

PERANCANGAN ULANG STASIUN KERJA PADA LINTAS PERAKITAN UTAMA STEERING HANDLE di PT XYZ MELALUI STUDI WAKTU, STUDI GERAKAN DAN ANALISIS SAMPLING INSPECTION

SKRIPSI

WIDHI WAHYUNIARTI 0706275151

UNIVERSITAS INDONESIA FAKULTAS TEKNIK PROGRAM STUDI TEKNIK INDUSTRI DEPOK JUNI 2011

PERANCANGAN ULANG STASIUN KERJA PADA LINTAS PERAKITAN UTAMA STEERING HANDLE di PT XYZ MELALUI STUDI WAKTU, STUDI GERAKAN DAN ANALISIS SAMPLING INSPECTION

SKRIPSI

Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik

WIDHI WAHYUNIARTI 0706275151

UNIVERSITAS INDONESIA FAKULTAS TEKNIK PROGRAM STUDI TEKNIK INDUSTRI DEPOK JUNI 2011

HALAMAN PERNYATAAN ORISINALITAS

Skripsi ini adalah hasil karya saya sendiri, dan semua sumber baik yang dikutip maupun dirujuk telah saya nyatakan dengan benar.

Nama : Widhi Wahyuniarti

NPM : 0706275151

Tanda Tangan : 🗘 🕍

Tanggal : 28 Juni 2011

HALAMAN PENGESAHAN

Skripsi ini diajukan oleh:

Nama : Widhi Wahyuniarti

NPM : 0706275151

Program Studi : Teknik Industri

Judul Skripsi : Perancangan Ulang Stasiun Kerja pada Lintas Perakitan

Utama Steering Handle di PT XYZ melalui Studi Waktu,

Studi Gerakan dan Analisis Sampling Inspection

Telah berhasil dipertahankan di hadapan Dewan Penguji dan diterima sebagai bagian persyaratan yang diperlukan untuk memperoleh gelar Sarjana Teknik pada Program Studi Teknik Industri Fakultas Teknik Universitas Indonesia

DEWAN PENGUJI

Pembimbing: Ir. Djoko Sihono Gabriel, MT

Penguji : Ir. Amar Rachman, MEIM

Penguji : Prof. Dr. Ir. T. Yuri M. Zagloel, MengSc

Penguji : Ir. Sri Bintang Pamungkas, MSISE, PHD (Cui Rout)

Ditetapkan di : Depok

Tanggal: 28 Juni 2011

UCAPAN TERIMA KASIH

Puji syukur penulis panjatkan kepada Allah SWT atas semua rahmat dan karunia-Nya, penulis dapat menyelesaikan skripsi ini. Penyusunan skripsi ini dilakukan dalam rangka memenuhi salah satu syarat untuk mencapai gelar Sarjana Teknik, Departemen Teknik Industri Fakultas Teknik Universitas Indonesia. Penulis menyadari bahwa tanpa bantuan dan bimbingan dari berbagai pihak, sulit bagi penulis untuk menyelesaikan skripsi ini. Untuk itu penulis mengucapkan terima kasih kepada:

- a. Ir. Djoko Sihono Gabriel, MT, selaku dosen pembimbing yang telah menyediakan waktu, tenaga, pikiran serta dorongan dan bimbingan untuk mengarahkan penulis dalam penyusunan skripsi ini; Ir. Amar Rachman, MEIM, Ir. Isti Surjandari, PhD., Ir. Akhmad Hidayatno, MBT., Dendi P. Ishak, MSIE., Prof. Dr. Ir. T. Yuri M. Zagloel, MengSc selaku dosen penguji, yang telah memberikan banyak masukan, perbaikan, serta motivasi agar penulis lebih baik dan lebih bersemangat dalam menyelesaikan skripsi ini;
- b. Orang tua tercinta, Ating Sudiarti dan Suharso atas doa, motivasi, pelajaran, kasih sayang, dan semua hal terindah selama hidup ini.
- c. Pak Gunawanto, Pak Agung, Pak Aris, serta seluruh pihak PT XYZ yang telah mengijinkan penulis untuk belajar secara langsung di sana;
- d. Teman-teman Teknik Industri UI angkatan 2007 yang telah memberikan udara kehidupan yang tidak mungkin ditemukan di manapun, terima kasih untuk semua kebersamaannya selama 4 tahun ini;
- e. Seluruh pihak yang telah membantu penulis dari awal sampai selesainya penulisan skripsi ini yang tidak dapat disebutkan satu per satu.

Akhir kata, penulis berharap Allah SWT berkenan membalas segala kebaikan seluruh pihak yang telah membantu. Semoga skripsi ini dapat bermanfaat bagi semuanya.

Depok, 28 Juni 2011

Penulis

HALAMAN PERNYATAAN PERSETUJUAN PUBLIKASI TUGAS AKHIR UNTUK KEPENTINGAN AKADEMIS

Sebagai sivitas akademik Universitas Indonesia, saya yang bertanda tangan di bawah ini:

Nama : Widhi Wahyuniarti

NPM/NIP : 0706275151

Program Studi: Teknik Industri

Fakultas : Teknik

Jenis karya : Skripsi

demi pengembangan ilmu pengetahuan, menyetujui untuk memberikan kepada Universitas Indonesia **Hak Bebas Royalti Non-Eksklusif** (*Non-exclusive Royalty-Free Right*) atas karya ilmiah saya yang berjudul:

Perancangan Ulang Stasiun Kerja pada Lintas Perakitan Utama Steering Handle di PT XYZ melalui Studi Waktu, Studi Gerakan dan Analisis Sampling Inspection

Dengan Hak Bebas Royalti Non-Ekslusif ini Universitas Indonesia berhak menyimpan, mengalihmedia/format-kan, mengelola dalam bentuk pangkalan data (*database*), merawat, dan memublikasikan tugas akhir saya selama tetap mencantumkan nama saya sebagai penulis/pencipta dan sebagai pemilik Hak Cipta.

Demikian pernyataan ini saya buat dengan sebenarnya.

Dibuat di : Depok

Pada tanggal: 28 Juni 2011

Yang menyatakan

Shirt

(Widhi Wahyuniarti)

ABSTRAK

Nama : Widhi Wahyuniarti

Program studi : Teknik Industri

Judul : Perancangan Ulang Stasiun Kerja pada Lintas Perakitan

Utama

Steering Handle di PT XYZ melalui Studi Waktu, Studi

Gerakan dan Analisis Sampling Inspection

Steering handle adalah salah satu bagian dari sub perikitan unit motor. Apabila pembagian kerja sub lintas perakitan ini bermasalah, maka akan mengakibatkan lintas perakitan utama unit motor terhambat. Begitu pula bila sub lintas perakitan steering handle mengalami kegagalan penanganan kualitas, maka akan menimbulkan claim next process pada lintas perakitan utama unit motor yang juga akan menghambat proses produksi unit motor. Salah satu cara mengantisispasi terjadinya hambatan dalam lintas perakitan adalah dengan merancang ulang susunan stasiun kerja pada lintas perakitan steering handle agar proses perakitan steering handle tetap berlangsung kontinyu, waktu menganggur berkurang, hemat jumlah stasiun kerja serta jumlah claim next process berkurang tanpa menghambat jalannya lintas perakitan steering handle tersebut. Hasilnya setelah diolah dengan studi waktu, studi gerakan, dan sampling inspeksi berkelanjutan adalah susunan dan jumah stasiun kerja yang baru dimana susunan dan jumah stasiun kerja tersebut memiliki efisiensi lebih besar, jumlah stasiun kerja yang lebih sedikit, elemen gerakan yang ekonomis, proses perakitan tetap berjalan kontinyu dan *claim next process* berkurang.

Kata kunci:

Steering Handle, sampling inspeksi berkelanjutan, susunan stasiun kerja, Penyeimbangan Lintas Perakitan

ABSTRACT

Name : Widhi Wahyuniarti

Study Program: Industrial Engineering

Title : Redesign of Work Station in Main Assembly Line of Steering

Handle in PT XYZ by Time Study, Motion Study and

Sampling Inspection Analysis

Steering handle is one of sub line assembly of motor cycle. If there's a problem in the distribution of work in this sub line, it caused an obstruction in main line assembly of motorcycle. So do if steering handle line assembly has a failure of quality control, so it caused claim next process in main line assembly of motor cycle which also obstruct the production process of motor cycle. One of method to settle the obstruction in line assembly is by redesigning of work station in line assembly of steering handle so that it can continue processing, idle time can be decresed, number of work station can be economic dan claim next process can be decresed without obstruction of the steering handle line assembly. The output after time study, motion study and continuous sampling plan is new design and number of work station with better line efficiency, minimal number of work station, economic movement element, continuous assembly processing, and claim next process can be decreased.

Keyword:

Steering handle, continuous sampling plan, design of work station, line balancing

DAFTAR ISI

HALAMAN JUDUL	ii
HALAMAN PERNYATAAN ORISINALITAS	iii
HALAMAN PENGESAHAN	iv
UCAPAN TERIMAKASIH	v
HALAMAN PERNYATAAN PERSETUJUAN PUBLIKASI TUGAS AKHIR	
UNTUK KEPENTINGAN AKADEMIS	vi
ABSTRAK	vii
ABSTRACT	
DAFTAR ISI	
DAFTAR TABEL	
DAFTAR GAMBAR	
DAFTAR LAMPIRAN	. xvi
1. PENDAHULUAN	1
1.1 Latar Belakang Permasalahan	
1.2 Diagram Keterkaitan Masalah	
1.3 Rumusan Permasalahan	5
1.4 Tujuan Penelitian	
1.5 Ruang Lingkup Penelitian	
1.6 Metodologi Penelitian	
1.7 Sistematika Penulisan	11
2. DASAR TEORI	
2.1 Teori 1	
2.2 Teori 2	
2.3 Profil Perusahaan	72
A DENCHIMBUL AND ATTA	0.2
3. PENGUMPULAN DATA	
3.1 Pengumpulan Data Elemen Gerakan	
3.2 Pengumpulan Data Waktu Siklus	
3.3 Pengumpulan Data Pola Inspeksi Stasiun Inspeksi Elektrik	97
4. PENGOLAHAN DATA DAN ANALISIS	100
4.1 Pengolahan Data Steering Handle Tipe X	
4.1.1 Perhitungan Waktu Standar	
4.1.3 Diagram Ketergantungan Antar Elemen Kerja pada Lintas Perakitan Utama Steering Handle tipe X	
4.1.4 Analisis Metode Inspeksi Elektrik	
4.1.5 Analisis Gerakan Dasar THERBLIG	
4.1.6 Pengelompokan Elemen Kerja dengan Metode Heuristik	
4.2.1 Perhitungan Waktu Standar	
4.2.1 Fermungan waktu Standar	
4.2.3 Diagram Ketergantungan Antar Elemen Kerja pada Lintas Perakitan	
	125

4.2.4 Analisis Metode Inspeksi Elektrik	125
4.2.5 Analisis Gerakan Dasar THERBLIG	130
4.2.6 Pengelompokan Elemen Kerja dengan Metode Heuristik	134
4.3 Analisis Hasil Pengolahan Data	138
4.3.1 Analisis hasil pengolahan data pada lintas perakitan steering handle	
tipe x dan tipe y	138
4.3.2 Analisis hasil pengolahan data pada stasiun kerja inspeksi	140
5. KESIMPULAN DAN USULAN	143
DAFTAR REFERENSI	1 4 5
DARTAR REFERENSI	145

DAFTAR TABEL

Tabel 2.1	Tabel Nilai i pada CSP-1	16
Tabel 2.2	Tabel Nilai i pada CSP-2	18
Tabel 2.3.1	Tabel Nilai i pada CSP-F dengan AOQL 0,0018%	20
Tabel 2.3.2	Tabel Nilai i pada CSP-F dengan AOQL 0,033%	21
Tabel 2.3.3	Tabel Nilai i pada CSP-F dengan AOQL 0,046%	21
Tabel 2.3.4	Tabel Nilai i pada CSP-F dengan AOQL 0,074%	22
Tabel 2.3.5	Tabel Nilai i pada CSP-F dengan AOQL 0,113%	22
Tabel 2.3.6	Tabel Nilai i pada CSP-F dengan AOQL 0,0143%	23
Tabel 2.3.7	Tabel Nilai i pada CSP-F dengan AOQL 0,0198%	23
Tabel 2.3.8	Tabel Nilai i pada CSP-F dengan AOQL 0,33%	24
Tabel 2.3.9	Tabel Nilai i pada CSP-F dengan AOQL 0,53%	24
Tabel 2.3.10	Tabel Nilai i pada CSP-F dengan AOQL 0,79%	25
Tabel 2.3.1 1	1 Tabel Nilai i pada CSP-F dengan AOQL 1,22%	25
Tabel 2.3.12	2 Tabel Nilai i pada CSP-F dengan AOQL 1,9%	25
Tabel 2.4.1		
Tabel 2.4.2	Tabel Nilai i pada CSP-T	29
Tabel 2.5	Tabel Nilai i pada CSP-V	
Tabel 2.6	Westinghouse System Skill Rating	
Tabel 2.7	Westinghouse System Effort Rating	48
Tabel 2.8	Westinghouse System Condition Rating	49
Tabel 2.9	Westinghouse System Consistency Rating	49
Tabel 2.10	Tabel Operation Time untuk Contoh Kasus 1	58
Tabel 2.11	Hasil Pendekatan Logika	59
Tabel 2.12	Tabel Operation Time Contoh Kasus 2	62
Tabel 2.13	Pembobotan RPW	61
Tabel 2.14	Pengelompokkan Task dengan Rank Positional Weight	63
Tabel 2.15	Hasil Pengelompokkan <i>Task</i> Berdasarkan Level Predecessor	64
Tabel 2.16	Tabel Pengelompokkan <i>Task</i> dengan Metode KW	65
Tabel 3.1	Elemen Gerakan Stasiun Kerja 17 Steering Handle Tipe X	82
Tabel 3.2	Elemen Gerakan Stasiun Kerja 21 Steering Handle Tipe X	86

Tabel 3.3	Elemen Gerakan Stasiun Kerja 18 Steering Handle Tipe Y
Tabel 3.4	Elemen Gerakan Stasiun Kerja 19 Steering Handle Tipe Y
Tabel 3.5	Hasil Pengukuran Waktu Siklus Elemen Kerja Steering Handle X 92
Tabel 3.6	Hasil Pengukuran Waktu Siklus Elemen Kerja Steering Handle Y 95
Tabel 3.7	Hasil Pengamatan Presentase Perbandingan Steering Handle yang
	diinspeksi dengan Steering Handle yang dilewatkan dari Stasiun
	Kerja Inspeksi
Tabel 4.1	Waktu Standar Tiap Elemen Kerja Steering Steering Handle Tipe X 100
Tabel 4.2	Tabel Hasil Pengolahan Perhitungan AOQL
Tabel 4.3	Tabel nilai i pada CSP-F
Tabel 4.4	Tabel Analisis Waktu Menganggur Pada Stasiun Kerja Inspeksi
	Apabila Inspeksi 100% dengan 2 Mesin diaplikasikan 109
Tabel 4.5	Tabel Analisis Waktu Menganggur Pada Stasiun Kerja Inspeksi
	Apabila CSP F dengan 2 Mesin diaplikasikan 109
Tabel 4.6	Performa Lintas Perakitan Utama Steering Handle Tipe X Saat ini 111
Tabel 4.7	Ilustrasi gerakan mengarahkan pada stasiun kerja 17 113
Tabel 4.8	Ilustrasi gerakan mengarahkan pada stasiun kerja 21 113
Tabel 4.9	Susunan Elemen Kerja Sebelum dan Setelah Membalik Dihilangkan. 115
Tabel 4.10	Susunan Task Sebelum & Setelah Dikelompokkan Berdasarkan
	Bobot
Tabel 4.11	Performa Lintasan Setelah Analisis Terhadap Batasan Fasilitas 120
Tabel 4.12	Analisis Waktu Menganggur Pada Stasiun Kerja Inspeksi Setelah
	Penyeimbangan Lintasan Perakitan Utama
Tabel 4.13	Waktu Standar Tiap Elemen Kerja Steering Steering Handle Tipe Y121
Tabel 4.14	Tabel Analisis Waktu Menganggur Pada Stasiun Kerja Inspeksi
	apabila Inspeksi 100% dengan 2 Mesin diaplikasikan 126
Tabel 4.15	Tabel Analisis Waktu Menganggur Pada Stasiun Kerja Inspeksi
	apabila CSP F dengan 2 Mesin diaplikasikan
Tabel 4.16	Performa Lintasan Steering Handle Tipe Y Saat Ini
Tabel 4.17	Ilustrasi Gerakan Mengarahkan Pada Stasiun Kerja 18 131
Tabel 4.18	Ilustrasi Gerakan Mengarahkan Pada Stasiun Kerja 19 131
Tabel 4.19	Susunan Task Sebelum dan Setelah Gerakan Membalik Dihilangkan 133

Tabel 4.20	Susunan Elemen Kerja Sebelum dan Setelah Dikelompokkan	
	Berdasarkan Urutan Bobot	34
Tabel 4.21	Performa Lintasan Setelah Analisis Berdasarkan Batasan Fasilitas 13	37
Tabel 4.22	Analisis Waktu Menganggur Pada Stasiun Kerja Inspeksi Setelah	
	Penyeimbangan Lintasan Perakitan Utama	38
Tabel 4.23	Perbandingan Kondisi Lintasan $Steering\ Handle\ Tipe\ Y\ Sebelum\ dan$	
	Setelah Usulan Perbaikan	38
Tabel 4.24	Perbandingan Kondisi Lintasan Steering Handle Tipe Y Sebelum dan	
	Setelah Usulan Perbaikan	39

DAFTAR GAMBAR

Gambar 1.1 Diagram keterkaitan masalah	3
Gambar 1.2 Diagram sebab akibat	4
Gambar 1.3 Grafik Waktu Siklus Stasiun Kerja di Lintas Steering Handi	<i>le</i> tipe X 7
Gambar 1.4 Grafik Waktu Siklus Stasiun Kerja di Lintas Steering Handi	<i>le</i> tipe Y 7
Gambar 1.5 Diagram Alir Tahapan Penelitian	10
Gambar 2.1 Flowchart Prosedur CSP-1	15
Gambar 2.2 Flowchart Prosedur CSP-2	
Gambar 2.3 Flowchart Prosedur CSP-F	
Gambar 2.4 Flowchart Prosedur CSP-T	
Gambar 2.5 Flowchart Prosedur CSP-V	30
Gambar 2.6 Fishbone Diagram	32
Gambar 2.7 Allowance Berdasarkan Fungsi	51
Gambar 2.8 Precedence Diagram Task untuk Contoh Kasus 1	58
Gambar 2.9 Precedence Diagram Task untuk Contoh Kasus 2	
Gambar 2.10 Hasil Pembagian Task dengan Metode RPW	
Gambar 2.11 Precedence Diagram Contoh Kasus 3	64
Gambar 2.12 Volume Penjualan Produk PT.XYZ	73
Gambar 2.13 Struktur Organisasi PT. XYZ	
Gambar 2.14 Production Flow Process	77
Gambar 2.15 Susunan Stasiun Kerja Lintas Perakitan Steering Handle T	ipe X 78
Gambar 2.16 Susunan Stasiun Kerja Lintas Perakitan Steering Handle T	ipe Y 79
Gambar 2.17 Peta Proses Operasi Steering Handle Tipe X	80
Gambar 2.18 Peta Proses Operasi Steering Handle Tipe Y	81
Gambar 3.1 Grafik Waktu Siklus Stasiun Kerja Lintas Perakitan Steering	g
Handle tipe X	94
Gambar 3.2 Grafik Waktu Siklus Stasiun Kerja Lintas Perakitan Steering	g
Handle tipe Y	97
Gambar 3.3 Grafik Claim Next Process Steering Handle Januari-Februar	i 2011 98
Gambar 4.1 Aliran Proses Antar Stasiun Kerja di Lintas Steering Handle	Tipe X 102
Gambar 4.2 Susunan Stasiun Kerja di Lintas Steering Handle Tipe X	103

Gambar 4.3 Diagran	n ketergantungan antar elemen-elemen kerja pada lintas
perakita	n utama <i>Steering Handle</i> Sepeda Motor Tipe X104
Gambar 4.4 Susunar	n Stasiun Inspeksi Elektrik <i>Steering Handle</i> Tipe X saat ini 104
Gambar 4.5 Grafik P	ola Inspeksi CSP F Hari ke-1107
Gambar 4.6 Kurva P	Perbandingan Nilai AOQ sebelum CSP F dan setelah CSP F. 108
Gambar 4.7 Susunan	Stasiun Kerja Inspeksi Steering Handle setelah Usulan
Perbaik	an110
Gambar 4.8 Susunar	n Elemen Kerja pada Lintasan Perakitan Utama Steering
Handle	tipe X setelah usulan perbaikan metode inspeksi elektrik 110
Gambar 4.9 Perubah	an susunan stasiun kerja 18,19 dan 20114
Gambar 4.10 Diagram	m Ketergantungan Setelah <i>Task</i> Membalik Dihilangkan 116
Gambar 4.11 Diagram	m Ketergantungan Task Setelah Dikelompokkan
Berdasa	rkan Urutan Bobot117
Gambar 4.12 Analisi	s Susunan Stasiun Kerja Berdasar Batasan Fasilitas 118
Gambar 4.13 Diagram	m Ketergantungan Elemen Kerja Setelah Analisis
berdasa	rkan Batasan Fasilitas119
Gambar 4.14 Aliran	Proses Antar Stasiun Kerja di Lintas <i>Steering Handle</i> TipeY 123
Gambar 4.15 Susuna	n Stasiun Kerja di Lintas <i>Steering Handle</i> Tipe Y Saat ini 124
Gambar 4.16 Diagram	m ketergantungan antar elemen-elemen kerja pada lintas
perakita	n utama Steering Handle Sepeda Motor Tipe Y 125
Gambar 4.17 Susuna	n Stasiun Kerja Inspeksi Elektrik Steering Handle 125
Gambar 4.18 Susuna	n Stasiun Inspeksi <i>Steering Handle</i> Setelah Usulan
Gambar 4.19 Susuna	n Elemen Kerja Pada Lintas Perakitan Utama Steering
Handle	Tipe Y Setelah Usulan Perbaikan Metode Inspeksi Elektrik. 128
Gambar 4.20 Perubal	han SusunanStasiun Kerja 18 dan 19
Gambar 4.21 Diagram	m Ketergantungan <i>Task</i> Setelah Gerakan Membalik
Dihilan	gkan
Gambar 4.22 Diagram	m Ketergantungan Elemen Kerja Setelah Dikelompokkan
Berdasa	rkan Urutan Bobot
Gambar 4.23 Analisi	s Susunan <i>Task</i> Berdasarkan Batasan Fasilitas

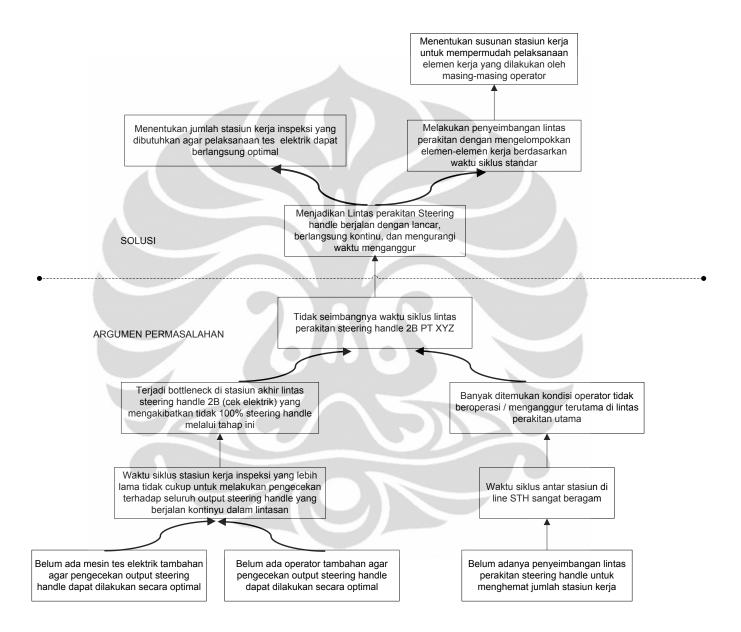
DAFTAR LAMPIRAN

Lampiran 1 Lampiran 2 Lampiran 3	Standar Operasi Perakitan <i>Steering Handle</i> tipe X Standar Operasi Perakitan <i>Steering Handle</i> tipe Y Pengambilan Data Elemen-Elemen Gerakan
Lampiran 4	Data Claim Next Proccess steering handle selama Januari
	Februari 2011 akibat tidak diinspeksi elektrik
Lampiran 5	Pengambilan data pola inspeksi sebelum CSP & setelah CSP
Lampiran 6	Uji kecukupan dan keseragaman data waktu siklus <i>Steering Handle</i> Tipe Y
Lampiran7	Uji kecukupan dan keseragaman data waktu siklus <i>Steering Handle</i> Tipe X
Lampiran 8	Perhitungan Waktu Standar Elemen Kerja pada Lintas Perakitan <i>Steering Handle</i> Tipe Y
Lampiran 9	Perhitungan Waktu Standar Elemen Kerja pada Lintas Perakitan <i>Steering Handle</i> Tipe X

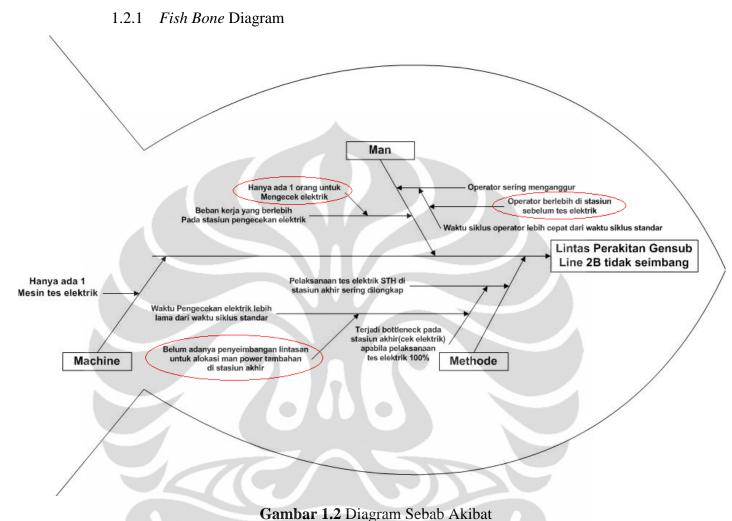
BAB 1 PENDAHULUAN

Pada bab pendahuluan ini akan dibahas mengenai beberapa hal terkait penelitian ini seperti latar belakang permasalahan, gambaran diagram keterkaitan masalah, perumusan permasalahan, tujuan penelitian, batasan atau ruang lingkup penelitian, metodologi penelitian, dan diakhiri dengan penjelasan mengenai sistematika penulisan pada penelitian ini.

1.1 Latar Belakang Permasalahan


Seiring dengan perkembangan zaman, sepeda motor telah menjadi salah satu alat transportasi yang sangat populer di Indonesia. Berdasarkan data penjualan motor Asosiasi Industri Sepeda Motor Indonesia (AISI), penjualan motor nasional selama Januari-Oktober 2008 mencapai angka 5.319.000 unit motor. Sepanjang 2008, PT XYZ menguasai 46% pangsa pasar penjualan motor ini. Berdasarkan data produksi PT. XYZ, tiap tahunnya mengalami kenaikan produksi. Peningkatan jumlah produksi dimaksudkan untuk memenuhi permintaan pasar yang semakin meningkat tiap tahunnya dan untuk menjadi produsen motor nomor satu di Indonesia. Peningkatan produksi ini juga harus diiringi dengan perbaikan sistem produksi PT. XYZ itu sendiri. Perbaikan sistem produksi meliputi segala aspek seperti bahan baku awal, operator, mesin, *supplier*, atau *subcontracktor* sampai dengan metode kerja.

Di PT XYZ, untuk memproduksi satu unit motor, diperlukan suatu sistem produksi yang terintegrasi. Satu unit motor terdiri dari sekitar 1.600 komponen yang dirakit di suatu lintas perakitan. Lintas perakitan ini dapat dikatakan sebagai ujung tombak dari sistem produksi sepeda motor di PT. XYZ. Seluruh bagian yang terkait di PT. XYZ harus dapat mendukung lintas perakitan utama sehingga tidak menghambat jalannya lintas perakitan utama. Salah satu bagian penting dalam unit sepeda motor adalah *steering handle*. Tanpa *steering handle*, sepeda motor tidak dapat digunakan dengan baik. Masalah kualitas pun harus diperhatikan karena apabila terdapat banyak *claim next process*, maka akan bisa


menghambat jalannya proses perakitan suatu unit. Untuk itu, diperlukan metode inspeksi *sub steering handle* yang tepat agar dapat menghindari *claim next process* tanpa menghambat jalannya lintas perakitan. Banyak hal yang dapat dilakukan untuk mengantisispasi terjadinya hambatan dalam lintas perakitan. Salah satunya adalah dengan cara membuat waktu siklus stasiun kerja *steering handle* lebih cepat daripada waktu siklus perakitan unit sepeda motor. Dalam hal ini, PT XYZ terlah berhasil melakukannya.

Saat ini untuk merakit satu unit *steering handle* sepeda motor diperlukan 23 orang operator dengan waktu siklus ideal yang ditetapkan oleh perusahaan sebesar 18 detik. Namun, pada kenyataannya 23 operator dirasa masih terlalu banyak karena sering ditemukan operator yang menganggur saat jalannya lintas produksi. Hal ini terbukti pada hasil pengukuran aktual waktu siklus rata-rata stasiun kerja pada lintas perakitan adalah 12,51, yaitu lebih cepat dari waktu siklus ideal yang seharusnya, yaitu 18 detik. Sedangkan pada stasiun kerja inspeksi *steering handle* yang terletak pada akhir lintasan (stasiun 23), waktu yang dibutuhkan lebih lama dari rata-rata waktu kerja stasiun-stasiun sebelumnya yaitu sekitar 30 detik sehingga hanya sekitar 30% output *steering handle* yang melalui proses inspeksi elektrik. Hal ini menyebabkan masih ditemukannya *claim next process steering handle* di bagian *assembly* unit. Oleh karena itu, perlu dilakukan perancangan ulang stasiun kerja pada lintas perakitan *steering handle* agar proses perakitan *steering handle* tetap berlangsung kontinyu, waktu menganggur berkurang dan hemat jumlah stasiun kerja.

1.2 Diagram Keterkaitan Permasalahan

Gambar 1.1 Diagram Keterkaitan Masalah Sumber: Penulis

Sumber: Penulis

Berdasarkan akar masalah di atas, dapat ditemukan solusi yang mungkin:

- 1. Mengusulkan jumlah stasiun kerja inspeksi terbaik agar pengecekan elektrik *steering handle* dapat berjalan optimal.
 - Jika solusi ini diaplikasikan, maka dampaknya adalah:
 - Kemungkinan jumlah stasiun kerja inspeksi akan bertambah
 - Metode inspeksi *sampling* pada stasiun kerja inspeksi akan berubah atau berubah menjadi inspeksi 100%
- 2. Melakukan penyeimbangan lintas perakitan dengan menyeimbangkan elemen-elemen kerja berdasarkan waktu siklus standar, yaitu 18 detik.
 Jika solusi ini yang akan diaplikasikan, maka dampaknya adalah:

- Kemungkinan jumlah stasiun kerja perakitan *steering handle* akan berkurang
- Susunan stasiun kerja perakitan steering handle akan berubah
- Performansi lintasan steering handle akan berubah

Dari kemungkinan solusi yang akan diaplikasikan, maka jumlah stasiun kerja pada lintasan *steering handle* dapat diseimbangkan berdasarkan kebutuhan.

