E+ os =	05 03			
<pre>Elec/positron planar energy fluence scored in a 1cm**2 circle centered at z-axison the phantom surface = 0.000E+00(1/cm**2) Photon planarenergy fluence scored in a 1cm**2 circle centered at z-axis on the phantom surface = 1.080E+04(1/cm**2) Elec/positron planar fluence scored in a 1cm**2 circle centered at z-axis on the phantom surface = 0.000E+00(1/cm**2) Photon planar fluence scored in a 1cm**2 circle centered at z-axis on the phantom surface = 2.782E+05(1/cm**2) Average planar fluence (number/beam area). F = 5.556E+05(1/cm**2) DOSXYZnrc (\$Revision: 1.45 \$) Dose outputs (dose/F, Gy.cm**2) for z= 89.900 to 90.000 k= 12 xbounds:-15.150 -14.850 i= 4 ybounds (-0.450) 0.450 2 1.061E-12- 1.1% 1 The dose values in 34 voxels had error > 50% and have been zeroed in the .3ddose file.</pre>	1phantom_20	cm_70kV_30x30								
<pre>Photon planarenergy fluence scored in a 1cm**2 circle centered at z-axis on the phantom surface = 1.080E+04(1/cm**2) Elec/positron planar fluence scored in a 1cm**2 circle centered at z-axis on the phantom surface = 0.000E+00(1/cm**2) Photon planar fluence scored in a 1cm**2 circle centered at z-axis on the phantom surface = 2.782E+05(1/cm**2) Average planar fluence (number/beam area), F = 5.556E+05(1/cm**2) DOSXYZnrc (\$Revision: 1.45 \$) Dose outputs (dose/F, Gy.cm**2) for z= 89.900 to 90.000 k= 12 xbounds:-15.150 -14.850 i= 4 ybounds (-0.450) 0.450 2 1.061E-12- 1.1% 1 The dose values in 34 voxels had error > 50% and have been zeroed in the .3ddose file.</pre>	Elec/positron planar energy fluence scored in a 1cm**2 circle centered at z-axison the phantom surface = 0.000E+00(1/cm**2)									
<pre>Elec/positron planar fluence scored in a 1cm**2 circle centered at z-axis on the phantom surface = 0,000E+00(1/cm**2) Photon planar fluence scored in a 1cm**2 circle centered at z-axis on the phantom surface = 2.782E+05(1/cm**2) Average planar fluence (number/beam area), F = 5.556E+05(1/cm**2) DOSXYZnrc (\$Revision: 1.45 \$) Dose outputs (dose/F, Gy.cm**2) for z= 89.900 to 90.000 k= 12 xbounds:-15.150 -14.850 i= 4 ybounds (-0.450) 0.450 2 1.061E-12- 1.1% 1 The dose values in 34 voxels had error > 50% and have been zeroed in the .3ddose file.</pre>	Photon planarenergy fluence scored in a 1cm**2 circle centered at z-axis on the phantom surface = 1.080E+04(1/cm**2)									
<pre>Photon planar fluence scored in a 1cm**2 circle centered at z-axis on the phantom surface = 2.782E+05(1/cm**2) Average planar fluence (number/beam area), F = 5.556E+05(1/cm**2) D05XYZnrc (\$Revision: 1.45 \$) Dose outputs (dose/F, Gy.cm**2) for z= 89.900 to 90.000 k= 12 xbounds:-15.150 -14.850</pre>	Elec/po centere	Elec/positron planar fluence scored in a 1 cm^{**2} circle centered at z-axis on the phantom surface = 0.000E+00(1/cm **2)								
Average planar fluence (number/beam area), $F = 5.556E+05(1/cm^{*2})$ DOSXYZnrc (\$Revision: 1.45 \$) Dose outputs (dose/F, Gy.cm^{*2}) for z= 89.900 to 90.000 k= 12 xbounds:-15.150 -14.850 i= 4 ybounds (-0.450) 0.450 2 1.061E-12- 1.1% 1 The dose values in 34 voxels had error > 50% and have been zeroed in the .3ddose file.	Photon planar fluence scored in a 1cm**2 circle centered at z-axis on the phantom surface = 2.782E+05(1/cm**2)									
DOSXYZnrc (\$Revision: 1.45 \$) Dose outputs (dose/F, Gy.cm**2) for z= 89.900 to 90.000 k= 12 xbounds:-15.150 -14.850 i= 4 ybounds (-0.450) 0.450 2 1.061E-12- 1.1% 1 The dose values in 34 voxels had error > 50% and have been zeroed in the .3ddose file.	Average	planar fluence	(number/bea	m area),	F = 5.556E	+05(1/cm**2)				
for $z=$ 89.900 to 90.000 k= 12 xbounds:-15.150 -14.850 i= 4 ybounds (-0.450) 0.450 2 1.061E-12- 1.1% 1 The dose values in 34 voxels had error > 50% and have been zeroed in the .3ddose file.	DOSXYZnrc (\$Revision: 1.45 \$) Dose outputs (dose/F, Gy.cm**2)									
<pre>xbounds:-15.150 -14.850 i= 4 ybounds (-0.450) 0.450 2 1.061E-12- 1.1% 1 The dose values in 34 voxels had error > 50% and have been zeroed in the .3ddose file.</pre>		for z= 89	.900 to 9	0.000	k= 12					
The dose values in 34 voxels had error > 50% and have been zeroed in the .3ddose file.	xbounds:-1 i= ybounds (0.450 1	5.150 -14.8 4 -0.450) 2 1.061E-12- 1	50 .1%							
	The dose v zeroed in	alues in the .3ddose fil	34 voxels e.	had erro	r > 50% and	have been				

Total CPU time for this run = 3812.1 s = 1.059 hr

END OF RUN Nov 20 2010 21:04:05

file:///home/adi/egsnrc_mp/dosxyznrc/phantom_20cm_70kV_30x30.egslst