

DISTRIBUTED One-WIRE

TEMPERATURE

MEASUREMENTS USING

EMBEDDED SYSTEMS

Graduate Program on Instrumentation Physics

Master Thesis

SURYA DARMA

630202022X

Supervisor: Dr. rer. nat. Martarizal

DEPARTMENT OF PHYSICS

FACULTY OF MATHEMATICS AND NATURAL SCIENCES

UNIVERSITY OF INDONESIA

2005

Distributed one..., Surya Darma, FMIPA UI, 2005

Distributed one..., Surya Darma, FMIPA UI, 2005

iii

Preface

This work investigates the use of embedded systems implementing several

interconnected data acquisition points which simultaneously collect temperature

data and then display them to the end user. Monitoring of the overall system can

be done through Internet access from any computer, making it a distributed

system conforming to Tanenbaum’s definition.

Acknowledgements

I would like to thank several people who contributed to this work in

special ways. First of all, I thank Dr. Ulrich Raich, who gave me the idea to take

this topic when he was explaining graphical user interfaces and connectivity with

legacy equipment at the Second Workshop on Distributed Laboratory

Instrumentation Systems in Trieste, Italy. I also want to thank him for his

willingness to become my advisor.

A distributed system is a collection of

independent computers that appears to

its users as a single coherent system.

A. S. Tanenbaum, M. Van Steen [01]

Distributed one..., Surya Darma, FMIPA UI, 2005

iv

The analysis of my work by Dr. rer. nat Martarizal and his valuable

comments are greatly acknowledged. I warmly thank him for being a supervisor

of my thesis. I am grateful to Rachmat Widodo Adi, Ph.D for sharing some of his

insights with me, being a great friend who dedicated time to revise my thesis, and

for many unforgettable discussions on some general concepts of instrumentation.

My great thanks also acknowledge to Prof. Dr. Djarwani S Soejoko for her

support to give me an extended time to finish this thesis, and Dr. Dedi Suyanto as

chairperson of the graduate program who participate in supporting the extended

time. I also sincerely thank Prof. Dr. Carlos Kavka and Dr. Paul Bartholdi for

their lectures during the Second Workshop on Distributed Laboratory

Instrumentation Systems, from which I used some of their example programs and

included them in this project. I thank my colleagues at the University of Indonesia

for fruitful discussions and a lot of fun: Iwan Sugihartono, R Bagus Suryasa, Lutfi

Rohman, Eko Ketut, Arief Fitrianto as well as my former collegues Evi Ulina

Margaretha S, Handoko Hutapea. I especially thank my colleagues Asido Patar

Nainggolan and Oscar R Tillmans, for numerous good advices, proofreading

drafts of this work, and a great cooperation during many years.

Special thanks to the entire of my family. This work is dedicated to Riani

and Muthia, who gave me love and many encouragements for finishing this thesis.

Without their support, I believe this work could not be finished.

Surya Darma

Depok, June 30, 2005

Distributed one..., Surya Darma, FMIPA UI, 2005

v

Abstract

In this paper, I describe a recently developed experimental setup for

monitoring temperature, which can be accessed via Ethernet network. The

experiment consists of three primary elements communicating with each other: i)

an embedded system acting as a server. It consists of an embedded Ethernet

controller and a 1-Wire sensor for temperature measurement which is called TINI

and ii) a second embedded 1-Wire temperature measurement system which is

build on the ATMEL AVR micro-controller and iii) a PC based client computer,

for monitoring the overall process. The AVR embedded system whose programs

were written in the C programming language, sends data to the TINI using serial

communications, while the TINI, which executes Java programs communicates to

PC using the TCP/IP protocol.

The client computer plots the data sent to it through TINI and provides a

visual display of a sequence of temperature measurement data, which were

detected by sensors with 1-Wire technology on either of the two embedded

systems.

Key Words: AVR micro-controller, TINI, embedded system, C and Java programming language

and 1-Wire technology.

vii + 75 halaman, gambar, tabel, lampiran

Distributed one..., Surya Darma, FMIPA UI, 2005

vi

Contents

Endorsement Sheet ii

Preface iii

Abstract v

Contents vi

1 Introduction 1

1.1 Background . 1

1.2 Objectives . 4

1.3 Problem Statement . 4

1.4 Research Methodology . 4

1.5 Thesis Overview . 5

2 Basic Concepts: System Design & Assembly 7

2.1 Definition of A Distributed Systems . 8

2.2 Distributed Concepts . 8

2.2.1 1-Wire® Bus Technology . 9

2.2.2 Embedded AVR AT90S8535 unit 10

2.2.3 The Tiny Network Interface (TINI
TM

) 12

2.3 Software Concepts . 14

2.3.1 AVR core software . 14

2.3.2 TINI® kernel . 16

2.3.3 Java implementation in TINI® . 20

2.4 Debugging . 22

Distributed one..., Surya Darma, FMIPA UI, 2005

vii

3 Distributed System Architecture 24

3.1 System Overview . 25

3.2 Database . 26

3.3 System Integration . 28

3.3.1 Embedded unit integration . 30

4 Results and Analysis 31

4.1 Output of the System . 32

4.1.1 The indoor temperature measurement. 33

4.1.2 The outdoor temperature measurement. 35

4.2 System Test . 37

4.3 Error Analysis . 38

5 Conclusions and Future Works 40

Reference 42

Appendix A: Supporting Source Codes 44

Appendix B: Main Source Codes 64

Distributed one..., Surya Darma, FMIPA UI, 2005

1

Introduction

This chapter explains the background for writing this thesis and the key

reason for choosing the topic. It also outlines the structure of the document.

1.1 Background

Micro-controllers are used in low-cost embedded systems that control and

monitor consumer appliances, robots, machinery, etc. Micro-controllers are

“A bad beginning makes a bad ending.”

Euripides (484 BC – 406 BC)

Distributed one..., Surya Darma, FMIPA UI, 2005

2

Surya Darma, Distributed One ….., FMIPA UI, 2005

widely used in applications that necessitate computing power delivered within a

small form factor, in e.g., cellular phones, calculators, digital wristwatches, etc.

Because of dimension and cost limitations, micro-controllers have limited

connectivity capabilities. For example, the type of connectivity provided for data

communication to a personal computer (PC) user for data visualization and

parameter adjustment “on-the-fly” is usually limited to a serial port interface. This

serial interface is restricted in distance and depends much on the operating

systems, which allow only one user to control the micro-controller in a time. On

the other hand, some modern embedded systems include more elaborate

communication interfaces such as Ethernet access, instrumentation buses and

multitasking OS. Typical examples are the Rabbit Core and the Tiny Network

Interface so called TINI. The TINI allows us to run programs in the Java

environment which, until now was rarely used in the micro-controller based

applications. Since it was launched in the late 2000, it has made tremendous

breakthrough in embedded system applications. Tini’s on board Ethernet

controller gives remote Computers easy access to micro-controller resources

through the ubiquitous Ethernet data communication network, and allows

developers and end-users to monitor and control micro-controller operated devices

with great flexibility. Such a system makes any data logger easier to receive, by

connecting the network with other media to transmit the data we can get a

distributed measurement, especially in a very difficult area to reach

simultaneously.

Distributed one..., Surya Darma, FMIPA UI, 2005

3

Surya Darma, Distributed One ….., FMIPA UI, 2005

In recent years, the Ethernet network protocol has been widely adopted as

the method of choice for data communication on personal computers and other

digital devices. Due to the immense use of the Internet which is connected to the

Ethernet network makes its popularity incredibly high, an information exchange

that communicates data via the Ethernet network, by the general public

infrastructure. Furthermore, Ethernet communication is readily available on most

of the currently deployed PCs for a very cheap price. As a data communication

protocol, the Ethernet is efficient. In all Ethernet networks, devices can easily

communicate at speeds of 10 or 100 megabits-per-second, with some of the most

recent Ethernet networks communicating even at data speeds of 1 gigabit-per-

second.

In this thesis, I address issues of the use of communication between

embedded systems and the PC: RS-232 and network, in getting data acquisition

with the distributed 1-Wire temperature measurements. The temperature sensors

use the 1-wire multi-drop serial bus. 1-Wire communication provides the

capabilities to recognize devices by use of unique device identifiers data

transmission using the “one-wire protocol” on a single data-line. For a certain

application, power supply for sensor can also be delivered in the same wire.

TINI provided an operating system kernel, which allows users to execute

multi-threaded applications making it ideally suited as a server. The embedded

system is used to acquire data from the physical quantity and provide the data to

the external world. These data can then be accessed through Ethernet and,

providing a Web server and the necessary protocols, they can be accesses through

Distributed one..., Surya Darma, FMIPA UI, 2005

4

Surya Darma, Distributed One ….., FMIPA UI, 2005

a Web browser on the Internet. All of these concepts will be used in this thesis to

realize distributed temperature measurements and display the result on the end

user’s terminal.

1.2 Objectives

This thesis has the following objectives:

1. Exploring distributed system aspects with a simple demonstration system.

2. Implementation of network nodes using TINI and how to use them in a

temperature data acquisition system and also as a server collecting data

from other embedded system applications.

3. The design of embedded systems which involved 1-Wire technology on

the AVR micro-controller.

4. Management of a distributed system.

1.3 Problem Statements

The thesis focuses on TINI system installation, network node

programming and interfacing of TINIs to external embedded systems as well as

access to TINI servers through PC based computers via the Ethernet. All these

computers are then integrated into a single distributed data acquisition system. On

the embedded system side temperature data acquisition programs are described

while on the PC side application programs with comfortable graphical user

Distributed one..., Surya Darma, FMIPA UI, 2005

5

Surya Darma, Distributed One ….., FMIPA UI, 2005

interfaces are provided. The PC is used as an end user terminal controlling the

whole distributed system.

1.4 Research Methodology

Before writing this thesis, I had to fully understand the concepts of the

entire systems. In first place I had to define the entire problem, subdivide it into

manageable sub-tasks and map these tasks onto the distributed hardware. To

understand the concepts, implementations and to see the development in this field

I consulted system documentation and journals as references. Based on the

previous work I then designed hardware and software for the embedded systems,

then implemented it. In parallel, I developed the program to be downloaded into

the TINI. Some design errors where detected and fixed. Some problems on the

AVR embedded system could be diagnosed by connecting it directly on the PC

(instead of TINI). This allowed me to use known and proven software tools for

hardware debugging.

Once the hardware was corrected I wrote the software for the individual

embedded systems and the end user PC and finally integrate the bits and pieces

into the final distributed system. Some laboratory measurements where done in

order to prove the correct functioning of the system. The experience collected

during the whole process as well as the final results have been compiled into this

report.

Distributed one..., Surya Darma, FMIPA UI, 2005

6

Surya Darma, Distributed One ….., FMIPA UI, 2005

1.5 Thesis Overview

 The thesis is organized as follows. In Chapter 1 some introductory

background material is given and the problem is explained. Chapter 2 contains

some fundamental concepts used in the implementation. In this chapter the

concepts will be divided into several sections regarding to the topic covered.

Chapter 3, I describe the embedded design hardware development and

environment then the software environment, respectively, used in this thesis. In

this chapter I also write the result of modified concept according to the

experiences in the laboratory. In Chapter 4, I provide the experimental data

measured with the partial final version of my hardware and software. Finally,

some concluding remarks and suggestions are given in Chapter 5. Support

materials and the source code of my programs are given in the appendix.

Distributed one..., Surya Darma, FMIPA UI, 2005

7

Basic Concepts
Systems Design & Assembly

This chapter introduces some terminology used in this document, provides

definitions of the distributed systems and how does it works, highlights several

important concepts, discusses how distributed system can be developed, and

“Prediction is very difficult, especially

about the future.”

Niels Bohr (1922)

Distributed one..., Surya Darma, FMIPA UI, 2005

8

Surya Darma, Distributed One ….., FMIPA UI, 2005

mentions applications that benefit from the distributed systems. And also the

fundamental of the embedded system involved.

2.1 Definition of A Distributed System.

A distributed system is a collection of independent computing devices that

appears to its users as a single coherent system. Computing devices can consist of

any type technology, any type of CPU, any computing power etc., as long as they

can communicate. The only requirement is that the individual computing nodes

are linked together in such a way, that the user sees a single coherent system. In

this experiment I use two types of embedded systems:

• A micro-controller board with an AVR ATmega90S8535 which provides a

1-wire interface through a single bi-directional I/O line and which is

connected to a TINI through a RS-232 serial interface.

• A TINI used as a bridging node, giving access to the AVR system through

Ethernet and having a 1-wire interface itself, to which a 1-wire

temperature sensor can be connected.

2.2 Distributed System Concepts

Even though all distributed systems consist of multiple CPUs, there are

several different ways the hardware can be organized, especially in terms of how

they are interconnected and how they communicate. In this section we will look

briefly at distributed system hardware in used, in particular, how the machines are

Distributed one..., Surya Darma, FMIPA UI, 2005

9

Surya Darma, Distributed One ….., FMIPA UI, 2005

connected together. Various classification schemes for multiple CPU computer

systems have been proposed over the years, but none of them have really caught

on and been widely adopted. For our purposes, we consider only systems built

from a collection of independent computing systems.