1.3 Rumusan Permasalahan

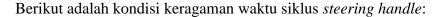
Dalam mengidentifikasi permasalahan di lintas perakitan steering handle, penulis melakukan observasi langsung di lapangan. Penulis juga melakukan wawancara dengan kepala seksi yang bertugas. Berdasarkan hal tersebut, terdapat isu masalah yang didapat. Pada kondisi sebenarnya, lintas perakitan steering handle line memiliki 23 operator. Setiap operator merupakan merupakan 1 stasiun tersendiri. Jadi lintas perakitan steering handle memiliki 23 stasiun kerja. Steering handle yang dirakit ada 2 tipe, yaitu tipe X dan Y. Keduanya memiliki jumlah stasiun dan operator yang sama. Steering handle itu sendiri merupakan bagian dari satu unit motor. Dengan demikian, perakitan steering handle adalah suatu sub lintas dari lintas perakitan unit motor. Seharusnya, waktu siklus lintas perakitan steering handle sama dengan waktu siklus lintas perakitan unit motor. Namun perusahaan menetapkan waktu siklus ideal lintas perakitan steering handle sepeda motor 18 detik. Lebih cepat daripada waktu siklus lintas perakitan unit sepeda motor yang berkisar 21-22 detik. Hal ini dilakukan untuk mengantisispasi terjadinya bottleneck pada lintas perakitan steering handle yang dapat menyebabkan proses perakitan unit motor berhenti(idle) untuk beberapa saat. Adapun waktu siklus *steering handle* didapat dari perhitungan sebagai berikut:

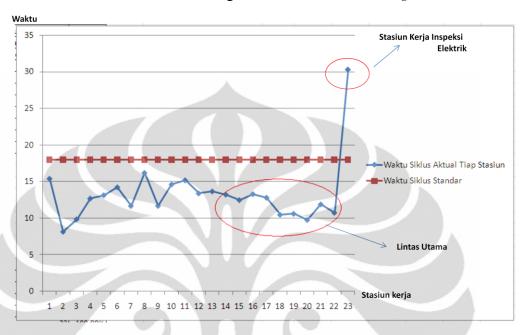
• Kapasitas Produksi: 1250 / hari (*Shift* 1)

Waktu yang tersedia = 9 jam - 1 jam (istirahat,sholat,makan) = 8 jam $\times 3600 = 28.800$ dtk

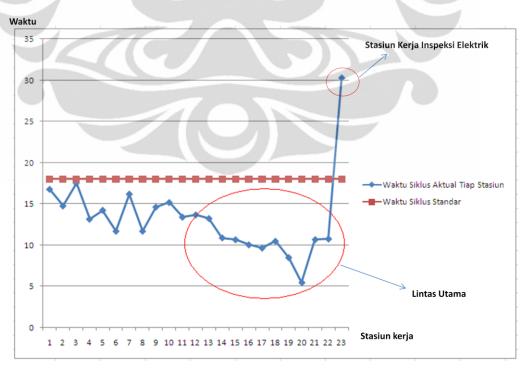
P5M = 5 menit
Persiapan Produksi = 5 menit
5 K akhir produksi = 10 menit
Ganti model (12x4mnt) = 48 menit

Loss time part delay = 35 menit +


103 menit x 60 = 6.180 detik


Waktu Efektif = 28.800 - 6180 = 22.620 dtk

Waktu Siklus = Waktu Efektif/Kapasitas Produksi


 $= 22.620 \text{ dtk}/1250 \text{ unit} = 18,096 \text{ dtk} \sim 18 \text{ dtk}$

Meskipun waktu siklus ideal lintas perakitan steering handle sepeda motor line 2B yang ditentukan adalah 18 detik, waktu siklus aktual pada masing-masing operator di tiap stasiun kerja perakitan steering handle sangat tinggi keragamannya, yaitu berkisar antara 6-17 detik. Pada bagian sub lintas perakitan steering handle, selisih waktu siklus aktual terhadap waktu siklus yang ditetapkan tidak terlalu besar, sedangkan di bagian lintas perakitan utama steering handle banyak ditemukan waktu siklus aktual yang jauh di bawah waktu siklus ideal 18 detik, sehingga banyak ditemukan kondisi operator menganggur pada lintas perakitan utama steeting handle. Sedangkan stasiun kerja inspeksi steering handle yang terletak di akhir lintasan memiliki waktu siklus yang jauh lebih tinggi, yaitu sekitar 30 detik. Sehingga untuk mencegah bottleneck, perusahaan memutuskan untuk melakukan inspeksi secara sampling, jadi tidak semua steering handle melalui inspeksi elektrik. Dari data yang didapatkan di lapangan, hanya terdapat sekitar 24% steering handle yang melalui inspeksi elektrik. Hal ini menyebabkan adanya claim next processs pada lintas perakitan unit motor.

Gambar 1.3 Grafik Waktu Siklus Stasiun Kerja di Lintas *Steering Handle* tipe X Sumber: Observasi Penulis

Gambar 1.4 Grafik Waktu Siklus Stasiun Kerja di Lintas *Steering Handle* tipe Y Sumber: Observasi Penulis

Universitas Indonesia

Berdasarkan latar belakang dan diagram keterkaitan masalah yang telah dibahas pada bagian sebelumnya, maka rumusan masalah pada penelitian ini adalah perlu dilakukannya perancangan ulang lintas perakitan *steering handle* untuk menentukan jumlah stasiun kerja yang optimal sehingga proses perakitan *steering handle* berlangsung kontinyu, waktu menganggur berkurang, jumlah stasiun kerja inspeksi yang optimal dan rencana produksi tetap tercapai setiap harinya. Oleh karena itu, penulis harus mengetahui terlebih dahulu bagaimana sistem lintas perakitan, waktu siklus aktual masing-masing elemen kerja, waktu yang tersedia, dan target produksi harian *steering handle*.

1.4 Tujuan Penelitian

Tujuan pelaksanaan penelitian skripsi ini adalah sebagai berikut:

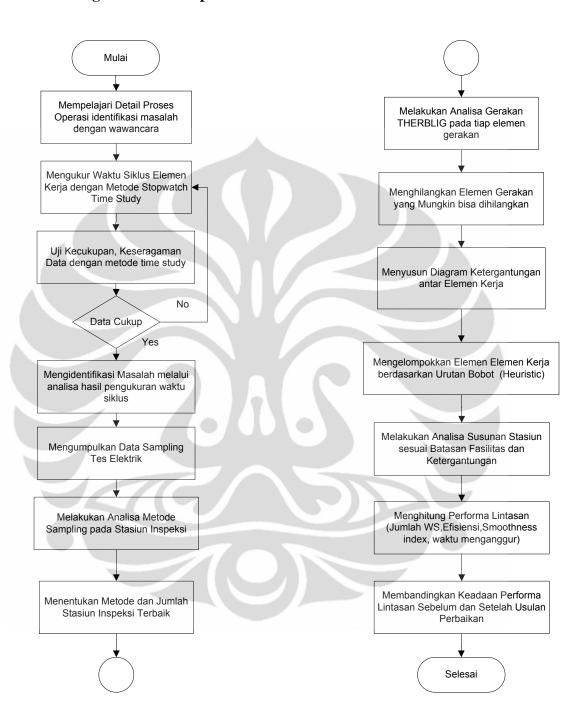
- 1. Memperoleh rancangan ulang stasiun kerja dengan:
- Jumlah stasiun kerja yang lebih efisien dari sebelumnya
- Jumlah elemen gerakan yang lebih ekonomis dari sebelumnya
- Mempertahankan waktu siklus tiap stasiun kerja sehingga tidak melebihi batas waktu siklus standar yang ditetapkan oleh perusahaan.

1.5 Ruang Lingkup Penelitian

- 1. Pengukuran Kerja (*Work Measurement*) dilakukan pada lintas perakitan Steering Handle tipe X dan Y di PT XYZ
- 2. Perbaikan metode kerja dan penyeimbangan jumlah stasiun kerja dilakukan pada **lintas perakitan utama** *Steering handle*
- 3. Analisis metode inspeksi dilakukan pada stasiun kerja inspeksi elektrik
- 4. Kriteria keefektifan dan efisiensi dalam ukuran finansial tidak dilakukan dalam penelitian ini.

1.6 Metodologi Penelitian

Metode yang dilakukan dalam penelitian ini adalah sebagai berikut:


Penghitungan Waktu Standar melalui metode *Stopwatch Time Study* Dalam menghitung waktu standar tiap elemen kerja, penulis melakukan langkah-langkah sebagai berikut:

- a. Mempelajari aliran proses operasi pada lintas perakitan *steering* handle
- b. Mengukur waktu siklus masing-masing elemen kerja dengan pengukuran langsung *stopwatch time study*.
- c. Menghitung kecukupan dan keseragaman data dengan metode *time* study
- d. Menentukan rating dan allowance
- e. Menghitung waktu standar tiap elemen kerja
- 2. Penghematan elemen gerakan kerja melalui analisis gerakan dasar **THERBLIG**

Pada analisis gerakan dasar THERBLIG ini, penulis menganalisis elemen gerakan apa saja dalam proses perakitan *steering handle* yang mungkin dapat dihilangkan berdasarkan teori 4 kelompok elemen gerakan, yaitu: Utama, Penunjang, Pembantu, dan Gerakan Elemen Luar

- 3. Pemilihan metode inspeksi *dan analisis kecukupan sample yang diinspeksi* untuk diterapkan pada stasiun kerja inspeksi.
 - Pada analisis metode sampling ini, penulis menganalisis metode sampling inspeksi yang tepat untuk bisa dilakukan dalam lintasan perakitan yang berkelanjutan, kemudian dibandingkan dengan metode inspeksi 100%. Dari hasil perbandingan kedua itu, dipilih yang terbaik.
- 4. Perancangan ulang susunan stasiun kerja menggunakan Metode *Heuristic* Perancangan ulang susunan stasiun kerja dilakukan setelah penghapusan elemen gerakan yang mungkin dihilangkan. Setelah itu, penulis melakukan pengelompokan elemen kerja berdasarkan urutan bobot tertinggi hingga waktu satsiun kerja mendekati waktu siklus ideal yang telah ditentukan oleh perusahaan sehingga dihasilkan jumlah stasiun kerja yang baru.

1.6.1 Diagram Alir Tahapan Penelitian

Gambar 1.5 Diagram Alir Tahapan Penelitian Sumber: Penulis

1.7 Sistematika Penulisan

Penyusunan laporan ini dilakukan dengan mengikuti aturan sistematika penulisan yang baku sehingga memudahkan penulis dalam proses penyusunan dan memudahkan pembaca ketika membaca laporan ini. Berikut merupakan gambaran singkat mengenai isi laporan ini secara keseluruhan. Laporan ini terdiri dari lima bab dan dilengkapi dengan lampiran dan referensi yang digunakan.

BAB 1 PENDAHULUAN

Bab yang berisi mengenai hal-hal yang berhubungan dengan pengantar laporan ini terdiri dari latar belakang permasalahan, diagram keterkaitan masalah, rumusan permasalahan, tujuan penelitian, ruang lingkup penelitian, metodologi penelitian, diagram alur metodologi penelitian, dan sistematika penulisan.

BAB 2 LANDASAN TEORI

Berisi studi literatur yang mendasari penelitian dan pengolahan data yang meliputi analisis perancangan kerja dan hal-hal lain yang berkaitan dengan *time study* dan *line balancing* serta menjelaskan tentang profil perusahaan dan area penelitian.

BAB 3 PENGUMPULAN DATA

Bab ini berisi tentang data-data apa saja yang diambil oleh penulis yaitu meliputi data primer waktu siklus actual dan data sekunder yang meliputi data historis pencapaian produksi, waktu siklus standard an waktu yang tersedia.

BAB 4 PENGOLAHAN DATA

Bab ini berisi tentang metode – metode pengolahan data dan hasil dari pengolahan data serta perbandingan hasil output sebelum dan setelah saran improvement.

BAB 5 KESIMPULAN

Bab ini berisi tentang kesimpulan saran dan solusi apa yang terbaik yang harus diambil untuk mengatasi masalah yang muncul di area penelitian

BAB 2

LANDASAN TEORI

2.1 Teori I

2.1.1 Continuous Sampling Plan

Continuous Sampling Plan adalah metode inspeksi sampling yang digunakan untuk operasi produksi yang produknya tidak dimasukkan ke dalam kotak. Misalnya perakitan elektronik dimana dibentuk jalur perakitan berjalan (terus menerus). Pada sampling terus menerus, pemeriksaan sampling dilakukan sampai menemukan cacat, kemudian dilakukan pemeriksaan 100% kembali. Secara umum, pemeriksaan secara sampling memiliki beberapa kelebihan dan kekurangan. Kelebihan pemeriksaan secara sampling adalah sebagai berikut:

- 1. Ekonomis
- 2. Claim next process dapat berkurang
- 3. Petugas pemeriksa sedikit
- 4. Mengurangi kebosanan pemeriksa sehingga mengurangi kesalahan
- 5. Mengatasi uji destruktif
- 6. Memotivasi pemilik dalam peningkatan mutu

Sedangkan kekurangan pemeriksaan secara sampling adalah sebagai berikut:

- 1. Resiko menerima barang yang "buruk" dan menolak barang yang "baik"
- 2. Perlu perencanaan dan dokumentasi
- 3. Informasi dari sampel lebih sedikit dibanding pemeriksaan 100%

Begitu pula dengan pemeriksaan 100%, memiliki kelebihan dan kekurangan:

Kelebihan pemeriksaan 100% adalah sebagai berikut:

- 1. Claim next process jauh lebih berkurang
- Resiko menerima barang yang "buruk" dan menolak barang yang "baik" berkurang
- 3. Tidak terlalu banyak perencanaan
- 4. Informasi dari sampel lebih banyak dibanding pemeriksaan secara sampling

Sedangkan kekurangan pemeriksaan 100% adalah sebagai berikut:

- 1. Kurang ekonomis
- 2. Kemungkinan membutuhkan petugas pemeriksa lebih banyak

3. Adanya kebosanan pemeriksa sehingga dapat menimbulkan kesalahan Oleh karena itu, dalam penelitian kali ini, penulis melakukan analisis metode terbaik yang dapat dilakukan untuk mengatasi masalah pada stasiun kerja inspeksi, apakah metode *continuous sampling plan* ataukah metode pemeriksaan 100% yang terbaik untuk diaplikasikan. Analisis lebih lanjut, dapat dilihat pada BAB 4 laporan penelitian ini.

2.1.2 Beberapa Instilah dalam Continuous Sampling Plan

Dalam *Continuous Sampling Plan*, terdapat beberapa istilah yakni diantaranya adalah AOQ (*Average Outgoing Quality*) yaitu presentase resiko rata- rata *defect* produk yang diterima apabila metode *sampling* telah dilakukan . Adapun AOQL (*Average Outgoing Quality Limit*) adalah jumlah maksimum nilai AOQ.

Berikut adalah rumus perhitungan dalam mencari AOQ dan AOQL:

- P (fraksi defect) = m / n
 P adalah banyak defect (m) dalam n sample. Fraksi defect ini dapat diperoleh dari presentase probabilitas defect yang ditemukan dalam jumlah item yg diinspeksi sampling.
- Pa (probabilitas penerimaan) = jumlah yang tidak di tes / jumlah sample
 Pa adalah presentase probabilitas item yang diterima/dilewatkan/tidak diinspeksi.
- $AOQ = P \times Pa$

AOQ adalah presentase probabilitas dari rata-rata total *item defect* yang ditemukan setelah inspeksi *sampling* dilakukan (probabilitas rata-rata % *defect* dari produk yang diterima). AOQ dapat diperoleh dari hasil perkalian antara P (*Fraksi Defect*) dengan Pa (Probabilitas Penerimaan).

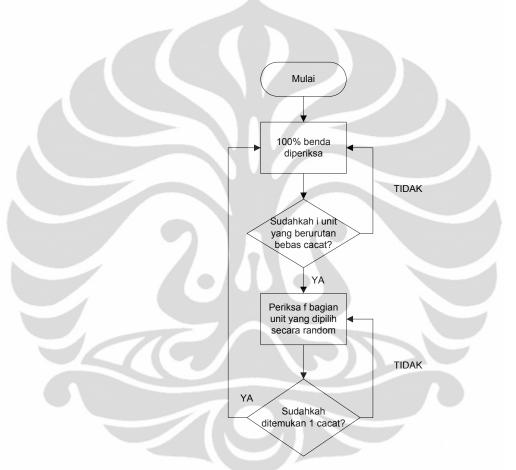
2.1.3 MIL STD 1235B

Untuk mempermudah perhitungan dalam penentuan jumlah *sampling* yang harus dilakukan, maka digunakan alat yang bernama *Military Standard*. Adapun *Military Standard* yang digunakan untuk *Continuous Sampling Plan* adalah MIL STD 1235B. Perencanaan *sampling* MIL STD 1235B terdiri dari 5 jenis perencanaan *sampling* terus menerus yang berbeda, yaitu:

- 1. CSP-1 (Continuous Sampling Plan 1)
- 2. CSP-2 (*Continuous Sampling Plan* − 2)
- 3. CSP-F (*Continuous Sampling Plan* F)
- 4. CSP-V (Continuous Sampling Plan V)
- 5. CSP-T (*Continuous Sampling Plan* T)

2.1.3.1 Continuous Sampling Plan-1 (Sampling Terus Menerus-1)

CSP-1 digunakan untuk aplikasi dalam produksi yang berjalan kontinyu yang setiap unitnya diinspeksi setelah unit tersebut diproduksi. Aplikasi metode sampling ini digunakan untuk aliran produk dalam lintas perakitan (assembly line). Perencanaan sampling juga berada di dalam sistem produksi yang homogen. Semua unit harus dibuat sesuai dengan spesifikasi yang sama. Apabila ada interupsi dalam proses produksi, seperti perubahan sumber material, perubahan alat/mesin, atau pemberhentian produksi, hal-hal tersebut diasumsikan untuk mengakhiri jalannya kondisi produksi homogen.


Dalam CSP-1, terdapat beberapa istilah penting, diantaranya adalah :

- I (bilangan ijin) yaitu jumlah produk yang wajib diinspeksi secara berurutan 100% sebelum inspeksi sampling dilakukan
- f (fraksi inspeksi) yaitu presentase perbandingan bilangan sampling yang dilakukan setelah inspeksi 100% dilakukan sebelumnya.

Misal, AOQL yang diinginkan adalah 2,9% dan perencanaan inspeksi sampling dari *conveyor* adalah 1:25 (dari setiap 25 *item* yang keluar dari *conveyor*, ada 1 *item* yang diinspeksi) yang berarti f = 1/25 atau 0,04 atau 4%. Pada tabel penentuan besar f dan i dengan AOQL diketahui dalam *Dodge's Plan for CSP-1*, ditemukan nilai i=57 untuk AOQL 2,9% dan f 4%. Sehingga prosedurnya adalah:

- 1) Dimulai dengan 100% inspeksi unit secara berurutan setelah diproduksi dan berlanjut sampai i unit (57) produk bebas dari defect.
- 2) Ketika i unit (57) yang diinspeksi berurutan tersebut bebas dari defect, kemudian proses inspeksi 100% tersebut diganti dengan inspeksi hanya untuk fraksi f unit (sample unit tertentu (dalam contoh ini adalah setiap 25 yang keluar dari konveyor, maka 1 unit diinspeksi dan ditentukan secara random), pemilihan sample unit dilakukan satu per satu seiring jalannya

- alur produksi, cara ini untuk menjamin sample tersebut tidak memihak(bias).
- 3) Jika sample unit tersebut ditemukan *defect*, maka dengan segera kembali lagi ke 100% inspeksi dari unit yang berhasil dan melanjutkannya sampai i unit rangkaian ditemukan bebas dari *defect*.
- 4) Ganti/perbaiki semua unit defect yang ditemukan dengan unit yang baik

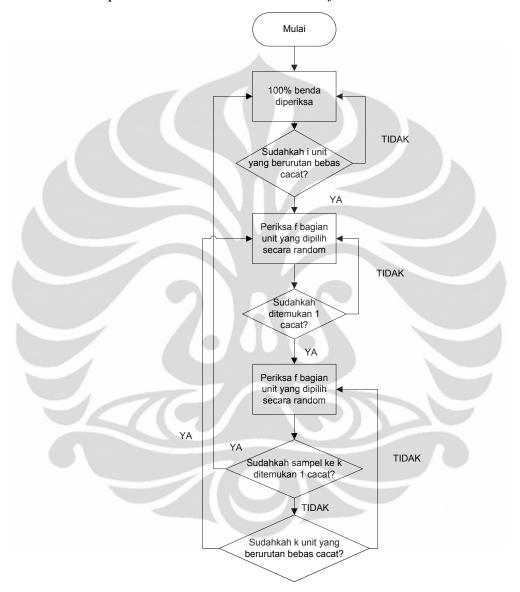
Gambar 2.1 Flow Chart Prosedur CSP-1 Sumber: Statistical Quality Control by E.L. Grant and R.S. Leavenworth

32

Tabel 2.1 Tabel Nilai i pada CSP-1

Sampling																	
Freq			AOQL in %														
Code Ltr	f	0,018	0,033	0,046	0,074	0,113	0,143	0,198	0,33	0,53	0,79	1,22	1,9	2,9	4,94	7,12	11,46
Α	1/2	1540	840	600	375	245	194	140	84	53	36	23	15	10	6	5	3
В	1/3	2550	1390	1000	620	405	321	232	140	87	59	38	25	16	10	7	5
С	1/4	3340	1820	1310	810	530	420	303	182	113	76	49	32	21	13	9	6
D	1/5	3960	2160	1550	965	630	498	360	217	135	91	58	38	25	15	11	7
Е	1/7	4950	2700	1940	1205	790	623	450	270	168	113	73	47	31	18	13	8
F	1/10	6050	3300	2370	1470	965	762	550	335	207	138	89	57	38	22	16	10
G	1/15	7390	4030	2890	1800	1180	930	672	410	255	170	108	70	46	27	19	12
Н	1/25	9110	4970	3570	2215	1450	1147	828	500	315	210	134	86	57	33	23	14
- 1	1/50	11730	6400	4590	2855	1870	1477	1067	640	400	270	175	110	72	42	29	18
J	1/100	14320	7810	5600	3485	2305	1820	1302	790	500	330	215	135	89	52	36	22
K	1/200	17420	9500	6810	4235	2760	2178	1583	950	590	400	255	165	106	62	43	26

Sumber: MIL STD 1235 B


2.1.3.2 Continuous Sampling Plan-2 (Sampling Terus Menerus-2)

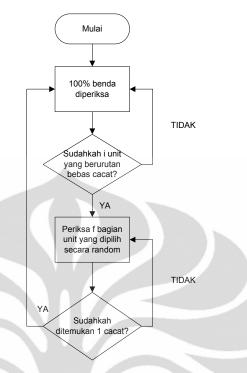
CSP-2 adalah salah satu tipe *single level continuous sampling procedure* yang digunakan untuk memberikan alternatif pengganti bagi rangkaian inspeksi 100% dan *sampling inspection* dengan tanpa batas jumlah rangkaian/rentetan. CSP-2 tidak digunakan untuk inspeksi *critical defect*. Di dalam perencanaan CSP-2, pemeriksaan 100% tidak akan dikembalikan lagi apabila dalam sampel pemeriksaan yang digunakan, tidak terdapat 2 produk yang cacat atau lebih, dalam ruang K unit sampel satu dengan yang lain. Misal, dari AOQL = 2,9% dan f = 4%, maka pada Tabel penentuan besar f dan i dengan AOQL diketahui dalam *Dodge's Plan for CSP-2*, ditemukan nilai k=71 untuk AOQL 2,9% dan f 4% Sehingga prosedurnya adalah :

- 1) Dimulai dengan 100% inspeksi unit secara berurutan setelah diproduksi dan berlanjut sampai i unit (71) produk bebas dari defect.
- 2) Ketika i unit (71) yang diinspeksi berurutan tersebut bebas dari defect, kemudian proses inspeksi 100% tersebut diganti dengan inspeksi untuk hanya fraksi f unit (sample unit tertentu (dalam contoh ini adalah setiap 25 yang keluar dari konveyor, maka 1 unit diinspeksi dan ditentukan secara random), pemilihan sample unit dilakukan satu per satu seiring jalannya alur produksi, cara ini untuk menjamin sample tersebut tidak memihak(bias).
- 3) Jika sample unit tersebut ditemukan defect, maka tetap lanjutkan inspeksi sampling sampai defect kedua ditemukan pada inspeksi sample ke 71.

Universitas Indonesia

4) Apabila sampai inspeksi sample ke-71, *sample* produk tidak ada yang defect, maka sampling f tetap dilakukan, namun apabila sebelum inspeksi sample yang ke 71 ditemukan defect, maka kembali lagi ke 100% inspeksi sampai 71 unit berurutan bebas dari *defect*

Gambar 2.2 Flow Chart Prosedur CSP-2 Sumber: Statistical Quality Control by E.L. Grant and R.S. Leavenworth


Tabel 2.2 Tabel Nilai i pada CSP-2

Sampling Freq		AOQL in %										
Code Ltr	f	0,53	0,79	1,22	1,9	2,9	4,94	7,12	11,5			
Α	1/2	80	54	35	23	15	9	7	4			
В	1/3	128	86	55	36	24	14	10	7			
С	1/4	162	109	70	45	30	18	12	8			
D	1/5	190	127	81	52	35	20	14	9			
Е	1/7	230	155	99	64	42	25	17	11			
F	1/10	275	185	118	76	50	29	20	13			
G	1/15	330	220	140	90	59	35	24	15			
Н	1/25	395	265	170	109	71	42	29	18			
W.	1/50	490	330	210	134	88	52	36	22			

Sumber: MIL STD 1235 B

2.1.3.3 Continuous Sampling Plan-F (Sampling Terus Menerus-F)

CSP F adalah single level continuous sampling procedure yang digunakan untuk menggantikan rangkaian 100% inspeksi dan inspeksi sampling. CSP F sama aplikasinya dengan CSP-1 plan, namun aplikasi ini dipakai untuk menetapkan bilangan unit pada suatu waktu, dengan cara mengijinkan bilangan ijin terkecil unit untuk digunakan. Perencanaan ini dapat diaplikasikan pada situasi yang melibatkan berjalannya produksi yang pendek, atau untuk satu atau lebih interval produksi yang memakan waktu operasi inspeksi. Misal, inspeksi dengan peralatan X-Ray dimana bilangan ijin yang lebih besar menyebabkan produksi bottleneck. Maka, Continuous Sampling Plan F cocok untuk digunakan dalam inspeksi sampling pada penelitian ini karena stasiun inspeksi elektrik steering handle memakan waktu lebih banyak dibandingkan stasiun sebelumnya.

