

UNIVERSITAS INDONESIA

ANALISIS LAPISAN BESI BORIDA PADA ST37 DAN S45C YANG DIBORONISASI DENGAN TEKNIK *POWDER PACK*

TESIS

Diajukan sebagai salah satu syarat untuk memperoleh gelar Magister Sains

JAN SETIAWAN 0806420650

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI ILMU MATERIAL SALEMBA MEI 2010

Analisis lapisan..., Jan Setiawan, FMIPA UI, 2010.

HALAMAN PERNYATAAN ORISINALITAS

Tesis ini adalah hasil karya saya sendiri, dan semua sumber baik yang dikutip maupun dirujuk telah saya nyatakan dengan benar.

Nama NPM Tanda Tangar	: Jan Setiawan : 0806420650 n :
Tanggal	: 15 Mei 2010

HALAMAN PENGESAHAN

Tesis ini diajuka	n o	leh
Nama	:	Jan Setiawan
NPM	:	0806420650
Program Studi	:	Ilmu Material
Judul	:	Analisis lapisan besi borida pada ST37 dan S45C yang
		diboronisasi dengan teknik <i>powder pack</i>

Telah dipertahankan dihadapan Dewan Penguji dan diterima sebagai persyaratan yang diperlukan untuk memperoleh gelar Magister Sains pada Program Studi Ilmu Material Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia

DEWAN PENGUJI

Ketua Program Studi	: Dr. Bambang Soegijono)
Pembimbing	: Dr. Bambang Soegijono)
Penguji I	: Dr. Azwar Manaf, M.Met	()
Penguji II	: Dr. Muhammad Hikam, M.Sc	())
Penguji III	: Dr. Suhardjo Poertadji	()

Ditetapkan di : Jakarta

Tanggal : 15 Mei 2010

KATA PENGANTAR

Puji syukur saya panjatkan kepada Allah SWT, karena atas berkat dan rahmat-Nya, saya dapat menyelesaikan tesis ini. Penulisan tesis inidilakukan dalam rangka memenuhi salah satu syarat untuk mencapai gelar Magister Sains Program Studi Ilmu Material pada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia. Saya menyadari bahwa, tanpa bantuan dan bimbingan dari berbagai pihak, dari masa perkuliahan sampai pada penyusunan tesis ini, sangatlah sulit bagi saya untuk menyelesaikan tesis ini. Oleh karena itu, saya mengucapkan terima kasih kepada:

- Bapak Dr. Bambang Soegijono, selaku pembimbing dan selaku Ketua Program Studi Ilmu Material dengan penuh kesabaran memberikan inspirasi, motivasi, bimbingan dan semangat serta mengijinkan penggunaan fasilitas untuk menyelesaikan tesis ini.
- Bapak Budi Briyatmoko, selaku Kepala Pusat Teknologi Bahan Bakar Nuklir – BATAN yang telah mengijinkan penggunaan fasilitas untuk menyelesaikan tesis ini.
- 3. Bapak Soegondo, M.Eng, selaku pembimbing teknis dengan penuh semangat memberikan inspirasi, motivasi, dan bimbingan.
- 4. Ibu Ratih Langgenati yang memberikan motivasi dan membantu dalam kemudahan penyediaan bahan untuk menyelesaikan tesis ini.
- 5. Bapak Dr. Azwar Manaf, M.Met yang memberikan inspirasi, bimbingan dan sebagai penguji sidang.
- 6. Bapak Dr. Muhammad Hikam, M.Sc sebagai penguji sidang yang sudah memberikan masukan yang membangun.
- 7. Bapak Dr. Suhardjo Poertadji sebagai penguji sidang yang sudah memberikan masukan yang membangun.
- 8. Ibu Futichah yang memberikan inspirasi dan bimbingan.
- 9. Mr. Martin atas korespondensinya dalam memberikan inspirasi dan berbagi pengalaman.
- Bapak Edi Indarto, Bapak Ali Akbar, Bapak Slamet Pribadi, Bapak Isfandi dan Bapak Martoyo sebagai operator alat-alat pembuatan sampel dan

iv

karakterisasi di Pusat Teknologi Bahan Bakar Nuklir – BATAN atas keikhlasannya membantu.

- 11. Mba Siti dan Staf Tata Usaha Program Studi Ilmu Material yang luar biasa membantu dalam segala hal administrasi.
- 12. Noni, istri tercinta, yang selalu berdoa dan memberi motivasi yang tak kenal lelah.
- 13. Haarits, anakku tersayang yang selalu menjadi pelepas lelah dan memberikan keceriaan setiap saat.
- 14. Orang tua, kakak dan keluarga besar atas doa dan dukungannya.
- 15. Teman-teman Ilmu Material seangkatan yang penuh keriangan dan canda tawanya yang selalu memberikan warna tersendiri selama perkuliahan.
- 16. Bapak Nusin, Bapak Yusuf Nampira, Bapak Supriyono dan seluruh teman-teman di Pusat Teknologi Pusat Bahan Bakar Nuklir yang tidak bisa sebutkan satu persatu atas dukungannya.

Ucapan terima kasih penulis sampaikan kepada semua pihak yang tidak bisa disebutkan satu persatu, yang telah membantu dalam penyelesaian tesis ini. Semoga amal dan budi baik yang diberikan mendapat balasan kebaikan dan keberkahan dari Allah SWT, Amin.

Saya menyadari masih banyak kekurangan dalam penyusunan tesis ini, untuk itu saya mengharapkan kritik dan saran yang membangun dari semua pihak. Semoga tesis ini membawa manfaat bagi pengembangan ilmu.

> Salemba, 15 Mei 2010 Penulis

HALAMAN PERNYATAAN PERSETUJUAN PUBLIKASI KARYA ILMIAH UNTUK KEPENTINGAN AKADEMISI

Sebagai sivitas akademik Universitas Indonesia, saya bertanda tangan dibawah ini:

Nama	:	Jan Setiawan
NPM	:	0806420650
Program Studi	:	Ilmu Material
Fakultas	:	Matematika dan Ilmu Pengetahuan Alam
Jenis Karya	:	Tesis

Demi pengembangan ilmu pengetahuan, menyetujui untuk memberikan kepada Universitas Indonesia **Hak Bebas Royalti Noneksklusif** (*Non-exclusive Royalty-Free Right*) atas karya ilmiah saya yang berjudul:

"Analisis lapisan besi borida pada ST37 dan S45C yang diboronisasi dengan teknik *powder pack*"

beserta perangkat yang ada (bila diperlukan). Dengan Hak Bebas Royalti Noneksklusif ini Universitas Indonesia berhak menyimpan, mengalihmedia/ formatkan, mengelola dalam bentuk pangkalan data (*database*), merawat, dan memublikasikan tugas akhir saya selama tetap mencantumkan nama saya sebagai penulis/pencipta dan sebagai pemilik Hak Cipta.

Demikian pernyataan ini saya buat dengan sebenarnya.

Dibuat di Pada tanggal : Jakarta : 15 Mei 2010

Yang menyatakan

(Jan Setiawan)

vi

ABSTRAK

Nama: Jan SetiawanProgram Studi: Ilmu MaterialJudul: Analisis lapisan besi borida pada ST37 dan S45C yang
diboronisasi dengan teknik *powder pack*

Boronisasi pada baja karbon ST37 dan S45C telah dilakukan menggunakan teknik powder pack. Komposisi serbuk yang digunakan terdiri atas 5% B₄C, 5% KBF₄ dan 90% SiC. Boronisasi dilakukan pada temperatur 1000 °C selama 8 jam dalam kondisi atmosfir inert menggunakan gas argon. Boronisasi yang dilakukan pada kedua baja menghasilkan lapisan borida diluar permukaan baja dan pada permukaannya. Ketebalan lapisan borida diluar permukaan pada baja ST37 setebal 43 µm yang lebih tebal dibandingkan pada baja S45C yang hanya setebal 31 µm. Kedalaman lapisan borida yang terbentuk pada baja ST37 sedalam 250 µm yang lebih dalam dan runcing dibandingkan lapisan borida yang terbentuk pada baja S45C yang hanya sedalam 243 µm. Analisis fasa pada permukaan lapisan borida untuk beberapa kedalaman dilakukan menggunakan XRD dan aplikasi GSAS. Dari pola difraksi teridentifikasi fasa FeB, Fe₂B dan CrB pada kedua jenis baja yang digunakan. Hasil analisis GSAS menunjukkan fasa FeB merupakan fasa dengan fraksi berat yang dominan sampai kedalaman 55 um dari permukaan baja untuk baja ST37 dan sampai kedalaman 41 um dari permukaan baja untuk baja S45C. Semakin kedalam, fraksi berat fasa FeB semakin berkurang seiring dengan peningkatan fraksi berat Fe₂B dan CrB. Kekerasan mikro lapisan borida dari penampang lintang diperoleh berkisar antara Sedangkan kekesaran mikro lapisan borida dari permukaan 1300-1800HV. lapisan borida diperoleh berkisar 750-4500HV. Kekerasan mikro dari permukaan yang tertinggi pada kedua baja terukur pada saat fraksi berat fasa FeB yang tertinggi. Semakin ke dalam, kekerasan mikro lapisan borida relatif berkurang tetapi tetap lebih tinggi dari kekerasan mikro matriks dan fasa CrB masih Dapat disimpulkan, kekerasan mikro lapisan borida dari teridentifikasi. permukaan terluar sampai dikedalaman 50 µm dipengaruhi oleh fasa FeB. Kekerasan mikro lapisan borida dikedalaman lebih dari 50 µm lebih dipengaruhi oleh fasa CrB

Kata kunci : boronisasi, powder pack, XRD, kekerasan mikro.

ABSTRACT

Name:Jan SetiawanStudy Program:Ilmu MaterialTitle:Analysis iron boride layer on *powder pack* boronized ST37
and S45C

Boronizing on ST37 and S45C carbon steel has been done through powder pack technique using powder of 5% B₄C, 5% KBF₄ and 90% SiC. The process carried out at isothermal temperature at 1000 °C for 8 hours in an inert atmosphere. The boride layers formed in outside and on the surface both of steels. The thickness of boride layer outside the surface on ST37 steel was 43 µm and 31 µm on the S45C steel. The depth of boride layers that formed on the surface ST37 steel was 250 µm. It was deeper than the depth of boride layers that formed on S45C steel which only 243 µm. The boride layers phases analysis for some depths carried out using XRD and GSAS application. The diffraction pattern identified that the FeB, Fe₂B and CrB phases formed on both steels. Analysis results from GSAS showed the dominant phases was the FeB. Its weight fraction raised until 55 µm from the surface for ST37 steel and until 41 µm from the surface for S45C steel. The weight fraction of FeB phase showed decreasing as long as the increasing weight fraction of Fe₂B and CrB phases. The crosssection boride layers microhardness ranged from 1300-1800HV for both steels. The boride layers microhardness from top of the surface ranged from 750-4500HV for both steels. The highest microhardness from top of the surface for both steels identified at the highest weight fraction of the FeB phase. The boride layers microhardness was relatively decreasing but it was still higher than the matrix microhardness and the CrB phase still identified. We can say that the boride layers microhardness from the outer surface until 50 µm is influence by the FeB phase. The boride layers microhardness below 50 µm is more influenced by the CrB phase.

Key words : boronizing, powder-pack, XRD, mircohardness.

Universitas Indonesia

viii

DAFTAR ISI

HAL	AMAN JUDUL	i
LEM	BAR ORISINALITAS	ii
LEM	BAR PENGESAHAN	iii
KAT	A PENGANTAR	iv
LEM	BAR PERSETUJUAN PUBLIKASI	vi
ABS	ГКАК	vii
DAF	TAR ISI	ix
DAF	TAR GAMBAR	xi
DAF	TAR TABEL	xii
DAF	TAR LAMPIRAN	xiv
1	PENDAHULUAN	1
	1.1 Latar Belakang	1
	1.2 Batasan Masalah	2
	1.3 Tujuan Penelitian	2
	1.4 Sistematika Penulisan	3
2	TINJAUAN LITERATUR	4
	2.1 Difusi	4
	2.1.1 Difusi Pada Zat Padat	4
	2.1.2 Mekanisme Difusi	5
	2.1.3 Hukum Fick	6
	2.1.4 Difusi Dalam Boronisasi	7
	2.2 Boronisasi Powder Pack	8
	2.2.1 Proses Boronisasi Powder Pack	8
	2.2.2 Mekanisme Pembentukan Lapisan Besi Borida	10
	2.3 Karakteristik Lapisan Besi Borida	16
3	METODE PENELITIAN	18
	3.1 Bahan dan Metode Penelitian	18
	3.2 Preparasi Sampel Baja	19
	3.3 Persiapan <i>Powder Pack</i>	19
	3.4 Pemanasan Pada Tungku	20
	3.5 Karakterisasi dan Pengujian Lapisan Besi Borida	21
	3.5.1 Persiapan Sampel Baja yang Sudah Diboronisasi	21
	3.5.2 Pengamatan Struktur Mikro	23
	3.5.3 Pengukuran Kedalaman	24
	3.5.4 Pengujian Kekerasan Mikro	24
	3.5.5 Karakterisasi Difraksi Sinar-X (XRD)	26
	3.6 Pengolahan dan Analisis Data	31
4	HASIL DAN PEMBAHASAN	33
	4.1 Karakterisasi Baja ST37 dan Baja S45C Sebelum	
	Proses Boronisasi	33

Universitas Indonesia

ix

	4.1.1 Komposisi, Pola Difraksi Sinar-X, Ukuran Kristalit			
	dan Analisis GSAS	33		
	4.1.2 Struktur Mikro dan Kekerasan Mikro	37		
	4.2 Struktur Lapisan Borida	39		
	4.2.1 Struktur Lapisan Borida Pada Baja ST37	39		
	4.2.2 Struktur Lapisan Borida Pada Baja S45C	41		
	4.3 Pola Difraksi Sinar-X dan Analisis GSAS Lapisan Borida	43		
	4.3.1 Pola Difraksi Sinar-X dan Analisis GSAS			
	Lapisan Borida Baja ST37	43		
	4.3.2 Pola Difraksi Sinar-X dan Analisis GSAS			
	Lapisna Borida Baja S45C	46		
	4.4 Kekerasan Mikro Lapisan Borida	48		
	4.5 Hubungan Antara Komposisi Fasa Dengan Kekerasan Mikro			
	Pada Lapisan Borida	51		
5	KESIMPULAN DAN SARAN	54		
	5.1 Kesimpulan	54		
	5.2 Saran	55		
DAF	TAR REFERENSI	56		
LAM	IPIRAN	58		

Х

DAFTAR GAMBAR

Gambar 2.1	Ilustrasi difusi kekosongan (Callister, 2007)	5
Gambar 2.2	Ilustrasi difusi celahan (Callister, 2007)	6
Gambar 2.3	Perubahan energi bebas Gibbs terhadap temperatur pada	
	reaksi dekomposisi KBF ₄ menjadi gas BF ₃ (Spence et.al,	
	2005)	11
Gambar 2.4	Perubahan energi bebas Gibbs terhadap temperatur pada	
	reaksi langsung besi dengan gas BF ₃ (Spence et.al, 2005)	13
Gambar 2.5	Skema untuk memberikan ilustrasi proses pertumbuhan	
	dua lapisan borida dalam kodisi difusi terkendali. Pada	
	permukaan 2, kedua lapisan menipis, pada permukaan 1	
	dan 3 tidak terjadi reaksi disebabkan tidak adanya atom	
	yang mampu berdifusi (Dybkov et.al, 2007)	14
Gambar 2.6	Pengaruh unsur pemadu dalam baja terhadap	
	ketebalan lapisan borida (Sinha, 1991)	17
Gambar 3.1	Alur penelitian boronisasi ST37 dan S45C dengan teknik	
	powder pack	18
Gambar 3.2	Sampel dan kontainer SS yang digunakan. (a) Sampel dan	
	kontainer SS, dan (b) sampel dan serbuk di dalam	
	kontainer SS	19
Gambar 3.3	Tungku annealing K2/H Nabertherm	20
Gambar 3.4	Sampel untuk karakterisasi lapisan besi borida. Potongan	
	penampang lintang (a) ST37 yang di-mounting, (b) S45C	
	yang di-mounting, (c) ST37 dan (d) S45C yang digunakan	
	untuk karakterisasi dan pengujian permukaan lapisan	
	borida	21
Gambar 3.5	Mesin abrasif/poles DAP-U Struers	22
Gambar 3.6	Skema lapisan borida yang akan terabrasif dari sampel	22
Gambar 3.7	Mikroskop optik Nikon Epiphot type 114 yang dilengkapi	• •
G 1 2 0	kamera digital	23
Gambar 3.8	Skema pengukuran kedalaman lapisan borida (Jain et.al,	2.4
C 1 20	2002)	24
Gambar 3.9	Alat uji kekerasan mikro Leitz Miniload.	25
Gambar 3.10	Skema indentor vickers pengujian kekerasan mikro	25
Combor 2 11	(ASTM 384)	23
Gambar 3.11	Compatri norplatan VDD raflakai (a) fata dari	21
Gambal 5.12	different and the different and the strange difference different and the strange difference dif	
	Bragg Brentano (Dinnehier et al. 2008)	28
Gambar 3 13	Geometri peralatan XRD transmisi (Dinnehier et al. 2008)	20
Gambar 3.13 Gambar 3.14	Illustrasi difraksi yang terjadi nada hidang-hidang yang	49
Samoar 5.14	ternapar oleh sinar-X (Dinnehier et al. 2008)	20
Gambar 4-1	Pola difraksi sinar-X haja ST37	35
Gambar 4.7	Pola difraksi sinar-X baja S45C	35
Sumour 7.2	i olu altiaksi sillar 2x oaja 5770	55

