

UNIVERSITAS INDONESIA

PREPARASI DAN KARAKTERISASI SUSPENSI NANOPARTIKEL TiO₂ BERBASIS MEDIUM AIR

TESIS

HENDRA ADHI PRATAMA 0806421786

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI MAGISTER ILMU KIMIA DEPOK DESEMBER 2010

Preparasi dan..., Hendra Pratama, FMIPA UI, 2010.

UNIVERSITAS INDONESIA

PREPARASI DAN KARAKTERISASI SUSPENSI NANOPARTIKEL TiO₂ BERBASIS MEDIUM AIR

TESIS

Diajukan sebagai salah satu syarat untuk memperoleh gelar magister kimia

HENDRA ADHI PRATAMA 0806421786

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM MAGISTER ILMU KIMIA KEKHUSUSAN NON HAYATI DEPOK DESEMBER 2010

HALAMAN PERNYATAAN ORISINALITAS

Tesis ini adalah hasil karya saya sendiri, dan semua sumber baik yang dikutip maupun dirujuk telah saya nyatakan dengan benar.

Nama	: Hendra Adhi Pratama, S.Si
NPM	: 0806421786
Tanda Tangan	200
Tanggal	: 22 Desember 2010

HALAMAN PENGESAHAN

Tesis ini diajukan oleh	:
Nama	: Hendra Adhi Pratama, S.Si
NPM	: 0806421786
Program Studi	: Kimia Non Hayati (Anorganik)
Judul Tesis	: Preparasi dan Karakterisasi Suspensi Nanopartikel
	TiO ₂ Berbasis Medium Air

Telah berhasil dipertahankan di hadapan Dewan Penguji dan diterima sebagai bagian persyaratan yang diperlukan untuk memperoleh gelar Magister Sains pada Program Studi Ilmu Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Indonesia.

DEWAN PENGUJI

Pembimbing	: Dr. Jarnuzi Gunlazuardi	()
Pembimbing	: Dr. Yuni K. Krisnandi	()
Penguji	: Dr. Ridla Bakri, M.Phil	()
Penguji	: Dr. Yoki Yulizar	()
Penguji	: Dr. Ivandini Tribidasari A.	()
Penguji	: Dr. Asep Saefumillah	()

Ditetapkan di	: Depok
Tanggal	: 22 Desember 2010

KATA PENGANTAR

Alhamdulillah, puji syukur saya panjatkan kepada Allah SWT, karena atas berkat dan rahmat-Nya, saya dapat menyelesaikan tesis ini. Penulisan tesis ini dilakukan dalam rangka memenuhi salah satu syarat untuk mencapai kelulusan Program Magister Ilmu Kimia Pascasarjana Departemen Kimia pada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia.

Saya menyadari bahwa, tanpa bantuan dan bimbingan dari berbagai pihak, dari masa perkuliahan sampai pada penyusunan tesis ini, sangatlah sulit bagi saya untuk menyelesaikan tesis ini. Oleh karena itu, saya mengucapkan terima kasih kepada:

- Bapak Dr. Jarnuzi Gunlazuardi dan Ibu Dr. Yuni K. Krisnandi selaku dosen pembimbing yang telah menyediakan waktu, tenaga, dan pikiran untuk mengarahkan saya dalam penyusunan tesis ini;
- (2) BATAN khususnya PTLR dan PUSDIKLAT yang telah memberikan beasiswa dan izin untuk program magister ini;
- (3) Dr. Ridla Bakri, M.Phil selaku ketua Departemen Kimia FMIPA UI dan Dr. Endang Saepudin selaku Koordinator Program Pasca Sarjana beserta seluruh Staf Dosen dan Staf Karyawan;
- (4) orang tua, istriku Dyah Anitasari tercinta dan putriku Dinda Izzati Putri yang cantik serta keluarga besar saya yang telah memberikan bantuan dukungan material dan moral; dan
- (5) rekan-rekan grup meeting fotokatalis (Irwan, Pak Cholid, Pak Hedi, Pak Anthony, Destya, Winda, Indra, Siti Mastanah, Zico, & Tika) rekan-rekan seperjuangan S2 dan rekan-rekan di laboratorium PTLR BATAN (Yuli, Ibnu, dkk) dan laboratorium Kimia UI serta semua pihak yang tidak dapat saya sebut satu persatu yang telah banyak membantu saya dalam menyelesaikan tesis ini. Akhir kata, saya berharap Allah SWT berkenan membalas segala kebaikan semua

pihak yang telah membantu. Semoga tesis ini membawa manfaat bagi pengembangan ilmu.

Penulis 2010

HALAMAN PERNYATAAN PERSETUJUAN PUBLIKASI TUGAS AKHIR UNTUK KEPENTINGAN AKADEMIS

Sebagai sivitas akademik Universitas Indonesia, saya yang bertanda tangan di bawah ini:

Nama	: Hendra Adhi Pratama
NPM	: 0806421786
Program Studi	: Kimia Non Hayati
Departemen	: Kimia
Fakultas	: Matematika dan Ilmu Pengetahuan Alam
Jenis karya	: Tesis

demi pengembangan ilmu pengetahuan, menyetujui untuk memberikan kepada Universitas Indonesia Hak Bebas Royalti Noneksklusif (*Non-exclusive Royalty Free Right*) atas karya ilmiah saya yang berjudul :

Preparasi dan Karakterisasi Suspensi Nanopartikel TiO₂ Berbasis Medium Air

beserta perangkat yang ada (jika diperlukan). Dengan Hak Bebas Royalti Noneksklusif ini Universitas Indonesia berhak menyimpan, mengalihmedia/format-kan, mengelola dalam bentuk pangkalan data (database), merawat, dan memublikasikan tugas akhir saya selama tetap mencantumkan nama saya sebagai penulis/pencipta dan sebagai pemilik Hak Cipta.

Demikian pernyataan ini saya buat dengan sebenarnya.

Dibuat di : Depok Pada tanggal : 22 Desember 2010 Yang menyatakan

(Hendra Adhi Pratama)

ABSTRAK

Nama	: Hendra Adhi Pratama
Program Studi	: Kimia
Judul	: Preparasi dan Karakterisasi Suspensi Nanopartikel TiO2 Berbasis
	Medium Air

Preparasi dan karakterisasi suspensi titanium dioksida nanopartikel berbasis medium air dengan menggunakan metode sol-gel dan refluks serta bantuan etilen glikol sebagai surfaktan telah dilakukan. Proses sol-gel dengan refluks dilakukan pada pH 1,5; 2,7 dan 5,0 selama 2 jam pada suhu 170 °C, dilanjutkan dengan variasi waktu refluks pada pH 1,5 yaitu selama 8, 16 dan 24 jam. Produk TiO₂ yang dihasilkan dikarakterisasi dengan X-Ray Difraktometer (XRD), Diffuse Reflectance Spektrometer dan SEM-EDX (Scanning Electron Microscope -Energy Dispersive X-ray Spektrometer). Hasil menunjukan bahwa TiO₂ yang terbentuk memiliki struktur anatase dengan ukuran kristal sebesar 2 - 5 nm dan energi celah sebesar 3,23 eV. TiO₂ dengan kristalinitas tertinggi diperoleh pada pH 1,5 dan waktu refluks selama 16 jam. Pencitraan dengan SEM menunjukan ukuran partikel TiO₂ powder yang terbentuk tidak homogen akibat teraglomerasi, dengan ukuran partikel rata-rata semakin kecil untuk waktu refluks yang semakin lama, yaitu 2,24 µm untuk refluks selama 2 jam, 1,81 µm untuk refluks selama 8 jam, 1,42 µm untuk refluks selama 16 jam dan 0,94 µm untuk refluks selama 24 jam. Hasil analisis dengan EDX menunjukan bahwa rasio Ti/O adalah 0,55; 0,80; 0,63; dan 1,00 untuk waktu refluks berturut-turut 2 jam, 8 jam, 16 jam dan 24 jam. Evaluasi sifat superhidrofilik berdasarkan pengukuran sudut kontak air adalah diperoleh pada lapisan film TiO₂ R24 dan TiO₂-EG (Cl), setelah diberi sinar UV berturut-turut selama 2 jam dan 4 jam. Kestabilan suspensi TiO₂ dalam air dapat tercapai jika pH larutan kurang dari 2,5 atau lebih dari 8,0 berdasarkan nilai zeta potensialnya. Degradasi fotokatalitik methylene blue tertinggi diperoleh pada film TiO₂ R16 dan mengikuti mekanisme Langmuir-Hinshelwood, yaitu pseudo orde pertama dengan nilai konstanta laju reaksinya (k) 0.004 menit⁻¹, dan nilai persen degradasi sebesar 22,03 % dalam waktu 60 menit.

Kata Kunci : suspensi TiO₂, medium air, etilen glikol, metode sol-gel dan fotokatalis.
xiii+99 halaman : 35 gambar; 5 tabel
Daftar Pustaka : 30 (1993-2011)

ABSTRACT

Name: Hendra Adhi PratamaProgram Study: ChemistryTitle: Preparation and Characterization of Water-Based Nanoparticle
TiO2 Suspension

Preparation and characterization of water-based nanoparticle titanium dioxide suspension by sol-gel method with reflux and aids of ethylene glycol as surfactant has been conducted. Sol-gel method with reflux was performed at pH of 1.5; 2.7 and 5.0 respectively at 170 °C for 2 hours, then followed by reflux for three different period of time (at pH 1.5) for 8, 16 and 24 hours respectively. The assynthesized TiO₂ was characterized with X-Ray Diffraction (XRD) Diffuse Reflectance Spectrometer, and SEM-EDX (Scanning Electron Microscope -Energy Dispersive X-Ray Spectrometer). The results show that as-synthesized TiO_2 have anatase structure with crystallite size about 2 - 5 nm and the highest crystallinity of TiO₂ is obtained at pH 1.5 and reflux for 16 hours. The band-gap energy of TiO₂ nanocrystals is about 3.23 eV. SEM images indicate that TiO₂ size obtained is not homogeneous due to agglomeration, with average particle size 2.24 μ m for 2 hours reflux time, 1.81 μ m for 8 hours reflux time, 1.42 μ m for 16 hours reflux time and 0.94 µm for 24 hours reflux time. EDX result shows that Ti/O ratio are 0.55; 0.80; 0.63; and 1.00 for reflux time 2, 8, 16 and 24 hours, respectively. Superhydrophilicity properties obtained in the TiO₂ R24 film and TiO₂-EG (Cl), after being exposure by UV light given in a row for 2 hours and 4 hours. The stability of the suspension of TiO₂ in water can be achieved if pH less than 2.5 or more than 8.0 based on the value of zeta potential. The highest photocatalytic degradation of methylene blue was obtained on TiO₂ R16 films and follow Langmuir-Hinshelwood mechanism for the pseudo first-order reaction. The reaction rate constant value (k) is 0.004 min⁻¹, and the percent degradation is 22.03% within 60 minutes.

Keywords: TiO2 suspension, water-based, ethylene glycol, sol-gel method
and photocatalyst.xiii+99 pages: 35 pictures; 5 tablesBibliography: 30 (1993-2011)

DAFTAR ISI

HALA	MAN JUDUL	i
HALA	MAN PERNYATAAN ORISINALITAS	ii
HALA	MAN PENGESAHAN	iii
KATA	PENGANTAR	iv
LEMB	AR PERSETUJUAN PUBLIKASI KARYA ILMIAH	vi
ABSTE	RAK	vii
DAFTA	AR ISI	ix
DAFTA	AR TABEL	xi
DAFTA	AR GAMBAR	xii
DAFT	AR LAMPIRAN	xiii
1 DEN		1
I. PEN	DAHULUAN	1
1.1	Latar Belakang	1
1.2	Perumusan Masalah	5
1.3	Tujuan Penelitian	6
1.4	Provest Ling Provide The Provi	6
1.5	Ruang Lingkup Penelitian	0
2 TIN		Q
2. IIIN. 2.1	Titanium Dioksida TiO.	8
2.1	2.1.1. Sifat sifat dan Struktur Kristalografik TiO	8
	2.1.1 Shat-shat dan Struktur Kristalografik 110_2	0
2.2	Eotokatalitik	11
2.2	2.2.1 Definici	11
	2.2.1 Definist	11
	2.2.2 Wexamshie Onlum Fotokatalitik pada Permukaan TiO	14
23	Preparasi Nanonartikel TiO	15
2.3	2 3 1 Metode Sol-gel	15
	2.3.1 Wetode Sol-ger	16
	2.3.2 Pengaruh nH	17
24	Dispersi Nanopartikel TiO	17
2.4	Sudut Kontak dan Superhidrofilik	19
2.0		17
3. ME	FODE PENELITIAN	22
3.1	Tahapan Penelitian	22
3.2	Bahan dan Alat Penelitian	23
	3.2.1 Bahan	23
	3.2.2 Peralatan	23
3.3	Prosedur Kerja	24
	3.3.1 Preparasi Suspensi TiO ₂ Berbasis Medium Air	24
	3.3.1.1 Sintesis TiO ₂ dengan metode sol-gel	24
	3.3.1.2 Pembuatan Dispersi TiO ₂ dalam Air	25
	3.3.2 Karakterisasi TiO ₂	26
	3.3.2.1 Analisis TiO ₂ Dengan Difraksi Sinar-X	26

3.3.2.2 Analisis TiO ₂ Dengan SEM - EDX	26
3.3.2.3 Analisis TiO ₂ Dengan DRS FT-IR dan UV Vis	26
3.3.2.4 Analisis dengan TGA dan DSC	26
3.3.3 Evaluasi Aktivitas Fotokatalitik	27
3.3.3.1 Preparasi Film TiO ₂ pada Pelat Kaca	27
3.3.3.2 Pengukuran Sudut Kontak Air	27
3.3.3.3 Uii Visual Film Katalis TiO ₂	28
3.3.3.4 Degradasi <i>Methylene Blue</i> dengan TiO ₂ Hasil Sintesis.	28
3.3.3.5 Evaluasi Aktivitas Fotoelektrokatalitik TiO ₂	28
4. HASIL DAN PEMBAHASAN	29
4.1 Preparasi TiO ₂ dengan Metode Sol-Gel	29
4.2 Karakterisasi TiO ₂	30
4.2.1 Difraksi Sinar X	30
4.2.2 Spektrometri DRS FTIR	34
4.2.3 Spektrometri DRS UV Vis	36
4.2.4 Karakterisasi dengan TGA dan DSC	37
4.2.5 Karakterisasi SEM - EDX	38
4.3 Dispersi TiO ₂	41
4.4 Efek Superhidrofilik	44
4.4.1 Immobilisasi TiO ₂ pada Pelat Kaca	44
4.4.2 Pengukuran Sudut Kontak	45
4.4.3 Uji Visual Film Katalis TiO ₂	47
4.5 Evaluasi Aktivitas Fotokatalitik TiO ₂	48
4.6 Evaluasi Aktivitas Fotoelektrokatalitik TiO ₂	50
5. KESIMPULAN DAN SARAN	53
5.1 Kesimpulan	53
5.2 Saran	54
DAFTAR PUSTAKA	55
LAMPIRAN	58