Gambar 2.3 Flow Chart Prosedur CSP-F Sumber: MIL STD 1235 B

Tabel 2.3.1 Tabel Nilai i pada CSP-F dengan AOQL 0,018%

AQL	0,010%							
AOQL	0,018%							
Sampling Frek	Α	В	С	D	Е	F	G	н
Code Ltr								
f	1/2	1/3	1/4	1/5	1/7	1/10	1/15	1/25
N								
1-500	347	376	387	392	398	402	405	407
501-600	400	432	449	458	461	464	470	472
601-700	441	485	502	517	519	523	529	533
701-800	482	≥530	577	585	589	591	594	596
801-1000	545	618	647	662	678	689	697	703
1001-1500	679	799	843	870	900	903	920	935
1501-2000	784	942	1008	1044	1082	1108	1128	1143
2001-3000	929	1163	1264	1320	1380	1423	1455	1479
3001-4000	1029	1328	1452	1538	1620	1679	1723	1757
4001-5000	1101	1458	1624	1718	1822	1896	1952	1996
5001-6000	1156	1564	1759	1871	1996	2086	2154	2208
6001-7000	1199	1651	1874	2004	2149	2255	2335	2398
7001-8000	1234	1725	1974	2125	2285	2407	2499	2572
8001-9000	1262	1789	2061	2224	2408	2545	2649	2732
9001-10000	1286	1844	2138	2317	2520	2671	2788	2880
10001-11000	1306	1891	2207	2400	2622	2788	2917	3018
11001-12000	1323	1933	2269	2496	2716	2897	3037	3148
12001-15000	1363	2034	2420	2666	2957	3181	3356	3497
15001-20000	1405	2146	2598	2898	3265	3554	3787	3975
20001-30000	1449	2271	2808	3183	3670	4076	4414	4698
30001-40000	1473	2340	2924	3352	3924	4424	4858	5232
40001-50000	1487	2385	3003	3462	4097	4674	5191	5651
50001-60000	1497	2413	3055	3539	4223	4861	5451	5990
60001-70000	1504	2435	3095	3597	4317	5005	5659	6271
70001-80000	1509	2451	3125	3542	4391	5120	5828	6508
80001-90000	1514	2464	3149	3677	4451	5213	5969	6712
90001-100000	1517	2475	3168	3706	4500	5291	6088	6888
100001-150000	1527	2507	3228	3796	4652	5539	6481	7501
150001-200000	1532	2523	3258	3842	4733	5673	6700	7865
200001-250000	1535	2533	3277	3870	4783	5756	6840	8105
250001-300000	1537	2540	3290	3890	4816	5813	6936	8274
300001 & over	1540	2550	3340	3960	4950	6050	7390	9110

Sumber: MIL STD 1235 B

Tabel 2.3.2 Tabel Nilai i pada CSP-F dengan AOQL 0,033%

AQL	0,015%							
AOQL	0,033%							
Sampling Frek	Δ	В	С	D	E	F	G	н
Code Ltr		_	_	_	_			
f	1/2	1/3	1/4	1/5	1/7	1/10	1/15	1/25
N								
1-500	282	318	332	340	347	353	357	359
501-700	340	400	421	437	442	455	460	465
701-1000	411	490	522	540	559	572	581	589
1001-2000	545	697	764	802	843	872	894	911
2001-3000	617	826	924	981	1043	1088	1122	1148
3001-4000	661	915	1041	1115	1198	1259	1305	1341
4001-5000	691	981	1132	1222	1324	1400	1458	1504
5001-6000	713	1032	1204	1309	1431	1521	1591	1647
6001-7000	729	1072	1263	1382	1521	1626	1708	1773
7001-8000	742	1104	1321	1442	1600	1719	1813	1888
8001-9000	752	1131	1354	1498	1669	1802	1907	1992
9001-10000	760	1153	1389	1544	1731	1877	1994	2088
10001-11000	767	1172	1420	1584	1786	1945	2073	2176
11001-12000	773	1189	1447	1620	1835	2007	2145	2259
12001-15000	786	1229	1509	1706	1958	2163	2334	2476
15001-20000	800	1266	1578	1803	2101	2358	2578	2765
20001-30000	815	1309	1654	1911	2272	2604	2907	3179
30001-40000	822	1332	1695	1971	2370	2753	3120	3466
40001-50000	826	1345	1720	2009	2433	2852	3268	3678
50001-60000	829	1355	1737	2035	2477	2922	3377	3841
60001-70000	831	1362	1750	2054	2509	2974	3460	3970
70001-80000	833	1367	1759	2068	2534	3015	3525	4075
80001-90000	834	1371	1767	2080	2554	3048	3578	4161
90001-100000	835	1374	1773	2089	2570	3074	3621	4234
100001-150000	838	1384	1792	2117	2619	3157	3759	4471
150001 and over	840	1390	1820	2160	2700	3300	4030	4970
All		@ W		TO S				

Tabel 2.3.3 Tabel Nilai i pada CSP-F dengan AOQL 0,046%

AQL	0,025%		N 1			10		V 10
AOQL	0,046%			ALC: Y	_	V 1	1	
Sampling Frek Code Ltr	A	В	С	D	E	F	G	Н
f	1/2	1/3	1/4	1/5	1/7	1/10	1/15	1/25
N								
1-500	245	284	299	307	316	322	326	329
501-700	293	351	377	385	400	407	417	420
701-1000	342	420	454	472	492	506	516	524
1001-2000	434	576	642	680	721	751	774	791
2001-3000	479	666	760	816	877	923	957	985
3001-4000	506	726	843	914	996	1056	1103	1140
4001-5000	523	768	905	990	1090	1165	1223	1270
5001-6000	535	800	953	1051	1167	1256	1326	1382
6001-7000	544	824	991	1100	1232	1334	1416	1482
7001-8000	551	843	1022	1141	1287	1402	1495	1571
8001-9000	557	859	1047	1175	1334	1462	1566	1651
9001-10000	561	871	1069	1204	1376	1515	1630	1725
10001-11000	565	882	1089	1230	1412	1563	1688	1792
11001-12000	568	892	1103	1251	1444	1606	1741	1854
12001-15000	576	912	1139	1303	1522	1712	1876	2016
15001-20000	583	935	1178	1359	1610	1838	2044	2227
20001-30000	591	958	1220	1420	1710	1990	2260	2518
30001-40000	594	970	1242	1453	1765	2077	2392	2709
40001-50000	597	977	1255	1473	1800	2133	2480	2846
50001-60000	598	982	1265	1487	1824	2172	2544	2947
60001-70000	599	985	1271	1497	1841	2201	2591	3025
70001-80000	600	988	1276	1505	1855	2224	2628	3088
80001-90000	600	990	1280	1511	1865	2241	2657	3138
90001-100000	600	994	1283	1516	1874	2256	2681	3180
100001 and over	600	1000	1310	1550	1940	2370	2890	3570

Tabel 2.3.4 Tabel Nilai i pada CSP-F dengan AOQL 0,074%

101	0.0400/							
AQL	0,040%							
AOQL	0,074%							
Sampling Frek	A	В	С	D	E	F	G	н
Code Ltr								
f	1/2	1/3	1/4	1/5	1/7	1/10	1/15	1/25
N								
1-500	195	233	250	259	268	275	280	284
501-700	253	327	361	380	400	415	426	435
1001-2000	302	424	485	522	563	593	617	635
2001-3000	324	474	557	608	668	713	748	776
3001-4000	336	504	604	667	744	803	850	887
4001-5000	343	525	636	710	801	874	932	979
5001-6000	348	539	660	743	847	931	1000	1057
6001-7000	352	550	679	768	884	979	1058	1124
7001-8000	355	559	693	789	914	1020	1109	1184
8001-9000	357	566	705	805	939	1054	1153	1237
9001-10000	359	571	715	819	960	1084	1192	1285
10001-11000	361	576	723	831	979	1111	1227	1329
11001-12000	362	580	730	841	995	1134	1258	1369
12001-15000	365	588	745	864	1032	1189	1335	1469
15001-20000	368	598	762	888	1072	1251	1426	1595
20001-30000	371	607	779	914	1116	1321	1534	1756
30001-40000	373	612	788	928	1139	1359	1595	1855
40001-50000	373	615	794	936	1153	1383	1635	1921
50001-60000	374	617	797	942	1163	1399	1662	1968
60001-70000	375	618	800	946	1170	1411	1682	2004
70001 and over	375	620	810	965	1205	1470	1800	2215

Tabel 2.3.5 Tabel Nilai i pada CSP-F dengan AOQL 0,113%

AQL	0,065%		N A				Street, Street,	1
AOQL	0,113%				D 1	1		, Vin
Sampling Frek Code Ltr	A	В	С	D	E	F	G	Н
f	1/2	1/3	1/4	1/5	1/7	1/10	1/15	1/25
N								W 4
1-500	155	190	207	216	226	233	239	243
501-700	187	254	286	305	325	340	352	361
1001-2000	213	312	367	401	441	471	494	513
2001-3000	223	339	409	455	510	554	589	617
3001-4000	229	354	434	489	558	614	659	697
4001-5000	232	364	451	512	592	659	715	762
5001-6000	235	371	463	529	618	694	760	816
6001-7000	236	376	472	542	638	722	797	862
7001-8000	238	380	479	552	654	746	828	902
8001-9000	239	384	485	560	667	765	855	937
9001-10000	240	386	489	567	678	782	879	968
10001-11000	240	388	493	573	687	796	899	995
11001-12000	241	390	496	578	695	808	917	1020
12001-15000	242	394	504	588	713	836	959	1082
15001-20000	243	398	511	600	732	867	1007	1154
20001-30000	245	402	519	611	752	900	1061	1242
30001-40000	245	404	523	617	762	918	1090	1292
40001 and over	245	405	530	630	790	965	1180	1450

Sumber: MIL STD 1235

Tabel 2.3.6 Tabel Nilai i pada CSP-F dengan AOQL 0,143%

AQL	0,100%							
AOQL	0,143%							
Sampling Frek	Δ	В	С	D	E	F	G	н
Code Ltr				"	-	-		
f	1/2	1/3	1/4	1/5	1/7	1/10	1/15	1/25
N								
1-500	130	167	184	193	204	211	216	221
501-700	156	217	248	267	287	302	314	323
1001-2000	173	260	310	342	377	410	433	452
2001-3000	180	278	340	382	434	477	511	539
3001-4000	184	288	357	406	469	522	567	605
4001-5000	186	295	369	422	494	556	611	657
5001-6000	188	300	377	434	512	582	645	700
6001-7000	189	303	383	442	526	603	673	737
7001-8000	190	305	387	449	537	619	696	768
8001-9000	190	307	391	454	545	633	716	794
9001-10000	191	309	394	459	553	644	733	818
10001-11000	191	310	396	462	559	654	747	839
11001-12000	192	312	398	465	564	662	760	857
12001-15000	192	314	403	472	576	681	790	902
15001-20000	193	317	408	480	588	701	822	954
20001-30000	194	319	413	487	601	723	858	1014
30001-40000	194	321	415	491	608	734	877	1048
40001 and over	194	321	417	493	612	741	889	1069

Tabel 2.3.7 Tabel Nilai i pada CSP-F dengan AOQL 0,0198%

0,150%			had				
0,198%				1000			
Α	В	C	D	E	F	G	Н
1/2	1/3	1/4	1/5	1/7	1/10	1/15	1/25
	1			- A	Yh.		-
103	136	155	164	174	182	187	192
119	173	201	219	239	254	266	275
130	199	242	271	306	335	358	377
133	209	260	295	342	382	415	443
135	215	270	310	364	413	455	492
136	219	276	319	379	434	485	530
137	221	281	326	390	451	508	561
138	223	284	331	398	463	526	586
138	224	287	334	404	473	541	607
139	226	289	337	409	481	553	625
139	226	290	340	413	487	563	640
139	227	291	342	417	493	572	654
139	228	293	343	420	498	579	666
140	229	295	347	426	508	597	694
140	230	298	351	433	520	615	725
140	232	300	355	440	531	635	760
140	232	303	360	450	550	672	828
	0,198% A 1/2 103 119 130 133 135 136 137 138 139 139 139 140 140	0,198% A B 1/2 1/3 103 136 119 173 130 199 133 209 135 215 136 219 137 221 138 223 138 224 139 226 139 226 139 227 140 230 140 232	0,198% A B C 1/2 1/3 1/4 103 136 155 119 173 201 130 199 242 133 209 260 155 215 270 136 219 276 137 221 281 138 223 284 138 224 257 139 226 289 139 226 290 139 227 291 140 230 298 140 232 300	0,198% A B C D 1/2 1/3 1/4 1/5 103 136 155 164 119 173 201 219 130 199 242 271 133 209 260 295 135 215 270 310 136 219 276 319 137 221 281 326 138 223 284 331 138 224 257 334 139 226 289 337 139 226 290 340 139 227 291 342 139 228 293 343 140 229 295 347 140 230 298 351 140 230 298 351	0,198% A B C D E 1/2 1/3 1/4 1/5 1/7 103 136 155 164 174 119 173 201 219 239 130 199 242 271 306 133 209 260 295 342 135 215 270 310 364 136 219 276 319 379 137 221 281 326 390 138 223 284 331 398 138 224 257 334 404 139 226 289 337 409 139 226 289 337 409 139 227 291 342 417 139 228 293 343 420 140 229 295 347 426 140 230 298 351 433 140 232 300 355 440	D	D

Tabel 2.3.8 Tabel Nilai i pada CSP-F dengan AOQL 0,33%

AQL	0,250%							
AOQL	0,330%							
Sampling Frek Code Ltr	А	В	С	D	E	F	G	н
f	1/2	1/3	1/4	1/5	1/7	1/10	1/15	1/25
N								
1-500	70	99	114	123	133	140	146	151
501-700	77	116	140	155	174	188	200	209
1001-2000	81	127	158	181	211	236	258	277
2001-3000	82	132	166	192	228	261	291	318
3001-4000	83	134	<u>170</u>	198	237	276	312	347
4001-5000	84	135	173	201	244	286	327	368
5001-6000	84	136	174	204	248	293	338	384
6001-7000	84	137	176	206	251	298	346	397
7001-8000	84	138	177	207	254	302	353	408
8001-9000	84	138	177	209	256	305	358	416
9001-10000	84	138	178	209	257	308	362	424
10001-11000	84	138	178	210	259	310	366	430
11001-12000	84	139	179	211	260	312	369	435
12001-15000	84	139	180	212	262	316	376	447
15001-20000	84	140	181	214	265	320	384	460
20001 and over	84	140	182	217	270	335	410	500

Tabel 2.3.9 Tabel Nilai i pada CSP-F dengan AOQL 0,53%

AQL	0,400%			- 10				
AOQL	0,530%		A A					
Sampling Frek Code Ltr	A	В	С	D	E	F	G	Н
f	1/2	1/3	1/4	1/5	1/7	1/10	1/15	1/25
N								
1-500	47	69	82	91	100	108	113	118
501-700	50	78	95	108	125	138	149	159
1001-2000	52	83	104	121	144	165	185	203
2001-3000	53	84	108	125	151	177	202	227
3001-4000	53	85	109	128	156	184	213	243
4001-5000	53	86	110	129	158	188	220	254
5001-6000	53	86	111	130	160	191	225	262
6001-7000	53	86	111	131	162	194	229	269
7001-8000	53	87	112	132	163	195	231	273
8001-9000	53	87	112	132	163	197	234	277
9001-10000	53	87	112	133	164	198	236	281
10001-11000	53	87	113	133	165	199	237	283
11001-15000	53	87	113	134	166	201	241	291
15001 and over	53	87	113	135	168	207	255	315

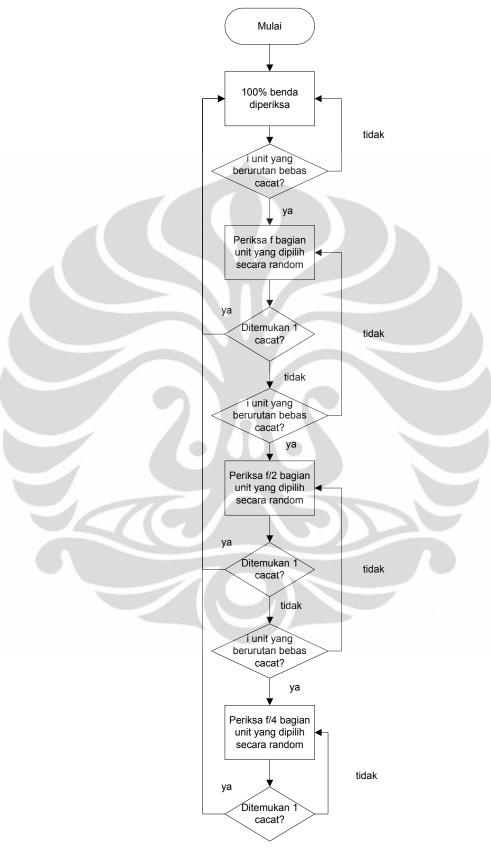
Tabel 2.3.10 Tabel Nilai i pada CSP-F dengan AOQL 0,79%

AQL	0,650%							
AOQL	0,790%							
Sampling Frek Code Ltr	Α	В	С	D	E	F	G	н
f	1/2	1/3	1/4	1/5	1/7	1/10	1/15	1/25
N								
1-500	33	50	61	68	77	84	90	95
501-700	35	54	68	78	92	104	114	123
1001-2000	36	57	72	84	102	120	136	152
2001-3000	36	58	74	87	105	125	145	167
3001-4000	36	58	, 75	88	108	128	151	176
4001-5000	36	58	75	88	109	131	154	182
5001-10000	36	59	76	90	112	135	162	195
10001 and over	36	59	76	91	113	138	170	210

Tabel 2.3.11 Tabel Nilai i pada CSP-F dengan AOQL 1,22%

		- 4				7						-
1,00	00%									10000		
1,27	20%		V.									
Α.									_		_	н
						"				1		- "
1/2	V	1/3	V	1/4		1/5	r	1/7		1/10	1/15	1/25
	N.						B.	_				
- 4	22		35	(1)	43		49		56	63	68	73
All	23		37	W	46		54		64	74	83	92
	23	D	38	A	48		56		69	81	95	109
	23		38		49		57		70	84	99	117
	23		38		49		58		71	86	102	121
1	23		38		49	-44	58	1000	72	87	104	124
No. of Concession, Name of Street, or other Persons, Name of Street, or ot	23	A	38		49		58		73	89	107	130
400	23		38		49		58	D. "	73	89	108	134
	1,2: A	1/2 22 23 23 23 23 23 23 23 23	1,220% A 1/2 1/3 22 23 23 23 23 23 23 23 23 23	1,220% A 8 1/2 1/3 22 35 23 37 23 38 23 38 23 38 23 38 23 38 23 38	1,220% A B 1/2 1/3 1/4 22 35 23 37 25 38 23 28 28 28 28 28 28 28 28 28 28 28 28 28	1,220% A 8 C 1/2 1/3 1/4 22 35 43 23 37 46 23 38 48 23 38 49 23 38 49 23 38 49 23 38 49 23 38 49 23 38 49	1,220% A B C D 1/2 1/3 1/4 1/5 22 35 43 23 37 46 23 38 48 23 38 49 23 38 49 23 38 49 23 38 49 23 38 49 23 38 49	1,220% A B C D 1/2 1/3 1/4 1/5 22 35 43 49 23 37 46 54 23 38 48 56 23 38 49 57 23 38 49 58 23 38 49 58 23 38 49 58 23 38 49 58	1,220% A B C D 1/2 1/3 1/4 1/5 1/7 22 35 43 49 23 37 46 54 23 38 48 56 23 38 49 57 23 38 49 58 23 38 49 58 23 38 49 58 23 38 49 58 23 38 49 58	1,220% A B C D E 1/2 1/3 1/4 1/5 1/7 22 35 43 49 56 23 37 46 54 64 23 38 48 56 69 23 38 49 57 70 23 38 49 57 71 23 38 49 58 71 23 38 49 58 72 23 38 49 58 72 23 38 49 58 72	1,220% A B C D E F 1/2 1/3 1/4 1/5 1/7 1/10 22 35 43 49 56 63 23 37 46 54 64 74 23 38 48 56 69 81 23 38 49 57 70 84 23 38 49 57 70 84 23 38 49 57 70 84 23 38 49 57 70 84 23 38 49 58 71 86 23 38 49 58 72 87 23 38 49 58 73 89	1,220% A B C D E F G 1/2 1/3 1/4 1/5 1/7 1/10 1/15 22 35 43 49 56 63 68 23 37 46 54 64 74 83 23 38 48 56 69 81 95 23 38 49 57 70 84 99 23 38 49 57 70 84 99 23 38 49 58 71 86 102 23 38 49 58 71 86 102 23 38 49 58 72 87 104 23 38 49 58 73 89 107

Sumber: MIL STD 1235 B


Tabel 2.3.12 Tabel Nilai i pada CSP-F dengan AOQL 1,9%

		1						
AQL	1,500%							
AOQL	1,900%							
Sampling Frek	Α	В	С	D	E	F	G	н
Code Ltr	_ ^		Ĭ	Ĭ	_			
f	1/2	1/3	1/4	1/5	1/7	1/10	1/15	1/25
N								
1-500	15	23	29	34	40	45	50	55
501-700	15	24	31	36	43	51	59	66
1001-2000	15	25	32	37	46	54	64	75
2001-3000	15	25	32	38	46	56	66	79
3001-4000	15	25	32	38	47	56	67	81
4001-5000	15	25	32	38	47	57	68	82
5001-6000	15	25	32	38	47	57	69	83
6001-7000	15	25	32	38	47	57	69	84
7001-8000	15	25	32	38	47	57	69	84
8001-9000	15	25	32	38	47	57	69	85
9001-10000	15	25	32	38	47	57	70	85
10001 and over	15	25	32	38	47	57	70	85

2.1.3.4 Continuous Sampling Plan-T (Sampling Terus Menerus-T)

CSP T adalah *multi level continuous sampling procedure* yang digunakan untuk menggantikan inspeksi 100% yang berurutan dan inspeksi sampling. *Multi level continuous sampling procedure* dimulai dengan pemeriksaan 100% dan beralih ke pemeriksaan f bagian dari produksi sesudah banyak unit tertentu ditemukan bebas cacat atau cacat sama dengan nol. Tetapi, apabila di bawah pemeriksaan *sampling* pada tingkat f , perjalanan i unit sampel berturutan ditemukan bebas cacat, maka *sampling* berlanjut pada tingkat f2. Apabila lebih lanjut perjalanan i unit berturutan bebas cacat, maka *sampling* dapat berlanjut pada tingkat f3. CSPT mengharuskan adanya mengembalian 100% inspeksi ketika *defect* ditemukan saat *sampling* inspeksi, tetapi ini digunakan untuk me-reduce frekuensi *sampling* ketika ada demonstrasi kualitas produk yang superior. CSP-T tidak digunakan untuk *critical defect*.

Prosedur CSP-T dilukiskan dalam flowchart berikut:

Gambar 2.4 Flow Chart Prosedur CSP-T Sumber: MIL STD 1235 B

Universitas Indonesia

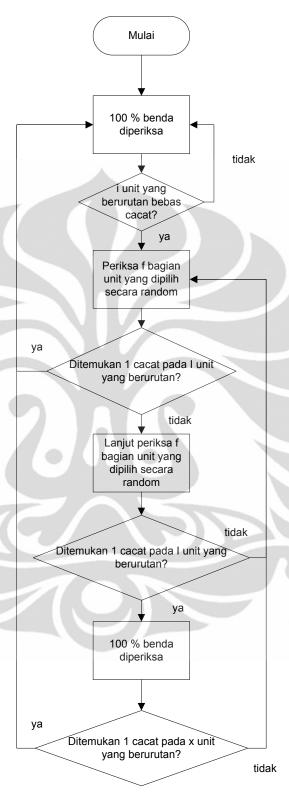
Prosedur CSP-T dimulai dengan pemeriksaan produksi 100%, jika sesudah banyak unit tertentu ditemukan bebas cacat atau cacat sama dengan nol, maka dilakukan pemeriksaan *sampling* menggunakan f bagian dari unit yang diproduksi. Jika i unit berturutan dalam pemeriksaan *sampling* ditemukan cacatnya sama dengan nol, maka tingkat *sampling* dikurangi menjadi f/2 bagian. Sekali lagi, apabila i unit berturutan ditemukan cacatnya sama dengan nol dalam tingkat *sampling* ini, maka digunakan *sampling* yang dikurangi dengan f/4 bagian dari unit yang diproduksi dipilih secara acak. Dalam CSP-T, setelah ditemukan unit cacat, dilakukan kembali pemeriksaan 100%.

Berikut adalah tabel kode huruf untuk banyak interval produksi dan tabel nilai i untuk CSP-T:

Tabel 2.4.1 Tabel Huruf Kode Frekuensi Unit Produksi

Tabel huruf kod	Tabel huruf kode frekuensi							
SAMPLING MIL STD 1235B								
Banyak unit dalam	Huruf Kode							
interval produksi	yang diberikan							
28	AB							
925	AC							
2690	AD							
91500	AE							
5011200	AF							
12013200	AG							
320110000	AH							
1000135000	AI							
35001150000	AJ							
>150000	AK							

Tabel 2.4.2 Tabel Nilai i pada CSP-T


Samp Frek					AQL	in 96			
Code Ltr	'	0,4	0,65	1	1,5	2,5	4	6,5	10
Α	1/2	87	58	38	25	16	10	7	5
В	1/3	116	78	51	33	22	13	9	6
С	1/4	139	93	61	39	26	15	11	7
D	1/5	158	106	69	44	29	17	12	8
E	1/7	189	127	82	53	35	21	14	9
F	1/10	224	150	97	63	41	24	17	11
G	1/15	266	179	116	74	49	29	20	13
Н	1/25	324	217	141	90	59	35	24	15
1	1/50	409	274	177	114	75	44	30	19
J,K	1/100	499	335	217	139	91	53	37	23
		0,53	0,79	1,22	1,9	2,9	4,94	7,12	11,46
	-000	4			AOG	QL 96			

2.1.3.5 Continuous Sampling Plan-V (Sampling Terus Menerus-V)

CSP V adalah single level continuous sampling procedure yang digunakan untuk menggantikan inspeksi 100% berurutan dan sampling inspeksi. CSP V mengharuskan pengembalian 100% inspeksi ketika unit defect muncul saat inspeksi sampling, tapi digunakan untuk mengurangi bilangan ijin ketika ada demonstrasi kualitas produk superior. Ini dapat bermanfaat untuk diaplikasikan pada situasi dimana tidak ada manfaat untuk mereduce frekuensi sampling dalam situasi kualitas yang baik. Misal: ketika inspector akan terus-menerus memiliki waktu menganggur yang lebih jika frekuensi sampling dikurangi. CSP-V tidak digunakan untuk inspeksi untuk critical defect.

Tabel 2.5 Tabel Nilai i pada CSP-V

Sampling				_	AQL	in 94				
	- f	- 1	-							
Freq Code Ltr	1	0,4	0,65	1	1,5	2,5	4	6,5	10	
A	1/2	60	39	27	18	12	9	6	3	i
	-,-	20	13	9	6	4	3	2	1	X
В	1/3	96	63	42	27	18	12	9	6	i
		32	21	14	9	6	4	3	2	x
С	1/4	120	81	54	36	24	15	12	6	i
	1/4	40	27	18	12	8	5	4	2	х
D	1/5	144	96	63	42	27	18	12	9	i
	1/5	48	32	21	14	9	6	4	3	х
E	1/7	177	120	78	51	33	21	15	9	i
-		59	40	26	17	11	7	5	3	x
F	1/10	213	144	93	60	39	24	18	12	i
F		71	48	31	20	13	8	6	4	х
_	1/15	258	174	114	72	48	30	21	12	i
G		86	58	38	24	16	10	7	4	x
	4/25	318	213	138	90	60	36	24	15	i
н	1/25	106	71	46	30	20	12	8	5	х
	1/50	405	273	177	114	75	45	30	21	i
'		135	91	59	38	25	15	10	7	х
		498	333	216	138	90	54	39	24	i
J	1/100	166	111	72	46	30	18	13	8	x
		594	399	258	165	108	63	45	27	i
K	1/200	198	133	86	55	36	21	15	9	x
		0.53	0,79	1,22	1.9	2,9	4,94	7,12	11,46	
		-,	-7	-,		Lin 96		-,	,	

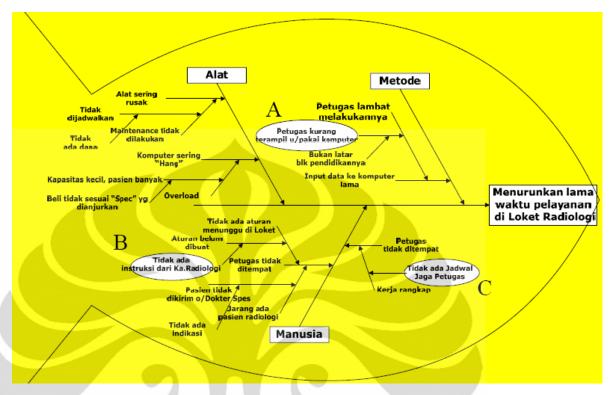
Gambar 2.5 Flow Chart Prosedur CSP-V Sumber: MIL STD 1235 B

2.2 Teori 2

2.2.1 Diagram Tulang Ikan (Fish Bone Diagram)

Dalam kualitas terdapat beberapa *tools* yang digunakan untuk membantu menentukan suatu akar permasalahan dari beberapa masalah yang ada. Salah satunya adalah Diagram Sebab akibat/*Fish bone Diagram*. Diagram ini dikenal juga sebagai :

- Diagram Ishikawa (ditemukan oleh Prof. Kouru Ishikawa)
- Cause & Effect Diagram (diagram sebab akibat)


Fungsinya yaitu menemukan penyebab-penyebab dari suatu masalah. Langkahlangkah dalam membuat fishbone diagram adalah sebagai berikut:

- a. Ambillah keputusan tentang efek yang ingin dianalisa, gambarkan kepala ikan disebelah Kanan
- b. Jika bisa kumpulkan semua orang dalam proses yang memiliki kepentingan terhadap efek tersebut. Ada 2 Pendekatan Terstruktur (A) Bebas (B)
- c. Tentukan judul tulang utama misalnya berdasarkan 5M (Manusia, Mesin, Material, *Money*, Metode)
- d. Kemudian lakukan "brainstorming" dan gambarkan duri-duri dalam tulang ikan utama tersebut.

Ada 2 Pendapat kembali, berurutan atau random. Dalam mengisinya, buat kalimat dengan

ukuran mutu yg jelas.

- Biaya pemakaian bensin tinggi
- Waktu pendaftaran pasien lama
- Laporan keuangan sering terlambat
- Tanyakan "Why mengapa" sebanyak 5 x dalam menyusun duri duri kecil melalui proses Curah Pendapat (brainstorming).
- Step Akhir menuliskan detail tambahan
 - Pilih penyebab-penyebab menjadi penyebab dominanContoh *Fish bone* Diagram :

Gambar 2.6 Fishbone Diagram
Sumber: Akhmad Hidayatno

2.2.2 Metode, Standar, dan Desain Kerja (Method, Standard and Work Design)

Setelah mendapatkan penyebab utama dari beberapa masalah yang ada, maka langkah selanjutnya adalah menganalisis penyebab utama masalah tersebut. Untuk kasus kali ini, analisisnya menggunakan analisis perancangan kerja. Analisis untuk membangun metode kerja yang baru atau merancang ulang suatu proses kerja, biasanya menggunakan metode work design dimana dari metode tersebut akan didapatkan standard, baik waktu standarnya maupun standar pengerjaan suatu pekerjaan. Standard yang didapatkan dari work design seharusnya membuat suatu pekerjaan menjadi efisien dan efektif sehingga output yang dihasilkan menjadi lebih optimal dan meningkatkan produktifitas dan efisiensi. Work design juga mempertimbangkan kenyamanan operator dalam menyelesaikan pekerjaannya karena pekerjaan yang berulang dan cukup berat bagi operator dapat membuat operator mudah cedera, yang akan meningkatkan biaya kesehatan, dan operator menjadi cepat lelah, yang akan menyebabkan

operator tidak dapat mengerjakan pekerjaanya dengan optimal. Prinsip dari *method, standard, and wok design* adalah untuk meningkatkan produktivitas dan keandalan produk yang aman, dan untuk menurunkan unit biaya serta memungkinkan untuk menghasilkan suatu produk atau jasa yang lebih berkualitas untuk konsumen.

Prinsip objektif dari method, standard, and wok design adalah:

- Menurunkan waktu yang dibutuhkan untuk melakukan suatu pekerjaan.
- Meningkatkan kualitas dan kehandalan dari produk atau jasa secara berkelanjutan
- Menghemat sumber daya dan meminimalkan biaya dengan menentukan material yang paling tepat baik yang langsung maupun yang tidak langsung digunakan untuk memproduksi suatu produk atau jasa.
- Menggunakan ketersediaan daya dengan pertimbangan yang teliti.
- Memaksimalkan keamanan, kesehatan, dan kenyamanan pekerja dalam bekerja.
- Memproduksi dengan tetap mempertimbangkan perlindungan lingkungan.
- Mengikuti program manajemen manusia yang menghasilkan ketertarikan terhadap pekerjaan dan kepuasan pekerja.

Standard adalah hasil akhir dari metode work design atau time study dimana metode ini akan menghasilkan waktu standar yang digunakan untuk mengerjakan pekerjaan tertentu berdasarkan pengukuran dari komponen pekerjaan dari metode yang telah dideskripsikan sebelumnya dengan pertimbangan kelelahan dan penundaan akibat kebutuhan personal dan kebutuhan tidak dapat dihindari seperti kerusakan mesin atau kegiatan maintenance. Analisis time study dapat menggunakan beberapa teknik untuk membentuk suatu standar, yaitu a stopwatch time study, computerized data collection, standard data, predetermined time system, work sampling, dan estimate based on historical data. Untuk penelitian kali ini, penulis menggunakan teknik a stopwatch time study. Setelah mendapatkan beberapa waktu penelitian menggunakan metode stop watch time study, kemudian waktu siklus aktual yang didapat dijumlahkan lalu dirata-ratakan untuk mendapatkan hasil observe time yang sebelumnya akan diuji kenormalan, kecukupan dan keseragamannya terlebih dahulu sebelum data distandarkan.

Standard yang didapatkan seperti waktu standar dan standar pengerjaan suatu pekerjaan digunakan untuk menentukan dan merencanakan kebutuhan tenaga kerja dan pembayaran upah pekerja. Selain itu, juga berkaitan erat dengan penjadwalan produksi, production control, plant layout, purchasing, cost accounting and control, process and product design, pemberian bonus dan insentif bagi karyawan yang berprestasi dan output yang dihasilkan.

2.2.3 Uji Kenormalan Data

Uji kenormalan data digunakan untuk mengetahui apakah data yang telah kita dapatkan telah terdistribusi normal atau belum. Untuk menguji kenormalan data dapat menggunakan banyak cara, salah satunya adalah metode *Kolgomorov-Smirnov* yang ada pada *software* SPSS 16.0. Berikut adalah cara untuk menggunakan *software* SPSS 16.0 untuk menguji kenormalan data.

- Masukkan semua nilai yang dimiliki pada sheet data view.
- Pada *sheet variable view*, ubah *type* dari data. Jika data berbentuk angka maka ganti *type* menjadi *numeric*, jika data berbentuk huruf, maka gunakan *string*.
- Kemudian pilih *Analyze* \rightarrow *Nonparametric Tests* \rightarrow 1-*Sample* K-S
- Kemudian pindahkan *variable* dari sebelah kiri menggunakan tanda panah menuju *test variable list*
- Kemudian pilih oke dan akan keluar hasilnya

Dengan $\alpha = 5\%$, data dapat dikatakan terdistribusi normal jika nilai dari Asymp Sig (2-tailed) $\geq \frac{1}{2} \alpha$, sebaliknya jika $< \frac{1}{2} \alpha$ maka data tidak terdistribusi normal. Oleh karena itu, perlu diambil kembali datanya hingga terdistribusi normal. Pada tes *Kolgomorov-Smirnov* terdapat dua hipotesis yaitu, Ho: data terdistribusi normal dan Hi: data tidak terdistribusi normal.