Universitas Indonesia

xi

Gambar 4.3	Struktur mikro baja sebelum boronisasi menggunakan	
0 1 4 4	mikroskop optik (a) baja S137 (b) baja S45C	37-38
Gambar 4.4	Struktur mikro lapisan borida pada baja S13/ dengan	40
Combor 15	Secondami alastum imaga (SEI) lanigan harida nada haja	40
Gambal 4.3	SECONDURY electron image (SEI) lapisali bolida pada baja	
	sis/ uengan menggunakan selvi jeol/jsivi osio pada	40
Gambar 1.6	Struktur mikro lanisan borida pada baja SASC dengan	40
Gambai 4.0	menggunakan mikroskon ontik	41
Gambar 4 7	electron image (SEI) lanisan horida nada haja S45C	41
Gainbai 4.7	dengan menggunakan SEM IEOL/ISM 6510 nada	
	nerhesaran 250x	42
Gambar 4 8	Pola difraksi lanisan borida dikedalaman tertentu nada	74
Guillour 1.0	baia ST37	44
Gambar 4.9	Inset pola difraksi lapisan borida baja ST37. (a) fasa Fe ₂ B	
	pada sudut 49.5° sampai 50.5° dan (b) fasa FeB pada sudut	
	74.5° sampai 76.0°	45
Gambar 4.10	Pola difraksi lapisan borida dikedalaman tertentu pada	
	baja S45C	47
Gambar 4.11	Inset pola difraksi lapisan borida baja ST37, (a) fasa Fe ₂ B	
	pada sudut 49.0° sampai 51.0° dan (b) fasa FeB pada sudut	
	74.0° sampai 75.5°	48
Gambar 4.12	Profil kekerasan mikro pada permukaan lapisan borida	49
Gambar 4.13	Profil kekerasan mikro pada penampang lintang lapisan	
	borida	50
Gambar 4.14	Grafik hubungan antara fraksi berat fasa dengan kekerasan	
	mikro lapisan borida dikedalaman tertentu pada baja ST37	52
Gambar 4.15	Grafik hubungan antara fraksi berat fasa dengan kekerasan	
	mikro lapisan borida dikedalaman tertentu pada baja S45C	53

DAFTAR TABEL

Tabel 2.1	Karakteristik Lapisan Besi Borida (Sinha, 1991)	16
Tabel 2.2	Data termodinamika FeB dan Fe2B (Binnewies et.al,	
	2002)	16
Tabel 3.1	Panjang gelombang prinsip untuk unsur target sumber	
	sinar-X (Dinnebier et.al, 2008)	27
Tabel 3.2	Persamaan untuk menghitung d _{hkl} berbagai sistem kristal	
	(Dinnebier et.al, 2008)	30
Tabel 4.1	Komposisi baja ST37	33
Tabel 4.2	Komposisi baja S45C	34
Tabel 4.3	Ukuran Kristalit dan keluaran aplikasi GSAS	36
Tabel 4.4	Fraksi berat fasa dan nilai <i>chi-square</i> hasil <i>refinement</i> dari	
	GSAS lapisan borida untuk baja ST37	45
Tabel 4.5	Fraksi berat fasa dan nilai <i>chi-square</i> hasil <i>refinement</i> dari	
	GSAS lapisan borida untuk baja S45C	47
Tabel 4.6	Kekerasan mikro pada permukaan lapisan borida untuk	
	kedalaman tertentu	49
Tabel 47	Kekerasan mikro lapisan borida dari penampang lintang	51
1.0001 1.7	internet and in the second of	- 1

Universitas Indonesia

xiii

DAFTAR LAMPIRAN

Lampiran 1	Keluaran Karakterisasi XRF 5		
Lampiran 2	Keluaran Pencarian Puncak Aplikasi APD dan		
	Perhitungan Ukuran Kristalit	60	
Lampiran 3	Data Kristalografi IuCr/ COD /AMCSD 22.01.10 untuk		
	Refinement Aplikasi GSAS	64	
Lampiran 4	Keluaran Aplikasi GSAS	69	
Lampiran 5	Perhitungan Kedalaman Lapisan Borida 81		
Lampiran 6	Diagram Fasa Fe-C, Fe-B, Fe-C-B		

BAB 1 PENDAHULUAN

1.1 Latar Belakang

Permukaan suatu bahan (logam) sangat berperan dalam menentukan masa pakai logam tersebut. Ketahanan aus, ketahanan korosi dan ketahanan oksidasi menjadi faktor yang sangat penting. Sangat banyak teknik untuk meningkatkan performa permukaan logam. Secara umum untuk meningkatkan performa permukaan logam dapat dilakukan dengan teknik (1) mendifusikan atom-atom yang kecil pada permukaan logam agar terbentuk lapisan interstisial larutan padat atau (2) mereaksikan secara kimiawi atom-atom yang didifusikan dengan logam dasar sehingga terbentuk fasa baru pada lapisan *superficial* (Ozdemir et.al, 2009). Peningkatan performa dengan mereaksikan secara kimiawi atom-atom yang didifusikan dengan logam dasar sangat umum dilakukan di dunia industri (Petrova et.al, 2008). Proses perlakuan reaksi kimia ini dilakukan pada temperatur tertentu, sehingga perlakuan semacam ini dikenal sebagai perlakuan termokimia. Perlakukan termokimia untuk peningkatan performa permukaan logam yang sangat populer adalah teknik karbonisasi, nitridasi dan boronisasi.

Boronisasi merupakan perlakuan termokimia yang mampu membentuk lapisan yang sangat keras dan tahan aus pada permukaan logam. Teknik boronisasi dapat dilakukan pada berbagai macam bahan, seperti *ferrous metal*, *non-ferrous metal* dan bahan *cermet*. Teknik boronisasi pada bahan logam, umumnya dilakukan pada temperatur 700 sampai 1000 °C selama 1 sampai 10 jam (Ozdemir et.al, 2009; Petrova et.al 2008; Jain et.al, 2002). Proses boronisasi dapat dilakukan dalam media padat, cair ataupun gas. Pada baja, hasil boronisasi akan terbentuk lapisan besi borida yang komposisinya mungkin fasa tunggal FeB, Fe₂B atau gabungan FeB dan Fe₂B. Selain itu, unsur-unsur pemadu pada baja memiliki kemungkinan untuk terbentuk sebagai fasa borida.

Dalam penelitian ini dilakukan pelapisan boron pada baja karbon ST37 dan S45C dengan teknik *powder pack*. ST37 merupakan baja karbon rendah

Universitas Indonesia

1

dengan sifat mekanik yang lebih rendah dibandingkan baja S45C yang merupakan baja karbon sedang. Setelah diboronisasi diharapkan baja ST37 mengalami peningkatan sifat mekanik sehingga mampu menggantikan penggunaan baja S45C. Proses boronisasi dilakukan pada temperatur 1000 °C selama 8 jam dengan kondisi atmosfer inert. Dari kedua baja karbon tersebut diharapkan akan terbentuk lapisan borida dengan kekerasan yang sangat besar dibandingkan kekerasan matriks sebelum diboronisasi. Pada lapisan borida tersebut akan diamati fasa yang terbentuk dan kekerasannya dari permukaan terluar sampai dikedalaman tertentu. Fasa yang terbentuk pada matriks yang didominasi unsur Fe adalah fasa tunggal FeB, Fe₂B atau keduanya. Dengan diketahui komposisi fasa yang memberikan pengaruh terbesar pada kekerasan lapisan borida.

1.2 Batasan Penelitian

Dalam penelitian ini dilakukan analisis komposisi lapisan besi borida yang terbentuk saat pelapisan boron pada baja karbon ST37 dan S45C dengan teknik *powder pack* pada temperatur 1000 °C selama 8 jam. Analisis yang dilakukan pada lapisan borida dengan melakukan karakterisasi pola difraksi XRD dan karakterisasi kekerasan mikronya mulai dari permukaan terluar sampai kedalaman 100 µm.

1.3 Tujuan Penelitian

Berdasarkan uraian di atas, penelitian ini dilakukan untuk mengetahui hasil boronisasi yang dilakukan, yaitu:

- 1. Mengetahui morfologi, kedalaman dan perubahan kekerasan mikro pada lapisan borida yang terbentuk.
- 2. Mengetahui komposisi lapisan borida dan kekerasan mikronya dikedalaman tertentu.
- Mempelajari hubungan antara komposisi lapisan borida terhadap kekerasan mikro dikedalaman tertentu.

1.4 Sistematika Penulisan

Sistematika di dalam penulisan tesis ini adalah

Bab 1 Pendahuluan

Dalam bab ini disampaikan latar belakang penelitian, batasan penelitian, tujuan penelitian, dan sistematika penulisan.

- Bab 2 Tinjauan Literatur
 Dalam bab ini disampaikan mengenai metode boronisasi *powder pack*, karaktesisasi lapisan borida, karakterisasi dengan sinar-X, karakterisasi kekerasan mikronya dan analisis pola difraksi menggunakan GSAS.
- Bab 3 Metode Penelitian Dalam bab ini dijelaskan alur penelitian, proses preparasi, karakterisasi sampel dan pengolahan data.
- Bab 4 Hasil dan Pembahasan Dalam bab ini disampaikan hasil-hasil karakterisasi dan analisisnya serta pembahasannya.
- Bab 5 Kesimpulan dan Saran Dalam bab ini disampaikan inti sari dari seluruh kegiatan penelitian dan merupakan jawaban dari tujuan yang ingin dicapai.

BAB 2 TINJAUAN LITERATUR

2.1 Difusi

Perlakuan panas atau melakukan *doping* dengan temperatur tinggi pada permukaan bahan mampu merubah struktur dan komposisi kimia bahan tersebut. Sifat permukaan tersebut akan berubah dari sifat bahan sebelumnya. Tujuan dari perlakukan panas berbeda-beda, seperti membentuk pembatas radiasi, panas dan difusi atau mengurangi korosi, gesekan dan kehilangan massa. Perlakuan panas pada permukaan dikendalikan oleh 1) kekasaran permukaan bahan, 2) pembentukan unsur yang akan didifusikan, 3) karakteristik difusivitas unsur yang didifusikan dan 4) parameter proses difusi.

2.1.1 Difusi Pada Zat Padat

Proses difusi merupakan proses perpindahan dalam skala molekul atau atom yang mengarah ke homogenan atau percampuran komponen kimia dalam suatu fasa. Difusi mengarahkan suatu sistem menuju kesetimbangan kimia. Secara alamiah difusi merupakan proses yang terjadi secara spontan, dengan demikian selalu terjadi dengan berkurangnya energi bebas Gibbs. Difusi merupakan satu-satunya proses perpindahan yang mungkin terjadi pada zat padat. Pada zat pasat, difusi merujuk pada gerakan atom-atom atau molekul molekul yang tercampur di dalam suatu fasa yang dipengaruhi oleh kesimetrian kisinya. Difusi merupakan proses yang teraktivasi secara termal. Proses ini bertambah secara eksponensial seiring dengan peningkatan temperatur proses. Koefisien difusi D, yang sesuai dengan hubungan Arrhenius dituliskan pada persamaan 2.1:

$$D = D_o \exp\left(\frac{-E_a}{R_g T}\right)$$
(2.1)

dimana:

D : koefisien difusi.

Universitas Indonesia

4

- D_o : konstanta untuk proses difusi tertentu.
- E_a : energi aktivasi untuk proses difusi.
- R_g : konstanta gas.
- T : temperatur.

2.1.2 Mekanisme Difusi

Difusi dapat dipandang sebagai perpindahan atom-atom dari satu kisi ke kisi yang lain. Pada kenyataannya atom-atom pada zat padat bergerak secara konstan dalam merubah posisi dengan sangat cepat. Atom-atom yang mampu bergerak demikian harus memenuhi dua kondisi berikut 1) harus tersedia lokasi kosong yang didekatnya, 2) atom harus memiliki energi yang cukup untuk memecah ikatan dengan atom-atom tetangganya dan hal ini mampu membuat distorsi kisi seiring perpindahan atom tersebut. Ada dua mekanisme difusi yang mendominasi untuk difusi metalik yaitu:

1. Difusi kekosongan (*vacancy diffusion*), mekanisme yang melibatkan sebuah atom dari posisi kisi normal ke lokasi kisi terdekat yang kosong.

Gambar 2.1 Ilustrasi difusi kekosongan (Callister, 2007).

 Difusi celahan (*interstisial diffusion*), mekanisme yang melibatkan atom-atom yang bergerak dari satu posisi celahan ke celahan kosong yang terdekat. Dalam paduan logam, mekanisme ini lebih sering terjadi daripada difusi kekosongan, hal ini disebabkan oleh atom-atom

yang mampu berdifusi celahan umumnya berukuran lebih kecil dan mampu bergerak lebih bebas.

Gambar 2.2 Ilustrasi difusi celahan (Callister, 2007).

2.1.3 Hukum Fick

Hukum pertama Fick mengkaitkan antara fluks massa, koefisien difusi dan gradien konsentrasi dituliskan pada persamaan 2.2:

$$J = -D \frac{\partial C}{\partial x}$$
(2.2)

dimana:

- J : fluks massa.
- D : koefisien difusi.
- C : konsentrasi.
- x : kedalaman.

Persamaan 2.2 menggambarkan proses difusi yang *steady state* dimana konsentrasi unsur yang didifusikan tidak bergantung waktu dan hanya bergantung pada perubahan kedalaman. Tanda negatif pada persamaan 2.2 menunjukkan arah gradien konsentrasi proses difusi yang menurun, dari konsentrasi tinggi ke konsentrasi rendah.

Hukum kedua Fick menggambarkan perubahan konsentrasi terhadap waktu yang dituliskan pada persamaan 2.3:

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2}$$
(2.3)

dimana:

$\frac{\partial C}{\partial t}$: perubahan konsentrasi terhadap waktu.
D	: koefisien difusi.
С	: konsentrasi.
X	: kedalaman.

Persamaan 2.3 menggambarkan proses *non-steady state* dimana konsentrasi unsur yang didifusikan sangat bergantung waktu, dan juga merupakan fungsi dari kedalaman. Solusi analitik dari persamaan 2.3 untuk bahan *semi infinite*, dengan ketentuan jika t=0, C_x pada sampel = C_o dan jika t>0, C (x=0) dipermukaan dipertahankan = C_s dan C (x= ∞) dipermukaan = C_o dituliskan pada persamaan 2.4 berikut:

$$\frac{C_x - C_o}{C_s - C_o} = 1 - \operatorname{erf}\left(\frac{x}{2\sqrt{\mathrm{Dt}}}\right)$$
(2.4)

dimana:

 C_x : konsentrasi unsur yang didifusikan pada kedalaman x.

C_s : konsentrasi unsur yang didifusikan pada permukaan.

C_o : konsentrasi unsur yang didifusikan di dalam bahan.

erf (z) : Gaussian error function.

x : kedalaman x dari permukaan.

D : koefisien difusi.

t : waktu difusi.

2.1.4 Difusi Dalam Boronisasi

Dalam boronisasi ada dua reaksi yang terjadi. Reaksi pertama terjadi antara media boronisasi dengan permukaan bahan. Laju nukleasi partikel pada permukaan merupakan fungsi dari waktu dan temperatur boronisasi. Reaksi ini menghasilkan lapisan borida yang tipis dan padat. Reaksi kedua merupakan reaksi difusi, dan pertumbuhan lapisan borida pada temperatur proses tertentu dapat dihitung dengan persamaan 2.5 berikut:

$$d = k' \sqrt{t}$$
(2.5)

dimana:

d : kedalaman lapisan borida.

 \vec{k} : konstanta laju pertumbuhan yang bergantung temperatur.

t : waktu proses boronisasi.

Difusivitas boron untuk lapisan borida pada temperatur 950 °C sebesar $1.82 \times 10^{-8} \text{ cm}^2/\text{s}$ dan untuk daerah difusi sebesar $1.53 \times 10^{-7} \text{ cm}^2/\text{s}$ (Sinha,1991).

2.2 Boronisasi Powder Pack

Boronisasi bertujuan untuk meningkatkan kekerasan permukaan suatu bahan. Proses boronosasi serupa dengan proses peningkatan permukaan lainnya, dimana terjadi difusi termal oleh boron menuju lapisan permukaan sampel melalui perlakuan termokimia. Media pendonor boron pada proses boronisasi secara termokimia dapat berupa serbuk, pasta, gas atau cairan. Tetapi saat ini, dikembangkan juga proses boronisasi yang non-termokimia. Proses seperti *physical* dan *chemical vapor deposition* (PVD dan CVD), *plasma spraying* dan implantasi ion merupakan proses boronisasi secara termokimia dengan media boron berupa serbuk, merupakan proses boronisasi pada baja dan paduan besi yang paling sering digunakan di dunia industri.

2.2.1 Proses Boronisasi Powder Pack

Proses boronisasi yang dilakukan menggunakan serbuk yang terdiri atas campuran serbuk pendonor boron, aktivator dan diluen. Bahan yang diboronisasi diletakan di dalam serbuk ini dalam sebuah kontainer. Selanjutnya keseluruhan kontainer dipanaskan pada temperatur antara 700 °C sampai 1000 °C selama 1 jam sampai 10 jam (Ozdemir et.al, 2009; Petrova et.al, 2008; Jain et.al, 2002). Pemanasan pada proses boronisasi dilakukan dalam kondisi gas inert. Pemanasan dilakukan sampai temperatur yang diinginkan dalam jangka waktu yang

ditentukan. Kemudian didinginkan mencapai temperatur ruangan atau bila menginginkan pendinginan yang lebih cepat dapat menggunakan media pendingin tertentu.

Teknik *powder pack* lebih mudah dilakukan dan lebih efektif dari segi pembiayaan dibanding teknik boronisasi lainnya (Ozdemir et.al, 2009). Dalam skala industri, teknik ini akan menjadi lebih sulit dan mahal dibandingkan dengan teknik boronisasi gas atau plasma. Namun, bila mengggunakan teknik boronisasi gas, penanganan gas pendonor boron yang sifatnya beracun (*diborane, boron trichloride* atau *boron triflouride*) akan lebih sulit. Selain itu masalah kendali kondisi proses dan komposisi dan porositas lapisan besi borida yang terbentuk menjadi pertimbangan mengapa teknik ini tidak digunakan dalam skala industri. Alasan-alasan ini yang menjadi dasar bahwa teknik boronisasi gas atau plasma belum bisa digunakan secara komersial.