DAFTAR GAMBAR

Susunan Oktahedra TiO_6^{2-} 8Gambar 2.2Level Energi Pita Tepi Untuk Fotokatalis Yang Umum Digunakan10Gambar 2.3Tahapan Mekanisme Fotokatalitik12Gambar 2.4Sudut Kontak Tetes Embun pada Pernukaan Padatan19Gambar 2.5Mekanisme hidrofilisitas pada fotokatalis TiO221Gambar 3.1Diagram Kerja Penelitian22Gambar 3.2Diagram Kenaikan Suhu Kalsinasi27Gambar 4.1Mekanisme Reaksi Sintesis TiO2 Anatase29Gambar 4.2Suspensi Redispersi TiO2 10% dalam Air Setelah 4 bulan30Gambar 4.3Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi pH31Gambar 4.4Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi Waktu Refluks. Inset : Ukuran Kristal Anatase32Gambar 4.5Interpretasi Pola Difraksi Sinar-X dengan Kartu Standar ICPDS No. 04-047733Gambar 4.6Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi Prekursor dan Surfaktan34Gambar 4.7Spektrum DRS FT-IR yang Dipreparasi dengan Variasi Prekursor dan Surfaktan36Gambar 4.8Spektrum DRS FT-IR yang Dipreparasi dengan Variasi36Gambar 4.10Kurva TGA dan DSC TiO2 hasil refluks selama 16 jam38Gambar 4.11Foto SEM Frilm TiO2 pada Pelat Kaca40Gambar 4.12Foto SEM produk TiO2 dalam Bentuk Powder39Gambar 4.13Foto Dispersi TiO2 R16 dalar Air, (kiri) t = 0 jam, dan (kanan) t = 24 jam42Gambar 4.14Dispersi TiO2 R16 dalam Air, Selama 60 menit dengan Variasi Konsentrasi<	Susunan Oktahedra Ti $0_6^{2^2}$ 8Gambar 2.2Level Energi Pita Tepi Untuk Fotokatalis Yang Umum Digunakan10Gambar 2.3Tahapan Mekanisme Fotokatalitik12Gambar 2.4Sudut Kontak Tetes Embun pada Permukaan Padatan19Gambar 2.5Mekanisme hidrofilisitas pada fotokatalis TiO221Gambar 3.1Diagram Keraja Penelitian22Gambar 3.2Diagram Keraja Rusuhu Kalsinasi27Gambar 4.3Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi pH31Gambar 4.3Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi Waktu Refluks. Inset : Ukuran Kristal Anatase32Gambar 4.4Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi Prekursor dan Surfaktan34Gambar 4.5Interpretasi Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi Prekursor dan Surfaktan34Gambar 4.6Pola Difraksi Sinar-X TiO2 phene Sinar Variasi Prekursor dan Surfaktan36Gambar 4.7Spektrum DRS FT-IR TiO2 pH 5.0; TiO2 pH 1.5; TiO2 pH 2.7 dan TiO2 Degussa P2535Gambar 4.8Spektrum DRS UV-Vis TiO2 dengan Variasi Prekursor dan Surfaktan36Gambar 4.11Foto SEM produk TiO2 pada Pelat Kaca40Gambar 4.12Foto SEM Film TiO2 pada Pelat Kaca40Gambar 4.13Foto SEM Film TiO2 pada Pelat Kaca40Gambar 4.14Dispersi TiO2 R16 pada t = 0 jam dan t = 24 jam dengan Variasi Konsentrasi42Gambar 4.14Dispersi TiO2 R16 pada t = 0 jam dan t = 24 jam dengan Variasi Konsentrasi42Gambar 4.14<	Gambar 2.1	Struktur Kristal Anatase dan Rutile Digambarkan Sebagai	
Gambar 2.2 Level Energi Pita Tepi Untuk Fotokatalis Yang Umum Digunakan 10 Gambar 2.3 Tahapan Mekanisme Fotokatalitik 12 Gambar 2.4 Sudut Kontak Tetes Embun pada Permukaan Padatan 19 Gambar 2.5 Mekanisme hidrofilisitas pada fotokatalis TiO2 21 Gambar 3.1 Diagram Kerja Penelitian 22 Gambar 3.2 Diagram Kerja Penelitian 22 Gambar 4.1 Mekanisme Reaksi Sintesis TiO2 Anatase 29 Gambar 4.2 Suspensi Redispersi TiO2 10% dalam Air Setelah 4 bulan 30 Gambar 4.2 Suspensi Redispersi TiO2 yang Dipreparasi dengan Variasi pH 31 Gambar 4.4 Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi Waktu Refluks. Inset : Ukuran Kristal Anatase 32 Gambar 4.6 Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi Prekursor dan Surfaktan 34 Gambar 4.7 Spektrum DRS FT-IR TiO2 pH 5.0; TiO2 pH 1.5; TiO2 pH 2.7 dan TiO2 Degusas P25 35 Gambar 4.8 Spektrum DRS FT-IR Yang Dipreparasi dengan Variasi Prekursor dan Surfaktan 36 Gambar 4.10 Kurva TGA dan DSC TiO2 hasil refluks selama 16 jam 38 Gambar 4.11 Foto SEM produk TiO2 gala Pelat Kaca 40 Gambar 4.12	Gambar 2.2 Level Energi Pita Tepi Untuk Fotokatalis Yang Umum Digunakan 10 Gambar 2.3 Tahapan Mekanisme Fotokatalitik 12 Gambar 2.4 Sudut Kontak Tetes Embun pada Permukaan Padatan 19 Gambar 2.5 Mekanisme hidrofilisitas pada fotokatalis TiO2 21 Gambar 3.1 Diagram Kerja Penelitian 22 Gambar 3.2 Diagram Kenaikan Suhu Kalsinasi 27 Gambar 4.1 Mekanisme Reaksi Sintesis TiO2 Anatase 29 Gambar 4.2 Suspensi Redispersi TiO2 10% dalam Air Setelah 4 bulan 30 Gambar 4.3 Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi 31 Gambar 4.5 Interpretasi Pola Difraksi Sinar-X dengan Kartu Standar 32 Gambar 4.6 Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi 34 Gambar 4.7 Spektrum DRS FT-IR Yang Dipreparasi dengan Variasi 34 Gambar 4.7 Spektrum DRS FT-IR yang Dipreparasi dengan Variasi 36 Gambar 4.8 Spektrum DRS FT-IR yang Dipreparasi dengan Variasi 36 Gambar 4.10 Kurva TGA dan DSC TiO2 hasil refluks selama 16 jam 38 Gambar 4.10 Kurva TGA dan DSC TiO2 hasil refluks selama 16 jam 38 <		Susunan Oktabedra Ti $\Omega^{2^{-}}$	8
Standar 2.2Digunakan10Gambar 2.3Tahapan Mekanisme Fotokatalitik12Gambar 2.4Sudut Kontak Tetes Embun pada Permukaan Padatan19Gambar 2.5Mekanisme hidrofilisitas pada fotokatalis TiO221Gambar 3.1Diagram Kerja Penelitian22Gambar 4.1Mekanisme Reaksi Sintesis TiO2 Anatase29Gambar 4.2Suspensi Redispersi TiO2 10% dalam Air Setelah 4 bulan30Gambar 4.3Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi31Gambar 4.4Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi31Gambar 4.5Interpretasi Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi32Gambar 4.6Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi34Gambar 4.7Spektrum DRS FT-IR TiO2 pH 5,0; TiO2 pH 1,5; TiO2 pH34Gambar 4.7Spektrum DRS FT-IR TiO2 pH 5,0; TiO2 pH 1,5; TiO2 pH35Gambar 4.8Spektrum DRS UV-Vis TiO2 dengan Variasi36Gambar 4.9Spektrum DRS UV-Vis TiO2 dalam Bentuk Powder39Gambar 4.10Kurva TGA dan DSC TiO2 hasil refluks selama 16 jam38Gambar 4.12Foto SEM Film TiO2 pada Pelat Kaca40Gambar 4.13Foto SEM Ketebalan Film TiO2 pada Pelat Kaca dengan Variasi Konsentrasi41Gambar 4.14Dispersi TiO2 R16 pada t = 0 jam dan t = 24 jam dengan Variasi Konsentrasi42Gambar 4.15Foto SEM Ketebalan Film TiO2 pada Pelat Kaca dengan Pelapisan 5x42Gambar 4.16Dispersi TiO2 R16 pada t = 0 jam dan t = 24 jam dengan <br< td=""><td>Gambar 2.2Distor Brock Brock Report10Gambar 2.4Sudut Kontak Tetes Embun pada Permukaan Padatan19Gambar 2.4Sudut Kontak Tetes Embun pada Permukaan Padatan19Gambar 2.5Mekanisme hidrofilisitas pada fotokatalis TiO221Gambar 3.1Diagram Kerja Penelitian22Gambar 3.2Diagram Kerja Penelitian22Gambar 4.1Mekanisme Reaksi Sintesis TiO2 Anatase29Gambar 4.2Suspensi Redispersi TiO2 10% dalam Air Setelah 4 bulan30Gambar 4.3Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi31Gambar 4.4Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi31Gambar 4.5Interpretasi Pola Difraksi Sinar-X Gengan Kartu Standar32Gambar 4.6Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi34Gambar 4.7Spektrum DRS FT-IR TiO2 pH 50; TiO2 pH 1.5; TiO2 pH35Gambar 4.8Spektrum DRS FT-IR Yang Dipreparasi dengan Variasi36Gambar 4.8Spektrum DRS FT-IR Yang Dipreparasi dengan Variasi36Gambar 4.9Spektrum DRS FT-IR Yang Dipreparasi dengan Variasi36Gambar 4.11Foto SEM produk TiO2 dalam Bentuk Powder39Gambar 4.12Foto SEM produk TiO2 dalam Bentuk Powder39Gambar 4.13Foto SEM produk TiO2 pada Pelat Kaca40Gambar 4.14Dispersi TiO2 R16 dalam Air Selama 60 menit dengan42Gambar 4.15Foto Dispersi TiO2 R16 dalam Air Selama 60 menit dengan42Gambar 4.16Dispersi TiO2 R16 dalam Air Selama 60 men</td><td>Gambar 2.2</td><td>Level Energi Pita Teni Untuk Fotokatalis Yang Umum</td><td>0</td></br<>	Gambar 2.2Distor Brock Brock Report10Gambar 2.4Sudut Kontak Tetes Embun pada Permukaan Padatan19Gambar 2.4Sudut Kontak Tetes Embun pada Permukaan Padatan19Gambar 2.5Mekanisme hidrofilisitas pada fotokatalis TiO221Gambar 3.1Diagram Kerja Penelitian22Gambar 3.2Diagram Kerja Penelitian22Gambar 4.1Mekanisme Reaksi Sintesis TiO2 Anatase29Gambar 4.2Suspensi Redispersi TiO2 10% dalam Air Setelah 4 bulan30Gambar 4.3Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi31Gambar 4.4Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi31Gambar 4.5Interpretasi Pola Difraksi Sinar-X Gengan Kartu Standar32Gambar 4.6Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi34Gambar 4.7Spektrum DRS FT-IR TiO2 pH 50; TiO2 pH 1.5; TiO2 pH35Gambar 4.8Spektrum DRS FT-IR Yang Dipreparasi dengan Variasi36Gambar 4.8Spektrum DRS FT-IR Yang Dipreparasi dengan Variasi36Gambar 4.9Spektrum DRS FT-IR Yang Dipreparasi dengan Variasi36Gambar 4.11Foto SEM produk TiO2 dalam Bentuk Powder39Gambar 4.12Foto SEM produk TiO2 dalam Bentuk Powder39Gambar 4.13Foto SEM produk TiO2 pada Pelat Kaca40Gambar 4.14Dispersi TiO2 R16 dalam Air Selama 60 menit dengan42Gambar 4.15Foto Dispersi TiO2 R16 dalam Air Selama 60 menit dengan42Gambar 4.16Dispersi TiO2 R16 dalam Air Selama 60 men	Gambar 2.2	Level Energi Pita Teni Untuk Fotokatalis Yang Umum	0
Gambar 2.3Tahapan Mekanisme Fotokatalitik12Gambar 2.4Sudut Kontak Tetes Embun pada Permukaan Padatan19Gambar 2.5Mekanisme hidrofilisitas pada fotokatalis TiO221Gambar 3.1Diagram Kerja Penelitian22Gambar 3.2Diagram Kenaikan Suhu Kalsinasi27Gambar 3.2Suspensi Redispersi TiO2 10% dalam Air Setelah 4 bulan30Gambar 4.3Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi pH31Gambar 4.4Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi Waku Refluks. Inset: Ukuran Kristal Anatase32Gambar 4.6Pola Difraksi Sinar X TiO2 yang Dipreparasi dengan Variasi Prekursor dan Surfaktan34Gambar 4.7Spektrum DRS FT-IR TiO2 pH 5.0; TiO2 pH 1.5; TiO2 pH 2.7 dan TiO2 Degussa P2535Gambar 4.8Spektrum DRS FT-IR TiO2 dengan Variasi Prekursor dan Surfaktan36Gambar 4.9Spektrum DRS FT-IR TiO2 dengan Variasi Waktu Refluks. Inset : Nilaf energi celah37Gambar 4.10Kurva TGA dan DSC TiO2 hasil refluks selama 16 jam38Gambar 4.11Foto SEM Film TiO2 pada Pelat Kaca40Gambar 4.12Foto SEM Film TiO2 nada t = 0 jam dan t = 24 jam dengan Variasi Konsentrasi42Gambar 4.13Foto SEM Ketebalan Film TiO2 pada Pelat Kaca dengan Variasi Konsentrasi42Gambar 4.14Dispersi TiO2 R16 dalam Air (kiri) t = 0 jam, dan (kanan) t = 24 jam42Gambar 4.13Foto SEM Ketebalan Film TiO2 pada Pelat Kaca dengan Variasi Konsentrasi42Gambar 4.14Dispersi TiO2 R16 dalam Air Selama 60	Gambar 2.3Tahapan Mekanisme Fotokatalitik12Gambar 2.4Sudut Kontak Tetes Embun pada Permukaan Padatan19Gambar 2.5Mekanisme hidrofilisitas pada fotokatalis TiO221Gambar 3.1Diagram Keraikan Suhu Kalsinasi22Gambar 3.2Diagram Kenaikan Suhu Kalsinasi27Gambar 4.3Mekanisme Reaksi Sintesis TiO2 Anatase29Gambar 4.2Suspensi Redispersi TiO2 10% dalam Air Setelah 4 bulan30Gambar 4.3Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi pH31Gambar 4.4Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi Waktu Refluks. Inset : Ukuran Kristal Anatase32Gambar 4.5Interpretasi Pola Difraksi Sinar-X TiO2 pag Dipreparasi dengan Variasi Prekursor dan Surfaktan34Gambar 4.6Pola Difraksi Sinar-X TiO2 pag Dipreparasi dengan Variasi Prekursor dan Surfaktan34Gambar 4.7Spektrum DRS FT-IR TiO2 pH 5,0; TiO2 pH 1,5; TiO2 pH 2,7 dan TiO2 Degussa P2535Gambar 4.8Spektrum DRS FT-IR yang Dipreparasi dengan Variasi Prekursor dan Surfaktan36Gambar 4.10Kurva TGA dan DSC TiO2 hasil refluks selama 16 jam38Gambar 4.11Foto SEM Film TiO2 pada Pelat Kaca40Gambar 4.12Foto SEM Film TiO2 rada Pelat Kaca40Gambar 4.13Foto SEM Ketebalan Film TiO2 pada Pelat Kaca dengan Pelapisan 5x41Gambar 4.14Dispersi TiO2 R16 dalam Air Selama 60 menit dengan Variasi Konsentrasi42Gambar 4.13Foto SEM Ketebalan Film TiO2 R24 dan TiO2 dalam Air (kiri) t = 0 jam, dan (kana	Gambar 2.2	Digunakan	10
Gambar 2.4Sudui Kontak Tetes Embun pada Permukaan Padatan19Gambar 2.5Mekanisme hidrofilisitas pada fotokatalis TiO221Gambar 3.1Diagram Kerja Penelitian22Gambar 3.2Diagram Kenaikan Suhu Kalsinasi27Gambar 4.1Mekanisme Reaksi Sintesis TiO2 Anatase29Gambar 4.2Suspensi Redispersi TiO2 10% dalam Air Setelah 4 bulan30Gambar 4.3Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi Waktu Refluks. Inset : Ukuran Kristal Anatase31Gambar 4.4Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi Waktu Refluks. Inset : Ukuran Kristal Anatase32Gambar 4.5Interpretasi Pola Difraksi Sinar-X dengan Kartu Standar JCPDS No. 04-047733Gambar 4.6Pola Difraksi Sinar-X TiO2 pH 5.0; TiO2 pH 1.5; TiO2 pH 2.7 dan TiO2 Degussa P2535Gambar 4.7Spektrum DRS FT-IR TiO2 pH 5.0; TiO2 pH 1.5; TiO2 pH 2.7 dan TiO2 Degussa P2536Gambar 4.8Spektrum DRS UV-Vis TiO2 dengan Variasi Prekursor dan Surfaktan36Gambar 4.10Kurva TGA dan DSC TiO2 hasil refluks selama 16 jam38Gambar 4.11Foto SEM Film TiO2 pada Pelat Kaca40Gambar 4.12Foto SEM Film TiO2 R16 dalam Air, (kiri) t = 0 jam, dan (kanan) t = 24 jam42Gambar 4.13Foto SEM Film TiO2 pada Pelat Kaca dengan Variasi Konsentrasi42Gambar 4.14Dispersi TiO2 R16 dalam Air, Selama 60 menit dengan Variasi Konsentrasi42Gambar 4.15Foto Dispersi TiO2 R16 dalam Air Selama 60 menit dengan Variasi Konsentrasi43Gambar 4.18 </td <td>Gambar 2.4Sudut Kontak Tetes Embun pada Permukaan Padatan19Gambar 2.5Mekanisme hidrofilisitas pada fotokatalis TiO221Gambar 3.1Diagram Kerja Penelitian22Gambar 3.2Diagram Kenaikan Suhu Kalsinasi27Gambar 4.1Mekanisme Reaksi Sintesis TiO2 Anatase29Gambar 4.2Suspensi Redispersi TiO2 10% dalam Air Setelah 4 bulan30Gambar 4.3Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi31Gambar 4.4Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi32Gambar 4.5Interpretasi Pola Difraksi Sinar-X dengan Kartu Standar32Gambar 4.6Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi33Gambar 4.7Spektrum DRS FT-IR TiO2 pH 5,0; TiO2 pH 1,5; TiO2 pH33Gambar 4.8Spektrum DRS FT-IR TiO2 pH 5,0; TiO2 pH 1,5; TiO2 pH36Z,7 dan TiO2 Degussa P253535Gambar 4.9Spektrum DRS FT-IR Yang Dipreparasi dengan Variasi36Gambar 4.10Kurva TGA dan DSC TiO2 hasil refluks selama 16 jam38Gambar 4.11Foto SEM Film TiO2 pada Pelat Kaca40Gambar 4.12Foto SEM Film TiO2 R16 pada t = 0 jam dan t = 24 jam dengan Variasi Konsentrasi42Gambar 4.14Dispersi TiO2 R16 pada t = 0 jam dan t = 24 jam dengan Variasi Konsentrasi42Gambar 4.15Foto SEM Film TiO2 pada Pelat Kaca42Gambar 4.16Dispersi TiO2 R16 dalam Air, (kiri) t = 0 jam, dan (kanan) t = 24 jam42Gambar 4.17Dispersi TiO2 R16 dalam Air, Selama 60 menit dengan<</td> <td>Gambar 2.3</td> <td>Tahapan Mekanisme Fotokatalitik</td> <td>12</td>	Gambar 2.4Sudut Kontak Tetes Embun pada Permukaan Padatan19Gambar 2.5Mekanisme hidrofilisitas pada fotokatalis TiO221Gambar 3.1Diagram Kerja Penelitian22Gambar 3.2Diagram Kenaikan Suhu Kalsinasi27Gambar 4.1Mekanisme Reaksi Sintesis TiO2 Anatase29Gambar 4.2Suspensi Redispersi TiO2 10% dalam Air Setelah 4 bulan30Gambar 4.3Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi31Gambar 4.4Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi32Gambar 4.5Interpretasi Pola Difraksi Sinar-X dengan Kartu Standar32Gambar 4.6Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi33Gambar 4.7Spektrum DRS FT-IR TiO2 pH 5,0; TiO2 pH 1,5; TiO2 pH33Gambar 4.8Spektrum DRS FT-IR TiO2 pH 5,0; TiO2 pH 1,5; TiO2 pH36Z,7 dan TiO2 Degussa P253535Gambar 4.9Spektrum DRS FT-IR Yang Dipreparasi dengan Variasi36Gambar 4.10Kurva TGA dan DSC TiO2 hasil refluks selama 16 jam38Gambar 4.11Foto SEM Film TiO2 pada Pelat Kaca40Gambar 4.12Foto SEM Film TiO2 R16 pada t = 0 jam dan t = 24 jam dengan Variasi Konsentrasi42Gambar 4.14Dispersi TiO2 R16 pada t = 0 jam dan t = 24 jam dengan Variasi Konsentrasi42Gambar 4.15Foto SEM Film TiO2 pada Pelat Kaca42Gambar 4.16Dispersi TiO2 R16 dalam Air, (kiri) t = 0 jam, dan (kanan) t = 24 jam42Gambar 4.17Dispersi TiO2 R16 dalam Air, Selama 60 menit dengan<	Gambar 2.3	Tahapan Mekanisme Fotokatalitik	12
Gambar 2.5Mekanisme hidrofilisitas pada fotokatalis TiO221Gambar 3.2Diagram Kenaikan Suhu Kalsinasi22Gambar 3.2Diagram Kenaikan Suhu Kalsinasi27Gambar 4.1Mekanisme Reaksi Sintesis TiO2 Anatase29Gambar 4.2Suspensi Redispersi TiO2 10% dalam Air Setelah 4 bulan30Gambar 4.3Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi31Gambar 4.4Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi32Gambar 4.5Interpretasi Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi32Gambar 4.6Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi34Gambar 4.7Spektrum DRS FT-IR TiO2 pH 5.0; TiO2 pH 1.5; TiO2 pH37Gambar 4.8Spektrum DRS FT-IR TiO2 dengan Variasi36Gambar 4.9Spektrum DRS FT-IR yang Dipreparasi dengan Variasi36Gambar 4.9Spektrum DRS FT-IR yang Dipreparasi dengan Variasi36Gambar 4.9Spektrum DRS FT-IR yang Dipreparasi dengan Variasi37Gambar 4.10Kurva TGA dan DSC TiO2 dengan Variasi Waktu Refluks. Inset : Nilai energi celah37Gambar 4.18Foto SEM produk TiO2 dalam Bentuk Powder39Gambar 4.14Dispersi TiO2 R16 pada t = 0 jam dan t = 24 jam dengan Variasi Konsentrasi41Gambar 4.15Foto SEM Film TiO2 R16 pada t = 0 jam dan t = 24 jam dengan Variasi Konsentrasi42Gambar 4.19Dispersi TiO2 R16 pada t = 0 jam dan t = 24 jam dengan Variasi Konsentrasi42Gambar 4.11Dispersi TiO2 R16 dalam Air, (kiri) t = 0 jam	Gambar 2.5Mekanisme hidrofilisitas pada fotokatalis TiO221Gambar 3.1Diagram Kerja Penelitian22Gambar 3.2Diagram Kenaikan Suhu Kalsinasi27Gambar 4.1Mekanisme Reakis Sintesis TiO2 Anatase29Gambar 4.2Suspensi Redispersi TiO2 10% dalam Air Setelah 4 bulan30Gambar 4.3Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi31Gambar 4.4Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi32Gambar 4.5Interpretasi Pola Difraksi Sinar-X dengan Kartu Standar32Gambar 4.6Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi33Gambar 4.7Spektrum RTistai Anatase34Gambar 4.8Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi34Gambar 4.7Spektrum DRS FT-IR TiO2 pH 5,0; TiO2 pH 1,5; TiO2 pH 2,7 dan TiO2 Degussa P2535Gambar 4.8Spektrum DRS UV-Vis TiO2 dengan Variasi36Gambar 4.9Spektrum DRS UV-Vis TiO2 dengan Variasi Waktu Refluks.36Gambar 4.11Foto SEM Film TiO2 pada Pelat Kaca40Gambar 4.12Foto SEM Film TiO2 pada Pelat Kaca40Gambar 4.13Foto SEM Film TiO2 R16 dalam Air, (kiri) t = 0 jam, dan (kanan) t = 24 jam.42Gambar 4.16Dispersi TiO2 R16 dalam Air Selama 60 menit dengan Variasi Konsentrasi42Gambar 4.17Dispersi TiO2 R16 dalam Air, selama 60 menit dengan Variasi Konsentrasi 1000 ppm.43Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air44Gambar 4.19Dispersi TiO2 R16 dal	Gambar 2.4	Sudut Kontak Tetes Embun pada Permukaan Padatan	19
Gambar 3.1Diagram Kerja Penelitian22Gambar 3.2Diagram Kenaikan Suhu Kalsinasi27Gambar 4.1Mekanisme Reaksi Sintesis TiO2 10% dalam Air Setelah 4 bulan30Gambar 4.2Suspensi Redispersi TiO2 10% dalam Air Setelah 4 bulan30Gambar 4.3Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi pH31Gambar 4.4Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi Waktu Refluks. Inset : Ukuran Kristal Anatase32Gambar 4.5Interpretasi Pola Difraksi Sinar-X tiO2 yang Dipreparasi dengan Variasi Prekursor dan Surfaktan33Gambar 4.6Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi Prekursor dan Surfaktan34Gambar 4.7Spektrum DRS FT-IR TiO2 pH 5,0; TiO2 pH 1,5; TiO2 pH 2,7 dan TiO2 Degussa P2535Gambar 4.8Spektrum DRS UV-Vis TiO2 dengan Variasi Waktu Refluks. Inset : Nilai energi celah37Gambar 4.10Kurva TGA dan DSC TiO2 hasil refluks selama 16 jam38Gambar 4.12Foto SEM Film TiO2 pada Pelat Kaca40Gambar 4.13Foto SEM Film TiO2 R16 dalam Air, (kiri) t = 0 jam, dan (kanan) t = 24 jam42Gambar 4.14Dispersi TiO2 R16 dalam Air Selama 60 menit dengan Variasi Konsentrasi42Gambar 4.17Dispersi TiO2 R16 dalam Air dengan Variasi pH43Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air44Gambar 4.17Dispersi TiO2 R16 dalam Air dengan Variasi FIO2 variasi Konsentrasi42Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air44Gamb	Gambar 3.1Diagram Kerja Penelitian22Gambar 3.2Diagram Kenaikan Suhu Kalsinasi27Gambar 4.1Mekanisme Reaksi Sintesis TiO2 Anatase29Gambar 4.2Suspensi Redispersi TiO2 10% dalam Air Setelah 4 bulan30Gambar 4.2Suspensi Redispersi TiO2 yang Dipreparasi dengan VariasipHpH	Gambar 2.5	Mekanisme hidrofilisitas pada fotokatalis TiO ₂	21
Gambar 3.2Diagram Kenaikan Suhu Kalsinasi27Gambar 4.1Mekanisme Reaksi Sintesis TiO2 Anatase29Gambar 4.2Suspensi Redispersi TiO2 10% dalam Air Setelah 4 bulan30Gambar 4.3Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi31Gambar 4.4Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi31Gambar 4.5Interpretasi Pola Difraksi Sinar-X dengan Kartu Standar32Gambar 4.5Interpretasi Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi33Gambar 4.5Interpretasi Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi34Gambar 4.7Spektrum DRS FT-IR TiO2 pH 5,0; TiO2 pH 1,5; TiO2 pH2.7 dan TiO2 Degussa P2535Gambar 4.8Spektrum DRS FT-IR yang Dipreparasi dengan Variasi36Gambar 4.9Spektrum DRS UV-Vis TiO2 dengan Variasi Waktu Refluks. Inset : Nilai energi celah37Gambar 4.10Kurva TGA dan DSC TiO2 hasil refluks selama 16 jam38Gambar 4.12Foto SEM Film TiO2 pada Pelat Kaca40Gambar 4.13Foto SEM Film TiO2 pada Pelat Kaca41Gambar 4.14Dispersi TiO2 R16 pada t = 0 jam dan t = 24 jam dengan Variasi Konsentrasi42Gambar 4.16Dispersi TiO2 R16 dalam Air Selama 60 menit dengan Variasi Konsentrasi42Gambar 4.16Dispersi TiO2 R16 dalam Air Selama 60 menit dengan Variasi Konsentrasi42Gambar 4.19Dispersi TiO2 R16 dalam Air dengan Variasi PI Setelah 1 Hari44Gambar 4.19Dispersi TiO2 dalam Air dengan Variasi pI Setelah 1 Hari44<	Gambar 3.2 Diagram Kenaikan Suhu Kalsinasi 27 Gambar 4.1 Mekanisme Reaksi Sintesis TiO ₂ Anatase 29 Gambar 4.2 Suspensi Redispersi TiO ₂ 10% dalam Air Setelah 4 bulan 30 Gambar 4.3 Pola Difraksi Sinar-X TiO ₂ yang Dipreparasi dengan Variasi pH 31 Gambar 4.4 Pola Difraksi Sinar-X TiO ₂ yang Dipreparasi dengan Variasi Waktu Refluks. Inset : Ukuran Kristal Anatase 32 Gambar 4.5 Interpretasi Pola Difraksi Sinar-X dengan Kartu Standar JCPDS No. 04-0477 33 Gambar 4.6 Pola Difraksi Sinar-X TiO ₂ yang Dipreparasi dengan Variasi Prekursor dan Surfaktan 34 Gambar 4.7 Spektrum DRS FT-IR TiO ₂ pH 5,0; TiO ₂ pH 1,5; TiO ₂ pH 2,7 dan TiO ₂ Degussa P25 35 Gambar 4.8 Spektrum DRS FT-IR yang Dipreparasi dengan Variasi Prekursor dan Surfaktan 36 Gambar 4.9 Spektrum DRS UV-Vis TiO ₂ dengan Variasi Waktu Refluks. Inset : Nilai energi celah 37 Gambar 4.10 Kurva TGA dan DSC TiO ₂ hasil refluks selama 16 jam 38 Gambar 4.12 Foto SEM Film TiO ₂ pada Pelat Kaca 40 Gambar 4.13 Foto SEM Film TiO ₂ R16 dalam Air, (kiri) t = 0 jam, dan (kanan) t = 24 jam. 42 Gambar 4.14 Dispersi TiO ₂ R16 dalam Air Selama 60 menit dengan Variasi Konsentrasi. 42	Gambar 3.1	Diagram Keria Penelitian	22
Gambar 4.1Mckanisme Reaksi Sintesis TiO2 Anatase29Gambar 4.2Suspensi Redispersi TiO2 10% dalam Air Setelah 4 bulan30Gambar 4.3Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi pH31Gambar 4.4Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi Waktu Refluks. Inset : Ukuran Kristal Anatase32Gambar 4.4Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi Waktu Refluks. Inset : Ukuran Kristal Anatase32Gambar 4.5Interpretasi Pola Difraksi Sinar-X dengan Kartu Standar JCPDS No. 04-047733Gambar 4.6Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi Prekursor dan Surfaktan34Gambar 4.7Spektrum DRS FT-IR TiO2 pH 5,0; TiO2 pH 1,5; TiO2 pH 2,7 dan TiO2 Degussa P2535Gambar 4.8Spektrum DRS FT-IR yang Dipreparasi dengan Variasi Prekursor dan Surfaktan36Gambar 4.9Spektrum DRS UV-Vis TiO2 dengan Variasi Waktu Refluks. Inset : Nilai energi celah37Gambar 4.10Kurva TGA dan DSC TiO2 hasil refluks selama 16 jam38Gambar 4.11Foto SEM Frilm TiO2 pada Pelat Kaca40Gambar 4.12Foto SEM Film TiO2 pada Pelat Kaca41Gambar 4.13Foto SEM Ketebalan Film TiO2 pada Pelat Kaca dengan Variasi Konsentrasi42Gambar 4.14Dispersi TiO2 R16 pada t = 0 jam dan t = 24 jam dengan Variasi Konsentrasi42Gambar 4.16Dispersi TiO2 R16 dalam Air Selama 60 menit dengan Variasi Konsentrasi42Gambar 4.17Dispersi TiO2 dengan Variasi Waktu Refluks pada Konsentrasi 1000 ppm43Gambar 4	Gambar 4.1Mckanisme Reaksi Sintesis TiO2 Anatase29Gambar 4.2Suspensi Redispersi TiO2 10% dalam Air Setelah 4 bulan30Gambar 4.3Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi pH31Gambar 4.4Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi Waktu Refluks. Inset : Ukuran Kristal Anatase32Gambar 4.5Interpretasi Pola Difraksi Sinar-X dengan Kartu Standar JCPDS No. 04-047733Gambar 4.6Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi Prekursor dan Surfaktan34Gambar 4.7Spektrum DRS FT-IR TiO2 pH 5,0; TiO2 pH 1,5; TiO2 pH 2,7 dan TiO2 Degussa P2535Gambar 4.8Spektrum DRS FT-IR yang Dipreparasi dengan Variasi Prekursor dan Surfaktan36Gambar 4.9Spektrum DRS UV-Vis TiO2 dengan Variasi Waktu Refluks. Inset : Nilai energi celah37Gambar 4.10Kurva TGA dan DSC TiO2 hala Pelat Kaca40Gambar 4.12Foto SEM Frilm TiO2 pada Pelat Kaca dengan Pelapisan 5x41Gambar 4.13Foto SEM Ketebalan Film TiO2 pada Pelat Kaca dengan Variasi Konsentrasi42Gambar 4.14Dispersi TiO2 R16 pada t = 0 jam dan t = 24 jam dengan Variasi Konsentrasi42Gambar 4.17Dispersi TiO2 R16 dalam Air Selama 60 menit dengan Variasi Konsentrasi42Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air43Gambar 4.19Dispersi TiO2 R16 dalam Air Gama Variasi Pi Setelah 1 Hari44Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air42Gambar 4.19Dispersi TiO2 R16, TiO2	Gambar 3.2	Diagram Kenaikan Suhu Kalsinasi	27
Gambar 4.2Suspensi Redispersi TiO2 10% dalam Air Setelah 4 bulan30Gambar 4.3Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi pH31Gambar 4.4Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi Waku Refluks. Inset : Ukuran Kristal Anatase32Gambar 4.5Interpretasi Pola Difraksi Sinar-X dengan Kartu Standar JCPDS No. 04-047733Gambar 4.6Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi Prekursor dan Surfaktan34Gambar 4.7Spektrum DRS FT-IR TiO2 pH 5,0; TiO2 pH 1,5; TiO2 pH 2,7 dan TiO2 Degussa P2535Gambar 4.8Spektrum DRS FT-IR yang Dipreparasi dengan Variasi Prekursor dan Surfaktan36Gambar 4.9Spektrum DRS UV-Vis TiO2 dengan Variasi Waktu Refluks. Inset : Nilai energi celah37Gambar 4.10Kurva TGA dan DSC TiO2 pala refluks selama 16 jam38Gambar 4.11Foto SEM Frilm TiO2 pada Pelat Kaca40Gambar 4.12Foto SEM Ketebalan Film TiO2 pada Pelat Kaca41Gambar 4.13Foto SEM Ketebalan Film TiO2 pada Pelat Kaca dengan Pelapisan 5x41Gambar 4.14Dispersi TiO2 R16 dalam Air, (kiri) t = 0 jam, dan (kanan) t = 24 jam42Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air44Gambar 4.19Dispersi TiO2 R16 dalam Air Selama 60 menit dengan Variasi Konsentrasi42Gambar 4.14Dispersi TiO2 R16 dalam Air Selama 60 menit dengan Variasi Konsentrasi42Gambar 4.14Dispersi TiO2 dengan Variasi Waktu Refluks pada Konsentrasi 1000 ppm43Gambar 4.18Potensia	Gambar 4.2Suspensi Redispersi TiO2 10% dalam Air Setelah 4 bulan30Gambar 4.3Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi pH31Gambar 4.4Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi Waktu Refluks. Inset : Ukuran Kristal Anatase32Gambar 4.5Interpretasi Pola Difraksi Sinar-X dengan Kartu Standar JCPDS No. 04-047733Gambar 4.6Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi Prekursor dan Surfaktan34Gambar 4.7Spektrum DRS FT-IR TiO2 pH 5,0; TiO2 pH 1,5; TiO2 pH 2,7 dan TiO2 Degussa P2535Gambar 4.8Spektrum DRS FT-IR yang Dipreparasi dengan Variasi Prekursor dan Surfaktan36Gambar 4.9Spektrum DRS UV-Vis TiO2 dengan Variasi Waktu Refluks. Inset : Nilai energi celah.37Gambar 4.10Kurva TGA dan DSC TiO2 hasil refluks selama 16 jam38Gambar 4.12Foto SEM Froduk TiO2 pada Pelat Kaca40Gambar 4.13Foto SEM Ketebalan Film TiO2 pada Pelat Kaca dengan Pelapisan 5x41Gambar 4.14Dispersi TiO2 R16 dalam Air, (kiri) t = 0 jam, dan (kanan) t = 24 jam42Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air43Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air44Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air44Gambar 4.19Dispersi TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 dalam Air dengan Variasi Refluks Langsung Setelah Diberi Sinar UV 10 Watt Selama 1 Jam46Gambar 4.19Dispersi TiO2 no 2 adi Suspensi Hasil Refluks <td>Gambar 4.1</td> <td>Mekanisme Reaksi Sintesis TiO₂ Anatase</td> <td>29</td>	Gambar 4.1	Mekanisme Reaksi Sintesis TiO ₂ Anatase	29
Gambar 4.3Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi pH31Gambar 4.4Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi Waku Refluks. Inset : Ukuran Kristal Anatase32Gambar 4.5Interpretasi Pola Difraksi Sinar-X dengan Kartu Standar JCPDS No. 04-047733Gambar 4.6Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi 	Gambar 4.3Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi pH31Gambar 4.4Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi Waku Refluks. Inset : Ukuran Kristal Anatase32Gambar 4.5Interpretasi Pola Difraksi Sinar-X dengan Kartu Standar JCPDS No. 04-047733Gambar 4.6Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi Prekursor dan Surfaktan34Gambar 4.7Spektrum DRS FT-IR TiO2 pH 5.0; TiO2 pH 1.5; TiO2 pH 2.7 dan TiO2 Degussa P2535Gambar 4.8Spektrum DRS FT-IR yang Dipreparasi dengan Variasi Prekursor dan Surfaktan36Gambar 4.9Spektrum DRS FT-IR yang Dipreparasi dengan Variasi Prekursor dan Surfaktan36Gambar 4.10Kurva TGA dan DSC TiO2 hasil refluks selama 16 jam38Gambar 4.11Foto SEM produk TiO2 dalam Bentuk Powder39Gambar 4.12Foto SEM Film TiO2 pada Pelat Kaca40Gambar 4.13Foto SEM Ketebalan Film TiO2 pada Pelat Kaca dengan Pelapisan 5x41Gambar 4.14Dispersi TiO2 R16 pada t = 0 jam dan t = 24 jam dengan Variasi Konsentrasi42Gambar 4.17Dispersi TiO2 cAl6 dalam Air Selama 60 menit dengan Variasi Konsentrasi43Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air44Gambar 4.19Dispersi TiO2 dalam Air dengan Variasi pH setelah 1 Hari44Gambar 4.19Dispersi TiO2 R16 dalam Air Selama 60 menit dengan Variasi Konsentrasi42Gambar 4.14Dispersi TiO2 dalam Air dengan Variasi pH setelah 1 Hari44Gambar 4.19Dispersi TiO2 dalam Air de	Gambar 4.2	Suspensi Redispersi TiO ₂ 10% dalam Air Setelah 4 bulan	30
pH31Gambar 4.4Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi Waktu Refluks. Inset : Ukuran Kristal Anatase32Gambar 4.5Interpretasi Pola Difraksi Sinar-X dengan Kartu Standar JCPDS No. 04-047733Gambar 4.6Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi Prekursor dan Surfaktan34Gambar 4.7Spektrum DRS FT-IR TiO2 pH 5.0; TiO2 pH 1.5; TiO2 pH 2.7 dan TiO2 Degussa P2535Gambar 4.8Spektrum DRS FT-IR yang Dipreparasi dengan Variasi Prekursor dan Surfaktan36Gambar 4.9Spektrum DRS UV-Vis TiO2 dengan Variasi Waktu Refluks. Inset : Nilai energi celah37Gambar 4.10Kurva TGA dan DSC TiO2 hasil refluks selama 16 jam38Gambar 4.11Foto SEM produk TiO2 pada Pelat Kaca40Gambar 4.12Foto SEM Film TiO2 pada Pelat Kaca40Gambar 4.13Foto SEM Ketebalan Film TiO2 pada Pelat Kaca dengan Pelapisan 5x41Gambar 4.14Dispersi TiO2 R16 pada t = 0 jam dan t = 24 jam dengan Variasi Konsentrasi42Gambar 4.15Foto Dispersi TiO2 R16 dalam Air, (kiri) t = 0 jam, dan (kanan) t = 24 jam42Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air43Gambar 4.19Dispersi TiO2 dalam Air dengan Variasi Potensial TiO2 dalam Air44Gambar 4.14Dispersi TiO2 dalam Air Selama 60 menit dengan Variasi Konsentrasi42Gambar 4.14Dispersi TiO2 dalam Air Selama 60 menit dengan Variasi Konsentrasi43Gambar 4.19Dispersi TiO2 dalam Air dengan Variasi Pi Setelah 1 Hari44 <td< td=""><td>pH31Gambar 4.4Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi Waktu Refluks. Inset : Ukuran Kristal Anatase32Gambar 4.5Interpretasi Pola Difraksi Sinar-X tiona Kartu Standar JCPDS No. 04-047733Gambar 4.6Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi Prekursor dan Surfaktan34Gambar 4.7Spektrum DRS FT-IR TiO2 pH 5,0; TiO2 pH 1,5; TiO2 pH 2,7 dan TiO2 Degussa P2535Gambar 4.8Spektrum DRS FT-IR yang Dipreparasi dengan Variasi Prekursor dan Surfaktan36Gambar 4.9Spektrum DRS FT-IR yang Dipreparasi dengan Variasi Prekursor dan Surfaktan36Gambar 4.10Kurva TGA dan DSC TiO2 hasil refluks selama 16 jam38Gambar 4.11Foto SEM produk TiO2 dalam Bentuk Powder39Gambar 4.12Foto SEM Film TiO2 pada Pelat Kaca40Gambar 4.13Foto SEM Film TiO2 R16 dalam Air, (kiri) t = 0 jam, dan (kanan) t = 24 jam42Gambar 4.16Dispersi TiO2 R16 dalam Air, (kiri) t = 0 jam, dan (kanan) t = 24 jam42Gambar 4.17Dispersi TiO2 dalagan Variasi Waktu Refluks pada Konsentrasi42Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air43Gambar 4.19Dispersi TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(CI)45Gambar 4.20Foto Film TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(CI)45Gambar 4.21Sudut Kontak Film TiO2 dari Suspensi Hasil Refluks Langsung Setelah Diberi Sinar UV 10 Watt Selama 1 Jam46<tr< td=""><td>Gambar 4.3</td><td>Pola Difraksi Sinar-X TiO₂ yang Dipreparasi dengan Variasi</td><td></td></tr<></td></td<>	pH31Gambar 4.4Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi Waktu Refluks. Inset : Ukuran Kristal Anatase32Gambar 4.5Interpretasi Pola Difraksi Sinar-X tiona Kartu Standar JCPDS No. 04-047733Gambar 4.6Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi Prekursor dan Surfaktan34Gambar 4.7Spektrum DRS FT-IR TiO2 pH 5,0; TiO2 pH 1,5; TiO2 pH 2,7 dan TiO2 Degussa P2535Gambar 4.8Spektrum DRS FT-IR yang Dipreparasi dengan Variasi Prekursor dan Surfaktan36Gambar 4.9Spektrum DRS FT-IR yang Dipreparasi dengan Variasi Prekursor dan Surfaktan36Gambar 4.10Kurva TGA dan DSC TiO2 hasil refluks selama 16 jam38Gambar 4.11Foto SEM produk TiO2 dalam Bentuk Powder39Gambar 4.12Foto SEM Film TiO2 pada Pelat Kaca40Gambar 4.13Foto SEM Film TiO2 R16 dalam Air, (kiri) t = 0 jam, dan (kanan) t = 24 jam42Gambar 4.16Dispersi TiO2 R16 dalam Air, (kiri) t = 0 jam, dan (kanan) t = 24 jam42Gambar 4.17Dispersi TiO2 dalagan Variasi Waktu Refluks pada Konsentrasi42Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air43Gambar 4.19Dispersi TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(CI)45Gambar 4.20Foto Film TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(CI)45Gambar 4.21Sudut Kontak Film TiO2 dari Suspensi Hasil Refluks Langsung Setelah Diberi Sinar UV 10 Watt Selama 1 Jam46 <tr< td=""><td>Gambar 4.3</td><td>Pola Difraksi Sinar-X TiO₂ yang Dipreparasi dengan Variasi</td><td></td></tr<>	Gambar 4.3	Pola Difraksi Sinar-X TiO ₂ yang Dipreparasi dengan Variasi	
Gambar 4.4Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi Waktu Refluks. Inset : Ukuran Kristal Anatase32Gambar 4.5Interpretasi Pola Difraksi Sinar-X dengan Kartu Standar JCPDS No. 04-047733Gambar 4.6Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi Prekursor dan Surfaktan34Gambar 4.7Spektrum DRS FT-IR TiO2 pH 5,0; TiO2 pH 1,5; TiO2 pH 2,7 dan TiO2 Degussa P2535Gambar 4.8Spektrum DRS FT-IR yang Dipreparasi dengan Variasi Prekursor dan Surfaktan36Gambar 4.9Spektrum DRS UV-Vis TiO2 dengan Variasi Waktu Refluks. Inset : Nilai energi celah37Gambar 4.10Kurva TGA dan DSC TiO2 hasil refluks selama 16 jam38Gambar 4.11Foto SEM produk TiO2 pada Pelat Kaca40Gambar 4.12Foto SEM Film TiO2 pada Pelat Kaca40Gambar 4.13Foto SEM Film TiO2 R16 pada t = 0 jam dan t = 24 jam dengan Variasi Konsentrasi42Gambar 4.16Dispersi TiO2 R16 dalam Air, (kiri) t = 0 jam, dan (kanan) t = 24 jam42Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air43Gambar 4.19Dispersi TiO2 R16 dalam Air Gama Variasi pH Setelah 1 Hari44Gambar 4.19Dispersi TiO2 R16, TiO2 R24 dan TiO2-EG(CI)45Gambar 4.19Dispersi TiO2 R16, TiO2 R24 dan TiO2-EG(CI)45Gambar 4.18Potensial Zeta versus pH untuk Suspensi Hasil Refluks Langsung Setelah Diberi Sinar41Gambar 4.19Dispersi TiO2 R16, TiO2 R24 dan TiO2-EG(CI)45Gambar 4.19Dispersi TiO2 R16, TiO2 R24 dan TiO2-EG(CI)45 <td>Gambar 4.4Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi Waktu Refluks. Inset : Ukuran Kristal Anatase32Gambar 4.5Interpretasi Pola Difraksi Sinar-X dengan Kartu Standar JCPDS No. 04-047733Gambar 4.6Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi Prekursor dan Surfaktan34Gambar 4.7Spektrum DRS FT-IR TiO2 pH 5,0; TiO2 pH 1,5; TiO2 pH 2,7 dan TiO2 Degussa P2535Gambar 4.8Spektrum DRS FT-IR yang Dipreparasi dengan Variasi Prekursor dan Surfaktan36Gambar 4.9Spektrum DRS FT-IR yang Dipreparasi dengan Variasi Prekursor dan Surfaktan36Gambar 4.9Spektrum DRS UV-Vis TiO2 dengan Variasi Waktu Refluks. Inset : Nilai energi celah37Gambar 4.10Kurva TGA dan DSC TiO2 hasil refluks selama 16 jam38Gambar 4.11Foto SEM Film TiO2 pada Pelat Kaca40Gambar 4.12Foto SEM Film TiO2 pada Pelat Kaca40Gambar 4.13Foto SEM Ketebalan Film TiO2 pada Pelat Kaca dengan Pelapisan 5x41Gambar 4.14Dispersi TiO2 R16 dalam Air, (kiri) t = 0 jam, dan (kanan) t = 24 jam42Gambar 4.15Foto Dispersi TiO2 dengan Variasi Waktu Refluks pada Konsentrasi42Gambar 4.17Dispersi TiO2 dalam Air Selama 60 menit dengan Variasi Konsentrasi43Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air44Gambar 4.19Dispersi TiO2 qala Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 pR8, TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 pada Pelat Kaca. Dari Kiri</td> <td></td> <td>рН</td> <td>31</td>	Gambar 4.4Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi Waktu Refluks. Inset : Ukuran Kristal Anatase32Gambar 4.5Interpretasi Pola Difraksi Sinar-X dengan Kartu Standar JCPDS No. 04-047733Gambar 4.6Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi Prekursor dan Surfaktan34Gambar 4.7Spektrum DRS FT-IR TiO2 pH 5,0; TiO2 pH 1,5; TiO2 pH 2,7 dan TiO2 Degussa P2535Gambar 4.8Spektrum DRS FT-IR yang Dipreparasi dengan Variasi Prekursor dan Surfaktan36Gambar 4.9Spektrum DRS FT-IR yang Dipreparasi dengan Variasi Prekursor dan Surfaktan36Gambar 4.9Spektrum DRS UV-Vis TiO2 dengan Variasi Waktu Refluks. Inset : Nilai energi celah37Gambar 4.10Kurva TGA dan DSC TiO2 hasil refluks selama 16 jam38Gambar 4.11Foto SEM Film TiO2 pada Pelat Kaca40Gambar 4.12Foto SEM Film TiO2 pada Pelat Kaca40Gambar 4.13Foto SEM Ketebalan Film TiO2 pada Pelat Kaca dengan Pelapisan 5x41Gambar 4.14Dispersi TiO2 R16 dalam Air, (kiri) t = 0 jam, dan (kanan) t = 24 jam42Gambar 4.15Foto Dispersi TiO2 dengan Variasi Waktu Refluks pada Konsentrasi42Gambar 4.17Dispersi TiO2 dalam Air Selama 60 menit dengan Variasi Konsentrasi43Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air44Gambar 4.19Dispersi TiO2 qala Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 pR8, TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 pada Pelat Kaca. Dari Kiri		рН	31
Waktu Refluks. Inset : Ukuran Kristal Anatase32Gambar 4.5Interpretasi Pola Difraksi Sinar-X dengan Kartu Standar JCPDS No. 04-047733Gambar 4.6Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi Prekursor dan Surfaktan34Gambar 4.7Spektrum DRS FT-IR TiO2 pH 5,0; TiO2 pH 1,5; TiO2 pH 2,7 dan TiO2 Degussa P2535Gambar 4.8Spektrum DRS FT-IR yang Dipreparasi dengan Variasi Prekursor dan Surfaktan36Gambar 4.9Spektrum DRS UV-Vis TiO2 dengan Variasi Waktu Refluks. Inset : Nilai energi celah37Gambar 4.10Kurva TGA dan DSC TiO2 hasil refluks selama 16 jam38Gambar 4.11Foto SEM produk TiO2 pada Pelat Kaca40Gambar 4.12Foto SEM Ketebalan Film TiO2 pada Pelat Kaca dengan Pelapisan 5x41Gambar 4.13Dispersi TiO2 R16 pada t = 0 jam dan t = 24 jam dengan Variasi Konsentrasi42Gambar 4.16Dispersi TiO2 R16 dalam Air Selama 60 menit dengan Variasi Konsentrasi42Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air43Gambar 4.19Dispersi TiO2 dengan Variasi Waktu Refluks pada Konsentrasi 1000 ppm43Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air43Gambar 4.29Sudu Kontak Film TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(CI)45Gambar 4.18Otospersi TiO2 R16, TiO2 R24 dan TiO2-EG(CI)45Gambar 4.20Foto Film TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(CI)45Gambar 4.21 <td>Waktu Refluks. Inset : Ukuran Kristal Anatase32Gambar 4.5Interpretasi Pola Difraksi Sinar-X dengan Kartu Standar JCPDS No. 04-047733Gambar 4.6Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi Prekursor dan Surfaktan34Gambar 4.7Spektrum DRS FT-IR TiO2 pH 5,0; TiO2 pH 1,5; TiO2 pH 2,7 dan TiO2 Degussa P2535Gambar 4.8Spektrum DRS FT-IR yang Dipreparasi dengan Variasi Prekursor dan Surfaktan36Gambar 4.9Spektrum DRS UV-Vis TiO2 dengan Variasi Waktu Refluks. Inset : Nilai energi celah37Gambar 4.10Kurva TGA dan DSC TiO2 hasil refluks selama 16 jam38Gambar 4.11Foto SEM produk TiO2 dalam Bentuk Powder39Gambar 4.12Foto SEM ketebalan Film TiO2 pada Pelat Kaca40Gambar 4.13Foto SEM Ketebalan Film TiO2 pada Pelat Kaca dengan Pelapisan 5x41Gambar 4.14Dispersi TiO2 R16 dalam Air, (kiri) t = 0 jam, dan (kanan) t = 24 jam42Gambar 4.15Foto Dispersi TiO2 R16 dalam Air, (kiri) t = 0 jam, dan (kanan) t = 24 jam42Gambar 4.17Dispersi TiO2 dengan Variasi Waktu Refluks pada Konsentrasi42Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air43Gambar 4.19Dispersi TiO2 pada Pelat Kaca.42Gambar 4.19Dispersi TiO2 R16 dalam Air Selama 60 menit dengan Variasi Konsentrasi42Gambar 4.14Dispersi TiO2 dalam Air dengan Variasi pH Setelah 1 Hari44Gambar 4.14Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air44Gambar 4.18Potensial Zeta v</td> <td>Gambar 4.4</td> <td>Pola Difraksi Sinar-X TiO₂ yang Dipreparasi dengan Variasi</td> <td></td>	Waktu Refluks. Inset : Ukuran Kristal Anatase32Gambar 4.5Interpretasi Pola Difraksi Sinar-X dengan Kartu Standar JCPDS No. 04-047733Gambar 4.6Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi Prekursor dan Surfaktan34Gambar 4.7Spektrum DRS FT-IR TiO2 pH 5,0; TiO2 pH 1,5; TiO2 pH 2,7 dan TiO2 Degussa P2535Gambar 4.8Spektrum DRS FT-IR yang Dipreparasi dengan Variasi Prekursor dan Surfaktan36Gambar 4.9Spektrum DRS UV-Vis TiO2 dengan Variasi Waktu Refluks. Inset : Nilai energi celah37Gambar 4.10Kurva TGA dan DSC TiO2 hasil refluks selama 16 jam38Gambar 4.11Foto SEM produk TiO2 dalam Bentuk Powder39Gambar 4.12Foto SEM ketebalan Film TiO2 pada Pelat Kaca40Gambar 4.13Foto SEM Ketebalan Film TiO2 pada Pelat Kaca dengan Pelapisan 5x41Gambar 4.14Dispersi TiO2 R16 dalam Air, (kiri) t = 0 jam, dan (kanan) t = 24 jam42Gambar 4.15Foto Dispersi TiO2 R16 dalam Air, (kiri) t = 0 jam, dan (kanan) t = 24 jam42Gambar 4.17Dispersi TiO2 dengan Variasi Waktu Refluks pada Konsentrasi42Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air43Gambar 4.19Dispersi TiO2 pada Pelat Kaca.42Gambar 4.19Dispersi TiO2 R16 dalam Air Selama 60 menit dengan Variasi Konsentrasi42Gambar 4.14Dispersi TiO2 dalam Air dengan Variasi pH Setelah 1 Hari44Gambar 4.14Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air44Gambar 4.18Potensial Zeta v	Gambar 4.4	Pola Difraksi Sinar-X TiO ₂ yang Dipreparasi dengan Variasi	