2.2.4 Uji Kecukupan Data

Sebelum melakukan analisis lebih lanjut, kita juga perlu untuk menguji kecukupan data dari beberapa data yang kita miliki karena jika datanya belum memenuhi kecukupan data tersebut, maka perlu dilakukan pengambilan data

kembali hingga datanya cukup. Untuk mencari jumlah data yang dapat dikatakan cukup, maka perlu menentukan convidence level dan degree of accuracy. Convidence level dan degree of accuracy menunjukkan besarnya tingkat kepercayaan dan keyakinan terhadap pengamatan yang dilakukan yang dinyatakan dalam persentase. Penyimpangan maksimum dari hasil pengukuran sebenarnya dinyatakan dengan tingkat ketelitian. Tingkat kepercayaan disimbolkan dengan k yang didapatkan melalui penetapan persentase tingkat kepercayaan yang telah diambil. Jika persentase tingkat kepercayaan sebesar 68,27% atau sekitar 68% maka tingkat kepercayaannya sebesar 1. Jika persentase tingkat kepercayaan sebesar 95,45% atau sekitar 95% maka tingkat kepercayaannya 2. Jika persentase tingkat kepercayaannya sebesar 99,37% atau sebesar 99%, maka tingkat kepercayaannya sebesar 3. Untuk kasus kali ini, penulis menggunakan tingkat ketelitian 10% dan persentase tingkat kepercayaan sebesar 95% yang berarti mengijinkan rata-rata hasil pengambilan datanya meyimpang sebesar 10% dan kemungkinan berhasil mendapatkan hal tersebut sebesar 95%. Berarti minimal 95 dari 100 rata-rata waktu yang diukur memiliki penyimpangan yang kurang dari atau sama dengan 10%. Setelah menetukan confidence level sebesar 95% dan degree of accuracy sebesar 10% maka rumus untuk mencari kecukupan data adalah sebagai berikut.

Uji Kecukupan Data Metode Time Study

$$N' = \left(\frac{k/s\sqrt{(N\times \Sigma X^2) - (\Sigma x)^2}}{\Sigma x}\right)^2$$

$$0.1 \, \bar{X} = 2 \, \sigma \, \bar{X}$$

$$0.1 = \frac{\sum X}{N} = \frac{\frac{1}{N} \sqrt{N \sum X^2 - (\sum X)^2}}{\sqrt{N'}}$$

Dimana, X adalah data waktu yang ditunjukkan oleh stopwatch untuk setiap pengamatan,

 \bar{X} adalah nilai rata-rata semua waktu yang ditunjukkan oleh stopwatch/elemen kerja

N' adalah jumlah pengamatan

Uji Kecukupan Data Metode Work sampling

$$N' = \frac{\left(\frac{Y}{\alpha}\right)^2 (1 - p)}{p}$$

Dimana, Y adalah koefisien tingkat kepercayaan yang diinginkan a adalah tingkat ketelitian p adalah persentase produktif

2.2.5 Uji Keseragaman Data

Setelah kecukupan data telah terpenuhi, maka langkah selanjutnya adalah menentukan keseragaman data sebelum melakukan analisis lebih lanjut terhadap data yang dimiliki. Keseragaman data dilakukan dengan menggunakan control chart kemudian melihat dari control chart tersebut, apakah data yang ada memiliki nilai maksimum yang lebih besar dari BKA (Batas Kontrol Atas) dan nilai minimum lebih kecil dari BKB (Batas Kontrol Bawah). Jika iya, maka data yang lebih besar dari BKA atau data yang lebih dari BKB tersebut lebih baik dihilangkan. Jika tidak, maka keseragaman data telah terpenuhi. Berikut adalah rumus untuk perhitungan dan analisis keseragaman data lebih lanjut.

Uji Keseragaman Data Metode Time study

$$\mathbf{BKA} = \bar{X} + 3 \alpha$$

$$\mathbf{BKB} = \bar{X} - 3 \alpha$$

Uji Keseragaman Data Metode Work sampling

BKA / BKB =
$$p \pm Y \sqrt{\frac{p(1-p)}{n}}$$

2.2.6 Analisis Studi Gerakan

Studi gerakan adalah analisa yang dilakukan terhadap beberapa gerakan bagian badan pekerja dalam menyelesaikan pekerjaannya. Untuk memudahkan penganalisaan terhadap elemen gerakan kerja yang dipelajari, perlu dikenal dahulu gerakan - gerakan dasar. Seorang tokoh yang telah meneliti gerakan - gerakan dasar secara mendalam adalah Frank B. Gilberth beserta istrinya yang

menguraikan gerakan ke dalam 17 gerakan dasar atau elemen gerakan yang dinamai *Therblig*. Suatu pekerjaan mempunyai uraian yang berbeda - beda jika dibandingkan dengan pekerjaan yang lainnya. Hal ini tergantung pada jenis pekerjaannya. Secara garis besar masing - masing gerakan Therblig dapat didefinisikan sebagai berikut:

1. Mencari. (Search) → SH

Mencari adalah elemen dasar gerakan pekerja untuk menentukan lokasi suatu obyek. Gerakan dimulai pada saat mata bergerak mencari obyek dan berakhir jika obyek telah ditemukan. Mencari ini termasuk dalam gerakan Therblig yang **tidak efektif**. Untuk mengurangi atau menghilangkan elemen kegiatan ini maka ada beberapa hal yang harus dilaksanakan :

- a. Mengetahui ciri ciri obyek yang akan diambil.
- b. Mengatur tata letak area kerja sehingga mampu mengeliminir proses mencari.
- c. Pencahayaan yang sesuai dengan persyaratan ergonomis.
- d. Usahakan merancang tempat obyek yang tembus pandang (transparan).

2. Memilih. (Select) → ST

Memilih merupakan elemen gerakan Therblig untuk menemukan atau memilih suatu obyek di antara dua atau lebih obyek lainnya yang sama. Memilih ini termasuk dalam elemen gerakan Therblig yang **tidak efektif**. Untuk dapat menghilangkan elemen gerakan ini maka beberapa hal yang harus dilaksanakan adalah:

- a. Obyek obyek yang berbeda ditempatkan pada tempat yang terpisah.
- b. Obyek yang digunakan harus sudah standart, sehingga dapat dipertukarkan antara yang satu dengan yang lain.
- c. Mempergunakan suatu tempat material yang mampu mengatur posisi obyek sedemikian rupa sehingga tidak menyulitkan pada saat mengambil tanpa harus memilih.

3. Memegang (Grasp) \rightarrow G

Memegang adalah elemen gerakan tangan yang dilakukan dengan menutup jarijari tangan obyek yang dikehendaki dalam suatu operasi kerja. Memegang adalah elemen Therblig yang diklasifikasikan sebagai elemen gerakan **efektif** yang biasanya tidak bisa dihilangkan tetapi dalam beberapa hal dapat diperbaiki. Untuk memperbaiki elemen gerak ini dapat digunakan:

- a. Mengusahakan agar beberapa obyek dapat dipegang secara bersamaan.
- b. Obyek diletakan secara teratur sehingga pemegangan obyek dapat dilaksanakan lebih mudah dibandingkan dengan letak obyek yang berserakan.
- c. Menggunakan peralatan yang dapat mengganti fungsi tangan untuk memegang sehingga dapat mengurangi gerakan anggota badan yang pada akhirnya dapat memperlambat datangnya kelelahan.

4. Menjangkau / Membawa Tanpa Beban (Transport Empty). 🗲 TE

Menjangkau adalah elemen gerakan Therblig yang menggambarkan gerakan tangan berpindah tempat tanpa beban atau hambatan (*resistance*) baik gerakan yang menuju atau menjauhi obyek. Gerakan ini diklasifikasikan sebagai elemen Therblig yang **efektif** dan sulit untuk dihilangkan secara keseluruhan dari suatu siklus kerja. Meskipun demikian gerakan ini dapat diperbaiki dengan memperpendek jarak jangkauan serta memberikan lokasi yang tetap untuk obyek yang harus dicapai selama siklus kerja berlangsung.

5. Membawa Dengan Beban (Transport Loaded). → TL

Membawa merupakan elemen perpindahan tangan, hanya saja disini tangan bergerak dalam kondisi membawa beban (obyek). Elemen gerak membawa termasuk Therblig yang **efektif** sehingga sulit untuk dihindarkan. Tetapi waktu yang digunakan untuk elemen kegiatan ini dapat dihemat dengan cara mengurangi jarak perpindahan, meringankan beban yang harus dipindahkan, dan memperbaiki tipe pemindahan beban dengan prinsip gravitasi atau mempergunakan peralatan *material handling*.

6. Memegang untuk Memakai (Hold). → H

Elemen ini terjadi jika elemen memegang obyek tanpa menggerakan obyek tersebut. Elemen memegang untuk memakai adalah elemen kerja yang **tidak efektif** yang bisa dihilangkan dengan memakai alat bantu untuk memegang obyek atau penyangga tangan.

7. Melepas (Release Load). $\rightarrow RL$

Elemen ini terjadi pada saat operator melepaskan kembali terhadap obyek yang dipegang sebelumnya. Elemen gerak melepas termasuk elemen therblig yang **efektif** yang bisa diperbaiki. Elemen kegiatan ini dapat diperbaiki dengan cara:

- a. Mengusahakan kegiatan ini dapat dilaksanakan sekaligus dengan elemen gerakan membawa.
- b. Mendesign tempat untuk melepas obyek sedemikian rupa sehingga elemen melepas dapat dilaksanakan secara singkat.
- Mengusahakan agar setelah melepas posisi tangan langsung berada pada kondisi kerja untuk elemen berikutnya.

8. Mengarahkan (Position). $\rightarrow P$

Mengarahkan adalah elemen gerakan therblig yang terdiri dari menempatkan / memposisikan obyek sesuai dengan lokasi yang dituju secara tepat. Mengarahkan biasanya didahului oleh gerakan mengangkut dan biasa diikuti oleh gerakan merakit. Gerakan ini dimulai sejak tangan mengendalikan obyek. Waktu mengarahkan juga terpengaruh oleh kerja mata, karena selama tangan mengarahkan, mata terus mengontrol agar obyek dapat dengan mudah ditempatkan pada lokasi yang telah ditentukan. Elemen gerak ini termasuk Therblig yang tidak efektif, sehingga untuk itu harus diusahakan untuk Waktu dihilangkan. untuk mengarahkan dapat diefisiensikan dengan mempergunakan alat bantu.

9. Mengarahkan Sementara (Pre-Position). → PP

Mengarahkan sementara adalah elemen gerakan **efektif** Therblig yang **mengarahkan obyek ke suatu tempat sementara** sehingga pada saat kerja

mengarahkan obyek benar-benar dilakukan maka obyek tersebut dengan mudah dapat dipegang dan dibawa ke arah tujuan yang dikehendaki.

10. Memeriksa (Inspect).

Elemen ini termasuk dalam langkah kerja untuk menjamin bahwa obyek telah memenuhi persyaratan kualitas yang ditetapkan. Elemen ini termasuk elemen Therblig yang **tidak efektif** . Usaha-usaha yang dapat dilakukan untuk menghindari elemen gerakan ini adalah :

- a. Mengabungkan elemen gerakan memeriksa dengan kegiatan yang lain.
- b. Mempergunakan peralatan inspeksi yang mampu melakukan inspeksi untuk beberapa obyek sekaligus.
- c. Penambah faktor pencahayaan terutama untuk obyek obyek yang kecil.

11. Merakit (Assembly).

Merakit adalah elemen gerakan Therblig untuk menghubungkan dua obyek atau lebih menjadi satu kesatuan. Elemen ini merupakan elemen Therblig yang **efektif** yang tidak dapat dihilangkan sama sekali tetapi dapat diperbaiki.

12. Mengurai Rakit (Disassembly).

Disini dilakukan gerakan memisahkan atau mengurai dua obyek tergabung satu menjadi obyek-obyek yang terpisah. Ini termasuk gerakan therbligh yang **efektif.**

13. Memakai (Use).

Memakai adalah elemen gerakan **efektif** Therblig dimana salah satu atau kedua tangan digunakan untuk memakai/mengontrol suatu alat untuk tujuan-tujuan tertentu selama kerja berlangsung.

14. Kelambatan yang Tidak Terhindarkan (Unavoidable Delay).

Kondisi ini diakibatkan oleh hal-hal diluar kontrol dari operator dan merupakan interupsi terhadap proses kerja yang sedang berlangsung. Ini termasuk gerakan therbligh yang **tidak efektif.**

57

15. Kelambatan yang Dapat Dihindarkan (Avoidable Delay).

Kegiatan ini menunjukan situasi yang tidak produktif yang dilakukan oleh

operator sehingga perbaikan/penanggulangan yang perlu dilakukan lebih

ditujukan kepada operator sendiri tanpa harus merubah proses kerja lainnya. Ini

termasuk gerakan therbligh yang tidak efektif.

16. Merencanakan (Plan).

Elemen ini merupakan proses mental dimana operator berhenti sejenak bekerja

dan memikir untuk mentukan tindakan-tindakan apa yang harus dilakukan. Ini

termasuk gerakan therbligh yang tidak efektif.

17. Istirahat untuk Menghilangkan Lelah (Rest to Overcome Fatigue).

Elemen ini tidak terjadi pada setiap siklus kerja akan tetapi berlangsung secara

periodik. Ini termasuk gerakan therbligh yang tidak efektif.

Gagasan untuk mengefektifkan penerapan studi gerakan muncul dari seorang

konsultan "methode engineering" ternama dari jepang Mr. Shiego Singo. Ia

mengklasifikasikan Therblig yang telah dibuat oleh Gilberth menjadi empat

kelompok, yaitu:

1. Kelompok Utama (Objective Basic Division)

a. A : Assemble (Merakit)

b. DA: Diassemble (Mengurai Rakit)

c. U : *Use* (Menggunakan)

Gerakan-gerakan dalam kelompok utama ini bersifat memberikan nilai tambah

perbaikan kerja untuk kelompok ini dapat dilakukan dengan cara mengefisienkan

gerakan.

2. Kelompok Penunjang (Physical Basic Division)

a. RE : *Reach* (Menjangkau)

b. G : *Grasp* (Memegang)

c. M : *Move* (Membawa)

Universitas Indonesia

d. RL: Released Load (Melepas)

Gerakan-gerakan dalam kelompok penunjang ini diperlukan, tetapi tidak memberikan nilai tambah. Perbaikan kerja untuk kelompok ini dapat dilakukan dengan meminimkan gerakan.

3. Kelompok Pembantu (Mental atau Semi-Mental Basic Division)

a. SH : Search (Mencari)

b. ST : Select (Memilih)

c. P : Position (Mengarahkan)

d. H : *Hold* (Memegang untuk Memakai)

e. I : Inspection (Memeriksa)

f. PP : Preposition (Mengarahkan)

Gerakan-gerakan dalam kelompok pembantu ini tidak memberikan nilai tambah dan mungkin dapat dihilangkan. Perbaikan kerja untuk kelompok ini dilakukan dengan pengaturan kerja yang baik atau menggunakan alat bantu.

4. Kelompok Gerakan Elemen Luar :

a. R : Rest

b. Pn : Plan

c. UD : *Unavoidable Delay*

d. AD : Avoidable Delay

Gerakan dalam kelompok ini sedapat mungkin dihilangkan.

Prinsip-prinsip Ekonomi Gerakan

Dalam studi gerakan, ada beberapa prinsip untuk ekonomi gerakan, diantaranya adalah:

Gerakan yang berhubungan tubuh manusia dan gerakannya:

- 1. Kedua tangan sebaiknya memulai dan mengakhiri secara bersamaan.
- 2. Kedua tangan sebaiknya tidak menganggur secara bersamaan kecuali sedang istirahat.
- 3. Gerakan kedua tangan akan lebih mudah jika satu terhadap lainnya simetris dan berlawanan arah gerakannya.

Ketiga prinsip di atas sangat erat satu sama lainnya dan dapat dipertimbangkan secara bersama-sama. Pada umumnya setiap pekerjaan akan lebih mudah dan cepat jika dikerjakan sekaligus oleh tangan kanan dan tangan kiri. Gerakan yang simetris diperlukan agar kedua tangan mencapai keseimbangan antara satu dengan yang lainnya. Lintasan pekerjaan yang tidak simetris(teratur) akan lebih cepat menimbulkan kelelahan.

4. Gerakan tubuh atau tangan sebaiknya dihemat dan memperhatikan alam ataunatural dari gerakan tubuh atau tangan.

Penugasan pada bagian tubuh harus memperhatikan kesanggupan dari bagian tubuh itu sendiri. Misal: usahakan penempatan semua bahan dan peralatan sedemikian rupa sehingga tubuh tidak perlu berputar terlalu sering.

 Sebaiknya para pekerja dapat memanfaatkan momentum untuk membantu pekerjaannya, pemanfaatan ini timbul karena berkurangnya kerja otot dalam bekerja.

Dalam beberapa keadaan di tempat kerja sering dijumpai total berat dari objek digerakkan sepenuhnya oleh pekerja. Hal tersebut tidak dimanfaatkannya prinsip momentum. Momentum dari suatu objek adalah massa objek tersebut dilakukan dengan kecepatannya.

6. Gerakan yang patah-patah bayak perubahan arah akan memperlambat gerakan tersebut.

Perubahan arah gerakan dalam suatu pekerjaan akan memperlambat waktu penyelesaian kerja. Hal ini seperti pada saat memegang yang didahulukan dengan menjangkau dilanjutkan dengan membawa dan yang lainnya.

7. Gerakan balistik akan lebih cepat, menyenangkan dan teliti dari pada gerakan yang dikendalikan.

Yang dimaksud gerakan yang dikendalikan adalah gerakan yang terjadi pada suatu pekerjaan dimana memerlukan dua otot yang berlawanan kerjanya. Misal: pekerjaan menulis, disini terdapat dua otot yang saling tahan yaitu jari dan jempol. Sedangkan yang dimaksud gerakan balistik adalah gerakan bebas, misal: gerakan memukul bola kasti.

8. Pekerjaan sebaiknya dirancang semudah-mudahnya dan jika memungkinkan irama kerja harus mengikuti irama alamiah bagi si pekerjanya.

Yang dimaksud dengan irama sering diartikan pada kecepatan rata-rata mengulang kembali gerakan. Misal : irama melangkah kaki, irama pernapasan mengikuti irama tertentu. Setiap individu memiliki irama alamiahnya sendiri.

9. Usahakan sesedikit mungkin gerakan mata.

Gerakan mata kadang-kadang tidak dapat dihindarkan dari pekerjaan terutama bila pekerjaaan baru. Objek yang kecil juga memerlukan gerakan mata untuk mengerjakannya. Seringkali antara tangan dan mata terjadi koordinasi dimana fungsi mata sebagai pengarah dari tangan. Rasa lelah yang dialami oleh mata akan menjalar ke seluruh badan dengan cepat.

Prinsip-prinsip ekonomi gerakan berhubungan dengan pengaturan tata letak tempat kerja:

- 1. Sebaiknya diusahakan agar peralatan dan bahan baku dapat diambil dari tempat tertentu dan tetap.
- 2. Bahan dan peralatan diletakan pada tempat yang mudah, cepat dan enak untuk dicapai atau dijangkau.
- 3. Tempat penyimpanan bahan yang dirancang dengan memanfaatkan prinsip gaya berat akan memudahkan kerja karena bahan yang akan diproses selalu siap di tempat yang mudah untuk diambil. Hal ini menghemat tenaga dan biaya.
- 4. Objek yang sudah selesai penyalurannya dirancang menggunakan mekanisme yang baik.
- 5. Bahan-bahan dan peralatan sebaiknya ditempatkan sedemikian rupa sehingga gerakan-gerakan dilakukan dengan urutan terbaik.
- 6. Tinggi tempat kerja dan kursi sebaiknya sedemikian rupa sehingga alternatif berdiri dan duduk dalam menghadapi pekerjaan merupakan suatu hal yang menyenangkan.

Prinsip-prinsip Ekonomi Gerakan dihubungkan dengan perancangan peralatan:

- Tangan sebaiknya dapat dibedakan dari semua pekerjaan bila penggunaan dari perkakas pembantu atau alat yang dapat digerakkan dengan kaki dapat ditingkatkan.
- Peralatan sebaiknya dirancang sedemikian agar mempunyai lebih dari satu kegunaan.
- 3. Peralatan sebaiknya sedemikian rupa sehingga memudahkan dalam pemegangan dan penyimpanannya.
- 4. Bila setiap jari tangan melakukan gerakan sendiri-sendiri, misalnya seperti pekerjaan mengetik, beban yang didistribusikan pada jari harus sesuai dengan kekuatan masing-masing jari.
- Roda tangan, palang dan peralatan yang sejenis dengan itu sebaiknya diatur sedemikian sehingga badan dapat melayaninya dengan posisi yang baik dan dengan tenaga yang minimum.

Analisis Gerakan dengan Rekaman Film:

Dalam menganalisis gerakan seringkali ditemukan kesulitan dalam menentukan batasan dari therblig karena sangat singkat waktu perpindahan antara satu elemen ke elemen lainnya. Untuk mengatasi hal tersebut dapat dilakukan rekaman film, hasil film ini diputar dengan kecepatan lambat untuk analisis lebih cermat dan menggunakan jam khusus untuk mengukur waktu setiap elemen.

2.2.7 Waktu Standard (Standard Time)

Untuk membentuk suatu standar pengerjaan yang efisien, kita butuh untuk menentukan standard time. Standard time merupakan waktu yang diperlukan untuk melakukan suatu pekerjaan dengan mempertimbangkan kelelahan dan penundaan personal atau penundaan yang tidak dapat dihindari dengan metode kerja terbaik. Standard time juga merupakan waktu yang diperlukan oleh pekerja untuk melakukan dan menyelesaikan pekerjaannya dengan tingkat kemampuan rata-rata dan mempertimbangkan allowance serta kemampuan pekerja dan kondisi lingkungan kerjanya. Untuk menentukan standard time dapat menggunakan estimasi, data historis, dan prosedur pengukuran pekerjaan. Namun, dengan

semakin meningkatkatnya persaingan, mengestimasi dengan hanya melihat dan memperkiraan waktu yang dibutukan untuk melakukan sebuah pekerjaan menjadi tidak optimal, sehingga lebih memungkinkan untuk menggunakan data historis dan prosedur pengukuran pekerjaan. Teknik pengukuran pekerjaan seperti stopwatch time study, fundamental motion data, standard data, time formulas, atau work sampling study akan merepresentasikan cara yang lebih baik dalam membangun standard produksi karena didasarkan dengan fakta yang terjadi. Membangun standard time yang akurat dapat memungkinkan untuk memproduksi lebih daripada yang telah ditetapkan oleh perusahaan, meningkatkan efisiensi dari proses, peralatan, dan pekerja.

Pengukuran waktu kerja ada dua, yaitu pengukuran waktu kerja secara langsung dan tidak langsung. Untuk mengukur waktu kerja dalam kasus ini, penulis melakukannya dengan cara mengukur waktu kerja secara langsung menggunakan metode *stopwatch time study*. Metode ini cocok digunakan untuk pekerjaan yang berulang-ulang, terspesifikasi dengan jelas, berlangsung singkat, dan menghasilkan *output* yang sama. Biasanya pengukuran waktu kerja menggunakan *stopwatch* ini tidak hanya satu kali tapi direplikasi beberapa kali kemudian dirata-ratakan. Dari hasil rata-rata pengukuran waktu kerja langsung menggunakan *stopwatch* ini akan didapatkan *observe time*. Dengan menambahkan *rating* akan didapatkan *normal time* dan dari *normal time* yang mempertimbangkan *allowance* akan didapatkan *standard time*. *Standard time* inilah yang akan menjadi waktu acuan pengerjaan suatu pekerjaan.

Langkah sistematis dalam kegiatan pengukuran kerja dengan *stopwatch time study* hingga didapatkan waktu standard adalah sebagai berikut:

• Langkah Persiapan

- Pilih dan definisikan pekerjaan yang akan diukur dan ditetapkan waktu bakunya
- Pilih operator dan catat semua data yang berkaitan dengan sistem operasi kerja
- Catat infromasi yang berkaitan seperti *layout* dan proses kerja yang berlangsung

• Elemental Breakdown

Bagi siklus kegiatan yang berlangsung ke dalam elemen-elemen kegiatan sesuai dengan aturan yang ada.

• Pengamatan dan Pengukuran

- Laksanakan pengamatan dan pengukuran waktu sejumlah x pengamatan untuk setiap siklus atau elemen kegiatan
- Tetapkan performance rating dari kegiatan yang ditujukan dan operator yang terlibat

Perhitungan

- O Dari sebanyak x waktu pengamatan dihitung rata-ratanya
- O Tambahkan *rating* ke dalam rata-rata waktu pengamatan kemudian akan didapatkan waktu normal
- Tetapkan allowance untuk pekerja, lingkungan dan kondisi kerja dengan memperhatikan kelelahan dari pekerja, penundaan personal dan penundaan yang tidak dapat dihindari
- Hitung *standard time* dengan memperhitungkan waktu normal dan *allowance*.

Berikut adalah rumus untuk melakukan perhitungan standard time $Standard\ time = Normal\ time \times (1 + allowance)$

2.2.7.1 Tingkat Pelaksanaan (*Performance Rating*)

Normal time didapatkan dengan memperhitungkan performance rating dengan rata-rata observe time. Performance rating ada beberapa macam yaitu, speed rating, the Westinghouse system rating, synthetic rating, dan objective rating. Namun untuk kasus kali ini, penulis menggunakan the Westinghouse system rating. The Westinghouse system rating mempertimbangkan empat factor penting yaitu, skill, effort, condition, and consistency.

Skill adalah kemampuan operator dalam mengerjakan pekerjaan berdasarkan standard yang telah ditetapkan. Kemampuan operator dapat meningkat seiring berjalannya waktu karena meningkatkatnya familiaritas dari pekerjaan yang akan mempengaruhi kecepatan operator dalam bekerja, kemulusan

dalam bekerja, dan dan kebebasan dari ragu-ragu serta kesalahan dalam melakukan pekerjaan. Namun dapat menurun juga yang dipengaruhi oleh faktor psikologi dan fisik. Berikut adalah gambaran *level skill* operator berdasarkan *the Westinghouse system rating*.

Tabel 2.6 Westinghouse System Skill Rating

Jenis	Rating	Tipe
Superskill	0.15	A1
Superskill	0.13	A2
Excellent	0.11	B1
Excellent	0.08	B2
Good	0.06	C1
Good	0.03	C2
Average	0	D
Fair	-0.05	E1
Fair	-0.1	E2
Poor	-0.16	F1
Poor	-0.22	F2

(Sumber: Buku Method, Standard, and Work Design)

Effort adalah usaha dan kesungguhan operator dalam melakukan pekerjaannya serta keinginan dari operator untuk bekerja secara efektif. Effort merepresentasikan kecepatan dari skill yang digunakan oleh operator. Yang perlu di rate dari effort ketika mengevaluasi kerja dari operator hanya efektif effort-nya saja. Berikut adalah gambaran level effort operator berdasarkan the Westinghouse system rating.

Tabel 2.7 Westinghouse System Effort Rating

Tipe	Jenis	Rating
A1	Excessive	0.13
A2	Excessive	0.12
B 1	Excellent	0.1
B2	Excellent	0.08
C1	Good	0.05
C2	Good	0.02
D	Average	0
E 1	Fair	-0.04
E2	Fair	-0.08
F 1	Poor	-0.12
F2	Poor	-0.17

(Sumber: Buku Method, Standard, and Work Design)

Condition menggambarkan prosedur performance rating yang memperngaruhi operatornya dan bukan operasinya yaitu kondisi kerja dan lingkungan tempat operator bekerja seperti kondisi pencahayaan, suhu, kebisingan dan lain-lain. Berikut adalah level condition tempat operator bekerja berdasarkan the Westinghouse system rating.

Tabel 2.8 Westinghouse System Condition Rating

Tipe	Jenis	Rating
A	Ideal	0.06
В	Excellent	0.04
C	Good	0.02
D	Average	0
E	Fair	-0.03
F	Poor	-0.07

(Sumber: Buku Method, Standard, and Work Design)

Consistency adalah kekonsistenan para operator dalam melakukan pekerjaannya. Hal ini dilakukan karena pasti akan adanya variasi waktu dari operator saat mereka bekerja dan waktu tersebut tidak sama dan berubah-ubah. Berikut adalah *level condition* tempat operator bekerja berdasarkan *the Westinghouse system rating*.

Tabel 2.9 Westinghouse System Consistency Rating

Tipe	Jenis	Rating
A	Perfect	0.04
В	Excellent	0.03
C	Good	0.01
D	Average	0
\mathbf{E}	Fair	-0.02
F	Poor	-0.04

(Sumber: Buku Method, Standard, and Work Design)

Setelah menentukan *rating* dari setiap komponen, maka akan didapatkan waktu normal. waktu normal ini dihitung berdasarkan waktu rata-rata pengamatan dan *rating* faktornya. Berikut adalah rumusnya.

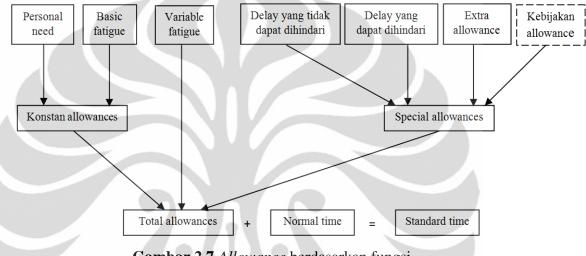
Waktu Normal = Waktu Pengamatan
$$\times \frac{Rating\ Factor\ (\%)}{100}$$

Universitas Indonesia

2.2.7.2 Kelonggaran (*Allowance*)

Setelah menghitung *normal time*, satu langkah perlu ditambahkan agar bisa didapatkan *standard time* yang wajar. Langkah terakhir ini adalah menambahkan *allowance* dengan mempetimbangkan dan memperhitungkan banyaknya gangguan, penundaan, dan keterlambatan akibat kelelahan pada setiap pekerjaan. Biasanya pada saat pengambilan data, waktu pengerjaan suatu pekerjaan yang berhasil di ambil adalah waktu yang relatif singkat sehingga pengambilan data tersebut terkadang tidak memperhitngkan waktu yang hilang atau tidak efektif seperti penundaan yang tidak dapat dihindarkan yang biasanya akan menambah waktu operasi pengerjaan suatu pekerjaan. Oleh karena itu, harus diberikan penyesuaian untuk mengkompensasi waktu yang hilang tersebut. Penyesuaian yang perlu dilakukan tersebut adalah dengan menambahkan *allowance*.

Ada tiga allowance yang diaplikasikan dalam studi, yaitu


- 1. *Total cycle time*, dimana dinyatakan melalui persentase dan mengkompensasi penundaan seperti penundaan personal, pembersihan tenpat kerja, dan pelumasan mesin.
- 2. *Machine time allowance*, termasuk waktu untuk *maintenance* peralatan dan variasi daya.
- 3. *Effort allowance*, termasuk kelelahan dan penundaan yang tidak dapat dihindari namun pasti terjadi.