In Fig. 2-1, we divide all computing devices into two groups: those that

have shared memory, usually called multiprocessors, and those that do not,

sometimes called multicomputers. The essential difference is this: in a mul-

tiprocessor, there is a single physical address space that is shared by all CPUs. If

any CPU writes, for example, the value 44 to address 1000, any other CPU subse-

quently reading from its address 1000 will get the value 44. All the machines

share the same memory. In contrast, in a multicomputer, every machine has its

own private memory. After one CPU writes the value 44 to address 1000, if

another CPU reads address 1000 it will get whatever value was there before. The

write of 44 does not affect its memory at all. A common example of a

multicomputer is a collection of personal computers connected by a network.

P P P

P P P

(a) Bus system (b) Star system

Figure 2.1 Different basic organizations of processors and memories in

distributed computers systems.

M M M

M M M

Note: P = processor
M = memory

Distributed one..., Surya Darma, FMIPA UI, 2005

10

Surya Darma, Distributed One ….., FMIPA UI, 2005

2.2.1 1-Wire® Bus Technology

The 1-Wire® protocol, many years ago was originally designed for

communication with nearby devices on a short connection. One simple

application at the time was the way to add auxiliary memory on a single

microprocessor port pin. 1-Wire bus means of using only one line connection

to communicate with other device in addition to ground using the 1-Wire

protocol. Power supply also can be delivered in the same line (Figure 2.2).

This type of bus allows only one master and max 8 slaves attach on the one

line. Communication between master and slaves must follow the 1-Wire

protocol with a very strict timeslot
[02]

.

2.2.2 Embedded AVR AT90S8535 unit

In building the embedded systems for temperature measurements, we used

1-Wire technology developed by Dallas Semiconductors then processing it

with the low-power and low-cost AT90S8535 CMOS micro-controllers

produced by ATMEL. The AT90S8535 builds on the basis of the AVR RISC

architecture technology, run the instructions in the 1 MIPS per MHz which

makes it easy to optimize power consumption versus the processing speed
[03]

.

Central

Processing

Unit

Vcc

R

DS1920 DS1920

DS1920

Figure 2.2 1-Wire bus.

Distributed one..., Surya Darma, FMIPA UI, 2005

11

Surya Darma, Distributed One ….., FMIPA UI, 2005

Figure 2.3 shows the simple board connectivity of AT90S8535 with

supporting components. In this experiment, we deliver power on the 1-Wire

line instead of using the external power attaches directly to the sensor.

On the system, the 1-Wire bus placed on pin PC.0 of the micro-controller. To

give enough current feeding slaves, we provide the pull-up resistor attach on

bus.

The 1-Wire master then have to initiate signals to start communicates with

the slaves
[02]

. First master sends a reset pulse (480 µs low level signal) and

then slaves will respond with a presence signal (60 µs low level signal within

60 µs after the bus release by master). After completed the presence time slot,

master sends a ROM command which effectively addresses one or several

slave devices. The last on the sequence, master send the memory command to

access the information provide from the sensor.

To program the AVR, we use the CodeVisionAVR IDE which we

developed the software in C. The IDE provide all the library, header and

methods for AT90S8535 to communicate with the 1-Wire protocol. The

µµµµC

AVR

90S8535

DS1920

GND

DATA

5 V

4,7 ΩΩΩΩ

Figure 2.3 AVR system connectivity; DS1920 to micro-controller

Distributed one..., Surya Darma, FMIPA UI, 2005

12

Surya Darma, Distributed One ….., FMIPA UI, 2005

methods provide in the form of function which we can include it in our

program. The program will be provided in section 2.3.

2.2.3 The Tiny Networks Interface (TINI
TM

)

The TINI board model 390, commonly known as the DSTINI1 reference

board, is a complete TINI hardware reference design. The DSTINI1 is

currently available with either 512kB or 1MB of NV SRAM, in addition to

512kB of flash. It is available as a 72-pin SIMM module and is shown in

Figures 2.4
[04]

. The DSTINI1 module based on the DS80C390 processor,

which could run Java™ programs using the TINI 1.12 firmware. This module

can then be attach on the Eurocard (an extension to all peripheral its support).

By connecting them we get features consisted of the TCP/IP connectivity,

serial and parallel communications, SPI, CAN, I2C and iButton data logger.

Distributed one..., Surya Darma, FMIPA UI, 2005

13

Surya Darma, Distributed One ….., FMIPA UI, 2005

Figure 2.4 TBM 390 72-SIMM TINI (double side) [Courtesy of Dallas Semiconductor corp.].

Because of these feature availability we can use it as a server in collecting data

from several embedded systems.

The TINI diagram is shown in Figure 2.5 shows the overall architecture

block connectivity and it’s interfacing to outside world. The memory is loaded

with the kernel which includes the RTOS, TCP/IP Stack, JVM
TM

, and Java

program applications. On the other side, TINI is completed with the

availability of RTC which produce the exact time generated. The Ethernet

controller will give the conversion of the digital data into the right format of

internet protocol.

Figure 2.5 The TINITM diagram; internal block connectivity and outside interfacing. [Courtesy of Dallas Semiconductor corp.]

Distributed one..., Surya Darma, FMIPA UI, 2005

14

Surya Darma, Distributed One ….., FMIPA UI, 2005

We implement serial communication as the connection between the embedded

systems with the TINI. The serial have the protocol 8 data bits, 1 stop bit with

no parity at 9600 bps. AVR unit is listening to serial line until it receive the

letter S, then it detects the temperature and send the data with the iButton

string address to the TINI.

2.3 Software Concepts

Hardware for distributed systems is important, but it is software that

largely determines what a distributed system actually looks like. In this section we

provide the explanation of software concept implemented.

2.3.1 AVR core software

In recognizing the 1-Wire sensor the CodeVisionAVR provide the header

file 1wire.h, Ds1820.h, 90s8535.h, Stdio.h and Delay.h. Meanwhile the entire

search program is provided by sub unit library; Ds1820.lib and Stdio.lib. In

the other hand to arrange the sequence we put program surya.c. The C source

code will be discussed in this section, meanwhile header and library codes

provided in appendix A.

As a general idea of the software implemented by the CodeVisionAVR to

read the information on sensor, we provide the algorithm in the figure 2.6

below.

Distributed one..., Surya Darma, FMIPA UI, 2005

15

Surya Darma, Distributed One ….., FMIPA UI, 2005

Figure 2.6 Flowchart to read the information on the 1wire sensor.

In order to get the sequence of reading information within 1-Wire bus and

since the bus is connected to pin PC.0 on the board then the initialization of

port in used is arranged as follow:

.equ w1_port=0x15 //Port C

.equ w1_bit=0 //PC.0

The 0x15 determine the port C address at AT90S8535 which declare in the

header file 90s8535.h and bit 0 will refer to the PC.0 pin connection. In

adapting the properties of DS1920 which is the 1-Wire systems, we are using

the same configuration of DS18B20 definition file (Appendix A). These

properties then hook up into the program by putting “#include <ds1820.h>”.

 Inside the header ds1820 declared the Dallas Semiconductor DS1820 1-

Wire bus functions; w1_init(), w1_write(), w1_read(), w1_search(),

ds_1820_select(), w1_dow_crc8, w1_search(), etc. In the header, author

classified the function in the specific family code. Since this header is only

provide information for family of 0x10 then the use ROM command will be

Reset signal Detect Presence signal
Send Search ROM

Command

Put all information received

in the register (R16 – R21)

and pointing address

Send Search ROM

Command
Send Reset signal

Send Match ROM

Command

Read/Write signal to

read information

Verify information, get the

CRC information

Convert the data

(Data computation)

Save data in regular data

register.

Distributed one..., Surya Darma, FMIPA UI, 2005

16

Surya Darma, Distributed One ….., FMIPA UI, 2005

more efficient. In regard to access the data then we have to search for the 9

ROM code sequences then write it in the buffer and recognize the sensor from

the first 8 bytes. The search process shown as a partial program follows:

devices = w1_search(SEARCH_ROM,&rom_code[0][0]);

printf("%u device(s) found\n\r",devices);

for (i=0;i<devices;i++){

 printf("Dallas #%u serial number:",n++);

 for (j=1;j<=8;j++)

 printf("%02X",rom_code[i][j]);

 printf("\n\r"); };

This program intends to recognize the family number or the serial number that

lasered into the sensor semiconductor. In the first line we put the search

method (which is included in the header file) for detecting the code for the

ROM initialization to recognize the family or the device number and we make

the looping procedure to locate if there are a number of other 1-Wire sensors.

The printf command will print the result at the standard output every 1-Wire

sensor detected in the bus connection.

 In detecting the temperature measurements from sensor we used the

program as shown below:

while (1)

 {

 for (i=0;i<devices;i++)

 {

temp=ds1820_temperature_10(&rom_code[i][0]);

 j='+';

 if (temp<0)

 {

 j='-';

 temp=-temp;

 };

 printf("t%u=%c%i.%u\xdfC",++i,j,temp/10,temp%10);

 delay_ms(800);

 };

 };

Distributed one..., Surya Darma, FMIPA UI, 2005

17

Surya Darma, Distributed One ….., FMIPA UI, 2005

We make loop for every devices to print out the measurements readings. We

have also put the minus sign if the reading of temperature is less than zero

which is done by checking the temp variable where the temperature data is

stored. We put delay of 0.8 second in order to get good reading for each

iteration. If we put the delay less than 0.5 second, we sometimes gain an error

measurement reading.

2.3.2 TINI® kernel

In order to get the TINI® running, we need some requirements before

using it. First of all we need to download the kernel as a bootloader of this

device. To be able downloading this lootloader we will need the java

environment which in this case we are using Java development environment

1.5.0_05 with netbeans Beta5.0, the Java Communications API, and the TINI

SDK on the personal computer. The steps required for installing the TINI

JavaRuntime Environment depend on the hardware and firmware versions

chosen.

After configuring the PATH and CLASSPATH, then install all the

equipments as it shown in the figure 2.7 and run the JavaKit from the tini1.1x.

Distributed one..., Surya Darma, FMIPA UI, 2005

18

Surya Darma, Distributed One ….., FMIPA UI, 2005

Figure 2.7 TINI connection to PC in downloading the slush

In JavaKit, we select the COM port which will be used for the serial I/O. Then

we have to select the speed as 115200 as shown in figure 2.8. Press the OPEN

PORT button as it mention in figure 2.8.

Figure 2.8 The JavaKit environment display.

Distributed one..., Surya Darma, FMIPA UI, 2005

19

Surya Darma, Distributed One ….., FMIPA UI, 2005

The next step we should press the RESET button when it becomes enabled.

This sends a reset signal to the TINI Board. The reset circuitry of the TINI

Board is connected to the DTR signal of the RS232 cable. By pressing reset,

JavaKit generates a short pulse on the DTR line so that the board is going into

the power on reset internal procedure. This procedure starts the "loader" that

allows us to communicate with the board and download the firmware. In the

text area above a prompt should appear along with the words:

 TINI loader 05-15-00 17:45

 Copyright (C) 2000 Dallas Semiconductor. All rights reserved.

 >

Go up to the FILE menu above and select LOAD. Load the following

file: %TINI_HOME%\bin\tini.tbin. There is no need to change banks first.

The file has the bank information embedded in it. It should report the bank(s)

it was loaded in. This will take several seconds.

Next, clear the heap by doing the following:

 b18 //changes to bank 18

 f0 //fills bank 18 with 0's, effectively erasing it

Select FILE/LOAD one more time and load the following

file: %TINI_HOME%\bin\slush.tbin. If everything is loaded correctly, type 'e'

to execute. Then we will see output similiar to:

 ----> TINI Boot <----

 TINI OS 1.01

 API Version 8006

 Copyright (C) 1999, 2000 Dallas Semiconductor Corporation

 01000000

 Doing First Birthday

 Memory Size: 07E600

 Addresses: 181A00,200000

 Skip List MM

 L01

Distributed one..., Surya Darma, FMIPA UI, 2005

20

Surya Darma, Distributed One ….., FMIPA UI, 2005

 Running POR Code

 Memory POR Routines

 000020

 Transient block freed: 0000, size: 000000

 Persistant block freed: 0000, size: 000000

 KM_Init Passed

Ethernet MAC Address Part Found

 TTS Revision: 154 , Date: 7/19/00 3:13p

 Thread_Init Passed

 External Serial Port Init

 External serial ports not enabled

 Memory Available: 075F00

Creating Task:

 0100

 01

 Loading application at 0x070100

 Creating Task:

 0200

 02

 Application load complete

 [-= slush Version 1.01 =-]

 [System coming up.]

 [Beginning initialization...]

 [Not generating log file.] [Info]

 [Initializing shell commands...] [Done]

 [Checking system files...] [Done]

 [Initializing and parsing .startup...]

 [Initializing network...]

 [Network configurations not set.] [Skip]

 [Network configuration] [Done]

 [System init routines] [Done]

 [slush initialization complete.]

 Hit any key to login.

 Welcome to slush. (Version 1.01)

 TINI login: root

 TINI password:

 TINI />

There are two default accounts on this revision of slush, 'guest' with the

password 'guest' and 'root' with the password 'tini'.

Distributed one..., Surya Darma, FMIPA UI, 2005

21

Surya Darma, Distributed One ….., FMIPA UI, 2005

On DS80C390-based TINI systems, the boot loader program occupies all

of bank 0 (address range 0 to 10000h). Loading the 1.14 firmware then

consists of loading the files tini.tbin and slush.tbin. The file tini.tbin loads the

TINI firmware and core API from address 10000h to address 70000h. The file

slush.tbin loads the slush application from address 70100h to address 80000h.