Berikut ini komposisi serbuk boronisasi yang tersedia secara komersial (Sinha, 1991):

- 5% B₄C, 90% SiC, 5% KBF₄
- 50% B₄C, 45% SiC, 5% KBF₄
- 85% B₄C, 15% Na₂CO₃
- 95% B₄C, 5% Na₂B₄O₇
- Boron amorf (mengandung 95% sampai 97% B)
- 95% boron amorf dan 5% KBF₄

Penelitian yang menggunakan komposisi serbuk yang berbeda dari komposisi serbuk komersial sudah dilakukan. Seperti, Martini et.al (2004) melakukan boronisasi pada besi murni 99.9% dengan temperatur 850 °C selama 15 jam, menggunakan tiga macam komposisi serbuk, yaitu: 1) 10% B₄C, 90% SiC, 2) 100% B₄C dan 3) 90% B₄C, 10% KBF₄. Berikutnya, Bejar (2006) melakukan boronisasi pada SAE 1020, 1040, 4140, dan 4340 menggunakan tungku tahanan listrik. Proses dilakukan pada interval temperatur 1223 sampai 1323 K dengan lama pemanasan 2 dan 8 jam. Komposisi serbuk yang digunakan, yaitu: 1) 88.26% borax, 1.22% NH₄Cl, 46% NaCl, dan 9.06% SiC, 2) 73.26% NH₄Cl, 46% NaCl, dan 34.06% SiC.

Berbeda dengan Gopalakrishnan et.al (2002), yang melakukan perbandingan hasil pada proses boronisasi dengan temperatur proses yang kontinu terhadap temperatur proses yang disikluskan. Perlakuan ini dilakukan untuk mengembangkan proses boronisasi yang murah dan bahan dasar yang mudah diperoleh. Diperolehnya parameter proses untuk mendapatkan lapisan borida satu fasa Fe₂B saja, dengan harapan memiliki ketangguhan yang tinggi dan meningkatkan morfologi struktur mikro.

Pada proses boronisasi kontinu, dilakukan pada temperatur 1223 K selama 4 jam. Setelah tercapai, temperatur diturunkan kembali ke temperatur ruangan secara alami. Sedangkan termperatur proses boronisasi yang disikluskan, temperatur tungku dinaikan ke 1223 K, setelah tercapai ditahan selama 1 jam. Kemudian, tungku didinginkan sampai 873 K, saat tercapai temperatur tungku dinaikan ke 1223 K. Bila sudah tercapai ditahan selama 1 jam pada temperatur tersebut. Siklus ini diulangi sampai siklus ke-empat. Diakhir siklus, saat diturunkan ke temperatur 873 K, temperatur ditahan terlebih dahulu selama 1 jam. Setelah tercapai, temperatur juga diturunkan kembali ke temperatur ruangan secara alami.

2.2.2 Mekanisme Pembentukan Lapisan Besi Borida

Boronisasi *powder pack* pada baja merupakan proses termokimia yang dikendalikan oleh reaksi permukaan dan difusi untuk membentuk lapisan besi borida yang tahan aus pada permukaan baja. Lapisan besi borida yang terbentuk bisa berupa fasa tunggal FeB, fasa Fe₂B atau gabungan antara keduanya. Begitu juga dengan unsur pemadu pada baja, dapat terbentuk sebagai fasa borida.

Berikut ini mekanisme yang disampaikan oleh Spence et.al(2005) mengenai proses boronisasi *powder pack*. Informasi umum mengenai boronisasi *powder pack*:

 Lapisan Fe₂B terbentuk pada potensial boron yang cukup rendah, dan berada diantara lapisan FeB (bila terbentuk) dengan matriks (logam dasar). Kemampuan difusi yang rendah pada lapisan FeB membatasi fluks boron yang

bergerak menuju baja dan memicu terbentuknya pertumbuhan Fe₂B yang terarah.

 Konsentrasi boron karbida dalam campuran mempengaruhi jenis lapisan borida yang terbentuk. Dengan demikian, konsentrasi boron karbida ini dapat diasumsikan sebagai komponen yang aktif dalam mekanisme reaksi.

Informasi ini digunakan sebagai dasar untuk menjelaskan bagaimana KBF₄ dapat mengaktivasi boron karbida dalam proses boronisasi pada baja. Mekanisme aktivasi dapat dibagi menjadi tiga tahap. Tahapan mekanisme aktivasi digambarkan oleh persamaan 2.6, 2.7 dan 2.8, berikut ini:

$$KBF_4(s) \xrightarrow{530 \ ^{o}C} KF(s) + BF_3(g)$$
(2.6)

$$2Fe + \frac{1}{13}BF_3(g) + \frac{3}{13}B_4C(s) \xrightarrow{570 \ ^{o}C} Fe_2B + \frac{3}{52}CF_4(g) + \frac{9}{52}C(s) \ (2.7)$$

$$B_4C(s) + Fe_2B(s) \xrightarrow{600 \ ^oC} 4B_{[Fe_2B]} + C(s)$$

$$(2.8)$$

$$KBF_4(s) + O_2(g) \longrightarrow O_2BF_4(s) + K(s)$$
(2.9)

Persamaan 2.6, merupakan reaksi kimia yang menjelaskan terjadinya proses boronisasi yang diawali dengan pelepasan gas BF₃ pada temperatur 530 °C. Setelah terbebas, gas BF₃ dapat dengan bebas untuk bereaksi dengan unsur lain dalam *powder pack* dan baja. Berdasarkan analisis termodinamika reaksi antara BF₃ dengan baja ataupun dengan SiC tidak dapat langsung terjadi.

Gambar 2.3 Perubahan energi bebas Gibbs terhadap temperatur pada reaksi dekomposisi KBF₄ menjadi gas BF₃ (Spence et.al, 2005).

Persamaan 2.7, merupakan reaksi kimia yang menjelaskan pembentukan besi borida pada permukaan baja yang disebabkan oleh reaksi antara BF₃ dengan B₄C dan besi. Lapisan besi borida yang terbentuk pertama kali adalah Fe₂B, dan setelah terbentuk, lapisan ini akan menjadi pembatas antara matriks dengan serbuk dan menghambat reaksi lebih lanjut antara serbuk dengan baja. Oleh karena, BF₃ tidak dapat bereaksi langsung dengan lapisan besi borida. Pertumbuhan lapisan besi borida berikutnya terjadi melalui mekanisme reaksi yang berbeda.

Persamaan 2.8, merupakan reaksi kimia yang menggambarkan bagaimana pertumbuhan lapisan borida selanjutnya. Reaksi ini didukung data empiris dan analisis termodinamika, dimana pertumbuhan lapisan besi borida disebabkan reaksi antara besi borida dengan B₄C. Reaksi ini akan melepaskan boron dan Fasa FeB dan Fe₂B dapat terjadi, kemungkinan tersebut sangat karbon. dipengaruhi konsentrasi boron yang berada diluar. Sepanjang reaksi pada persamaan 2.8 berlangsung, boron mampu berdifusi melalui lapisan Fe₂B sampai batas lapisan Fe₂B dengan matriks. Bila konsentrasi boron diluar permukaan Fe₂B berkisar 9%, hanya fasa Fe₂B yang akan terus tumbuh. Bila konsentrasi boron mencapai 16%, fasa FeB akan terbentuk dan tumbuh di atas lapisan Fe₂B menghasilkan lapisan besi borida dengan dua fasa. Kelebihan boron yang mampu berdifusi melewati lapisan borida akan membentuk zona difusi di bawah lapisan borida. SiC sebagai diluen B₄C membantu dalam mempertahankan konsentrasi boron yang bebas tetap rendah. Selain itu, SiC mencegah pengerasan dan sintering pada powder pack.

Reaksi pada persamaan 2.9 dapat terjadi bila kondisi proses yang dilakukan pada kondisi atmosfer yang tidak inert. Pembentukan *oxygenyl boron flouride* dapat menghambat proses boronisasi. *Oxygenyl boron flouride* akan menghambat pembebasan gas BF₃. Pembentukan gas BF₃ yang terhambat akan menghambat pembentukan boron bebas didalamm *powder pack*. Dengan demikian pembentukan lapisan besi borida pada permukaan baja akan terhambat dan hampir mungkin tidak akan terjadi.

Persamaan 2.10 dan 2.11 yang menggambarkan reaksi yang mungkin terjadi antara B₄C dengan Fe pada proses boronisasi *powder pack*.

$$Fe + \frac{1}{4}B_4C \longrightarrow FeB + \frac{1}{4}C$$
(2.10)

$$2Fe + \frac{1}{4}B_4C \longrightarrow Fe_2B + \frac{1}{4}C$$
(2.11)

Reaksi pada persamaan 2.10 dan 2.11 sangat mungkin terjadi, tetapi reaksi ini akan menghasilkan endapan C dan tidak akan membentuk pertumbuhan lapisan borida seperti kenyataannya. Sehingga mekanisme pelepasan gas BF₃ lebih direkomendasikan dalam menjelaskan mekanisme boronisasi *powder pack*.

Selanjutnya gas BF₃ yang bebas sangat mungkin untuk bereaksi juga dengan Fe, reaksi tersebut digambarkan pada persamaan 2.12 dan 2.13 berikut ini:

Gambar 2.4 Perubahan energi bebas Gibbs terhadap temperatur pada reaksi langsung besi dengan gas BF₃ (Spence et.al, 2005).

Reaksi ini akan menghasilkan gas F_2 yang tidak memenuhi proses reduksi pada energi bebas Gibbs. Gambar 2.4 menunjukkan bagaimana perubahan energi bebas Gibbs dari persamaan 2.12 dan 2.13 dimana reaksi kedua persamaan ini tidak akan terjadi secara spontan pada rentang temperatur 300 K sampai 1260 K.

Bindal et.al (1999) menggambarkan pembentukan lapisan borida pada permukaan baja yang pertama kali pada persamaan 2.14. Pertumbuhan lapisan Universitas Indonesia borida selanjutnya setelah terbentuk dipermukaan baja dituliskan pada persamaan 2.15 dan 2.16. Berikut ini persamaan 2.14, 2.15 dan 2.16:

$$B + 2Fe \longrightarrow Fe_2B \tag{2.14}$$

$$Fe_2B + B \longrightarrow 2FeB$$
 $\Delta G^\circ = -10301 + 1.097T \text{ cal/mol}$ (2.15)

$$Fe + FeB \longrightarrow Fe_2B$$
 $\Delta G^o = -7099 + 1.590T cal/mol$ (2.16)

Persamaan 2.15 dan persamaan 2.16 menggambarkan reaksi B dengan lapisan Fe₂B yang akan membentuk FeB dan juga reaksi Fe dengan FeB yang akan membentuk Fe₂B dapat terjadi dengan spontan. Gambar 2.5 memberikan ilustrasi bagaimana mekanisme pertumbuhan lapisan borida di dalam matriks.

Gambar 2.5 Skema untuk memberikan ilustrasi proses pertumbuhan dua lapisan borida dalam kondisi difusi terkendali. Pada permukaan 2, kedua lapisan menipis, pada permukaan 1 dan 3 tidak terjadi reaksi disebabkan tidak adanya atom boron yang mampu berdifusi (Dybkov et.al, 2007).

Pada awal proses boronisasi, konsentrasi boron yang cukup untuk membentuk dua lapisan borida berdifusi ke dalam baja. Saat itu terbentuk lapisan Fe₂B pada permukaan 3 sesuai dengan reaksi pada persamaan 2.14. Selama proses boronisasi berlangsung dan konsentrasi boron yang cukup, reaksi terus berlangsung sesuai dengan reaksi pada persamaan 2.15, membentuk lapisan FeB di atas permukaan 2, sehingga lapisan Fe₂B tidak mendapatkan sumber boron dari diluar untuk tumbuh.

Seperti yang dituliskan oleh Yu et.al (2005), pada saat konsentrasi efektif boron pada *powder pack* cukup tinggi untuk membentuk fasa FeB, maka fasa FeB **Universitas Indonesia** dan Fe₂B akan terbentuk dan pertumbuhan terus terjadi. Selama proses boronisasi terjadi, ada kemungkinan lapisan FeB terdekomposisi menjadi Fe₂B dengan melepaskan boron pada permukaan 2. Namun, konsentrasi boron ini tidak cukup untuk menembus lapisan Fe₂B menuju ke permukaan 3. Pada kondisi ini boron akan bereaksi dengan Fe₂B membentuk FeB kembali seperti dituliskan pada persamaan 2.15.

Meskipun total reaksi terlihat seimbang antara pembentukan FeB dan Fe₂B, ternyata kondisi permukaan antara lapisan FeB dengan permukaan lapisan Fe₂B dalam kondisi yang dipenuhi (*oversaturated*) oleh atom boron. Dengan demikian boron yang ada selain bereaksi dengan Fe₂B ada juga yang mampu berdifusi ke permukaan 3. Atom-atom boron ini yang akan menjadi satu-satunya sumber untuk pertumbuhan kedua lapisan. Proses ini berlangsung sampai satu ketika pertumbuhan lapisan FeB terhenti dan cenderung berkurang dengan bertambahnya lapisan Fe₂B. Serupa dengan atom Fe yang mampu berdifusi ke permukaan 2 dan bereaksi dengan FeB menjadi Fe₂B. Tetapi, atom Fe ini tidak bisa bereaksi dengan FeB yang berada di permukaan 1. Reaksi ini digambarkan oleh persamaan 2.16. Dengan demikian setiap lapisan yang lain ke arah yang berlawanan.

Proses pertumbuhan Fe₂B akan terus bertambah bila konsentrasi efektif boron berkisar antara batas atas konsentrasi boron pada fasa Fe₂B dengan batas bawah konsentrasi boron pada fasa FeB, fasa FeB akan cenderung berkurang, tetapi total keseluruhan lapisan borida terus bertambah sampai konsentrasi efektif boron lebih rendah dari batas bawah konsentrasi boron pada fasa Fe₂B atau fasa FeB sudah berubah seluruhnya bergantung mana yang lebih dulu terpenuhi. Bila kondisi ini terjadi, akhirnya pertumbuhan lapisan borida akan terhenti (Yu et.al, 2005).

2.3 Karakteristik Lapisan Besi Borida

Pembentukan lapisan tunggal fasa Fe₂B lebih diinginkan daripada lapisan dua fasa FeB dan Fe₂B. Lapisan fasa FeB memiliki karakteristik yang lebih getas dibanding dengan Fe₂B. Selain itu bila terbentuk lapisan dua fasa, fasa FeB dan Fe₂B memungkinkan terbentuknya retakan diantara kedua fasa tersebut yang disebabkan karena perbedaan tingkat tegangan. Menurut Bindal et. al (2008) fasa FeB terbentuk akibat tegangan tarik dan fasa Fe₂B terbentuk akibat tegangan kompresi. Tabel 2.1 dan tabel 2.2 memberikan beberapa perbandingan sifat-sifat umum antara lapisan fasa FeB dengan Fe₂B:

Tabel 2.1 Karakteristik Lapisan Besi Borida (FeB dan Fe₂B) (Sinha, 1991).

Sifat	FeB	Fe ₂ B
Kekerasan mikro	19-21 GPa	18-20 Gpa
Modulus elastis	590 GPa	285-295 Gpa
Densitas	6.75 g/cm ³	7.43 g/cm^3
Koef. muai panjang*	23 ppm/°C	7.65 ppm/°C
Komposisi	16.23 wt%B	8.83 wt%B
Struktur kristal	Orthorombik	Tetragonal
Parameter kisi	a=4.053 Å b=5.495 Å c=2.946 Å	a=5.078 Å c=4.249 Å

pada temperatur 200 °C sampai 600 °C.

Tabel 2.2 Data termodinamika FeB dan Fe ₂	$_{2}B$ (Binnewies et.al, 2002)
--	---------------------------------

	FeB	Fe ₂ B
ΔH ^o ₂₉₈ (padat)	-72.8 kJ / mol	-102.5 kJ / mol
S ^o 298 (padat)	31 J / (mol K)	51.7 J / (mol K)
Cp (298K– titik leleh)	$49.96 + 10x10^{-3} \text{ T} - 1.06x10^{6} \text{ T}^{-2}$ J / (mol K)	$78.87 + 14.14 \times 10^{-3} \text{ T} -$ $1.46 \times 10^{6} \text{ T}^{-2} \text{ J} / (\text{mol K})$
Titik leleh	1863 K	1662 K

Dalam Sinha (1991), sifat-sifat mekanik dari besi borida sangat ditentukan oleh komposisi matriksnya. Bentuk gigi gergaji sangat dominan terbentuk pada matriks besi murni, baja karbon rendah tanpa pemadu, dan baja paduan rendah. Karbon, silikon dan aluminum tidak terlarut di dalam lapisan borida. Unsur-unsur ini akan terdorong ke dalam oleh boron, dari permukaan dan keluar dari lapisan borida menuju matriks. Unsur-unsur ini akan menurunkan ketahanan aus lapisan borida. Unsur nikel akan menurunkan kedalaman lapisan **Universitas Indonesia** borida dan memperhalus stuktur gigi gergaji dari lapisan borida. Unsur nikel juga ditemukan sebagai presipitat Ni₃B pada lapisan fasa FeB. Keberadaan krom mampu merubah struktur dan sifat besi borida. Mn, W, Mo dan W akan menurunkan kedalaman lapisan borida dan memperhalus stuktur gigi gergaji lapisan borida. Gambar 2.6 di bawah ini menggambarkan bagaimana unsur-unsur pemadu pada baja mempengaruhi ketebalan lapisan borida yang akan terbentuk dari proses boronisasi.

Bejar et.al (2006) menuliskan peningkatan konsentrasi karbon di dalam baja akan menurunkan ketebalan lapisan borida dan meningkatkan kekerasannya. Unsur karbon tidak terlarut di dalam FeB dan Fe₂B sehingga akan terdorong oleh lapisan borida, membentuk zona poli-fasa yang terdiri atas karbida dan borokarbida antara lapisan Fe₂B dengan matriks. Pengaruh unsur krom sebagai unsur pemadu dalam baja saat boronisasi salah satunya adalah mendorong terbentuknya fasa FeB. Pengaruh lainnya adalah meningkatkan kekerasan dan kegetasan lapisan permukaan. Bejar et.al (2006) juga menuliskan bahwa boron memiliki afinitas yang lebih besar terhadap krom dibanding terhadap besi. Sedangkan untuk nikel, afinitas boron terhadap besi lebih besar dibandingkan terhadap nikel.

BAB 3 METODE PENELITIAN

3.1 Bahan dan Metode Penelitian

Penelitian boronisasi *powder pack* ini dilakukan di Pusat Teknologi Bahan Bakar Nuklir-BATAN, Serpong, dan di Laboratorium Fisika Universitas Indonesia, Salemba. Bahan yang digunakan untuk penelitian ini adalah batang silinder baja ST37, batang silinder baja S45C, serbuk B₄C, serbuk KBF₄ dan serbuk SiC. Pada gambar 3.1 diperlihatkan alur penelitian boronisasi yang dilakukan.