Ada dua metode yang yang biasanya digunakan untuk membangun data standard allowance, yaitu

- Production Study. Metode ini butuh untuk mengobservasi dua atau lebih operasi untuk jangka waktu yang cukup lama. Peneliti mencatat durasi dan alasan setiap interval yang menganggur. Setelah membentuk repetitif sample yang masuk akal, peneliti merangkumnya untuk menentukan persentasi allowance untuk dari setiap karakteristik. Data yang dihasilkan harus diubah menjadi level performance yang normal.
- Work Sampling. Metode ini membutuhkan jumlah observasi *random* yang cukup banyak. Metode ini tidak menggunakan *stopwatch*, peneliti hanya berjalan melalui area yang sedang dipelajari di waktu yang *random* dan

mencatat apa saja yang dilakukan operator. Jumlah penundaan dicatat kemudian dibagi dengan total jumlah observasi selama operator melakukan pekerjaan yang produktif. Keuntungan metode ini adalah jumlah pengamat tidak terlalu banyak dan waktu bisa lebih cepat.

Gambar dibawah ini mencoba untuk memberikan gambaran dari berbagai jenis tipe *allowance* berdasarkan fungsinya.

Gambar 2.7 *Allowance* berdasarkan fungsi (Sumber: Buku *Method*, *Standard*, *and Work Design*)

Berikut adalah pembagian allowance

Kelonggaran Konstan (Constant Allowance)

- Personal Needs: untuk keperluan pribadi seperti waktu ke toilet
- Basic Fatigue: untuk pengeluaran energy saat melakukan pekerjaan dan menguragi monotony

Variabel Kelonggaran Kelelahan (Variable Fatigue Allowance)

- Abnormal Posture: berdasarkan pertimbangan metabolisme tubuh seperti energi yang dibutuhkan saat bekerja
- Muscular Force: kelelahan otot sehingga perlu untuk memberikan waktu relaksasi untuk memulihkan kondisi
- Atmospheric Conditions: respon operator terhadap kondisi lingkungan dan perubahan lingkungan

Universitas Indonesia

- *Noise level*: kemampuan operator untuk menerima gangguan kebisingan pada lingkungan kerjanya
- *Illumination Levels*: *allowance* bagi operator terhadap tingakt pencahayaan pada lingkungan kerjanya terutama untuk pencahayaan yang tidak normal
- Visual Strain: allowance untuk pekerjaan yang memerlukan tingkat presisi dari penglihatan
- Mental Strain: allowance untuk pekerjaan yang memiliki tekanan mental
- Monotony: allowance untuk pekerjaan yang terus berulang dan monoton
- *Tediousness*: untuk pekerjaan yang dilakukan secara berulang dan cukup membosankan

Kelonggaran Spesial (Special Allowance)

- Unavoidable Delays: allowance untuk berbagai macam interupsi seperti interupsi dari supervisor dan peneliti serta berbagai macam penundaan seperti ketidakteraturan material; kesulitan mempertahankan toleransi dan spesifikasi; dan penundaan penugasan untuk mesin yang bermacammacam.
- Avoidable Delays: allowance saat operator berjalan-jalan ke tempat operator lain dan saat mengganggur.
- Extra Allowance: allowance karena banyak terdapat material yang kurang baik kualitasnya sehingga perlu waktu tambahan untuk menghitung barang rejectnya.
- Policy Allowance: allowance yang ditentukan oleh manajemen perusahaan karena menyangkut tingkat kepuasan pendapatan atau gaji untuk tingkat hasil kinerja tertentu.

Berikut adalah factor allowance berdasarkan ILO (International Labour Organization) Recommended Allowance (dalam %)

2 Constant allowance:

1.	Personal Allowance	.5
Ba	sic Fatique Allowance	4

Variable Allowances: 2. Abnomal Position Allowance: a. Slightly Awkward......0 b. Awkward2 3. Use of force or muscular energy (lifting, pulling, or pushing): Weight lifted (pound) 50 10....... 15......2 20......3 25......4 30......5 35......7 40......9 45......11 60......17 70......22 4. Bad Light: a. Slightly below recommended......0 b. Well below2 Quite Inadequate5 5. Atmospheric conditions (heat and humidity) - variable.....................0-100 6. Close Attention: a. Fairly fine work......0 b. Fine or exacting......2 c. Very fine or very exacting5 7. Noise Level: a. Continuous0

	c.	Intermittent – very loud	5
	d.	High-pitched - loud	5
8.	Menta	Strain:	
	a.	Fairly complex process	1
	b.	Complex or wide span of attention	4
		Very Complex	
9.	Monot	ony:	
	a.	Low	0
	b.	Medium	1
	c.	High	4
10.	Tediou	sness:	
	a.	Rather tedious	0
	b.	Tedious	2
	c.	Very tedious	5
Semua		ance tersebut dijumlahkan kemudian akan didapatkan a	
		i suatu pekerjaan. Kemudian dihitung allowance factornya der	
rumus			<i>6</i>
		$Faktor\ kelonggaran = \frac{100}{100 - kelonggaran}$	

2.2.8 Keseimbangan Lini (Line Balancing)

Setelah semua metode gerakan diperbaiki dan waktu pengamatan telah distandarkan, maka selanjutnya yang harus dilakukan adalah melakukan penyeimbangan terhadap suatu lintas perakitan. *Line balancing* merupakan suatu metode penugasan sejumlah pekerjaan yang saling berkaitan dalam satu lini produksi sehingga setiap stasiun kerja memiliki waktu yang tidak melebihi waktu siklus dari stasiun kerja tersebut.

Tujuan dari *line balancing* adalah untuk berusaha menyeimbangkan seluruh lintasan yang ada dalam lini perakitan sehingga aliran produksi berjalan lancar. *Line balancing* juga bertujuan untuk menentukan jumlah pekerja ideal yang untuk ditempatkan disuatu pekerjaan tertentu dalam suatu lini produksi atau suatu *workstation*. Dalam hal ini, perhitungan produksi dilihat dari operator yang

paling lama waktu kerjanya atau biasa disebut *cycle time*. Berikut adalah rumus untuk menghitung effisiensi dari suatu lini produksi.

$$Effisiensi = \frac{\sum Standard\ Time\ to\ perform\ operation}{\sum\ Allowed\ Standard\ Time\ to\ perform\ operation} \times 100\%$$

Standard time to perform operation adalah total waktu yang dibutuhkan untuk mengerjakan suatu pekerjaan hingga selesai dalam satu lini produksi, sedangkan allowed standard time to perform operation adalah cycle time atau waktu terlama dalam suatu lini produksi dikalikan dengan jumlah workstation dalam lini produksi tersebut.

Setelah didapatkan effisiensi, maka dapat ditentukan % Idle dengan cara:

$$\% Idle = 100\% - effisiensi$$

Kemudian dapat juga menentukan jumlah workstation yang ideal untuk melakukan suatu pekerjaan dalam satu lini produksi dengan cara

Number of Workstation =
$$R \times \sum AM = R \times \frac{\sum SM}{E}$$

Number of workstation = $\frac{\sum SM}{Cycle Time}$

Dimana, N adalah jumlah dari workstation

AM adalah allowed standard time to perform operation dikali jumlah workstation

SM adalah total standard time to perform operation

E adalah effisiensi

R adalah *rate* produksi yang diinginkan

Dalam merancang keseimbangan lintas perakitan, harus memperhatikan :

1. Hubungan ketergantungan (*Precedence relationship*)

Universitas Indonesia

- 2. $1 \le \text{jumlah stasiun kerja} \le N$
- 3. Waktu elemen (Ti) \leq waktu stasiun (STi) \leq waktu siklus (CT)

Waktu siklus yaitu waktu yang dialokasikan kepada setiap stasiun kerja untuk mengeksekusi seluruh *task* yang diberikan kepada stasiun kerja tersebut. *Production rate* atau tingkat produksi adalah jumlah produk yang ingin dihasilkan (Q) dalam jangka waktu tertentu (T). Jika waktu proses sebuah *task* melebihi waktu siklus, artinya dengan lintasan perakitan yang sekarang ada tidak dapat mencapai tingkat produksi seperti yang diharapkan.

2.2.8.1 Simple Assembly Line Balancing

Simple Assembly Line Balancing adalah salah satu kategori permasalahan penyeimbangan untuk lintas perakitan yang lurus, dimana kendala urutan pekerjaan antar elemen kerja (precedence constraint) yang menjadi objek utama dalam langkah penyeimbangan lintas perakitan tersebut. Precedence constraint adalah batasan kebergantungan suatu task terhadap task lain, dalam hal ini mengenai keterhubungan antar-task. Pemberian task kepada stasiun kerja harus memperhatikan apakah task tersebut ditempatkan pada stasiun kerja yang tepat sehingga tidak melanggar precedence constraint.

Berikut adalah rumus-rumus dasar dalam Assembly Line Balancing:

 $CS = N \times C$

 $T^* = \sum Ti$

IT = $CS - T^*$ atau K = Max (C-Ti)

Dimana CS = Total waktu yang tersedia untuk merakit 1 produk

N = Jumlah Stasiun

C = Waktu siklus

Ti = Waktu Operasi Stasiun Kerja ke-i

T* = Jumlah Total Waktu Operasi Semua Stasiun yang ada

IT = Idle time

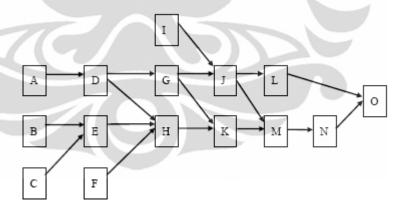
C – Ti= Safety Margin di stasiun i

Simple Assembly Line Balancing (SALB) dapat dibagi menjadi beberapa tipe, diantaranya adalah:

- a) SALB-I: Dilakukan apabila C (Waktu siklus) diketahui dan tujuannya adalah menentukan jumlah N (stasiun kerja) minimal untuk mencapai optimalisasi laju produksi dengan memperhatikan precedence constraint.
- b) SALB-II: Dilakukan apabila N (Jumlah stasiun) diketahui dan tujuannya adalah **menentukan nilai C** (**waktu siklus**) dengan membagi pekerjaan ke stasiun kerja yang ada untuk mengoptimalisasi laju produksi dengan memperhatikan *precedence constraint*.

A. SALB I

Pada laporan ini, penulis menggunakan Tipe *Simple Assembly Line Balancing I*, yaitu **menentukan jumlah stasiun kerja minimal** untuk mencapai optimalisasi laju produksi karena pada kasus penelitian ini, waktu siklus telah diketahui/ditentukan oleh perusahaan. Ada beberapa metode pendekatan untuk menyelesaikan permasalahan *Simple Assembly Line Balancing 1*, yaitu diantaranya adalah:


a. Pendekatan Logika

Tujuan dari pendekatan ini adalah untuk mengoptimalisasi *Idle Time*. Pendekatan ini adalah pendekatan logika (heuristik) untuk menunjukan gagasan line balancing. Algoritma yang diusulkan pada pendekatan ini adalah iteratif. Untuk setiap iterasi (pengulangan), kita menganggap adanya kumpulan W operasi yang tidak ditugaskan tanpa *predecessor* (pendahulu) atau *predecessor* yang sudah ditugaskan ke stasiun. Metode ini digunakan untuk kasus SALB yang tidak terlalu rumit dan dapat dianalisa dengan mudah secara logika.

Contoh Kasus:

Tabel 2.10 Tabel Operation Time untuk Contoh Kasus 1

Task	Operation Time	Predecessor	C (waktu siklus)
A	10	-	40
В	12	-	40
C	7	-	40
D	8	A	40
E	20	B,C	40
F	4	-	40
G	11	D	40
H	6	D,E,F	40
I	9	-	40
J	12	I,G	40
K	15	G,H	40
L	13	J	40
M	9	J,K	40
N	8	M	40
0	9	L,N	40

Gambar 2.8 Precedence Diagram Task untuk Contoh Kasus 1

Sumber: Buku Supply Chain Engineering, Useful Methods and Techniques, Alexandre Dolgui & Jean-Marie Proth

Dari diagram penugasan elemen-elemen kerja (*task*) proses *assembly* di atas, kita kumpulkan W *task* yang tidak memiliki pendahulu di baris pertama set W. Kemudian kita pilih *Task Assigned* yang waktunya paling besar. Setelah itu, untuk mencari *remaining time in the station*, maka waktu siklus yang tersedia (40) – *Task Assigned*. Kemudian di baris kedua,

Universitas Indonesia

pilih kumpulan Set W yang baru (B tidak diganti dengan *task* apapun karena *task* E setelah B masih mempunyai pendahulu lain yaitu task C) lalu waktu yang tersisa dari hasil selisih *remaining time in the station* – *task assigned* yang kedua (A). Kemudian di baris ketiga, pilih kumpulan set W yang baru (A diganti D karena setelah A adalah D yang pendahulu nya hanya *task* A). Kemudian di baris keempat, pilih kumpulan Set W yang baru (I tidak diganti dengan task apapun karena task J setelah I masih punya pendahulu lain yaitu *task* G) lalu waktu yang tersisa dari hasil selisih *remaining time in the station* – *task assigned* yang keempat (A). Maka terbentuklah kumpulan task di stasiun 1 dengan waktu sisa = 1. Mulai baris ke lima dengan awal stasiun 2 karena waktu sisa = 1 tidak bisa dikurangi lagi dengan waktu operasi task yang lain apabila masih ingin melanjutkan *task* di stasiun 1. Demikian seterusnya.

Tabel 2.11 Hasil Pendekatan Logika

Set W	Station number	Task assigned	Remaining time in the station
A, B, C, F, I		В	40 - 12 = 28
A, C, F, I	1	A	28 - 10 = 18
D, C, F, I	1	I	18 - 9 = 9
D, C, F	1	D	9 - 8 = 1
C, F, G	2	G	40 - 11 = 29
C, F, J	2	1	29 - 12 = 17
C, F, L	2	L	17 - 13 = 4
C, F	2	F	4-4=0
C	3	С	40 - 7 = 33
E	3	E	33 - 20 = 13
H	3	Н	13 - 6 = 7
K	4	K	40 - 15 = 25
M	4	M	25 - 9 = 16
N	4	N	16 - 8 = 8
0	5	0	40 - 9 = 31

Sumber: Buku Supply Chain Engineering, Useful Methods and Techniques,
Alexandre Dolgui & Jean-Marie Proth

Selain metode pendekatan logika, metode-metode lain yang dapat digunakan untuk pemecahan masalah dalam *line balancing* dan solusinya mendekati optimal adalah sebagai berikut:

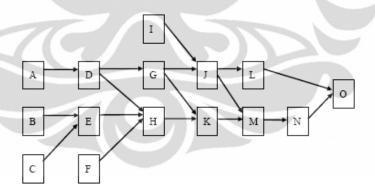
1. METODE SIMULASI

Metode simulasi merupakan metode yang meniru tingkah laku sistem dengan mempelajari interaksi komponen-komponennya karena tidak memerlukan fungsi-fungsi matematis secara eksplisit untuk merelasikan variabel-variabel sistem, maka model-model simulasi ini dapat digunakan untuk memecahkan sistem kompleks yang tidak dapat diselesaikan secara matematis. Metodemetode simulasi yang digunakan untuk pemecahan masalah *line balancing*, yaitu:

- a. CALB (Computer Assembly Line Balancing or Computer Aided Line Balancing)
- b. ALPACA (Assembly Line Balancing and Control Activity)
- c. COMSOAL (Computer Method or Saumming Operation for Assemble)

2. METODE HEURISTIK

Metode heuristik adalah metode yang berdasarkan pada pengalaman, intuisi atau aturan-aturan empiris untuk memperoleh solusi yang lebih baik daripada solusi yang telah dicapai sebelumnya. Metode-metode heuristik yang digunakan untuk pemecahan masalah *line balancing*, yaitu:


a. Ranked Positional Weight atau Hegelson and Birnie

Metode RPW yang berbasis akumulasi waktu penyelesaian task ini merupakan metode yang dapat menemukan solusi dengan cepat. Konsep dari metode ini adalah menentukan jumlah stasiun kerja minimal dan melakukan pembagian task ke dalam stasiun kerja dengan cara memberikan bobot posisi kepada setiap task sehingga semua task telah ditempatkan kepada sebuah stasiun kerja. Bobot setiap task dihitung sebagai waktu yang dibutuhkan untuk melakukan task ke-i ditambah dengan waktu untuk mengeksekusi semua task yang akan dijalankan setelah task ke-i tersebut. Di sebagian besar kasus, pendekatan dasar ini dapat digunakan secara manual untuk ukuran problem yang kecil.Langkah-langkah metode RPW dalam suati kasus *line balancing* adalah sebagai berikut:

1. Diketahui:

Tabel 2.12 Tabel Operation Time Contoh Kasus 2

Task	Operation Time	Predecessor	C (waktu siklus)
A	10	-	40
В	12	-	40
С	7	-	40
D	8	A	40
E	20	B,C	40
F	4	-	40
G	11	D	40
Н	6	D,E,F	40
I	9	4	40
J	12	I,G	40
K	15	G,H	40
L	13	J	40
M	9	J,K	40
N	8	M	40
0	9	L,N	40

Gambar 2.9 Precedence Diagram Task untuk Contoh Kasus 2

Sumber: Buku Supply Chain Engineering, Useful Methods and Techniques, Alexandre Dolgui & Jean-Marie Proth

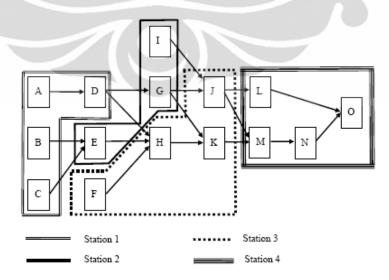
Langkah-langkah:

1. Urutkan stasiun beserta waktu operasi dari A sampai O di kolom *operation* (lihat tabel)

Universitas Indonesia

- 2. Pada baris pertama kolom *successors*, tuliskan kemungkinan jalur yang dilalui dari stasiun A ke stasiun O beserta *operation time* nya.
- 3. Pada baris pertama kolom *weight*, jumlahkan operation time dari kemungkinan jalur yang dilewati task A hingga ke task O (10+8+11+6+12+15+13+9+8+9=101)
- 4. Ulangi langkah dari nomor 1 − 3 untuk *operation* B sampai O.

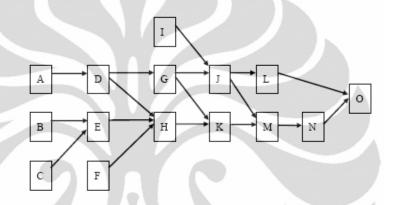
Tabel 2.13 Pembobotan RPW


Operation	Successors	Weight
A(10)	D(8), G(11), H(6), J(12), K(15), L(13), M(9), N(8), O(9)	101
B(12)	E(20), H(6), K(15), M(9), N(8), O(9)	79
C(7)	E(20), H(6), K(15), M(9), N(8), O(9)	74
D(8)	G(11), H(6), J(12), K(15), L(13), M(9), N(8), O(9)	91
E(20)	H(6), K(15), M(9), N(8), O(9)	67
F(4)	H(6), K(15), M(9), N(8), O(9)	51
G(11)	J(12), K(15), L(13), M(9), N(8), O(9)	77
H(6)	K(15), M(9), N(8), O(9)	47
I(9)	J(12), L(13), M(9), N(8), O(9)	60
J(12)	L(13), M(9), N(8), O(9)	51
K(15)	M(9), N(8), O(9)	41
L(13)	O(9)	22
M(9)	N(8), O(9)	26
N(8)	O(9)	17
O(9)		9

Dari tabel diatas, dihasilkan urutan bobot (*weight*) pada masing-masing *operation time* dari besar ke kecil = A, D, B, C, G, E, I, F, J, H, K, M, L, N, O. Kemudian urutan bobot ini diletakan pada kolom *task assigned* di tabel *rank positional weight*. Kita mulai dari stasiun 1 dengan waktu siklus 40 yang dikurangi dengan *operation time* dari *task assigned* secara terus menerus sesuai urutan bobot sampai nilai *remaining time in station* mendekati 0 karena waktu stasiun telah mendekati waktu siklus sehingga harus memulai lagi dengan stasiun baru. Demikian seterusnya.

Tabel 2.14 Pengelompokkan Task dengan Rank Positional Weight

Set W	Station number	Task assigned	Remaining time in the station
A, B, C, F, I	1	A	40 - 10= 30
B, C, D, F, I	1	D	30 - 8 = 22
B, C, F,G, I	1	В	22 - 12= 10
C, F, I	. 1	С	10 - 7= 3
E, F, G, I	2	G	40 - 11 = 29
E, F, I	2	E	29 - 20= 9
F, I	2	I	9 – 9= 0
F, J	3	F	40 – 4= 36
H, J	3	J	36 - 12= 24
H, L	3	Н	24 - 6= 18
K, L	3	K	18 - 15= 3
M, L	4	M	40 – 9= 31
N, L	4	L	31 – 13= 18
N	4	N	18 - 8= 10
0	4	0	10 - 9= 1


- Set W = kumpulan W operasi yang tidak ditugaskan tanpa *predecessor* (pendahulu) atau *predecessor* yang sudah ditugaskan ke stasiun
- Waktu menganggur masing-masing stasiun = 3, 0, 3, 1
- Dari tabel RPW diatas, maka dihasilkan penyelesaian pengelompokan stasiun sebagai berikut :

Gambar 2.10 Hasil pembagian *task* dengan metode RPW Sumber: Buku *Supply Chain Engineering, Useful Methods and Techniques*, Alexandre Dolgui & Jean-Marie Proth

b. Kilbridge's and Waste Heuristic atau Region Approach

Metode Kilbridge Wester cukup **optimal untuk mengurangi waktu menganggu**r dan **memberikan efisiensi produksi** dan metode tidak sulit untuk dipelajari Pada metode KW ini, operasi di atur ke dalam level. Level 1 disusun atas operasi yang tanpa predecessor. Level 2 dibuat dengan operasi yang memiliki predecessor di level 1. Jadi secara umum, level i disusun dari operasi yang memiliki setidaknya predecessor langsung dari level i-1. Level-level di bentuk sampai semua operasi ditugaskan ke dalam level.

Gambar 2.11 Precedence diagram Contoh Kasus 3
Sumber: Buku Supply Chain Engineering, Useful Methods and Techniques,
Alexandre Dolgui & Jean-Marie Proth

Tabel 2.15 Hasil pengelompokan task berdasarkan level predecessor

	Level	Operations
	1	A, B, C, F, I
	2	D, E
	3	G, H
	4	J, K
	5	L, M
	6	N
_	7	0

Sumber: Buku Supply Chain Engineering, Useful Methods and Techniques,
Alexandre Dolgui & Jean-Marie Proth

Di tiap level, jika semua operasi di level ini tidak bisa ditugaskan ke stasiun yang ada, maka itu semua dipilih dengan menggunakan aturan (mengurangi perintah/urutan waktu operasi atau mengurangi perintah/urutan bobot seperti di dalam algoritma RWP, misalnya). KW

Universitas Indonesia

dengan penugasan operasi satu demi satu diaplikasikan di contoh sebelumnya. Ketika ada beberapa kemungkinan bobot operasi digunakan. Rentetan iterasi ditunjukan di table 7.10. untuk C=40.

Pada tabel KW like Heuristic, letakan level 1 operation (ABCFI) beserta masing-masing bobot nya (didapat dari metode RPW) di kolom candidates di baris pertama. Lalu waktu siklus yang tersedia(40) dikurangi waktu operation dari assigned operation (assigned operation yang dipilih adalah yang memiliki bobot tertinggi pada level di kolom candidates baris pertama (A)). Setelah itu, di baris kedua candidates, letakkan level 1 operation yang masih tersisa/yang belum dikurangi (BCFI) sebagai assigned operation, tulis beserta masing-masing bobot nya. Kemudian waktu siklus sisa(30) dikurangi dengan assigned operation yang memiliki bobot tertinggi di baris kedua candidates (B). Demikian seterusnya hingga nilai remaining time in station mendekati 0 karena waktu stasiun telah mendekati waktu siklus sehingga harus memulai lagi dengan stasiun baru. Level pada kolom candidates diletakan secara berurutan setelah dikurangi bobot tertinggi di masing-masing baris hingga level habis (F) dan berganti dengan level yang baru (D,E).

Tabel 2.16 Tabel Pengelompokkan Task dengan Metode KW

Station	Candidates	Assigned operation	Remaining time in the station
1	A(101), B(79), C(74), F(51), I(60)	A	40 - 10= 30
1	B(79), C(74), F(51), I(60)	В	30 - 12 = 18
1	C(74), F(51), I(60)	C	18 - 7 = 11
1	F(51), I(60)	I	11 - 9= 2
2	F(51)	F	40 - 4 = 36
2	D(91), E(67)	D	36 - 8= 28
2	E(67)	E	28 - 20 = 8
2	G(77), H(47)	H	8 - 6= 2
3	G(77)	G	40 - 11 = 29
3	J(51), K(41)	J	29 - 12= 17
3	K(41)	K	17 – 15 = 2
4	L(22), M(26)	M	40 - 9= 31
4	L(22)	L	31 - 13= 18
4	N(17)	N	18 - 8= 10
4	O(9)	0	10 - 9 = 1

Sumber: Buku Supply Chain Engineering, Useful Methods and Techniques,
Alexandre Dolgui & Jean-Marie Proth

Universitas Indonesia

Dari tabel di atas, dihasilkan sisa waktu yang tersedia di masing-masing stasiun adalah 2, 2, 2, 1. Solusi ini sama diperoleh ketika menggunakan COMSOAL. Sedangkan pada metode RPW dihasilkan sisa waktu yang tersedia di masing-masing stasiun adalah 3,0,3,1. Jumlah total waktu menganggur adalah sama, yaitu 7. Namun besar waktu menganggur di tiap stasiun nya berbeda.

c. Large Candidate Rule

- 1. Urutkan ranking setiap task berdasarkan waktu proses terlama
- 2. Alokasikan task yang mempunyai ranking paling awal kepada stasiun yang lebih awal dengan memperhatikan precedence diagram
- 3. Alokasikan seluruh operasi kepada seluruh stasiun yang ada
- 4. Pengalokasian operasi kepada salah satu stasiun, total waktu prosesnya tidak boleh melebihi waktu siklus yang ditentukan

d. Metode Moodie Young

Terdiri dari 2 fase:

- Elemen kerja ditandai dengan stasiun kerja yang berhubungan dalam garis perakitan terutama dengan metode LCR. LCR terdiri dari penentuan nilai elemen yang tersedia (dengan tidak memperhatikan precedence) sesuai dengan penurunan nilai waktu.
- Membagi waktu menganggur secara merata untuk seluruh stasiun kerja
 - Hitung waktu total operasi pada masing-masing stasiun kerja
 - Tentukan stasiun kerja yang memiliki waktu operasi yang terbesar dan waktu operasi terkecil dari fase 1
 - Setengah dari perbedaan kedua nilai tersebut dinamakan GOAL
 GOAL = (STmax Stmin)/2
 - Tetapkan seluruh elemen tunggal pada STmax yang kurang dari 2 kali nilai GOAL dan tidak melanggar aturan precedence jika dipindahkan ke STmin

- Tetapkan seluruh kemungkinan pemindahan operasi dari STmax ke STmin seperti halnya operasi maksimal 2 kali GOAL, dengan memperhatikan precedence nya
- Lakukan hal diatas hingga tak ada lagi yang bisa dipindahkan

Pendekatan secara heuristik ini didasarkan atas penyederhanaan persoalan kombinasi yang kompleks secara manual sehingga dapat dipecahkan secara sederhana dengan metode yang mudah dimengerti walaupun tidak menjamin solusi optimal namun hasilnya sangat mendekati optimal. Langkah awal dari teknik heuristik ini bermula dari precedence diagram dan matriks precedence. Pembuatan precedence diagram biasanya menggunakan data yang berasal dari OPC (Operation Proccess Chart). Kemudian langkah selanjutnya akan mengalami perbedaan sesuai dengan cirinya dari masing-masing.

3. METODE ANALITIK atau MATEMATIS

Metode penggambaran dunia nyata melalui simbol-simbol matematis berupa persamaan dan pertidaksamaan. Pemecahan masalah ini yaitu mengelompokkan operasi-operasi perakitan ke dalam sejumlah kombinasikombinasi yang menjadi tugas untuk setiap stasiun kerja. Selanjutnya mencari alternatif yang terbaik untuk menyusun kombinasi-kombinasi ini menjadi urutan tugas sepanjang lintasan perakitan tersebut. Metode ini masih memerlukan ketelitian serta usaha yang cukup besar untuk memecahkan persoalan yang kompleks. Metode ini lebih menekankan terhadap pemecahan masalah secara teoritis, sehingga kurang praktis untuk diterapkan pada persoalan yang sebenarnya meskipun hasil yang dicapai teliti dan keoptimalannya terjamin. Metode ini memecahkan persoalan keseimbangan lintasan perakitan menggunakan operation research dalam mengoptimalkannya, seperti penggunaan programa linier, programa dinamis, dan programa bilangan bulat nol satu.

4. METODE PROBABILISTIK

Metode ini dikembangkan oleh para ahli karena sering kali mengalami kesulitan dalam memecahkan keseimbangan lintas perakitan, terutama oleh adanya perubahan kecepatan kerja (konsistensi kerja) dari para operator apabila

mereka beralih dari satu siklus ke siklus berikutnya. Perubahan kecepatan kerja ini timbul akibat adanya variasi waktu waktu elemen kerja dalam lintasan perakitan dengan melakukan penelitian yang ditujukan pada aspek elemen kerja yang bervariasi.

5. METODE BRANCH AND BOUND

Pada dasarnya metode Branch and Bound adalah prosedur diagram pohon keputusan. Setiap iterasi dari prosedur ini dimulai dengan sebuah simpul yang menggambarkan penugasan elemen-elemen kerja pada sebuah stasiun kerja. Apabila ditemukan bahwa tidak ada solusi terdekat, prosedur bercabang pada sejumlah simpul turunan yang sebelumnya tidak terdominasi tetapi feasible kemudian dihitung batas bawah untuk setiap simpul. Simpul yang batas bawahnya paling kecil, akan diambil sebagai patokan untuk iterasi berikutnya, seandainya solusi awalnya baik. Metode Branch And Bound menggunakan Search Tree untuk menyimpan berbagai kemungkinan dari solusi yaitu jumlah bobot dari berbagai lintasan, dari bagian ini kemudian diolah untuk mendapatkan solusinya atau jarak dengan bobot yang minimum. Metode Branch And Bound diusulkan pertamakali oleh A.H.Land dan A.G.Doig pada tahun 1960. Sebenarnya metode ini dibuat untuk pemrograman linier. Metode ini hanya dapat digunakan untuk masalah optimasi saja. Algoritma dimulai dengan pengisian sebuah nilai ke akar dari pohon pencarian tersebut. Pencabangan dilakukan dengan memasang sebuah pending node ke pending node yang lain yang lebih rendah levelnya. Bobot juga dihitung pada setiap proses dan ditulis di simpul pohon. Jika sebuah simpul diketahui merupakan solusi yang tidak mungkin bagi persoalan yang dihadapi, simpul tersebut diisi dengan nilai tak terbatas (infinity). Algoritma berhenti ketika sudah tidak mungkin lagi untuk membentuk simpul baru di pohon atau hasil terakhir yang ditemukan merupakan hasil yang lebih rendah (minimum) dari isi simpul yang telah ada pada level yang lebih rendah. Tujuan dari metode ini adalah untuk menemukan solusi dengan menumerasikan sedikit mungkin simpul pohon. Dalam melakukan pencabangan harus dipilih sebuah pending node yang mempunyai bobot paling kecil. Pencarian solusi dengan pencabangan

berhenti ketika kita telah menemukan solusi yang mungkin dan merupakan bobot terkecil dari semua.