Gambar 4.5Interpretasi Pola Difraksi Sinar-X dengan Kartu Standar JCPDS No. 04-047733Gambar 4.6Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi Prekursor dan Surfaktan34Gambar 4.7Spektrum DRS FT-IR TiO2 pH 5,0; TiO2 pH 1,5; TiO2 pH 2,7 dan TiO2 Degussa P2535Gambar 4.8Spektrum DRS FT-IR yang Dipreparasi dengan Variasi Prekursor dan Surfaktan36Gambar 4.9Spektrum DRS UV-Vis TiO2 dengan Variasi Waktu Refluks. Inset : Nilai energi celah37Gambar 4.10Kurva TGA dan DSC TiO2 hasil refluks selama 16 jam38Gambar 4.11Foto SEM produk TiO2 dalam Bentuk Powder39Gambar 4.12Foto SEM Film TiO2 pada Pelat Kaca40Gambar 4.13Foto SEM Ketebalan Film TiO2 pada Pelat Kaca dengan Pelapisan 5x41Gambar 4.14Dispersi TiO2 R16 dalam Air, (kiri) t = 0 jam, dan (kanan) t = 24 jam42Gambar 4.16Dispersi TiO2 R16 dalam Air Selama 60 menit dengan Variasi Konsentrasi42Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air44Gambar 4.19Dispersi TiO2 dalam Air dengan Variasi pH Setelah 1 Hari44Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air43Gambar 4.20Foto Film TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(CI)45Gambar 4.18Otensial Zeta versus pH untuk Suspensi TiO2 dalam Air44Gambar 4.20Foto Film TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(CI)45Gambar 4.21	Gambar 4.5Interpretasi Pola Difraksi Sinar-X dengan Kartu Standar JCPDS No. 04-047733Gambar 4.6Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi Prekursor dan Surfaktan34Gambar 4.7Spektrum DRS FT-IR TiO2 pH 5,0; TiO2 pH 1,5; TiO2 pH 2,7 dan TiO2 Degussa P2535Gambar 4.8Spektrum DRS FT-IR yang Dipreparasi dengan Variasi Prekursor dan Surfaktan36Gambar 4.9Spektrum DRS UV-Vis TiO2 dengan Variasi Waktu Refluks. Inset : Nilai energi celah37Gambar 4.10Kurva TGA dan DSC TiO2 hasil refluks selama 16 jam38Gambar 4.11Foto SEM produk TiO2 dalam Bentuk Powder39Gambar 4.12Foto SEM Film TiO2 pada Pelat Kaca40Gambar 4.13Foto SEM Ketebalan Film TiO2 pada Pelat Kaca dengan Pelapisan 5x41Gambar 4.14Dispersi TiO2 R16 dalam Air, (kiri) t = 0 jam, dan (kanan) t = 24 jam42Gambar 4.17Dispersi TiO2 R16 dalam Air Selama 60 menit dengan Variasi Konsentrasi42Gambar 4.18Potensint Zea versus pH untuk Suspensi TiO2 dalam Air43Gambar 4.19Dispersi TiO2 dalam Air dengan Variasi Waktu Refluks pada Konsentrasi42Gambar 4.14Dispersi TiO2 dalam Air dengan Variasi Bandar 4.1743Gambar 4.18Potensint Zea versus pH untuk Suspensi TiO2 dalam Air43Gambar 4.19Dispersi TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(Cl)45Gambar 4.19Dispersi TiO2 dalam Air dengan Variasi Prekursi Circu Atria Carbon Air dengan Variasi Subsensi Hasil Refluks Langsung Setelah Diberi Sinar UV 1		Waktu Refluks. Inset : Ukuran Kristal Anatase	32
JCPDS No. 04-047733Gambar 4.6Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi Prekursor dan Surfaktan34Gambar 4.7Spektrum DRS FT-IR TiO2 pH 5,0; TiO2 pH 1,5; TiO2 pH 2,7 dan TiO2 Degussa P2535Gambar 4.8Spektrum DRS FT-IR yang Dipreparasi dengan Variasi Prekursor dan Surfaktan36Gambar 4.9Spektrum DRS UV-Vis TiO2 dengan Variasi Waktu Refluks. Inset : Nilai energi celah37Gambar 4.10Kurva TGA dan DSC TiO2 hasil refluks selama 16 jam38Gambar 4.11Foto SEM produk TiO2 dalam Bentuk Powder39Gambar 4.12Foto SEM Film TiO2 pada Pelat Kaca40Gambar 4.13Foto SEM Ketebalan Film TiO2 pada Pelat Kaca dengan Pelapisan 5x41Gambar 4.14Dispersi TiO2 R16 pada t = 0 jam dan t = 24 jam dengan Variasi Konsentrasi42Gambar 4.16Dispersi TiO2 R16 dalam Air, (kiri) t = 0 jam, dan (kanan) t = 24 jam42Gambar 4.17Dispersi TiO2 dengan Variasi Waktu Refluks pada Konsentrasi42Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air44Gambar 4.19Dispersi TiO2 dalam Air dengan Variasi pH Setelah 1 Hari44Gambar 4.20Foto Film TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(CI)45Gambar 4.21Sudut Kontak Film TiO2 dari Suspensi Hasil Refluks Langsung Setelah Diberi Sinar UV 10 Watt Selama LJam46	ICPDS No. 04-047733Gambar 4.6Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi Prekursor dan Surfaktan34Gambar 4.7Spektrum DRS FT-IR TiO2 pH 5,0; TiO2 pH 1,5; TiO2 pH 2,7 dan TiO2 Degussa P2535Gambar 4.8Spektrum DRS FT-IR yang Dipreparasi dengan Variasi Prekursor dan Surfaktan36Gambar 4.9Spektrum DRS UV-Vis TiO2 dengan Variasi Waktu Refluks. Inset : Nilai energi celah37Gambar 4.10Kurva TGA dan DSC TiO2 hasil refluks selama 16 jam38Gambar 4.11Foto SEM produk TiO2 dalam Bentuk Powder39Gambar 4.12Foto SEM Film TiO2 pada Pelat Kaca40Gambar 4.13Foto SEM Ketebalan Film TiO2 pada Pelat Kaca dengan Pelapisan 5x41Gambar 4.14Dispersi TiO2 R16 dalam Air, (kiri) t = 0 jam, dan (kanan) t = 24 jam42Gambar 4.16Dispersi TiO2 dengan Variasi Waktu Refluks pada Konsentrasi42Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air43Gambar 4.19Dispersi TiO2 dalam Air dengan Variasi pH Setelah 1 Hari44Gambar 4.20Foto Film TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(Cl)45Gambar 4.21Sudut Kontak Film TiO2 dalam Suspensi Redispersi Dalam Air Konsentrasi Dio2 R24 dan TiO2-EG(Cl)45	Gambar 4.5	Interpretasi Pola Difraksi Sinar–X dengan Kartu Standar	
Gambar 4.6Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi Prekursor dan Surfaktan34Gambar 4.7Spektrum DRS FT-IR TiO2 pH 5,0; TiO2 pH 1,5; TiO2 pH 2,7 dan TiO2 Degussa P2535Gambar 4.8Spektrum DRS FT-IR yang Dipreparasi dengan Variasi Prekursor dan Surfaktan36Gambar 4.9Spektrum DRS UV-Vis TiO2 dengan Variasi Waktu Refluks. Inset : Nilai energi celah37Gambar 4.10Kurva TGA dan DSC TiO2 hasil refluks selama 16 jam38Gambar 4.11Foto SEM produk TiO2 dalam Bentuk Powder39Gambar 4.12Foto SEM Film TiO2 pada Pelat Kaca40Gambar 4.13Foto SEM Ketebalan Film TiO2 pada Pelat Kaca dengan Pelapisan 5x41Gambar 4.14Dispersi TiO2 R16 pada t = 0 jam dan t = 24 jam dengan Variasi Konsentrasi42Gambar 4.16Dispersi TiO2 R16 dalam Air, (kiri) t = 0 jam, dan (kanan) t = 24 jam42Gambar 4.17Dispersi TiO2 dengan Variasi Waktu Refluks pada Konsentrasi 1000 ppm43Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air44Gambar 4.19Dispersi TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(C1)45Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air44Gambar 4.17Dispersi TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(C1)45Gambar 4.20Foto Film TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(C1)45Gambar 4.21Sudut Kontak Film TiO2 daia Suspensi Hasil Refluks <b< td=""><td>Gambar 4.6Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi Prekursor dan Surfaktan34Gambar 4.7Spektrum DRS FT-IR TiO2 pH 5,0; TiO2 pH 1,5; TiO2 pH 2,7 dan TiO2 Degussa P2535Gambar 4.8Spektrum DRS FT-IR yang Dipreparasi dengan Variasi Prekursor dan Surfaktan36Gambar 4.9Spektrum DRS UV-Vis TiO2 dengan Variasi Waktu Refluks. Inset : Nilai energi celah37Gambar 4.10Kurva TGA dan DSC TiO2 hasil refluks selama 16 jam38Gambar 4.11Foto SEM produk TiO2 dalam Bentuk Powder39Gambar 4.12Foto SEM Film TiO2 pada Pelat Kaca40Gambar 4.13Foto SEM Ketebalan Film TiO2 pada Pelat Kaca dengan Pelapisan 5x41Gambar 4.14Dispersi TiO2 R16 pada t = 0 jam dan t = 24 jam dengan Variasi Konsentrasi42Gambar 4.16Dispersi TiO2 R16 dalam Air, (kiri) t = 0 jam, dan (kanan) t = 24 jam42Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air43Gambar 4.19Dispersi TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(CI)45Gambar 4.20Foto Film TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(CI)45Gambar 4.21Sudut Kontak Film TiO2 dalar Suspensi Redispersi Dalam Air Carials Konsentrasi46</td><td>~</td><td>JCPDS No. 04-0477</td><td>33</td></b<>	Gambar 4.6Pola Difraksi Sinar-X TiO2 yang Dipreparasi dengan Variasi Prekursor dan Surfaktan34Gambar 4.7Spektrum DRS FT-IR TiO2 pH 5,0; TiO2 pH 1,5; TiO2 pH 2,7 dan TiO2 Degussa P2535Gambar 4.8Spektrum DRS FT-IR yang Dipreparasi dengan Variasi Prekursor dan Surfaktan36Gambar 4.9Spektrum DRS UV-Vis TiO2 dengan Variasi Waktu Refluks. Inset : Nilai energi celah37Gambar 4.10Kurva TGA dan DSC TiO2 hasil refluks selama 16 jam38Gambar 4.11Foto SEM produk TiO2 dalam Bentuk Powder39Gambar 4.12Foto SEM Film TiO2 pada Pelat Kaca40Gambar 4.13Foto SEM Ketebalan Film TiO2 pada Pelat Kaca dengan Pelapisan 5x41Gambar 4.14Dispersi TiO2 R16 pada t = 0 jam dan t = 24 jam dengan Variasi Konsentrasi42Gambar 4.16Dispersi TiO2 R16 dalam Air, (kiri) t = 0 jam, dan (kanan) t = 24 jam42Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air43Gambar 4.19Dispersi TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(CI)45Gambar 4.20Foto Film TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(CI)45Gambar 4.21Sudut Kontak Film TiO2 dalar Suspensi Redispersi Dalam Air Carials Konsentrasi46	~	JCPDS No. 04-0477	33
Gambar 4.7Spektrum DRS FT-IR TiO2 pH 5,0; TiO2 pH 1,5; TiO2 pH 2,7 dan TiO2 Degussa P2535Gambar 4.8Spektrum DRS FT-IR yang Dipreparasi dengan Variasi Prekursor dan Surfaktan36Gambar 4.9Spektrum DRS UV-Vis TiO2 dengan Variasi Waktu Refluks. Inset : Nilai energi celah37Gambar 4.10Kurva TGA dan DSC TiO2 hasil refluks selama 16 jam38Gambar 4.11Foto SEM produk TiO2 dalam Bentuk Powder39Gambar 4.12Foto SEM Film TiO2 pada Pelat Kaca40Gambar 4.13Foto SEM Ketebalan Film TiO2 pada Pelat Kaca dengan Pelapisan 5x41Gambar 4.14Dispersi TiO2 R16 pada t = 0 jam dan t = 24 jam dengan Variasi Konsentrasi42Gambar 4.16Dispersi TiO2 R16 dalam Air Selama 60 menit dengan Variasi Konsentrasi42Gambar 4.17Dispersi TiO2 dengan Variasi Waktu Refluks pada Konsentrasi 1000 ppm43Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air44Gambar 4.19Dispersi TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(Cl)45Gambar 4.21Sudut Kontak Film TiO2 dai Suspensi Hasil Refluks Langsung Setelah Diberi Sinar UV 10 Watt Selama 1 Jam46	Gambar 4.7Spektrum DRS FT-IR TiO2 pH 5,0; TiO2 pH 1,5; TiO2 pH 2,7 dan TiO2 Degussa P2535Gambar 4.8Spektrum DRS FT-IR yang Dipreparasi dengan Variasi Prekursor dan Surfaktan36Gambar 4.8Spektrum DRS UV-Vis TiO2 dengan Variasi Waktu Refluks. Inset : Nilai energi celah37Gambar 4.10Kurva TGA dan DSC TiO2 hasil refluks selama 16 jam38Gambar 4.11Foto SEM produk TiO2 dalam Bentuk Powder39Gambar 4.12Foto SEM produk TiO2 pada Pelat Kaca40Gambar 4.13Foto SEM Ketebalan Film TiO2 pada Pelat Kaca dengan Pelapisan 5x41Gambar 4.14Dispersi TiO2 R16 pada t = 0 jam dan t = 24 jam dengan Variasi Konsentrasi42Gambar 4.15Foto Dispersi TiO2 R16 dalam Air, (kiri) t = 0 jam, dan (kanan) t = 24 jam42Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air43Gambar 4.19Dispersi TiO2 dalam Air dengan Variasi pH Setelah 1 Hari44Gambar 4.20Foto Film TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(Cl)45Gambar 4.21Sudut Kontak Film TiO2 dari Suspensi Hasil Refluks Langsung Setelah Diberi Sinar UV 10 Watt Selama 1 Jam46Gambar 4.22Sudut Kontak Film TiO2 dari Suspensi Redispersi Dalam Air Sudut Kontak Film TiO2 dari Suspensi Redispersi Dalam Air46	Gambar 4.6	Pola Difraksi Sinar-X TiO ₂ yang Dipreparasi dengan Variasi	24
Gambar 4.7Spektrum DRS F1-IR 1102 pH 5,0; 1102 pH 1,5; 1102 pH 2,7 dan TiO2 Degussa P2535Gambar 4.8Spektrum DRS FT-IR yang Dipreparasi dengan Variasi Prekursor dan Surfaktan36Gambar 4.9Spektrum DRS UV-Vis TiO2 dengan Variasi Waktu Refluks. Inset : Nilai energi celah37Gambar 4.10Kurva TGA dan DSC TiO2 hasil refluks selama 16 jam38Gambar 4.11Foto SEM produk TiO2 dalam Bentuk Powder39Gambar 4.12Foto SEM Film TiO2 pada Pelat Kaca40Gambar 4.13Foto SEM Ketebalan Film TiO2 pada Pelat Kaca dengan Pelapisan 5x41Gambar 4.14Dispersi TiO2 R16 pada t = 0 jam dan t = 24 jam dengan Variasi Konsentrasi42Gambar 4.15Foto Dispersi TiO2 R16 dalam Air, (kiri) t = 0 jam, dan (kanan) t = 24 jam42Gambar 4.17Dispersi TiO2 dengan Variasi Waktu Refluks pada Konsentrasi 1000 ppm43Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air44Gambar 4.20Foto Film TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(CI)45Gambar 4.21Sudut Kontak Film TiO2 dalar Suspensi Hasil Refluks Langsung Setelah Diberi Sinar UV 10 Watt Selama 1 Jam46	Gambar 4.7Spektrum DRS F1-IR TIO2 pH 5,0; TIO2 pH 1,5; TIO2 pH2,7 dan TiO2 Degussa P2535Gambar 4.8Spektrum DRS FT-IR yang Dipreparasi dengan Variasi Prekursor dan Surfaktan36Gambar 4.9Spektrum DRS UV-Vis TiO2 dengan Variasi Waktu Refluks. Inset : Nilai energi celah37Gambar 4.10Kurva TGA dan DSC TiO2 hasil refluks selama 16 jam38Gambar 4.11Foto SEM produk TiO2 pada Pelat Kaca40Gambar 4.12Foto SEM Film TiO2 pada Pelat Kaca40Gambar 4.13Foto SEM Ketebalan Film TiO2 pada Pelat Kaca dengan Pelapisan 5x41Gambar 4.14Dispersi TiO2 R16 pada t = 0 jam dan t = 24 jam dengan Variasi Konsentrasi42Gambar 4.16Dispersi TiO2 R16 dalam Air, (kiri) t = 0 jam, dan (kanan) t = 24 jam42Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air43Gambar 4.19Dispersi TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(C1)45Gambar 4.21Sudut Kontak Film TiO2 dari Suspensi Redispersi Dalam Air Sudut Kontak Film TiO2 dari Suspensi Redispersi Dalam Air46	0 1 47	Prekursor dan Surfaktan	34
Gambar 4.8Spektrum DRS FT-IR yang Dipreparasi dengan Variasi Prekursor dan Surfaktan36Gambar 4.8Spektrum DRS UV-Vis TiO2 dengan Variasi Waktu Refluks. Inset : Nilai energi celah37Gambar 4.9Spektrum DRS UV-Vis TiO2 dengan Variasi Waktu Refluks. Inset : Nilai energi celah37Gambar 4.10Kurva TGA dan DSC TiO2 hasil refluks selama 16 jam38Gambar 4.11Foto SEM produk TiO2 dalam Bentuk Powder39Gambar 4.12Foto SEM Film TiO2 pada Pelat Kaca40Gambar 4.13Foto SEM Ketebalan Film TiO2 pada Pelat Kaca dengan Pelapisan 5x41Gambar 4.14Dispersi TiO2 R16 pada t = 0 jam dan t = 24 jam dengan Variasi Konsentrasi42Gambar 4.15Foto Dispersi TiO2 R16 dalam Air, (kiri) t = 0 jam, dan (kanan) t = 24 jam42Gambar 4.16Dispersi TiO2 R16 dalam Air Selama 60 menit dengan Variasi Konsentrasi42Gambar 4.17Dispersi TiO2 dengan Variasi Waktu Refluks pada Konsentrasi 1000 ppm43Gambar 4.19Dispersi TiO2 dalam Air dengan Variasi pH Setelah 1 Hari44Gambar 4.20Foto Film TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(CI)45Gambar 4.21Sudut Kontak Film TiO2 dalar Suspensi Hasil Refluks Langsung Setelah Diberi Sinar UV 10 Watt Selama 1 Jam46	Gambar 4.8Spektrum DRS FT-IR yang Dipreparasi dengan Variasi Prekursor dan Surfaktan36Gambar 4.9Spektrum DRS UV-Vis TiO2 dengan Variasi Waktu Refluks. Inset : Nilai energi celah37Gambar 4.10Kurva TGA dan DSC TiO2 hasil refluks selama 16 jam38Gambar 4.11Foto SEM produk TiO2 dalam Bentuk Powder39Gambar 4.12Foto SEM Film TiO2 pada Pelat Kaca40Gambar 4.13Foto SEM Ketebalan Film TiO2 pada Pelat Kaca dengan Pelapisan 5x41Gambar 4.14Dispersi TiO2 R16 pada t = 0 jam dan t = 24 jam dengan Variasi Konsentrasi42Gambar 4.15Foto Dispersi TiO2 R16 dalam Air, (kiri) t = 0 jam, dan (kanan) t = 24 jam42Gambar 4.16Dispersi TiO2 dengan Variasi Waktu Refluks pada Konsentrasi42Gambar 4.17Dispersi TiO2 dalam Air Selama 60 menit dengan Variasi Konsentrasi43Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air44Gambar 4.20Foto Film TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(Cl)45Gambar 4.21Sudut Kontak Film TiO2 dari Suspensi Hasil Refluks Langsung Setelah Diberi Sinar UV 10 Watt Selama 1 Jam46Gambar 4.21Sudut Kontak Film TiO2 dari Suspensi Redispersi Dalam Air Suta Kontak Film TiO2 dari Suspensi Redispersi Dalam Air46	Gambar 4./	Spektrum DRS F1-IR $11O_2$ pH 5,0; $11O_2$ pH 1,5; $11O_2$ pH 2,7 den TiO. Deguage P25	25
Gambar 4.8Spektrum DRS F1-rk yang Dipreparasi dengan variasi Prekursor dan Surfaktan36Gambar 4.9Spektrum DRS UV-Vis TiO2 dengan Variasi Waktu Refluks. Inset : Nilai energi celah37Gambar 4.10Kurva TGA dan DSC TiO2 hasil refluks selama 16 jam38Gambar 4.11Foto SEM produk TiO2 dalam Bentuk Powder39Gambar 4.12Foto SEM Film TiO2 pada Pelat Kaca40Gambar 4.13Foto SEM Ketebalan Film TiO2 pada Pelat Kaca dengan Pelapisan 5x41Gambar 4.14Dispersi TiO2 R16 pada t = 0 jam dan t = 24 jam dengan Variasi Konsentrasi42Gambar 4.15Foto Dispersi TiO2 R16 dalam Air, (kiri) t = 0 jam, dan (kanan) t = 24 jam42Gambar 4.16Dispersi TiO2 R16 dalam Air Selama 60 menit dengan Variasi Konsentrasi42Gambar 4.17Dispersi TiO2 dengan Variasi Waktu Refluks pada Konsentrasi 1000 ppm43Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air44Gambar 4.20Foto Film TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(Cl)45Gambar 4.21Sudut Kontak Film TiO2 dari Suspensi Hasil Refluks Langsung Setelah Diberi Sinar UV 10 Watt Selama 1 Jam46	Gambar 4.3Spektrum DRS PT-IR yang Dipreparasi dengan variasi Prekursor dan Surfaktan36Gambar 4.9Spektrum DRS UV-Vis TiO2 dengan Variasi Waktu Refluks. Inset : Nilai energi celah37Gambar 4.10Kurva TGA dan DSC TiO2 hasil refluks selama 16 jam38Gambar 4.11Foto SEM produk TiO2 dalam Bentuk Powder39Gambar 4.12Foto SEM Film TiO2 pada Pelat Kaca40Gambar 4.13Foto SEM Ketebalan Film TiO2 pada Pelat Kaca dengan Pelapisan 5x41Gambar 4.14Dispersi TiO2 R16 pada t = 0 jam dan t = 24 jam dengan Variasi Konsentrasi42Gambar 4.16Dispersi TiO2 R16 dalam Air Selama 60 menit dengan Variasi Konsentrasi42Gambar 4.17Dispersi TiO2 dengan Variasi Waktu Refluks pada Konsentrasi 1000 ppm43Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air44Gambar 4.20Foto Film TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(Cl)45Gambar 4.21Sudut Kontak Film TiO2 dari Suspensi Hasil Refluks Langsung Setelah Diberi Sinar UV 10 Watt Selama 1 Jam46Gambar 4.22Sudut Kontak Film TiO2 dari Suspensi Redispersi Dalam Air Cambar 4.2346	Combon 19	2,7 dan 110 ₂ Degussa P25	33
Gambar 4.9Spektrum DRS UV-Vis TiO2 dengan Variasi Waktu Refluks. Inset : Nilai energi celah37Gambar 4.10Kurva TGA dan DSC TiO2 hasil refluks selama 16 jam38Gambar 4.11Foto SEM produk TiO2 dalam Bentuk Powder39Gambar 4.12Foto SEM Film TiO2 pada Pelat Kaca40Gambar 4.13Foto SEM Ketebalan Film TiO2 pada Pelat Kaca dengan Pelapisan 5x41Gambar 4.14Dispersi TiO2 R16 pada t = 0 jam dan t = 24 jam dengan Variasi Konsentrasi42Gambar 4.15Foto Dispersi TiO2 R16 dalam Air, (kiri) t = 0 jam, dan (kanan) t = 24 jam42Gambar 4.16Dispersi TiO2 R16 dalam Air Selama 60 menit dengan Variasi Konsentrasi42Gambar 4.17Dispersi TiO2 dengan Variasi Waktu Refluks pada Konsentrasi 1000 ppm43Gambar 4.19Dispersi TiO2 dalam Air dengan Variasi pH Setelah 1 Hari44Gambar 4.20Foto Film TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(Cl)45Gambar 4.21Sudut Kontak Film TiO2 dari Suspensi Hasil Refluks Langsung Setelah Diberi Sinar UV 10 Watt Selama 1 Jam46	Gambar 4.9Spektrum DRS UV-Vis TiO2 dengan Variasi Waktu Refluks. Inset : Nilai energi celah37Gambar 4.10Kurva TGA dan DSC TiO2 hasil refluks selama 16 jam38Gambar 4.11Foto SEM produk TiO2 dalam Bentuk Powder39Gambar 4.12Foto SEM Film TiO2 pada Pelat Kaca40Gambar 4.13Foto SEM Ketebalan Film TiO2 pada Pelat Kaca dengan Pelapisan 5x41Gambar 4.14Dispersi TiO2 R16 pada t = 0 jam dan t = 24 jam dengan Variasi Konsentrasi42Gambar 4.15Foto Dispersi TiO2 R16 dalam Air, (kiri) t = 0 jam, dan (kanan) t = 24 jam42Gambar 4.16Dispersi TiO2 R16 dalam Air Selama 60 menit dengan Variasi Konsentrasi42Gambar 4.17Dispersi TiO2 dengan Variasi Waktu Refluks pada Konsentrasi 1000 ppm43Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air44Gambar 4.19Dispersi TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(Cl)45Gambar 4.21Sudut Kontak Film TiO2 dari Suspensi Redispersi Dalam Air Sudut Kontak Film TiO2 dari Suspensi Redispersi Dalam Air46	Gallibar 4.8	Prekursor dan Surfaktan	36
Gambar 4.19Spektrum Diko 6 v vis 1102 dengan variasi waktu kernaksiInset : Nilai energi celah37Gambar 4.10Kurva TGA dan DSC TiO2 hasil refluks selama 16 jam38Gambar 4.11Foto SEM produk TiO2 dalam Bentuk Powder39Gambar 4.12Foto SEM Film TiO2 pada Pelat Kaca40Gambar 4.13Foto SEM Ketebalan Film TiO2 pada Pelat Kaca dengan Pelapisan 5x41Gambar 4.14Dispersi TiO2 R16 pada t = 0 jam dan t = 24 jam dengan Variasi Konsentrasi42Gambar 4.15Foto Dispersi TiO2 R16 dalam Air, (kiri) t = 0 jam, dan (kanan) t = 24 jam42Gambar 4.16Dispersi TiO2 R16 dalam Air Selama 60 menit dengan Variasi Konsentrasi42Gambar 4.17Dispersi TiO2 dengan Variasi Waktu Refluks pada Konsentrasi 1000 ppm43Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air44Gambar 4.20Foto Film TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(Cl)45Gambar 4.21Sudut Kontak Film TiO2 dari Suspensi Hasil Refluks Langsung Setelah Diberi Sinar UV 10 Watt Selama 1 Jam46	Gambar 4.19Spektium Dib 0 0 - 115 1102 deligan variasi vulati ActivationInset : Nilai energi celah37Gambar 4.10Kurva TGA dan DSC TiO2 hasil refluks selama 16 jam38Gambar 4.11Foto SEM produk TiO2 dalam Bentuk Powder39Gambar 4.12Foto SEM Film TiO2 pada Pelat Kaca40Gambar 4.13Foto SEM Ketebalan Film TiO2 pada Pelat Kaca dengan Pelapisan 5x41Gambar 4.14Dispersi TiO2 R16 pada t = 0 jam dan t = 24 jam dengan Variasi Konsentrasi42Gambar 4.15Foto Dispersi TiO2 R16 dalam Air, (kiri) t = 0 jam, dan (kanan) t = 24 jam42Gambar 4.16Dispersi TiO2 R16 dalam Air Selama 60 menit dengan Variasi Konsentrasi42Gambar 4.17Dispersi TiO2 dengan Variasi Waktu Refluks pada Konsentrasi 1000 ppm43Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air44Gambar 4.20Foto Film TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(CI)45Gambar 4.21Sudut Kontak Film TiO2 dari Suspensi Hasil Refluks Langsung Setelah Diberi Sinar UV 10 Watt Selama 1 Jam46Gambar 4.22Sudut Kontak Film TiO2 dari Suspensi Redispersi Dalam Air C stalek Diberi Sinar UV 11 Watt46	Gambar 4 9	Spektrum DRS LIV-Vis TiO ₂ dengan Variasi Waktu Refluks	50
Gambar 4.10Kurva TGA dan DSC TiO2 hasil refluks selama 16 jam38Gambar 4.11Foto SEM produk TiO2 dalam Bentuk Powder39Gambar 4.12Foto SEM Film TiO2 pada Pelat Kaca40Gambar 4.13Foto SEM Ketebalan Film TiO2 pada Pelat Kaca dengan Pelapisan 5x41Gambar 4.14Dispersi TiO2 R16 pada t = 0 jam dan t = 24 jam dengan Variasi Konsentrasi42Gambar 4.15Foto Dispersi TiO2 R16 dalam Air, (kiri) t = 0 jam, dan (kanan) t = 24 jam42Gambar 4.16Dispersi TiO2 R16 dalam Air Selama 60 menit dengan Variasi Konsentrasi42Gambar 4.17Dispersi TiO2 dengan Variasi Waktu Refluks pada Konsentrasi 1000 ppm43Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air44Gambar 4.19Dispersi TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(Cl)45Gambar 4.21Sudut Kontak Film TiO2 dari Suspensi Hasil Refluks Langsung Setelah Diberi Sinar UV 10 Watt Selama 1 Jam46	Gambar 4.10Kurva TGA dan DSC TiO2 hasil refluks selama 16 jam38Gambar 4.11Foto SEM produk TiO2 dalam Bentuk Powder39Gambar 4.12Foto SEM Film TiO2 pada Pelat Kaca40Gambar 4.13Foto SEM Ketebalan Film TiO2 pada Pelat Kaca dengan Pelapisan 5x41Gambar 4.14Dispersi TiO2 R16 pada t = 0 jam dan t = 24 jam dengan Variasi Konsentrasi42Gambar 4.15Foto Dispersi TiO2 R16 dalam Air, (kiri) t = 0 jam, dan (kanan) t = 24 jam42Gambar 4.16Dispersi TiO2 R16 dalam Air Selama 60 menit dengan Variasi Konsentrasi42Gambar 4.17Dispersi TiO2 dengan Variasi Waktu Refluks pada Konsentrasi 1000 ppm43Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air44Gambar 4.20Foto Film TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(Cl)45Gambar 4.21Sudut Kontak Film TiO2 dari Suspensi Hasil Refluks Langsung Setelah Diberi Sinar UV 10 Watt Selama 1 Jam46Gambar 4.22Sudut Kontak Film TiO2 dari Suspensi Redispersi Dalam Air Sutaleh Diberi Sinar UV 10 Watt Selama 1 Jam46	Guillour 1.9	Inset · Nilai energi celah	37
Gambar 4.11Foto SEM produk TiO2 dalam Bentuk Powder39Gambar 4.12Foto SEM Film TiO2 pada Pelat Kaca40Gambar 4.13Foto SEM Ketebalan Film TiO2 pada Pelat Kaca dengan Pelapisan 5x41Gambar 4.14Dispersi TiO2 R16 pada t = 0 jam dan t = 24 jam dengan Variasi Konsentrasi42Gambar 4.15Foto Dispersi TiO2 R16 dalam Air, (kiri) t = 0 jam, dan (kanan) t = 24 jam42Gambar 4.16Dispersi TiO2 R16 dalam Air Selama 60 menit dengan Variasi Konsentrasi42Gambar 4.17Dispersi TiO2 dengan Variasi Waktu Refluks pada Konsentrasi 1000 ppm43Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air44Gambar 4.19Dispersi TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(Cl)45Gambar 4.21Sudut Kontak Film TiO2 dari Suspensi Hasil Refluks Langsung Setelah Diberi Sinar UV 10 Watt Selama 1 Jam46	Gambar 4.11Foto SEM produk TiO2 dalam Bentuk Powder	Gambar 4 10	Kurva TGA dan DSC TiO ₂ hasil refluks selama 16 jam	38
Gambar 4.12Foto SEM Film TiO2 pada Pelat Kaca40Gambar 4.13Foto SEM Ketebalan Film TiO2 pada Pelat Kaca40Gambar 4.13Foto SEM Ketebalan Film TiO2 pada Pelat Kaca dengan Pelapisan 5x41Gambar 4.14Dispersi TiO2 R16 pada t = 0 jam dan t = 24 jam dengan Variasi Konsentrasi42Gambar 4.15Foto Dispersi TiO2 R16 dalam Air, (kiri) t = 0 jam, dan (kanan) t = 24 jam42Gambar 4.16Dispersi TiO2 R16 dalam Air Selama 60 menit dengan Variasi Konsentrasi42Gambar 4.17Dispersi TiO2 dengan Variasi Waktu Refluks pada Konsentrasi 1000 ppm43Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air44Gambar 4.19Dispersi TiO2 dalam Air dengan Variasi pH Setelah 1 Hari44Gambar 4.20Foto Film TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(Cl)45Gambar 4.21Sudut Kontak Film TiO2 dari Suspensi Hasil Refluks Langsung Setelah Diberi Sinar UV 10 Watt Selama 1 Jam46	Gambar 4.12Foto SEM Film TiO2 pada Pelat Kaca40Gambar 4.13Foto SEM Ketebalan Film TiO2 pada Pelat Kaca dengan Pelapisan 5x41Gambar 4.14Dispersi TiO2 R16 pada t = 0 jam dan t = 24 jam dengan Variasi Konsentrasi42Gambar 4.15Foto Dispersi TiO2 R16 dalam Air, (kiri) t = 0 jam, dan (kanan) t = 24 jam42Gambar 4.16Dispersi TiO2 R16 dalam Air Selama 60 menit dengan Variasi Konsentrasi42Gambar 4.17Dispersi TiO2 dengan Variasi Waktu Refluks pada Konsentrasi 1000 ppm43Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air44Gambar 4.19Dispersi TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(CI)45Gambar 4.21Sudut Kontak Film TiO2 dari Suspensi Hasil Refluks Langsung Setelah Diberi Sinar UV 10 Watt Selama 1 Jam46	Gambar 4.11	Foto SEM produk TiO ₂ dalam Bentuk Powder	39
Gambar 4.13Foto SEM Ketebalan Film TiO2 pada Pelat Kaca dengan Pelapisan 5x41Gambar 4.14Dispersi TiO2 R16 pada t = 0 jam dan t = 24 jam dengan Variasi Konsentrasi42Gambar 4.15Foto Dispersi TiO2 R16 dalam Air, (kiri) t = 0 jam, dan (kanan) t = 24 jam42Gambar 4.16Dispersi TiO2 R16 dalam Air Selama 60 menit dengan Variasi Konsentrasi42Gambar 4.17Dispersi TiO2 dengan Variasi Waktu Refluks pada Konsentrasi 1000 ppm43Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air44Gambar 4.19Dispersi TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(Cl)45Gambar 4.21Sudut Kontak Film TiO2 dari Suspensi Hasil Refluks Langsung Setelah Diberi Sinar UV 10 Watt Selama 1 Jam46	Gambar 4.13Foto SEM Ketebalan Film TiO2 pada Pelat Kaca dengan Pelapisan 5x41Gambar 4.14Dispersi TiO2 R16 pada t = 0 jam dan t = 24 jam dengan Variasi Konsentrasi42Gambar 4.15Foto Dispersi TiO2 R16 dalam Air, (kiri) t = 0 jam, dan (kanan) t = 24 jam42Gambar 4.16Dispersi TiO2 R16 dalam Air Selama 60 menit dengan Variasi Konsentrasi42Gambar 4.17Dispersi TiO2 dengan Variasi Waktu Refluks pada Konsentrasi 1000 ppm43Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air44Gambar 4.19Dispersi TiO2 dalam Air dengan Variasi pH Setelah 1 Hari44Gambar 4.20Foto Film TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(Cl)45Gambar 4.21Sudut Kontak Film TiO2 dari Suspensi Hasil Refluks Langsung Setelah Diberi Sinar UV 10 Watt Selama 1 Jam46Gambar 4.22Sudut Kontak Film TiO2 dari Suspensi Redispersi Dalam Air Sustelah Diberi Sinar UV 10 Watt Selama 1 Jam46	Gambar 4.12	Foto SEM Film TiO ₂ pada Pelat Kaca	40
Pelapisan 5x41Gambar 4.14Dispersi TiO2 R16 pada t = 0 jam dan t = 24 jam dengan Variasi Konsentrasi42Gambar 4.15Foto Dispersi TiO2 R16 dalam Air, (kiri) t = 0 jam, dan (kanan) t = 24 jam42Gambar 4.16Dispersi TiO2 R16 dalam Air Selama 60 menit dengan Variasi Konsentrasi42Gambar 4.17Dispersi TiO2 dengan Variasi Waktu Refluks pada Konsentrasi 1000 ppm43Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air44Gambar 4.19Dispersi TiO2 dalam Air dengan Variasi pH Setelah 1 Hari44Gambar 4.20Foto Film TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(Cl)45Gambar 4.21Sudut Kontak Film TiO2 dari Suspensi Hasil Refluks Langsung Setelah Diberi Sinar UV 10 Watt Selama 1 Jam46	Pelapisan 5x41Gambar 4.14Dispersi TiO2 R16 pada t = 0 jam dan t = 24 jam dengan Variasi Konsentrasi42Gambar 4.15Foto Dispersi TiO2 R16 dalam Air, (kiri) t = 0 jam, dan (kanan) t = 24 jam42Gambar 4.16Dispersi TiO2 R16 dalam Air Selama 60 menit dengan Variasi Konsentrasi42Gambar 4.17Dispersi TiO2 dengan Variasi Waktu Refluks pada Konsentrasi 1000 ppm43Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air44Gambar 4.19Dispersi TiO2 dalam Air dengan Variasi pH Setelah 1 Hari44Gambar 4.20Foto Film TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(Cl)45Gambar 4.21Sudut Kontak Film TiO2 dari Suspensi Hasil Refluks Langsung Setelah Diberi Sinar UV 10 Watt Selama 1 Jam46	Gambar 4.13	Foto SEM Ketebalan Film TiO ₂ pada Pelat Kaca dengan	
Gambar 4.14Dispersi TiO2 R16 pada t = 0 jam dan t = 24 jam dengan Variasi Konsentrasi	Gambar 4.14Dispersi TiO2 R16 pada t = 0 jam dan t = 24 jam dengan Variasi Konsentrasi42Gambar 4.15Foto Dispersi TiO2 R16 dalam Air, (kiri) t = 0 jam, dan (kanan) t = 24 jam42Gambar 4.16Dispersi TiO2 R16 dalam Air Selama 60 menit dengan Variasi Konsentrasi42Gambar 4.17Dispersi TiO2 dengan Variasi Waktu Refluks pada Konsentrasi 1000 ppm43Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air44Gambar 4.19Dispersi TiO2 dalam Air dengan Variasi pH Setelah 1 Hari44Gambar 4.20Foto Film TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(Cl)45Gambar 4.21Sudut Kontak Film TiO2 dari Suspensi Hasil Refluks Langsung Setelah Diberi Sinar UV 10 Watt Selama 1 Jam46Gambar 4.22Sudut Kontak Film TiO2 dari Suspensi Redispersi Dalam Air46		Pelapisan 5x	41
Variasi Konsentrasi42Gambar 4.15Foto Dispersi TiO2 R16 dalam Air, (kiri) t = 0 jam, dan (kanan) t = 24 jam42Gambar 4.16Dispersi TiO2 R16 dalam Air Selama 60 menit dengan Variasi Konsentrasi42Gambar 4.17Dispersi TiO2 dengan Variasi Waktu Refluks pada Konsentrasi 1000 ppm43Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air44Gambar 4.19Dispersi TiO2 dalam Air dengan Variasi pH Setelah 1 Hari44Gambar 4.20Foto Film TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(Cl)45Gambar 4.21Sudut Kontak Film TiO2 dari Suspensi Hasil Refluks Langsung Setelah Diberi Sinar UV 10 Watt Selama 1 Jam46	Variasi Konsentrasi42Gambar 4.15Foto Dispersi TiO2 R16 dalam Air, (kiri) t = 0 jam, dan (kanan) t = 24 jam42Gambar 4.16Dispersi TiO2 R16 dalam Air Selama 60 menit dengan Variasi Konsentrasi42Gambar 4.17Dispersi TiO2 dengan Variasi Waktu Refluks pada Konsentrasi 1000 ppm43Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air44Gambar 4.19Dispersi TiO2 dalam Air dengan Variasi pH Setelah 1 Hari44Gambar 4.20Foto Film TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(Cl)45Gambar 4.21Sudut Kontak Film TiO2 dari Suspensi Hasil Refluks Langsung Setelah Diberi Sinar UV 10 Watt Selama 1 Jam46Gambar 4.22Sudut Kontak Film TiO2 dari Suspensi Redispersi Dalam Air46	Gambar 4.14	Dispersi TiO ₂ R16 pada t = 0 jam dan t = 24 jam dengan	
Gambar 4.15Foto Dispersi TiO2 R16 dalam Air, (kiri) t = 0 jam, dan (kanan) t = 24 jam42Gambar 4.16Dispersi TiO2 R16 dalam Air Selama 60 menit dengan Variasi Konsentrasi42Gambar 4.17Dispersi TiO2 dengan Variasi Waktu Refluks pada Konsentrasi 1000 ppm43Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air44Gambar 4.19Dispersi TiO2 dalam Air dengan Variasi pH Setelah 1 Hari44Gambar 4.20Foto Film TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(Cl)45Gambar 4.21Sudut Kontak Film TiO2 dari Suspensi Hasil Refluks Langsung Setelah Diberi Sinar UV 10 Watt Selama 1 Jam46	Gambar 4.15Foto Dispersi TiO2 R16 dalam Air, (kiri) t = 0 jam, dan (kanan) t = 24 jam42Gambar 4.16Dispersi TiO2 R16 dalam Air Selama 60 menit dengan Variasi Konsentrasi42Gambar 4.17Dispersi TiO2 dengan Variasi Waktu Refluks pada Konsentrasi 1000 ppm43Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air44Gambar 4.19Dispersi TiO2 dalam Air dengan Variasi pH Setelah 1 Hari44Gambar 4.20Foto Film TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(Cl)45Gambar 4.21Sudut Kontak Film TiO2 dari Suspensi Hasil Refluks Langsung Setelah Diberi Sinar UV 10 Watt Selama 1 Jam46Gambar 4.22Sudut Kontak Film TiO2 dari Suspensi Redispersi Dalam Air Setelah Diberi Sinar UV 11 Wett46		Variasi Konsentrasi	42
(kanan) t = 24 jam42Gambar 4.16Dispersi TiO2 R16 dalam Air Selama 60 menit dengan Variasi Konsentrasi42Gambar 4.17Dispersi TiO2 dengan Variasi Waktu Refluks pada Konsentrasi 1000 ppm43Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air43Gambar 4.19Dispersi TiO2 dalam Air dengan Variasi pH Setelah 1 Hari44Gambar 4.20Foto Film TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(Cl)45Gambar 4.21Sudut Kontak Film TiO2 dari Suspensi Hasil Refluks Langsung Setelah Diberi Sinar UV 10 Watt Selama 1 Jam46	(kanan) t = 24 jam42Gambar 4.16Dispersi TiO2 R16 dalam Air Selama 60 menit dengan Variasi Konsentrasi42Gambar 4.17Dispersi TiO2 dengan Variasi Waktu Refluks pada Konsentrasi 1000 ppm43Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air43Gambar 4.19Dispersi TiO2 dalam Air dengan Variasi pH Setelah 1 Hari44Gambar 4.20Foto Film TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(Cl)45Gambar 4.21Sudut Kontak Film TiO2 dari Suspensi Hasil Refluks Langsung Setelah Diberi Sinar UV 10 Watt Selama 1 Jam46Gambar 4.22Sudut Kontak Film TiO2 dari Suspensi Redispersi Dalam Air Setelah Diberi Sinar UV 11 Wett46	Gambar 4.15	Foto Dispersi TiO ₂ R16 dalam Air, (kiri) $t = 0$ jam, dan	
Gambar 4.16Dispersi TiO2 R16 dalam Air Selama 60 menit dengan Variasi Konsentrasi42Gambar 4.17Dispersi TiO2 dengan Variasi Waktu Refluks pada Konsentrasi 1000 ppm43Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air44Gambar 4.19Dispersi TiO2 dalam Air dengan Variasi pH Setelah 1 Hari44Gambar 4.20Foto Film TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(Cl)45Gambar 4.21Sudut Kontak Film TiO2 dari Suspensi Hasil Refluks Langsung Setelah Diberi Sinar UV 10 Watt Selama 1 Jam46	Gambar 4.16Dispersi TiO2 R16 dalam Air Selama 60 menit dengan Variasi Konsentrasi42Gambar 4.17Dispersi TiO2 dengan Variasi Waktu Refluks pada Konsentrasi 1000 ppm43Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air44Gambar 4.19Dispersi TiO2 dalam Air dengan Variasi pH Setelah 1 Hari44Gambar 4.20Foto Film TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(Cl)45Gambar 4.21Sudut Kontak Film TiO2 dari Suspensi Hasil Refluks Langsung Setelah Diberi Sinar UV 10 Watt Selama 1 Jam46Gambar 4.22Sudut Kontak Film TiO2 dari Suspensi Redispersi Dalam Air Setelah Diberi Sinar UV 11 Wett46		(kanan) t = 24 jam	42
Variasi Konsentrasi42Gambar 4.17Dispersi TiO2 dengan Variasi Waktu Refluks pada Konsentrasi 1000 ppm43Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air44Gambar 4.19Dispersi TiO2 dalam Air dengan Variasi pH Setelah 1 Hari44Gambar 4.20Foto Film TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(Cl)45Gambar 4.21Sudut Kontak Film TiO2 dari Suspensi Hasil Refluks Langsung Setelah Diberi Sinar UV 10 Watt Selama 1 Jam46	Variasi Konsentrasi42Gambar 4.17Dispersi TiO2 dengan Variasi Waktu Refluks pada Konsentrasi 1000 ppm43Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air43Gambar 4.19Dispersi TiO2 dalam Air dengan Variasi pH Setelah 1 Hari44Gambar 4.20Foto Film TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(Cl)45Gambar 4.21Sudut Kontak Film TiO2 dari Suspensi Hasil Refluks Langsung Setelah Diberi Sinar UV 10 Watt Selama 1 Jam46Gambar 4.22Sudut Kontak Film TiO2 dari Suspensi Redispersi Dalam Air Setelah Diberi Sinar UV 11 Wett46	Gambar 4.16	Dispersi TiO_2 R16 dalam Air Selama 60 menit dengan	
Gambar 4.17Dispersi TiO2 dengan Variasi Waktu Refluks pada Konsentrasi 1000 ppm43Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air44Gambar 4.19Dispersi TiO2 dalam Air dengan Variasi pH Setelah 1 Hari44Gambar 4.20Foto Film TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(Cl)45Gambar 4.21Sudut Kontak Film TiO2 dari Suspensi Hasil Refluks Langsung Setelah Diberi Sinar UV 10 Watt Selama 1 Jam46	Gambar 4.17Dispersi TiO2 dengan Variasi Waktu Refluks pada Konsentrasi 1000 ppm43Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air44Gambar 4.19Dispersi TiO2 dalam Air dengan Variasi pH Setelah 1 Hari44Gambar 4.20Foto Film TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(Cl)45Gambar 4.21Sudut Kontak Film TiO2 dari Suspensi Hasil Refluks Langsung Setelah Diberi Sinar UV 10 Watt Selama 1 Jam46Gambar 4.22Sudut Kontak Film TiO2 dari Suspensi Redispersi Dalam Air Satelah Diberi Sinar UV 11 Wett46	G 1 4 1 5	Variasi Konsentrasi	42
Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air	Gambar 4.18Potensial Zeta versus pH untuk Suspensi TiO2 dalam Air	Gambar 4.17	Dispersi TiO_2 dengan Variasi Waktu Refluks pada	40
Gambar 4.18Potensial Zeta Versus pH untuk Suspensi 11O2 dalam Air44Gambar 4.19Dispersi TiO2 dalam Air dengan Variasi pH Setelah 1 Hari44Gambar 4.20Foto Film TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(Cl)	Gambar 4.18Potensial Zeta Versus pH untuk Suspensi TiO2 dalam Air44Gambar 4.19Dispersi TiO2 dalam Air dengan Variasi pH Setelah 1 Hari44Gambar 4.20Foto Film TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(Cl)	Combon 1 19	Ronsentrasi 1000 ppm	43
Gambar 4.19Dispersi 11O2 dalam Air dengan Variasi pH Setelan 1 Hari44Gambar 4.20Foto Film TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(Cl)	Gambar 4.19Dispersi TiO2 dalam Air dengan Variasi pH Setelan 1 Hari44Gambar 4.20Foto Film TiO2 pada Pelat Kaca. Dari Kiri ke Kanan : TiO2 R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(Cl)	Gambar 4.18	Potensial Zeta versus pH untuk Suspensi TiO ₂ dalam Air	44
Gambar 4.20Foto Film TiO2 pada Pelat Kaca. Dari Kin ke Kanan : TiO2 R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(Cl)	Gambar 4.20Foto Film 11O2 pada Pelat Kaca. Dari Kiri ke Kahan 11O2R2, TiO2 R8, TiO2 R16, TiO2 R24 dan TiO2-EG(Cl)45Gambar 4.21Sudut Kontak Film TiO2 dari Suspensi Hasil RefluksLangsung Setelah Diberi Sinar UV 10 Watt Selama 1 Jam46Gambar 4.22Sudut Kontak Film TiO2 dari Suspensi Redispersi Dalam AirSatelah Diberi Sinar UV 11 Watt	Gambar 4.19	Dispersi ΠO_2 dalam Air dengan variasi pH Setelan I Hari	44
Gambar 4.21 Sudut Kontak Film TiO ₂ dari Suspensi Hasil Refluks Langsung Setelah Diberi Sinar UV 10 Watt Selama 1 Jam 46	 Gambar 4.21 Gambar 4.22 Sudut Kontak Film TiO₂ dari Suspensi Hasil Refluks Langsung Setelah Diberi Sinar UV 10 Watt Selama 1 Jam 46 Gambar 4.22 Sudut Kontak Film TiO₂ dari Suspensi Redispersi Dalam Air Satelah Diberi Sinar UV 11 Wett 	Gaindar 4.20	P_{1} P_{2} P_{1} P_{2} P_{1} P_{2} P_{2} P_{1} P_{2} P_{2} P_{1} P_{2} P_{2} P_{1} P_{2} P_{2	15
Langsung Setelah Diberi Sinar UV 10 Watt Selama 1 Jam 46	Gambar 4.22 Sudut Kontak Film TiO ₂ dari Suspensi Rasir Keriaks Langsung Setelah Diberi Sinar UV 10 Watt Selama 1 Jam 46 Gambar 4.22 Sudut Kontak Film TiO ₂ dari Suspensi Redispersi Dalam Air	Gambar 4 21	Sudut Kontak Film TiO ₂ dari Suspensi Hasil Refluks	+J
$\mathbf{H}_{\mathbf{M}} = \mathbf{H}_{\mathbf{M}} = $	Gambar 4.22 Sudut Kontak Film TiO ₂ dari Suspensi Redispersi Dalam Air	Gambal 4.21	Langsung Setelah Diheri Sinar UV 10 Watt Selama 1 Jam	46
Gambar 4.22 Sudut Kontak Film TiO ₂ dari Suspensi Redispersi Dalam Air	Control 1.22 Sudar Konkar Finn 1102 dan Suspensi Redispersi Dalah An	Gambar 4 22	Sudut Kontak Film TiO ₂ dari Suspensi Redispersi Dalam Air	-10
Catalah Dihari Cinan IVI 11 Watt	Setelan Dideri Sinar U v 11 Watt \dots 46		Setelah Diberi Sinar UV 11 Watt	46