Gambar 3.1 Alur penelitian boronisasi ST37 dan S45C dengan teknik *powder pack.*

18

3.2 Preparasi Sampel Baja

Baja ST37 dan S45C yang digunakan sebagai sampel dibuat dalam beberapa potong dengan bentuk silinder. Dimensi silinder yang disiapkan berdiameter 1.5 cm dan tinggi 3 cm. Untuk memastikan komposisi dari baja yang diperoleh, dilakukan karakterisasi XRF menggunakan DX4-95 dan XRD menggunakan sumber sinar-X dengan unsur target Co dan difraktometer PW3710. Untuk karakterisasi morfologi dan pengujian kekerasan mikro, baja di*-mounting*. Sebelum dilakukan boronisasi, permukaan silinder baja yang sudah disiapkan dihaluskan dan dibersihkan dari lemak agar hasil boronisasi bisa lebih maksimal. Beberapa sampel yang dibuat ditampilkan pada gambar 3.2 (a).

Gambar 3.2 Sampel dan kontainer SS yang digunakan. (a) Sampel dan kontainer SS, dan (b) sampel dan serbuk di dalam kontainer SS.

Sumber : dokumentasi PTBN-BATAN.

3.3 Persiapan Powder Pack

Campuran serbuk yang digunakan terdiri atas serbuk 5wt% B₄C, 5wt% KBF₄ dan 90wt% SiC. Serbuk yang dibuat seberat 5Kg untuk mengisi kontainer SS seperti pada gambar 3.2 (a). kontainer SS yang digunakan berukuran 21cm x 18 cm x 20 cm. Pengisian serbuk dan peletakan sampel di dalam kontainer SS diilustrasikan pada gambar 3.2 (b).

3.4 Pemanasan Pada Tungku

Kontainer SS yang telah siap, dimasukan ke dalam tungku *annealing* K2/H Nabertherm. Gambar 3.3 menunjukan bentuk dari tungku tersebut. Pemanasan pada tungku ini dapat terprogram dan gas dapat dialirkan ke dalam tungku. Pada proses boronisasi yang dilakukan, gas yang digunakan adalah argon (Ar).

Gambar 3.3 Tungku annealing K2/H Nabertherm.

Sumber : dokumentasi PTBN-BATAN.

Pemrograman pemanasan yang diberikan dimulai dengan menaikkan temperatur tungku dari temperatur kamar, ke temperatur 600 °C dalam waktu 30 menit dan gas argon dialirkan. Setelah tercapai, pada temperatur 600 °C ditahan selama 30 menit. Setelah 30 menit dari temperatur 600 °C, temperatur dinaikan ke temperatur 1000 °C dalam waktu 30 menit. Setelah tercapai, pada temperatur 1000 °C ditahan selama 8 jam. Setelah tercapai, program pemberian temperatur di dalam tungku dihentikan. Pendinginan yang terjadi secara alamiah di dalam tungku, tanpa menggunakan media pendingin tambahan dan aliran gas argon juga dihentikan. Kontainer SS dikeluarkan dari tungku, bila indikator temperatur di dalam tungku sudah menunjukkan temperatur kamar.

3.5 Karakterisasi dan Pengujian Lapisan Besi Borida

Baja ST37 dan baja S45C yang sudah diboronisasi, dikarakterisasi dan diuji untuk mengetahui perubahannya. Karakterisasi yang dilakukan meliputi pengamatan mikrostruktur dan pengujian kekerasan mikro penampang lintang lapisan borida. Karakterisasi XRD dan pengujian kekerasan mikro permukaan lapisan borida. Pola difraksi XRD yang diperoleh dianalisis menggunakan aplikasi GSAS untuk mengetahui komposisi fasa pada lapisan borida.

3.5.1 Preparasi Sampel Baja yang Sudah Diboronisasi

Baja ST37 dan baja S45C yang sudah diboronisasi dipotong menjadi 2 bagian yang sama besar. Satu sisi di potong menjadi dua bagian dan di *mounting* untuk keperluan metalografi, seperti pada gambar 3.4 (a) dan gambar 3.4 (b). sisi baja lainnya akan digunakan untuk keperluan karakterisasi permukaan lapisan borida, seperti pada gambar 3.4 (c) dan gambar 3.4 (d).

000 °C/8-jam

(c)

Gambar 3.4 Sampel untuk karakterisasi lapisan besi borida. Potongan penampang lintang (a) ST37 yang di*-mounting*, (b) S45C yang di*-mounting*, (c) ST37 dan (d) S45C yang digunakan untuk karakterisasi dan pengujian permukaan lapisan borida.

Universitas Indonesia

(d)

Untuk metalografi sampel pada gambar 3.4 (a) dan gambar 3.4 (b) di abrasif menggunakan *emery paper* mulai dari grit 600, 800, 1000 sampai 1200. Terakhir dilakukan pemolesan menggunakan pasta alumina 1 mikron. Mesin abrasif/poles yang digunakan adalah DAP-U Struers, seperti pada gambar 3.5. Bahan etsa yang digunakan adalah larutan Nital 2% (1 ml HNO₃ dan 49-50 ml etanol).

Gambar 3.5 Mesin abrasif/poles DAP-U Struers.

Sumber : dokumentasi PTBN-BATAN.

Sedangkan untuk sampel pada gambar 3.4 (c) dan (d) abrasif dilakukan menurut skema pada gambar 3.6 berikut ini.

Gambar 3.6 Skema lapisan borida yang akan terabrasif dari sampel.

Dari skema pada gambar 3.6 tiap-tiap lapisan dari lapisan nol sampai lapisan ke-4 sebelum lapisan tersebut diabrasif terlebuh dahulu dilakukan pengujian kekerasan mikro dan karakterisasi XRD.
Abrasif yang dilakukan menggunakan *emery paper* dengan grit 180, sampai kedalaman yang diinginkan tercapai. Setiap kedalaman yang diinginkan adalah $\pm 20 \mu$ m, dengan pengukuran kedalamannya menggunakan mikrometer digital dari Mitutoyo. Pengukuran kedalaman ini menggunakan metode selisih, sehingga ketinggian awal sampel diukur, lalu proses abrasif dilakukan. Pengukuran ketinggian sampel dilakukan kembali setelah proses abrasif, yang sebelumnya sampel dibersihkan dahulu dengan etanol.

3.5.2 Pengamatan Struktur Mikro

Sampel 3.4 (a) dan (b) dilakukan pengamatan struktur mikronya. Terutama pengamatan morfologi dari lapisan borida yang terbentuk. Mikroskop optik Nikon pada gambar 3.7 digunakan untuk pengamatan struktur mikro ini. Pengamatan dilakukan pada pembesaran 200 kali. Sebagai tambahan, SEM JEOL 6510 digunakan untuk memperjelas morfologi dari lapisan borida yang terbentuk pada kedua sampel.

Gambar 3.7 Mikroskop optik Nikon Epiphot type 114 yang dilengkapi kamera digital.

Sumber : dokumentasi PTBN-BATAN.

3.5.3 Pengukuran Kedalaman

Setelah morfologi lapisan borida dilihat menggunakan mikroskop optik, pengukuran kedalam lapisan borida dapat dilakukan. Jain et.al (2002), mengemukakan perhitungan kedalaman lapisan borida hasil boronisasi sebagai rata-rata dari kedalaman bentuk gigi gergaji yang dituliskan pada persamaan 3.1. Pengambilan data untuk kedalamannya diilustrasikan pada gambar 3.8 berikut:

Gambar 3.8 Skema pengukuran kedalaman lapisan borida (Jain et.al, 2002).

$$d = \frac{\sum_{i=1}^{n} d_i}{n}$$
(3.1)

dimana:

- d : rata-rata hitung panjang gigi gergaji lapisan borida.
- d_i : panjang gigi gergaji.
- n : banyaknya data yang diambil.

3.5.4 Pengujian Kekerasan Mikro

Semua sampel pada gambar 3.4 diuji kekerasannya menggunakan alat uji kekerasan Leitz Miniload pada gambar 3.9 dengan beban 300 gf atau 2.942 N.

Indentor yang digunakan adalah indentor Vikers, skema dari indentor ini ditunjukkan pada gambar 3.10.

Gambar 3.9 Alat uji kekerasan mikro Leitz Miniload.

Sumber : dokumentasi PTBN-BATAN.

Gambar 3.10 Skema indentor Vickers pengujian kekerasan mikro (ASTM 384).

Sudut bentuk permukaan piramida dari indentor Vikers sebesar 136°. Dalam pengujiannya pemberian gaya dilakukan dengan perlahan, tanpa

tumbukan. Saat bersentuhan ditahan selama 10 sampai 15 detik. Gaya yang diberikan sesuai dengan beban yang dipasang pada alat pengujian kekerasan mikro. Setelah gaya dihilangkan, kemudian kedua diagonal jejakan dari indentor pada sampel diukur. Kekerasan mikro material dihitung menurut persamaan 3.2, berikut:

HV =
$$\frac{2000 P \sin(\alpha/2)}{d^2} = \frac{1854.4 P}{d^2}$$
 (3.2)

dimana:

ΗV	: kekerasan mikro Vickers.
Р	: gaya yang diberikan (gf).
d	: rata-rata jejakan indentor (µm)

Pengujian kekerasan mikro untuk sampel pada gambar 3.4 (a) dan (b) dilakukan sebanyak 5 titik yang berbeda untuk melihat gradasi kekerasan lapisan borida yang terbentuk. Asumsi yang diambil dalam pengujian kekerasan mikro pada kedalaman tertentu nilai kekerasan yang dimiliki sama besarnya. Sedangkan sampel pada gambar 3.4 (c) dan 3.4 (d) dilakukan sebanyak 3 titik untuk tiap-tiap lapisan permukaan sebelum dilakukan proses abrasif.

3.5.5 Karakterisasi Difraksi Sinar-X (XRD)

Difraksi sinar-X merupakan metode yang sangat luas digunakan dengan ketidakpastian yang sangat rendah dalam penentuan posisi atom dalam molekul dan padatan. Informasi spektroskopi (NMR, IR dan spektroskopi massa) yang mampu digunakan untuk kimia organik, tidak dapat memberikan gambaran yang utuh untuk bahan inorganik, yang memiliki keanekaragaman struktur dalam artian geometri dan bilangan koordinasi. Umumnya dalam kimia organik, jarak yang ditentukan dari struktur memberikan informasi lebih mengenai ikatan yang terjadi di dalam molekul dan diantara molekul.

Sumber sinar-X yang digunakan untuk karakterisasi difraksi sinar-X berkisar 0.6 sampai 1.9 Å. Umumnya unsur target yang digunakan adalah Cu dan

Mo, sedangkan untuk aplikasi tertentu digunakan unsur target Cr, Fe, Co, Ag dan W. Panjang gelombang prinsip radiasi dari beberapa unsur yang digunakan sebagai target ditunjukkan pada tabel 3.1 sedangkan gambar 3.11 menunjukan diagram untuk sumber sinar-X.

Tabel 3.1 Panjang gelombang prinsip untuk unsur target sumber sinar-X (Dinnebier et.al, 2008).

Gambar 3.11 Diagram untuk sumber sinar-X (Dinnebier et.al, 2008).

Detektor sinar-X dapat diklasifikasikan sebagai detektor titik, linear atau luasan, bergantung bagaimana cara merekam pola difraksi pada nol, satu atau dua dimensi. Detektor titik harus men-*scanning* (pindai/larikan) untuk mengukur pola difraksi, sedangkan untuk detektor linear dan luasan bisa dalam posisi tetap. Detektor linear dan luasan mampu memperoleh data lebih cepat, tapi karena sistemnya lebih terbuka memungkinkan kemunculan hamburan oleh udara atau lingkungan sampel.

Dalam karakterisasi pola difraksi, ada dua tipe prinsip geometri peralatan untuk difraktometer di laboratorium, yaitu: refleksi dan transmisi. Skema geometri refleksi ditunjukkan pada gambar 3.12 dimana sampel dipreparasi berbentuk pelat

Gambar 3.12 Geometri peralatan XRD refleksi. (a) foto dari difraktometer Bragg-Brentano. (b) skema difraktometer Bragg-Brentano (Dinnebier et.al, 2008).

Gambar 3.12 (b) memperlihatkan sinar-X yang menuju sampel tidak dipantulkan, sedangkan yang keluar dari sampel dipantulkan ke sebuah monokromator dan diterima oleh detektor. Gambar 3.13 memperlihatkan sinar-X yang menuju sampel dipantulkan pada monokromator dan melewati sampel. Selanjutnya sinar-X yang keluar dari sampel dideteksi oleh detektor.

Gambar 3.13 Geometri peralatan XRD transmisi (Dinnebier et.al, 2008).

Dalam pengukuran difraksi sinar-X, persamaan Bragg digunakan sebagai dasar perhitungannya. Persamaan Bragg dituliskan pada persamaan 3.3, yaitu :

Gambar 3.14 Ilustrasi difraksi yang terjadi pada bidang-bidang yang terpapar oleh sinar-X (Dinnebier et.al, 2008).

Gambar 3.14 mengilustrasikan bagaimana terjadinya difraksi sinar-X yang akan ditinjau berasal dari atom-atom yang tersusun teratur secara periodik sesuai posisi tertentu di dalam kristal. Atom-atom di dalam kristal dapat dipandang berada pada bidang-bidang yang sejajar satu sama lain yang dipisahkan oleh jarak bidang (d). Sinar-X yang datang pada bahan hanya mempunyai satu panjang

gelombang (λ) dan dengan sudut datang terhadap bidang difraksi dinyatakan dengan θ (sudut Bragg). Besar sudut Bragg mempunyai nilai yang berbeda untuk tiap-tiap bidang. Tabel 3.2 menyajikan persamaan-persamaan untuk menghitung d_{hkl} berbagai sistem kristal.

Sistem Kristal	$1/d_{hkl}^2$
Cubic	$(h^2 + k^2 + l^2)/a^2$
Tetragonal	$\frac{h^2 + k^2}{a^2} + \frac{l^2}{c^2}$
Orthorombik	$\frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{l^2}{c^2}$
Hexagonal dan Trigonal (P)	$\frac{4}{3a^2} \left(h^2 + k^2 + hk \right) + \frac{l^2}{c^2}$
Trigonal (R)	$\frac{1}{a^2} \left(\frac{\left(h^2 + k^2 + l^2\right)\sin^2 \alpha + 2\left(hk + hl + kl\right)\left(\cos^2 \alpha - \cos \alpha\right)}{1 + 2\cos^3 \alpha - 3\cos^2 \alpha} \right)$
Monoclinic	$\frac{h^2}{\alpha^2 \sin^2 \beta} + \frac{k^2}{b^2} + \frac{l^2}{c^2 \sin^2 \beta} - \frac{2hl \cos \beta}{ac \sin^2 \beta}$
Triclinic	$ \begin{pmatrix} 1 - \cos^2 \alpha - \cos^2 \beta - \cos^2 \gamma + 2\cos \alpha \cos \beta \cos \gamma \end{pmatrix}^{-1} \\ \left(\frac{h^2}{a^2} \sin^2 \alpha + \frac{k^2}{b^2} \sin^2 \beta + \frac{l^2}{c^2} \sin^2 \gamma + \frac{2kl}{bc} (\cos \beta \cos \gamma - \cos \alpha) \\ + \frac{2lh}{ca} (\cos \gamma \cos \alpha - \cos \beta) + \frac{2hk}{ab} (\cos \alpha \cos \beta - \cos \gamma) \right) $

Tabel 3.2Persamaan untuk menghitung dhkl berbagai sistem kristal
(Dinnebier et.al, 2008)

Dari pola difraksi yang diperoleh dapat dihitung ukuran kristalitnya (ukuran partikel). Ukuran kristalit dapat dihitung menggunakan persamaan Debye Scherrer. Persamaan tersebut dituliskan pada persamaan 3.4 berikut:

$$\beta_{hkl} = \frac{K \cdot \lambda}{L_{hkl} \cdot \cos\theta}$$
(3.4)

dimana:

- K : faktor bentuk, bernilai 0.9 untuk bentuk bola.
- λ : panjang gelombang sinar-X (Å).

$$\beta_{hkl}$$
 : FWHM (rad)

 L_{hkl} : ukuran kristalit (Å). θ : sudut difraksi.

3.6 Pengolahan dan Analisis Data

Dari pengujian dan karakterisasi yang dilakukan, diperoleh data kekerasan mikro lapisan borida dari sisi penampang lintang, data kekerasan mikro dan pola difraksi dari atas permukaan tiap-tiap lapisan yang terabrasif. Data-data yang diperoleh diolah menggunakan aplikasi Microsoft Excel agar dapat memberikan gambaran mengenai karakteristik kekerasan mikro pada lapisan borida yang terbentuk pada baja ST37 dan S45C. Sedangkan pola difraksi XRD diolah menggunakan aplikasi APD yang digunakan untuk menentukan puncak-puncak difraksi. Kemudian aplikasi Bella digunakan untuk melakukan konversi format file dari aplikasi APD ke aplikasi GSAS. Aplikasi Match! digunakan untuk mengidentifikasi komposisi yang ada kecocokan dengan puncak-puncak yang sudah ditentukan oleh aplikasi APD. Database yang digunakan adalah IuCr/ COD /AMCSD 22.01.10. Dari database ini diperoleh data kristalografi yang selanjutnya dapat digunakan untuk analisis pola difraksi yang diperoleh. Untuk analisis pola difraksi XRD digunakan aplikasi GSAS agar diperoleh data kristalografi dan data komposisi dari fasa-fasa yang mungkin terbentuk pada lapisan borida.