6. METODE PABRIKASI

Persoalan keseimbangan sebuah lintasan pabrikasi lebih sulit untuk dipecahkan jika dibandingkan dengan masalah lintasan perakitan. Hal ini disebabkan pada lintasan pabrikasi tidak mudah untuk membagi operasi-operasi ke dalam elemen-elemen yang lebih kecil untuk didistribusikan. Pembatas ini akan memberi ruang gerak dalam melakukan perencanaan lintasan pabrikasi. Sebagai contoh seorang operator yang melakukan pekerjaan merakit dapat dengan mudah untuk dipindahkan dari satu pekerjaan perakitan ke pekerjaan lainnya. Sedangkan pada lintasan pabrikasi, sebuah mesin atau peralatan sangat sukar untuk digunakan dalam bermacam-macam pekerjaan tanpa biaya setup yang mahal. Untuk mengantisipasi masalah tersebut diperlukan *lay out* yang baik sehingga mesin yang ada dapat digunakan secara efektif, sebab dengan adanya mesin yang menganggur akan memberikan ongkos yang dapat menimbulkan kerugian pada perusahaan. Jadi dalam mengatasi lintasan pabrikasi diperlukan suatu analisa pada bidang lain. Karena dengan penambahan peralatan sebagai alternatifnya, yang berarti penambahan ongkos tetap ataupenambahan ongkos variablenya.

Pembatasan dalam Keseimbangan lintasan:

- 1. Pembatasan Teknologi (*Technological Restriction*)
 - Pembatas ini sering juga disebut *precedence constraint* dalam bahasa keseimbangan lintasan. Yang dimaksud pembatasan teknologi adalah proses pengerjaan yang telah ditentukan. Untuk proses serta ketergantungannya digambarkan dalam diagram kebergantungan (*Precedence Diagram*) dan OPC (*Operation Process Chart*)
- Pembatasan Fasilitas (Facility Restriction)
 Pembatas disini adalah akibat adanya fasilitas atau mesin yang tidak dapat dipindahkan (fasilitas tetap)
- 3. Pembatasan Posisi (*Positional Restriction*)

Membatasi pengelompokkan elemen-elemen kerja orientasi produk terhadap operator yang sudah tertentu

4. Zoning Constraint

- *Positive zoning constrains* : Elemen-elemen pekerjaan tertentu harus ditempatkan saling berdekatan dalam stasiun kerja yang sama.
- Negative zoning constrains

 i. Jika satu elemen pekerjaan dengan elemen pekerjaan lain sifatnya saling mengganggu maka sebaiknya tidak ditempatkan berdekatan dengan stasiun kerja yang menimbulkan kegaduhan dan getaran yang keras.

2.2.8.2 Performansi Lintas Perakitan

1. Minimum waktu menganggur (Idle Time)

Idle time adalah selisih atau perbedaan antara Cycle Time (CT) dan Stasiun Time (ST), atau CT dikurangi ST.

Idle Time =
$$n.Ws - \sum_{i=1}^{n} Wi$$

Keterangan:

n = Jumlah stasiun kerja

Ws = Waktu stasiun kerja terbesar

Wi = Waktu sebenarnya pada stasiun kerja

$$i = 1, 2, 3, ..., n$$

2. Minimum keseimbangan waktu senggang (Balance Delay)

Balance Delay merupakan ukuran dari ketidakefisienan lintasan yang dihasilkan dari waktu mengganggur sebenarnya yang disebabkan karena pengalokasian yang kurang sempurna di antara stasiun-stasiun kerja. Balance Delay dapat dirumuskan sebagai berikut:

$$\frac{n.W_s - \sum_{i=1}^n W_i}{n.W_s} \times 100\%$$

Keterangan:

Wi = Waktu stasiun kerja ke-i

n = Jumlah stasiun kerja

Ws = Waktu siklus

3. Maksimum Efisiensi

Line Efficiency merupakan rasio dari total waktu stasiun kerja dibagi dengan siklus dikalikan jumlah stasiun kerja atau jumlah efisiensi stasiun kerja dibagi jumlah stasiun kerja. Line Efficiency dapat dirumuskan sebagai berikut:

Efisiensi Stasiun kerja =
$$\frac{W_i}{W_a} \times 100\%$$

Efisiensi Lintasan
$$= \frac{\sum_{i=1}^{n} W_i}{n_i W_a} \times 100\%$$

Keterangan:

Wi = Waktu stasiun kerja ke-i

n = Jumlah stasiun kerja

Ws = Waktu siklus

4. Smoothness Index (SI)

Yaitu cara untuk mengukur tingkat waktu tunggu relatif dari suatu lini perakitan. Semakin mendekati nol nilai *smoothness index* suatu lini, maka semakin seimbang suatu lini, artinya pembagian task-task cukup merata. Lini dikatakan mempunyai keseimbangan sempurna jika nilai *smoothness index* nol. *Smoothness index* dinotasikan sebagai berikut:

$$SI = \sum_{i=1}^{n} (W_s - W_i)^2$$

Keterangan:

ST max = Maksimum waktu di stasiun

STi = Waktu stasiun di stasiun kerja i

2.3 Profil Perusahaan

Nama Perusahaan : PT. XYZ

Status Perusahaan : Perseroan Terbatas

Status Investasi : PMA (Penanaman Modal Asing)

Alamat : Jl. KLM

Jakarta

Jam Kerja

Kantor: 07.30 - 16.30 WIB

Pabrik : *Shift* I : 07.00 - 16.00 WIB

Shift II : 16.00 - 24.00 WIB

Shift III : 24.00 - 07.00 WIB

Tanggal Pendirian : 11 Juni 1971 sebagai PT XY

31 Oktober 2000 merger menjadi PT XYZ

Jenis Produk : Sepeda Motor Tipe K, L, M

Kepemilikan : 50% PT. F

50% PT. G

Kapasitas Produksi : Terpasang : 3.000.000 unit/tahun

Referensi Standar : JIS (Japan Industrial Standard)

SII (Standar Industri Indonesia)

SNI (Standar Nasional Indonesia)

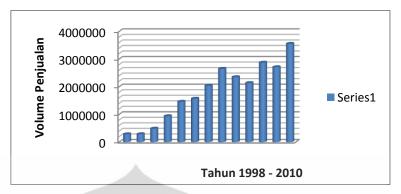
X Engineering Standard

ISO 9001

ISO 14001

ISO 17025

OHSAS 18001


Aktivitas : Agen Tunggal Pemegang Merek (ATPM),

Manufaktur, Perakitan dan Distributor Sepeda

Motor X

Jumlah Karyawan : 3023 (di Plant 2)

Jumlah Produksi :

Gambar 2.12 Volume penjualan produk PT. XYZ (Sumber: PT. XYZ)

2.3.1 Visi dan Misi

PT XYZ, perusahaan yang menjalankan fungsi produksi, penjualan dan pelayanan purna jual yang lengkap untuk kepuasan pelanggan dan memiliki:

Visi

To Be Number One Market Driven Trend-setter motorcycle Company in Indonesia in term of customer satisfaction the empowered human capital guided by shared values.

Misi

To provide mobility solution which exceed customer expectation with the best value motorcycle & Its related products, thru empowered human capital for the benefit of all stakeholders.

2.3.2 Kebijakan

Kebijakan Mutu

Semua karyawan PT. XYZ agar senantiasa berkarya dengan berpedoman pada Sistem Manajemen Mutu ISO 9001.2008 serta melaksanakan prinsip-prinsip dasar sistem mutu:

- Membuat produk dan memberikan pelayanan yang bermutu tinggi serta sesuai dengan kebutuhan dan harapan para pelanggan
- 2. Membuat produk dan memberikan pelayanan secara efisien dengan memperhatikan unsur-unsur QCDDM secara berimbang
- Membangun budaya dan etos kerja yang berorientasi pasar, produktif dan memandang mutu sebagai hal yang sangat penting dengan melaksanakan kegiatan 5K2S

Universitas Indonesia

Membangun kompetensi Sumber Daya Manusia yang berwawasan mutu serta mampu berperan serta dalam program peningkatan mutu produk dan layanan

2.3.3 Sejarah

PT XYZ merupakan pelopor industri sepeda motor di Indonesia. Didirikan pada 11 Juni 1971 dengan nama awal PT XY, yang sahamnya secara mayoritas dimiliki oleh PT F. Saat itu, PT XY hanya merakit, sedangkan komponennya diimpor dari Jepang.

Tipe sepeda motor yang pertama kali di produksi perusahaan ini adalah tipe bisnis bermesin 4 tak. Jumlah produksi pada tahun pertama selama satu tahun hanya 1500 unit, namun melonjak menjadi sekitar 30.000 pada tahun selanjutnya dan terus berkembang hingga saat ini. Sepeda motor terus berkembang dan menjadi salah satu moda transportasi andalan di Indonesia.

Kebijakan pemerintah dalam hal lokalisasi komponen otomotif mendorong PT XY memproduksi berbagai komponen sepeda motor XYZ tahun 2001 di dalam negeri melalui beberapa anak perusahaan, diantaranya PT ST (1974) yang memproduksi komponen-komponen dasar sepeda motor ini seperti rangka, roda, knalpot dan sebagainya, PT OPQ (1979) yang khusus memproduksi peredam kejut, PT XEM (1984) yang memproduksi mesin sepeda motor serta PT DE Mfg.(1990) yang khusus memproduksi piston.

Seiring dengan perkembangan kondisi ekonomi serta tumbuhnya pasar sepeda motor terjadi perubahan komposisi kepemilikan saham di pabrikan sepeda motor ini. Pada tahun 2000 PT XY dan beberapa anak perusahaan di merger menjadi satu dengan nama PT XYZ, yang komposisi kepemilikan sahamnya menjadi 50% milik PT F dan 50% milik PT. G.

Saat ini PT. X Motor memiliki 3 fasilitas pabrik perakitan, pabrik pertama berlokasi di Jakarta Utara yang juga berfungsi sebagai kantor pusat. Pabrik ke dua berlokasi di Pegangsaan serta pabrik ke 3 yang sekaligus pabrik paling mutakhir berlokasi di Cikarang. Pabrik ke 3 ini merupakan fasilitas pabrik perakitan terbaru yang mulai beroperasi sejak tahun 2005.

Dengan keseluruhan fasilitas ini PT XYZ saat ini memiliki kapasitas produksi 3 juta unit sepeda motor per-tahunnya, untuk permintaan pasar sepeda

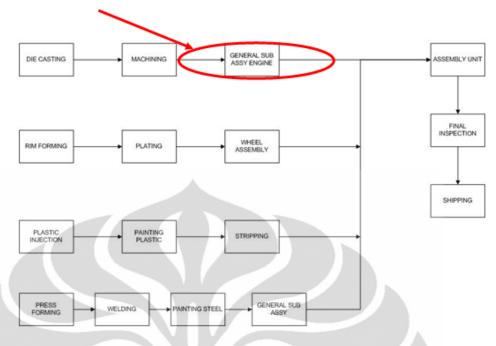
motor di Indonesia yang terus meningkat. Salah satu puncak prestasi yang berhasil diraih PT XYZ adalah pencapaian produksi ke 20 juta pada tahun 2007. Prestasi ini merupakan prestasi pertama yang yang berhasil diraih oleh industri sepeda motor di Indonesia bahkan untuk tingkat ASEAN. Secara dunia pencapaian produksi sepeda motor X 20 juta unit adalah yang ketiga, setelah pabrik sepeda motor X di Cina dan India.

Guna menunjang kebutuhan serta kepuasan pelanggan sepeda motor X, saat PT XYZ di dukung oleh 1.600 showroom dealer penjualan, 3.800 layanan service, serta 6.500 gerai suku cadang, yang siap melayani jutaan penggunaan sepeda motor ini di seluruh Indonesia.

Industri sepeda motor saat ini merupakan suatu industri yang besar di Indonesia. Karyawan PT XYZ saat ini berjumlah sekitar 13.000 orang, ditambah 130 vendor dan supplier serta ribuan jaringan lainnya, yang kesemuanya ini memberikan dampak ekonomi berantai yang luar biasa. Keseluruhan rantai ekonomi tersebut diperkirakan dapat memberikan kesempatan kerja kepada sekitar 500 ribu orang. PT XYZ akan terus berkarya menghasilkan sarana transportasi roda 2 yang menyenangkan, aman dan ekonomis sesuai dengan harapan dan kebutuhan masyarakat Indonesia.

2.3.4 Struktur Organisasi *Plant 2 Division*

PT. X dipimpin oleh seorang *President Director*. PT. XYZ memiliki tiga plant yaitu divisi *plant* 1, divisi *plant* 2, dan divisi *plant* 3. Ketiga divisi *plant* tersebut berada di bawah *Production Engineering dan Procurement Directorat*. Untuk *Assembling Unit Section* sendiri berada dibawah divisi *plant* 2. Berikut adalah struktur organisasi lengkap divisi *plant* 2.


JANUARI 2011 Departement Sub Department mbling Unit 2-B Sect ■ Head of General Sub Assy & Stripe 2 Se Head of oduction 2.1.B Sub Dept Head of Painting Steel 2-B Section Head of Painting Plastic 2 Sec Head of Welding 2-A section duction 2.1.C Sub Dept Head of Welding 2-B section Head of Head of Assy Engine 2-B Section Head of M/C Crank Shaft 2 S Sub-Dept Head of QCO - 2 A Head of QCO - 2.A.2 Head of QQQ - 2.B.2 EPP

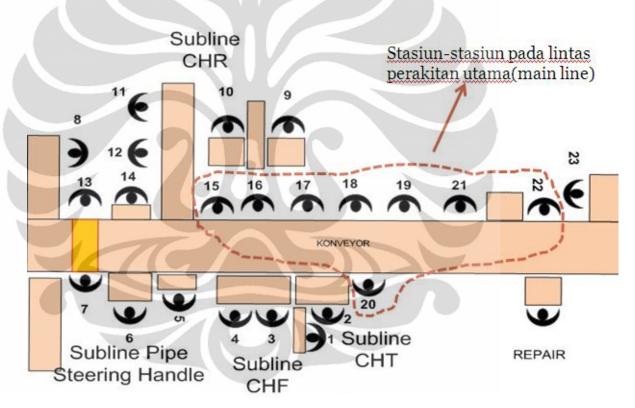
SRUKTUR ORGANISASI DIVISI PLANT 2

Gambar 2.13 Struktur organisasi PT. XYZ (Sumber: PT. XYZ)

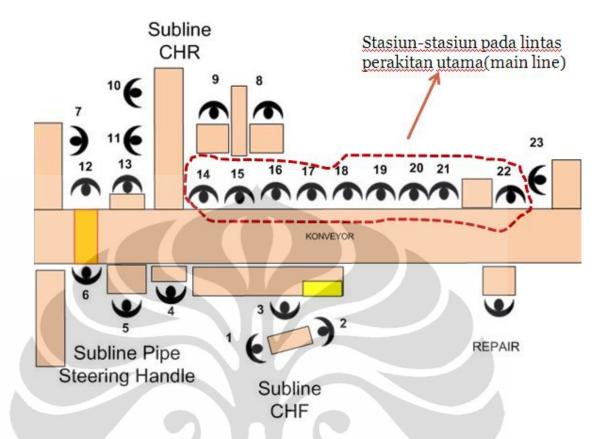
2.3.5 Aliran Proses Produksi (*Production Flow Process*)

Untuk membuat satu motor, PT. XYZ mempunyai 4 *line* utama yaitu, *die* casting, rim forming, plastic injection, dan press forming. Setelah melalui semua tahap atau proses tersebut, beberapa komponen terpisah kemudian di assembly atau dirakit menjadi satu produk motor. Setelah selesai dirakit, maka motor tersebut masuk ke *final inspection* kemudian di cek berdasarkan SPA atau Standard Pemeriksaan Akhir, dengan cara memeriksa setiap unit motor, *point check*, dan standard. Beberapa hal yang di cek adalah fungsi kelistrikan, visual, dan dimensinya. Berikut adalah *production flow process* yang lebih lengkap.

Gambar 2.14 Production Flow Process (Sumber: PT. XYZ)

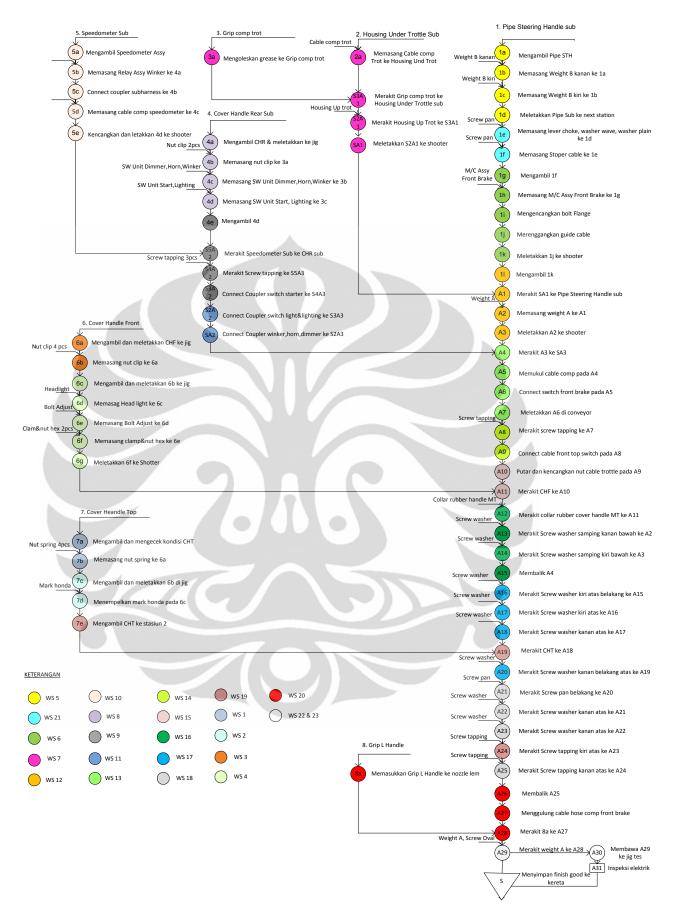

Berikut adalah seksi-seksi yang terkait dengan proses produksi PT XYZ

- 1. Part Supply
- 2. Production Control
- 3. Plastic injection
- 4. Welding
- 5. Painting Steel
- 6. Painting Plastic
- 7. General Subassembling
- 8. Assembling
- 9. Shipping dan Accessories Part

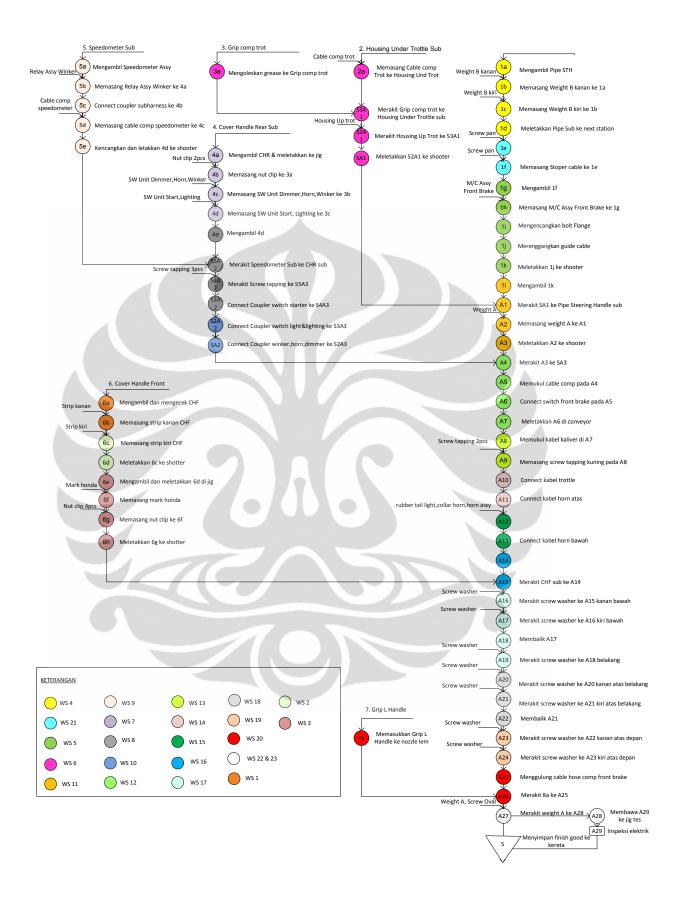

2.3.6 Profil Area General Sub Assembly Steering Handle

Pada Seksi *General Sub Assembly* PT XYZ ada 2 lintas perakitan berjalan *steering handle* yaitu line 2A dan 2B. Pada penelitian kali ini penulis membatasi masalah penelitian hanya pada *line* 2B. Pada lintas perakitan *steering handle* 2B, terdiri dari 2 tipe *steering handle* yang dirakit yaitu tipe X dan Y. Pada kondisi aktual, masing-masing tipe *steering handle* dikerjakan oleh 23 operator pada lintas produksi dan terdiri dari 23 stasiun kerja. Dalam lintas perakitan *steering handle* terdapat beberapa *subline*. *Steering Handle* tipe X memiliki 4 *subline*,

diantaranya adalah *Pipe Steering Handle*, CHF (*Cover Handle Front*), CHR(*Cover Handle Rear*), dan CHT(*Cover Handle Top*). *Steering Handle* tipe Y memiliki 3 *subline*, diantaranya adalah *Pipe Steering Handle*, CHF (*Cover Handle Front*), dan CHR(*Cover Handle Rear*). Dari semua sub lintas perakitan tersebut akan menghasilkan *sub assembly steering handle* yang akan dirakit satu sama lain pada suatu lintas perakitan utama *steering handle* yang proses kerjanya berada pada lintasan lurus konveyor. Proses perakitan dan susunan stasiun kerja kedua tipe *steering handle* ini pun berbeda. Berikut adalah gambaran mengenai keaadaan susunan stasiun kerja lintas perakitan *steering handle line* 2 B pada saat ini.



Gambar 2.15 Susunan stasiun kerja lintas perakitan *Steering Handle* tipe X (Sumber: PT. XYZ)



Gambar 2.16 Susunan stasiun kerja lintas perakitan *Steering Handle* tipe Y (Sumber: PT. XYZ)

Pada penelitian ini, penulis membatasi permasalahan pada lintas perakitan utama *steering handle* sampai dengan stasiun kerja inspeksi karena hampir semua waktu siklus yang ada di stasiun-stasiun kerja pada lintas perakitan utama memiliki ukuran yang jauh dari waktu siklus ideal yang diharapkan oleh perusahaan.

Gambar 2.17 Peta Proses Operasi *Steering Handle* Tipe X Sumber: Penulis

Gambar 2.18 Peta Proses Operasi *Steering Handle* Tipe Y Sumber: Penulis

BAB 3

PENGUMPULAN DATA

3.1 Pengumpulan Data Elemen Gerakan

Pada pengambilan data elemen gerakan, penulis mengambil data dengan cara merekam video kegiatan perakitan pada tiap stasiun kerja di lintas perakitan utama *steering handle* tipe X dan Y. Tujuan pengambilan data elemen gerakan ini adalah untuk mencari dan menganalisis gerakan dasar yang sifatnya tidak efektif dan yang mungkin dapat dihilangkan sehingga elemen gerakan pada stasiun kerja lebih ekonomis. Adapun analisis pengambilan data tersebut adalah melalui studi ekonomi gerakan dari gerakan dasar THERBLIG, dimana gerakan dasar tersebut terdiri dari gerakan utama, gerakan penunjang, gerakan pembantu, dan gerakan elemen luar. Berikut adalah beberapa tampilan tabel hasil pengambilan data elemen gerakan.

Tabel 3.1 Elemen Gerakan Stasiun Kerja 17 Steering Handle Tipe X

No	Ilustrasi	Deskripsi Gerak	Simbol	Kelompok	Dapat	Jenis
	4		Gerak	Gerakan	Dihilangkan	Gerakan
1		Menjangkau Collar Rubber dan cover Handle MT	TE	Penunjang	Sulit	Efektif
		Memegang Collar Rubber dan cover Handle MT	G	Penunjang	Sulit	Efektif
2		Membawa Collar Rubber dan cover Handle MT	TL	Penunjang	Sulit	Efektif
		Merakit Collar Rubber ke cover Handle MT	А	Utama	Tidak Bisa	Efektif
3		Menjangkau Impact/Impulse	TE	Penunjang	Sulit	Efektif

Tabel 3.1 Elemen Gerakan Stasiun Kerja 17 *Steering Handle* Tipe X (lanjutan)

			Simbol	Kelompok	Dapat	Jenis
No	Ilustrasi	Deskripsi Gerak	Gerak	Gerakan	Dihilangkan	
4		Memegang Impact/Impulse	G	Penunjang	Sulit	Efektif
5		Membawa collar rubber handle MT ke impact/impulse	TL	Penunjang	Sulit	Efektif
		Mengarahkan sementara collar rubber handle MT ke impact/impulse	PP	Pembantu	Mungkin	Efektif
6		Menggunakan impact/impulse untuk memasang collar rubber cover handle ke CHF	٥	Utama	Tidak Bisa	Efektif
	SOF	Merakit Collar Rubber&cover Handle MT ke CHF Sub	A	Utama	Tidak Bisa	Efektif
7		Mengarahkan STH ke arah kanan	P	Pembantu	Mungkin	Tidak Efektif
8		Melepas Impact/Impulse Collar Rubbet cover handle	RL	Penunjang	Sulit	Efektif
9		Menjangkau 2 screw washer dan impact/impulse	TE	Penunjang	Sulit	Efektif
10		Memegang 2 screw washer dan impact/impulse	G	Penunjang	Sulit	Efektif
	T -					

Tabel 3.1 Elemen Gerakan Stasiun Kerja 17 *Steering Handle* Tipe X(lanjutan)

ſ	No	Ilustrasi	Deskripsi Gerak	Simbol	Kelompok		Jenis
	11		Membawa alat bantu dan 2 screw washer	Gerak TL	Gerakan Penunjang	<u>Dihilangkan</u> Sulit	<u>Gerakan</u> <u>Efektif</u>
	12		Mengarahkan sementara screw washer ke impact/impulse	PP	Pembantu	Mungkin	Efektif
	13		Menggunakan impact/impulse untuk memasang screw washer	U	Utama	Tidak Bisa	Efektif
			Merakit Screw washer ke CHR&CHF kanan	А	Utama	Tidak Bisa	Efektif
	14		Mengarahkan STH ke arah kiri	P	Pembantu	Mungkin	Tidak Efektif
	15		Mengarahkan sementara screw washer ke impact/impulse	PP	Pembantu	Mungkin	Efektif
			Menggunakan impact/impulse untuk memasang screw washer	U	Utama	Tidak Bisa	Efektif
	16		Merakit screw washer ke CHR&CHF kiri	А	Utama	Tidak Bisa	Efektif

Tabel 3.1 Elemen Gerakan Stasiun Kerja 17 *Steering Handle* Tipe X(lanjutan)

No	Ilustrasi	Deskripsi Gerak	Simbol Gerak	Kelompok Gerakan	Dapat Dihilangkan	Jenis Gerakan
	17	Menjangkau Stang STH Sub	TL	Penunjang		Efektif
17		Memegang Stang STH Sub	G	Penunjang	Sulit	Efektif
		Mengarahkan STH ke Arah Belakang	Р	Pembantu	Mungkin	Tidak Efektif
18		Melepas STH sub dan Impact/Impulse screw washer	RL	Penunjang	Sulit	Efektif

Tabel 3.2 Elemen Gerakan Stasiun Kerja 21 *Steering Handle* Tipe X

(a) (c)	20000000	1975 101 101	Simbol	Kelompok	Dapat	Jenis
No	Ilustrași	Deskr <mark>i</mark> psi Gerak	Gerak	Gerakan	Dihilangkan	Gerakan
1		Menjangkau Grip L Handle di dalam <mark>b</mark> ox	TE	Penunjang	Sulit	Efektif
2		Memegang Grip L Handle	G	Penunjang	Sulit	Efektif
3 62		Membawa Grip L Handle	TL	Penunjang	Sulit	Efektif
3		Memasukkan Grip L Handle ke aplikasi lem	PP	Pembantu	Mungkin	Efektif
4		Melepas Grip L Handle	RL	Penunjang	Sulit	Efektif
5		Menjangkau stang kiri STH Sub	TE	Penunjang	Sulit	Efektif
6		Memegang stang kiri STH sub	G	Penunjang	Sulit	Efektif
7		Memutar STH Sub ke arah depan	PP	Pembantu	Mungkin	Efektif
		Menjangkau cable hose front brake	TE	Penunjang	Sulit	Efektif
8		Memegang cable hose front brake	G	Penunjang	Sulit	Efektif

Tabel 3.2 Elemen Gerakan Stasiun Kerja 21 *Steering Handle* Tipe X(lanjutan)

No	Ilustrasi	Deskripsi Gerak	Simbol Gerak	Kelompok Gerakan	Dapat Dihilangkan	Jenis Gerakan
9		Menggulung/merakit cable hose front brake	А	Utama	Tidak Mung <mark>k</mark> in	Efektif
10		Menjangkau Grip L Handle pada aplikasi lem	TE	Penunjang	Sulit	Efektif
10		Memegang Grip L Handle yang telah di lem	G	Penunjang	Sulit	Efektif
11		Membawa Grip L Handle dari aplikasi lem	TL	Penunjang	Sulit	Efektif
12		Merakit Grip L Handle ke sisi kiri stang STH	А	Utama	Tidak Mungkin	Efektif
13		Melepas STH Sub	RL	Penunjang	Sulit	Efektif

 ${\bf Tabel~3.3}$ Elemen Gerakan Stasiun Kerja 18 Steering Handle Tipe Y

No	Ilustrasi	Deskripsi Gerak	Simbol Gerak	Kelompok Gerakan	Dapat Dihilangkan	Jenis Gerakan
1		Mennjangkau STH Sub	TE	Penunjang	Sulit	Efektif
		Memegang STH Sub	G	Penunjang	Sulit	Efektif
		Mengarahkan STH Sub ke arah kanan	Р	Pembantu	Sulit	Efektif
	1500	Menjangkau 2 screw washer dan impact/impulse	TE	Penunjang	Sulit	Efektif
2		Memegang 2 screw washer dan impact/impulse	G	Penunjang	Sulit	Efektif
4		Membawa 2 screw washer dan impact/impulse	TL	Penunjang	Sulit	Efektif
		Mengarahkan sementara screw washer ke impact/impulse	PP	Pembantu	Mungkin	Efektif
3		Menggunakan impact/impulse untuk memasang screw washer	U	Utama	Tidak Bisa	Efektif
		Merakit screw washer kanan ke STH Sub	А	Utama	Tidak Bisa	Efektif
4		Mengarahkan STH Sub ke arah kiri	Р	Pembantu	Mungkin	Tidak efektif
		Mengarahkan sementara screw washer ke impact/impulse	PP	Pembantu	Mungkin	Efektif
5		Menggunakan impact/impulse untuk memasang screw washer	U	Utama	Tidak Bisa	Efektif
		Merakit screw washer kiri ke STH Sub	A	Utama	Tidak Bisa	Efektif

Tabel 3.3 Elemen Gerakan Stasiun Kerja 18 *Steering Handle* Tipe Y(lanjutan)

No	Ilustrasi	Deskripsi Gerak	Simbol Gerak	Kelompok Gerakan	Dapat Dihilangkan	Jenis Gerakan
	N. T.	Menjangkau Stang STH	TL	Penunjang	Sulit	Efektif
6		Memegang Stang STH	G	Penunjang	Sulit	Efektif
7	::0	Mengarahkan STH Sub ke arah Belakang	P	Pembantu	Mungkin	Tidak efektif
8	W.	Menggunakan impact/impulse untuk memasang screw pan	U	Utama	Tidak Bisa	Efektif
		Merakit screw pan ke STH Sub bagian belakang	A	Utama	Tidak <mark>B</mark> isa	Efektif
9		Melepas screw pan dan STH Sub	RL	Penunjang	Sulit	Efektif

Tabel 3.4 Elemen Gerakan Stasiun Kerja 19 Steering Handle Tipe Y

No	Ilustrasi	Deskripsi Gerak	Simbol Gerak	Kelompok Gerakan	Dapat Dihilangkan	Jenis Gerakan
	4	Menjangkau Impulse/impact dan screw washer	TE	Penunjang	Sulit	Efektif
1		Memegang Impulse/impact dan screw washer	G	Penunjang	Sulit	Efektif
		Membawa Impulse/impact dan screw washer	TL	Penunjang	Sulit	Efektif
2		Mengarahkan screw washer ke impulse/impact	рр	Pembantu	Mungkin	Efektif
		Menggunakan impulse/impact untuk memasang screw washer	U	Utama	Tidak Bisa	Efektif
3		Merakit screw washer ke STH Sub Atas kiri	A	Utama	Tidak Bisa	Efektif
4		Mengarahkan screw washer ke impulse/impact	РР	Pembantu	Mungkin	Efektif
		Menggunakan impulse/impact untuk memasang screw washer	U	Utama	Tidak Bisa	Efektif
5		Merakit screw washer ke STH Sub Atas kanan	А	Utama	Tidak Bisa	Efektif
6		Menjangkau Stang STH Sub	TE	Penunjang	Sulit	Efektif
		Memegang stang STH Sub	G	Penunjang	Sulit	Efektif

Tabel 3.4 Elemen Gerakan Stasiun Kerja 19 *Steering Handle* Tipe Y(lanjutan)

No	Ilustrasi	Deskripsi Gerak	Simbol Gerak	Kelompok Gerakan	Dapat Dihilangkan	Jenis Gerakan
7		Mengarahkan STH Sub ke arah depan	P	Pembantu	Mungkin	Tidak Efektif
8		Melepas STH Sub	RL	Penunjang	Sulit	Efektif

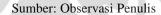
Dalam penelitian ini, penulis hanya akan menganalisis lebih jauh tentang elemen gerakan yang mungkin untuk dihilangkan. Perubahan elemen gerakan untuk perbaikan metode kerja tidak dilakukan karena perbaikan gerakan kerja belum bisa diaplikasikan di lapangan. Sehingga hal yang mungkin dilakukan penulis untuk memperbaiki metode kerja adalah dengan menganalisis gerakan yang mungkin dihilangkan sehingga dapat mengurangi waktu siklus kerja secara teori. Dari hasil pengambilan data elemen gerakan masing-masing stasiun kerja pada lintas perakitan steering handle tipe X dan Y, terlihat bahwa ada beberapa gerakan pembantu yang mungkin untuk dihilangkan. Gerakan pembantu yang yang ditemukan pada elemen-elemen gerakan kerja perakitan steering handle diantaranya adalah gerakan mengarahkan sementara(*Preposition*), mengarahkan (Position). Menurut pengelompokkan gerakan pada analisa THERBLIG, gerakan *Preposition* adalah gerakan pembantu yang sifatnya efektif. Sedangkan gerakan Position adalah gerakan pembantu yang tidak efektif. Dari hasil pengambilan elemen gerakan dari masing-masing stasiun kerja, maka didapat total elemen gerakan untuk lintas perakitan utama dan stasiun inspeksi elektrik steering handle tipe X adalah sebanyak 13+8+24+16+17+11+16+10+23 =

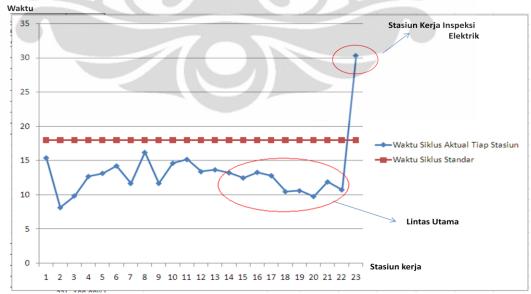
138 elemen gerakan, untuk tipe Y sebanyak 17+11+15+8+18+13+10+13+10+23 = 138 elemen gerakan. Untuk detail elemen gerakan pada setiap stasiun kerja di lintas perakitan utama dapat dilihat pada lampiran 3.