The 100h bytes in between the end of the tini.tbin file and the start of the

slush.tbin file is reserved for flash preservation of network configuration

information, such as in conjunction with Slush’s “ipconfig –C” command.

2.3.3 Java implementation in TINI®

 In performing specific task in TINI as a bridging and temperature

measurement system, we need to develop our own program. Since the system

has to communicate between serial ports to the AVR and then send the

information through the Ethernet socket, so we have to make the data read

from serial line and put it in buffer and then send it from socket connection.

We provide the algorithm used in the main java program and follow by some

explanation of it. The full source code is available at the Appendix B.

Distributed one..., Surya Darma, FMIPA UI, 2005

22

Surya Darma, Distributed One ….., FMIPA UI, 2005

Figure 2.9 Flowchart of java program implemented in TINI.

In figure 2.9 first, the program should be run as a background from the slush

with the arguments of port that used to communicate <java Temperature.tini

50 &>. Then we activate the program at the PC side which at the background

telnet the TINI passing the arguments <telnet tini 50>. By this signal, then

TINI sends the activation letter S to AVR. The AVR communicates to the

sensor and takes the temperature information to be sent to TINI through serial

ports. TINI which listen to the serial will receive the data and try to send the

information through socket. The data which reach the PC will be directed to

database. Java program at the PC can execute the query data into a graphical

display.

TINI listen to the
socket, waiting

information from PC

TINI sends an S letter to
serial port initiate AVR to
detect sensor and take

temperature information

SerialComm ct = new SerialComm();
ct.run();

public void run(){ …
OutputStream os = sp.getOutputStream();
 byte tes = 'S' ;
 os.write(tes) ;
….}

TINI listen to serial port
receiving sensor address

and temperature

information

try {
InputStream in = sp.getInputStream();
 int num = in.read(data);
 } catch (IOException e) {
 System.exit(1);

}

TINI send the
information through
Ethernet socket

try {
ServerSocket s;
 s = new ServerSocket(50);
PrintWriter bos;
bos.println(address + " " +""+ new Date()
+ " " + suhu +"");
 } catch (Exception e){
System.out.println("GOT AN EXCEPTION

= " + e.getMessage());}

Distributed one..., Surya Darma, FMIPA UI, 2005

23

Surya Darma, Distributed One ….., FMIPA UI, 2005

2.4 Debugging

 In order to get the system working, we have to be sure that every part of

the system is working, before they placed into integration. For the embedded

AVR system, we connect the board with the serial port of the PC. On the PC, we

run the minicom open source software written by Miquel van Smoorenburg 1991-

1995 for serial communication. This minicom has the same functions as the

hyperterminal at windows operating system. After the connection established we

send the letter S from the minicom and then waiting for the respons. Once we

have the response we got the string address of the iButton and the temperature

reading.

 On TINI side we also connect the serial port of the TINI (serial port when

used in loading the slush) to the PC with a null modem cable without connection

at pin 4 (DB9). This pin 4 absence will not disturb the DTR signal at the TINI side

which can cause TINI to restart. Before we get any information on the serial line

we have to activate java program in TINI by typing “java Temperature.tini 50 &”.

At the PC, we should telnet the TINI by typing “telnet tini 50”. Then the PC serial

should receive the letter S send by TINI. After the letter S has appears we can type

22 characters which are 16 characters of simulated string address, 1 character

space bar, 4 digits of simulated temperature measurements and enter (\r). Once the

TINI have this information, it will directly send the information with the

timestamp given from TINI. If we lose the data at each step, then we have to see

Distributed one..., Surya Darma, FMIPA UI, 2005

24

Surya Darma, Distributed One ….., FMIPA UI, 2005

the signal at the serial line using the oscilloscope whether there is something

happen or not when we sending or receiving the data.

Distributed one..., Surya Darma, FMIPA UI, 2005

25

Distributed System

Architecture

In the previous chapter, we have discussed all aspects of the fundamental

concepts of distributed system used in this experiment: the information of

hardware and the appropriate software concepts used. In this chapter, we focus on

the architecture systems and its connectivity to the database. 1-Wire temperature

“A system must be programmed to

perform tasks. Different tasks require

different programs.”

Cay Horstmann (Comp.Concepts)

Distributed one..., Surya Darma, FMIPA UI, 2005

26

Surya Darma, Distributed One ….., FMIPA UI, 2005

measurement concept implemented into embedded systems design which the data

will be sent through serial communication to the server. The sequence in getting

the data will be described. On the embedded server side (TINI®), the Java

program give access to the incoming data through serial port, then process and

display it onto the monitor whenever a call program run by the PC. During the

way to display it to user, the data then converted to TCP/IP format by the Ethernet

controller which makes it accessible remotely.

3.1 System Overview

Several ways have been proposed to improve the use of electronics

equipments in a group. The most prominent way to group electronics devices, i.e.

computer or TCP/IP basis is to use the wide connection of the internet. But in fact,

to connect electronic devices to the internet line is not an easy task to do. In this

thesis we report the use of TINI as a bridge the legacy embedded systems to the

internet access. In Figure 3.1 we designed the remote monitoring temperature

measurements.

ΦΦΦΦ
Physical quantity:

Temperature

AT90S8535 basis
embedded systems

TINI

TCP/IP

Network

Ethernet

Figure 3.1 System overview; system design and assembly (with box)

Serial

comm

1-Wire® bus

1-Wire® bus

Distributed one..., Surya Darma, FMIPA UI, 2005

27

Surya Darma, Distributed One ….., FMIPA UI, 2005

The physical quantity measured with the sensor DS1920 (which recognize

as iButton
TM

) using the 1-wire protocol. The processor has to be able in searching

each ROM value of the device to get the specific identification number of each

sensor which will be attach on the data send, to distinguish where the information

come from. On this system there are two iButtons located, first at the AVR board

which attach to the port C (PC.0) and the second attach on the TINI board. The

AVR board then sends the temperature reading with the identification number of

iButton will be forward to the PC plus timestamp. TINI itself collect the

temperature reading from its board and send the same information into PC. In PC

both information will be recorded in the same database with distinguish from

iButton’s identification numbers. Then java program at PC with a specific query

can plot the measurement result in a graphical mode.

3.2 Database

 Temperature measurement system intends to make a long record duration

of temperature change. Usually for getting a precise interpretation from the data, it

needs to use a small time interval in between the data which usually difficult to

observe. To take over this problem we use database. The database records every

measurement done by TINI and AVR board. To distinguish the data between both

data, we differentiate them using the iButton string address identification. The

database consists of fields which are date, time, identification number (ID) and

temperature reading. In order to get the data of temperature reading and

Distributed one..., Surya Darma, FMIPA UI, 2005

28

Surya Darma, Distributed One ….., FMIPA UI, 2005

identification, a sequence of action should be performed which take data into

database from specific system. In the following we describe the communication

system and it’s relational with database.

Figure 3.2 Database connectivity

 On figure 3.2 we can observe the PC stands as a user interface. The user

then run the java program we developed [Appendix B]. To run the program we

have to type <java Tini_Client> at the console terminal. Then at screen the output

user interface will appear as shown in figure 3.3.

Figure 3.3 User interface for remote measurements

Interface
at host
computer

TINI2
Ethernet

TINI1

Database

AVR

Distributed one..., Surya Darma, FMIPA UI, 2005

29

Surya Darma, Distributed One ….., FMIPA UI, 2005

To start access the data, we have to make sure the program in TINI® already

activated. Then we have to initiate the interval needed that the data will be

taken, in this regards we limit the interval cannot be lower than 60 seconds.

This is only our limitation, not an aspect of hardware limitation. Once we have

finished, by pressing start we connect into database and ready to fill every

field that have made before. On the next step, java runs the telnet program to

open a session with TINI and passing the port information onto it, which

trigger the java program on TINI to collect the information. This information

then forward by TINI to PC during the telnet session and close it after last

information transfer is finished. Meanwhile in the java program timer has been

activated. It will count for the duration of interval that we inputted in the user

interface. After timer reach the value given then the telnet session being

activated once more. It will collect the data as it is happen before. This

program will last forever if there is no disturbance or interrupt given into PC

or systems. To close the connection, simply press the button at the top right

corner of the user interface.

3.3 System Integration

 So far we have described all parts as a partial stand alone system which we

debug it solely using the PC. In this section we describe the integration process of

combining the partial elements into the whole system. As discussed before, the

entire system will look like shown in the figure 3.1. To get the entire idea of this

X

Distributed one..., Surya Darma, FMIPA UI, 2005

30

Surya Darma, Distributed One ….., FMIPA UI, 2005

system we provide a flowchart of total process in figure 3.4. In the flowchart

shown that the initialization of partial system happened in each device itself. It

means the process has to be done separately and independent program from the

program running on PC.

Figure 3.4 Flowchart of the overall process

Open a terminal

<java Tini_Client>

Input interval (S)

Start

Connect into database

Telnet to TINI®

Open a session

Listening to socket

Waiting for data (?)

Open a terminal

<java Temperature.tini 50 &>

No

Listening to socket

Waiting for data (?)

Sending ‘S’

to serial line

Listening to serial line

Is there any data?

No

Send ID, Timestamp, Date

and Time to socket from AVR

Yes

Yes

Close telnet

Input data into
database, auto
increment fields.

Activate timer

Send ID, Timestamp, Date

and Time to socket from TINI

Initialization

Port and SP

Listening to serial

Port (?)

Reading ID and
temperature value

Send ID & Temp value

to serial port

No

Yes

No

Distributed one..., Surya Darma, FMIPA UI, 2005

31

Surya Darma, Distributed One ….., FMIPA UI, 2005

 On the connection, the only database use is TINI_DB, since it is already

declared in the program. If we want to put the new data into different database

that one should change it in the source code. These processes are in series,

therefore the time to run process will be slower than it should be. This is because

of the different cycling time among processors. This phenomenon will also occur

in the result data.

3.3.1 Embedded unit integration

 In the figure 3.5 below, we can see that both serial connections directly

connected. On the section 2.4, we debug the TINI with the null modem

configuration cable to PC, meanwhile in the design we only connect TxD,

RxD and ground pin.

This design is compatible with TINI, by the absence of others pin just give us

no problem. We don’t have to worry about the reset of TINI although we are

using the serial0 line to it.

Figure 3.5 AVR – TINI connection

1-Wire Bus

µµµµC

AT90S8535

MAX

232

DB9

Connector

5 V

GND

DCE

Port

TINI®

Distributed one..., Surya Darma, FMIPA UI, 2005

32

Results and Analysis

 So far we have seen the hardware and software construction of the

distributed systems adapted in this experiment. To be consistent with the goal of

this research, which is building a system consisted of subsystems that working as

a single coherent system, - then we have to evaluate the result produced by the

systems. Therefore in this chapter, we provide the data/information obtained from

“A place for everything and everything

in its place”

Samuel Smiles (1812-1904)

Distributed one..., Surya Darma, FMIPA UI, 2005

33

Surya Darma, Distributed One ….., FMIPA UI, 2005

entire system. In this chapter we also should see the reliability of the system when

the application used for long time, the consistence of the result and the analysis

regarding to the information. Also we will see the probability of error that

unpredictable in organizing the program used.

4.1 Output of the System

 In the user interface we monitor the input output process through the

buffer reader that displayed on the right boxes shown in figure 4.1.

Figure 4.1 Java I/O monitor dialog (with sign) on PC

From this dialog box, we can locate the problem which might occur during the

communication between PC and embedded system. If the buffer reader

(information in the red blocks) cannot get access to information then we can

Button menu

New data
added

Date, time and ID from TINI Interval between data

Database display for
monitoring

Distributed one..., Surya Darma, FMIPA UI, 2005

34

Surya Darma, Distributed One ….., FMIPA UI, 2005

assume that the problem should be on the embedded systems. In this regard, we

can trace the output of the AVR or TINI machine independently. On the left

dialog box (with the blue box), we can find all control panels for accessing the

temperature measurements and databases. Also in this dialog box we will get the

next time plot for taking new data from the TINI where the time is read also from

the timestamp sent by TINI. The next time plot is incremented according to the

time interval that we inputted. On the left of that box we will find the number of

new data added into the database. This feature is intended to show the cumulative

of new data to be compared to whatever number of data we need. On the bottom

of the user interface we can see the database display of entry data. We can scroll

the data to see the newest and oldest data available. In this experiment, we did

temperature measurements at two point of interest. The first measurement was

indoor measurement which its temperature influences by the old version air

conditioner (without temperature control) and the second measurement was

outdoor temperature measurement. Also to be consistent with the temperature

measurements, we provide the comparison data with the old style standard

temperature measurement system (thermometer Hg).

4.1.1 The indoor temperature measurement

The indoor temperature measurement is done at the Instrumentation and

Control Laboratory (LINK), 4th floor of the Department of Physics University

of Indonesia. This system is then activated for the duration of 72 hours and

the timeslot inputted into system is 60 seconds. So the total of the temperature

measurement will approximately 4000 data. To give a simple interpretation on

Distributed one..., Surya Darma, FMIPA UI, 2005

35

Surya Darma, Distributed One ….., FMIPA UI, 2005

the data, we then presented the data in a graphical format as shown in figure

4.2. Since it is too many data presented on the graphics then the axis indicator

are overlapped. In order to have a nice graphics, we can easily change the

iteration number to be displayed in the source code. But if we interest in a

specific area, we can point to it and see the number of the data entry which we

can see other properties of it in the database.