Gambar 4.23	Foto Tetes Air Pada Pelat Kaca (a) Tanpa Film TiO ₂ dan (b)	
	dengan Film TiO ₂ Setelah Diberi Sinar UV Selama 2 Jam	47
Gambar 4.24	Sifat Anti Kabut Film TiO ₂ , (a) dari Kiri ke Kanan : Kaca	
	Biasa, TiO ₂ -EG, TiO ₂ -EG (Cl) dan TiO ₂ -PEG, (b) Tampak	
	Muka dari Kiri ke Kanan : TiO ₂ -EG, TiO ₂ -EG (Cl) dan TiO ₂ -	
	PEG	47
Gambar 4.25	Persen Degradasi Methylene Blue terhadap Waktu	48
Gambar 4.26	Grafik Ln Co/C terhadap Waktu	49
Gambar 4.27	Fenomena Fotoelektrokatalitik Film TiO ₂	50
Gambar 4.28	Siklik Voltametri Film TiO ₂ Sebelum dan Sesudah Diberi	
	Sinar UV	51

DAFTAR TABEL

.natase 9
X) 39
49

DAFTAR LAMPIRAN

Lampiran 1.	Data Analisis Difraksi Sinar-X	57
Lampiran 2.	Data FTIR	68
Lampiran 3.	Data UV Vis TiO ₂	71
Lampiran 4.	Data TGA dan DSC TiO ₂ R16	73
Lampiran 5.	Data Pengukuran Potensial Zeta TiO ₂ R16	75
Lampiran 6.	Data Evaluasi Fotokatalitik	95
Lampiran 7.	Data Hasil EDX	96

BAB I PENDAHULUAN

1.1 Latar Belakang

Perkembangan dunia industri yang sangat pesat selain memberikan banyak manfaat dalam meningkatkan kualitas hidup juga memberikan dampak yang serius terhadap lingkungan sekitar. Penggunaan bahan kimia beracun dan berbahaya serta limbah dan polusi yang dihasilkan dalam jumlah yang tidak sedikit telah merusak dan mengancam kestabilan ekosistem. Hal inilah yang mendorong para ilmuwan untuk melakukan inovasi yang lebih ramah lingkungan, dengan mengenalkan prinsip optimasi dan efisiensi proses industri yang kemudian dikenal luas sebagai konsep *green chemistry*. Sejak dipublikasikannya fenomena fotokatalisis titanium dioksida oleh Fujishima dan Honda (1972) yaitu pemecahan air menjadi oksigen dan hidrogen oleh semikonduktor TiO₂ di bawah sinar ultraviolet, material TiO₂ telah banyak diteliti untuk membantu menjawab permasalahan lingkungan.

Titanium dioksida ditemukan sejak 200 tahun yang lalu dan merupakan salah satu material yang paling banyak digunakan di dunia saat ini.Walaupun telah diproduksi secara komersial sejak puluhan tahun yang lalu tetapi hingga kini masih aktif diteliti. Aplikasi dari sifat fotokatalis TiO₂ terus berkembang seiring dengan ukuran partikel TiO₂ hasil sintesis yang semakin kecil hingga skala nanometer. Aplikasi dari sifat fotokatalis ini dapat dikelompokkan ke dalam lima kelompok utama, yaitu pemurnian air, penghilang bau, swa-bersih dan anti kabut, pemurnian udara dan sterilisasi. Struktur dan sifat-sifat unik nanopartikel TiO₂ sebagai fotokatalis dipengaruhi oleh luas permukaan spesifik dan efek ukuran kuantum dan sifat transport fonon dan foton yang sangat dipengaruhi oleh ukuran dan geometri material (Chen dan Mao, 2007).

 TiO_2 memiliki tiga bentuk fasa kristal yaitu anatase, brookite dan rutile. Diantara ketiga bentuk fasa kristal tersebut, anatase terbukti memiliki fotoaktivitas dan sifat opto-elektronik terbaik. Hal ini disebabkan karena anatase memiliki luas permukaan yang lebih besar sehingga sisi aktifnya juga lebih besar daripada rutile. Brookite tidak memiliki sifat fotokatalis dan merupakan struktur yang paling tidak stabil dan sulit dipreparasi.

Lebih dari satu dekade terakhir beberapa metode telah dikembangkan untuk mensintesis TiO_2 berukuran nanopartikel dan dapat digolongkan sebagai (Attar et. al., 2008) :

- 1. Proses uap, seperti *chemical vapour deposition*, *physical vapour deposition*, dan *spray pyrolisis deposition*.
- Proses cairan, seperti sol-gel (Bessekhouad et. al., 2003), *solvothermal*, *coprecipitation*, polimerisasi, mikroemulsi atau enkapsulasi (Oliveira et.al., 2005) dan *hydrothermal*.
- 3. Proses padatan (*solid state*), seperti pembuatan alloy atau penggilingan secara mekanik dan *mechanochemical*.
- 4. Dan proses lainnya seperti ablasi laser dan RF thermal plasma.

Umumnya metode sintesis TiO_2 berukuran nanopartikel yang paling banyak digunakan didasarkan pada hidrolisis dan kondensasi titanium alkoksida. Metode sol-gel yang paling menjanjikan untuk sintesis dan preparasi anorganik dan hibrida organik-anorganik nanomaterial karena dapat dilakukan pada temperatur proses yang cukup rendah (umumnya < 100 °C) dengan komposisi homogenitas tingkat molekul yang tinggi (Cao, p.82, 2004, dan Ping Wang et.al., 2007). Namun, titanium alkoksida sebagai bahan prekursor memiliki sifat sensitivitas yang tinggi terhadap kelembaban sehingga langsung membentuk endapan putih ketika terkena udara. Sifat ini menyebabkan proses hidrolisis sulit untuk dikontrol pada temperatur kamar, sehingga pada beberapa kasus TiO₂ yang didapatkan berbentuk amorf.

Untuk mengatasi hal itu beberapa metode sintesis TiO_2 nanokristalin telah dikembangkan, diantaranya menggunakan media organik yang berperan sebagai surfaktan dan agen pereduksi sensitivitas prekursor terhadap kelembaban (*modifier*) (Attar et. al., 2008 dan Kotsokechagia, et. al., 2008). Tetapi untuk mendapatkan kristalinitas yang tinggi dari nanokristal TiO_2 dengan metode ini, diperlukan tekanan dan temperatur yang tinggi atau memerlukan waktu reaksi yang lama sehingga kurang cocok untuk digunakan pada produksi skala besar. Selain itu ikatan kuat yang terbentuk dengan surfaktan (asam oleat atau asam

karboksilat) membuat permukaan nanokristal menjadi hidrofobik sehingga menurunkan aktivitas permukaan TiO₂ nanokristal yang berhubungan dengan sifat-sifat fotovoltaik dan fotokatalitik (Ping Wang et. al., 2007 & 2008). Sifat hidrofobik ini juga berpotensi menyebabkan masalah pada aplikasi terapan dari nanokristal ini karena kebanyakan berjalan pada fasa cairan.

Ping Wang *et. al* (2007 & 2008) berhasil mengembangkan metode *sol-gel* dengan refluks pada suhu 150 °C untuk mensintesis nanokristal TiO₂ anatase yang mudah larut dalam air dengan ukuran 2 - 4 nm. Surfaktan etilen glikol berperan untuk mengontrol laju hidrolisis dan kondensasi Titanium Tetra-Iso-Propoksida (TTIP). H₂O juga merupakan kunci pembentukan TiO₂ anatase yang akan memancing terjadinya hidrolisis. Suspensi TiO₂ anatase dalam air yang berhasil disintesis cukup stabil dalam waktu minimal 10 hari tanpa terbentuk endapan. Penggantian etilen glikol dengan dietilen glikol dan tetraetilen glikol dilaporkan berhasil mensintesis TiO₂ anatase tetapi juga muncul puncak brookite pada hasil XRD pada daerah $2\theta \sim 30^{\circ}$.

Shan & Demopoulos (2009) juga menggunakan etilen glikol pada sintesis TiO₂ dengan membandingkan prekursor TiCl₄ dengan TTIP pada suhu 240 °C menggunakan *teflon-lined bomb*. Etilen glikol diketahui menghasilkan air secara in-situ yang akan bereaksi dengan TiCl₄ menghasilkan TiO₂ dan HCl. HCl ini akan mengontrol peptisasi koloid TiO₂. Pengaruh variasi waktu reaksi menunjukan bahwa semakin lama waktu reaksi, ukuran nanopartikel TiO₂ juga meningkat. Pada reaksi selama 12 jam, TiO₂ *nanoplatelet* sudah mulai terbentuk sempurna. Penggantian TiCl₄ dengan TTIP ternyata menghasilkan TiO₂ dengan kristalinitas yang sangat rendah dan mudah teragglomerasi. Hal ini disebabkan tidak terbentuknya asam yang akan mengontrol peptisasi.

Dari hasil penelitian Kotsokechagia et. al. (2008), French et. al. (2009) dan Guzman et. al. (2006), pengendapan atau pembentukan agglomerasi/aggregat terjadi pada pH > 4 atau pada kondisi dekat dengan titik isoelektrik ζ -potensial (pH pada muatan nol / pH_{zpc}) TiO₂ nanopartikel dan terbentuk lebih cepat jika kuat ion larutan semakin tinggi pada pH yang sama. pH_{zpc} suspensi TiO₂ nanopartikel juga dilaporkan berubah seiring dengan perubahan ukuran nanokristalin. Adanya aggregat atau agglomerat ini sangat mempengaruhi sifatsifat optis dari suspensi fotokatalitik karena daya absorpsi dan koefisien *scattering* bergantung pada ukuran efektif partikel agglomerat (Yurdakal et. al., 2007).

Terbentuknya aggregat ini dapat dihindarkan dengan melakukan beberapa mekanisme stabilisasi dispersi yaitu stabilisasi elektrostatik dan stabilisasi sterik. Pada stabilisasi dispersi secara elektrostatik, agregasi dicegah dengan memberikan muatan pada permukaan partikel. Stabilisasi sterik berperan ketika molekul yang teradsorpsi pada permukaan kemudian membentuk *physical barrier* di antara partikel-partikel tersebut. Gabungan dari kedua mekanisme ini disebut mekanisme elektrosterik (Mandzy, Grulke & Druffel, 2005). Dari hasil penelitian yang dilakukan oleh Jannah (2010), mekanisme kestabilan yang lebih baik dicapai dengan mekanisme kestabilan sterik.