3.2 Pengumpulan Data Waktu Siklus

Untuk mengidentifikasi masaah yang ada di lintas perakitan, maka peneliti melakukan pengukuran waktu siklus beserta waktu elemen-elemen kerja terkecil masing-masing stasiun yang ada di lintas perakitan. Pengukuran waktu siklus dilakukan terhadap masing-masing stasiun kerja pada tiap tipe motor. Pengambilan data waktu siklus diukur secara langsung dengan metode *stopwatch time study*. Data waktu siklus masing-masing stasiun untuk tipe motor X dan Y adalah sebagai berikut:

Tabel 3.5 Hasil Pengukuran Waktu Siklus Elemen Kerja Steering Handle Tipe X


No			Waktu	Waktu Stasiun
Task	WS	Deskripsi Elemen	Siklus	(*Belum
				distandarkan)
1	1	Mengambil CHT, cek visual	6,094545	15 40010101
2	1	Memasang nut spring	9,307576	15,40212121
3	5	Mengambil CHT sub	0,931944	8,168611111
4	- 2	Mark Honda, letakkan di meja	7,236667	8,108011111
5	3	Mengambil CHF	0,998125	9,868125
6	3	Memasang nut clip	8,87	5,606123
7		Mengambil CHF sub	1,227857	
8		Memasang light assy, head & clip	1,570476	
9	4	Memasang bolt adjust	3,80619	12,69690476
10		Memasang 2 clamp & nut hex	4,877381	
11		Meletakkan ke stasiun berikutnya	1,215	
12		Mengambil pipe comp STH	1,692333	
13	5	Memasukkan Weight Bkanan	5,975333	13,15183333
14	3	Memasukkan Weight B kiri	4,935833	15,15165555
15		Meletakkan ke stasiun berikutnya	0,548333	
16	6	Memasang Stoper cable dan screw pan	9,128529	14,23147059
17	0	Memasang lever choke dan screw pan	5,102941	14,25147039
18		Mengambil pipe comp STH sub	3,025333	
19		Memasang Set M/C assy front brake&throtle	1,567667	
20	7	Mengencangkan bolt flange	3,638667	11,68833333
21		Memberi marking pada socket	2,891333	
22		Merenggangkan guide cable STH	0,565333	

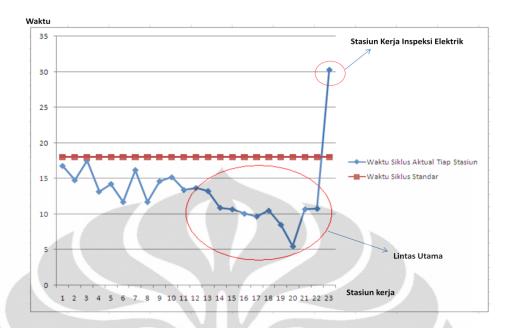

Tabel 3.5 Hasil Pengukuran Waktu Siklus Elemen Kerja *Steering Handle* Tipe X (lanjutan)

				Waktu
No		D 1 : :51	Waktu	Stasiun
Task	WS	Deskripsi Elemen	Siklus	(*Belum
				distandarkan)
23		Menggabungkan housing Und Throt	5,501379	
24		Mengolesi grease ujung hose throttle	2,328966	
25	8	Memasang grip Comp Throt	2,506897	16,19310345
26		Menggabungkan dg housing up throt	1,997586	
27		Mengencangkan screw pan, letakkan	3,858276	
28		Mengambil CHR	4,218108	
29	9	Memasang nut clip	3,262162	11,69675676
30	,	Memasang SW Unit Dimmer, Horn, winker	2,308919	11,030/30/0
31		Memasang SW Unit Start, Lighting	1,907568	
32		Mengambil CHR sub	1,054333	
33	10	Memasang spidometer sub ke CHR	1,57	14 62166667
34	10	Memasang screw tapping	7,412	14,62166667
35		Connect coupler switch starter	4,585333	
36		Mengambil speedometer Assy	3,027419	
37		Memasang relay assy winker	2,074516	
38	11	Connect coupler sub harness	2,15871	15,17677419
39		Memasang cable comp speedometer	5,308387	
40	1	Memutar nutcable comp speedometer	2,607742	
41	12	Connect Coupler switch light, lighting	7,278889	12 2000000
42	12	Connect Coupler winker, horn, dimmer	6,12	13,39888889
43		Mengambil pipe comp steering handle sub	2,400909	
44	13	Memasukkan pin housing und throt	2,81697	12 6700000
45	15	Mengencangkan screw pan	2,801212	13,67090909
46		Memasang weight A, torque bolt flange	5,651818	
47		Memasang pipe STH sub pada CHR sub	3,916944	
48	1.4	Memasukkan cable comp throttle ke CHR	1,974167	12 22261111
49	14	Memasukkan cable comp throttle ke guide	4,252222	13,23361111
50		Letakkan di conveyer	3,090278	
51	4.5	Memasang 2 pcs screw tapping	7,212632	40.40004.050
52	Connect cable front top switch		5,276579	12,48921053
53	4.5	Memutar dan mengencangkan nut cabble	4,86871	40.00744.005
54	16	Merakit CHF ke CHR	8,42871	13,29741935
55		Memasang collar rubber cover handle MT	2,738788	
56	47	Memasang screw washer samping kanan	5,357576	40.0400000
57	17	Memasang screw washer samping kiri	3,879091	12,8130303
58	1	Membalik STH sub ke arah belakang	0,837576	
	-	<u> </u>		

Tabel 3.5 Hasil Pengukuran Waktu Siklus Elemen Kerja *Steering Handle* Tipe X (lanjutan)

No Task	WS	Deskripsi Elemen	Waktu Siklus	Waktu Stasiun (*Belum distandarkan)
59		Memasang screw washer ke CHR kiri atas	2,052188	
60	10	Memasang screw washer ke CHR kanan atas	2,721875	40.4000505
61	18	Memasang screw washer ke CHR kiri bawah	2,944375	10,4890625
62		Memasang screw washer ke CHR kanan bawah	2,770625	
63		Memasang screw pan pada bagian CHR tengah	1,774848	
64	19	Memasang screw wash (kiri belakang)	2,700303	10,61757576
65	19	Memasang screw wash (kanan belakang)	2,491212	10,01/3/3/6
66		Memasang screw taping kanan	3,651212	
67		Mengambil CHT dari Stasiun 2	1,541316	
68	20	Memasang CHT ke STH Sub	3,988421	9,782105263
69		Memasang screw tapping kiri	4,252368	
70		Mengambil Grip L Handle, masukkan ke lem	4,095625	
71	21	Membalik STH sub ke arah depan	1,225938	11,903125
72	21	Menggulung cable hose comp front brake	1,978438	11,903123
73		Mengeluarkan grip L Handle, pasangkan	4,603125	
74	22	Memasang weight handle A dan screw oval	4,709688	10,7565625
75	44	Meletakkan STH langsung ke kereta	6,046875	10,7303023
76		Meletakkan STH ke Stasiun kerja inspeksi	3,784688	
77	23	Melakukan tes elektrik	22,94594	30,2840625
78		Meletakkan STH dari stasiun inspeksi ke kereta	3,553438	

Gambar 3.1 Grafik Waktu Siklus Stasiun Kerja pada Lintas Perakitan *Steering Handle* Tipe X
Sumber : Observasi Penulis


Tabel 3.6 Hasil Pengukuran Waktu Siklus Elemen Kerja Steering Handle Tipe Y

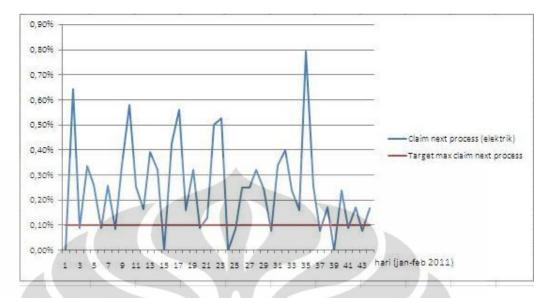
No Task	WS	Deskripsi Elemen	Waktu Siklus	Waktu Stasiun (*Belum distandarkan)		
1	_	Mengambil CHF, cek visual	4,006923	,		
2	1	Memasang strip CHF kanan, letakkan di meja	12,76731	16,77423077		
3		Memasang Strip CHF kiri	13,41824	4.4.76444765		
4	2	Letakkan di shootter	1,345882	14,76411765		
5		Mengambil CHF	0,743636			
6	_	Memasang mark honda	7,205455	47 50070707		
7	3	Memasang 4 nut clip	8,947273	17,52272727		
8		Letakkan ke shooter				
9		Mengambil pipe comp STH	1,692333			
10	\ <u>.</u>	Memasukkan Weight B kanan	5,975333	12 15102222		
11	4	Memasukkan Weight B kiri	4,935833	13,15183333		
12		Meletakkan ke stasiun berikutnya	0,548333			
13	_	Memasang Stoper cable dan screw pan	9,128529	14 22147050		
14	5	Memasang lever choke dan screw pan	5,102941	14,23147059		
15		Mengambil pipe comp STH sub	3,025333			
16		Memasang Set M/C assy front brake & throtle	1,567667			
17	6	Mengencangkan bolt flange	3,638667	11,68833333		
18		Memberi marking pada socket	2,891333			
19		Merenggangkan guide cable STH	0,565333			
20	7	Menggabungkan housing Und Throt	5,501379			
21		Mengolesi grease ujung hose throttle	2,328966			
22	7	Memasang grip Comp Throt	2,506897	16,19310345		
23		Menggabungkan dg housing up throt	1,997586			
24		Mengencangkan screw pan, letakkan	3,858276			
25		Mengambil CHR	4,218108			
26	10	Memasang nut clip	3,262162	11,69675676		
27	10	Memasang SW Unit Dimmer, Horn, winker	2,308919	11,05075070		
28		Memasang SW Unit Start, Lighting	1,907568			
29		Mengambil CHR sub	1,054333			
30	9	Memasang spidometer sub ke CHR	1,57	14,62166667		
31		Memasang screw tapping	7,412	14,02100007		
32		Connect coupler switch starter	4,585333			
33		Mengambil speedometer Assy	3,027419			
34		Memasang relay assy winker	2,074516			
35	8	Connect coupler sub harness	2,15871	15,17677419		
36		Memasang cable comp speedometer	5,308387			
37		Memutar nutcable comp speedometer	2,607742			

Tabel 3.6 Hasil Pengukuran Waktu Siklus Elemen Kerja *Steering Handle* Tipe Y (lanjutan)

No Task	WS	Deskripsi Elemen	Waktu Siklus	Waktu Stasiun (*Belum distandarkan)
38	11	Connect Coupler switch light, lighting	7,278889	13,39888889
39	11	Connect Coupler winker, horn, dimmer	6,12	13,37000003
40		Mengambil pipe comp steering handle sub	2,400909	
41	12	Memasukkan pin housing und throt	2,81697	13,67090909
42	12	Mengencangkan screw pan	2,801212	15,0/050505
43		Memasang weight A, torque bolt flange	5,651818	
44		Memasang pipe STH sub pada CHR sub	3,916944	
45	13	Memasukkan cable comp throttle ke CHR	1,974167	13,23361111
46	15	Memasukkan cable comp throttle ke guide	4,252222	15,25501111
47		Letakkan di conveyer	3,090278	
48	14	Memukul kabel kaliver	2,810345	10,89
49	14	Memasang 2pcs Screw tapping	8,079655	10,09
50	15	Connect cable front top switch	4,737407	10 66111111
51	15	Connect cable horn atas	5,923704	10,66111111
52	16	Memasang rubber tail light, collar horn assy	4,9	10.04222222
53	10	Connect cable horn bawah	5,143333	10,04333333
54	17	Mengencangkan nut cable	4,232059	9,655882353
55	1	Merakit CHF ke CHR	5,423824	5,055662555
56		Memasang screw washer samping kanan	2,617	
57	18	Memasang Screw washer samping kiri	2,973	10,503000
58	10	Membalik STH ke arah belakang	0,968667	10,303000
59		Memasang screw pan tengah belakang	3,945	
60		Memasang screw washer belakang atas kiri	2,973	
61	19	Memasang screw washer belakang atas kanan	3,508	8,491666667
62		Membalik STH ke arah depan	2,013667	
63	20	Memasang screw wash (kanan depan atas)	2,651702	5,45893617
64	20	Memasang screw wash (kiri depan atas)	2,807234	3,43693017
65		Ambil Grip L Handle, masukkan ke lem	4,095625	
66	21	Gulung cable hose comp front brake	1,978438	10,6771875
67		Keluarkan grip L Handle, pasangkan	4,603125	
68	22	Memasang weight handle A dan screw oval	4,709688	10.7565625
69	22	Meletakkan STH langsung ke kereta	6,046875	10,7565625
70		Meletakkan STH ke Stasiun kerja inspeksi	3,784688	
71	23	Melakukan tes elektrik	22,94594	30,2840625
72		Meletakkan STH dari stasiun inspeksi ke kereta	3,553438	

Sumber: Observasi Penulis

Gambar 3.2 Grafik Waktu Siklus Stasiun Kerja pada Lintas Perakitan Steering


Handle Tipe Y

Sumber: Observasi Penulis

Dari hasil pengumpulan data waktu siklus tiap elemen kerja pada lintas perakitan steering handle tipe X dan Y, terlihat bahwa hampir semua waktu siklus tiap stasiun kerja di bagian lintas perakitan utama jauh di bawah waktu siklus ideal yang diharapkan perusahaan. Sedangkan pada stasiun kerja inspeksi, waktu siklus nya jauh di atas waktu siklus ideal yang diharapkan perusahaan. Sehingga penelitian ini terbatas pada perbaikan susunan stasiun kerja pada lintas perakitan utama dan stasiun kerja inspeksi elektrik.

3.3 Pengumpulan Data Pola Inspeksi Stasiun Tes Elektrik

Pada bagian akhir lintas perakitan *steering handle*, terdapat stasiun kerja inspeksi elektrik. Waktu siklus aktual stasiun inspeksi elektrik jauh melebihi waktu siklus ideal yang diharapkan perusahaan. Sehingga untuk mencegah *bottleneck*, perusahaan memutuskan untuk inspeksi secara *sampling*, jadi tidak semua *steering handle* melalui inspeksi elektrik. Dari data yang didapatkan di lapangan, hanya terdapat sekitar 30% *steering handle* yang melalui inspeksi elektrik. Hal ini menyebabkan adanya *claim next processs* pada lintas perakitan unit motor.

Gambar 3.3 Grafik *Claim Next Process Steering Handle* Januari-Februari 2011 Sumber: PT. XYZ

Dari grafik di atas, terlihat bahwa jumlah *claim next process* selama bulan Januari-Februari 2011 sangat fluktuatif dan banyak diantaranya masih melebihi target minimal *claim next process* yang diharapkan perusahaan. Hal ini disebabkan oleh pola *sampling* inspeksi yang tidak teratur setiap harinya. Oleh karena itu, penulis melakukan penelitian terhadap perbandingan jumlah *steering handle* yang diinspeksi dengan jumlah *steering handle* yang tidak diinspeksi setiap hari nya yang selama ini dilakukan oleh perusahaan. Dari penelitian tersebut, maka didapatkan tabel seperti di bawah ini:

Tabel 3.7 Hasil Pengamatan Presentase Perbandingan *Steering Handle* yang di inspeksi dengan *Steering Handle* yang dilewatkan dari stasiun kerja inspeksi

Waktu											TOTAL
pengamatan	Hari 1	Hari 2	Hari 3	Hari 4	Hari 5	Hari 6	Hari /	Hari 8	Hari 9	Hari 10	TOTAL
% tes	23,04%	24,00%	25,00%	26,00%	23,50%	25,50%	19,50%	25,50%	26,00%	22,50%	24,05%
% lewat	76,96%	76,00%	75,00%	74,00%	76,50%	74,50%	80,50%	64,50%	74,00%	77,50%	74,95%

Sumber: Observasi Penulis

Dari tabel hasil pengamatan presentase perbandingan *steering handle* yang di inspeksi dengan *steering handle* yang dilewatkan dari stasiun kerja inspeksi di atas, terlihat bahwa rata-rata *steering handle* yang diinspeksi setiap harinya adalah hanya sekitar 24%, sisa nya tidak diinspeksi elektrik. Apabila dihitung dari waktu

siklus stasiun kerja inspeksi elektrik yang memiliki waktu siklus sekitar 30 detik dan waktu siklus lintas perakitan sebelumnya adalah sekitar 17 detik, seharusnya steering handle yang diinspeksi elektrik bisa mencapai hampir 50%. Namun pada kenyataannya hanya 24% yang diinspeksi. Hal ini juga disebabkan oleh adanya penyimpangan proses yang telah ditetapkan oleh perusahaan. Pada kondisi sebenarnya, perusahaan menstandarkan pengecekan elektrik setidaknya dilakukan dengan perbandingan 2:1 (setiap 2 kedatangan steering handle, maka ada 1 steering handle yang diinspeksi). Namun, pada kondisi lapangan sebenarnya, inspeksi elektrik yang dilakukan tidak menentu, yaitu bisa 3:1, 5:1 atau 7:1. Penyimpangan proses ini dilakukan dengan alasan agar dapat mengejar waktu ke bagian assembly unit. Padahal hal tersebut lah yang mengakibatkan claim next process yang semakin banyak.

BAB 4 PENGOLAHAN DATA DAN ANALISIS

4.1 PENGOLAHAN DATA STEERING HANDLE TIPE X

4.1.1 Perhitungan Waktu standar

Untuk melakukan perancangan ulang stasiun kerja, maka hal yang harus dilakukan sebelumnya adalah menghitung waktu standar dari masing-masing elemen kerja. Berdasarkan teori pada bab 2, untuk menghitung waktu standar diperlukan data waktu hasil pengamatan terlebih dahulu, setelah itu diuji kecukupan dan keseragaman data nya. Setelah data dinyatakan cukup, maka dilanjutkan dengan perhitungan waktu normal dan waktu standar.

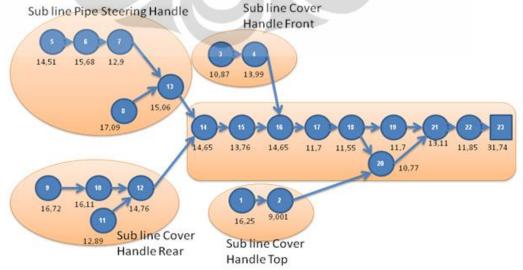
Berikut adalah hasil perhitungan waktu standar tiap elemen kerja *Steering Handle* Tipe X:

Tabel 4.1 Waktu standar tiap elemen kerja Steering Handle Tipe X

No	WS	Deskripsi Elemen	Waktu Obser vasi	Waktu Normal	Waktu Std	Waktu Stasiun
1	1	Mengambil CHT, cek visual	6,095	5,546	6,433	16,258
2		Memasang nut spring	9,308	8,470	9,825	10,236
3	2	Mengambil CHT sub	0,932	0,885	1,027	9,001
4	1	Mark Honda, letakkan di meja	7,237	6,875	7,975	5,001
5	3	Mengambil CHF	0,998	0,948	1,100	10,874
6	3	Memasang nut clip	8,870	8,427	9,775	10,074
7		Mengambil CHF sub	1,228	1,166	1,353	
8		Memasang light assy, head & clip	1,570	1,492	1,731	
9	4	Memasang bolt adjust	3,806	3,616	4,194	13,991
10		Memasang 2 clamp & nut hex	4,877	4,634	5,375	
11		Meletakkan ke stasiun berikutnya	1,215	1,154	1,339	
12		Mengambil pipe comp STH	1,692	1,608	1,881	
13	5	Memasukkan Weight B kanan	5,975	5,677	6,585	14,514
14	٦	Memasukkan Weight B kiri	4,936	4,689	5,439	14,314
15		Meletakkan ke stasiun berikutnya	0,548	0,521	0,609	
16	6	Memasang Stoper cable & screw pan	9,129	8,672	10,060	15,683
17	0	Memasang lever choke dan screw pan	5,103	4,848	5,623	13,003
18		Mengambil pipe comp STH sub	3,025	2,874	3,363	
19	7	Memasang Set M/C assy front brake&t	1,568	1,489	1,728	12,909
20	_ ′	Mengencangkan bolt flange	3,639	3,457	4,010	12,505
21		Memberi marking pada socket	2,891	2,747	3,186	

Tabel 4.1 Waktu standar tiap elemen kerja *Steering Handle* Tipe X (lanjutan)

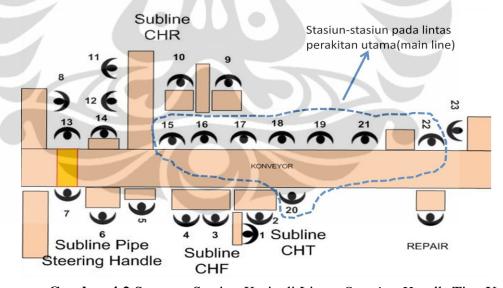
			Waktu	Maria.	Mala.	Mala.	
No	WS	Deskripsi Elemen	Obser	Waktu	Waktu	Waktu	
			vasi	Normal	Std	Stasiun	
23		Menggabungkan housing Und Throt	5,501	5,006	5,807		
24		Mengolesi grease ujung hose throttle	2,329	2,119	2,458		
25	8	Memasang grip Comp Throt	2,507	2,281	2,646	17,093	
26		Menggabungkan dg housing up throt	1,998	1,818	2,109		
27		Mengencangkan screw pan, letakkan	3,858	3,511	4,073		
28		Mengambil CHR	4,218	4,007	4,648		
29	9	Memasang nut clip	3,262	3,099	3,595	12 000	
30	,	Memasang SW Unit Dimmer, Horn, winker	2,309	2,193	2,544	12,889	
31		Memasang SW Unit Start, Lighting	1,908	1,812	2,102		
32		Mengambil CHR sub	1,054	1,002	1,162		
33	10	Memasang spidometer sub ke CHR	1,570	1,492	1,730	16 113	
34	10	Memasang screw tapping	7,412	7,041	8,168	16,113	
35		Connect coupler switch starter	4,585	4,356	5,053		
36		Mengambil speedometer Assy	3,027	2,876	3,336		
37		Memasang relay assy winker	2,075	1,971	2,286		
38	11	Connect coupler sub harness	2,159	2,051	2,379	16,724	
39		Memasang cable comp speedometer	5,308	5,043	5,850		
40		Memutar nutcable comp speedometer	2,608	2,477	2,874		
41	12	Connect Coupler switch light, lighting	7,279	6,915	8,021	14.765	
42	12	Connect Coupler winker, horn, dimmer	6,120	5,814	6,744	14,765	
43		Mengambil pipe comp steering handle sub	2,401	2,281	2,646		
44	13	Memasukkan pin housing und throt	2,817	2,676	3,104	15,065	
45	15	Mengencangkan screw pan	2,801	2,661	3,087	15,005	
46		Memasang weight A, torque bolt flange	5,652	5,369	6,228		
47		Memasang pipe STH sub pada CHR sub	3,917	3,721	4,354		
48	14	Memasukkan cable comp throttle ke CHR	1,974	1,875	2,176	14 650	
49	14	Memasukkan cable comp throttle ke guide	4,252	4,040	4,686	14,650	
50		Letakkan di conveyer	3,090	2,936	3,435		
51	15	Memasang 2 pcs screw tapping	7,213	6,852	7,948	13,763	
52	15	Connect cable front top switch	5,277	5,013	5,815	15,705	
53	16	Memutar dan mengencangkan nut cabble	4,869	4,625	5,365	14 652	
54	10	Merakit CHF ke CHR	8,429	8,007	9,288	14,653	
55		Memasang collar rubber cover handle MT	2,739	2,602	3,018		
56	17	Memasang screw washer samping kanan	5,358	5,090	5,904	14,119	
57	1	Memasang screw washer samping kiri		3,685	4,275	14,113	
58		Membalik STH sub ke arah belakang	0,838	0,796	0,923		
59		Memasang screw washer ke CHR kiri atas	2,052	1,950	2,262		
60	18	Memasang screw washer ke CHR kanan atas	2,722	2,586	3,000	11,558	
61	10	Memasang screw washer ke CHR kiri bawah	2,944	2,797	3,245	11,336	
62		Memasang screw washer ke CHR kanan bwh	2,771	2,632	3,053		


Tabel 4.1 Waktu standar tiap elemen kerja *Steering Handle* Tipe X (lanjutan)

No	ws	Deskripsi Elemen	Waktu Obser vasi	Waktu Normal	Waktu Std	Waktu Stasiun
63		Memasang screw pan pd bagian CHR tengah	1,775	1,686	1,956	
64	19	Memasang screw wash (kiri belakang)	2,700	2,565	2,976	11,700
65	15	Memasang screw wash (kanan belakang)	2,491	2,367	2,745	11,700
66		Memasang screw taping kanan	3,651	3,469	4,024	
67		Mengambil CHT dari Stasiun 2	1,541	1,464	1,699	
68	20	Memasang CHT ke STH Sub	3,988	3,789	4,395	10,779
69		Memasang screw tapping kiri	4,252	4,040	4,686	
70		Mengambil Grip L Handle, masukkan ke lem	4,096	3,891	4,513	
71	21	Membalik STH sub ke arah depan	1,226	1,165	1,351	12 117
72	21	Menggulung cable hose comp front brake	1,978	1,880	2,180	13,117
73		Mengeluarkan grip L Handle, pasangkan	4,603	4,373	5,073	
74	22	Memasang weight handle A dan screw oval	4,710	4,474	5,190	11 053
75	22	Meletakkan STH langsung ke kereta	6,047	5,745	6,664	11,853
76		Meletakkan STH ke Stasiun kerja inspeksi	3,785	3,406	4,019	
77	23	Melakukan tes elektrik	22,946	20,651	23,956	31,748
78		Meletakkan STH dr stasiun inspeksi ke kereta	3,553	3,198	3,774	

Sumber: Penulis

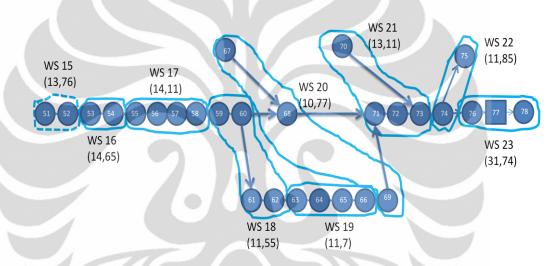
4.1.2 Kondisi Susunan Stasiun Kerja Saat Ini


Berdasarkan hasil perhitungan waktu standar masing-masing elemen kerja, maka diperoleh waktu standar tiap stasiun kerja. Berikut adalah diagram aliran proses perakitan *steering handle* (sebelum usulan perbaikan) yang disertai dengan keterangan waktu standar di tiap stasiun kerja.