Figure 4.2 Indoor temperature measurement data

From the result at the graphics, we can easily understood that the temperature

drops indicate that the day is changing become night which usually colder that

daylight. On the peak range around 29
o
C, indicating that the room temperature

is somehow influence by a factor which is in our record this happened because

of the air conditioner is off and the system in the beginning of it used. The

Distributed one..., Surya Darma, FMIPA UI, 2005

36

Surya Darma, Distributed One ….., FMIPA UI, 2005

system was on for the duration of four hours at that time and then crash in the

system because of IP conflict, and then in the morning we trace the problem

which we can manage to make the system running again. This is why we get

the value which is the differences is too high. By this measurement, we can

see that during the daylight we will have the temperature around 23 – 24
o
C,

meanwhile for the night we will have the temperature around 17 – 19
o
C

depending on the weather during the day.

4.1.2 The outdoor temperature measurement

Since the indoor temperature measurement is to do, it is a different concept

with the outdoor temperature measurement. This is because of the security

problem. To maintain indoor measurement is not difficult. We just installed

them and let them run accordingly. But for outdoor temperature measurement

we need to be on the site for the duration of the measurement. Other factor

also we have to count that, the possibility of other physical quantity which

influence the system, the most frequently disturb the system is the wind and

direct heating from the sun.

As a result of this measurement, we plot the measurement taken on Dec

15
th

 2005 23 pm until Dec 16
th

 2005 5.45 am, as shown in figure 4.3. This

measurement is to accomplish the previous measurements during the daylight.

From this measurement we can see that the temperature around the UI Depok

campus is roughly around 29 – 31
o
C. Meanwhile in the daylight the

temperature is roughly around 33 - 34
 o

C. But it is also depend on the weather

is it rain, windy or not.

Distributed one..., Surya Darma, FMIPA UI, 2005

37

Surya Darma, Distributed One ….., FMIPA UI, 2005

Figure 4.3 Outdoor temperature measurement data

Since the data of outside temperature measurement influence by other factors,

we cannot see the pattern of the temperature change in only one day data.

Figure 4.4 A few numbers of outdoor temperature measurement data

Distributed one..., Surya Darma, FMIPA UI, 2005

38

Surya Darma, Distributed One ….., FMIPA UI, 2005

To be able to get a right interpretation on this, we should try a longer duration

of measurements once we have the safe place to put all the equipments to

install.

4.2 System Test

 During the measurement, we faced that the system is relatively good. The

data taken by the system are stable. The connection method by the telnet

connection is very good, since the connection will last until the data is reached. It

is shown by the periodically data taken by the system during the same period.

When the timer counts, there is no need to access the network. Also when a telnet

session is broken then the system will create a new telnet session after the interval

of time counted. As a whole datalogger, the system is used for a long period of

data measurement; means that some missing data still can be neglected. The

available data still can be interpreted nicely.

 The data integrity is also in a considerable range. It is because the TINI is

a good modular system and the RTC inside the TINI module is quite precise. We

can see these phenomena from the error in timestamp which occurs during the

measurements; we believe that for the temperature measurements system this

thesis experiment can still be adapted. Even though we can see a second change

happened in the measurements, but it did not much differentiate the time plot we

planned. For example, in the figure 4.5 we can locate a one second change

timestamp for the duration of fifteen hours measurements. But sometimes it just

can get back to the previous value before it come into a new permanent timestamp.

Distributed one..., Surya Darma, FMIPA UI, 2005

39

Surya Darma, Distributed One ….., FMIPA UI, 2005

Figure 4.5 Timestamp integrity

 Other data we had, we can counted 10 seconds change in timestamp for

period of four days measurements.

4.3 Error Analysis

 In this section, we compare our measurements data with the thermometer

Hg reading. Since the minimum scale on the thermometer is 0.5
o
C, then we get

the same resolution between our temperature measurement system and the

calibrator. In figure 4.6 shown that the relationship requires the equation of

y = 0.8943x + 3.2252 with the coefficient correlation of 0.8306 between our

system compare to the calibrator, which means we have a faulty measurement

around 16.94%. The temperature measurement system detected by the DS19B20

sensor has an integrated chip including the signal conditioning which relatively

give an accurate measurement in a stable condition. A simple test has done to

Consistent
timestamp

Distributed one..., Surya Darma, FMIPA UI, 2005

40

Surya Darma, Distributed One ….., FMIPA UI, 2005

observe the response of the old thermometer which shows it has a slow transition

measurement reading. In the experiment, we obtain the time response from the

29.0
o
C to 29.5

o
C in the range of three to ten seconds for the calibrator.

Meanwhile for our system, the transition will need about maximum three seconds.

In respect to these data we believe that our measurement system is better than the

calibrator.

Temperature Measurement vs Temperature Calibrator

y = 0.8943x + 3.2252

R
2
 = 0.8306

28.5

29

29.5

30

30.5

31

31.5

28.5 29 29.5 30 30.5 31 31.5

Temperature Measurement (Celcius)

T
e
m

p
e
ra

tu
re

 C
a
li
b

ra
to

r
(C

e
lc

iu
s
)

Figure 4.6 Temperature measurements versus Temperature Calibrator

Distributed one..., Surya Darma, FMIPA UI, 2005

41

Conclusions and

Future Works

 In the previous chapters we have seen the experiments prepared to set up a

distributed temperature measurements. Also we have seen what sort of

equipments we need, the method adapted, the software and hardware

“Finally, in conclusion, let me say just

this.”
P. Sellers (1925-1980)

Distributed one..., Surya Darma, FMIPA UI, 2005

42

Surya Darma, Distributed One ….., FMIPA UI, 2005

implementation, the data obtain, error and analysis might occurs during the

process. In this chapter as it is the last part of this book, we conclude the

experiments set up and the implementation. We also give some remarks that might

be useful for further improvements for the next experiments.

 As we can see from the explanation that the architecture proposed can be

considered as a simple distributed measurements system. We can get a good and

consistent temperature reading using the 1-Wire iButton temperature sensor to

observe the change in the big environment. Since the response of the iButton is a

little bit slow around 3 seconds, than we are not recommending it to be used in a

critical application. But somehow the sensor can be very useful for a moderate

measurement. According to the physical sensor makes we believe that the

reliability measurement of the system can be gained in a rough environment. But

it is still need to be installed in a good packaging for certain environments.

 In the next experiments, we hope that we can focus on the architecture:

which fit the best for certain applications and which method is efficient to use?

We also suggest using several of sensors to search which one fit and best for some

range of requirements of temperature measurements. Also the power supplies

suppose to be stable and good with no much flicker when powering the systems.

Distributed one..., Surya Darma, FMIPA UI, 2005

43

REFERENCES

[01]. Andrew S. Tanenbaum, Maarten van Steen, Distributed Systems: Principles

and Paradigms, International Edition, Prentice Hall – Pearson Education

International, New Jersey 07468, 2002.

[02]. The AVR318, Dallas 1-Wire® master, ATMEL Application Note, Rev:

2579A-AVR-09/04

[03]. The AT90S8535 Datasheets, ATMEL Supporting CD, 2002.

[04]. the TINI Guide, Dallas Semiconductor – MAXIM, Ref. 0; 7/04, 2004

[05]. B. Hancock, Designing and Implementing Ethernet Networks, New York:

Wiley, 1993.

[06]. P. Arpaia, F. Cennamo, P. Daponte, and M. Savastano, A distributed

laboratory based on object-oriented systems, Measurement, vol 19, pp.207-

215, 1996.

[07]. G. Fortino, D. Grimaldi and L. Nigro, Distributed measurement patterns

based on Java and web tools, Proc. IEEE Autotestcon, pp.624-628, 1997.

[08]. M. Bertocco, F Ferraris, C. Offelli and M. Parvis, A client-server

architecture for distributed measurement systems, IEEE Trans. Instrum.

Meas., vol. 47, pp 1143-1148, Oct 1998.

[09]. G. Held, Ethernet Networks: Design, Implementation, Operation,

Management, 3
rd

 ed. New York: Wiley, 1998.

[10]. A. Ferrero and V. Piuri, A simulation tool for virtual laboratory experiments

in a WWW environment, IEEE Trans. Instrum. Meas., vol. 48, pp 741-746,

June 1999.

[11]. G. Bucci and C.Landi, on-line digital measurement for the quality analysis

of power systems under nonsinusoidal conditions, IEEE Trans. Instrum.

Meas., vol 48, pp 853-857, Aug 1999.

[12]. L. Benetazzo, M. Bertocco, F. Ferraris, A. Ferrero, C. Offelli, M. Parvis, and

V. Piuri, A web-based distributed virtual laboratory, IEEE Trans. Instrum.

Meas., vol. 49, pp 349-356, No. 3, Apr. 2000.

Distributed one..., Surya Darma, FMIPA UI, 2005

44

Surya Darma, Distributed One ….., FMIPA UI, 2005

[13]. D. Buhler, W. Kuchlin, G. Grubler, and G. Nusser, The virtual automation

lab-web based teaching of automation engineering concepts, in Proc.

Computing Based Systems (ECBS), pp.156-164, Apr. 2000.

[14]. T. Saito, I. Tomoda, Y. Takabatake, K. Teramoto, and K. Fujimoto,

Gateway technologies for home network and their implementations, in Proc.

Workshop Distributed Computing System (DCS), pp.175-180, Apr. 2001.

[15]. G.Bucci and C. Landi, A Distributed Measurement Architecture for

Industrial Applications, IEEE Trans. Instrum. Meas., vol. 52, pp 165-174,

No. 1, Feb 2003.

[16]. F. Pianegiani, D. Macii, and P. Carbone, An Open Distributed Measurement

System Based on an Abstract Client-Server Architecture, IEEE Trans.

Instrum. Meas., vol. 52, pp 686-692, No. 3, June 2003.

[17]. A. Ferrero, S. Silicone, C. Bonora and M. Parmigiani, ReMLab: A Java-

Based Remote, Dicdactic Measurement Laboratory, IEEE Trans. Instrum.

Meas., vol. 52, pp 710-715, No. 3, June 2003.

Distributed one..., Surya Darma, FMIPA UI, 2005

45

Appendix

A

Distributed one..., Surya Darma, FMIPA UI, 2005

46

Surya Darma, Distributed One ….., FMIPA UI, 2005

The ds1820 library file (ds1820.lib)

#define DS1820_SEARCH_ROM_CMD 0xf0

#define DS1820_ALARM_SEARCH_CMD 0xec

#include <delay.h>

#if funcused ds1820_read_spd || funcused ds1820_select || funcused

ds1820_temperature_10 || funcused ds1820_set_alarm

unsigned char ds1820_select(unsigned char *addr)

{

unsigned char i;

if (w1_init()==0) return 0;

if (addr)

 {

 w1_write(0x55);

 i=0;

 do

 w1_write(*(addr++));

 while (++i<8);

 }

else w1_write(0xcc);

return 1;

}

#endif

#if funcused ds1820_read_spd || funcused ds1820_temperature_10 || funcused

ds1820_set_alarm

unsigned char ds1820_read_spd(unsigned char *addr)

{

unsigned char i;

unsigned char *p;

if (ds1820_select(addr)==0) return 0;

w1_write(0xbe);

i=0;

p=(char *) &__ds1820_scratch_pad;

do

 *(p++)=w1_read();

while (++i<9);

return !w1_dow_crc8(&__ds1820_scratch_pad,9);

}

#endif

#if funcused ds1820_temperature_10

int ds1820_temperature_10(unsigned char *addr)

{

if (ds1820_select(addr)==0) return -9999;

w1_write(0x44);

delay_ms(550);

if (ds1820_read_spd(addr)==0) return -9999;

w1_init();

return (((int)__ds1820_scratch_pad.temp_msb<<8)|

 __ds1820_scratch_pad.temp_lsb)*5;

}

#endif

#if funcused ds1820_set_alarm

unsigned char ds1820_set_alarm(unsigned char *addr,signed char temp_low,signed

char temp_high)

{

if (ds1820_select(addr)==0) return 0;

w1_write(0x4e);

w1_write(temp_high);

w1_write(temp_low);

if (ds1820_read_spd(addr)==0) return 0;

if ((__ds1820_scratch_pad.temp_low!=temp_low) ||

 (__ds1820_scratch_pad.temp_high!=temp_high)) return 0;

if (ds1820_select(addr)==0) return 0;

w1_write(0x48);

delay_ms(15);

return w1_init();

}

#endif

Distributed one..., Surya Darma, FMIPA UI, 2005

47

Surya Darma, Distributed One ….., FMIPA UI, 2005

The 1wire headers file (1wire.h)

/*

 CodeVisionAVR C Compiler

 (C) 1998-2000 Pavel Haiduc, HP InfoTech S.R.L.