Pada penelitian ini akan dilakukan sintesis suspensi TiO₂ nanopartikel menggunakan metode Ping Wang yang dimodifikasi dengan penambahan asam nitrat sebagai kontrol pH (agen peptisasi) dan variasi waktu refluks. Asam nitrat sebagai agen peptisasi merupakan bagian dari stabilisasi elektrostatik, dimana pH yang asam akan mengubah muatan permukaan partikel TiO₂ sehingga terjadi tolakan yang menjaga dari aggregasi. Penggunaan etilen glikol sebagai surfaktan juga bagian dari stabilisasi sterik, dimana senyawa turunan alkoksida-glikolat akan membentuk rantai *cross-linked* titanium glikolat. Hasil yang diharapkan dari modifikasi metode ini adalah suspensi TiO₂ yang terbentuk bebas dari agglomerat dan stabil dalam jangka waktu yang lebih lama. Tahapan penelitian meliputi pembuatan prekursor, kontrol pH dan variasi waktu refluks pada pembentukan suspensi TiO₂ dan karakterisasi TiO₂ yang terbentuk. Karakterisasi meliputi fisik (ukuran dan distribusi ukuran / homogenitas), struktur kristal nanopartikel dan pengaruh ikatan surfaktan dengan TiO₂.

Hasil sintesis TiO_2 berbasis medium air ini diharapkan dapat menjadi salah satu alternatif yang dapat digunakan terutama dalam aplikasi material swa-bersih (*self-cleaning*). Material swa-bersih ini dapat dimanfaatkan sebagai pelapis untuk kaca atau cermin, lantai keramik dan cat dinding gedung bertingkat sehingga dapat mengurangi biaya pemeliharaan karena akan selalu bersih hanya dengan bilasan air atau hujan. Untuk itu pada penelitian ini dilakukan uji fotokatalitik dan superhidrofilik lapisan film TiO₂ yang telah dilapisi pada pelat kaca. Daya fotokatalitik film TiO2 dilihat dengan cara mengukur fotodegradasi methylene *blue* selama penyinaran dengan UV. Sifat khas superhidrofilik TiO₂ tidak hanya untuk menjaga kebersihan suatu benda (*self cleaning*) tetapi juga sekaligus dapat mencegah terjadinya kabut pada kaca yang dikenal dengan istilah anti-fogging (Fujishima, Hashimoto & Watanabe, 1999). Pada permukaan superhidrofilik, air akan menyebar merata pada permukaan dan membentuk sudut kontak air yang sangat rendah dengan permukaan hingga di bawah 10° (mendekati 0°), sehingga memiliki tingkat kebasahan yang tinggi. Hardeli (2008) dan Widyaningsih (2003) berhasil membuat film TiO₂ yang memiliki sudut kontak air hingga 10° . Pengukuran sudut kontak air dilakukan dengan alat contact-angle meter. Transparansi film TiO₂ pada kaca tetap terjaga hingga pelapisan film TiO₂ sebanyak lima kali. Slamet, Alwi dan Viriya (2008) melaporkan bahwa penggunaan Polietilen glikol (PEG) sebagai bahan aditif dalam sintesis TiO₂, terbukti memberikan sifat superhidrofilik pada plastik *polypropylene* yang telah dilapisi film TiO₂. Sehingga menarik untuk mempelajari peran PEG untuk menggantikan EG sebagai surfaktan.

1.2 Perumusan Masalah

Semakin banyaknya aplikasi TiO_2 yang dapat diterapkan dalam kehidupan sehari-hari, mendorong penelitian tentang sintesis TiO_2 semakin berkembang. Sifat sensitivitas prekursor yang tinggi terhadap kelembaban menyebabkan proses hidrolisis sulit untuk dikontrol pada temperatur kamar. Diperlukannya waktu reaksi yang lama dan tekanan yang cukup tinggi membuat proses sintesis menjadi tidak efisien. Untuk itu diperlukan metode lain yang lebih sederhana (suhu dan tekanan yang rendah) namun tetap memiliki homogenitas dan kestabilan suspensi yang tinggi.

Berdasarkan permasalahan di atas, preparasi TiO_2 anatase pada penelitian ini akan dilakukan dengan metode sol-gel dengan bantuan refluks dan surfaktan etilen glikol, modifikasi dari metode Ping Wang. Modifikasi dilakukan dengan penambahan asam nitrat sebagai kontrol pH (agen peptisasi) dan variasi waktu refluks. Hal ini dilakukan untuk mengetahui bagaimana pengaruh penambahan asam nitrat dan waktu refluks terhadap hasil sintesis, dilihat dari segi kristalinitas

Universitas Indonesia

Preparasi dan..., Hendra Pratama, FMIPA UI, 2010.

dan kestabilan dispersi dalam air. Pengaruh prekursor dan surfaktan pada sintesis TiO₂ juga akan dipelajari sebagai pembanding.

1.3 Tujuan Penelitian

Tujuan penelitian ini adalah :

- Preparasi suspensi nanopartikel TiO₂ anatase yang stabil dalam medium air melalui metode sol-gel dengan bantuan refluks dan etilen glikol sebagai surfaktan serta karakterisasinya.
- 2. Mengetahui pengaruh penambahan asam nitrat dan pengaruh waktu refluks terhadap hasil sintesis.
- 3. Mengevaluasi kestabilan dispersi TiO₂ dalam air.
- 4. Mengevaluasi sifat superhidrofilik film TiO₂ pada pelat kaca.
- 5. Mengevaluasi aktivitas fotokatalitik TiO₂ hasil sintesis.

1.4 Hipotesis Penelitian

Suspensi nanopartikel TiO₂ berbasis medium air dapat dipreparasi menggunakan metode sol-gel dengan bantuan refluks dimana etilen glikol berperan sebagai surfaktan yang dapat menjaga kestabilan dispersinya.

Dalam penelitian ini digunakan penambahan asam nitrat sebagai kontrol pH karena pada kondisi asam akan berpengaruh terhadap hidrolisis dan berperan sebagai agen peptisasi pada sintesis TiO₂. Dalam kondisi asam, maka TiO₂ yang terbentuk akan memiliki kristalinitas dan kestabilan yang lebih baik.

Selain kondisi asam, waktu reaksi akan berpengaruh terhadap hasil sintesis. Semakin lama waktu reaksi, maka reaksi akan berjalan lebih sempurna sehingga diperoleh hasil yang lebih baik, tetapi disini akan dilihat juga waktu reaksi yang paling singkat dengan hasil yang baik sehingga proses sintesis dapat berjalan seefisien mungkin.

1.5 Ruang Lingkup Penelitian

Ruang lingkup penelitian ini adalah :

 Sintesis TiO₂ anatase menggunakan metode sol-gel dengan bantuan refluks dan etilen glikol sebagai surfaktan serta karakterisasinya.

- 2. Pengaruh penambahan asam nitrat sebagai kontrol pH terhadap kristalinitas dan kestabilan hasil sintesis.
- 3. Pengaruh waktu refluks terhadap hasil yang optimal.
- 4. Dispersi TiO₂ hasil sintesis dalam air dan mengevaluasi kestabilannya.
- 5. Sifat superhidrofilik film TiO_2 pada pelat kaca.
- 6. Sifat fotokatalitik TiO₂ dalam mendegradasi senyawa *methylene blue*.

BAB II TINJAUAN PUSTAKA

2.1 Titanium Dioksida, TiO₂

2.1.1 Sifat-sifat dan Struktur Kristalografik TiO₂

Titanium dioksida merupakan material kristalin yang dilaporkan memiliki tujuh bentuk polimorf, empat bentuk ditemukan di alam dan sisanya sintetik (Ahonen, 2001). Dari empat bentuk alami tersebut hanya tiga yang terlibat dalam sintesis anorganik yaitu, *anatase*, *rutile* dan *brookite*. Hanya *anatase* dan *rutile* yang penting secara komersial. *Anatase* dapat berubah menjadi *rutile* dengan kenaikan temperatur, perubahan ini terjadi secara eksoterm. Pada kondisi bulk dengan ukuran kristal yang besar, rutile stabil pada tekanan normal dan pada semua temperatur hingga titik lelehnya. *Anatase* dan *rutile* mempunyai struktur kristal tetragonal, sedangkan *brookite* mempunyai struktur tersusun atas oktahedra TiO_6^{2-} yang saling berhimpitan antara bagian tepi dan sudutnya untuk *rutile* sedangkan *anatase* hanya pada bagian tepinya seperti tampak pada Gambar 2.1.

Gambar 2.1. Struktur kristal anatase dan rutile digambarkan sebagai susunan oktahedra TiO_6^{2-}

Setiap ion titanium berperan sebagai ion pusat pada setiap oktahedra Ti O_6^2 di dalam struktur kristal. Pada struktur *rutile*, ion-ion oksigen membentuk kisi heksagonal terdistorsi sedangkan pada *anatase* membentuk kisi *cfc (center-face-center)*. Masing-masing oksigen memiliki tiga koplanar berdekatan dengan kation titanium(IV) baik pada struktur rutile maupun anatase. Pada *rutile*, ketiga sudut Ti - O - Ti semuanya bernilai sama yaitu 120° tetapi pada *anatase* salah satu sudutnya bernilai 180° dan dua sudut sisanya mendekati 90° (Amar, 2007).

Karakteristik fisik dan kimia TiO₂ tidak hanya ditentukan oleh fasa kristalin tetapi juga oleh ukuran partikel dan morfologinya. Sebagaimana telah diketahui bahwa morfologi kristal, seperti ciri atau watak kristal, akan meminimalisasi total energi bebas permukaan dalam bentuk kesetimbangan suatu kristal. Mineral anatase alam memiliki perpotongan bidang {001} dan {011} dan tampak sebagai kristal piramida yang curam. Mineral rutile alam memiliki perpotongan bidang {110}, {100} dan {111} dan tampak sebagai kristal prismatik yang pendek (Ahonen, 2001).

Titanium dioksida jenis *anatase* umumnya menunjukkan sifat fotoaktivitas yang lebih tinggi dibandingkan titanium oksida jenis lainnya. Perbandingan struktur dan sifat fisik dari titanium dioksida jenis *rutile* dan *anatase* disajikan dalam Tabel 2.1 (Ahonen, 2001 & Fujishima et. al., 1999).

Sifat	Rutile	Anatase
Bentuk kristal	Sistem tetragonal	Sistem tetragonal
Gugus ruang	P4 ₂ /mnm	I4 ₁ /amd
Konstanta kisi a	4,58 Å	3,78 Å
Konstanta kisi c	2,95 Å	9,49 Å
Berat jenis	$4,2 \text{ g/cm}^3$	$3,9 \text{ g/cm}^3$
Indeks bias	2,71	2,52
Kekerasan	6,0-7,0	5,5-6,0
Titik leleh	1858 °C	Berubah menjadi rutile pada suhu tinggi (>400 °C)

Tabel 2.1. Perbandingan Struktur dan Sifat Fisik TiO₂ Rutile dan Anatase

2.1.2 Semikonduktor TiO₂ sebagai Fotokatalis

Semikonduktor adalah suatu bahan dengan daya hantar arus listrik (σ) berada di antara konduktor dan isolator, dengan nilai σ sebesar $10^{-5} - 10^{3}$ ohm⁻¹

Preparasi dan..., Hendra Pratama, FMIPA UI, 2010.

cm⁻¹. Perbedaan antara ketiganya ini, bergantung pada struktur pita, pita valensi terisi penuh atau terisi sebagian, serta besarnya energi celah (*band gap energy*) antara pita valensi dan pita konduksi. Umumnya energi celah pada semikonduktor tidak terlalu besar (0,5 - 5,0 eV), dibandingkan dengan isolator (lebih besar dari 5,0 eV). Energi celah yang tidak terlalu besar ini memungkinkan beberapa elektron naik ke pita konduksi. Keberadaan energi celah pada semikonduktor mencegah deaktivasi pasangan elektron-*hole* sehingga *lifetime* pasangan elektron-*hole* cukup lama untuk berperan pada transfer elektron antarmuka.

Besarnya energi celah, posisi pita valensi, pita konduksi, dan perbandingan dengan besarnya potensial redoks relatif terhadap elektroda hidrogen (potensial hidrogen Nernst) dari beberapa semikonduktor dapat dilihat pada Gambar 2.2.

Gambar 2.2. Level Energi Pita Tepi Untuk Fotokatalis Yang Umum Digunakan

Semikonduktor TiO₂ merupakan katalis yang banyak dipilih untuk proses fotokatalitik, karena TiO₂ bersifat inert secara biologi dan kimia, stabil terhadap korosi akibat foton, stabil terhadap korosi akibat kimia, tidak beracun, dan harganya relatif murah. Titanium dioksida jenis *anatase* lebih fotoaktif dari pada jenis *rutile*, karena luas permukaan *anatase* lebih besar dari pada *rutile*, sehingga sisi aktif per unit *anatase* lebih besar dari pada *rutile*. Selain itu adalah adanya perbedaan dalam struktur pita energi. TiO₂ jenis *anatase* mempunyai celah energi 3,2 elektron volt (eV) yang sebanding dengan cahaya UV, λ = 388 nm, sedangkan energi celah pita untuk TiO₂ jenis *rutile* adalah 3,0 elektron volt (eV) yang sebanding dengan cahaya UV, λ = 413 nm.

Energi celah pita untuk semikonduktor menunjukkan energi cahaya minimum yang diperlukan untuk menghasilkan elektron pada pita konduksi, sehingga menghasilkan konduktivitas listrik dan *hole* pada pita valensi yang mengalami kekosongan elektron. *Hole* ini dapat bereaksi dengan air atau gugus hidroksil untuk menghasilkan radikal hidroksil (•OH). *Hole* dan radikal hidroksil merupakan zat pengoksidasi yang sangat kuat, yang dapat digunakan untuk mengoksidasi sebagian besar material organik.

Tingkat energi celah pita untuk *anatase* 0,2 eV lebih tinggi bila dibandingkan dengan *rutile*. Energi pita valensi untuk *anatase* dan *rutile* keduanya mirip, yang sangat rendah dalam diagram energi. Hal ini berarti bahwa ke dua material tersebut mempunyai *hole* pita valensi yang bersifat oksidator kuat. Energi pita konduksi untuk *rutile* mendekati potensial yang diperlukan untuk mereduksi air menjadi gas hidrogen secara elektrolisis, tetapi untuk *anatase* diagram energinya lebih tinggi, sehingga kemampuan mereduksinya lebih tinggi. Dengan potensial reduksi sebesar itu TiO₂ *anatase* dapat mereduksi molekul oksigen (O₂) menjadi superoksida (O₂•) secara elektrolisis. Superoksida ini juga mempunyai sifat yang sama dengan radikal hidroksil dalam mendegradasi material organik.

2.2 Fotokatalitik

2.2.1 Definisi

Katalisis merupakan suatu proses yang dipercepat lajunya / terjadinya dengan penambahan suatu substansi/katalis. Suatu reaksi yang dipengaruhi oleh cahaya dan katalis secara bersama-sama dinamakan reaksi fotokatalitik. Katalis ini dapat mempercepat fotoreaksi melalui interaksinya dengan substrat, baik dalam keadaan dasar maupun keadaan tereksitasi dan atau produk utamanya, tergantung pada mekanisme fotoreaksinya. Fotokatalitik dibagi menjadi dua macam, yaitu fotokatalitik homogen dan fotokatalitik heterogen. Fotokatalitik homogen adalah proses fotokatalitik dengan bantuan zat pengoksidasi seperti ozon dan hidrogen peroksida, sedangkan fotokatalitik heterogen dilakukan dengan bantuan semikonduktor yang diiradiasi dengan sinar UV. Titanium dioksida (TiO₂) merupakan contoh semikonduktor yang dapat digunakan untuk proses fotokatalitik .

2.2.2 Mekanisme Umum Fotokatalitik TiO₂

Jika suatu semikonduktor menyerap energi sebesar atau lebih besar dari energi celahnya, maka elektron (e⁻) pada pita valensi (VB) akan tereksitasi ke pita konduksi (CB), dengan meninggalkan lubang positif (h^+). Hal ini merupakan awal dari proses fotokatalitik.

Semikonduktor + hv $\rightarrow h_{VB}^+ + e_{CB}^-$

Tahapan yang terjadi selama proses fotokatalitik dijelaskan seperti pada Gambar 2.3.

Gambar 2.3. Tahapan Mekanisme Fotokatalitik

Secara umum tahapan proses fotokatalitik pada Gambar 2.3 dapat dijelaskan sebagai berikut (Hoffman et. al., 1995):

1. Pembentukan pembawa muatan (e_{CB}^{-}, h_{VB}^{+}) oleh foton

$$\text{TiO}_2 + h\upsilon \longrightarrow \text{TiO}_2 (h_{VB}^+ + e_{CB}^-)$$

 Rekombinasi pembawa muatan, dengan membebaskan energi dalam bentuk panas

$$\begin{split} & \bar{e_{CB}} + (>Ti^{IV}OH^{\bullet})^{+} \longrightarrow >Ti^{IV}OH \\ & h_{VB}^{+} + (>Ti^{III}OH) \longrightarrow >Ti^{IV}OH \end{split}$$

Transfer muatan antarmuka (3) dan (4)

3. Reaksi oksidasi oleh hole pada pita valensi

 $(>Ti^{IV}OH^{\bullet})^{+}+ Red \longrightarrow (>Ti^{IV}OH) + Red^{\bullet+}$

4. Reaksi reduksi oleh elektron pada pita konduksi

 $e_{tr}^- + \text{Oks} \longrightarrow (>\text{Ti}^{\text{IV}}\text{OH}) + \text{Oks}^{\bullet}$

- 5. Reaksi fotokatalisis atau reaksi termal lebih lanjut menghasilkan produk akhir mineral.
- 6. Elektron pada pita konduksi terjebak pada permukaan metastabil menghasilkan Ti(III)

```
e_{CB}^{-} + (>Ti^{IV}OH) \rightarrow (>Ti^{III}OH)
e_{CB}^{-} + >Ti^{IV} \rightarrow >Ti^{III}
```

7. Reaksi penjebakan pembawa muatan (charge carrier trapping)

Hole pada pita valensi terjebak dalam gugus titanol

$$h_{VB}^+ + (> Ti^{IV}OH) \rightarrow (>Ti^{IV}OH^{\bullet})^+$$

Keterangan :

>TiOH	: permukaan TiO_2 dalam keadaan terhidrat
e _{CB}	: elektron pada pita konduksi
h^+_{VB}	: lubang positif (hole) pada pita valensi
e _{tr}	: elektron pada pita konduksi yang terjebak
(>Ti ^{IV} OH•)+	: lubang positif (<i>hole</i>) pada pita valensi yang terjebak di
	permukaan
(>Ti ^{III} OH)	: elektron pita konduksi yang terjebak di permukaan
red	: donor elektron
oks	: akseptor elektron

Lubang positif (*hole*) pada pita valensi mempunyai sifat pengoksidasi yang sangat kuat (+1,0 sampai +3,5 V relatif terhadap elektroda hidrogen Nernst), sedangkan elektron pada pita konduksi mempunyai sifat pereduksi yang juga

13

sangat kuat (+0,5 sampai -1,5 V relatif terhadap elektroda hidrogen Nernst). Reaksi degradasi fotokatalitik senyawa organik dapat terjadi langsung oleh *hole* maupun secara tidak langsung oleh radikal hidroksil (•OH) yang terbentuk akibat interaksi hole dengan air, atau ion hidroksil.

$$TiO_{2} + h\upsilon \rightarrow TiO_{2} (h_{VB}^{+} + e_{CB}^{-})$$
$$h_{VB}^{+} + H_{2}O_{(ads)} \rightarrow {}^{\bullet}OH + H^{+}$$
$$h_{VB}^{+} + HO_{(surf)}^{-} \rightarrow {}^{\bullet}OH$$

Radikal hidroksil dapat juga terbentuk melalui reaksi reduksi oksigen oleh elektron pada pita konduksi.

$$e_{CB}^{\bullet} + 0_2 \rightarrow 0_2^{\bullet}$$
$$20_2^{\bullet} + 2H_2 0 \rightarrow 2 \cdot 0H + 2H0^- + 0_2$$

Elektron-elektron pada pita konduksi kemungkinan bereaksi dengan molekul oksigen untuk membentuk ion superoksida (O_2^{\bullet}) yang selanjutnya membentuk radikal hidroksil ($^{\circ}OH$). Radikal hidroksil sangat reaktif menyerang molekul – molekul organik dan mendegradasinya menjadi CO₂ dan H₂O (dan ion-ion halida jika molekul organik mengandung atom-atom halogen).

2.2.3 Kinetika Reaksi Fotokatalitik pada Permukaan TiO₂

Model kinetika Langmuir-Hinshelwood umumnya digunakan untuk menggambarkan kinetika pada fotodegradasi senyawa-senyawa organik (Chen, 2004) dan dinotasikan pada persamaan berikut :

$$r = -\frac{dC}{dt} = \frac{kC}{1+KC} \tag{2.1}$$

Keterangan : r = laju reaksi (mol/L.menit)

C = konsentrasi kesetimbangan sampel (mol/L)

- t = waktu (menit)
- k = konstanta Langmuir (L/mol)

Persamaan ini disederhanakan menjadi *pseudo* orde pertama untuk sampel yang konsentrasinya sangat rendah, menjadi :

$$r = \frac{dC}{dt} = kC \tag{2.2}$$

Persamaan (2.2) dapat diintegralkan menjadi :

$$-ln\frac{c_o}{c_t} = kt \tag{2.3}$$

Universitas Indonesia

Preparasi dan..., Hendra Pratama, FMIPA UI, 2010.

Dimana C merupakan konsentrasi sampel (mg/L) pada saat t menit, Co merupakan konsentrasi awal pada saat t = 0, k adalah konstanta *pseudo* orde pertama (menit⁻¹) dan t adalah waktu iradiasi dengan sinar UV (menit).

2.3 Preparasi Nanopartikel TiO₂

2.3.1 Metode Sol-Gel

Beberapa metode sintesis material nanopartikel diajukan untuk menghasilkan cacat permukaan yang homogen yang bertindak sebagai pusat nukleasi diantaranya oksidasi termal, *sputtering* dan oksidasi termal, plasma Ar dan oksidasi termal *ulterior*. Pertumbuhan nanokristal dikendalikan secara kinetik untuk memberikan batasan ruang sehingga pertumbuhan kristal akan berhenti ketika jumlah sumber bahan habis atau ruang pertumbuhan telah terisi penuh. Secara umum teknik pembatasan ruang ini dapat dibagi menjadi beberapa proses, yaitu (Cao, 2004, p.96) :

- 1. Tetesan cairan dalam fase gas seperti sintesis aerosol dan pirolisis semprot (*spray pyrolisis*)
- 2. Tetesan cairan dalam cairan seperti micelle dan sintesis mikroemulsi
- 3. Sintesis berbasis cetakan (template)
- 4. Self-terminating synthesis

Untuk pertumbuhan nanokristal dalam bentuk film, metode yang dilakukan digolongkan ke dalam dua golongan (Cao, 2004), yaitu deposisi fase uap seperti penguapan, *molecular beam epitaxy, sputtering*, deposisi uap kimia, *physical vapour deposition*, *spray pyrolisis deposition* dan *atomic layer deposition*. Golongan kedua yaitu pertumbuhan berbasis cairan seperti sol-gel, *solvothermal*, deposisi elektrokimia, deposisi larutan kimia, *hydrothermal*, *Langmuir-Blodgett films* dan *self-assembled monolayers*. Metode sol-gel banyak digunakan karena dapat dilakukan pada temperatur proses yang cukup rendah dengan komposisi homogenitas tingkat molekul yang tinggi, peralatan sederhana, biayanya murah, mudah untuk merubah sifat fisik dari TiO₂.

Metode sol-gel secara kimiawi umumnya melibatkan proses hidrolisis larutan bahan prekursor untuk membentuk suspensi partikel koloid kali pertama (sol) dan kemudian membentuk gel yang mengandung kumpulan partikel sol. Gel yang terbentuk diperlakukan secara termal untuk mendapatkan produk yang diinginkan (Fendler, 1998). Metode sol-gel yang paling umum untuk sintesis TiO₂ nanopartikel didasarkan pada hidrolisis dan kondensasi titanium alkoksida dan garam anorganik sebagai bahan prekursornya.Sifat sensitivitas yang tinggi terhadap kelembaban dari titanium alkoksida sebagai bahan prekursor menyebabkan diperlukannya suatu *modifier* yang dapat berupa surfaktan atau *dispersant*. Dilihat dari jenis surfaktan atau modifier yang digunakan maka metode sol-gel dapat metode sol-gel dapat dilakukan pada fase cair (*aqueous phase*) dan fase non cair (*non-aqueous phase*) atau menggunakan medium organik.

2.3.2 Pengaruh Surfaktan (Modifier)

Modifier pada sintesis TiO₂ nanopartikel dengan bahan prekursor titanium alkoksida berfungsi sebagai agen penstabil sol yang terbentuk. Kestabilan sol awal yang terbentuk merupakan kunci penting berjalannya proses agar dihasilkan produk yang berguna khususnya pada aplikasi industri. Modifier yang banyak digunakan yaitu ligan pengkelat (β -diketon, glikol, dan alkanolamin), asam karboksilat atau ligan pengompleks lainnya (Attar et. al., 2008; Takahashi et. al., 2000). Kuat ikatan (kelat) antara surfaktan dengan nanokristal TiO₂ berpengaruh pada morfologi, struktur dan aktivitas permukaan TiO₂ nanokristal. Semakin kuat ikatan (kelat) ligan maka sol yang terbentuk semakin stabil dan tidak terbentuk endapan. Tetapi jika kuat ikatan terlalu kuat hingga masih tersisa setelah proses hidrolisis, hal ini akan menurunkan sifat-sifat fotokatalitik atau fotovoltaik nanokristal TiO₂. Beberapa syarat yang harus dipenuhi suatu modifier agar berguna dengan baik, yaitu (Takahashi et. al., 2000) :

- 1. Dapat berinteraksi dengan alkoksida membentuk sol yang stabil
- 2. Mampu mengontrol fungsionalitas alkoksida
- 3. Memiliki titik didih yang rendah dan dapat terdekomposisi atau teroksidasi pada temperatur yang moderat
- 4. Non toksik dan murah

Pemilihan surfaktan juga harus mempertimbangkan pada fase apa sintesis dilakukan sehingga misalnya jika sintesis dilakukan pada fase cair maka surfaktan yang digunakan mampu mengkelat atau membentuk senyawa kompleks dengan prekursor sehingga mudah larut dalam air atau bersifat hidrofilik.

2.3.3 Pengaruh pH

Guzman et. al (2006) melaporkan bahwa ukuran aggregat semakin naik ketika pH mendekati nilai pH pada titik muatan nol (pH_{zpc}) atau titik isoelektrik ζ potensial. pH_{zpc} suspensi TiO₂ nanopartikel berubah seiring dengan perubahan ukuran nanokristalin. Semakin besar ukuran nanopartikel maka pH_{zpc} nanopartikel juga menjadi naik, namun skala nilainya tidak begitu jauh dengan nilai rata-rata pH_{zpc} bulk TiO₂ (pH_{zpc} = 5.9). Nilai ζ -potensial TiO₂ nanopartikel yang rendah di bawah kondisi fisiologis tidak memberikan stabilisasi elektrostatik yang cukup untuk menjaga pengendapan atau penggumpalan.

Menurut teori kestabilan koloid, teori DLVO (Derjaguin dan Landau, 1941; Verwey dan Overbeck, 1948) menyatakan bahwa total energi potensial antar partikel (ϕ_T) merupakan jumlah gaya tarik Van der waals (ϕ_V) dan gaya tolak *electrical double layer* (ϕ_{EDL}) (Guzman et.al., 2006).

$$\phi_T = \phi_{EDL} + \phi_V \tag{2.4}$$

Demikian juga teori Sogami-Ise yang lebih akurat tentang kestabilan koloid dalam hal ini untuk densitas muatan permukaan TiO_2 nanopartikel yang rendah, menyatakan bahwa setiap kenaikan kuat ion dalam larutan elektrolit dimana partikel tersuspensi, akan menekan layer difusi yang terasosiasi dengan partikel, menurunkan nilai ζ -potensial dan menghilangkan gaya tolak antar partikel sehingga menimbulkan aggregasi (French, et. al., 2009).

Pada kondisi pH yang sama, laju terbentuknya agglomerat juga dipengaruhi oleh kuat ion larutan seperti yang dilaporkan oleh French et. al. (2009). Semakin besar kuat ion larutan maka laju pembentukan agglomerat semakin cepat, dan akan menjadi lebih cepat lagi pada kation divalen.

2.4 Dispersi Nanopartikel TiO₂

Dispersi nanopartikel padatan ke dalam suatu fluida atau cairan untuk membuat suspensi yang stabil memberikan suatu batu loncatan baru pada perkembangan nanoteknologi yaitu nanofluida. Nanofluida didefinisikan sebagai material komposit yang mengandung nanopartikel atau nanofiber dengan ukuran partikel 1 – 100 nm tersuspensi stabil dalam cairan. Potensi dari aplikasi nanofluida didasarkan pada sifat konduktivitas termal yang tinggi yaitu sebagai media transfer panas (sebagai cairan pendingin) dan efisiensi energi (Keblinski, et. al., 2005; Manna, 2009).

Dilihat dari proses dispersi nanopartikel untuk membuat suspensi yang stabil, dapat digolongkan menjadi dua proses yaitu proses tahap tunggal dan proses dwi-tahap. Pada proses tahap tunggal, suspensi nanopartikel disintesis melalui metode penguapan hasil kondensasi secara langsung. Sedangkan pada proses dwi-tahap, tahap pertama adalah membuat nanopartikel padatan, kemudian baru didispersikan ke dalam suatu fluida pada tahap selanjutnya. Kelebihan proses tahap tunggal adalah agglomerasi nanopartikel dapat diminimalisasi tetapi kekurangannya hanya fluida yang bertekanan uap yang rendah yang cocok pada proses ini.

Beberapa teknik untuk menaikan performa dispersi diantaranya (Manna, 2009) :

- 1. Menggunakan peralatan ultrasonik
- 2. Kontrol pH
- 3. Penambahan agen permukaan aktif (surfaktan atau dispersant)

Teori Hamaker tentang interaksi dispersi menyatakan bahwa gaya interaksi dispersi antara dua bulatan (*sphere*) volume-terhingga merupakan suatu fungsi pemisahan antara bulatan tersebut (Cao, 2004, p.316). Interaksi antara dua bulatan (*sphere*) juga secara tradisional dapat dihitung menggunakan pendekatan Derjaguin tetapi tidak valid untuk nanopartikel. Suatu metode alternatif untuk menghitung energi interaksi nanopartikel yaitu menggunakan persamaan yang diturunkan untuk molekul-molekul bermuatan kecil atau ion-ion, yang dinotasikan (Guzman et. al., 2006) :

$$\phi_{EDL} = -\frac{q_1 q_2 e^{-\kappa} D}{4\pi \epsilon_r \epsilon_0 R(1+2\kappa a)}$$
(2.5)

$$\phi_V = -\frac{c_{VDW}}{R^6} \tag{2.6}$$

Dimana : ϕ_{EDL} = interaksi elektrostatik layer ganda (*electrical double layer*) q_1 dan q_2 = muatan partikel

 Φ_V = energi Van der Waals

Preparasi dan..., Hendra Pratama, FMIPA UI, 2010.

- ϵ_r = konstanta dielektrik relatif media
- ϵ_0 = permitivitas vakum
- κ = panjang penapisan Debye terbalik
- R = jarak pusat ke pusat antar partikel
- C_{VDW} = konstanta Van der Waals

2.5 Sudut Kontak dan Superhidrofilik

Sudut kontak (θ) adalah sudut yang terbentuk antara permukaan padatan dan garis tangensial jari-jari embun dari titik kontak dengan padatan seperti ditunjukan pada Gambar 2.4. Sudut kontak terbentuk dari gaya keseimbangan pada garis kontak antara cairan dan padatan. Jika tegangan permukaan padat/gas (γ_{sg}), padat/cair (γ_{sl}), dan cair/gas (γ_{lg}) berada pada kesetimbangan maka dapat dinotasikan sesuai persamaan Young :

[Sumber : http://en.wikipedia.org/wiki/Contact_angle]

Gambar 2.4. Sudut Kontak Tetes Embun pada Permukaan Padatan

Jika cairan tertarik sangat kuat pada permukaan padatan maka tetesan embun akan tersebar merata dengan sudut kontak mendekati 0°, dan permukaan padatan ini disebut superhidrofilik. Permukaan padatan hidrofilik yang lemah memiliki sudut kontak hingga 90°, jika permukaan bersifat hidrofobik maka sudut kontaknya lebih besar dari 90° dan disebut superhidrofobik jika sudut kontaknya lebih besar dari 150°.

Pada kaca atau benda-benda anorganik, air memiliki sudut kontak berkisar antara 20° hingga 30°, sedangkan pada plastik berkisar 70° hingga 90°. Sudut kontak air pada lapisan tipis TiO_2 di permukaan benda adalah sekitar puluhan derajat. Bila disinari dengan UV, sudut kontak akan turun dan menyebar merata pada permukaan hingga sudut kontak air mendekati 0°, pada keadaan ini permukaan menjadi superhidrofilik. Permukaan superhidrofilik ini memiliki keuntungan sebagai material swa-bersih sebagai contoh untuk menghilangkan kabut pada kaca atau cermin (anti-kabut). Efek superhidrofilik ini akan berkurang bila cahaya UV dihentikan atau berada dalam keadaan gelap.