Aplikasi GSAS merupakan aplikasi yang berguna untuk melakukan analisis kristalografi pola difraksi XRD. Aplikasi ini dapat melakukan analisis untuk data difraksi kristal tunggal ataupun serbuk yang diperoleh dari sinar-X atau netron. Aplikasi ini mampu menangani secara simultan dari data yang diberikan, dengan kata lain, aplikasi ini mampu menangani data difraksi serbuk dari sebuah campuran dan mampu melakukan *refining* parameter struktur dari tiap-tiap fasa. GSAS dibuat dengan desain untuk memudahkan penggunaannya dan sebuah menu *editor* (EXPEDT) yang dilengkapi dengan fitur bantuan dan penunjuk kesalahan. EXPEDT digunakan untuk mempersiapkan keseluruhan masukan untuk perhitungan pada GSAS. Untuk melakukan *refining* data difraksi serbuk dengan GSAS, yang diperlukan adalah: 1) Data difraksi dari sinar-X atau **Universitas Indonesia** netron, 2) Dugaan awal fasa-fasa yang mungkin ada pada data difraksi yang diperoleh dan 3) Data parameter kisi, *space group* dan posisi atom, tiap-tiap fasa yang diduga.

Seluruh aplikasi GSAS ditulis menggunakan bahasa FORTRAN dengan menggunakan beberapa fitur sistem yang yang mampu dipanggil sebagai modul tersendiri. GSAS tersedia untuk sistem operasi Windows, Linux dan Mac OS (Larson et.al, 2004). Aplikasi GSAS dapat diunduh dari http://www.ccp14.ac.uk/ solution/gsas/.

BAB 4 HASIL DAN PEMBAHASAN

4.1 Karakteristik Baja ST37 dan Baja S45C Sebelum Proses Boronisasi

Berikut ini disampaikan hasil komposisi unsur dari standar SAE, DIN dan/atau JIS, karakterisasi pola difraksi menggunakan XRD beserta hasil analisis GSAS, struktur mikro menggunakan mikroskop optik, dan kekerasan mikro baja ST37 dan S45C yang belum diboronisasi.

4.1.1 Komposisi, Pola Difraksi Sinar-X, Ukuran Kristalit dan Analisis GSAS

Baja ST37 dan S45C yang belum diboronisasi, dikarakterisasi untuk mengetahui karakteristik awal kedua bahan tersebut. Karakterisasi yang dilakukan meliputi karakterisasi komposisi unsur menggunakan XRF, karakterisasi jenis dan bentuk kristal menggunakan XRD dan kekerasan mikronya. Hasil karakterisasi ini digunakan sebagai pembanding terhadap karakteristik lapisan borida yang akan terbentuk setelah proses boronisasi. Berikut ini hasil karakterisasi XRF, XRD beserta data kristalografi yang digunakan pada aplikasi GSAS.

Data XRF dapat dilihat pada lampiran 1 dan komposisi dari ASM *Handbook Volume* 1 baja ST37 dan baja S45C disajikan pada tabel 4.1 dan tabel 4.2 berikut ini:

SAE	DIN			Komposisi	, wt%		
57112		С	Si	Mn	Р	S	Lainnya
	1.0036, Ust37-2	0.17		0.20-0.50	0.050	0.050	0.007N
	1.0037, St37-2	0.17	0.30	0.20-0.50	0.050	0.050	0.009N
1013	1.0038, RSt37-2	0.17	0.03-0.30	0.20-0.50	0.050	0.050	0.009N
	1.0116, St37-3	0.17	0.03-0.30	0.20-0.50	0.040	0.040	×
	1.0315, St37.8	0.17	0.10-0.35	0.40-0.80	0.040	0.040	

Tabel 4.1 Komposisi baja ST37 (ASM Handbook Vol.1, 1990).

Sumber : telah diolah kembali.

SAE	JIS	Komposisi, wt%					
		С	Si	Mn	Р	S	Lainnya
1045	S45C	0.42-0.48	0.15-0.45	0.60-0.90	0.030	0.035	

Tabel 4.2 Komposisi baja S45C (ASM Handbook Vol.1, 1990).

Sumber : telah diolah kembali.

Terlihat perbedaan kandungan unsur antara standar ASM pada tabel 4.1 dan tabel 4.2 dengan hasil karakterisasi XRF pada lampiran 1. Hal ini sangat mungkin terjadi, sebab sangat bergantung pada kemurnian bahan yang diperoleh, kemampuan operator dan alat karakterisasinya. Pengukuran XRF yang dilakukan secara kualitatif sehingga fraksi berat ataupun fraksi atom dari komposisi unsur yang terdeteksi tidak dihitung. Dari kedua baja ini, perbedaan kandungan unsur antara hasil XRF dengan standar SAE adalah kemunculan Cr dan Ca. Kedua unsur ini memang ditambahkan dalam proses pembuatan baja. Unsur Cr ditambahkan untuk meningkatkan kekerasan dan titik lebur, atau untuk meningkatkan ketahanan terhadap korosi. Unsur Ca digunakan dalam bentuk CaCO₃ (limestone) yang berfungsi untuk membentuk slag dari bahan-bahan mineral yang tidak terlarut selama proses peleburan besi. Penggunaann limestone yang berlebihan dapat menurunkan temperatur tungku. Dengan demikian kemunculan kandungan Ca diduga kesalahan deteksi dari alat atau kurangnya pengetahuan operator tentang bahan yang dikarakterisasi. Dari hasil XRF pada lampiran 1, unsur Fe dan Cr digunakan untuk menduga komposisi fasa lapisan borida yang terbentuk.

Pola difraksi yang ditampilkan pada gambar 4.1 terlihat terdapat dua buah puncak tertinggi yang dapat langsung teridentifikasi. Dari aplikasi APD, dua puncak tertinggi tersebut berada pada sudut 20 sama dengan 52.89° dan 77.65°. Lebih lengkapnya keluaran dari aplikasi APD dapat dilihat pada lampiran 2. Dengan bantuan aplikasi Match! dilakukan pencocokan pola difraksi sampel dengan pola difraksi di dalam *database* untuk mengetahui fasa yang mungkin terdapat pada baja ST37. Proses pencocokan pola difraksi sampel didasari dari hasil karakterisasi komposisi unsur XRF pada lampiran 1.

Gambar 4.1 Pola difraksi sinar-X baja ST37.

Pencocokan pola dilakukan menggunakan aplikasi Match! dengan *database* IuCr/ COD /AMCSD 22.01.10. Berdasarkan hasil XRF, unsur terbesarnya adalah Fe, sehingga pencocokan pola difraksi diberatkan pada fasa-fasa Fe. Pola difraksi sampel teridentifikasi pada fasa Fe dengan nomor kartu 99-100-7795. Lebih lengkapnya data kartu ini dapat dilihat pada lampiran 3.

Gambar 4.2 Pola difraksi sinar-X baja S45C.

Seperti pada baja ST37, pola difraksi pada gambar 4.2 untuk baja S45C juga memiliki dua buah puncak tertinggi yang dapat langsung teridentifikasi. Dari aplikasi APD, dua puncak tertinggi tersebut berada pada sudut 20 sama dengan 52.58° dan 77.33°. Lebih lengkapnya keluaran dari aplikasi APD dapat dilihat pada lampiran 2. Proses pencocokan pola difraksi sampel serupa dengan baja ST37 yaitu menggunakan aplikasi Match!. Identifikasi fasa pada baja S45C juga berdasarkan data hasil karakterisasi unsur dari XRF pada lampiran 1. Unsur terbesarnya adalah Fe, serupa dengan baja ST37, sehingga pencocokan pola difraksi juga diberatkan pada fasa-fasa Fe. Hasilnya, pola difraksi sampel teridentifikasi pada fasa Fe dengan nomor kartu 99-100-7787. Selengkapnya Data kartu ini dapat dilihat pada lampiran 3. Pencocokan pola difraksi dengan fasa-fasa Fe didasari pada pengamatan pola difraksi baja ST37 dan baja S45 yang intensitas tertingginya muncul pada sudut-sudut yang serupa dengan fasa Fe dari *database*. Fasa-fasa lain dari unsur Mn, Cr, Si, S dan bahkan Ca yang juga terdeteksi dari XRF tidak teramati pada pola difraksi baja ST37 dan S45C yang diperoleh.

Hasil perhitungan ukuran kristalit menggunakan persamaan 3.4 dari bidang yang intensitas pola difraksinya tertinggi untuk kedua baja tersebut dan hasil analisis aplikasi GSAS, disajikan pada tabel 4.3 berikut:

	Baja	
	ST37	S45C
Ukuran kristalit (nm)		
(110)	47	47
(200)	118	27
Parameter kisi dari GSAS (Å)		
a=b=c=	2.8660	2.8662
Chi-square GSAS	1.157	1.182

Tabel 4.3 Ukuran kristalit dan keluaran aplikasi GSAS

Dari tabel 4.3, terlihat besar ukuran kristalit pada bidang (110) antara kedua baja relatif sama besar. Ukuran kristalit untuk bidang (200) terlihat jauh berbeda. Ukuran kristalit pada bidang (200) baja ST37 hampir 5 kali lebih besar daripada ukuran kristalit pada bidang (200) baja S45C. Ukuran ini akan menunjukan morfologi pada baja S45C yang fraksi berat C berkisar 0.45wt% terdiri dari fasa pearlit dan α -Fe. Fasa pearlit pada baja S45C lebih didominasi α -Fe dibandingkan Fe₃C dan ini sesuai dengan pola difraksi yang diperoleh. Satu **Universitas Indonesia**

kesamaan yang terlihat dari pola difraksi kedua baja tersebut dimana keduanya terarah pada bidang (110). Hasil *refine* untuk parameter kisi dari analisis GSAS untuk kedua baja, tidak berbeda. Parameter kisi baja ST37 bernilai 2.8660 Å dan baja S45C bernilai 2.8662 Å.

4.1.2 Struktur Mikro dan Kekerasan Mikro

Struktur mikro baja ST37 dan S45C sebelum dilakukan boronisasi diperlihatkan pada gambar 4.3. Pengamatan struktur mikro menggunakan mikroskop optik pada perbesaran 200 kali. Gambar 4.3 (a) sangat jelas menampilkan struktur mikro α -Fe pada baja ST37. Bila dilihat dari fraksi berat karbon yang tidak lebih dari 0.2wt%, fasa α -Fe akan mendominasi struktur baja ST37. Analisis struktur dengan perhitungan menggunakan persamaan 3.3 dan persamaan pada tabel 3.2 untuk sistem kristal kubik diperoleh parameter kisi sebesar 2.8469 Å dengan struktur kristalnya adalah kristal kubik BCC.

(a)

Gambar 4.3 Struktur mikro baja sebelum boronisasi menggunakan mikroskop optik (a) baja ST37 (b) baja S45C.

Berbeda dengan baja ST37, baja S45C memiliki struktur mikro yang sudah didominasi oleh fasa perlit. Hal ini juga bisa dijelaskan bila dilihat dari fraksi berat karbon baja S45C yang besarnya mencapai 0.45wt%. Fasa α-Fe akan lebih sedikit dibanding fasa perlit. Analisis struktur yang dihitung menggunakan persamaan 3.3 dan persamaan pada tabel 3.2 untuk sistem kristal kubik diperoleh parameter kisi sebesar 2.8597 Å dengan strukturnya adalah kristal kubik BCC. Hasil perhitungan parameter kisi dari persamaan 3.3 dan persamaan pada tabel 3.2 untuk sistem kristal kubik diberoleh parameter kisi sebesar 2.8597 Å dengan strukturnya adalah kristal kubik BCC. Hasil perhitungan parameter kisi dari persamaan 3.3 dan persamaan pada tabel 3.2 untuk sistem kristal kubik dibandingkan dengan keluaran aplikasi GSAS yang disajikan pada tabel 4.3 terdapat perbedaan yang nyata. Hal ini sangat mugkin terjadi karena, pada analisis GSAS proses pencocokan dilakukan hanya untuk fasa Fe dan menganggap sebagai fasa yang dominan dengan asumsi faktor okupansi atom-atom Fe dianggap ideal. Keluaran analisis GSAS akan menjadi sedikit lebih besar dari hasil perhitungan parameter kisi secara langsung. Hasil pengujian kekerasan mikro pada baja ST37 dan baja S45C menghasilkan nilai sebesar 123.82 HV untuk baja ST37 dan sebesar 196.39 HV untuk baja S45C.

4.2 Struktur Lapisan Borida

Proses boronisasi *powder pack* dilakukan pada temperatur 1000 °C selama 8 jam. Struktur lapisan borida yang terbentuk untuk baja umumnya berbentuk gigi gergaji, yang keruncingan dan kedalamannya sangat dipengaruhi oleh proses boronisasi serta unsur-unsur yang terkandung di dalam baja. Berikut ini ditampilkan struktur lapisan borida yang terbentuk pada permukaan baja ST37 dan S45C.

4.2.1 Struktur Lapisan Borida Pada Baja ST37

Lapisan borida baja ST37 yang diamati menggunakan mikroskop optik pada perbesaran 200x diperlihatkan pada gambar 4.4. Pada gambar tersebut terlihat dengan jelas morfologi lapisan borida yang berbentuk gigi gergaji. Kedalaman lapisan borida relatif merata, meskipun pada titik-titik tertentu ada yang tidak terlalu dalam. Kedalaman lapisan borida pada baja ST37 yang dihitung menggunakan persamaan 3.1 diperoleh sebesar 250 µm. Dari gambar 4.4 terlihat matriks yang berada disekitar lapisan borida mengalami perubahan struktur mikro. Fasa perlit pada daerah tersebut menjadi lebih banyak dari pada fasa α-Fe. Hal ini ini terjadi diakibatkan selama proses boronisasi terjadi pemanasan dan desakan dari unsur-unsur seperti C dan Ni yang tidak dapat bereaksi dengan fasa borida. Pada saat temperatur 1000 °C fasa α-Fe yang dekat dengan permukaan berubah menjadi fasa γ -Fe, pada saat itupun terjadi desakan dari unsur karbon karena adanya dorongan dari boron dan fasa borida yang mulai terbentuk dipermukaan baja. Dengan demikian konsentrasi karbon dibawah lapisan borida semakin meningkat. Saat proses pendinginan ke temperatur ruangan, fasa γ -Fe tersebut akan berubah menjadi perlit.

Pada gambar 4.5 ditampilkan gambar SEI lapisan borida baja ST37. Gambar ini memberikan informasi gradasi lapisan borida yang berbeda fasa. Pada gambar 4.5 terlihat satu lapisan di atas permukaan baja ST37, lapisan ini merupakan lapisan borida yang berada diluar baja ST37. Lapisan borida yang di

dalam baja, tergradasi menjadi dua bagian dimana lapisan pertama didominasi oleh fasa FeB, dan lapisan berikutnya didominasi oleh fasa Fe₂B.

Gambar 4.4 Struktur mikro lapisan borida pada baja ST37 dengan menggunakan mikroskop optik.

Gambar 4.5 *Secondary electron image* (SEI) lapisan borida pada baja ST37 dengan menggunakan SEM JEOL/JSM 6510 pada perbesaran 250x.

Gambar 4.5, kurang menunjukan gradasi kedua lapisan dengan baik. Di lapisan borida terluar rata-rata ketebalannya sebesar 43 µm. Lapisan borida ini sangat

umum terjadi pada baja karbon rendah dan medium (Goeuriot, 1982). Pada gambar 4.5, tampak agak samar lapisan fasa FeB di bawah lapisan borida diluar sampel. Lapisan ini memiliki ketebalan mencapai 100 µm di bawah lapisan borida diluar sampel. Selanjutnya lapisan berikutnya adalah lapisan fasa Fe₂B sampai ke ujung gigi gergaji yang ketebalannya mencapai 180 µm dari lapisan FeB.

4.2.2 Struktur Lapisan Borida Pada Baja S45C

Struktur mikro baja S45C yang diboronisasi dapat dilihat pada gambar 4.6. Serupa dengan yang terjadi pada baja ST37, fasa pearlit pada matriks yang dekat dengan lapisan borida semakin terlihat jelas dan membesar dibanding sebelum proses boronisasi. Lapisan borida juga terbentuk diluar sampel. Rata-rata ketebalannya pada baja S45C sebesar 31 μ m. Ketebalan ini lebih rendah daripada lapisan borida diluar sampel yang terbentuk pada baja ST37.

Gambar 4.6 Struktur mikro lapisan borida pada baja S45C dengan menggunakan mikroskop optik.

Gambar 4.6 menunjukkan perubahan morfologi matriks disekitar lapisan borida serupa dengan yang terjadi pada baja ST37. Batas butir fasa perlit pada

matriks menjadi lebih besar dibanding sebelum diboronisasi. Proses boronisasi pada baja S45C serupa dengan yang terjadi dengan baja ST37. Desakan karbon yang tidak terlarut pada lapisan borida kedalam matriks membuat fraksi berat karbon disekitar lapisan borida bertambah selama proses boronisasi. Ketika proses pendinginan ke temperatur ruangan, fasa γ -Fe yang terbentuk saat temperatur boronisasi akan berubah menjadi fasa perlit.

Gambar 4.7 *Secondary electron image* (SEI) lapisan borida pada baja S45C dengan menggunakan SEM JEOL/JSM 6510 pada perbesaran 250x.

Serupa dengan baja ST37, di dalam baja, terbentuk dua lapisan, yaitu lapisan dominan fasa FeB dan lapisan dominan fasa Fe₂B. Morfologi lapisan borida pada baja S45C berbeda dengan baja ST37. Gambar 4.7 memperlihatkan struktur gigi gergaji lapisan borida baja S45C yang lebih halus daripada baja ST37. Pada kedalaman 50 µm dari permukaan baja terdapat retakan, yang terjadi merata disekeliling baja. Retakan yang terbentuk terlihat dengan jelas pada gambar 4.7. Terbentuknya fasa FeB dan Fe₂B menjadi penyebab terjadinya retakan pada boronisasi baja S45C. Fasa FeB lebih keras dan getas dibandingkan fasa Fe₂B. Fasa FeB memiliki koefisien ekspansi termal 3 kali lebih besar dibanding fasa Fe₂B (Spence, 2005). Retakan ini memisahkan fasa FeB dengan 3.1 untuk

baja S45C diperoleh sebesar 243 μ m. Konsentrasi C dan Cr yang lebih besar pada baja S45C dari baja ST37 menjadi faktor kedalaman lapisan borida yang lebih rendah. Konsetrasi Cr yang besar juga menjadi salah satu faktor yang mendorong terbentuknya fasa FeB dan fasa Fe₂B.