 Prototypes for Dallas Semiconductor

 1 Wire protocol functions

 BEFORE #include -ING THIS FILE YOU

 MUST DECLARE THE I/O ADDRESS OF THE

 DATA REGISTER OF THE PORT AT WHICH

 THE 1 WIRE BUS IS CONNECTED AND

 THE DATA BIT USED

 EXAMPLE FOR PORTB:

 #asm

 .equ __w1_port=0x18

 .equ __w1_bit=3

 #endasm

 #include <1wire.h>

*/

#ifndef _W1_INCLUDED_

#define _W1_INCLUDED_

#pragma used+

unsigned char w1_init(void);

unsigned char w1_read(void);

unsigned char w1_write(unsigned char data);

unsigned char w1_search(unsigned char cmd,void *p);

unsigned char w1_dow_crc8(void *p,unsigned char n);

#pragma used-

#endif

The at90s8535 headers file (90s8535.h)

// I/O registers definitions for the AT90S8535

#ifndef _90S8535_INCLUDED_

#define _90S8535_INCLUDED_

#pragma used+

sfrb ADCL=4;

sfrb ADCH=5;

sfrw ADCW=4; // 16 bit access

sfrb ADCSR=6;

sfrb ADMUX=7;

sfrb ACSR=8;

sfrb UBRR=9;

sfrb UCR=0xa;

sfrb USR=0xb;

sfrb UDR=0xc;

sfrb SPCR=0xd;

sfrb SPSR=0xe;

sfrb SPDR=0xf;

sfrb PIND=0x10;

sfrb DDRD=0x11;

sfrb PORTD=0x12;

sfrb PINC=0x13;

sfrb DDRC=0x14;

sfrb PORTC=0x15;

sfrb PINB=0x16;

Distributed one..., Surya Darma, FMIPA UI, 2005

48

Surya Darma, Distributed One ….., FMIPA UI, 2005

sfrb DDRB=0x17;

sfrb PORTB=0x18;

sfrb PINA=0x19;

sfrb DDRA=0x1a;

sfrb PORTA=0x1b;

sfrb EECR=0x1c;

sfrb EEDR=0x1d;

sfrb EEARL=0x1e;

sfrb EEARH=0x1f;

sfrw EEAR=0x1e; // 16 bit access

sfrb WDTCR=0x21;

sfrb ASSR=0x22;

sfrb OCR2=0x23;

sfrb TCNT2=0x24;

sfrb TCCR2=0x25;

sfrb ICR1L=0x26;

sfrb ICR1H=0x27;

sfrw ICR1=0x26; // 16 bit access

sfrb OCR1BL=0x28;

sfrb OCR1BH=0x29;

sfrw OCR1B=0x28; // 16 bit access

sfrb OCR1AL=0x2a;

sfrb OCR1AH=0x2b;

sfrw OCR1A=0x2a; // 16 bit access

sfrb TCNT1L=0x2c;

sfrb TCNT1H=0x2d;

sfrw TCNT1=0x2c; // 16 bit access

sfrb TCCR1B=0x2e;

sfrb TCCR1A=0x2f;

sfrb TCNT0=0x32;

sfrb TCCR0=0x33;

sfrb MCUSR=0x34;

sfrb MCUCR=0x35;

sfrb TIFR=0x38;

sfrb TIMSK=0x39;

sfrb GIFR=0x3a;

sfrb GIMSK=0x3b;

sfrb SPL=0x3d;

sfrb SPH=0x3e;

sfrb SREG=0x3f;

#pragma used-

// Interrupt vectors definitions

#define EXT_INT0 2

#define EXT_INT1 3

#define TIM2_COMP 4

#define TIM2_OVF 5

#define TIM1_CAPT 6

#define TIM1_COMPA 7

#define TIM1_COMPB 8

#define TIM1_OVF 9

#define TIM0_OVF 10

#define SPI_STC 11

#define UART_RXC 12

#define UART_DRE 13

#define UART_TXC 14

#define ADC_INT 15

#define EE_RDY 16

#define ANA_COMP 17

#endif

Distributed one..., Surya Darma, FMIPA UI, 2005

49

Surya Darma, Distributed One ….., FMIPA UI, 2005

The delay headers file (Delay.h)

// CodeVisionAVR C Compiler

// (C) 1998-2000 Pavel Haiduc, HP InfoTech S.R.L.

#ifndef _DELAY_INCLUDED_

#define _DELAY_INCLUDED_

#pragma used+

void delay_us(unsigned int n);

void delay_ms(unsigned int n);

#pragma used-

#endif

The 1820 headers file (Ds1820.h)

#ifndef _DS1820_INCLUDED_

#define _DS1820_INCLUDED_

#include <1wire.h>

#define DS1820_FAMILY_CODE 0x10

#pragma used+

struct __ds1820_scratch_pad_struct

 {

 unsigned char temp_lsb,temp_msb,

 temp_high,temp_low,

 res1,res2,

 cnt_rem,cnt_c,

 crc;

 } __ds1820_scratch_pad;

unsigned char ds1820_select(unsigned char *addr);

unsigned char ds1820_read_spd(unsigned char *addr);

int ds1820_temperature_10(unsigned char *addr);

unsigned char ds1820_set_alarm(unsigned char *addr,signed char temp_low,signed

char temp_high);

#pragma used-

#pragma library ds1820.lib

#endif

The standard input output library file (stdio.lib)

#include <ctype.h>

#include <stdarg.h>

#include <string.h>

#ifndef NULL

#define NULL 0

#endif

#ifndef EOF

#define EOF -1

#endif

#ifndef _DEBUG_TERMINAL_IO_

#ifndef _ALTERNATE_GETCHAR_

char getchar(void)

{

Distributed one..., Surya Darma, FMIPA UI, 2005

50

Surya Darma, Distributed One ….., FMIPA UI, 2005

#asm

 sbis usr,rxc

 rjmp _getchar

 in r30,udr

#endasm

}

#endif

#ifndef _ALTERNATE_PUTCHAR_

void putchar(char c)

{

#asm

 sbis usr,udre

 rjmp _putchar

 ld r30,y

 out udr,r30

#endasm

}

#endif

#endif

#if funcused printf | funcused sprintf | funcused scanf | funcused sscanf

#pragma used+

static char *pp;

#pragma used-

#endif

#if funcused printf | funcused sprintf

static void _put(char k)

{

#asm("put:")

if (pp) *pp++=k;

else putchar(k);

}

#define TEST_FORMAT 0

#define GET_FLAGS 1

#define GET_PAD_CHAR 2

#define GET_WIDTH 3

#define GET_PRECISION 4

#define DO_PRINT 5

#if defined _PRINTF_INT_ | defined _PRINTF_INT_WIDTH_

static flash unsigned tbl10[]={10000,1000,100,10,1};

static flash unsigned tbl16[]={0x1000,0x100,0x10,1};

#endif

#if defined _PRINTF_INT_

#define F_SIGNED 1

#define F_CAP_HEX 2

#define F_PLUS_PLUS 4 // plus char is '+'

#define F_PLUS_SPACE 8 // plus char is ' '

#define F_PAD_CHR0 0x10 // pad char is '0'

static void _print(char flash *fmtstr,va_list argptr)

{

register unsigned char l=TEST_FORMAT, //R16

flags, //R17

k, //R18

s; //R19

register unsigned n; //R20,R21

unsigned i;

unsigned flash *pi;

char *p;

while (k=*fmtstr++)

 switch (l)

 {

 case TEST_FORMAT: if (k=='%') l=GET_FLAGS; else _put(k);

 break;

Distributed one..., Surya Darma, FMIPA UI, 2005

51

Surya Darma, Distributed One ….., FMIPA UI, 2005

 case GET_FLAGS: if (k=='%') {_put(k); l=TEST_FORMAT; break;};

 l=GET_PAD_CHAR;

 s=0;

 flags=0;

 if (k=='+') {s='+'; break;};

 if (k==' ') {s=' '; break;};

 case GET_PAD_CHAR:

 if (k=='0') {flags|=F_PAD_CHR0; l=DO_PRINT; break;}

 case DO_PRINT:

 switch (k)

 {

 case 'c':

 _put(va_arg(argptr,char));

 goto next;

 case 's':

 p=va_arg(argptr,char *);

 while (k=*p++) _put(k);

 goto next;

 case 'p':

 pi=va_arg(argptr,char flash *);

 while (k=* (char flash *) pi++) _put(k);

 goto next;

 case 'd':

 case 'i':

 flags|=F_SIGNED;

 case 'u':

 pi=tbl10;

 goto get_arg;

 case 'X':

 flags|=F_CAP_HEX;

 case 'x':

 pi=tbl16;

 get_arg:

 if (flags & F_SIGNED)

 {

 n=va_arg(argptr,int);

 if ((int)n<0)

 {

 n=-(int) n;

 s='-';

 };

 if (s) _put(s);

 }

 else n=va_arg(argptr,unsigned);

 do

 {

 k='0';

 i=*pi++; //R30,R31=i

 #asm

 calc_digit:

 cp r20,r30

 cpc r21,r31

 brlo calc_digit_done

 #endasm

 ++k;

 #asm

 sub r20,r30

 sbc r21,r31

 brne calc_digit

 calc_digit_done:

 #endasm

 if ((flags & F_PAD_CHR0) || (k>'0') || (i==1))

 {

 flags|=F_PAD_CHR0;

 if (k>'9')

 {

 if (flags & F_CAP_HEX) k+=7;

Distributed one..., Surya Darma, FMIPA UI, 2005

52

Surya Darma, Distributed One ….., FMIPA UI, 2005

 else k+=0x27;

 };

 _put(k);

 };

 }

 while (i>1);

 default:

 next:

 l=TEST_FORMAT;

 };

 };

}

#elif defined _PRINTF_INT_WIDTH_

#define F_LEFT_JUSTIFY 1

#define F_STRING 2

#define F_SIGNED 4

#define F_CAP_HEX 8

#define F_STRING_FLASH 8

#define F_NON_ZERO 0x10

#define F_PLUS_PLUS 0x20 // plus char is '+'

#define F_PLUS_SPACE 0x40 // plus char is ' '

#define F_PAD_CHR0 0x80 // pad char is '0'

static void _print(char flash *fmtstr,va_list argptr)

{

register unsigned char l=TEST_FORMAT, //R16

flags, //R17

j, //R18

k, //R19

width, //R20

s; //R21

char *p;

unsigned n, //Y+10

i; //Y+8;

unsigned flash *pi;

while (k=*fmtstr++)

 switch (l)

 {

 case TEST_FORMAT: if (k=='%') l=GET_FLAGS; else _put(k);

 break;

 case GET_FLAGS: if (k=='%') {_put(k); l=TEST_FORMAT; break;};

 l=GET_PAD_CHAR;

 s=0;

 flags=0;

 if (k=='-') {flags=F_LEFT_JUSTIFY; break;};

 if (k=='+') {s='+'; break;};

 if (k==' ') {s=' '; break;};

 case GET_PAD_CHAR:

 width=0;

 l=GET_WIDTH;

 if (k=='0') {flags|=F_PAD_CHR0; break;}

 case GET_WIDTH:

 if ((k>='0') && (k<('9'+1)))

 {

 #ifdef _ENHANCED_CORE_

 width*=10;

 #else

 j=width;

 width<<=2;

 width+=j;

 width<<=1;

 #endif

 width+=k-'0';

 break;

 };

 switch (k)

 {

 case 'c':

Distributed one..., Surya Darma, FMIPA UI, 2005

53

Surya Darma, Distributed One ….., FMIPA UI, 2005

 _put(va_arg(argptr,char));

 goto next;

 case 's':

 p=va_arg(argptr,char *);

 l=strlen(p);

 goto disp_string;

 case 'p':

 pi=va_arg(argptr,char flash *);

 l=strlenf((char flash *) pi);

 flags|=F_STRING_FLASH;

 disp_string:

 flags|=F_STRING;

 flags&=~F_PAD_CHR0;

 j=0;

 goto pad_left;

 case 'd':

 case 'i':

 flags|=F_SIGNED;

 case 'u':

 pi=tbl10; l=5;

 goto get_arg;

 case 'X':

 flags|=F_CAP_HEX;

 case 'x':

 pi=tbl16; l=4;

 get_arg:

 if (flags & F_SIGNED)

 {

 n=va_arg(argptr,int);

 if ((int)n<0)

 {

 n=-(int) n;

 s='-';

 };

 if (s) ++l;

 else flags&=~F_SIGNED;

 }

 else n=va_arg(argptr,unsigned);

 pad_left:

 if ((flags & F_LEFT_JUSTIFY)==0)

 while (width>l)

 {

 if (flags & F_PAD_CHR0)

 {

 if (flags & F_SIGNED)

 {

 flags&=~F_SIGNED;

 k=s;

 --l;

 }

 else k='0';

 }

 else k=' ';

 _put(k);

 --width;

 };

 j=l;

 if (flags & F_STRING)

 {

 while (j)

 {

 if (flags & F_STRING_FLASH) _put(* (char

flash *) pi++);

 else _put(*p++);

 if (width) --width;

 --j;

Distributed one..., Surya Darma, FMIPA UI, 2005

54

Surya Darma, Distributed One ….., FMIPA UI, 2005

 };

 }

 else

 do

 {

 k='0';

 i=*pi++; //R30,R31=i

 #asm

 ldd r26,y+10 ;R26,R27=n

 ldd r27,y+11

 calc_digit:

 cp r26,r30

 cpc r27,r31

 brlo calc_digit_done

 #endasm

 ++k;