Turunnya sudut kontak air di permukaan TiO₂ disebabkan oleh terbentuknya pasangan elektron-lubang positif (*hole*), dimana *hole* bereaksi dengan oksigen sehingga terbentuk kekosongan oksigen (*oxygen vacancies*) dan elektron bereaksi dengan ion logam (Ti⁴⁺) sehingga terbentuk ion (Ti³⁺). Elektron dan lubang positif ini dapat berekombinasi atau pindah ke permukaan untuk bereaksi dengan bahan yang terserap di permukaan. Selama penyinaran dengan UV maka konsentrasi ion Ti³⁺ meningkat, dan akan bereaksi dengan molekul oksigen yang terserap di permukaan (permukaan perangkap elektron).

 $TiO_2 + hv \rightarrow h^+ + e^ Ti^{4+} + e^- \rightarrow Ti^{3+} \text{ (permukaan perangkap elektron)}$ $Ti^{3+} + O_2 \rightarrow Ti^{4+} + O_2^-$

Hole positif akan mengoksidasi oksigen yang berasal dari *bridging site oxygen* pada kristal TiO₂. Hasil oksidasi menyebabkan munculnya kekosongan oksigen (*oxygen vacancies*).

 $20^{2-} + 4h^+ \rightarrow 0_2 + \square (oxygen vacancies)$

Dengan adanya kekosongan oksigen ini permukaan menjadi hidrofilik karena air dapat dengan mudah mengisi tempat kosong dan menghasilkan gugus OH terabsorpsi (*chemisorbed water*) yang membentuk monolayer pada permukaan TiO₂. Sedangkan H⁺ dari air mengikuti reaksi di bawah ini.

 $\begin{array}{l} H^+ + \ e^- \ \rightarrow \ ^{\bullet}H \\ \\ 2 \ ^{\bullet}H + \ O_2 \ \rightarrow 2 O H^{\bullet} \\ \\ \text{atau} \ 2^{\bullet}H + 2 O H^- \ \rightarrow 2 H_2 O \end{array}$

Namun begitu sebagaimana dilaporkan Hashimoto (2007), sebagian kecil hole yang terjebak dapat bereaksi dengan TiO₂ itu sendiri, sehingga dapat memutus ikatan antara Ti dari gugusan titanium dengan ion oksigen molekul air. Akibatnya molekul air akan melepas proton untuk menyeimbangkan muatan dan membentuk gugus OH yang baru sehingga meningkatkan jumlah gugus OH pada permukaan dan disebut sebagai *metastable state*. Mekanisme hidrofilisitas ini ditunjukan pada Gambar 2.6.

Gambar 2.5. Mekanisme Hidrofilisitas pada Fotokatalis TiO2

Permukaan superhidrofilik mempunyai afinitas yang lebih tinggi terhadap air daripada terhadap minyak, sehingga kotoran-kotoran yang berminyak akan lebih mudah dibersihkan dengan air.

BAB III

METODE PENELITIAN

3.1 Tahapan Penelitian

- Sintesis TiO₂ dengan metode sol-gel dengan bantuan refluks dengan beberapa tahapan optimasi :
 - a. Penentuan kondisi pH optimal
 - b. Pengaruh waktu refluks
 - c. Pengaruh prekursor dan surfaktan
- 2. Karakterisasi dan uji aktivitas fotokatalitik & fotoelektrokatalitik

Gambar 3.1 Diagram Kerja Penelitian
3.2 Bahan dan Alat Penelitian

3.2.1 Bahan

Bahan yang digunakan dalam penelitian ini adalah *titanium tetra-isopropoxide* (TTIP) (\geq 97%) Aldrich, etilen glikol (EG) >99% Merck, asam nitrat 65% Merck, NH₄OH, TiCl₄, *Poly-Ethylene Glycol* (PEG) 600, aquabides, etanol p.a., dietil eter p.a., gliserol teknis, aseton, *methylene blue*, dan larutan NaNO₃.

3.2.2 Peralatan

Peralatan yang digunakan selama penelitian yaitu :

- 1. Difraktometer sinar-X (XRD) PHILIPS PW1710 dengan radiasi Cu K α ($\lambda = 1,5406$ Å).
- 2. Spektrofotometer UV-Vis Shimadzu 2450 yang dilengkapi dengan *Diffuse Reflectance Cell* dan menggunakan software UV Probe.
- 3. Spektrofotometer Infra Merah Shimadzu IRPrestige-21 yang dilengkapi dengan *Diffuse Reflectance Cell* dan menggunakan software IRsolution 1.30.
- SEM EDX JEOL- JSM 6510LV *low vacuum* untuk karakterisasi TiO₂ powder dan Analytical SEM JEOL-JSM 6360LA untuk film TiO₂.
- 5. Alat Termogravimetrik Analisis (TGA) dan *Differential Scanning Calorimetry* (DSC) dilakukan dengan SETARAM TAG24 di bawah aliran gas Argon dalam *crucible* alumina.
- 6. Delsa[™] Nano C *Particle Analyzer* (Beckman Coulter) untuk mengukur potensial zeta.
- 7. Contact-Angle meter (Face CA-D) untuk mengukur sudut kontak air.
- 8. *Centrifuge* O-Hermle Z 230 A.
- Instrumentasi lainnya seperti : pH meter, Oven, *Furnace*, Neraca analitik (Mettler Toledo AB 204-S), *Digital Hotplate Stirrer* (LabTech LMS-2003D), *ultrasonic horn*, serta peralatan gelas laboratorium lainnya seperti : peralatan refluks, pipet volumetri, *beaker glass*, reaktor UV, batang pengaduk, mikropipet dan labu erlenmeyer.

3.3 Prosedur Kerja

3.3.1 Preparasi Suspensi TiO₂ Berbasis Medium Air

3.3.1.1 Sintesis TiO₂ dengan metode sol-gel

Sebanyak 5 mL TTIP (\geq 97%) dimasukan secara perlahan ke dalam 83,3 mL etilen glikol sambil diaduk dengan stirer secara terus menerus pada kondisi temperatur ruangan. Setelah 30 menit larutan akan menjadi bening dan pada saat ini kemudian dimasukan aquabides sebanyak 50 mL ke dalam larutan secara perlahan-lahan. Untuk kontrol pH dilakukan dengan penambahan HNO₃ sehingga tercapai pH larutan 1,5; 2,7 dan 5,0. Larutan tadi kemudian direfluks pada temperatur 170 °C selama 2 jam sambil tetap diaduk dengan stirer pada kecepatan 1000 rpm. Setelah didinginkan pada temperatur kamar, campuran etanol absolut dan dietil eter (1:2, v/v) dimasukan ke dalam larutan stok untuk mengendapkan nanokristal. Larutan kemudian disentrifuse selama 30 menit pada 5.000 rpm untuk mendapatkan endapan. Endapan kemudian dicuci dengan campuran yang sama untuk pengendapan beberapa kali untuk menghilangkan residu surfaktan dan dikeringkan. Untuk mengetahui pengaruh waktu refluks maka dilakukan variasi waktu refluks dengan prosedur seperti di atas pada pH 1,5 dengan variasi waktu refluks yaitu 8, 16 dan 24 jam. Untuk mengetahui pengaruh prekursor dan surfaktan yang digunakan maka dilakukan prosedur dengan cara mengganti prekursor awal TTIP dengan TiCl₄ dan surfaktan etilen glikol diganti dengan PEG 600 pada pH 1,5.

Parameter penamaan sampel yang digunakan pada penelititan ini disajikan pada Tabel 3.1.

Nama Sampel	Keterangan	
TiO ₂ -EG	TiO ₂ hasil sintesis dengan menggunakan surfaktan	
	etilen glikol dan prekursor TTIP	
TiO ₂ -PEG	TiO ₂ hasil sintesis dengan menggunakan surfaktan	
	poli-etilen glikol 600 dan prekursor TTIP	
TiO ₂ -EG (Cl)	TiO ₂ hasil sintesis dengan menggunakan surfaktan	
	etilen glikol dan prekursor TiCl ₄	
TiO ₂ R2	TiO ₂ hasil sintesis dengan menggunakan surfaktan	
	etilen glikol dan prekursor TTIP dengan waktu	
	refluks selama 2 jam	

 Tabel 3.1
 Parameter Nama Sampel

24

Preparasi dan..., Hendra Pratama, FMIPA UI, 2010.

TiO ₂ R8	TiO ₂ hasil sintesis dengan menggunakan surfaktan etilen glikol dan prekursor TTIP dengan waktu
T 'O D 16	
110_2 K16	$11O_2$ hasil sintesis dengan menggunakan surfaktan
	etilen glikol dan prekursor TTIP dengan waktu
	refluks selama 16 jam
TiO ₂ R24	TiO ₂ hasil sintesis dengan menggunakan surfaktan
	etilen glikol dan prekursor TTIP dengan waktu
	refluks selama 24 jam
TiO ₂ P25	TiO ₂ Degussa sebagai referensi

- 3.3.1.2 Pembuatan Dispersi TiO₂ dalam Air
 - Membuat dispersi TiO₂ dalam air dengan cara menimbang 2 mg TiO₂ R16 dan dilarutkan ke dalam 10 mL akuades dengan variasi pH berturutturut yaitu pH 1,5; pH 2,5; pH 4,0; pH 8,0 dan pH 9,5. Suspensi TiO₂ dalam air kemudian didispersikan dengan cara disentrifuse selama 20 menit dan disonikasi dengan alat *ultrasonic horn* selama 5 menit. Kestabilan dispersi kemudian diukur dengan alat Delsa[™] Nano C -*Particle Analyzer* (Beckman Coulter).
 - 2. Membuat dispersi $TiO_2 R16$ dalam air dengan menimbang berturut-turut 1 mg, 3 mg, 5 mg, 7 mg dan 10 mg TiO_2 dan dilarutkan ke dalam masing-masing 10 mL akuades. Suspensi TiO_2 kemudian didispersikan dalam air dengan cara disonikasi dengan alat *ultrasonic horn* selama 30 menit. Kestabilan dispersi kemudian diukur dengan cara melihat kekeruhannya dengan spektrofotometer UV-Vis pada panjang gelombang 860 nm pada t = 0 jam dan t = 24 jam.
 - 3. Membuat dispersi TiO₂ R16 dalam air dengan menimbang berturut-turut 1 mg, 3 mg, 5 mg, 7 mg dan 10 mg TiO₂ dan dilarutkan ke dalam masing-masing 10 mL akuades. Suspensi TiO₂ kemudian didispersikan dalam air dengan cara disentrifuse selama 20 menit dan disonikasi dengan alat *ultrasonic horn* selama 5 menit. Kestabilan dispersi kemudian diukur dengan cara melihat kekeruhannya dengan spektrofotometer UV-Vis pada panjang gelombang 860 nm setiap selang waktu 10 menit selama 1 jam.
 - Membuat dispersi TiO₂ hasil variasi refluks dan TiO₂-EG (Cl) dalam air 1000 ppm masing-masing dalam 10 mL akuades. Suspensi TiO₂

kemudian didispersikan dalam air dengan cara disonikasi dengan alat *ultrasonic horn* selama 30 menit. Kestabilan dispersi kemudian diukur dengan cara melihat kekeruhannya dengan spektrofotometer UV-Vis pada panjang gelombang 860 nm pada t = 0 jam dan t = 24 jam.

3.3.2 Karakterisasi TiO₂

3.3.2.1 Analisis TiO₂ Dengan Difraksi Sinar-X

TiO₂ dianalisis dengan alat Difraksi Sinar-X radiasi Cu K α pada temperatur kamar untuk mengetahui struktur kristalnya, dimana dilakukan pembandingan nilai 2 θ atau d hasil pengukuran difraksi sinar x dengan kartu interpretasi standar TiO₂ JCPDS (*Joint Committee on Powder Diffraction Standards*). Ukuran kristal ditentukan dari pelebaran puncak anatase bidang {101} atau puncak 2 θ = 25° dari difraktogram sinar-X menggunakan rumus Scherer menggunakan software XPowder ver.2004.04.72 PRO dengan k = 0,9.

3.3.2.2 Analisis TiO₂ Dengan SEM - EDX

TiO₂ powder dan lapisan film diukur dengan alat SEM - EDX (Energi Dispersi Sinar-X) untuk mengetahui morfologi dan komposisi serta ketebalan lapisan film yang terbentuk. Distribusi ukuran partikel dari hasil data SEM dilakukan dengan menggunakan metode Abdullah dan Khairurrijal (2010).

3.3.2.3 Analisis TiO₂ Dengan DRS FT-IR dan UV-Vis

 TiO_2 dianalisis dengan DRS FT-IR pada temperatur kamar dengan skala 400 – 4000 cm⁻¹ untuk mengetahui pengaruh surfaktan dalam sintesis TiO₂ dan identifikasi puncak serapan terkait keadaan kimia antar molekul dalam partikel TiO₂.

3.3.2.4 Analisis dengan TGA dan DSC

TiO₂ dianalisis dengan TGA dan DSC untuk mengetahui reaksi yang terjadi selama pemanasan dan besarnya pengurangan massa TiO₂ akibat pemanasan. Sampel TiO₂ yang diukur adalah TiO₂ R16_. TGA akan mencatat secara otomatis perubahan berat sebagai fungsi temperatur atau waktu. Sampel

Preparasi dan..., Hendra Pratama, FMIPA UI, 2010.

dipanaskan dengan kecepatan konstan antara 1 - 20 °C/menit dalam suasana gas Argon. Alat ini mengukur secara simultan perubahan panas (DSC) dan perubahan berat (TG) yang terjadi pada sampel.

3.3.3 Evaluasi Aktivitas Fotokatalitik

3.3.3.1 Preparasi Film TiO₂ pada Pelat Kaca

Sampel TiO₂ yang digunakan untuk preparasi film adalah TiO₂ R16, TiO₂-PEG dan TiO₂-EG (Cl). Preparasi film TiO₂ pada pelat kaca berukuran 7 cm x 2,5 cm dilakukan dengan teknik pencelupan (*dip coating*) dengan kecepatan tarik 1 cm per detik. Pelat kaca yang akan dilapisi terlebih dahulu dibersihkan dengan dibilas dengan akuades, ditiriskan dan dikeringkan. Kaca juga dibersihkan dari lemak dengan merendam dalam aseton, dibilas dengan akuades, ditiriskan dan dikeringkan. Suspensi TiO₂ yang digunakan untuk melapisi pelat kaca yaitu suspensi hasil refluks dibandingkan dengan hasil redispersi TiO₂ powder dalam air. Pelat kaca yang telah dilapisi kemudian di panaskan dalam oven pada suhu 110 °C selama 30 menit. Pelat yang dilapisi kemudian dikalsinasi selama 2 jam pada suhu 400 °C dengan laju kenaikan seperti pada Gambar 3.2 di bawah ini. Proses pelapisan diulang hingga 5 kali.

Gambar 3.2 Diagram Kenaikan Suhu Kalsinasi

3.3.3.2 Pengukuran Sudut Kontak Air

Pengukuran sudut kontak air dilakukan untuk mengetahui adanya efek hidrofilik atau hidrofobik film TiO₂ yang telah dilapisi pada pelat kaca. Satu tetes air diteteskan pada permukaan film kemudian dilihat sudut kontaknya menggunakan alat *Contact-Angle meter*. Pengukuran sudut kontak air film TiO₂ dilakukan sebelum dan sesudah film TiO₂ disinari lampu UV 10/11W selama selang waktu 1 - 5 jam untuk mengetahui perubahan nilai sudut kontaknya. Suspensi yang digunakan pada pembuatan film TiO₂ adalah suspensi TiO₂ hasil refluks langsung dan suspensi redispersi TiO₂ powder dalam air.

3.3.3.3 Uji Visual Film TiO₂

Uji visual film dilakukan untuk mengetahui transparansi dan sifat antikabut dari film TiO_2 setelah diberi sinar lampu UV selama 2 jam dengan memasukan film TiO_2 pada pelat kaca ke dalam *freezer* selama 5 menit.

3.3.3.4 Degradasi Methylene Blue dengan TiO₂ Hasil Sintesis

Untuk mengetahui konsentrasi *methylene blue* yang terdegradasi dilakukan pembuatan kurva standar berdasarkan nilai absorbansinya dengan spektrofotometer UV Vis. *Methylene blue* ditempatkan dalam *beaker glass* dan diletakkan dalam reaktor fotokatalitik. Pengukuran degadrasi dilakukan dengan mempipet larutan *methylene blue* 10 mL 2 ppm untuk diukur absorbansinya setiap selang waktu 10 menit selama 1 jam pada tiga kondisi yang berbeda, yaitu : Fotolisis : *Methylene blue* tanpa TiO₂, lampu UV *black light* menyala.

Katalisis : *Methylene blue* dengan TiO₂, lampu UV *black light* tidak

menyala.

Fotokatalisis : *Methylene blue* dengan TiO₂, lampu UV *black light* menyala.

3.3.3.5 Evaluasi Aktivitas Fotoelektrokatalitik TiO₂

Pengukuran respon arus dilakukan untuk mengetahui sifat fotoelektrokatalisis film TiO₂ yang telah dilapisi pada pelat kaca berlapis SnOF dengan alat potensiostat. Larutan yang digunakan untuk uji yaitu NaNO₃ 0,1 ppm 5 mL dan *methylene blue* 5 mL 2 ppm. Lampu UV yang digunakan 5 buah @ 4 Watt.

BAB IV HASIL DAN PEMBAHASAN

4.1 Preparasi TiO₂ dengan Metode Sol-Gel

Preparasi TiO₂ pada penelitian ini dilakukan dengan metode sol-gel dan refluks pada suhu 170 °C, dengan menggunakan etilen glikol sebagai *modifier* sekaligus surfaktan dan air yang sangat berperan dalam proses hidrolisis pada pembentukan kristal TiO₂ anatase. Penelitian ini merupakan pengembangan metode yang telah dilakukan Ping Wang et.al. dengan memodifikasi perlakuan preparasi yaitu dengan mengontrol pH dan variasi waktu refluks. Proses sintesis yang terjadi terbagi dalam tiga tahap, yaitu : (1) TTIP bereaksi dengan etilen glikol nembentuk titanium glikolat, (2) pergantian sebagian koordinasi etilen glikol oleh gugus hidroksil air, dan (3) reaksi dehidrasi selama pemanasan yang memacu proses kristalisasi (Ping Wang et.al., 2008). Mekanisme reaksi yang terjadi pada sintesis TiO₂ yang diusulkan Ping Wang et.al. (2007) ditunjukan pada Gambar 4.1.

[Sumber: Ping Wang et. al. (2007)]

Gambar 4.1. Mekanisme Reaksi Sintesis TiO₂ Anatase

Pengaruh penambahan asam nitrat dalam sintesis TiO₂ memberikan hasil suspensi refluks yang lebih transparan sehingga diasumsikan TiO₂ yang terbentuk tidak mengalami agregasi. Untuk itu suspensi hasil refluks diredispersikan dalam air.

Suspensi TiO₂ 10 % (v/v) dari hasil refluks dalam air menunjukan bahwa semakin asam kondisi larutan saat refluks maka kestabilan suspensinya semakin baik sebagaimana ditunjukan pada Gambar 4.2. Tampak pada gambar suspensi dari hasil sintesis menggunakan metode Ping Wang (pH 5,0), hampir seluruhnya mengendap. Hal ini terjadi karena aggregat mudah terbentuk pada kondisi dekat dengan titik isoelektrik ζ -potensial (pH pada muatan nol / pH_{zpc}) TiO₂ nanopartikel yaitu bernilai 5-7 dalam air (Kotsokechagia et. al. (2008), dan Guzman et. al. (2006)). Asam nitrat juga berperan sebagai agen peptisasi. Adsorpsi ion H⁺ pada permukaan agregat Ti(OH)₄ memberikan muatan positif pada partikel-partikel koloid. Muatan yang sama dari masing-masing partikel menyebabkan terjadinya gaya tolak elektrostatik antar partikel dan membantu menjaganya dari aggregasi. Proses adsorpsi ion-ion H⁺ pada permukaan agregat Ti(OH)₄ dapat dinotasikan dalam persamaan reaksi berikut (Turković, 1997) : nTi(OH)₄ + yH⁺A⁻ \rightarrow [Ti(OH)₄]_n $\times y$ H⁺ + yA⁻ (4.1)

Gambar 4.2. Suspensi Redispersi TiO₂ 10% dalam Air Setelah 4 Bulan

4.2 Karakterisasi TiO₂

4.2.1 Difraksi Sinar X

Dari hasil karakterisasi dengan XRD terlihat pada pola difraksi sinar X-nya nanopartikel TiO_2 yang dihasilkan dengan penambahan asam nitrat pada pH 1,5 memiliki intensitas yang paling tinggi dibandingkan dengan nanopartikel TiO_2 pada pH 2,7 dan tanpa penambahan asam nitrat dengan kondisi pH 5,0 (Metode Ping Wang et. al.) sebagaimana ditunjukan pada Gambar 4.3.

Gambar 4.3. Pola Difraksi Sinar-X TiO₂ yang Dipreparasi dengan Variasi pH

Puncak tertinggi berada pada daerah $2\theta = 25^{\circ}$ yang merupakan puncak khas dari kristal TiO₂ anatase bidang {101}. Dari difraktogram XRD, puncak pada daerah $2\theta = 27^{\circ}$ yang merupakan khas puncak kristal rutile terlihat hanya pada TiO₂ hasil sintesis pada pH 2,7. sehingga dapat dikatakan TiO₂ hasil sintesis pada kondisi pH 1,5 dan 5,0 murni anatase.

Ukuran nanokristal TiO₂ dihitung dengan menggunakan software XPowder berdasarkan persamaan Debye-Scherrer pada puncak tertinggi $2\theta = 25^{\circ}$, bidang {101} anatase, yang dirumuskan :

$$S = \frac{k\lambda}{B\cos\theta}$$

(4.2)

Dimana, s = ukuran kristal

 λ = panjang gelombang radiasi-X (CuK α = 0,15406 nm)

k = konstanta yang dianggap 0,9

 θ = sudut difraksi

B = garis lebar setengah puncak tertinggi

Dari hasil perhitungan pada pH 1,5 ukuran nanopartikel $TiO_2 = 3$ nm sedangkan pada pH 5,0 ukuran nanopartikel $TiO_2 = 2$ nm dan pada pH 2,7 ukuran nanopartikel $TiO_2 = 4$ nm. Ukuran nanopartikel TiO_2 yang dihasilkan bersesuaian dengan hasil yang diperoleh Ping Wang yaitu berkisar 2 – 4 nm. Ukuran nanopartikel TiO_2 yang sangat kecil diperlukan untuk menghasilkan suspensi yang stabil. Tingginya intensitas pola XRD dan kemurnian TiO_2 anatase yang dihasilkan, dengan demikian dapat disimpulkan dari hasil percobaan awal ini bahwa pada pH 1,5 TiO_2 yang dihasilkan memiliki kristalinitas terbaik, sehingga untuk selanjutnya eksperimen dilakukan pada pH 1,5.

31

Untuk mengetahui pengaruh lamanya waktu reaksi dilakukan variasi waktu refluks selama 2, 8, 16 dan 24 jam pada pH 1,5. Dari hasil pola difraksi sinar-X, intensitas tertinggi diperoleh pada waktu refluks selama 16 jam sebagaimana ditunjukan pada Gambar 4.4.

Gambar 4.4. Pola Difraksi Sinar-X TiO₂ yang Dipreparasi dengan Variasi Waktu Refluks. Inset : Ukuran Kristal Anatase

Ukuran nanopartikel TiO₂ yang dihasilkan dengan variasi waktu refluks berdasarkan perhitungan Scherrer menunjukan bahwa ukuran nanopartikel semakin kecil seiring dengan semakin lamanya waktu refluks. Selain itu juga intensitas pola difraksi sinar-X juga cenderung semakin tinggi seiring dengan lamanya waktu refluks, hal ini disebabkan karena reaksi sintesis berjalan lebih sempurna. Namun demikian, terjadi penurunan intensitas pola difraksi sinar-X pada waktu refluks 24 jam yang disebabkan oleh meningkatnya fasa amorf akibat dari bertambahnya air yang dihasilkan pada proses hidrolisis. Jumlah air yang terlalu besar dapat menghambat pembentukan fasa kristal anatase (Ping Wang et.al., 2008) dan partikel yang dihasilkan mudah mengendap dalam bentuk agregat yang besar (Mahshid et.al., 2006). Dengan demikian waktu yang optimal untuk mendapatkan TiO₂ anatase dengan kristalinitas yang tinggi adalah 16 jam. Hasil interpretasi difraktogram sinar-X TiO₂ hasil refluks 16 jam dengan kartu standar JCPDS memiliki kesesuaian dengan kartu standar anatase No. 04-0477 seperti ditunjukan pada Gambar 4.5.

Gambar 4.5. Interpretasi Pola Difraksi Sinar–X dengan Kartu Standar JCPDS No. 04-0477

Untuk mengetahui pengaruh prekursor dan surfaktan terhadap kristalinitas TiO₂, dilakukan preparasi tiga sampel TiO₂, yaitu TiO₂-EG, TiO₂-EG (Cl) dan TiO₂-PEG (lihat hal. 24 untuk deskripsi sampel). Hasil pengujian XRD untuk mengetahui pengaruh prekursor dan surfaktan terhadap kristalinitas TiO₂ hasil sintesis ditampilkan dalam Gambar 4.6. Intensitas yang tinggi dari pola difraksi sinar-X TiO₂ dengan surfaktan PEG disebabkan kalsinasi TiO₂ pada suhu 400 °C, sedangkan untuk sampel yang lain tidak dilakukan kalsinasi. Kalsinasi dihindarkan karena dapat mempengaruhi ukuran dan struktur kristal TiO₂ (Luís et. al., 2011, dan Liuming et. al., 2010). Kalsinasi TiO₂-PEG dilakukan karena suspensi TiO₂ tidak dapat dikeringkan dengan cara pemanasan biasa. Pada pola difraksi TiO₂-PEG muncul puncak baru pada daerah $2\theta = 31,4^{\circ}$, yang dapat dinterpretasikan sebagai puncak brookite sebagai fasa transformasi TiO₂ menjadi rutile. Intensitas pola difraksi sinar-x dari sampel TiO₂-EG (Cl) ternyata lebih tinggi dari TiO₂-EG walaupun lamanya refluks hanya 4 jam. Hal ini sesuai dengan hasil penelitian Shan & Demopoulos (2009) yang menyatakan prekursor $TiCl_4$ memberikan kristalinitas TiO₂ yang lebih baik dibandingkan dengan TTIP. Hal ini disebabkan terjadinya peptisasi pada proses sintesis TiO₂ yang ditunjukan oleh tingginya suasana asam karena dihasilkan HCl sebagai produk samping sebagaimana mekanisme reaksi berikut :

$$HOCH_2CH_2OH \leftrightarrow CH_3CHO + H_2O$$

$$TiCl_4 + 2H_2O \rightarrow [Ti(OH)_xCl_n]^{4-(n+x)} [TiO_yCl_n]^{4-(n+2y)} \rightarrow TiO_2 + 4HCl$$

$$(4.4)$$

Pada proses sintesis, sol yang dihasilkan dengan prekursor TiCl₄ berwarna lebih putih dibandingkan dengan prekursor TTIP yang mengindikasikan kuantitas TiO₂ yang lebih besar. Penggunaan H₂O sebagai salah satu reaktan pada penelitian ternyata cukup untuk memacu terjadinya reaksi hidrolisis pada suhu yang lebih rendah (170 °C) dimana sebelumnya Shan & Demopoulos melaporkan TiO₂ tidak terbentuk baik pada suhu 180 °C.

Gambar 4.6. Pola Difraksi Sinar-X TiO₂ yang Dipreparasi dengan Variasi Prekursor dan Surfaktan. Keterangan : A = Anatase, B = Fasa Brookite

4.2.2 Spektrometri DRS FTIR

Dari hasil spektrum DRS FT-IR sebagaimana ditunjukan pada Gambar 4.6. terlihat bahwa TiO₂ hasil sintesis masih memiliki kandungan organik yang dilihat dari munculnya pita serapan vibrasi ulur v(O-H) = 3400-3100 cm⁻¹, dan pita ulur asimetri gugus v_{as}(C-H) jenuh = 2941 cm⁻¹, v_s(C-H) jenuh = 2866 cm⁻¹; σ_{as} (C-H) = 1454 cm⁻¹; σ_{s} (C-H) = 1357 cm⁻¹; v(C-O) = 1220 cm⁻¹, 1076 cm⁻¹ dan 1630 cm⁻¹; dan pita serapan ulur (Ti-O) = 750-400 cm⁻¹ yang menunjukan pembentukan formasi fasa anatase. Kandungan organik ini merupakan turunan dari senyawa glikolat atau aldehid dan air yang masih ada sehingga menyebabkan TiO₂ anatase yang dihasilkan bercampur dengan fasa amorfnya. Hal ini dibuktikan dengan rendahnya intensitas puncak pada pola difraksi sinar-X. Walaupun demikian senyawa organik yang terikat pada permukaan TiO₂-EG ini diyakini berperan dalam mengontrol pertumbuhan dan morfologi TiO₂ dan mencegah terjadinya agglomerasi sehingga membentuk suspensi yang stabil (Shan & Demopoulos, 2009).

Gambar 4.7. Spektrum DRS FT-IR TiO₂ yang Dipreparasi pada pH 5,0; pH 1,5; pH 2,7 dan TiO₂ Degussa P25

Penggantian prekursor TTIP dengan TiCl₄ dan variasi waktu refluks pada sintesis TiO₂, tidak menunjukan perubahan yang berarti pada pola spektra FTIR seperti ditunjukan pada Gambar 4.8. Namun demikian, terjadi perubahan puncak pada TiO₂-PEG akibat pengaruh kalsinasi yang menyebabkan terjadinya pengurangan kandungan organik. Bila kandungan organik berkurang maka terjadi penurunan intensitas pada puncak atau pita di daerah 2941cm⁻¹ dan 2866 cm⁻¹ yang merupakan pita ulur gugus v_{as}(-CH₂), diiringi juga dengan penurunan intensitas puncak atau pita di daerah 1300 – 1400 cm⁻¹ yang merupakan pita tekuk gugus $\sigma_{as\&s}$ (-CH₂).

Gambar 4.8. Spektrum DRS FT-IR yang Dipreparasi dengan Variasi Prekursor dan Surfaktan

4.2.3 Spektrometri DRS UV Vis

Dari hasil pengukuran dengan DRS UV-Vis sebagaimana ditunjukan pada Gambar 4.9. tampak adanya sedikit pergeseran ke arah panjang gelombang yang lebih tinggi (energi yang lebih rendah) dari spektrum TiO₂ yang disebut sebagai *red shift*. Zhu et.al. (1998) melaporkan bahwa pergeseran ini terkait dengan struktur permukaan TiO₂. Gugus OH dari TiOH maupun air serta gugus TiOR dari senyawa organik (titanium glikolat) yang teradsorb secara kimia pada permukaan TiO₂, dapat membentuk permukaan *intraband state*. Hal ini mendorong absorpsi TiO₂ pada panjang gelombang yang lebih tinggi.

Nilai energi celah (Eg) TiO_2 dapat dihitung dengan mengubah besaran %R ke dalam faktor Kubelka-Munk (F(R)) dan besaran panjang gelombang diubah menjadi besaran energi (eV) sesuai dengan rumus :

$$F(R) = \frac{K}{S} = \frac{(1-R)^2}{2R}$$
(4.5)

dimana : F(R) = Faktor Kubelka-Munk

K = Koefisien Absorpsi

S = Koefisien *Scattering*

R = Nilai Reflektansi

36

Dengan memplotkan faktor Kubelka-Munk terhadap Energinya maka didapatkan kurva persamaan garis lurus. Dengan demikian besarnya energi celah TiO₂ adalah nilai intersept persamaan garis lurus tersebut yaitu rata-rata sebesar 3,23 eV.

Gambar 4.9. Spektrum DRS UV-Vis TiO₂ dengan Variasi Waktu Refluks. Inset : Nilai Energi Celah.

4.2.4 Karakterisasi dengan TGA dan DSC

Pada Gambar 4.10. ditunjukan kurva TGA dan DSC dari TiO_2 R16 (lihat hal. 24 untuk deskripsi sampel) di bawah aliran gas argon. Tampak pada kurva tersebut pada suhu 104 °C terjadi peristiwa endotermik yang disebabkan oleh penguapan air dengan pengurangan massa sebesar 2,06 %. Kandungan etilen glikol dalam air diketahui mampu menaikan titik didih air dalam hal ini titik uap air menjadi 104 °C yang berarti setara dengan kandungan etilen glikol 30 - 40%.

Pada suhu 240 °C muncul puncak eksoterm yang cukup tinggi, hal ini menandakan terjadinya pelepasan panas yang cukup eksplosif akibat proses pembakaran (degradasi) senyawa organik atau senyawa turunan glikolat dengan pengurangan massa hingga 3,92 %. Adanya kandungan organik pada suhu ini sesuai dengan hasil karakterisasi sebelumnya dengan FTIR yaitu munculnya pitapita dari senyawa organik terutama pada daerah 1800 – 1100 cm⁻¹.

Pada suhu 404 °C terjadi peristiwa endotermik, dimana transformasi sisa fasa amorf menjadi kristalin terjadi lebih sempurna akibat pelepasan sisa organik yang

terjebak dalam kristal (1,61%). Hal ini sesuai dengan hasil karakterisasi XRD, dimana rendahnya intensitas puncak-puncak anatase dari difraktogram XRD disebabkan karena produk TiO₂ yang dihasilkan tidak dikalsinasi pada suhu yang lebih tinggi.