4.3 Pola Difraksi Sinar-X dan Analisis GSAS Lapisan Borida

Pola difraksi yang diperoleh, ditentukan puncak-puncaknya menggunakan aplikasi APD. Ukuran kristalit dihitung menggunakan persamaan 3.4. Indentifikasi fasa dari pola difraksi menggunakan aplikasi Match! dengan *database* IuCr/ COD /AMCSD 22.01.10. Fasa yang teridentifikasi adalah fasa FeB dengan nomor kartu 99-100-9836, Fe₂B dengan nomor kartu 99-200-3534 dan CrB dengan nomor kartu 99-101-0921. Setiap pola difraksi yang diperoleh dianalisis terhadap keberadaan fasa FeB, Fe₂B dan CrB menggunakan aplikasi GSAS.

4.3.1 Pola Difraksi Sinar-X dan Analisis GSAS Lapisan Borida Baja ST37

Setiap proses abrasif selesai dilakukan, permukaan baja dikarakterisasi pola difraksinya. Hasil karakterisasi tersebut dirangkumkan pada gambar 4.8. Dari gambar 4.8, setiap lapisan yang dikarakterisasi teramati ada dua puncak yang tertinggi. Puncak disudut 49.5° hingga 50.5° diidentifikasi sebagai fasa Fe₂B (002) sedangkan puncak disudut 74.5° hingga 76.0° diidentifikasi sebagai fasa FeB (002).

Pada gambar 4.9 diperlihatkan pola difraksi pada sudut 49.5° sampai 50.5° dan sudut 74.5° sampai 76.0°. Tabel 4.4 menyajikan fraksi berat fasa hasil analisis aplikasi GSAS untuk baja ST37. Gambar 4.9 (a) menggambarkan perubahan pola difraksi untuk fasa Fe₂B yang terorientasi di (002). Intensitas fasa Fe₂B berubah ditiap-tiap lapisan diiringi dengan perubahan fraksi beratnya. Dari lapisan ke nol ke lapisan ke-1 intesitas fasa Fe₂B menurun, begitu juga dengan fraksi beratnya. Intensitas fasa Fe₂B meningkat mulai dari lapisan ke-1 sampai lapisan ke-4. Fraksi berat fasa Fe₂B di lapisan ke-2 tidak sebesar di lapisan ke-1 dan lapisan ke-3. Selain fasa FeB dan Fe₂B pada lapisan ke-2 teridentifikasi juga fasa CrB. **Universitas Indonesia**

Fraksi berat fasa Fe₂B dan CrB pada lapisan ke-3 dan ke-4 terus meningkat. Ukuran kristalit fasa Fe₂B pada lapisan ke nol dan lapisan ke-1 tidak berbeda. Pada lapisan ke-2 dan lapisan ke-4 ukuran kristalit fasa ini lebih kecil daripada lapisan ke nol dan lapisan ke-1. Sedangkan pada lapisan ke-3 ukuran kristalit fasa Fe₂B ini sangat besar. Dari analisis aplikasi GSAS pada lapisan ke-3 ini terjadi teridentifikasi fasa CrB yang orientasi (200) dan (200). Volume unit sel fasa Fe₂B dari lapisan ke nol sampai lapisan ke-4 cenderung meningkat diiringi penurunan densitasnya.

Grafik Pola Difraksi Lapisan Borida Pada Baja ST37

Gambar 4.8 Pola difraksi lapisan borida dikedalaman tertentu pada baja ST37.

lapisan	Kedalaman				
ke-	(µm)	FeB	Fe ₂ B	CrB	Cni-square
0	0	81.693	18.307	0	1.195
1	35	93.746	6.254	0	1.284
2	55	87.427	0.674	11.899	1.055
3	77	26.529	48.688	24.783	1.123
4	97	24.982	52.977	22.041	1.227

Tabel 4.4 Fraksi berat fasa dan nilai *chi-square* hasil *refinement* dari GSAS lapisan borida untuk baja ST37.

Gambar 4.9 Inset pola difraksi lapisan borida baja ST37, (a) fasa Fe₂B pada sudut 49.5° sampai 50.5° dan (b) fasa FeB pada sudut 74.5° sampai 76.0°.

Gambar 4.9 (b) menggambarkan perubahan pola difraksi untuk fasa FeB yang terorientasi di (002). Intensitas FeB dari lapisan ke-1 sampai lapisan ke-4 tidak berubah. Fraksi berat fasa FeB di lapisan ke nol cukup besar. Fraksi berat fasa FeB di lapisan ke-1 teramati yang paling tinggi. Semakin dalam lapisan, fraksi berat fasa FeB terus menurun. Penurunan yang sangat besar terjadi pada lapisan ke-3 dan lapisan ke-4 dimana pada lapisan tersebut teranalisa fasa CrB yang terorientasi di (200). Untuk perubahan ukuran kristalit, pada fasa FeB dari lapisan ke nol sampai lapisan ke-2 tidak berbeda, tetapi besar volume sel unit fasa

FeB terus meningkat. Ukuran kristalit pada lapisan ke-3 dan lapisan ke-4 terjadi pembesaran, tetapi pada kedua lapisan ini volume sel unit fasa FeB semakin menurun.

4.3.2 Pola Difraksi Sinar-X dan Analisis GSAS Lapisan Borida Baja S45C

Karakterisasi pola difraksi untuk baja S45C setiap lapisan dirangkum pada gambar 4.10. Seperti baja ST37, setiap lapisan yang karakterisasi terdapat dua puncak tertinggi yang dapat diamati. Pada sudut 49.0° hingga 51.0° diidentifikasi sebagai fasa Fe₂B (002) dan sudut 74.0° hingga 75.5° diidentifikasi sebagai fasa FeB (002). Pada lapisan ke nol hingga lapisan ke-2 fasa FeB (101) terlihat dengan jelas. Sedangkan pada lapisan ke-3 dan lapisan ke-4 fasa FeB (101) sudah tidak terlihat. Lapisan ke nol pada baja S45C memilki pola difraksi yang lebih kompleks dibanding lapisan ke nol pada baja ST37 dengan teridentifikasinya fasa CrB.

Gambar 4.11 memberikan gambaran yang lebih jelas mengenai perubahan pola difraksi pada dua puncak tertinggi pada lapisan borida baja S45C. Gambar 4.11 (a) menggambarkan perubahan pola difraksi untuk fasa Fe₂B yang terorientasi di (002). Intensitas fasa Fe₂B menurun dari lapisan ke nol sampai lapisan ke-2, begitu juga dengan fraksi beratnya. Selanjutnya intensitas fasa Fe₂B pada lapisan ke-3 dan lapisan ke-4 meningkat kembali yang diikuti juga terjadi peningkatan fraksi beratnya. Tabel 4.5 menyajikan fraksi berat fasa hasil analisis aplikasi GSAS untuk baja S45C. Ukuran kristalit fasa Fe₂B dari lapisan ke nol sampai lapisan ke-2 cenderung meningkat. Pada lapisan ke-2 sampai lapisan ke-4 ukuran kristalit fasa Fe₂B cenderung menurun. Sedangkan volume unit sel fasa Fe₂B dari lapisan ke nol sampai lapisan ke-4 tidak ada perbedaan.

Pola Difraksi Lapisan Borida Pada Baja S45C

Gambar 4.10 Pola difraksi lapisan borida dikedalaman tertentu pada baja S45C.

Tabel 4.5 Fraksi berat fasa dan nilai chi-square hasil refinement dari GSAS lapisan borida untuk baja S45C.

lapisan	Kedalaman				
ke-	(µm)	FeB	Fe ₂ B	CrB	Cni-square
0	0	25.484	48.596	25.920	1.190
1	29	28.288	50.970	20.742	1.082
2	41	99.367	0.633	0	1.174
3	55	29.307	52.336	18.357	1.193
4	74	26.316	48.668	25.016	1.182

Gambar 4.11 Inset pola difraksi lapisan borida baja S45C, (a) fasa Fe₂B pada sudut 49.0° sampai 51.0° dan (b) fasa FeB pada sudut 74.0° sampai 75.5°.

Gambar 4.11 (b) menggambarkan perubahan pola difraksi untuk fasa FeB yang terorientasi di (002). Intensitas FeB pada lapisan ke-1 sampai lapisan ke-4 tidak berubah. Fraksi berat fasa FeB meningkat mulai dari lapisan ke nol dan lapisan ke-2. Di lapisan ke nol dan lapisan ke-1 fasa CrB sudah teridentifikasi. Munculnya fasa FeB pada lapisan terluar baja S45C dikarenakan fraksi berat Cr yang besar dan afinitas Cr ke B yang lebih besar daripada Fe ke B (Bejar et.al, 2006). Fraksi berat yang besar ini memungkinkan Cr untuk bergerak menuju permukaan baja selama proses boronisasi berlangsung. Ukuran kristalit fasa FeB cenderung meningkat tetapi volume unit sel fasa FeB tidak berubah.

4.4 Kekerasan Mikro Lapisan Borida

Pengujian kekerasan mikro menggunakan indentor Vickers dengan beban 300 gf. Kekerasan mikro dilakukan pada permukaan atas lapisan borida yang diabrasif dan pada penampang lintang lapisan borida. Tabel 4.6 dan gambar 4.12 menunjukan hasil pengujian kekerasan mikro pada permukaan atas lapisan borida

untuk kedua baja. Tabel 4.7 dan gambar 4.13 menunjukan hasil pengujian kekerasan mikro pada penampang lintang lapisan borida untuk kedua baja.

Gambar 4.12 Profil kekerasan mikro pada permukaan lapisan borida.

	S	Г37	S45C		
lapisan ke-	Kekerasan mikro (HV)	Kedalaman (µm)	Kekerasan mikro (HV)	Kedalaman (µm)	
0	749.19	0	732.96	0	
1	3,513.45	35	3,707.26	29	
2	3,917.55	55	4,461.47	41	
3	1,887.79	77	1,426.23	55	
4	1,501.29	97	1,906.25	74	

Tabel 4.6 Kekerasan mikro pada permukaan lapisan borida untuk kedalaman tertentu.

Pengukuran kekerasan mikro ini dimulai dari permukaan lapisan borida diluar sampel. Kekerasan mikro pada lapisan tersebut pada kedua baja tidak berbeda jauh. Dari tabel 4.6 terlihat, pada baja ST37 kekerasan mikro sebesar 749.19 HV dan pada baja S45C 732.96 HV. Setelah lapisan borida diluar sampel baja terabrasif, dikedalaman 30 µm, kekerasan mikro yang diperoleh sangat besar, mencapai 3513.45 HV untuk baja ST37 dan mencapai 3707.26 HV untuk baja S45C. Kekerasan mikro tertinggi diperoleh dikedalaman 55 µm untuk baja ST37 dan 41 µm untuk baja S45C, dimana kekerasan mikro untuk baja ST37 sebesar 3,917.55 HV dan pada baja S45C mencapai 4,461.47 HV.

Proses abrasif berikutnya dilakukan lebih dalam lagi. Kedalaman pada baja ST37 sedalam 77 µm atau sekitar 32 µm dari permukaan baja. Kedalaman abrasif pada baja S45C sedalam 55 µm atau sekitar pada 23 µm dari permukaan baja. Kekerasan mikro untuk kedua baja menurun. Penurunan yang signifikan terjadi pada baja S45C. Kekerasan mikro baja ST37 mencapai 1887.79 HV dan baja S45C mencapai 1426.23 HV. Abrasif lapisan borida dilanjutkan kembali, kedalaman yang dicapai cukup berbeda. Pada baja ST37 kedalaman mencapai 97 µm diperoleh nilai kekerasan mikronya menurun menjadi 1501.29 HV, tetapi berbeda dengan baja S45C yang kedalamannya hanya mencapai 74 µm kekerasan mikronya meningkat mencapai 1906.25 HV.

Hasil pengujian kekerasan mikro lapisan borida pada penampang lintang disajikan pada tabel 4.7. Pengujian untuk baja ST37 dimulai pada kedalaman 27 µm dari permukaan baja, dengan hasilnya sebesar 1582.42 HV. Kedalaman lapisan borida untuk baja S45C dimulai pada kedalaman 40 µm dari permukaan baja, dengan hasilnya sebesar 1390.80 HV. Pengujian berikutnya pada kedalaman 60 µm dari permukaan baja. Pada baja ST37 terjadi penurunan kekerasan mikro mencapai 1390.80 HV, berbeda dengan baja S45C yang terjadi peningkatan kekerasan mikro mencapai 1816.56 HV. Dikedalaman 80 µm, kekerasan mikro pada baja ST37 meningkat mencapai 1816.56 HV, sedangkan pada baja S45C menurun kembali menjadi 1390.80 HV.

Gambar 4.13 Profil kekerasan mikro pada penampang lintang lapisan borida.

	ST37		\$45C		
	Kekerasan mikro (HV)	Kedalaman (µm)	Kekerasan mikro (HV)	Kedalaman (µm)	
1	1582.42	27.0	1390.80	40.0	
2	1390.80	60.0	1816.56	65.5	
3	1816.56	87.5	1390.80	80.0	
4	709.59	128.5	1501.29	129.5	
5	142.42	223	178.99	269.5	

Tabel 4.7 Kekerasan mikro lapisan borida dari penampang lintang.

Dikedalaman selanjutnya, kekerasan mikro pada baja ST37 terus menurun mencapai 709.5 HV pada kedalaman 128.5 µm dan mencapai 142.42 HV pada kedalaman 223 µm yang sudah mencapai matriks baja ST37. Untuk kekerasan mikro baja S45C, pada kedalaman 129.5 µm meningkat sampai 1816.56 HV.

Dikedalaman yang terakhir yaitu pada 269.5 µm dari permukaan dimana sudah mencapai matriks baja S45C kekerasan mikronya sebesar 178.99 HV. Bila dibandingkan dengan nilai kekerasan mikro matriks sebelum diboronisasi, nilai kekerasan mirko baja ST37 lebih besar dibanding sebelum boronisasi. Berbeda dengan baja S45C yang nilai kekerasan mikronya lebih rendah dibanding sebelum boronisasi.

4.5 Hubungan Antara Komposisi Lapisan Borida Dengan Kekerasan Mikronya

Dari uraian diatas, komposisi lapisan borida dengan kekerasan mikro dapat dirangkum dalam satu grafik. Grafik tersebut ditampilkan pada gambar 4.14 dan gambar 4.15 di bawah ini. Dari kedua gambar ini dapat dilihat bagaimana kecenderungan fraksi berat fasa FeB, Fe₂B dan CrB mempengaruhi nilai kekerasan mikro lapisan boridanya. Dari gambar 4.14 dan gambar 4.15, terlihat bahwa kekerasan mikro pada lapisan borida diluar sampel selain dipengaruhi komposisi lapisannya ada faktor lain yang mempengaruhinya. Pada lapisan borida diluar sampel, untuk baja ST37 fasa CrB tidak teridentifikasi, hal ini berbeda sekali dengan baja S45C dimana fasa CrB teridentifikasi. Kemunculan fasa CrB menimbulkan konsekuensi berkurangnya fasa FeB pada lapisan borida yang bersangkutan.

Gambar 4.14 Grafik hubungan antara fraksi berat fasa dengan kekerasan mikro lapisan borida dikedalaman tertentu pada baja ST37.

Dari gambar 4.14, terlihat fasa FeB menunjukkan pengaruh yang nyata terhadap kekerasan mikro lapisan borida. Peningkatan fraksi berat fasa FeB akan diikuti juga dengan peningkatan kekerasan mikro pada permukaan yang bersangkutan. Penurunan kekerasan terjadi pada kedalaman 77 µm dari permukaan lapisan borida diluar sampel. Pada kedalaman ini teridentifikasi fasa CrB yang kemunculannya membuat fraksi berat fasa FeB menurun. Untuk menggambarkan fasa yang mempengaruhi kekerasan mikro pada kedalaman tertentu, dapat dibagi ke dalam tiga zona. Zona l pada kedalaman dengan rentang 0 sampai 40 µm, terlihat pada zona ini fasa FeB (002) berpengaruh positif terhadap kekerasan mikro pada zona tersebut. Zona 2 pada kedalaman dengan rentang 40 µm sampai 80 µm, fasa FeB (002) yang berpengaruh positif terhadap kekerasan mikro pada zona tersebut. Terakhir zona 3 pada kedalaman dengan rentang 80 µm sampai 100 µm fasa FeB (002) dan CrB (200) yang berpengaruh positif terhadap kekerasan mikro pada zona tersebut.

Gambar 4.15 Grafik hubungan antara fraksi berat fasa dengan kekerasan mikro lapisan borida dikedalaman tertentu pada baja S45C.

Dari gambar 4.15, terlihat fasa FeB menunjukkan pengaruh yang nyata terhadap kekerasan mikro lapisan borida sampai kedalaman 55 µm dari permukaan lapisan borida diluar sampel. Peningkatan fraksi berat fasa FeB akan diikuti juga dengan peningkatan kekerasan mikro pada permukaan ini. Hal ini tidak ditemukan pada kedalaman 74 µm dari permukaan lapisan borida diluar sampel, yang memperlihatkan fasa FeB dan fasa Fe₂B berpengaruh negatif pada kekerasan mikronya. Sedangkan fasa CrB pada kedalaman ini berpengaruh positif terhadap kekerasan mikronya. Pada kedalaman ini teridentifikasi fasa CrB yang kemunculannya membuat fraksi berat fasa FeB menurun. Serupa pada baja ST37, untuk menggambarkan fasa yang mempengaruhi kekerasan mikro pada kedalaman tertentu, dapat dibagi ke dalam tiga zona. Zona 1 pada kedalaman dengan rentang 0 sampai 40 µm, terlihat pada zona ini fasa FeB (002) berpengaruh positif terhadap kekerasan mikro pada zona tersebut. Zona 2 pada kedalaman dengan rentang 40 µm sampai 60 µm, fasa FeB (002) yang berpengaruh positif terhadap kekerasan mikro pada zona tersebut. Terakhir zona 3 pada kedalaman dengan rentang 60 µm sampai 80 µm fasa FeB (002) dan CrB (200) yang berpengaruh positif terhadap kekerasan mikro pada zona tersebut.