 #asm

 sub r26,r30

 sbc r27,r31

 brne calc_digit

 calc_digit_done:

 std Y+10,r26 ;n=R26,R27

 std y+11,r27

 #endasm

 if (k>'9')

 {

 if (flags & F_CAP_HEX) k+=7;

 else k+=0x27;

 };

 if (flags & F_NON_ZERO) goto print_digit;

 if ((k>'0') || (i==1))

 {

 flags|=F_NON_ZERO;

 goto print_sign;

 };

 if ((width>=j) && ((flags & F_LEFT_JUSTIFY)==0))

 {

 k=' ';

 if (flags & F_PAD_CHR0)

 {

 k='0';

 flags|=F_NON_ZERO;

 print_sign:

 if (flags & F_SIGNED)

 {

 flags&=~F_SIGNED;

 _put(s);

 if (width) --width;

 };

 };

 print_digit:

 _put(k);

 if (width) --width;

 };

 --j;

 }

 while (i>1);

 if (flags & F_LEFT_JUSTIFY)

 while (width)

 {

 --width;

 _put(' ');

 };

 default:

 next:

 l=TEST_FORMAT;

 };

 };

}

#elif defined _PRINTF_LONG_WIDTH_

Distributed one..., Surya Darma, FMIPA UI, 2005

55

Surya Darma, Distributed One ….., FMIPA UI, 2005

#define F_LEFT_JUSTIFY 1

#define F_LONG 2

#define F_SIGNED 4

#define F_CAP_HEX 8

#define F_STRING_FLASH 8

#define F_NON_ZERO 0x10

#define F_PLUS_PLUS 0x20 // plus char is '+'

#define F_PLUS_SPACE 0x40 // plus char is ' '

#define F_PAD_CHR0 0x80 // pad char is '0'

static void _print(char flash *fmtstr,va_list argptr)

{

register unsigned char l=TEST_FORMAT,flags,j,k,width,s;

unsigned char base;

unsigned long n,i;

char *p;

char flash *pf;

while (k=*fmtstr++)

 switch (l)

 {

 case TEST_FORMAT: if (k=='%') l=GET_FLAGS; else _put(k);

 break;

 case GET_FLAGS: if (k=='%') {_put(k); l=TEST_FORMAT; break;};

 l=GET_PAD_CHAR;

 s=0;

 flags=0;

 if (k=='-') {flags=F_LEFT_JUSTIFY; break;};

 if (k=='+') {s='+'; break;};

 if (k==' ') {s=' '; break;};

 case GET_PAD_CHAR:

 width=0;

 l=GET_WIDTH;

 if (k=='0') {flags|=F_PAD_CHR0; break;}

 case GET_WIDTH:

 if ((k>='0') && (k<('9'+1)))

 {

 #ifdef _ENHANCED_CORE_

 width*=10;

 #else

 j=width;

 width<<=2;

 width+=j;

 width<<=1;

 #endif

 width+=k-'0';

 break;

 };

 if (k=='l')

 {

 flags|=F_LONG;

 l=DO_PRINT;

 break;

 };

 case DO_PRINT:

 switch (k)

 {

 case 'c':

 _put(va_arg(argptr,char));

 goto next;

 case 's':

 p=va_arg(argptr,char *);

 l=strlen(p);

 goto disp_string;

 case 'p':

 pf=va_arg(argptr,char flash *);

 l=strlenf(pf);

 flags|=F_STRING_FLASH;

 disp_string:

Distributed one..., Surya Darma, FMIPA UI, 2005

56

Surya Darma, Distributed One ….., FMIPA UI, 2005

 flags&=~F_PAD_CHR0;

 base=0;

 j=0;

 goto pad_left;

 case 'd':

 case 'i':

 flags|=F_SIGNED;

 case 'u':

 base=10;

 if (flags & F_LONG)

 {i=1000000000L; l=10; goto get_arg;};

 i=10000; l=5;

 goto get_arg;

 case 'X':

 flags|=F_CAP_HEX;

 case 'x':

 base=16;

 if (flags & F_LONG)

 {i=0x10000000L; l=8; goto get_arg;};

 i=0x1000; l=4;

 get_arg:

 if (flags & F_LONG) n=va_arg(argptr,long);

 else

 if (flags & F_SIGNED) n=va_arg(argptr,int);

 else n=va_arg(argptr,unsigned);

 if (flags & F_SIGNED)

 {

 if ((long)n<0)

 {

 n=-(long) n;

 s='-';

 };

 if (s) ++l;

 else flags&=~F_SIGNED;

 };

 pad_left:

 if ((flags & F_LEFT_JUSTIFY)==0)

 while (width>l)

 {

 if (flags & F_PAD_CHR0)

 {

 if (flags & F_SIGNED)

 {

 flags&=~F_SIGNED;

 k=s;

 --l;

 }

 else k='0';

 }

 else k=' ';

 _put(k);

 --width;

 };

 j=l;

 if (base==0)

 {

 while (j)

 {

 if (flags & F_STRING_FLASH) _put(*pf++);

 else _put(*p++);

 if (width) --width;

 --j;

 };

 }

 else

 do

 {

 k=(unsigned char) (n/i);

 if (k>9)

Distributed one..., Surya Darma, FMIPA UI, 2005

57

Surya Darma, Distributed One ….., FMIPA UI, 2005

 {

 if (flags & F_CAP_HEX) k+=0x37;

 else k+=0x57;

 }

 else k+='0';

 if (flags & F_NON_ZERO) goto print_digit;

 if ((k>'0') || (i==1)) goto print_sign;

 if ((width>=j) && ((flags & F_LEFT_JUSTIFY)==0))

 {

 k=' ';

 if (flags & F_PAD_CHR0)

 {

 k='0';

 print_sign:

 flags|=F_NON_ZERO;

 if (flags & F_SIGNED)

 {

 flags&=~F_SIGNED;

 _put(s);

 if (width) --width;

 };

 };

 print_digit:

 _put(k);

 if (width) --width;

 };

 --j;

 n%=i;

 i/=base;

 }

 while (i);

 if (flags & F_LEFT_JUSTIFY)

 while (width)

 {

 --width;

 _put(' ');

 };

 default:

 next:

 l=TEST_FORMAT;

 };

 };

}

#elif defined _PRINTF_LONG_WIDTH_PRECISION_

#define F_LEFT_JUSTIFY 1

#define F_LONG 2

#define F_SIGNED 4

#define F_CAP_HEX 8

#define F_STRING_FLASH 8

#define F_NON_ZERO 0x10

#define F_PLUS_PLUS 0x20 // plus char is '+'

#define F_PLUS_SPACE 0x40 // plus char is ' '

#define F_PAD_CHR0 0x80 // pad char is '0'

static void _print_sign(void)

{

#asm

 ;flags&=~F_SIGNED

 andi r17,~4

 ;_put(s)

 ldd r30,y+17

 st -y,r30

 rcall put

 ;if (width) --width

 cpi r20,0

 breq width0

 dec r20

width0:

#endasm

Distributed one..., Surya Darma, FMIPA UI, 2005

58

Surya Darma, Distributed One ….., FMIPA UI, 2005

}

static void _print(char flash *fmtstr,va_list argptr)

{

register unsigned char l=TEST_FORMAT,//R16

flags, //R17

j, //R18

k, //R19

width, //R20

precision; //R21

unsigned char s, //Y+17

base; //Y+16

unsigned long n,i;

char *p;

char flash *pf;

while (k=*fmtstr++)

 switch (l)

 {

 case TEST_FORMAT: if (k=='%') l=GET_FLAGS; else _put(k);

 break;

 case GET_FLAGS: if (k=='%') {_put(k); l=TEST_FORMAT; break;};

 l=GET_PAD_CHAR;

 s=0;

 flags=0;

 if (k=='-') {flags=F_LEFT_JUSTIFY; break;};

 if (k=='+') {s='+'; break;};

 if (k==' ') {s=' '; break;};

 case GET_PAD_CHAR:

 width=0;

 l=GET_WIDTH;

 if (k=='0') {flags|=F_PAD_CHR0; break;}

 case GET_WIDTH:

 if ((k>='0') && (k<('9'+1)))

 {

 #ifdef _ENHANCED_CORE_

 width*=10;

 #else

 j=width;

 width<<=2;

 width+=j;

 width<<=1;

 #endif

 width+=k-'0';

 break;

 };

 precision=0;

 if (k=='.') {l=GET_PRECISION; break;}

 goto test_long;

 case GET_PRECISION:

 if ((k>='0') && (k<('9'+1)))

 {

 #ifdef _ENHANCED_CORE_

 precision*=10;

 #else

 j=precision;

 precision<<=2;

 precision+=j;

 precision<<=1;

 #endif

 precision+=k-'0';

 break;

 };

 test_long:

 if (k=='l')

 {

 flags|=F_LONG;

 l=DO_PRINT;

 break;

 };

 case DO_PRINT:

Distributed one..., Surya Darma, FMIPA UI, 2005

59

Surya Darma, Distributed One ….., FMIPA UI, 2005

 switch (k)

 {

 case 'c':

 _put(va_arg(argptr,char));

 goto next;

 case 's':

 p=va_arg(argptr,char *);

 l=strlen(p);

 goto disp_string;

 case 'p':

 pf=va_arg(argptr,char flash *);

 l=strlenf(pf);

 flags|=F_STRING_FLASH;

 disp_string:

 flags&=~F_PAD_CHR0;

 if (precision && (l>precision))

 l=precision;

 precision=0;

 base=0;

 j=0;

 goto pad_left;

 case 'd':

 case 'i':

 flags|=F_SIGNED;

 case 'u':

 base=10;

 if (flags & F_LONG)

 {i=1000000000L; l=10; goto get_arg;};

 i=10000; l=5;

 goto get_arg;

 case 'X':

 flags|=F_CAP_HEX;

 case 'x':

 base=16;

 if (flags & F_LONG)

 {i=0x10000000L; l=8; goto get_arg;};

 i=0x1000; l=4;

 get_arg:

 if (precision) flags&=~F_PAD_CHR0;

 else precision=1;

 if (flags & F_LONG) n=va_arg(argptr,long);

 else

 if (flags & F_SIGNED) n=va_arg(argptr,int);

 else n=va_arg(argptr,unsigned);

 if (flags & F_SIGNED)

 {

 if ((long)n<0)

 {

 n=-(long) n;

 s='-';

 };

 if (s) {++l; ++precision;}

 else flags&=~F_SIGNED;

 };

 j=precision;

 pad_left:

 if ((flags & F_LEFT_JUSTIFY)==0)

 while ((width>l) && (width>j))

 {

 if (flags & F_PAD_CHR0)

 {

 if (flags & F_SIGNED)

 {

 flags&=~F_SIGNED;

 k=s;

 --l;

 }

Distributed one..., Surya Darma, FMIPA UI, 2005

60

Surya Darma, Distributed One ….., FMIPA UI, 2005

 else k='0';

 }

 else k=' ';

 _put(k);

 --width;

 };

 while (precision>l)

 {

 flags|=F_NON_ZERO;

 if (flags & F_SIGNED)

 {

 _print_sign();

 --l;

 --precision;

 };

 _put('0');

 if (width) --width;

 --precision;

 };

 j=l;

 if (base==0)

 {

 while (j)

 {

 if (flags & F_STRING_FLASH) _put(*pf++);

 else _put(*p++);

 if (width) --width;

 --j;

 };

 }

 else

 do

 {

 k=(unsigned char) (n/i);

 if (k>9)

 {

 if (flags & F_CAP_HEX) k+=0x37;

 else k+=0x57;

 }

 else k+='0';

 if (flags & F_NON_ZERO) goto print_digit;

 if ((k>'0') || (i==1)) goto print_sign;

 if (precision>=j)

 {

 k='0';

 goto print_sign;

 };

 if ((width>=j) && ((flags & F_LEFT_JUSTIFY)==0))

 {

 k=' ';

 if (flags & F_PAD_CHR0)

 {

 k='0';

 print_sign:

 flags|=F_NON_ZERO;

 if (flags & F_SIGNED)

 _print_sign();

 };

 print_digit:

 _put(k);

 if (width) --width;

 };

 --j;

 n%=i;

 i/=base;

 }

 while (i);

 if (flags & F_LEFT_JUSTIFY)

 while (width)

 {

 --width;

Distributed one..., Surya Darma, FMIPA UI, 2005

61

Surya Darma, Distributed One ….., FMIPA UI, 2005

 _put(' ');

 };

 default:

 next:

 l=TEST_FORMAT;

 };

 };

}

#endif

#endif

#if funcused sprintf

void sprintf(char *str,char flash *fmtstr,...)

{

va_list argptr;

va_start(argptr,fmtstr);

pp=str;

_print(fmtstr,argptr);

*pp=0;

}

#endif

#if funcused printf

void printf(char flash *fmtstr,...)