Gambar 4.10. Kurva TGA dan DSC TiO₂ Hasil Refluks Selama 16 Jam.

4.2.5 Karakterisasi SEM - EDX

Dari hasil karakterisasi SEM dapat dilihat bentuk morfologi TiO₂ yang dihasilkan sebagaimana ditunjukan pada Gambar 4.11. Tampak bahwa TiO₂ yang dihasilkan tidak homogen. Ukuran partikel TiO₂ rata-rata disajikan dalam Tabel 4.1. Dari hasil ini terlihat distribusi ukuran partikel TiO₂ berada pada daerah mikron, padahal secara teoritis dari perhitungan data XRD diperoleh ukuran kristal TiO₂ sudah berada di daerah nanometer (~5 nm). Hal ini menunjukkan partikel-partikel TiO₂ tersebut dalam keadaan kering/bubuk teraglomerasi menjadi partikel yang berukuran lebih besar.

TiO hasil refluks	Ukuran Partikel (µm)		
$\frac{110}{2}$ mush remarks	rata-rata	terbesar	
2 jam	2,24	5,25	
8 jam	1,81	4,25	
16 jam	1,42	3,63	
24 jam	0,94	3,03	

Tabel 4.1. Distribusi	Ukuran Partikel	TiO ₂
-----------------------	------------------------	------------------

Gambar 4.11. Foto SEM produk TiO₂ dalam Bentuk Powder

Komposisi TiO₂ dan persentase kandungan Ti, O dan C disajikan pada Tabel 4.2. Rasio Ti/O cenderung meningkat seiring dengan lamanya waktu refluks, tetapi terjadi penurunan pada hasil dengan refluks 16 jam. Hal ini disebabkan karena pembentukan TiO₂ anatase pada hasil refluks selama 16 jam terjadi lebih sempurna sesuai dengan data XRD yang menunjukan intensitas tertinggi.

TiO	Persentase Massa (%)			
110_2	Ti	0	С	Ti/O
2 jam	29.20	53.27	17.54	0.55
8 jam	38.35	48.56	13.09	0.80
16 jam	32.57	51.72	15.71	0.63
24 jam	42.01	41.95	16.04	1.00

Tabel 4.2. Persentase Komposisi Ti, O dan C pada Produk (Data EDX)

Untuk mengetahui distribusi TiO_2 yang lebih homogen, maka dibuat lapisan film TiO_2 dari hasil refluks langsung pada pelat kaca yang dilapisi sebanyak lima kali sebagaimana ditunjukan pada Gambar 4.12. Pelapisan sebanyak lima kali ini cukup transparan sesuai dengan yang diperoleh Hardeli (2008).

Gambar 4.12. Foto SEM Film TiO₂ pada Pelat Kaca

Tampak pada Gambar 4.12 di atas, distribusi TiO₂ pada film dari hasil refluks 8 jam tersebar merata secara homogen, sedangkan film dari hasil refluks 16 dan 24 jam muncul agregat-agregat pada permukaan. Dari hasil pengukuran ukuran partikel yang terdistribusi homogen pada film TiO₂ hasil refluks 8 jam menggunakan metode Abdullah dan Khairurrijal (2010), didapatkan nilai rata-rata 73,05 nm. Dengan demikian TiO₂ yang diimobilisasikan pada pelat kaca berhasil disintesis dalam kisaran nanometer. Selain itu juga diukur ketebalan rata-rata film TiO₂ tersebut yang disajikan pada Gambar 4.13. Dari pengukuran SEM dapat diketahui ketebalan lapisan film TiO₂ yang dilapisi pada pelat kaca sebanyak 5x berkisar antara 0,12 – 0, 48 µm.

Gambar 4.13. Foto SEM Ketebalan Film TiO₂ pada Pelat Kaca dengan Pelapisan 5x

4.3 Dispersi TiO₂

Pada penelitian ini, dispersi TiO₂ R16 dalam air diukur absorbansinya pada t = 0 jam dan t = 24 jam. Nilai absorbansi sebanding dengan kekeruhan suspensi dimana semakin bening suspensi yang berarti terjadi pengendapan, maka dispersi dinyatakan tidak stabil. Sonikasi dilakukan untuk memecah agregat partikel TiO₂, dengan cara mengalirkan gelombang ultrasonik. Hasil pengukuran dan foto dispersi TiO₂ R16 disajikan pada Gambar 4.14 dan 4.15.

Dari hasil pengukuran ternyata kestabilan dispersi TiO₂ R16 *powder* dalam air sangat rendah. Hal ini ditunjukan dengan hampir seluruhnya mengendap dan larutan menjadi bening setelah didiamkan selama 24 jam. Dengan demikian sonikasi tidak cukup kuat untuk menjaga kestabilan dispersi TiO₂. Untuk mengetahui perubahan kekeruhan selama 1 jam, dilakukan prosedur yang sedikit berbeda yaitu dengan perlakuan *stiring* selama 20 menit dan sonikasi selama 5 menit (Sentein et.al., 2009). Hasil pengukuran disajikan pada Gambar 4.16. Hasilnya menunjukan penurunan absorbansi yang berarti juga kestabilan dispersinya menurun.

Gambar 4.14. Dispersi TiO₂ R16 pada t = 0 jam dan t = 24 jam dengan Variasi Konsentrasi

Gambar 4.15. Foto Dispersi TiO₂ R16 dalam Air, (kiri) t = 0 jam, dan (kanan) t = 24 jam

Gambar 4.16. Dispersi TiO₂ R16 dalam Air Selama 60 menit dengan Variasi Konsentrasi

Pengaruh variasi waktu dan prekursor pada suspensi dengan konsentrasi yang sama disajikan pada Gambar 4.17. Hasil pengukuran menunjukan bahwa kestabilan dispersi suspensi dari waktu refluks yang singkat (< 8 jam) lebih stabil. Rendahnya kestabilan dispersi TiO₂ dalam air ini disebabkan TiO₂ dalam bentuk *powder* membentuk agregat yang cukup besar hingga berukuran mikrometer sesuai dengan hasil SEM. Walaupun stabilisasi suspensi TiO₂ dapat dilakukan dengan cara sonikasi, tetapi ternyata tidak cukup kuat menjaga partikel-partikel kecil agar tidak bergabung kembali membentuk agregat. Agregat-agregat yang telah pecah dapat bergabung kembali dan mengendap di dasar wadah.

Gambar 4.17. Dispersi TiO₂ dengan Variasi Waktu Refluks pada Konsentrasi 1000 ppm

Selain dengan sonikasi, performa dispersi juga dapat ditingkatkan dengan mengatur kondisi pH suspensinya (Manna, 2009). Kestabilan suspensi dapat dilihat dengan mengukur nilai potensial zeta pada kondisi pH tertentu. Grafik potensial zeta versus pH suspensi TiO₂ ditampilkan pada Gambar 4.18. Suspensi TiO₂ dibuat dengan cara melarutkan 2 mg dalam 10 mL air, kemudian diatur pH-nya dengan penambahan asam nitrat atau NH₄OH. Sentein et. al. (2009) menyebutkan bahwa nilai potensial zeta (ζ) minimal yang dibutuhkan untuk dispersi yang stabil adalah 30 mV (positif atau negatif). Dari hasil pengukuran nilai potensial zeta suspensi TiO₂, didapatkan bahwa kestabilan suspensi TiO₂ dalam air dapat tercapai jika pH larutan < 2,5 atau > 8,0 berdasarkan nilai zeta potensialnya. Hasil ini memiliki kesesuaian dengan hasil penelitian Jannah (2010) dimana kestabilan dispersi juga tercapai pada pH suspensi > 8,0.

Gambar 4.18. Potensial Zeta versus pH untuk Suspensi TiO₂ dalam Air

Tampak pada Gambar 4.19, suspensi TiO₂ dengan pH 4 setelah satu hari hampir semuanya mengendap dan menjadi bening, sedangkan pada pH 1,5 ; pH 8,0 dan pH 9,5 masih terlihat keruh. Kestabilan dispersi merupakan fungsi waktu sehingga walaupun dari hasil pengukuran potensial zeta pada pH 2,5 lebih baik dari nilai potensial zeta pH 8, ternyata setelah 24 jam menunjukan berbanding terbalik. Hal ini menunjukan ketidakstabilan dispersi sesuai dengan yang dilaporkan oleh Kotsokechagia et. al. (2008), dan Guzman et. al. (2006) bahwa pengendapan atau pembentukan aggregat terjadi pada pH > 4 atau pada kondisi dekat dengan titik isoelektrik ζ -potensial (pH_{zpc}). Pada titik ini permukaan TiO₂ menjadi tidak bermuatan atau mendekati nol sehingga tidak ada gaya tolak menolak antar partikel. Akibatnya antara partikel saling menempel membentuk agregat yang berukuran lebih besar dan mengendap di dasar wadah. Guzman et. al.(2006) melaporkan bahwa semakin kecil ukuran TiO₂, pH_{zpc} juga berubah menjadi lebih kecil atau berada di daerah yang lebih asam. Titik isoelektrik ζ potensial pada penelitian ini dari grafik yaitu berkisar pada pH 3 atau pH 9.

Gambar 4.19. Foto Dispersi TiO₂ dalam Air dengan Variasi pH Setelah 1 Hari

4.4 Efek Superhidrofilik

4.4.1 Immobilisasi TiO₂ pada Pelat Kaca

Imobilisasi film TiO_2 dilakukan dengan metode *dip-coating* atau pencelupan dengan kecepatan tarik 10 detik/cm. Pelapisan film TiO_2 dilakukan sebanyak lima kali dengan menggunakan metode Hardeli (2008). Foto film TiO_2 pada pelat kaca sebanyak lima kali lapisan disajikan pada Gambar 4.20. Hasil lima kali pelapisan TiO_2 pada pelat kaca menunjukan kaca cukup transparan.

Gambar 4.20. Foto Film TiO₂ pada Pelat Kaca. Dari Kiri ke Kanan : TiO₂ R2, TiO₂ R8, TiO₂ R16, TiO₂ R24 dan TiO₂-EG(Cl)

4.4.2 Pengukuran Sudut Kontak

Uji hidrofilisitas film TiO_2 dilakukan dengan mengukur sudut kontak air terhadap permukaan film yang telah dilapisi pada pelat kaca dengan alat *Contact Anglemeter*. Hasil pengukuran sudut kontak air film TiO_2 disajikan pada Gambar 4.21. Dari hasil pengukuran diperoleh bahwa hidrofilisitas film TiO_2 dari suspensi redispersi dalam air setelah diberi sinar UV memberikan hasil yang lebih baik dibandingkan dengan film TiO_2 dari suspensi hasil refluks langsung. Hal ini disebabkan film TiO_2 dari suspensi hasil refluks terhalang oleh tingginya kandungan organik ketika diberi sinar UV, sehingga daya fotokatalitiknya menjadi berkurang.

Dengan demikian sifat superhidrofiliknya menjadi tidak muncul dan cenderung memiliki nilai sudut kontak yang lebih besar dari sudut kontak kaca biasa (SLP) yang bernilai $24 - 30^{\circ}$. Pada film TiO₂ dari hasil refluks dengan PEG sebagai surfaktan, sudut kontaknya paling kecil dibandingkan dengan yang lain. Pengaruh waktu refluks dan prekursor tidak menunjukan perubahan sudut kontak yang signifikan.

Gambar 4.21. Sudut Kontak Film TiO₂ dari Suspensi Hasil Refluks Langsung Setelah Diberi Sinar UV 10 Watt Selama 1 Jam

Untuk mengatasi hal tersebut, film TiO₂ dibuat dari suspensi redispersi TiO₂ powder dalam air dan dilapisi pada kaca sebanyak lima kali dengan metode *dip-coating*. Dari hasil pengukuran sudut kontak sebagaimana tampak pada Gambar 4.22, diperoleh bahwa terjadi penurunan sudut kontak hingga dibawah 10° setelah diberi sinar UV 11 Watt. Semakin lama waktu penyinaran, sudut kontaknya cenderung semakin kecil. Sifat superhidrofilik ditunjukan pada film TiO₂ dari suspensi redispersi TiO₂ hasil refluks 24 jam dan suspensi redispersi TiO₂ dengan prekursor TiCl₄, setelah diberi sinar UV berturut-turut selama 2 jam dan 4 jam. Foto tetes air pada pelat kaca ditunjukan pada Gambar 4.23.

Gambar 4.22. Sudut Kontak Film TiO₂ dari Suspensi Redispersi Dalam Air Setelah Diberi Sinar UV 11 Watt

Gambar 4.23. Foto Tetes Air Pada Pelat Kaca (a) Tanpa Film TiO₂ dan (b) dengan Film TiO₂ Setelah Diberi Sinar UV Selama 2 Jam

4.4.3 Uji Visual Film Katalis TiO₂

Untuk mengetahui aktivitas film TiO_2 pada permukaan kaca sebagai anti kabut (anti fogging), kaca biasa dan kaca yang telah dilapisi dimasukkan ke dalam freezer selama 5 menit lalu dibandingkan dan difoto. Sebelum dimasukkan dalam freezer, kaca disinari UV selama 2 jam. Hasil foto disajikan pada Gambar 4.24.

(b)

Gambar 4.24. Sifat Anti Kabut Film TiO₂, (a) dari Kiri ke Kanan : Kaca Biasa, TiO₂-EG, TiO₂-EG (Cl) dan TiO₂-PEG, (b) Tampak Muka dari Kiri ke Kanan : TiO₂-EG, TiO₂-EG (Cl) dan TiO₂-PEG Dari hasil pengujian anti kabut, sifat anti kabut dimiliki oleh kaca yang sudah dilapisi film TiO_2 walaupun hanya sedikit. Hal ini disebabkan lapisan film TiO_2 yang masih terlalu tipis (hanya 5x pelapisan). Sifat anti kabut yang paling bagus dihasilkan oleh film TiO_2 dari hasil refluks selama 16 jam dengan surfaktan etilen glikol.

4.5 Evaluasi Aktivitas Fotokatalitik TiO₂

Untuk evaluasi aktivitas fotokatalisis, Pengujian dilakukan dengan tiga kondisi yang berbeda, yaitu :

Fotolisis : *Methylene blue* tanpa TiO₂, lampu UV black light menyala.

Katalisis : *Methylene blue* dengan TiO₂, lampu UV black light tidak menyala.

Fotokatalisis : *Methylene blue* dengan TiO₂, lampu UV black light menyala. Pengukuran dilakukan dengan cara mengukur absorbansinya. Dari nilai absorbansi dapat diketahui konsentrasi *methylene blue* sesuai dengan kurva larutan standar yang telah dibuat. Hasil pengukuran jumlah konsentrasi *methylene blue* yang terdegradasi (%) disajikan pada Gambar 4.25.

Gambar 4.25. Persen Degradasi Methylene Blue terhadap Waktu

Persen degradasi *methylene blue* didasarkan pada pengurangan nilai absorbansi larutan *methylene blue*. Dari hasil perhitungan, nilai maksimal persen degradasi pada kondisi fotokatalis setelah 60 menit untuk film TiO₂ R16, TiO₂-PEG dan TiO₂-EG (Cl) yaitu berturut-turut 22,03 %, 14,25 % dan 16,77 %. Pada kondisi katalisis, persen degradasi maksimal 19,05 %. Dan pada kondisi fotolisis, persen degradasi maksimal *methylene blue* mencapai 12,58 %. TiO₂ R16 ternyata memiliki daya fotokatalitik paling tinggi dibandingkan dengan TiO₂-PEG maupun TiO₂-EG (Cl).

Hubungan ln Co/C terhadap waktu disajikan pada Gambar 4.26 di atas. Persamaan garis linier dapat diturunkan dari grafik tersebut dan disajikan pada Tabel 4.5. Dari persamaan garis linier maka dapat diketahui bahwa reaksi degradasi *methylene blue* mengikuti persamaan Langmuir-Hinshelwood di mana ln Co/C = kt, nilai k = K dan laju reaksi mengikuti *pseudo* orde pertama.

Variabel	Persamaan Regresi In Co/C	\mathbf{R}^2	K
Fotolisis	y=0.002x+0.023	0.916	0.002
Katalis	y=0.003x+0.019	0.958	0.003
Fotokatalisis TiO ₂ -EG	y=0.004x+0.010	0.953	0.004
Fotokatalisis TiO ₂ -PEG	y=0.002x+0.013	0.980	0.002
Fotokatalisis TiO ₂ -EG (Cl)	y=0.002x+0.005	0.982	0.002

Tabel 4.3. Persamaan	Regresi I	Linier pada	1 Tiap	Kondisi
----------------------	-----------	-------------	--------	---------

Dengan demikian dari hasil uji fotokatalitik TiO₂, walaupun lapisan film TiO₂ yang digunakan tipis (hanya 5x pelapisan) tetapi mampu mendegradasi *methylene blue* dengan persentase tertinggi diperoleh pada kondisi fotoatalitik oleh TiO₂-EG yaitu sebesar 22,03 % dan mengikuti persamaan Langmuir-Hinshelwood dengan nilai konstanta Langmuir sebesar 0,004 menit⁻¹.

4.6 Evaluasi Aktivitas Fotoelektrokatalitik TiO2

Aktivitas fotoelektrokatalisis membutuhkan sinar UV untuk mengeksitasi elektron dari pita valensi ke pita konduksi sehingga terbentuk pasangan elektron – *hole*. Untuk mengetahui aktivitas fotoelektrokatalitik, maka dilakukan pengukuran *linier scan* larutan NaNO₃ 0,1M 5 mL yang ditambahkan *methylene blue* 2 ppm 5 mL dengan elektroda kerja TiO₂, elektroda bantu Pt dan elektroda referens Ag/AgCl. Elektroda kerja TiO₂ yang digunakan adalah film TiO₂ yang dilapiskan pada pelat kaca berlapis SnOF.

Evaluasi dilakukan dengan tiga cara, yaitu :

- 1. tanpa penyinaran UV (MB tanpa UV),
- 2. dengan penyinaran UV setelah 10 detik (MB+UV on), dan
- 3. penyinaran UV dilakukan berselang seling hidup/mati tiap 20 detik.

Fenomena ini dapat dilihat pada Gambar 4.27.

Gambar 4.27. Fenomena Fotoelektrokatalitik Film TiO₂

Ketika lampu UV dihidupkan, terjadi kenaikan arus yang cukup tinggi, dan pada saat lampu UV dimatikan, terjadi penurunan arus yang drastis menuju ke kondisi semula. Fenomena ini menunjukan adanya *photocurrent* yaitu arus listrik yang muncul karena adanya sinar UV dan menjelaskan juga bahwa proses fotokatalitik mutlak membutuhkan cahaya.

Hal ini juga diperkuat dengan hasil siklik voltametri pada Gambar 4.28, dimana pada kondisi gelap, arus yang dihasilkan berada pada daerah nol, namun setelah diberikan sinar UV maka terjadi kenaikan arus yang disebut *photocurrent*. Dari hasil siklik voltamogram tersebut terlihat bahwa fotokatalitik pada sistem yang dibuat sudah berjalan dengan baik (sudah aktif).

Gambar 4.28. Siklik Voltametri Film TiO₂ Sebelum dan Sesudah Diberi Sinar UV

Dari hasil penelitian ini, suspensi nanopartikel TiO₂ berbasis medium air berhasil dipreparasi dan berpotensi untuk dijadikan material swa-bersih. Metode preparasi TiO₂ yang dilakukan cukup sederhana yaitu dengan menggunakan metode sol-gel dengan refluks pada suhu 170°C dengan hasil optimal dicapai pada pH 1,5 selama 16 jam. Penggunaan surfaktan etilen glikol terbukti mampu meningkatkan kestabilan suspensi dalam air, tetapi untuk redispersi TiO₂ dalam air masih belum cukup untuk menjaga kestabilannya sehingga perlu dilakukan pengaturan kondisi pH larutan. Pengaturan kondisi pH melalui penambahan asam nitrat pada preparasi juga penting untuk meningkatkan kristalinitas TiO₂. Sifat superhidrofilik dan kemampuan fotokatalitik TiO₂ yang ditunjukan dalam mendegradasi *methylene blue* merupakan indikator untuk dapat dijadikan material swa-bersih. Dengan membandingkan prekursor TTIP dengan TiCl₄ pada preparasi TiO₂ didapatkan hasil bahwa prekursor TiCl₄ memberikan hasil yang cukup baik dilihat dari kristalinitas dan sifat superhidrofiliknya TiO₂ yang dihasilkan. Prekursor TiCl₄ bersifat lebih reaktif terhadap kelembaban dibandingkan dengan prekursor TTIP, sehingga diperlukan penanganan yang lebih cermat dan hati-hati pada proses preparasi. Penggantian surfaktan etilen glikol dengan PEG pada preparasi TiO₂, memberikan hasil yang kurang baik dikarenakan membentuk agregat yang lebih besar dan tidak dapat dikeringkan. Untuk mendapatkan TiO₂ dalam bentuk powder memerlukan proses kalsinasi sehingga berpengaruh terhadap ukuran kristal TiO₂ dan kristalinitas. Ukuran kristal TiO₂ hasil kalsinasi berdasarkan perhitungan Scherrer sebesar 6 nm, lebih besar daripada kristal TiO_2 tanpa kalsinasi yaitu 2 - 4 nm. Kalsinasi menyebabkan munculnya fasa brookite pada TiO₂ yang dihasilkan sehingga menurunkan kristalinitas TiO₂.

Universitas Indonesia

BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Dari hasil penelitian ini dapat diambil beberapa kesimpulan sebagai berikut :

- Suspensi titanium dioksida nanopartikel berbasis medium air telah berhasil di preparasi dan dikarakterisasi. Karakterisasi TiO₂ dengan X-Ray Difraktometer (XRD) dan *Diffuse Reflectance* Spektrometri menunjukan berturut-turut bahwa TiO₂ yang terbentuk memiliki struktur anatase dengan ukuran kristal sebesar 2 - 5 nm dan energi celah sebesar 3,23 eV.
- Pengaruh penambahan asam nitrat dan waktu refluks menunjukan nanokristal TiO₂ yang memiliki kristalinitas paling tinggi dilihat dari pola difraksi sinar X yaitu pada pH = 1,5 dan waktu refluks selama 16 jam. Walaupun demikian, dalam kondisi kering/serbuk, nanopartikel TiO₂ tersebut membentuk agregat berukuran 2,24 µm untuk refluks selama 2 jam, 1,81 µm untuk refluks selama 8 jam, 1,42 µm untuk refluks selama 16 jam dan 0,94 µm untuk refluks selama 24 jam.
- Kestabilan dispersi suspensi TiO₂ dapat dicapai jika pH larutan < 2,5 atau
 > 8,0 berdasarkan nilai zeta potensialnya.
- Sifat superhidrofilik diperoleh pada lapisan film TiO₂ dari suspensi redispersi dalam air TiO₂ R24 dan TiO₂-EG (Cl), setelah diberi sinar UV berturut-turut selama 2 jam dan 4 jam.
- 5. Degradasi fotokatalitik *methylene blue* tertinggi diperoleh pada film TiO₂ dari hasil refluks 16 jam dan mengikuti mekanisme Langmuir-Hinshelwood, yaitu *pseudo* orde pertama dengan nilai konstanta laju reaksinya (k) 0.004 menit⁻¹, dan nilai persen degradasi sebesar 22,03 % dalam waktu 60 menit.

5.2 Saran

Berdasarkan hasil penelitian, saran yang dapat dikemukakan adalah :

- Perlu diperbaiki proses pembuatan suspensi TiO₂ dengan metode sol-gel dan metode stabilisasi yang tepat untuk mencegah pembentukan agregatagregat.
- 2. Perlu diteliti lebih lanjut metode sol-gel dengan refluks menggunakan prekursor TiCl₄ untuk sintesis TiO₂ dengan kristalinitas yang tinggi.
- 3. Perlu diuji lebih lanjut untuk dapat diterapkan sebagai pelapis swa-bersih.

DAFTAR PUSTAKA

- Abdullah, M. dan Khairurrijal. (2010). *Karakterisasi Nanomaterial : Teori, Penerapan, dan Pengolahan Data*. CV. Rezeki Putera, Bandung.
- Ahonen, P. (2001). Aerosol Production and Crystallization of Titanium Dioxide from Metal Alkoxide Droplets. *Dissertation*. Valtion Teknillinen Tutkimuskeskus (VTT), Technical Research Centre of Finland.
- Amar, A. H. (2007). Development of a Simple Dip Coating Method for Immobilization of TiO₂ onto Solid Supports Using Direct TiO₂ Powder, *Thesis Master of Science*, Institute of Postgraduate Studies, Universiti Sains Malaysia.
- Attar, A.S., Ghamsari, M.S., Hajiesmaeilbaigi, F., dan Mirdamadi, S. (2008). Modifier Ligands Effects on The Synthesized TiO₂ Nanocrystals. J. Matter Sci, 43, 1723-1729.
- Bessekhouad, Y., Robert, D., dan Weber, J.V. (2003). Preparation of TiO₂ by Sol-Gel Route. *International Journal of Photoenergy*, 05, 153-158.
- Cao, G. (2004). Nanostructures and Nanomaterials: Synthesis, Properties and Applications. Imperial College Press, London.
- Chen, Y., Wang, K. dan Lou, L. (2004). J. Photochem. Photobiol. A: Chemistry, 163, 281.
- Fendler, J.H. (1998). Nanoparticles and Nanostructured Films: Preparation, Characterization and Applications, Wiley-VCH, New York.
- French, R.A., Jacobson, A.R., Kim, B., Isley, S.L., Penn, R.L., dan Baveye, P.C. (2009). Influence of Ionic Strength, pH, and Cation Valence on Aggregation Kinetics of Titanium Dioxide Nanoparticles. *Environ. Sci. Technol.*, 43, 1354-1359.
- Fujishima, A., Hashimoto, K., & Watanabe, T. (1999). TiO₂ Photocatalysis Fundamentals and Applications, BKC, Inc, Japan.
- Guzman, K.A.D., Finnegan, M.P., dan Banfield, J.F. (2006). Influence of Surface Potential on Aggregation and Transport of Titania Nanoparticles. *Environ. Sci. Technol.*, 40, 7688-7693.

- Hardeli. (2008). Evaluasi Reaksi Degradasi Fotokatalisis Asam Palmitat dan Asam Oleat pada Lapisan Tipis TiO₂ yang Dilekatkan di Atas Substrat Gelas. *Disertasi*, Ilmu Kimia Program Pascasarjana, FMIPA UI.
- Huheey, J.E, Keiter, E.A, & Keiter, R.L. (1993). Inorganic Chemistry: Principles of Structure and Reactivity, 4th ed., HarperCollins College Publishers, New York, p. 272-276.
- Jannah, W. W. (2010). Preparasi dan Karakterisasi Titanium Dioksida : Pengembangan Metode Dispersi Partikel Titanium Dioksida dalam Air. *Skripsi Sarjana Ilmu Kimia*, FMIPA UI.
- Keblinski, P., Eastman, J.A., dan Cahill, D.G. (2005). Nanofluids for Thermal Transport. *Materials Today*, Elsevier, June 36-37.
- Kotsokechagia, T., Cellesi, F., Thomas, A., Niederberger, M. dan Tirelli, N. (2008). Preparation of Ligand-Free TiO₂ (Anatase) Nanopaticles through a Nonaqueous Process and Their Surface Functionalization. *Langmuir*, 24, 6988-6997.
- Liuming, P., Min, J., Xiuduo, W., dan Lejun, Z. (2010). Influence of Calcination Temperature on TiO₂ Nanotubes' Catalysis for TiO₂/UV/O₃ in Landfill Leachate Solution. *Trans. Tianjin Univ.*, 16: 179-186.
- Luíz, A.M., Neves, M.C., Mendonça, M.H., dan Monteiro, M.C. (2011). Influence of Calcination Parameters on the TiO₂ Photocatalytic Properties. *Materials Chemistry and Physics*, 125, 20–25
- Mahshid, S., Ghamsari, M. S., Askari, M., Afshar, N. dan Lahuti, S. (2006).
 Synthesis of TiO₂ Nanoparticles by Hydrolysis and Peptization of Titanium Isopropoxide Solution. *Semiconductor Physics, Quantum Electronics & Optoelectronics*, V.9, N.2. p. 65-68.
- Manna, I. (2009). Synthesis, Characterization and Application of Nanofluid An Overview. *Journal of the Indian Institute of Science*, 89:1, 21-33.
- Oliveira, A.M., Silva, M.L.C.P., Alves, G.M., Oliveira, P.C., dan Santos, A.M. (2005). Encapsulation of TiO₂ by Emulsion Polymerization with Methyl Metacrylate (MMA). *Polymer Bulletin*, 55, 477-484.

- Sentein, C., Guizard, B., Giraud, S., Yé, C., dan Ténégal, F. (2009). Dispersion and Stability of TiO₂ Nanoparticles Synthesized by Laser Pyrolisis in Aqueous Suspensions. *Journal of Physics: Conference Series*, 170, 012013.
- Slamet, Alwi, C.H.D., Viriya J. (2008). Rekayasa Plastik Berlapis Nanokristal TiO₂ untuk Aplikasi Anti Kabut dan Swa-Bersih. *Prosiding Seminar Teknik Kimia Soehadi Reksowardojo*, Teknik Kimia ITB, Bandung, ISSN: 0854-7769.
- Supriyono. (2007). Pengembangan COD (Chemical Oxygen Demand) Probe Berbasis Fotoelektrokatalisis, *Tesis Magister Sain*, Ilmu Kimia Program Pascasarjana, FMIPA, UI.
- Takahashi, Y., Ohsugi, A., Arafuka, T., Ohya, T, Ban, T., dan Ohya, Y. (2000). Development of New Modifiers for Titanium Alkoxide-Based Sol-Gel Process, *Journal of Sol-Gel Science and Technology*, 17, 227–238.
- Turković, A., Tonejc, A., Popović, S., Dubček, P., Ivanda, M., Musić, S., dan Gotić, M. (1997). Transmission Electron Microscopy, X-Ray Diffraction and Raman Scattering Studies of Nanophase TiO₂. *Fizika A 6*, 2, p 77-88.
- Wang, P., Wang, D., Li, H., Xie, T., Wang, H., dan Du, Z. (2007). A Facile Solution-Phase Synthesis of High Quality Water-Soluble Anatase TiO₂ Nanocrystals. J. Colloid and Interface Science, 314, 337-340.
- Widyaningsih, M. (2003). Studi Fenomena Superhidrofilisitas Lapisan SiO₂ TiO₂ dengan Pengukuran Sudut Kontak. Skripsi Sarjana Ilmu Kimia, FMIPA UI.
- Yurdakal, S., Loddo, V., Ferrer, B. B., Palmisano, G., Augugliaro, V., Farreras, J.G., dan Palmisano, L. (2007). Optical Properties of TiO₂ Suspensions: Influence of pH and Powder Concentration on Mean particle Size. *Ind. Eng. Chem. Res.*, 46, 7620-7626.
- Zhu, Y., Ding, C., Ma, G. dan Du, Z. (1998). Electronic State Characterization of TiO₂ Ultrafine Particles by Luminescence Spectroscopy. *Journal of Solid State Chemistry*, 139, 124-127.