BAB 5 KESIMPULAN DAN SARAN

5.1. Kesimpulan

Dari hasil penelitian yang telah dilakukan, berikut ini beberapa kesimpulan yang dapat ditarik:

- Proses boronisasi yang dilakukan pada baja ST37 dan baja S45C menghasilkan lapisan borida dipermukaannya. Lapisan borida yang terbentuk pada kedua baja menyerupai bentuk gigi gergaji. Pada baja ST37 bentuk gigi gergaji lapisan borida lebih runcing dan kedalamannya lebih panjang dibanding pada baja S45C.
- 2. Pada baja ST37 dan baja S45C lapisan borida yang terbentuk dapat dibagi menjadi tiga bagian yaitu:
 - a. Lapisan borida yang terbentuk diluar baja. Lapisan ini mengikat sangat lemah pada permukaan baja. Pada baja ST37, lapisan borida diluar permukaannya lebih tebal daripada yang terbentuk pada baja S45C.
 - b. Lapisan borida pada permukaan baja adalah lapisan borida yang fasa dominannya adalah fasa FeB. Ketebalan lapisan fasa FeB ini tidak cukup jelas untuk diamati. Tetapi, hasil dari pola difraksi XRD cukup menyakinkan untuk memastikan lapisan tersebut adalah lapisan FeB.
 - c. Lapisan berikutnya adalah lapisan yang dominannya fasa Fe₂B, yang terbentuk memanjang kedalam dan berbentuk gigi gergaji sampai bertemu dengan matriks.
- 3. Kekerasan mikro yang diukur dari permukaan lapisan borida menunjukan, terjadi peningkatan kekerasan mikro dibandingkan matriksnya. Peningkatan kekerasan mikro sampai nilai tertinggi terjadi pada lapisan dominan fasa FeB. Ketika memasuki lapisan dominan Fe₂B, kekerasan mikro mengalami penurunan. Hal ini diakibatkan oleh kandungan FeB yang berkurang pada lapisan tersebut.

Universitas Indonesia

54

 Komposisi fasa FeB dan fasa CrB merupakan komposisi yang mempengaruhi secara nyata terhadap nilai kekerasan lapisan borida yang bersangkutan pada baja ST37 dan S45C.

5.2. Saran

- 1. Perlu dilakukan penelitian dengan waktu proses dan/atau temperatur proses yang berbeda agar dapat dilakukan perhitungan kinetika difusi boron pada baja ST37 dan S45C.
- 2. Untuk penelitian selanjutnya, diperlukan optimasi proses boronisasi agar diperoleh hanya lapisan tunggal fasa Fe₂B.
- 3. Untuk memperoleh lapisan borida yang tunggal, dapat dilakukan dengan memperpanjang waktu proses boronisasinya, atau melakukan *post-treatment* untuk menghilangkan fasa FeB yang terbentuk.

DAFTAR REFERENSI

- ASTM Committee. (2008). ASTM E384-08a: Standard Test Method For Microindentation Hardness of Materials. West Conshohocken: ASTM International.
- ASM Handbook Committee. (1990). ASM Handbook Volume 1: Properties and Selection: Irons, Steels, and High Performance Alloys. USA: ASM International.
- ASM Handbook Committee. (1992). ASM Handbook Volume 3: Alloys Phase Diagrams. USA: ASM International.
- Bejar, M.A., E. Moreno. (2006). Abrasive Wear Resistance of Boronized Carbon and Low-Alloy Steels. Journal of Materials Processing Technology, 173, 352-358.
- Bindal, C., A.H. Ucisik. (1999). Characterization of Borides Formed On Impurity-Controlled Chromium-Based Low Alloy Steels. Surface and Coatings Technology, 122, 208-213.
- Bindal, C., A.H. Ucisik. (2008). Characterization of Boriding of 0.3% C,0.02% P Plain Carbon Steel. Vaccum, 82, 90-94.
- Binnewies, M., E. Milke. (2002). *Thermochemical Data of Elements and Compounds*. Weinheim: Wiley-VCH Verlag GmbH.
- Callister, W.D. (2007). *Material Science and Engineering: An Introduction* (7th ed.). USA, John Wiley and Sons, Inc.
- Dinnebier, R., S.J.L. Billinge. (2008). *Powder Diffraction: Theory and Practice*. United Kingdom: RSC Publishing.
- Dybkov, V. I. (2007). Growth of Boride layers On The 13% Cr Steel Surface In A Mixture of Amorphous Boron and KBF₄. J. Mater Sci, 42, 6614-6627.

56

- Goeuriot, P., R. Fillit, F. Thevenot, J.H. Driver, H. Bruyas. (1982). *The Influence* of Alloying Element Additions On The Boriding of Steels. Materials Science and Engineering, 55, 9-19.
- Gopalakrishnan, P., P. Shankar, M. Palaniappa, S.S.Ramakrishnan. (2002). Interrupted Boriding of Medium-Carbon Steels. Metallurgical and Material Transactions A, 33A, 1475-1485.
- Jain, Vipin, G. Sundararajan. (2002). Influence of The Pack Thickness of The boronizing Mixture On The Boriding of Steel. Surface and Coatings Technology, 149, 21-26.
- Larson, A.C., R. B. Von Dreele (2004). *GSAS (General Structure Analysis System)*, USA, Los Alamos National Laboratory.
- Martini, C.,G. Palombarini, G. Poli, M. Carbucicchio. (2004). Mechanism of Themochemical Growth of Iron Borides On Iron. Journal of Materials Science, 39, 933-937.
- Ozdemir, O., M.A. Omar, M.Usta, S. Zeytin, C.Bindal, A.H. Ucisik. (2009). An Investigation On Boriding Kinetics of AISI 316 Stainless Steel. Vaccum, 83, 175-179.
- Petrova, Roumina S., Naruemon Suwattananont, Veljko Samardzic. (2008). The Effect of Boronizing On Metallic Alloys For Automotive Applications. JMEPEG, 17, 340-345.
- Sinha, A.K. (1991). *Boriding (Boronizing) of Steels, ASM Handbook Vol 4: Heat Treating*, USA, ASM International.
- Spence, T.W., M.M. Makhlouf. (2005). Characterization of The Operative mechanism In Pottasium Flouborate Activated Pack Boriding of Steels. Journal of Material processing Technology, 168, 127-136.
- Yu, L.G., X.J. Chen, K.A. Khor, G. Sundararajan. (2005). FeB/Fe₂B Phase Transformation During SPS Pack-Boriding: Boride Layer Growth Kinetics. Acta Materialia, 53, 2361-2368.

LAMPIRAN

Lampiran 1 Keluaran Karakterisasi XRF

Lampiran 2 Keluaran Pencarian Puncak Aplikasi APD dan Perhitungan Ukuran Kristalit

Angle	FWHM	Peak int	Back. int	Rel. int	Signif.	Ukuran Kristalit	Parameter Kisi
[20]	[20]	[counts]	[counts]	[%]		(nm)	(Å)
20.565	0.96	5	253	0.2	1.55	8	
41.705	0.12	67	225	2.6	1.97	82	
52.78	0.1	2401	243	93.8	0.92	103	
52.895	0.22	2560	243	100	13.79	47	(110) 2.84026
60.045	0.32	24	228	0.9	0.88	33	
66.075	0.24	10	225	0.4	0.79	46	
67.875	0.12	72	228	2.8	1.29	93	
77.45	0.12	269	237	10.5	0.79	99	
77.65	0.1	328	237	12.8	1.05	118	(200) 2.85346

Keluaran APD Untuk Sampel Blanko Baja ST37

Keluaran APD	Untuk Sampe	l Baja ST37	Lapisan Nol – 0	μm
--------------	--------------------	-------------	-----------------	----

Angle	FWHM	Peak int	Back. int	Rel. int	Signif.	Ukuran Kristalit	HKL
[20]	[20]	[counts]	[counts]	[%]		(nm)	
38.13	0.1	104	320	1	0.94	98	020 FeB
44.2	0.16	357	317	3.6	5.84	62	101 FeB
46.515	0.2	22	317	0.2	0.78	50	120 FeB
48.305	0.08	149	320	1.5	0.76	126	111 FeB
49.9	0.24	3069	324	30.6	56	42	002 Fe ₂ B
52.955	0.1	253	320	2.5	1.48	103	021 FeB
56.09	0.16	36	310	0.4	0.76	65	210 FeB
59.77	0.48	28	313	0.3	1.53	22	$220 \; Fe_2B$
66.385	0.96	5	313	0.1	1.07	11	220 FeB
68.225	0.48	24	313	0.2	0.87	23	211 FeB
74.82	0.14	10040	335	100	27.97	83	002 FeB
75.05	0.1	4998	335	49.8	5.45	116	002 FeB
83.665	0.96	21	313	0.2	1.07	13	112 FeB
87.09	0.2	35	320	0.3	0.78	64	022 FeB

Angle	FWHM	Peak int	Back. int	Rel. int	Signif.	Ukuran Kristalit	HKL
[20]	[20]	[counts]	[counts]	[%]		(nm)	
44.125	0.12	380	256	1.9	3.39	83	101 FeB
48.35	0.48	24	250	0.1	0.97	21	111 FeB
49.935	0.24	1452	250	7.3	31.93	42	$002\;Fe_2B$
52.92	0.48	22	246	0.1	0.83	21	211 Fe ₂ B
74.795	0.14	19796	286	100	41.76	83	002 FeB
75.005	0.1	9920	286	50.1	10.7	116	002 FeB

Keluaran APD Untuk Sampel Baja ST37 Lapisan 1 – 44.25 µm

Keluaran APD Untuk Sampel Baja ST37 Lapisan 2 – 80.88 µm

Angle	FWHM	Peak int	Back. int	Rel. int	Signif.	Ukuran Kristalit	HKL
[20]	[20]	[counts]	[counts]	[%]		(nm)	
44.49	0.32	146	286	0.9	5.43	31	021 CrB
48.81	0.48	13	292	0.1	1.2	21	200 FeB
50.125	0.26	1772	292	10.5	30.46	39	002 Fe ₂ B
66.92	0.32	23	286	0.1	0.85	35	041 CrB
75.105	0.14	16952	346	100	30.59	83	002 FeB
75.315	0.08	7482	342	44.1	4.09	146	002 CrB

Keluaran APD Untuk Sampel Baja ST37 Lapisan 3 – 162.88 µm

Angle	FWHM	Peak int	Back. int	Rel. int	Signif.	Ukuran Kristalit	HKL
[20]	[20]	[counts]	[counts]	[%]		(nm)	
49.685	0.1	1354	86	13.1	3.48	102	$002\;Fe_2B$
74.665	0.12	10363	100	100	21.31	97	002 FeB
74.88	0.1	5373	98	51.8	6.75	116	002 FeB

Keluaran APD Untuk Sampel Baja ST37 Lapisan 4 – 203.21 µm

Angle	FWHM	Peak int	Back. int	Rel. int	Signif.	Ukuran Kristalit	HKL
[20]	[20]	[counts]	[counts]	[%]		(nm)	
49.82	0.26	5300	172	34.6	68.33	39	002 Fe ₂ B
74.81	0.14	15302	219	100	30.95	83	002 FeB
75.035	0.12	7465	219	48.8	8.61	97	002 FeB
80.87	0.12	31	164	0.2	0.85	101	022 CrB

Angle	FWHM	Peak int	Back. int	Rel. int	Signif.	Ukuran Kristalit	Parameter Kisi
[20]	[20]	[counts]	[counts]	[%]		(nm)	(Å)
41.325	0.12	90	262	2.9	1.29	82	
52.58	0.22	3158	282	100	29.76	47	(110) 2.85605
56.345	0.24	29	262	0.9	0.78	44	
67.515	0.12	69	259	2.2	1.36	92	
77.335	0.44	289	259	9.2	12.14	27	(200) 2.86325

Keluaran APD Untuk Sampel Blanko Baja S45C

Keluaran APD Untuk Sampel Baja S45C Lapisan Nol – 0 µm

Angle	FWHM	Peak int	Back. int	Rel. int	Signif.	Ukuran Kristalit	HKL
[20]	[20]	[counts]	[counts]	[%]		(nm)	
38.425	0.24	45	216	2	1.94	41	020 FeB
44.635	0.06	449	219	20.5	1.01	166	021 CrB
48.855	0.16	76	228	3.5	1.06	63	111 FeB
50.185	0.18	1648	228	75.3	10.81	57	002 Fe ₂ B
53.41	0.16	64	225	2.9	0.81	65	040 CrB
59.075	0.96	10	219	0.5	0.75	11	220 Fe ₂ B
75.24	0.18	2190	234	100	16.04	65	002 FeB
75.44	0.08	999	234	45.6	1.29	146	002 FeB
84.145	0.96	16	234	0.7	0.93	13	321 Fe ₂ B
86.115	0.32	14	234	0.7	0.79	39	310 FeB

Keluaran APD Untuk Sampel Baja S45C Lapisan 1 – 43.75 μm

Angle	FWHM	Peak int	Back. int	Rel. int	Signif.	Ukuran Kristalit	HKL
[20]	[20]	[counts]	[counts]	[%]		(nm)	
44.25	0.14	581	225	4.1	4.99	71	101 FeB
49.905	0.14	1866	237	13.3	7.45	73	002 Fe ₂ B
53.015	0.24	53	228	0.4	0.9	43	211 Fe ₂ B
74.89	0.14	14042	262	100	36.3	83	002 FeB
75.1	0.1	7242	262	51.6	7.36	116	002 FeB

Angle	FWHM	Peak int	Back. int	Rel. int	Signif.	Ukuran Kristalit	HKL
[20]	[20]	[counts]	[counts]	[%]		(nm)	
44.135	0.2	132	125	1.3	3.34	50	101 FeB
49.945	0.2	372	121	3.6	6.08	51	002 Fe ₂ B
52.975	0.24	21	117	0.2	0.84	43	211 Fe ₂ B
74.76	0.14	10404	144	100	35.07	83	002 FeB
74.975	0.12	5446	144	52.3	10.76	97	002 FeB

Keluaran APD Untuk Sampel Baja S45C Lapisan 2 – 74.88 µm

Keluaran APD Untuk Sampel Baja S45C Lapisan 3 – 157.88 µm

Angle	FWHM	Peak int	Back. int	Rel. int	Signif.	Ukuran Kristalit	HKL
[20]	[20]	[counts]	[counts]	[%]		(nm)	
44.135	0.24	28	135	0.3	1.02	42	101 FeB
49.76	0.22	2694	142	27.5	27.98	46	002 Fe ₂ B
74.735	0.14	9781	159	100	27.18	83	002 FeB
74.945	0.1	5213	156	53.3	5.83	116	002 FeB

Keluaran APD Untuk Sampel Baja S45C Lapisan 4 – 187.16 μm

Angle	FWHM	Peak int	Back. int	Rel. int	Signif.	Ukuran Kristalit	HKL
[20]	[20]	[counts]	[counts]	[%]		(nm)	
44.09	0.16	28	123	0.2	0.87	62	101 FeB
49.76	0.28	1884	130	13.5	43.33	36	$002 \ Fe_2B$
52.75	0.48	9	121	0.1	0.76	22	211 Fe ₂ B
74.72	0.12	13924	149	100	24.86	97	002 FeB
74.935	0.1	7362	146	52.9	7.28	116	002 FeB

Lampiran 3 Data Kristalografi IuCr/ COD /AMCSD 22.01.10 untuk *Refinement* Aplikasi GSAS.

	Entry # 99-100-7795
Phase classifica Name	tion
Mineral Name	Iron
Formula	Fe
I/Icor	13.21
Sample Name	amcsd_180909
Quality	C (calculated)
	References
Publication	
Bibliography	Zhang J, Guyot F, "Thermal equation of iron and Fe0.91Si0.09Sample: $P = 5.3 \text{ GPa}$, $T = 774 \text{ K}$ ", Physics and Chemistry of Minerals 26 , 206-211 (1999)
Origin of data	AMCSD (American Mineralagist Crustal Structure Database)
entry	APICSD (American Primeralogist Crystal Structure Database)
Source	R.T. Downs, M. Hall-Wallace, "The American Mineralogist Crystal Structure Database", American Mineralogist 88, 247-250 (2003)
Tererence	
	Crystal structure
Crystallographi	c data
Space group	I m -3 m (229)
Crystal system	cubic
Cell	a =2.8515 A
Atom	Flement Oxid. X V Z Bi Focc
coordinates	Fe 0.000 0.000 0.000 1.000000 1.000000
	Diffraction data
Diffraction lines	d 181 Test
	2 0163 1000 0
	1.4258 129.2
	1.1641 219.2
	1.0082 67.2
	Experimental
Physical Proper	tiag
Calc. density	7.99800 g/cm ³
	Remarks
Remarks	
Comments	- Diffraction pattern calculated by Match!. - I/Icor calculated by Match!.

	Entry # 99-100-7787
Phase classifica	tion
Name	
Mineral Name	Iron
Formula	Fe
I/Icor	13.24
Sample Name	amcsd_180909
Quality	C (calculated)
	References
Dublication	
Bibliography	Zhang J, Guyot F, "Thermal equation of iron and Fe0.91Si0.09Sample: $P = 1.8$ GPa, $T = 573$ K", Physics and Chemistry of Minerals 26 , 206-211 (1999)
Origin of data Source of	AMCSD (American Mineralogist Crystal Structure Database)
entry	
Source reference	R.T. Downs, M. Hall-Wallace, "The American Mineralogist Crystal Structure Database", American Mineralogist 88, 247-250 (2003).
	Crystal structure
Crystallographic	
Space group	1 m -5 m (229)
Cell	a=2.8652 Å
parameters	a-2.0032 h
Atom	Element Oxid. x y z Bi Focc
coordinates	Fe 0.000 0.000 0.000 1.000000 1.000000
	Diffraction data
Diffraction lines	
	d [Å] Int.
	2.0260 1000.0
	1.4326 129.6
	1.1697 219.8
	1.0130 66.9
	Experimental
Physical Proper	ties
Calc. density	7.88400 g/cm ³
	Remarks
Pemarks	
Comments	- Diffraction nattern calculated by Matchi
confinents	- I/Icor calculated by Match!