{

va_list argptr;

va_start(argptr,fmtstr);

pp=NULL;

_print(fmtstr,argptr);

}

#endif

#if funcused scanf | funcused sscanf

#pragma used+

static char cc;

#pragma used-

static char _get(void)

{

char k;

if (cc)

 {

 k=cc;

 cc=0;

 }

else if (pp)

 {

 if (k=*pp) ++pp;

 }

else k=getchar();

return k;

}

static signed char _scanf(char flash *fmtstr,va_list argptr)

{

void *parg;

unsigned char k,b,width;

signed char ns,s;

unsigned int n;

cc=ns=0;

while (k=*fmtstr++)

 {

 if (isspace(k))

 {

 while ((k=_get()) && isspace(k));

 cc=k;

 }

 else if (k=='%')

 {

 width=0;

Distributed one..., Surya Darma, FMIPA UI, 2005

62

Surya Darma, Distributed One ….., FMIPA UI, 2005

 while (1)

 {

 k=*fmtstr++;

 if ((k<'0')||(k>'9')) break;

 width*=10;

 width+=k-'0';

 };

 if (k==0) break;

 while (isspace(b=_get()));

 if (b==0) goto _scan_end;

 cc=b;

 if (width==0) width=255;

 switch (k)

 {

 case 'c':

 parg=va_arg(argptr,char *);

 *(char *)parg=_get();

 break;

 case 's':

 parg=va_arg(argptr,char *);

 while (width--)

 {

 if (((k=_get())==0) || isspace(k)) break;

 *(char *)parg++=k;

 };

 *(char *)parg=0;

 break;

 default:

 s=1;

 switch (k)

 {

 case 'd':

 case 'i': s=0;

 case 'u': b=10; break;

 case 'x': b=16; break;

 case '%': goto _scan_cmp;

 default: return ns;

 };

 n=0;

 while (width--)

 {

 if ((k=_get())<=' ') goto _scan_next;

 if (s==0)

 {

 if (k=='-') {s=-1; continue;}

 else s=1;

 };

 if (k<'0') goto _scan_next;

 if (k>='a') k-=0x57;

 else if(k>='A') k-=0x37;

 else k-='0';

 if (k>=b)

 {

 _scan_next:

 cc=k;

 break;

 };

 n=n*b+k;

 };

 parg=va_arg(argptr,int *);

 *(int *)parg=n*s;

 };

 ++ns;

 }

 else

 {

 _scan_cmp:

 if (k!=_get())

 {

Distributed one..., Surya Darma, FMIPA UI, 2005

63

Surya Darma, Distributed One ….., FMIPA UI, 2005

 _scan_end:

 if (ns==0) return EOF;

 break;

 };

 };

 };

return ns;

}

#endif

#if funcused sscanf

signed char sscanf(char *str,char flash *fmtstr,...)

{

va_list argptr;

va_start(argptr,fmtstr);

pp=str;

return _scanf(fmtstr,argptr);

}

#endif

#if funcused scanf

signed char scanf(char flash *fmtstr,...)

{

va_list argptr;

va_start(argptr,fmtstr);

pp=NULL;

return _scanf(fmtstr,argptr);

}

#endif

Distributed one..., Surya Darma, FMIPA UI, 2005

64

Appendix

B

Distributed one..., Surya Darma, FMIPA UI, 2005

65

Surya Darma, Distributed One ….., FMIPA UI, 2005

The surya.c AVR main program

#asm

 .equ __w1_port=0x15

 .equ __w1_bit=0

#endasm

#include <90s8535.h>

#include <stdio.h>

#include <ds1820.h>

#include <delay.h>

/* Mendefiniskan konstanta */

#define xtal 3690000L //quartz crystal frequency [Hz]

#define baud 9600 // Baud rate

#define DS1990_FAMILY_CODE 1

#define SEARCH_ROM 0xF0

#define MAX_DEVICES 2

/*variabel global didefiniskan*/

void init_serial(void);

void get_command(void);

char command;

unsigned char rom_code[MAX_DEVICES][9];

/* initialize the UART's baud rate */

void init_serial(void){

UBRR=xtal/16/baud-1; //set baud rate

UCR=0x18; } //RX&TX enabled, no int, 8 data bits

void get_command(void){

unsigned char i;

i = USR; //Ambil status register UART

i&= 0x80; //Apakah ada data di buffer ?

if (i == 0x80){

 command=getchar();

// putchar(command);

}

else

 command = -1;

}

main() {

unsigned char i,j,devices;

int temp;

init_serial();

while (1) {

 get_command();

 if (command == 'S')

 {

// detect how many 1 Wire devices are present on the bus

devices=w1_search(SEARCH_ROM,&rom_code[0][0]);

for (i=0;i<devices;i++){

 for (j=1;j<=8;j++)

 printf("%02X",rom_code[i][j]);

 };

/* measure and display the temperature(s) */

 for (i=0;i<devices;)

 {

 temp=ds1820_temperature_10(&rom_code[i][0]);

 j='+';

 if (temp<0)

 {

 j='-';

 temp=-temp;

 };

Distributed one..., Surya Darma, FMIPA UI, 2005

66

Surya Darma, Distributed One ….., FMIPA UI, 2005

 printf("%c%i.%i",++i,temp/10,temp%10);

 delay_ms(800);

 };

 }

 delay_ms(1000);}

}

The Tini_Client.java user interface main program

/*

 * Tini_Client.java

 *

 * Created on December 13, 2005, 2:32 AM

 */

import java.awt.*;

import java.awt.event.*;

import java.io.InputStream;

import java.io.IOException;

import java.io.OutputStream;

import java.util.Enumeration;

import java.util.TooManyListenersException;

import javax.swing.*;

import java.sql.*;

import java.util.Date;

import java.util.GregorianCalendar;

import java.util.Calendar;

import java.text.SimpleDateFormat;

import java.io.*;

import java.net.*;

/**

 *

 * @author Surya Darma

 */

public class Tini_Client extends javax.swing.JFrame implements ActionListener {

 Connection connection;

 String DB_NAME;

 int i;

 int delay,nomor,delay2;

 double DC;

 Timer timer;

 Timer timer2;

 int Baris;

 int No;

 int n;

 /** Creates new form Tini_Client */

 public Tini_Client() {

 initComponents();

 //Bagian untuk inisialisasi Timer-------

 delay = 1000;

 timer = new Timer(delay, this);

 timer.setInitialDelay(delay);

 timer.setCoalesce(true);

 timer.start();

 }

 /** This method is called from within the constructor to

 * initialize the form.

 * WARNING: Do NOT modify this code. The content of this method is

 * always regenerated by the Form Editor.

 */

 // <editor-fold defaultstate="collapsed" desc=" Generated Code ">

 private void initComponents() {

Distributed one..., Surya Darma, FMIPA UI, 2005

67

Surya Darma, Distributed One ….., FMIPA UI, 2005

 jLabel5 = new javax.swing.JLabel();

 jLabel1 = new javax.swing.JLabel();

 Txt_MySQL_Host = new javax.swing.JTextField();

 Txt_MySQL_User = new javax.swing.JTextField();

 jLabel2 = new javax.swing.JLabel();

 jLabel3 = new javax.swing.JLabel();

 Txt_MySQL_Password = new javax.swing.JPasswordField();

 jButton1 = new javax.swing.JButton();

 Text5 = new javax.swing.JTextField();

 jLabel6 = new javax.swing.JLabel();

 jScrollPane1 = new javax.swing.JScrollPane();

 jTable1 = new javax.swing.JTable();

 jButton3 = new javax.swing.JButton();

 List1 = new java.awt.List();

 Label_Tanggal = new javax.swing.JLabel();

 Label_Jam = new javax.swing.JLabel();

 Text_Temperature = new javax.swing.JTextField();

 Label_Ctr = new javax.swing.JLabel();

 jButton7 = new javax.swing.JButton();

 jLabel9 = new javax.swing.JLabel();

 Text_Wkt = new javax.swing.JTextField();

 jLabel10 = new javax.swing.JLabel();

 Label_ID = new javax.swing.JLabel();

 jButton2 = new javax.swing.JButton();

 Text_SQL = new javax.swing.JTextArea();

 getContentPane().setLayout(null);

 setDefaultCloseOperation(javax.swing.WindowConstants.EXIT_ON_CLOSE);

 jLabel5.setText("MySQL Database");

 getContentPane().add(jLabel5);

 jLabel5.setBounds(60, 0, 110, 14);

 jLabel1.setText("Host Name");

 getContentPane().add(jLabel1);

 jLabel1.setBounds(10, 20, 80, 14);

 Txt_MySQL_Host.setText("localhost");

 getContentPane().add(Txt_MySQL_Host);

 Txt_MySQL_Host.setBounds(90, 20, 120, 19);

 Txt_MySQL_User.setText("root");

 Txt_MySQL_User.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent evt) {

 Txt_MySQL_UserActionPerformed(evt);

 }

 });

 getContentPane().add(Txt_MySQL_User);

 Txt_MySQL_User.setBounds(90, 40, 120, 19);

 jLabel2.setText("User Name");

 getContentPane().add(jLabel2);

 jLabel2.setBounds(10, 40, 80, 14);

 jLabel3.setText("Password");

 getContentPane().add(jLabel3);

 jLabel3.setBounds(10, 60, 70, 14);

 getContentPane().add(Txt_MySQL_Password);

 Txt_MySQL_Password.setBounds(90, 60, 120, 18);

 jButton1.setText("Login");

 jButton1.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent evt) {

 jButton1ActionPerformed(evt);

 }

 });

 getContentPane().add(jButton1);

 jButton1.setBounds(10, 80, 200, 23);

Distributed one..., Surya Darma, FMIPA UI, 2005

68

Surya Darma, Distributed One ….., FMIPA UI, 2005

 getContentPane().add(Text5);

 Text5.setBounds(50, 110, 160, 19);

 jLabel6.setText("Status");

 getContentPane().add(jLabel6);

 jLabel6.setBounds(10, 110, 40, 14);

 jTable1.setModel(new javax.swing.table.DefaultTableModel(

 new Object [][] {

 {null, null, null, null, null},

 {null, null, null, null, null},

 {null, null, null, null, null},

 {null, null, null, null, null},

 {null, null, null, null, null},

 {null, null, null, null, null},

 {null, null, null, null, null},

 {null, null, null, null, null},

 {null, null, null, null, null},

 {null, null, null, null, null},

 {null, null, null, null, null},

 {null, null, null, null, null},

 {null, null, null, null, null},

 {null, null, null, null, null},

 {null, null, null, null, null}

 },

 new String [] {

 "No", "Tanggal", "Jam", "ID", "Temperature"

 }

));

 jScrollPane1.setViewportView(jTable1);

 getContentPane().add(jScrollPane1);

 jScrollPane1.setBounds(10, 170, 630, 140);

 jButton3.setText("Go");

 jButton3.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent evt) {

 jButton3ActionPerformed(evt);

 }

 });

 getContentPane().add(jButton3);

 jButton3.setBounds(10, 320, 80, 23);

 getContentPane().add(List1);

 List1.setBounds(380, 20, 260, 140);

 Label_Tanggal.setText("Date");

 getContentPane().add(Label_Tanggal);

 Label_Tanggal.setBounds(220, 20, 140, 20);

 Label_Jam.setText("Time");

 getContentPane().add(Label_Jam);

 Label_Jam.setBounds(220, 40, 140, 20);

 getContentPane().add(Text_Temperature);

 Text_Temperature.setBounds(220, 80, 150, 19);

 Label_Ctr.setText("0");

 getContentPane().add(Label_Ctr);

 Label_Ctr.setBounds(10, 135, 200, 20);

 jButton7.setText("Start");

 jButton7.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent evt) {

 jButton7ActionPerformed(evt);

 }

 });

 getContentPane().add(jButton7);

Distributed one..., Surya Darma, FMIPA UI, 2005

69

Surya Darma, Distributed One ….., FMIPA UI, 2005

 jButton7.setBounds(220, 110, 150, 23);

 jLabel9.setText("Interval (S)");

 getContentPane().add(jLabel9);

 jLabel9.setBounds(220, 140, 80, 14);

 Text_Wkt.setText("0");

 getContentPane().add(Text_Wkt);

 Text_Wkt.setBounds(300, 140, 70, 20);

 jLabel10.setText("TINI");

 getContentPane().add(jLabel10);

 jLabel10.setBounds(470, 0, 40, 14);

 Label_ID.setText("ID");

 getContentPane().add(Label_ID);

 Label_ID.setBounds(220, 60, 150, 14);

 jButton2.setText("Execute");

 jButton2.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent evt) {

 jButton2ActionPerformed(evt);

 }

 });

 getContentPane().add(jButton2);

 jButton2.setBounds(10, 350, 80, 23);

 Text_SQL.setText("SELECT * FROM Tini_Table WHERE No <10");

 getContentPane().add(Text_SQL);

 Text_SQL.setBounds(100, 320, 540, 50);

 java.awt.Dimension screenSize =

java.awt.Toolkit.getDefaultToolkit().getScreenSize();

 setBounds((screenSize.width-654)/2, (screenSize.height-415)/2, 654, 415);

 }

 // </editor-fold>

 private void Txt_MySQL_UserActionPerformed(java.awt.event.ActionEvent evt) {

// TODO add your handling code here:

 }

 private void jButton2ActionPerformed(java.awt.event.ActionEvent evt) {

// TODO add your handling code here:

 try{

 Statement statement = connection.createStatement();

 String SQL_1=Text_SQL.getText();

 String sql= SQL_1 + ";";

 ResultSet rs=statement.executeQuery(sql);

 rs.last();

 n=rs.getRow();

 Baris=0;