Lampiran 1

Data Analisis Difraksi Sinar-X

Standar JCPDS untuk TiO $_2$ Anatase No. Kartu 04-0477

PDF # 040477, Wavelength = 1.54050 (A)				
04-0477 (Deleted)	Ti O2			
CAS Number:	Titanium Oxide			
Molecular Weight: 79.90	Ref: Swanson, Tatge, Private I	Communication, (1950)		
Volume[CD]: 136.10				
Dx: 3.899 Dm:	3			
S.G.: 141/amd (141)	It Sit			
Cell Parameters:				
a B 7	ž Ž		9.17	
SS/EDM: E25=8(0.062_48)			140	
1/lcor:			<u> </u>	
Rad: CuKa1	0 25 50	75 100 125	2 0 °	
Lambda: 1.54050	20 Inter to te the	29. INTERVIL29	lote la kil	
Filter: Ni		20 114 11 K 1 20	INCI II K I	
d-sp. dimactometer	25.353 100 1 0 1 6	8.591 5 1 1 6 107.51	4 3 1 6	
Anatase sun	35.882 9 1 0 3 7	10.354 5 2 2 0 109.00 75.009 10 2 1 5 112.90	3400	
Anadase, syn	38 505 9 1 1 2 7	6078 3 3 0 1 11855	3 1 1 10	
	48.074 33 2 0 0 8	32.260 2 3 0 3 120.38	2 2 2 8	
	53.918 21 1 0 5 8	3.134 3 3 1 2 135.87	<1327	
	55.112 19 2 1 1 9	10.253 3 137.37	3 4 1 5	
	62.070 4 2 1 3 9 62.722 12 2 0 4 9	15,171 3 3 2 1 143,95	2 3 0 9	
	02,720 13 2 0 4 3	0.427 2 7 0 3 143.10	5	

Standar JCPDS untuk TiO2 Rutile No. Kartu 78-1510

😨 PDF # 781510, Waveleng	th = 1.54060 (A)									
78-1510 Quality: C	Ti02									
CAS Number:	Titanium Oxide									
Molecular Weight: 79.90 Volume[CD]: 62.00 Dx: 4.280 Dm:	Ref: Calculated from ICSD using POWD-12++, (1997) Ref: Restori, R., Schwarzenbach, D., Schneider, J.R., Acta Crystallogr., Sec. B: Structural Science, 43, 251 (1987)									
S.G.: P42/mnm (136) Cell Parameters: a 4.582 b c 2.953	tis sta									
α β γ	1 inter									
1/lcor: 3.54										
Rad: CuKa1										
Lambda: 1.54060	0 15 30 45 60 75 2.6									
d-sp: calculated	28 Int-fhkl 28 Int-fhkl 29 Int-fhkl									
ICSD #: 062679	27.508 999 1 1 0 62.894 57 0 0 2 76.730 14 2 0 2									
Mineral Name:	36.159 427 1 0 1 64.230 58 3 1 0 80.036 7 2 1 2									
Rutile	39.295 63 2 0 0 65.688 4 2 2 1 82.583 26 3 2 1									
	44.152 35 2 1 U 53.355 55 1 I 2 87.750 5 4 1 U 54.456 442 2 1 1 72.272 7 2 1 1 00.002 20 2 2 2									
	56 784 128 2 2 0 74 622 1 3 2 0									
5.1a.: P42/mm(135) Cell Parameters: a 4.582 b c 2.953 α β I/Icor: 3.54 Rad: CuKa1 Lambda: 1.54060 Filter: d-sp: calculated ICSD #: 062679 Mineral Name: Rutile	$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
76-1936 Quality: C	TiO2									
-------------------------------------	----------	-----------------	-----------	-------------	-------------	----------	-------------	--------------------	-------	-------
CAS Number:	Titaniu	im Oxide								
Molecular Weight: 79.90	Ref: U	Calculated	from ICSL	using PU	WD-12+-	17.7	/) 7 (1)	070)		
Volume[CD]: 258.94	nei. m	ieaynei, c I	.г., сауе	, u.A., car	i. Mirielai	., 17, 7	7113	373)		
Dx: 4.099 Dm:	4		i i							
S.G.: Pbca (61) Cell Parametero:	± 、			1						
a 9.191 b 5.463 c 5.157	SI SI									
α β γ	ed								~	
	L			a land	1.1				6.6	
I/Icor: 1.63							11.		00	
Had: LuKai Lambda: 1.54060		0	15	30	45	60	3	75	2 6	9°
Filter:	8025							5. 1925 5. 1925		
d-sp: calculated	20	Int-f	hkl	20	Int-f	h k	1	20	Int-f	hkl
ICSD #: 036410	19.299	4	200	57.587	15	3 2	2	76.180	1	4 3 2
Mineral Name:	25.305	999	210	59.839	53	2 1	3	76.865	41	7 1 1
Brookite	25.635	758	2 1 1	61.946	3	3 3	1	77 610	41	133
	32.760	38	0 2 0	61.946	88	5 0	2	78.029	3	513
	34.764	3	002	62.967	14	6 1	0	78.888	9	3 4 1
	36.151	228	102	63.283	64	1 3	2	79.043	24	214
	37.891	69	311	63,938	58	0 2	3	80 140	15	1 4 2
	38.302	19	220	64.044	32	4 2	2	80.816	1	304
	38.531	25	1 2 1	64.393	41	3 1	3	80.984	1	622
	39.174	38	4 U U	64.498	117	51	2	82.010	10	440
	40.065	43	2 0 2	65,332	- 5	4 3	0	82 349	15	7 0 2
	42.258	132	221	65.803	61	6 1	1	82.583	14	2 4 2
	42.654	5	4 1 0	65.956	33	2 3	2	83.118	10	314
	43.485	175	212	67.4/1	2	2 2	3	83.544	29	124
	46.303	14	4 1 1	68,668	52	04	ò	83,803	17	721
	47.942	270	3 2 1	70.293	65	3 3	2	84.208	26	800
	48.513	4	0 2 2	70.497	35	4 1	3	84.642	13	4 4 1
	49.057	1/8	312	71.388	22	U 4	2	04 044	13	5 2 2
	51,963	24	4 2 0	71.555	21	3 2	3	86 488	34	4 0 4
	52.681	1	222	72.086	6	2 4	Õ	86.488	34	810
	53.363	8	402	72.235	5	1 4	1	86.626	23	342
	54.131	183	230	73.107	10	6 2		86.968	13	613
	55.142	260	421	73.979	13	6 1	2	89.053	1	8 1 1
	55.639	46	511	74.217	10	1 0	4	89.098	î	4 3 3
	56.153	5	4 1 2	74.754	1	2 4	1	89.968	1	324
	1 57.004	129	1 1 3	175.742	1	53	1			

Standar JCPDS untuk TiO₂ Brookite No. Kartu 76-1936

Perhitungan Crystallite Size Menggunakan Software X-Powder pada Puncak Anatase $2\theta = 25^{\circ}$

Perhitungan Crystallite Size Menggunakan Software X-Powder pada Puncak Anatase $2\theta = 25^{\circ}$

Sampe			kl-l	Katanangan
20	I	I/I1	пкі	Keterangan
25.14	126.36	100.00	101	Anatase
27.26	91.36	72.30	110	Rutile
36.92	56.00	44.32	103	Anatase
37.58	63.36	50.14	004	Anatase
38.50	75.18	59.50	112	Anatase
44.00	41.91	33.17	210	Rutile
48.02	65.36	51.73	200	Anatase
54.40	54.45	43.09	211	Rutile
55.50	50.10	39.65	211	Anatase
62.62	43.91	34.75	204	Anatase
69.18	30.64	24.25	301	Rutile
75.08	29.18	23.09	215	Anatase

Perhitungan Crystallite Size Menggunakan Software X-Powder pada Puncak Anatase $2\theta = 25^{\circ}$

TiO₂-EG R8

Perhitungan Crystallite Size Menggunakan Software X-Powder pada Puncak Anatase $2\theta = 25^{\circ}$

Universitas Indonesia

Perhitungan Crystallite Size Menggunakan Software X-Powder pada Puncak Anatase $2\theta=25^{\rm o}$

Universitas Indonesia

TiO₂-EG R24

Perhitungan Crystallite Size Menggunakan Software X-Powder pada Puncak Anatase $2\theta = 25^{\circ}$

TiO₂-EG (Cl)

Anatase $2\theta = 25^{\circ}$

Perhitungan Crystallite Size Menggunakan Software X-Powder pada Puncak

TiO₂-PEG

Sampel			h Li	Vatananaan
20	I	I/I1	nki	Keterangan
25.30	331	100.00	101	Anatase
25.38	328	99.09	210	Brookite
30.56	32	9.67	211	Anatase
35.90	30	9.06	102	Brookite
37.02	59	17.82	021	Brookite
37.82	85	25.68	004	Anatase
42.32	19	5.74	221	Brookite
48.06	102	30.82	200	Anatase
54.78	81	24.47	105	Anatase
55.10	69	20.85	211	Anatase
55.30	72	21.75	421	Brookite
61.80	34	10.27	213	Anatase
62.98	55	16.62	204	Anatase
64.06	30	9.06	313	Brookite
70.46	31	9.37	220	Anatase
75.14	36	10.88	215	Anatase

Perhitungan Crystallite Size Menggunakan Software X-Powder pada Puncak

Anatase $2\theta = 25^{\circ}$

Lampiran 2

Data FTIR

Variasi pH

TiO₂ pada pH 1,5 (TiO₂ – EG 2) ; pH 2,7(TiO₂ – EG 3); pH 5,0 (TiO₂ – EG 1) dan TiO₂ P25

Universitas Indonesia Preparasi dan..., Hendra Pratama, FMIPA UI, 2010.

Variasi Waktu Refluks, Prekursor dan Surfaktan

Variasi Waktu Refluks : $TiO_2 -EG 2$; $TiO_2 -EG 8$; $TiO_2 -EG 16$ dan $TiO_2 -EG 24$ Variasi Prekursor : $TiO_2 -EG$ (Cl) Variasi Surfaktan : $TiO_2 -PEG$ Reference : $TiO_2 P25$

Universitas Indonesia Preparasi dan..., Hendra Pratama, FMIPA UI, 2010.

Spektra Infra Red standar etilen glikol

Universitas Indonesia Preparasi dan..., Hendra Pratama, FMIPA UI, 2010.

Lampiran 3

Data UV Vis TiO₂

Refluks 8 jam

Keterangan :

- (a) Grafik UV Vis
- (b) Grafik Kubelka-Munk

Refluks 16 jam

Keterangan : (a) Grafik UV Vis, (b) Grafik Kubelka-Munk

Lampiran 4

Data TGA dan DSC TiO₂ R16

TAG24 DATA ANALYSIS OF EXPERIMENT

Sample Mass	: 28.600 mg
Sampling Rate	: 1.2 s
Experiment Duration	: 5128.8 s
Number of Stored Points	: 4274 points
Procedure	: Setaram
Atmosphere	: Argon
Crucible	: Alumine

INTEGRATION: Linier base line drawn between the two selected points

First point selected	: 540.0 s	104.33 C	
Second point selected	: 744.0 s	159.63 C	
Whole Peak			
Enthalpy	: -144.946 m	nicroV*s	-5.068 microV*s/mg
Top of the peak	: 627.6 s		131.23 C
Mass variation	: -0.59 mg		-2.063 %
Onset temperature	: 538.8s		104.33 C

INTEGRATION: Linier base line drawn between the two selected points

First point selected	: 1104.0 s	222.17 C
Second point selected	: 1707.6 s	328.00 C

Whole Peak

Enthalpy	: 826.722 microV*s	28.906 microV*s/mg
Exothermic peak		
Top of the peak	: 1380.0 s	272.23 C
Mass variation	: -1.12 mg	-3.916 %
Onset temperature	: 1200.0 s	240.13 C
_		

INTEGRATION: Linier base line drawn between the two selected points

First point selected	: 1971.6 s	372.90 C
Second point selected	: 2304.0 s	430.27 C

Whole Peak

Enthalpy	: -36.766 microV*s	-1.286 microV*s/mg
Endothermic peak		
Top of the peak	: 2196.0 s	411.33 C
Mass variation	: -0.46 mg	-1.608 %
Onset temperature	: 2157.6 s	404.53 C

Lampiran 5

Data Pengukuran Potensial Zeta TiO₂ R16

pH 1,5

				De	elsa™ Nano Common
Condition Summary			S/N :	1	
User : Common	Gro	up	: TiO2	Repetition : 1/1	
Date : 11/4/2010	File	Name	: TiO2-pH-1.5_20101104_0	84041	
Time : 08:40:41	San	nple Information	: TiO2-pH-1.5		
SOP Name : Nanotech			<u> </u>	Security : No S	Security
Version 2.31 / 2.00					
Measurement Condition					
Sampling Time	:400	(µs)	Correlation Method	: TD	(1:)
Correlation Channel	1512	(cn)	Accumulation times	10	(times)
Scattering Angle	: 15.0	(*)	Attopustor 1	: 25.0	(%)
Cell Center	: X: 7.210	(cps)	Attenuator 2	1.740	(%)
Cell Celler	7: 6 285	(mm)	Pinhole	1.50	(um)
Cell Constant	.70.000	(1/200)	- minore		(J)
Apply Voltage Type	DOSTITIVE	(1/cm)			
Electric Field					
Avg. Electric Field	:15.60	(V/cm)	Avg. Current	: 3.07	(mA)
Diluent Properties					
Diluent Name	:WATER		Dielectric Constant	: 78.3	
Refractive Index	:1.3328		Viscosity	: 0.8878	(cP)
	6	2	$\sqrt{5n}$		
Analysis Results					
Zota Dotontial	0.72	(mW)	Zeta Detential of Coll (Up	port) + 1.29	(m)/)
Mobility	15.604e-006	(my) (cm2/Vs)	Zeta Potential of Cell (Lo	wer): -2.29	(mV)
Conductivity	12 9765	(mS/cm)	Base Frequency	: 123.1	(Hz)
conductivity	.5.5505	(msychi)			()
Analysis Parameters					
Lorentz Fitting	1 neak				
Lorenz Hung	12 peak				
Conversion Equation	: Smoulchowsk	i			

No.	Cell Position	Electric Field (V/cm)	Mobility (cm²/Vs)
1	0.70 mm	15.6	-4.392e-006
2	0.35 mm	15.6	-2.368e-007
3	0.00 mm	15.6	2.517e-006
4	-0.35 mm	15.6	8.575e-006
5	-0.70 mm	15.6	1.630e-005

Average

15.6

4.552e-006

	R.						Delsa™ Nan Commo
Peak Valu	e Table			S/N			
User	: Common	Group	: TiO2		Rep	petitio	n : 1/1
Date	: 11/4/2010	File Name	: TiO2-pH-1.5_201	101104	08404	1	
Time	: 08:40:41	Sample Information	: TiO2-pH-1.5				
SOP Nan	ne : Nanotech				Sec	curity	: No Security

Version 2.31 / 2.00

	Mobility (cm²/Vs)	Zeta Potential (mV)	Electric Field (V/cm)
Peak Value	5.604e-006	0.72	15.60

No.	Cell Position	Mobility (cm²/Vs)	Zeta Potential (mV)
1	0.7 (6.635mm)	-4.392e-006	-0.56
2	0.35 (6.46mm)	-2.368e-007	-0.03
3	0 (6.285mm)	2.517e-006	0.32
4	-0.35 (6.11mm)	8.575e-006	1.10
5	-0.7 (5.935mm)	1.630e-005	2.09

BECKMAN COULTER.				De	elsa™ Nano Common
Condition Summary			S/N		
User : Common	G	roup	: TiO2	Repetition : 1/1	
Date : 11/4/2010	Fi	le Name	: TiO2-pH-2.5_20101104_0	85114	
Time : 08:51:14	Si	ample Information	: TiO2-pH-2.5		
SOP Name : Nanotech				Security : No	Security
Version 2.31 / 2.00 Measurement Condition					
Sampling Time	:400	(µs)	Correlation Method	: TD	
Correlation Channel	:512	(ch)	Accumulation times	: 10	(times)
Scattering Angle	:15.0	(°)	Temperature	: 25.0	(°C)
Intensity	:103482	(cps)	Attenuator 1	: 0.12	(%)
Cell Center	: X: 7.210	(mm)	Attenuator 2	: 3.210	(%)
	2: 6.250	(mm)	Pinnoie	: 50	(Pm)
Cell Constant	: /U.UUU	(1/cm)			
Apply voltage Type	INEGATIVE				
Electric Field					
Avg. Electric Field	:-15.60	(V/cm)	Avg. Current	: -3.05	(mA)
Diluent Properties					
Diluent Name	:WATER		Dielectric Constant	: 78.3	
Refractive Index	:1.3328		Viscosity	: 0.8878	(cP)
		0			
Analysis Results					
Zeta Potential	:2.02	(mV)	Zeta Potential of Cell (Up	per) : -4.38	(mV)
Mobility	:1.576e-005	(cm ² /Vs)	Zeta Potential of Cell (Lo	wer) : -0.32	(mV)
Conductivity	: 3.9071	(mS/cm)	Base Frequency	: 123.4	(Hz)
Analysis Parameters					
Lorentz Fitting	:1 peak				
Conversion Equation	: Smoulchow	ski			

No.	Cell Position	Electric Field (V/cm)	Mobility (cm²/Vs)
1	0.70 mm	-15.6	2.691e-005
2	0.35 mm	-15.6	1.704e-005
3	0.00 mm	-15.6	9.479e-007
4	-0.35 mm	-15.6	-1.815e-006
5	-0.70 mm	-15.6	8.614e-006

Average

-15.6

1.034e-005

Seckman Coulter.					Delsa™ Nan Commo
Distribution Graph			S/1	N :	
User : Common	Grou	qu	: TiO2	Repetition	: 1/1
Date : 11/4/2010	File	Name	: TiO2-pH-2.5_201011	04_085114	
Time : 08:51:14	Sam	ple Information	1 : TiO2-pH-2.5	-	
SOP Name : Nanotech				Security	No Security
ersion 2.31 / 2.00		Mobility Di	istribution		
		Frequ	ency_(Hz)		
-150 -100	-50	0	50 100	150 20	0 250
		1 (
20 -					
		F			
ŝ.					
10-					
0					
200.0		0.0 Zeta Pot	-200.0		-400.0
		Measurement	Results		
Zaha Datasti I		(m)()	Development		(11-)
Zeta Potentiai : Mohility	1.576e-005	(mv) (cm2/Vs)	Base Frequency	123.4	(Hz)
Conductivity :	3,9071	(mS/cm)	base meduency	. 123.4	(12)
Zeta Potential of Cell		(Diluent Properties		
Upper Surface :	-4.38	(mV)	Diluent Nome	WATER	
Lower Surface :	-0.32	(mV)	Transactions	: WATER	(90)
Cell Condition		1	Temperature	: 25.0	(-0)
Cell Type :	Flow Cell		Kerractive Index	1.3328	(-D)
Avg. Electric Field :	-15.60	(V/cm)	Viscosity	: 0.88/8	(CP)
Avg. Current :	-3.05	(mA)	Dielectric Constant	: : /8.3	
Peak Data Table of Distributi	on Graph				
Peak Frequency (Hz)	Intensity Hal	f Width (Hz) Z	eta Potential (mV)	Mobility (cm²/V	5)
1 -1.19	15.30	5.31	2.02	1.576e-00	5
2					
3					
4					
5					

(Lanjutan)

BECKMAN COULTER.			ſ	Delsa™ Nano Common
3D Plot		S/N		
User : Common Date : 11/4/2010 Time : 08:51:14 SOP Name : Nanotech	Group File Name Sample Information	: TiO2 : TiO2-pH-2.5_2010110 : TiO2-pH-2.5	Repetition : 1/ 4_085114 Security : N	/1 o Security
Version 2.31 / 2.00	EOS	Plot		
-150 -100 -50 1.0 0.70 0.5- 0.35 0.0 0.0 0.0 0.35 0.0 0.35 0.0 0.35 0.0 0.35 0.0 0.35 0.0 0.35 0.0 0.35 0.0 0.35 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0	0 Freques	ntal(m)	150 200	250
	Measurement	Results		
Zeta Potential : 2.02 Mobility : 1.576e-0 Conductivity : 3.9071	(mV) 05 (cm²/Vs) (mS/cm)	Doppler shift Base Frequency	: -1.19 : 123.4	(Hz) (Hz)
Zeta Potential of Cell Upper Surface : -4.38 Lower Surface : -0.32 Cell Condition Cell Type : Flow Cell Avg. Electric Field : -15.60 Avg. Current : -3.05	(mV) (mV) (V/cm) (mA)	Diluent Properties Diluent Name Temperature Refractive Index Viscosity Dielectric Constant	: WATER : 25.0 : 1.3328 : 0.8878 : 78.3	(°C) (cP)

	MAN R.					Delsa™ Nano Common
Peak Valu	e Table			S/N		
User	: Common	Group	: TiO2		Repetition	n : 1/1
Date	: 11/4/2010	File Name	: TiO2-pH-2.5_2	0101104	085114	
Time	: 08:51:14	Sample Information	1 : TiO2-pH-2.5			
SOP Nar	me : Nanotech				Security	: No Security

Version 2.31 / 2.00

	Mobility	Zeta Potential	Electric Field
	(cm²/Vs)	(mV)	(V/cm)
Peak Value	1.576e-005	2.02	-15.60

No.	Cell Position	Mobility (cm²/Vs)	Zeta Potential (mV)
1	0.7 (6.6mm)	2.691e-005	3.45
2	0.35 (6.425mm)	1.704e-005	2.18
3	0 (6.25mm)	9.479e-007	0.12
4	-0.35 (6.075mm)	-1.815e-006	-0.23
5	-0.7 (5.9mm)	8.614e-006	1.10

BECKMAN COULTER.				De	lsa™ Nano Common
Condition Summary			S/N :		
User : Common Date : 11/3/2010 Time : 16:43:24	Group File Na Sample	me e Information	: TiO2 : TiO2-pH-4_20101103_1643 : TiO2-pH-4	Repetition : 1/1 24	
SOP Name : Nanotech				Security : No S	ecurity
Version 2.31 / 2.00 Measurement Condition					
Sampling Time Correlation Channel Scattering Angle Intensity Cell Center Cell Constant Apply Voltage Type	:400 :512 :15.0 :83289 : X: 7.210 Z: 6.205 :70.000 :NEGATIVE	(µs) (ch) (°) (cps) (mm) (mm) (1/cm)	Correlation Method Accumulation times Temperature Attenuator 1 Attenuator 2 Pinhole	: TD : 10 : 25.0 : 0.34 : 0.760 : 50	(times) (°C) (%) (%) (μm)
Electric Field Avg. Electric Field	:-16.20	(V/cm)	Avg. Current	: -0.09	(mA)
Diluent Name Refractive Index	:WATER :1.3328		Dielectric Constant Viscosity	: 78.3 : 0.8878	(cP)
Analysis Results Zeta Potential Mobility Conductivity	:-43.57 :-3.398e-004 :0.1129	(mV) (cm²/Vs) (mS/cm)	Zeta Potential of Cell (Upp Zeta Potential of Cell (Low Base Frequency	er) : -22.34 er) : -110.37 : 123.4	(mV) (mV) (Hz)
Analysis Parameters Lorentz Fitting Conversion Equation	: 1 peak : Smoulchowski	1			

р**Н** 4

Cell Position	Electric Field (V/cm)	Mobility (cm²/Vs)	
0.70 mm	-16.2	-5.206e-004	
0.35 mm	-16.2	-7.131e-004	
0.00 mm	-16.2	-7.067e-004	
-0.35 mm	-16.2	-4.952e-004	
-0.70 mm	-16.2	-2.883e-005	
	-16.2	-4.929e-004	
	Cell Position 0.70 mm 0.35 mm -0.35 mm -0.35 mm -0.70 mm	Cell Position Electric Field (V/cm) 0.70 mm -16.2 0.35 mm -16.2 0.00 mm -16.2 -0.35 mm -16.2 -0.70 mm -16.2	Cell Position Electric Field (V/cm) Mobility (cm²/Vs) 0.70 mm -16.2 -5.206e-004 0.35 mm -16.2 -7.131e-004 0.00 mm -16.2 -7.067e-004 -0.35 mm -16.2 -4.952e-004 -0.70 mm -16.2 -2.883e-005

84

Preparasi dan..., Hendra Pratama, FMIPA UI, 2010.

Distribution Graph S/N :	
User : Common Group : 1102 Repetition : 1/1	
Date : 11/3/2010 File Name : TiO2-pH-4 20101103 164324	
Time : 16:43:24 Sample Information : TiO2-pH-4	
SOP Name : Nanotech Security : No Sec	curity
Version 2.31 / 2.00	
Mobility Distribution	
Frequency (Hz) -150 -100 -50 0 50 100 150 200	250
15	
10-	
5	
Zoti 0 Zeta Potential (nN)	-400.0
Measurement Results	
Zeta Potential : -43.57 (mV) Doppler shift : 26.59	(Hz)
Mobility : -3.398e-004 (cm²/Vs) Base Frequency : 123.4	(Hz)
Conductivity : 0.1129 (mS/cm)	
Zeta Potential of Cell Diluent Properties	
Upper Surface : -22.34 (mV) Diluent Name : WATER	
Lower Surface : -110.37 (mV) Temperature : 25.0	(°C)
Cell Condition Refractive Index 1 3328	
Cell Type : Flow Cell Viscority . 0.9979	(cD)
Avg. Electric Field : -16.20 (V/cm) Viscosicy : 0.8878	(00)
Avg. Current : -0.09 (mA) Dielectric Constant : 78.3	
Peak Data Table of Distribution Graph	
Peak Frequency (Hz) Intensity Half Width (Hz) Zeta Potential (mV) Mobility (cm²/Vs)	
1 26.59 9.29 5.51 -43.57 -3.398e-004	
2	
3	
4	
5	

	MAN R.					Delsa™ Nano Common
Peak Valu	ie Table			S/N		
User	: Common	Group	: TiO2		Repetition	1 : 1/1
Date	: 11/3/2010	File Name	: TiO2-pH-4_20	101103_1	164324	
Time	: 16:43:24	Sample Inform	ation : TiO2-pH-4			
SOP Na	me : Nanotech				Security	: No Security
	24 / 2 02					

Version 2.31 / 2.00

	Mobility	Zeta Potential	Electric Field
	(cm²/Vs)	(mV)	(V/cm)
Peak Value	-3.398e-004	-43.57	-16.20

No.	Cell Position	Mobility (cm²/Vs)	Zeta Potential (mV)
1	0.7 (6.555mm)	-5.206e-004	-66.76
2	0.35 (6.38mm)	-7.131e-004	-91.44
3	0 (6.205mm)	-7.067e-004	-90.62
4	-0.35 (6.03mm)	-4.952e-004	-63.50
5	-0.7 (5.855mm)	-2.883e-005	-3.70

pH 8

	AN L				De	elsa™ Nano Common
Condition	Summany			S/N		
Uses	Common				Denskillen (1	
User Date	:Common :11/4/2010	Group File N	ame	:TIO2 :TIO2-pH-8 20101104 (Repetition: 1/ 1 95459	
Time	:09:54:59	Samp	le Information	:TiO2-pH-8		
SOP Nam	e:Nanotech				Security : No	Security
Version 2.3 Measure	31 / 2.00 ement Condition					
Sampl Correl Scatte Intens Cell C	ling Time lation Channel ering Angle sity enter	:400 :512 :15.0 :133228 : X: 7.210	(µs) (ch) (°) (cps) (mm)	Correlation Meth Accumulation tin Temperature Attenuator 1 Attenuator 2 Disease	od :TD nes :10 :25.1 :0.12 :4.980	(times) (°C) (%) (%)
Cell C Apply	onstant Voltage Type	:70.000 :NEGATIVE	(mm) (1/cm)	Pinnole	150	(µm)
Electric	Field					
Avg.	Electric Field	:-16.10	(V/cm)	Avg. Current	:-0.38	(mA)
Diluent	Properties					
Dilu Refr	ent Name active Index	:WATER :1.3328		Dielectric Consta Viscosity	nt :78.3 :0.8858	(cP)
Analysis	Results	1	\geq	ンバー		
Zeta Mob Con	Potential ility ductivity	:-43.12 :-3.369e-004 :0.4690	(mV) (cm²/Vs) (mS/cm)	Zeta Potential of Cell Zeta Potential of Cell Base Frequency	(Upper):-43.47 (Lower):-50.79 :122.7	(mV) (mV) (Hz)
Analysis	Parameters					
Lore	entz Fitting	:1 peak				
Con	version Equation	:Smoulchowski				
Peak Va	lue Table					

0.70 mm	-16.1	-2.155004	
		-2-1226-004	
0.35 mm	-16.1	-5.231e-004	
0.00 mm	-16.1	-6.038e-004	
-0.35 mm	-16.1	-5.192e-004	
-0.70 mm	-16.1	-2.675e-004	
	0.00 mm -0.35 mm -0.70 mm	0.00 mm -16.1 -0.35 mm -16.1 -0.70 mm -16.1	0.00 mm -16.1 -6.038e-004 -0.35 mm -16.1 -5.192e-004 -0.70 mm -16.1 -2.675e-004

Average

-16.1

-4.458e-004

Preparasi dan..., Hendra Pratama, FMIPA UI, 2010.

26.20

3 4 5

2

	MAN R.					Delsa™ I Con	Nano nmon
Peak Valu	e Table			S/N	:		
User	:Common	Group	:TiO2		Repetition	n:1/1	
Date	:11/4/2010	File Name	:TiO2-pH-8_20	101104_099	5459		
Time	:09:54:59	Sample Informa	ation:TiO2-pH-8				
SOP Nar	me:Nanotech				Security	: No Security	

Version 2.31 / 2.00

	Mobility	Zeta Potential	Electric Field
	(cm²/Vs)	(mV)	(V/cm)
Peak Value	-3.369e-004	-43,12	-16.10

No.	Cell Position	Mobility (cm²/Vs)	Zeta Potential (mV)
1	0.7 (6.645mm)	-3.155e-004	-40.38
2	0.35 (6.47mm)	-5.231e-004	-66.96
3	0 (6.295mm)	-6.038e-004	-77.28
4	-0.35 (6.12mm)	-5.192e-004	-66.45
5	-0.7 (5.945mm)	-2.675e-004	-34.24

рН 9.5

Seckman Coulter.					Delsa™ Nano Common
Condition Summary			S/	/N :	
User :Common Date :11/4/2010 Time :09:21:09	Group File Nam Sample I	e information:	:TiO2 :TiO2-pH-9.5_201011 TiO2-pH-9.5	Repetition: 04_092109	1/1
SOP Name:Nanotech				Security	: No Security
Version 2.31 / 2.00 Measurement Condition					
Sampling Time Correlation Channel Scattering Angle Intensity Cell Center	:400 :512 :15.0 :64060 : X: 7,210 Z: 6.285	(µs) (ch) (°) (cps) (mm) (mm)	Correlation Me Accumulation Temperature Attenuator 1 Attenuator 2 Pinhole	thod :TD times :10 :25.1 :0.12 :1.890 :50	(times) (°C) (%) (%) (μm)
Cell Constant Apply Voltage Type <u>Electric Field</u>	:70.000 :POSITIVE	(1/cm)		\mathcal{D}	
Avg. Electric Field	:16.05	(V/cm)	Avg. Current	:0.66	(mA)
Diluent Properties					
Diluent Name Refractive Index	:WATER :1.3328		Dielectric Cons Viscosity	stant :78.3 :0.8858	(cP)
Analysis Results					6.10
Zeta Potential Mobility	:6.49 :5.073e-005	(mV) (cm²/Vs)	Zeta Potential of G	ell (Upper):-7.47 ell (Lower):2.74	(mV) (mV)
Conductivity	:0.8183	(mS/cm)	Base Frequency	:122.3	(Hz)
Analysis Parameters Lorentz Fitting	:1 peak				
Conversion Equation	:Smoulchowski				
Peak Value Table					
No.	Cell Position	Elec	tric Field (V/cm)	Mobility (cm²/Vs)
1	0.70 mm		16.1	8.121e-00	5
2	0.35 mm		16.1	5.441e-00	5
3	0.00 mm		16.0	3.852e-00	5
4 5	-0.35 mm -0.70 mm		16.0	2.696e-00 2.517e-00	5
Average			16.1	4.525e-00	5

PeakFrequ	iency (Hz)	Intensity	Half Width (Hz)	Zeta Potential (mV)	Mobility (cm²/Vs)	
1	4.28	28.18	5.20	7.08	5.523e-005	
2						
3						
4						
5						

(lanjutan)

	r.					Delsa™ Nano Common
Peak Value	e Table			S/N	:	
User	:Common	Group	:TiO2		Repetition	1:1/1
Date	:11/4/2010	File Name	:TiO2-pH-9.5_2	20101104_0	93005	
Time	:09:30:05	Sample Informa	tion:TiO2-pH-9.5			
SOP Nan	ne:Nanotech				Security	: No Security
Version 2.	31 / 2.00					

	Mobility	Zeta Potential	Electric Field
	(cm²/Vs)	(mV)	(V/cm)
Peak Value	5.523e-005	7.08	16.05

No.	Cell Position	Mobility (cm ² /Vs)	Zeta Potential (mV)
1	0.7 (6.61mm)	8.573e-005	10.99
2	0.35 (6.435mm)	4.862e-005	6.23
3	0 (6.26mm)	3.508e-005	4.50
4	-0.35 (6.085mm)	2.706e-005	3.47
5	-0.7 (5.91mm)	3.328e-005	4.27

Lampiran 6

Data Evaluasi Fotokatalitik

Data konsentrasi dan Absorbansi Larutan Standar

Konsentrasi (ppm)	Absorbansi
0.4	0.075
0.8	0.167
1.2	0.277
1.6	0.344
2	0.392

Data Absorbansi Methylene Blue saat Evaluasi Fotokatalitik

Т	Eatolicic	Katalic	Fotokatalitik			
(menit)	FOLOIISIS	Natalis	TiO ₂ -EG	TiO₂-PEG	TiO ₂ -EG (Cl)	
0	0.476	0.385	0.411	0.407	0.335	
10	0.45	0.367	0.396	0.389	0.319	
20	0.441	0.344	0.388	0.381	0.317	
30	0.436	0.338	0.366	0.373	0.307	
40	0.429	0.327	0.353	0.366	0.3	
50	0.421	0.317	0.329	0.358	0.29	
60	0.417	0.313	0.322	0.35	0.28	

Universitas Indonesia

Lampiran 7

Data hasil EDX

Element	(kev)	Mass%	Error%	Atom%	Cation
С	0.277	17.54	0.06	27.04	13.5631
0	0.525	53.27	0.51	61.67	36.2509
Ti	4.508	29.20	0.18	11.29	50.1860
Total		100.00		100.00	

97

Element	(kev)	Mass%	Error%	Atom%	Cation
С	0.277	13.09	0.05	22.13	9.3415
0	0.525	48.56	0.41	61.61	27.0568
Ti	4.508	38.35	0.13	16.26	63.6017
Total		100.00		100.00	

Refluks 16 jam

Element	(kev)	Mass%	Error%	Atom%	Cation
С	0.277	15.71	0.06	25.06	11.8083
0	0.525	51.72	0.53	61.92	32.7730
Ti	4.508	32.57	0.18	13.02	55.4186
Total		100.00		100.00	

Element	(kev)	Mass%	Error%	Atom%	Cation
С	0.277	16.04	0.04	27.62	11.3498
0	0.525	41.95	0.44	54.23	20.2444
Ti	4.508	42.01	0.12	18.15	68.4058
Total		100.00		100.00	