	Entry # 99-100-9836
Phase classificatio	n
Name Minoral Namo	E-P
Formula	FeB
I/Icor	3.07
Sample Name	amcsd_180909
Quality	C (calculated)
	References
Publication	
Bibliography Origin of data	Hendricks S B, Kosting P R, "The crystal structure of Fe2P, Fe2N, Fe3N and FeB", Zeitschrift fur Kristallographie 74, 511-533 (1930)
Source of entry	AMCSD (American Mineralogist Crystal Structure Database)
Source reference	R.T. Downs, M. Hall-Wallace, "The American Mineralogist Crystal Structure Database", American Mineralogist 88, 247-250 (2003).
	Crystal structure
Crystallographic d	ata
Space group	P b n m (62)
Crystal system	orthorhombic
Atom coordinates	Element Oxid. x y z Bi Focc
	Fe 0.125 0.180 0.250 1.000000 1.000000
	B 0.700 -0.130 0.250 1.000000 1.000000
	Diffraction data
Diffraction lines	
	d [Å] Int.
	3.2617 272.6
	2.7475 480.0 2.3830 501.7
	2.2742 568.3
	2.1863 1000.0
	2.0265 4.3
	2.0093 350.8
	1.8002 220.7
	1.6691 180.7
	1.5309 0.0
	1.4730 157.0
	1.4522 11.0
	1.4265 4.0 1.3737 8.7
	1.3589 15.3
	1.3425 25.8
	1.3119 8.4 1.3010 74.4
	1.2992 61.0
	1.2450 114.7
	1.2363 103.9
	1.2280 70.2
	1.2124 24.5
	1.1985 106.1
	1.1902 0.1
	1.1644 134.9
	1.1371 0.9
	1.1044 65.1
	1.0931 0.0
	1.0972 26.3
	1.0607 23.4
	1.0200 1.4
	1.0132 26.5
	Experimental
Physical Propertie	
Calc. density	6.74800 g/cm ³

Remarks

Remarks Comments

Diffraction pattern calculated by Match!.
 I/Icor calculated by Match!.

Entry # 99-200-3534 Phase classification Name Iron boride (2/1) Formula BFe₂ 7.47 I/Icor 1010474 Sample Name Quality C (calculated) References Publication , "Roentgenanalyse der Systeme Eisen-Bor, Kobalt-Bor und Nickel-Bor", Arkiv foer Kemi, Mineralogi och Geologi, A 11, 1-12 (1933) Bibliography Origin of data Source of entry COD (Crystallography Open Database) Link to orig. 1010474 entry Crystal structure Crystallographic data I -4 2 m (121) Space group tetragonal a=5.0990 Å c=4.2400 Å **Crystal system** Cell parameters z 4 Element Oxid. Atom Bi
 x
 y
 z
 Bi
 Focc

 0.167
 0.167
 0.250
 1.000000
 1.000000

 0.500
 0.000
 0.000
 1.000000
 1.000000
 coordinates Fe в Diffraction data Diffraction lines **d [Å]** 3.6055 Int. 76.1 2.5495 185.5 2.1200 236.0 2.0083 1000.0 60.1 1.8028 29.5 1.6301 128.6 1.6124 1.3734 120.7 7.5 1.3416 0.0 1.2834 57.1 1.2747 13.5 1.2018 49.7 1.2013 126.3 1.1872 122.1 1.1402 8.8 24.1 19.9 1.0925 1.0600 1.0455 76.3 1.0170 2.1 Experimental **Physical Properties** 7.38100 g/cm³ Calc. density

Remarks

Remarks

Comments

- Diffraction pattern calculated by Match!.
- I/Icor calculated by Match!.

	Entry # 99-101-0921
Phase classificat	tion
Name Mineral Name	C-P
Formula	CrB
I/Icor	3.07
Sample Name	amcsd_180909
Quality	C (calculated)
	References
Publication	
Bibliography	Wyckoff R W G, "Second edition. Interscience Publishers, New York, New York", Crystal Structures 1, 85-237 (1963)
Origin of data	55 257 (1955)
Source of entry	AMCSD (American Mineralogist Crystal Structure Database)
Source reference	R.T. Downs, M. Hall-Wallace, "The American Mineralogist Crystal Structure Database", American Mineralogist 88, 247-250 (2003).
	Crystal structure
C	
Crystallographic Space group	Gata C m c m (63)
Crystal system	orthorhombic
Cell	a=2.9690 Å b=7.8580 Å c=2.9320 Å
parameters	
coordinates	Cr 0.000 0.144 0.250 1.000000 1.000000
	B 0.000 0.435 0.250 1.000000 1.000000
	Diffraction data
uttraction lines	d [â] Tot
	3.9290 40.2
	2.7774 454.4
	2.3498 894.0
	2.0163 1000.0
	1.9642 589.9
	1.6320 113.0
	1.6319 174.8
	1.4845 1.34.1
	1.3890 1.9
	1.3887 3.6
	1.3735 3.4
	1.2965 56.0
	1.2553 150.6
	1.2550 153.0
	1.1958 56.9
	1.1749 60.9
	1.1748 141.8
	1.0982 44.7
	1.0500 66.1
	1.0083 1.0
	1.0082 1.8
	Evnerimental
	Experimental
Physical Propert	ies
calc. density	o'naann Bicwa
	Remarks
Remarks	
Comments	- Diffraction pattern calculated by Match!.
	- I/Icor calculated by Match!.

Lampiran 4 Keluaran Aplikasi GSAS.

The slope & intercept of the normal probability plot are 1.6635 0.1050

	Fasa Fe
Parameter Kisi	
a=b=c (Å)	2.8660 Å
α=β=γ	90.0
Space group	I m -3 m
Posisi Atom	FE1
Х	0.0
Y	0.0
Z	0.0
Occ	1.0
Uiso	0.0158
Densitas (gr/cm ³)	7.879
Volume [(Å) ³]	23.541
Chi Square	1.157

The slope & intercept of the normal probability plot are 1.0843 0.0241

	Fas	a FeB	Fas	Fasa Fe ₂ B		
Parameter Kisi						
a (A)	4.0630		5.0655			
b (A)	5.5015					
c (A)	2.9499		4.2136			
α=β=γ	90.0		90.0			
Space group	Pbnm		1 -4 2 m			
Posisi Atom	FE1	B1	FE1	B1		
X	0.12019	1.09199	0.167	0.5		
Y	0.18228	-0.25753	0.167	0.0		
Z	0.25	0.25	0.25	0.0		
Occ	1.0	1.0	1.0	1.0		
Uiso	0.02452	0.06752	0.025	0.025		
MD Pref. Orient.	(002) 0.20	71	(002) 0.3	061		
Densitas (gr/cm ³)	6.715		7.526			
Fraksi (wt%)	81.693		18.307			
Volume [(Å) ³]	65.938		108.118			
Massa unit sel	266.628		490.016			
Chi Square	1.195					

The slope & intercept of the normal probability plot are 1.0628 0.0085

	Fas	a FeB	Fasa Fe ₂ B		
Parameter Kisi					
a (Å)	4.1107		5.072		
b (Å)	5.5726		-		
c (Å)	2.9791		4.2137		
α=β=γ	90.0		90.0		
Space group	Pbnm		1-42 m		
Posisi Atom	FE1	B1	FE1	B1	
X	0.17192	1.17359	0.167	0.5	
Y	0.32842	-1.42511	0.167	0.0	
Z	0.25	0.25	0.25	0.0	
Occ	1.0	1.0	1.0	1.0	
Uiso	0.07545	-0.07696	0.025	0.025	
MD Pref. Orient.	(002) 0.15 (101) 2.33	543 ; 0.9859 549 ; 0.0141	(002) 0.2	2755	
Densitas (gr/cm ³)	6.488	6.488			
Fraksi (wt%)	93.746	93.746			
Volume [(Å) ³]	68.243		108.398		
Massa unit sel	266.628		490.016		
Chi Square	1.284				

71

The slope & intercept of the normal probability plot are 1.0195 0.0212

	Fas	a FeB	Fas	Fasa Fe ₂ B		sa CrB
Parameter Kisi						
a (Å)	4.318		5.099		2.963	
b (Å)	5.670				7.823	
c (Å)	2.986		4.24		2.932	
α=β=γ	90.0		90.0		90.0	
Space group	Pbnm		I -4 2 m		C m c m	
Posisi Atom	FE1	B1	FE1	B1	CR1	B1
Х	0.14189	0.42747	0.167	0.5	0.0	0.0
Y	0.18377	0.03018	0.167	0.0	-0.208	0.81247
Z	0.25	0.25	0.25	0.0	0.25	0.25
Occ	1.0	1.0	1.0	1.0	1.0	1.0
Uiso	0.025	0.025	0.025	0.025	0.025	0.025
MD Pref. Orient	(002) 0.1	881	(002) 0.1	000	(002) 0.0	888
Densitas (gr/cm ³)	6.056		7.381		6.138	
Fraksi (wt%)	87.427		0.674		11.899	
Volume [(Å) ³]	73.106		110.239	110.239		
Massa unit sel	266.628		490.016		251.224	
Chi Square	1.055					

The slope & intercept of the normal probability plot are 1.0330 0.0579

	Fa	sa FeB	Fas	Fasa Fe ₂ B		a CrB
Parameter Kisi						
a (Å) 3.972		5.0946		2.96831	
b (A) 5.862		1 24		7.854	
C(A)	y = 2.940		4.24 90.0		2.795	
Space group	p Pbnm		I -4 2 m		C m c m	
Posisi Atom	FE1	B1	FE1	B1	CR1	B1
Σ	X 0.125	6.62941	0.167	0.5	0.0	0.0
Ŋ	0.18	9.9999	0.167	0.0	0.1445	0.435
2	2 0.25	0.25	0.25	0.0	0.25	0.25
Oc	c 1.0	1.0	1.0	1.0	1.0	1.0
Uis	b 0.025	0.025	0.025	0.025	0.025	0.025
MD Pref. Orient	(002) 0.0)693	(002) 0.2	2642	(200) 0.1	354
Densitas (gr/cm ³)	6.454		7.394		6.405	
Fraksi (wt%)	26.529		48.688	48.688		
Volume [(Å) ³]	68.594		110.049	110.049		
Massa unit sel	266.628		490.016	490.016		
Chi Square	1.123					

The slope & intercept of the normal probability plot are 1.0542 0.0349

	Fasa FeB		Fasa	Fasa Fe ₂ B		a CrB	
Parameter Kisi							
a (Å) b (Å) c (Å) α=β=γ Space group	4.053 5.495 2.946 90.0 P b n m	2	5.099 - 4.24 90.0 I -4 2 m		2.991 8.02 2.941 90.0 C m c m		
Posisi Atom	FE1	B1	FE1	B1	CR1	B1	
X Y Z Occ Uiso	0.125 0.18 0.25 1.0 0.025	2.35118 -3.91009 0.25 1.0 0.025	0.167 0.167 0.25 1.0 0.025	0.5 0.0 0.0 1.0 0.025	0.0 0.1445 0.25 1.0 0.025	0.0 0.435 0.25 1.0 0.025	
MD Pref. Orient	(002) 0.0	(002) 0.0897		(002) 0.2495		(002) 0.1969 ; 0.2646 (200) 0.1186 ; 0.7354	
Densitas (gr/cm ³)	6.748		7.381		5.918		
Fraksi (wt%)	24.982		52.977		22.041		
Volume [(Å) ³]	65.611		110.239		70.548		
Massa unit sel	266.628		490.016		251.224		
Chi Square	1.227						

The slope & intercept of the normal probability plot are 1.1106 0.0194

75

The slope & intercept of the normal probability plot are 1.0767 0.0034

		Fasa FeB		Fasa Fe ₂ B		Fasa CrB	
Parameter Kisi		4	/ /1				
α Space g	a (Å) 4.0444 b (Å) 5.494 c (Å) 2.94661 α=β=γ 90.0 Space group P b n m		5.099 2.96144 - 7.663 4.24 2.93191 90.0 90.0 I -4 2 m C m c m		2.96144 7.663 2.93191 90.0 C m c m		
Posisi Atom		FE1	B1	FE1	B1	CR1	B1
	X Y Z Occ Uiso	0.125 0.18 0.25 1.0 0.025	0.7 -0.13 0.25 1.0 0.026	0.167 0.167 0.25 1.0 0.025	0.5 0.0 0.0 1.0 0.025	0.0 0.1445 0.25 1.0 0.025	0.0 0.435 0.25 1.0 0.025
MD Pref. Orient		(002) 0.1197; 0.7563 (101) 0.1444; 0.2087 (020) 0.2296; 0.0350		(002) 0.23	67	(002) 0.1428 (021) 0.2705	3;0.9038 5;0.0962
Densitas (gr/cm ³)		6.762		7.381		6.031	
Fraksi (wt%)		25.484		48.596		25.920	
Volume [(Å) ³]		65.474		110.239		66.535	
Massa unit sel		266.628		490.016		251.224	
Chi Square		1.190					

The slope & intercept of the normal probability plot are 1.0438 0.0266

	Fas	a FeB	Fasa	Fe ₂ B	Fas	a CrB
Parameter Kisi						
a (Å) b (Å) c (Å) α=β=γ Space group	4.0495 5.465 2.946019 90.0 P b n m	2	5.0969 - 4.23999 90.0 I -4 2 m		2.989 7.83 2.93163 90.0 C m c m	
Posisi Atom	FE1	B1	FE1	B1	CR1	B1
X Y Z Occ Uiso	0.125 0.18 0.25 1.0 0.025	0.5884 0.36128 0.25 1.0 0.02441	0.167 0.167 0.25 1.0 0.025	0.5 0.0 0.0 1.0 0.025	0.0 0.1445 0.25 1.0 0.025	0.0 0.435 0.25 1.0 0.025
MD Pref. Orient	(002) 0.06 (101) 0.13	645;0.8528 94;0.1472	(002) 0.23	340	(200) 0.1	115
Densitas (gr/cm ³)	6.790		7.387		6.084	
Fraksi (wt%)	28.288		50.969		20.742	
Volume [(Å) ³]	65.197		110.148		68.612	
Massa unit sel	266.628		490.016		251.224	
Chi Square	1.082					

The slope & intercept of the normal probability plot are 1.0682 0.0071

	Fas	a FeB	Fas	sa Fe ₂ B	
Parameter Kisi					
a (Å) b (Å)	4.053 5.495		5.099		
$\begin{array}{c} c (Å) \\ \alpha = \beta = \gamma \end{array}$	2.946 90.0		4.24 90.0		
Space group	Pbnm		I -4 2 m		
Posisi Atom	FE1	B1	FE1	B1	
X Y Z Occ Uiso	0.18556 0.17152 0.25 1.0 0.04892	0.71419 0.17369 0.25 1.0 0.8	0.167 0.167 0.25 1.0 0.025	0.5 0.0 0.0 1.0 0.025	
MD Pref. Orient.	(002) 0.13	58	(002) 0.1	1457	
Densitas (gr/cm ³)	6.748		7.381		
Fraksi (wt%)	99.367		0.633		
Volume [(Å) ³]	65.611		110.239		
Massa unit sel	266.628		490.016		
Chi Square	1.174				

The slope & intercept of the normal probability plot are 1.0662 0.0347

	Fas	a FeB	Fasa l	Fe ₂ B	Fas	a CrB
Parameter Kisi						
a (Å b (Å c (Å α=β= Space grouj) 3.9681) 5.7755) 2.9460 y 90.0 P b n m	5	5.099 4.24 90.0 I -4 2 m		2.969 6.546 2.9064 90.0 C m c m	
Posisi Atom	FE1	B1	FE1	B1	CR1	B1
2 Y Z Occ Uise	 0.125 0.18 0.25 1.0 0.025 	1.1082 -1.9286 0.25 1.0 0.02441	0.167 0.167 0.25 1.0 0.025	0.5 0.0 0.0 1.0 0.025	0.0 0.1445 0.25 1.0 0.025	0.0 0.2585 0.25 1.0 0.025
MD Pref. Orient	(002) 0.0	0718	(002) 0.198	33	(002) 0.15 (200) 0.11	68 ; 0.1024 10 ; 0.8976
Densitas (gr/cm ³)	6.558		7.381		7.387	
Fraksi (wt%)	29.307		52.336		18.357	
Volume [(Å) ³]	67.516		110.239		56.486	
Massa unit sel	266.628		490.016		251.224	
Chi Square	1.193					

The slope & intercept of the normal probability plot are 1.0601 0.0506

		Fasa	FeB	Fasa F	e ₂ B	Fasa	CrB
Parameter Kisi							
a b c α= Space gro	(Å) (Å) (Å) β=γ oup	4.042 5.408 2.946 90.0 P b n m	2	5.099 - 4.24 90.0 I -4 2 m		2.9643 7.798 3.047 90.0 C m c m	
Posisi Atom		FE1	B1	FE1	B1	CR1	B1
(U	X Y Z Occ Jiso	0.125 0.18 0.25 1.0 0.25	0.84945 -0.2592 0.25 1.0 0.025	0.167 0.167 0.25 1.0 0.025	0.5 0.0 0.0 1.0 0.025	0.0 0.1445 0.25 1.0 0.025	0.0 04415 0.25 1.0 0.04761
MD Pref. Orient		(002) 0.06	40	(002) 0.2219)	(200) 0.1177	,
Densitas (gr/cm ³)		6.876		7.381		5.924	
Fraksi (wt%)		26.316		48.668		25.017	
Volume [(Å) ³]		64.397		110.239		70.433	
Massa unit sel		266.628		490.016		251.224	
Chi Square		1.182					

Lampiran 5 Perhitungan Kedalaman Lapisan Borida.

Lampiran 6 Diagram Fasa Fe-C, Fe-B dan Fe-C-B.

Diagram Fasa C-Fe

Phase	Composition, wt% C	Pearson symbol	Space group	
(δFe)	0 to 0.09	d2	Im3m	
(yFe)	0 10 2.1	cF4	Fm3m	
(aFe)	0 to 0.021	cl2	$Im\overline{3}m$	
(C)	100	hP4	P63/mmc	
Metastable/high-p	ressure phases			
(ɛFe)	0	hP2	P63/mmc	
Martensite	<2.1	t14	I4/mmm	
Fe₄C	5.1	cP5	P43m	
$Fe_3C(\theta)$	6.7	oP16	Pnma	
$Fe_sC_2(\gamma)$	7.9	mC28	C2/c	
Fe ₇ C ₁	8.4	hP20	P63mc	
Fe ₇ C ₃	8.4	oP40	Pnma	
$Fe_2C(n)$	9.7	oP6	Pnnm	
$Fe_{2}C(\varepsilon)$	9.7	hP^*	P6322	
Fe ₂ C	9.7	hP*	$P\overline{3}m1$	
(C)	100	cF8	$Fd\overline{3}m$	

H. Okamoto, 1992

Diagram Fasa B-Fe

84

Diagram Fasa B-C-Fe Pada Temperatur 1000 °C

85