 //Untuk Nambah Baris Tabel

 jTable1.setModel(new javax.swing.table.DefaultTableModel(

 new Object [n][5],

 new String [] {"No", "Tanggal", "Jam", "ID",

"Temperature"}));

 //Tulis ke Tabel

 rs.beforeFirst();

 while (rs.next()){

 jTable1.setValueAt(rs.getString(1), Baris,0);

 jTable1.setValueAt(rs.getString(2), Baris,1);

 jTable1.setValueAt(rs.getString(3), Baris,2);

 jTable1.setValueAt(rs.getString(4), Baris,3);

 jTable1.setValueAt(rs.getString(5), Baris,4);

 Baris++;

 }

 statement.close();

Distributed one..., Surya Darma, FMIPA UI, 2005

70

Surya Darma, Distributed One ….., FMIPA UI, 2005

 }

 catch(Exception e){

 System.out.println("Error :"+e);

 }

 }

 private void jButton7ActionPerformed(java.awt.event.ActionEvent evt) {

// TODO add your handling code here:

 String Wkt= Text_Wkt.getText();

 int Wkt1= Integer.parseInt(Wkt);

 delay2=Wkt1*1000;

 //delay2 = 5000;

 timer2 = new Timer(delay2, this);

 timer2.setInitialDelay(delay);

 timer2.setCoalesce(true);

 timer2.start();

 Login();

 }

 private void jButton3ActionPerformed(java.awt.event.ActionEvent evt) {

// TODO add your handling code here:

 Select_SQL();

 }

 private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {

// TODO add your handling code here:

 Login();

 }

 public void Kirim (){

 try {

 // Socket and streams

 m_socket = new Socket("152.118.167.83",50);

 m_in = new BufferedReader(new InputStreamReader(m_socket.getInputStream()));

 m_out = new PrintWriter(new OutputStreamWriter(m_socket.getOutputStream()));

 List1.add(""+m_in);

 //Terima Text dari Server

 // Memulai Threding

 m_tini_Thread = new Tini_Thread(m_in, this);

 m_tini_Thread.start();

 }

 catch(Exception e) {

 List1.add("error : " + e.toString());

 }

 }

 public void Login(){

 try{

 Class.forName("org.gjt.mm.mysql.Driver");

 String MySQL_Host = Txt_MySQL_Host.getText();

 String MySQL_User = Txt_MySQL_User.getText();

 String MySQL_Password = Txt_MySQL_Password.getText();

 connection = DriverManager.getConnection("jdbc:mysql://" +

MySQL_Host + "/TINI_DB", MySQL_User , MySQL_Password);

// connection.close();

 Text5.setText("You Are Connected");

 }

 catch(Exception e){

 Text5.setText("Your not connected !!! :"+e);

 }

 }

 public void Select_SQL(){

 try{

 Statement statement = connection.createStatement();

 String sql=("SELECT * FROM Tini_Table;");

Distributed one..., Surya Darma, FMIPA UI, 2005

71

Surya Darma, Distributed One ….., FMIPA UI, 2005

 ResultSet rs=statement.executeQuery(sql);

 rs.last();

 n=rs.getRow();

 Baris=0;

 //Untuk Nambah Baris Tabel

 jTable1.setModel(new javax.swing.table.DefaultTableModel(

 new Object [n][5],

 new String [] {"No", "Tanggal", "Jam", "ID",

"Temperature"}));

 //Tulis ke Tabel

 rs.beforeFirst();

 while (rs.next()){

 jTable1.setValueAt(rs.getString(1), Baris,0);

 jTable1.setValueAt(rs.getString(2), Baris,1);

 jTable1.setValueAt(rs.getString(3), Baris,2);

 jTable1.setValueAt(rs.getString(4), Baris,3);

 jTable1.setValueAt(rs.getString(5), Baris,4);

 Baris++;

 }

 statement.close();

 }

 catch(Exception e){

 System.out.println("Error :"+e);

 }

 }

 public void Add_Data(){

 try{

 String Tanggal=Label_Tanggal.getText();

 //No++;

 String Waktu=Label_Jam.getText();

 String Temperature=Text_Temperature.getText();

 String ID = Label_ID.getText();

 Statement statement = connection.createStatement();

 String sql="insert into Tini_Table values

('"+No+"','"+Tanggal+"','"+Waktu+"','"+ID+"','"+Temperature+"');";

 statement.executeUpdate(sql);

 statement.close();

 Text5.setText(nomor + ". Data Added");

 Select_SQL();

 }

 catch(Exception e){

 System.out.println("Error :"+e);

 }

 }

 public void log(java.lang.String strMsg) {

 List1.add(strMsg + "\n");

 String iButton_ID = strMsg;

 String iButton_ID_Pars = strMsg.substring(0,16);

 String waktu = strMsg.substring(28,36);

 Label_Jam.setText(waktu);

 String Tahun=strMsg.substring(41,45);

 String tanggal=strMsg.substring(21,27);

 Label_Tanggal.setText(tanggal + " " + Tahun);

 String temperature =strMsg.substring(46);

 Text_Temperature.setText(temperature);

 Label_ID.setText(iButton_ID_Pars);

 Add_Data();

 Select_SQL();

 }

 //Sub Timer ()

 public void actionPerformed(ActionEvent e) {

 /*

 if (e.getSource()==timer)

 {

Distributed one..., Surya Darma, FMIPA UI, 2005

72

Surya Darma, Distributed One ….., FMIPA UI, 2005

 //Untuk Tanggal

 String timeTxt = formatter.format(gCal.getTime());

 Label_Tanggal.setText(timeTxt);

 //Untuk Jam

 gCal.add(Calendar.SECOND,1);

 String timeTxt2 = formatter2.format(gCal.getTime());

 Label_Jam.setText(timeTxt2);

 }

 */

 if(e.getSource()==timer2)

 {

 //Counter 2

 nomor++;

 Label_Ctr.setText(""+nomor);

 Kirim();

 }

 }

 /**

 * @param args the command line arguments

 */

 public static void main(String args[]) {

 java.awt.EventQueue.invokeLater(new Runnable() {

 public void run() {

 JFrame.setDefaultLookAndFeelDecorated(true);

 new Tini_Client().setVisible(true);

 }

 });

 }

 // Variables declaration - do not modify

 private javax.swing.JLabel Label_Ctr;

 private javax.swing.JLabel Label_ID;

 private javax.swing.JLabel Label_Jam;

 private javax.swing.JLabel Label_Tanggal;

 private java.awt.List List1;

 private javax.swing.JTextField Text5;

 private javax.swing.JTextArea Text_SQL;

 private javax.swing.JTextField Text_Temperature;

 private javax.swing.JTextField Text_Wkt;

 private javax.swing.JTextField Txt_MySQL_Host;

 private javax.swing.JPasswordField Txt_MySQL_Password;

 private javax.swing.JTextField Txt_MySQL_User;

 private javax.swing.JButton jButton1;

 private javax.swing.JButton jButton2;

 private javax.swing.JButton jButton3;

 private javax.swing.JButton jButton7;

 private javax.swing.JLabel jLabel1;

 private javax.swing.JLabel jLabel10;

 private javax.swing.JLabel jLabel2;

 private javax.swing.JLabel jLabel3;

 private javax.swing.JLabel jLabel5;

 private javax.swing.JLabel jLabel6;

 private javax.swing.JLabel jLabel9;

 private javax.swing.JScrollPane jScrollPane1;

 private javax.swing.JTable jTable1;

 // End of variables declaration

 //Untuk Kalender

 private GregorianCalendar gCal = new GregorianCalendar();

 private String timeFormat = "dd MMM yyyy";

 private String timeFormat2 = "hh:mm:ss ";

 private SimpleDateFormat formatter = new SimpleDateFormat(timeFormat);

 private SimpleDateFormat formatter2 = new SimpleDateFormat(timeFormat2);

/** Socket */

 private Socket m_socket = null;

 /** Socket's input stream */

 private BufferedReader m_in = null;

 /** Socket's output stream */

 private PrintWriter m_out = null;

 /** Client thread */

 private Tini_Thread m_tini_Thread = null;}

Distributed one..., Surya Darma, FMIPA UI, 2005

73

Surya Darma, Distributed One ….., FMIPA UI, 2005

The Tini_Thread.java

Threads program at user interface main program

/*

 * ClientThread.java

 * @author Surya Darma

 * Created on 22. October 2005, 22:36

 */

import java.io.*;

import java.net.*;

public class Tini_Thread extends Thread {

 public Tini_Thread(BufferedReader in, Tini_Client tini_Client) {

 m_in = in;

 m_tini_Client = tini_Client;

 }

 /**

 * Start thread */

 public void run() {

 String strBuffer;

 for(;;) {

 try {

 strBuffer = m_in.readLine();

 if(strBuffer != null) {

 m_tini_Client.log(strBuffer);

 }

 else {

 System.out.println("Connection closed");

 break;

 }

 }

 catch(IOException e) {

 System.out.println("IOException by server");

 break;

 }

 }

 //m_tini_Client.closeConnection();

 System.out.println("Bye");

 }

 /** Input stream from socket */

 private BufferedReader m_in;

 /** Tini_Client for callbacks */

 private Tini_Client m_tini_Client;

}

Distributed one..., Surya Darma, FMIPA UI, 2005

74

Surya Darma, Distributed One ….., FMIPA UI, 2005

The SerialComm.java TINI® main program

/*

 * SerialComm.java

 * @author surya

 * Created on December 9, 2005, 8:37 PM

 */

package serialcomm;

import java.net.ServerSocket;

import javax.comm.*;

import java.io.*;

import java.net.*;

import java.util.*;

import com.dalsemi.tininet.*;

import com.dalsemi.onewire.OneWireAccessProvider;

import com.dalsemi.onewire.*;

import com.dalsemi.onewire.adapter.*;

import com.dalsemi.onewire.container.*;

//import com.dalsemi.onewire.container.OneWireContainer10;

public class SerialComm

{

 public static void main(String[] args) {

 ServerSocket s;

 SerialComm ct = new SerialComm();

 OneWireContainer10 dev = null;

 ct.run();

 }

 private static OneWireContainer10 getOneWireDevice()

 throws OneWireException {

 // get access provider for 1-Wire devices

 DSPortAdapter pa = OneWireAccessProvider.getDefaultAdapter();

 // get exclusive use of adapter

 pa.beginExclusive(true);

 // clear any previous search restrictions

 pa.setSearchAllDevices();

 pa.setSpeed(pa.SPEED_REGULAR);

 // target family 10

 pa.targetFamily(0x10);

 // get devices

 Enumeration e = pa.getAllDeviceContainers();

 OneWireContainer10 a[] = new OneWireContainer10[10];

 // at least one device?

 if (e.hasMoreElements() == false) {

 System.out.println("Error: cannot find the 1-Wire

device");

 System.exit(1);

 }

 // return it

 return (OneWireContainer10)e.nextElement();

 }

Distributed one..., Surya Darma, FMIPA UI, 2005

75

Surya Darma, Distributed One ….., FMIPA UI, 2005

public void run()

 {

 OneWireContainer10 dev = null;

 try {

 CommPortIdentifier cpi =

CommPortIdentifier.getPortIdentifier("serial0");

 SerialPort sp = (SerialPort)cpi.open("SerialComm", 5000);

sp.setSerialPortParams(9600,SerialPort.DATABITS_8,SerialPort.STOPB

ITS_1,SerialPort.PARITY_NONE);

 while (true)

 {

 OutputStream os = sp.getOutputStream();

 byte tes = 'S' ;

 os.write(tes) ;

 InputStream in = sp.getInputStream();

 sp.enableReceiveThreshold(1024);

 sp.enableReceiveTimeout(1000);

 // Connect to the host machine for sending data.

 ServerSocket s;

 s = new ServerSocket(50);

 // Array to be used for data read.

 byte[] data = new byte[1024];

 Socket incoming = s.accept();

 PrintWriter bos;

 bos = new

PrintWriter(incoming.getOutputStream(),true);

 int num = in.read(data);

 // send it

 // data configuration (from AVR)= String address -

space - temperature

 String address = new String(data,0,16) ;

 String suhu = new String(data,17,19) ;

 bos.println(address + " " +""+ new Date() + " " +

suhu +"");

 // Dari iButton2

 try {

 // get 1-Wire device

 dev = getOneWireDevice();

 } catch(OneWireException e) {

 System.out.println("TemperatureServer error: "

+ e) ;

 }

 byte[] state = dev.readDevice();

 // start temperature conversion

 dev.doTemperatureConvert(state);

 dev.writeDevice(state);

 // get the temperature

 double temperature = dev.getTemperature(state);

 // send it

Distributed one..., Surya Darma, FMIPA UI, 2005

76

Surya Darma, Distributed One ….., FMIPA UI, 2005

 bos.println(dev.getAddressAsString() +" " + "" +

new Date() + " " + temperature);

 bos.close();

 incoming.close();

 s.close() ;

 } //end while

 } catch(Exception e)

 {

 System.out.println("GOT AN EXCEPTION = " +

e.getMessage());

 }

 } //end of run()

}

Distributed one..., Surya Darma, FMIPA UI, 2005

	Halaman Judul
	Abstrak
	Daftar Isi
	Bab I
	Bab II
	Bab III
	Bab IV
	Bab V
	Daftar Pustaka
	Lampiran