Gambar 4.1 Aliran Proses Antar Stasiun Kerja di Lintas *Steering Handle* Tipe X Sumber: Penulis

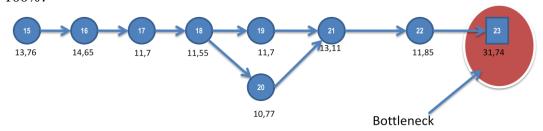
Dari hasil waktu standar tiap stasiun kerja, terlihat bahwa hampir semua waktu standar tiap stasiun kerja di bagian lintas perakitan utama jauh di bawah waktu siklus standar yang diharapkan perusahaan, yaitu 18 detik. Sehingga jumlah operator pada lintas perakitan utama dirasa berlebih karena masih adanya kondisi menganggur pada tiap stasiun kerja pada lintas perakitan utama. Oleh karena itu, dibutuhkan perancangan ulang dan pengelompokkan elemen kerja untuk membentuk susunan stasiun kerja yang lebih baru. Dari penyusunan stasiun kerja yang baru ini diharapkan dapat menghasilkan jumlah stasiun kerja yang lebih hemat dari sebelumnya.

Lintas perakitan utama berbeda dengan sub lintas perakitan *steering handle*. Sub lintas perakitan terdiri atas stasiun-stasiun kerja yang menghasilkan sub perakitan dari *steering handle* sedangkan lintas perakitan utama terdiri atas lintasan yang lurus dengan fasilitas konveyor berjalan yang menghasilkan unit *steering handle*. Berikut adalah deskripsi susunan stasiun kerja pada lintas perakitan *steering handle* tipe X:



Gambar 4.2 Susunan Stasiun Kerja di Lintas *Steering Handle* Tipe X Sumber: PT. XYZ

Susunan stasiun kerja pada lintas perakitan utama *steering handle* diatur sedemikian hingga operator pada stasiun kerja 15,16,17, 20,21,22 dapat bekerja pada sisi depan *steering handle*, sedangkan operator pada stasiun kerja 18,19 bekerja pada sisi belakang *steering handle*. Pada stasiun kerja 22, sekitar 76% *output steering handle* langsung diletakkan di kereta oleh operator pada stasiun 22


sedangkan sisanya diinspeksi elektrik terlebih dahulu di stasiun kerja 23 barulah kemudian diletakkan di kereta. Pada gambar susunan stasiun kerja di lintas *Steering Handle* Tipe X di atas, terdapat pula stasiun kerja *REPAIR*. Stasiun kerja *REPAIR* bukan merupakan bagian dari lintas perakitan utama, melainkan hanyalah stasiun kerja perbaikan *steering handle* apabila pada *steering handle* ditemukan cacat.

4.1.3 Diagram ketergantungan antar elemen-elemen kerja pada lintas perakitan utama steering handle sepeda motor tipe X

Gambar 4.3 Diagram ketergantungan antar elemen-elemen kerja pada lintas perakitan utama *Steering Handle* Sepeda Motor Tipe X Sumber: Penulis

Dari hasil perhitungan waktu standar masing-masing stasiun kerja, terlihat bahwa adanya *bottleneck* pada stasiun kerja inspeksi apabila inspeksi elektrik dilakukan 100%:

Gambar 4.4 Susunan Stasiun Inspeksi Elektrik *Steering Handle* Tipe X saat ini Sumber: Penulis

Untuk menghindari terjadinya *bottleneck* di stasiun kerja inspeksi, maka perusahaan menjalankan *sampling* inspeksi pada stasiun kerja inspeksi (stasiun 23), namun hal tersebut menyebabkan *claim next process* yang besar karena tidak semua *steering handle* melalui tahap inspeksi elektrik. Untuk itu perlu dilakukan analisis lebih lanjut mengenai metode terbaik yang seharusnya diaplikasikan pada stasiun kerja inspeksi agar performa stasiun kerja inspeksi tetap dapat berjalan lancar namun tidak menyebabkan *claim next process* melebihi target yang ditetapkan perusahaan.

4.1.4 Analisis Metode Inspeksi pada Stasiun Kerja Inspeksi Elektrik

Pada analisis metode inspeksi sampling, penulis mencari solusi terbaik antara pemeriksaan secara sampling dengan pemeriksaan 100%. Seperti yang telah dijelaskan dalam BAB 2, pemeriksaan secara sampling dan pemeriksaan 100% masing-masing memiliki beberapa kelebihan dan kekurangan tersendiri. Untuk itu, perlu dilakukan analisis, metode apakah yang terbaik diatara kedua itu untuk dapat mengatasi masalah pada stasiun kerja inspeksi. Pertama-tama, penulis mencoba untuk menganalisis penggunaan metode sampling. Berdasarkan teori pada BAB 2, metode sampling yang tepat untuk digunakan pada kasus ini adalah metode continuous sampling plan f. Dalam pengambilan data pola inspeksi sampling, penulis menggunakan metode work sampling selama 10 hari pengamatan. Setelah data dihitung dan dinyatakan cukup, maka bisa didapat nilai P dan Pa dari masing-masing sample pengamatan. Dari hasil perkalian P (presentase probabilitas defect yang ditemukan dalam jumlah item yg diinspeksi sampling) dan Pa (presentase probabilitas item yang diterima/dilewatkan/tidak diinspeksi), maka didapatkan nilai AOQ (Average Outgoing Quality) yang berarti presentase probabilitas dari rata-rata total item defect yang ditemukan setelah inspeksi sampling dilakukan) untuk masing-masing *sample* pengamatan.

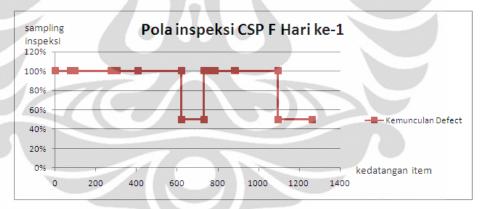
Tabel 4.2 Tabel Hasil Pengolahan Perhitungan AOQL

Waktu pengamatan	Hari 1	Hari 2	Hari 3	Hari 4	Hari 5	Hari 6	Hari 7	Hari 8	Hari 9	Hari 10	TOTAL
Kondisi di tes	291	282	312	303	294	319	222	300	325	270	2918
Kondisi dilewatkan	972	893	938	862	956	931	916	875	925	930	9198
% tes	23,04%	24,00%	25,00%	26,00%	23,50%	25,50%	19,50%	25,50%	26,00%	22,50%	24,05%
% lewat	76,96%	76,00%	75,00%	74,00%	76,50%	74,50%	80,50%	64,50%	74,00%	77,50%	74,95%
TOTAL PRODUKSI/HARI	1263	1175	1250	1165	1250	1250	1138	1175	1250	1200	12116
P	1,03%	0,71%	0,641%	0,66%	0,00%	0,00%	0,00%	0,00%	0,31%	0,00%	
Pa	76,96%	76,00%	75,04%	73,99%	76,48%	74,48%	80,49%	74,47%	74,00%	77,50%	
AOQ	0,793%	0,54%	0,48%	0,49%	0,00%	0,00%	0,00%	0,00%	0,23%	0,00%	
Claim next process	0,792%	0,255%	0,080%	0,172%	0,000%	0,240%	0,088%	0,170%	0,080%	0,167%	

Sumber: Penulis

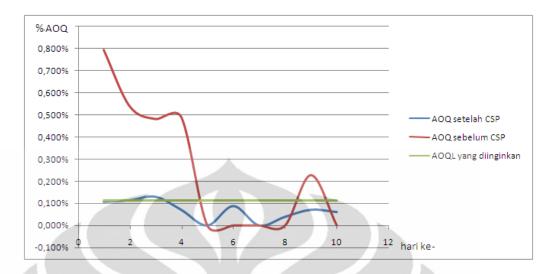
Dari tabel di atas, terlihat bahwa AOQ terbesar adalah 0,793%, yaitu pada hari pengamatan ke-1. Nilai AOQ terbesar inilah yang disebut AOQL. AOQL adalah presentase rata-rata resiko/probabilitas munculnya defect tertinggi dari produk yang lolos. Sedangkan berdasarkan pertimbangan perusahaan, AOQL yang diijinkan oleh manajemen perusahaan adalah sekitar 0,113%. Dari sini sudah terlihat bahwa jarak antara AOQL aktual hasil perhitungan dengan AOQL yang dijinkan sangatlah jauh. Oleh karena itu, penulis akan mencari nilai i yang tepat untuk nilai AOQL yang dijinkan perusahaan. Adapun nilai i adalah besar bilangan item yang diinspeksi sampling 100% secara berurutan sebelum dilakukannya inspeksi sampling. Dalam penelitian ini penulis memutuskan bilangan sampling yang dipakai adalah 1:2 atau 50%, dalam arti setiap dua kedatangan item, maka 1 item diantaranya harus diinspeksi. Hal ini dilakukan agar dapat memperkecil nilai i karena semakin kecil nilai sampling, maka semakin besar nilai i yang dapat menyebabkan bottleneck di awal jalannya laju inspeksi.

Tabel 4.3 Tabel nilai i pada CSP-F


AOOL - .113%

254 312 1-500 325 455 489 529 542 552 560 760 797 828 855 240 241 242 243 388 390 899 917 959 1007 573 578 796 808 695 398 762 918 965 1090 Sumber: MIL STD 1235

Dalam tabel CSP F, terlihat bahwa untuk memenuhi AOQL sebesar 0,113% dan f = ½ maka diambil bilangan i=213. Hal ini berarti alur metode inspeksi menjadi seperti di bawah ini:


- 1) Dimulai dengan 100% inspeksi unit secara berurutan setelah diproduksi dan berlanjut sampai i unit (213) produk bebas dari *defect*.
- 2) Ketika i unit (213) yang diinspeksi berurutan tersebut bebas dari *defect*, kemudian proses inspeksi 100% tersebut diganti dengan inspeksi hanya untuk fraksi f unit (2 unit yang keluar dari konveyor, maka 1 unit diinspeksi)
- 3) Jika *sample* unit tersebut ditemukan *defect*, maka dengan segera kembali lagi ke 100% inspeksi dari unit yang berhasil dan melanjutkannya sampai i unit rangkaian ditemukan bebas dari *defect*.

Apabila prosedur di atas diaplikasikan pada stasiun kerja inspeksi, maka contoh ilustrasi polanya dapat dilihat pada grafik pola inspeksi CSP F di bawah ini:

Gambar 4.5 Grafik Pola Inspeksi CSP F Hari ke-1 Sumber: Penulis

Dari pola inspeksi *CSP F* yang dianalisis sampai 10 hari penelitian. Maka didapatkan jumlah presentase *item* yang diinspeksi dan presentase *item* yang tidak diinspeksi. Dari situ didapatkan nilai P dan Pa. Kemudian dari hasil perkalian keduanya didapatkan nilai AOQ. Dari nilai AOQ yang tertinggi didapatkan nilai AOQL nya. Grafik hasil perhitungan AOQ dari masing-masing hari penelitian adalah sebagai berikut:

Gambar 4.6 Kurva Perbandingan Nilai AOQ sebelum CSP F dan setelah CSP F Sumber: Penulis

Dari grafik AOQ di atas terlihat bahwa resiko ditemukannya *defect* dari *item* yang lolos setelah dilakukannya CSP F hampir semuanya di bawah AOQL yang diijinkan oleh perusahaan. Sehingga dapat disimpulkan bahwa apabila metode ini diaplikasikan, maka masih bisa perusahaan tetap dapat memenuhi target maksimum *claim next process*. Namun, yang juga harus diperhatikan dalam suatu lintas perakitan adalah berjalannya lintas perakitan secara kontinyu, dalam arti tidak banyak *bottleneck* dan tidak pula banyak waktu menganggur. Oleh karena itu penulis meneliti beberapa metode yang mungkin diaplikasikan pada stasiun kerja inspeksi, yaitu:

- 1. Menerapkan metode continuous sampling plan F dengan 1 stasiun kerja inspeksi (1 mesin tes elektrik)
- Menerapkan metode inspeksi 100 % dengan 2 stasiun kerja inspeksi (2 mesin tes lektrik)
- 3. Menerapkan metode *continuous sampling plan F* dengan 2 stasiun kerja inspeksi (2 mesin tes elektrik)
- a. Jika menerapkan metode *continuous sampling plan* F dengan 1 stasiun kerja inspeksi, maka hasilnya adalah :
 - setelah 213 item berurutan diinspeksi, akan masih ada <u>183 item yang</u> menunggu untuk di inspeksi

b. Jika menerapkan metode inspeksi 100 % dengan 2 stasiun kerja inspeksi (2 mesin tes lektrik), maka hasilnya adalah :

Tabel 4.4 Tabel Analisis Waktu Menganggur Pada Stasiun Kerja Inspeksi apabila inspeksi 100% diaplikasikan

item	detik	mesin 1	mesin 2
1	17,093	mulai tes	
2	14,655	selesai	mulai tes
	2,438	idle 2,43 dtk	
3	14,655	mulai tes	selesai
3	2,438		idle 2,43 dtk
4	14,655	selesai	mulai tes
4	2,438	idle 2,43 dtk	
5	14,655	mulai tes	selesai
3	2,438		idle 2,43 dtk
V	14,655	selesai	mulai tes

Sumber: Penulis

Tiap operator pada masing-masing stasiun kerja inspeksi akan menganggur selama 2,43 detik tiap kedatangan *item steering handle*

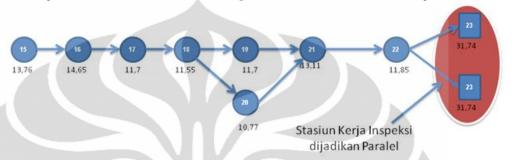
1. Jika menerapkan metode *continuous sampling plan* F dengan 2 stasiun kerja inspeksi, maka hasilnya adalah :

Tabel 4.5 Tabel Analisis Waktu Menganggur Pada Stasiun Kerja Inspeksi apabila CSP F dengan 2 Mesin diaplikasikan

Inspeksi 100% pada 213 item pertama

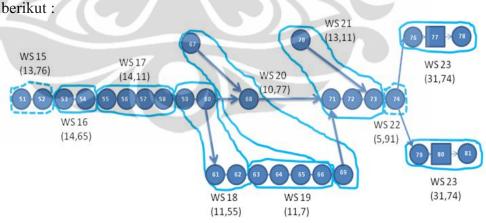
Ketika sudah free defect,
Lanjut Inspeksi sampling 1:2

item	detik	mesin 1	mesin 2
1	17,093	mulai tes	
2	14,655	selesai	mulai tes
	2,438	idle 2,43 dtk	
3	14,655	mulai tes	selesai
3	2,438		idle 2,43 dtk
4	14,655	selesai	mulai tes
4	2,438	idle 2,43 dtk	
5	14,655	mulai tes	selesai
3	2,438		idle 2,43 dtk
	14,655	selesai	mulai tes


	item	detik	mesin 1	mesin 2	
tes	1	17,093	mulai tes		
tidak tes	2	14,655	selesai	idle 34,186 dtk	
tiuak tes		2,438			
tes	3	14,655		mulai tes	
tes	3	2,438	idle 34,186 dtk		
tidak tes	4	14,655	Tule 54,160 utk	selesai	
tiuak tes	4	2,438			
tes	5	14,655	mulai tes		
tes	0	2,438		idlo 24 106 d+k	
tidak tes	6	14,655	selesai	idle 34,186 dtk	
tiuak tes	0	2,438			

Sumber: Penulis

Dari hasil perhitungan masing-masing kemungkinan banyak *bottleneck* dan banyaknya waktu menganggur, maka dapat disimpulkan bahwa metode inspeksi yang terbaik untuk diaplikasikan pada staiun 23 adalah


metode inspeksi 100% dengan 2 stasiun kerja inspeksi (2 mesin tes elektrik) karena tidak adanya kemacetan/bottleneck dan sedikitnya waktu menganggur tiap operator yaitu 2,43 detik tiap kedatangan *item*.

Apabila mengaplikasikan metode inspeksi 100% dengan 2 stasiun kerja inspeksi, maka stasiun 23 menjadi paralel. Sehingga performa lintasan menjadi lebih baik dan *claim next process* secara otomatis menjadi 0%.

Gambar 4.7 Susunan Stasiun Kerja Inspeksi *Steering Handle* setelah usulan perbaikan Sumber: Penulis

Apabila stasiun kerja inspeksi dibuat paralel, maka akan ada satu elemen kerja pada stasiun 22 yang hilang karena telah dilakukan oleh stasiun inspeksi elektrik, yaitu elemen kerja 75 (meletakkan STH langsung ke kereta). Dengan demikian, susunan elemen kerja lintasan menjadi sebagai

Gambar 4.8 Susunan Elemen Kerja pada Lintasan Perakitan Utama *Steering Handle* tipe X setelah usulan perbaikan metode inspeksi elektrik Sumber: Penulis

Setelah ditentukan solusi terbaik dari metode inspeksi pada stasiun kerja inspeksi, maka langkah selanjutnya adalah menghitung performa lintasan pada lintas perakitan utama *steering handle* saat ini.

Tabel 4.6.1 Performa Lintas Perakitan Utama Steering Handle Tipe X Saat ini

No	WS	Deskripsi Elemen	Waktu Standar	Waktu Stasiun	ws-wi	(ws- wi)^2
51		Memasang 2 pcs screw tapping	7,948			
52	15	Connect cable front top switch	5,815	13,763	0,891	0,793
53	1.5	Memutar dan mengencangkan nut cabble	5,365	14.554	0.000	0.000
54	16	Merakit CHF ke CHR	9,288	14,654	0,000	0,000
55		Memasang collar rubber cover handle MT	3,018			
56	17	Memasang screw washer samping kanan	5,904	14,120	0,534	0 20E
57	1/	Memasang screw washer samping kiri	4,275	14,120	0,534	0,285
58		Membalik STH sub ke arah belakang	0,923			
59	- 4	Memasang screw washer ke CHR kiri atas	2,262			
60	18	Memasang screw washer ke CHR kanan atas	3,000	11,559	3,095	9,578
61	18	Memasang screw washer ke CHR kiri bawah	3,245	11,559		
62		Memasang screw washer ke CHR kanan bawah	3,053			
63		Memasang screw pan pada bagian CHR tengah	1,956			
64	19	Memasang screw wash (kiri belakang)	2,976	11,701	2,953	8,721
65	15	Memasang screw wash (kanan belakang)	2,745	11,701	2,555	0,721
66		Memasang screw taping kanan	4,024			
67		Mengambil CHT dari Stasiun 2	1,699			
68	20	Memasang CHT ke STH Sub	4,395	10,780	3,874	15,007
69		Memasang screw tapping kiri	4,686			
70		Mengambil Grip L Handle, masukkan ke lem	4,513			
71	21	Membalik STH sub ke arah depan	1,351	13,117	1 527	2 261
72	21	Menggulung cable hose comp front brake	2,180	15,117	1,537	2,361
73		Mengeluarkan grip L Handle, pasangkan	5,073			
74	22	Memasang weight handle A dan screw oval	5,190	5,190	9,464	89,561

Sumber: Penulis

Tabel 4.6.2 Performa Lintas Perakitan Utama Steering Handle Tipe X Saat ini

	ACCOUNT NAME OF THE PARTY OF TH
WS	14,654
n	8
n.ws	117,230
total waktu	94,884
iumlah (ws-wi)^2	126,306

Waktu Menganggur	22,347
Keseimbangan waktu senggang	19,06%
Efisiensi stasiun kerja	
15	93,92%
16	100,00%
17	96,36%
18	78,88%
19	79,85%
20	73,56%
21	89,51%
22	35,42%
Efisiensi Lintasan	80,94%
Smoothness index	11,24

Sumber: Penulis

4.1.5 Analisis Gerakan Dasar THERBLIG

Sebelum dilakukan penyeimbangan lintasan perakitan utama *steering handle*, penulis terlebih dahulu menganalisis gerakan yang ada pada masing-masing stasiun kerja pada lintas perakitan utama. Analisis gerakan ini terbatas pada analisis gerakan yang mungkin untuk dihilangkan agar dapat menghemat waktu kerja. Pada elemen-elemen gerakan di lintas perakitan *steering handle*, terdapat gerakan yang menurut teori THERBLIG adaah gerakan yang tidak efektif dan mungkin untuk dihilangkan, yaitu diantaranya adalah:

1. Mengarahkan (P)

Gerakan mengarahkan pada lintas perakitan utama *steering handle* tipe X terdapat pada stasiun kerja 17 dan 21. Untuk menghilangkan/memperbaiki gerakan mengarahkan adalah dengan mempertimbangkan hal-hal berukut:

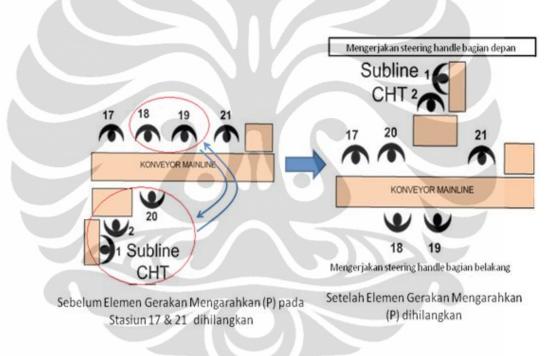
- a. Apakah pengarahan diperlukan?
 - Dalam kasus ini pengarahan pada stasiun 17 dan 21 tidak diperlukan apabila arah operator telah sesuai dengan sisi obyek yang akan dituju (steering handle)
- b. Apakah obyek yang akan dipegang telah diletakkan sedemikian rupa sehingga memudahkan pengarahan?
 - Dalam kasus ini obyek belum ditempatkan sedemikian sehingga pengarahan harus dilakukan oleh operator.
- c. Dapatkah dipakai peralatan sebagai penuntun obyek yang akan ditempatkan?

Dalam kasus ini belum adanya alat bantu yang disediakan oleh perusahaan untuk mengarahkan *steering handle*.

Berikut adalah ilustrasi gerakan mengarahkan pada stasiun kerja 17 dan 21:

Tabel 4.7 ilustrasi gerakan mengarahkan pada stasiun kerja 17

			Simbol	Kelompok	Dapat	Jenis
No	Ilustrasi	Deskripsi Gerak	Gerak	Gerakan	Dihilangkan	Gerakan
		Menggunakan impact/impulse untuk memasang screw washer	U	Utama	Tidak Bisa	Efektif
16		Merakit screw washer ke CHR&CHF kiri	А	Utama	Tidak Bisa	Efektif
		Menjangkau Stang STH Sub	TL	Penunjang	Sulit	Efektif
17		Memegang Stang STH Sub	G	Penunjang	Sulit	Efektif
		Mengarahkan STH ke Arah Belakang	P	Pembantu	Mungkin	Tidak Efektif
18		Melepas STH sub dan Impact/Impulse screw washer	RL	Penunjang	Sulit	Efektif


Sumber : Penulis

Tabel 4.8 ilustrasi gerakan mengarahkan pada stasiun kerja 21

No	Ilustrasi	Deskripsi Gerak	Simbol Gerak	Kelompok Gerakan	Dapat Dihilangkan	Jenis Gerakan
5		Menjangkau stang kiri STH Sub	TE	Penunjang	Sulit	Efektif
6		Memegang stang <mark>kiri</mark> STH Sub	G	Penunjang	Sulit	Efektif
7		Memutar/Mengarahkan STH Sub ke arah depan	Р	Pembantu	Mungkin	Tidak Efektif

Sumber: Penulis

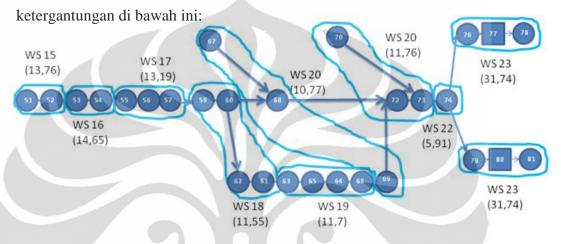
Gerakan mengarahkan/membalik arah *steering handle* pada stasiun 17 dan 21 ini terjadi kerena pada stasiun kerja 15,16,17,20,21,22 operator bekerja pada sisi depan *steering handle*, sedangkan operator pada stasiun kerja 18,19 bekerja pada sisi belakang *steering handle* dan semua posisi operator tersebut diletakkan searah. Lain hal nya jika operator pada stasiun kerja 18 dan 19 diletakkan di lain arah, maka gerakan membalik tidak perlu lagi dilakukan karena operator 18 dan 19 bekerja pada bagian belakang *steering handle* (berlawanan arah dengan stasiun kerja 15,16,17,20,21,22). Maka ilustrasi perubahan susunan stasiun kerja dapat dilihat pada gambar 4.9.

Gambar 4.9 Perubahan susunan stasiun kerja 18,19 dan 20 Sumber: Penulis

Dengan perubahan susunan stasiun kerja seperti gambar di atas, maka gerakan mengarahkan/membalik dapat dihilangkan. Dengan demikian, susunan elemen kerja menjadi seperti di bawah ini:

Tabel 4.9 Susunan Elemen Kerja Sebelum dan Setelah Membalik Dihilangkan

No WS		Deskripsi Elemen	Waktu	Waktu
NO	WS	Deskripsi Elemen	Standar	Stasiun
51	15	Memasang 2 pcs screw tapping	7,948	13,763
52	15	Connect cable front top switch	5,815	15,765
53	16	Memutar dan mengencangkan nut cabble	5,365	14,654
54	10	Merakit CHF ke CHR	9,288	14,034
55		Memasang collar rubber cover handle MT	3,018	
56	17	Memasang screw washer samping kanan	5,904	14,120
57	1/	Memasang screw washer samping kiri	4,275	14,120
58		Membalik STH sub ke arah belakang	0,923	
59		Memasang screw washer ke CHR kiri atas	2,262	
60	18	Memasang screw washer ke CHR kanan atas	3,000	11.550
61	19	Memasang screw washer ke CHR kiri bawah	3,245	11,559
62		Memasang screw washer ke CHR kanan bawah	3,053	
63		Memasang screw pan pada bagian CHR tengah	1,956	
64	19	Memasang screw wash (kiri belakang)	2,976	11,701
65	19	Memasang screw wash (kanan belakang)	2,745	11,701
66		Memasang screw taping kanan	4,024	
67		Mengambil CHT dari Stasiun 2	1,699	
68	20	Memasang CHT ke STH Sub	4,395	10,780
69		Memasang screw tapping kiri	4,686	
70		Mengambil Grip L Handle, masukkan ke lem	4,513	
71	21	Membalik STH sub-ke arah depan	1,351	12117
72	21	Menggulung cable hose comp front brake	2,180	13,117
73		Mengeluarkan grip L Handle, pasangkan	5,073	
74	22	Memasang weight handle A dan screw oval	5,190	5,190

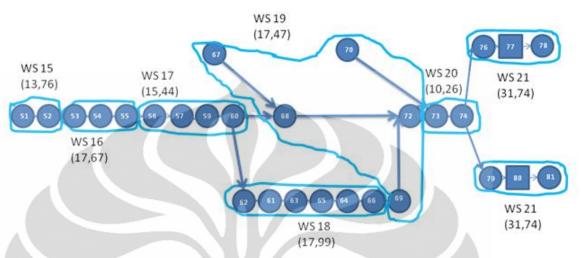


No WS Deskripsi Elemen Standar Stasiu 51 15 Memasang 2 pcs screw tapping 7,948 13,76 52 Connect cable front top switch 5,815 13,76 53 Memutar dan mengencangkan nut cabble 5,365 14,65 54 Memakit CHF ke CHR 9,288 14,65 55 Memasang collar rubber cover handle MT 3,018 13,19 56 17 Memasang screw washer samping kanan 5,904 13,19 57 Memasang screw washer samping kiri 4,275 4,275 59 Memasang screw washer ke CHR kiri atas 2,262 4,262 Memasang screw washer ke CHR kanan atas 3,000 11,55 62 Memasang screw washer ke CHR kanan bawah 3,053 11,55 63 Memasang screw pan pada bagian CHR tengah 1,956 11,70 64 19 Memasang screw wash (kanan belakang) 2,745 11,70 65 Memasang screw taping kanan 4,024 4,024 4,024 67 Mengambil CHT dari					
Standar Stasiu	No	ws	Deskripsi Elemen	11.	Waktu
15				Standar	Stasiun
52 Connect cable front top switch 5,815 53 Memutar dan mengencangkan nut cabble 5,365 54 Merakit CHF ke CHR 9,288 55 Memasang collar rubber cover handle MT 3,018 56 17 Memasang screw washer samping kanan 5,904 57 Memasang screw washer samping kiri 4,275 59 Memasang screw washer ke CHR kiri atas 2,262 60 Memasang screw washer ke CHR kiri bawah 3,000 61 Memasang screw washer ke CHR kiri bawah 3,053 62 Memasang screw washer ke CHR kanan bawah 3,053 63 Memasang screw washer ke CHR kanan bawah 1,956 Memasang screw washer ke CHR kanan b	51	15	Memasang 2 pcs screw tapping	7,948	12 762
54 16 Merakit CHF ke CHR 9,288 14,65 55 Memasang collar rubber cover handle MT 3,018 56 17 Memasang screw washer samping kanan 5,904 13,19 57 Memasang screw washer samping kiri 4,275 59 Memasang screw washer ke CHR kiri atas 2,262 Memasang screw washer ke CHR kiri bawah 3,000 61 Memasang screw washer ke CHR kiri bawah 3,053 62 Memasang screw washer ke CHR kanan bawah 3,053 63 Memasang screw washer ke CHR kanan bawah 1,956 64 Memasang screw wash (kiri belakang) 2,976 65 Memasang screw wash (kiri belakang) 2,745 66 Memasang screw wash (kanan belakang) 2,745 67 Mengambil CHT dari Stasiun 2 1,699 68 Memasang screw taping kiri 4,686 70 Memasang screw taping kiri 4,686 70 Mengambil Grip L Handle, masukkan ke lem 4,513 71 Mengeluarkan grip L Handle, pasangkan 5,073	52	13	Connect cable front top switch	5,815	13,703
54 Merakit CHF ke CHR 9,288 55 Memasang collar rubber cover handle MT 3,018 56 17 Memasang screw washer samping kanan 5,904 57 Memasang screw washer samping kiri 4,275 59 Memasang screw washer ke CHR kiri atas 2,262 60 Memasang screw washer ke CHR kiri bawah 3,000 61 Memasang screw washer ke CHR kiri bawah 3,053 62 Memasang screw washer ke CHR kanan bawah 3,053 63 Memasang screw washer ke CHR kanan bawah 1,956 Memasang screw washer ke CHR kanan bawah 1,956 Memasang screw washer ke CHR kanan bawah 2,976 Memasang screw washer ke CHR kanan bawah 1,956 Memasang screw washer ke CHR kanan bawah 2,976 Memasang screw washer ke CHR kanan bawah 1,956 Memasang screw washer ke CHR kanan bawah 2,976 Memasang screw washer ke CHR kanan bawah 3,053 63 4,054 Memasang screw washer ke CHR kanan bawah 2,976 Memasang screw washer ke CHR kanan bawah 2,976	53	10	Memutar dan mengencangkan nut cabble	5,365	14.654
56 17 Memasang screw washer samping kanan 5,904 13,19 57 Memasang screw washer samping kiri 4,275 59 Memasang screw washer ke CHR kiri atas 2,262 60 Memasang screw washer ke CHR kanan atas 3,000 61 Memasang screw washer ke CHR kiri bawah 3,245 62 Memasang screw washer ke CHR kanan bawah 3,053 63 Memasang screw washer ke CHR kanan bawah 1,956 Memasang screw washer ke CHR kiri bawah 1,956 Memasang screw washer ke CHR kanan bawah 3,053 Memasang screw washer ke CHR kanan bawah 1,956 Memasang screw washer ke CHR kanan bawah 2,976 Memasang screw washer ke CHR kanan bawah 1	54	10	Merakit CHF ke CHR	9,288	14,054
57 Memasang screw washer samping kiri 4,275 59 Memasang screw washer ke CHR kiri atas 2,262 60 Memasang screw washer ke CHR kiri bawah 3,000 61 Memasang screw washer ke CHR kiri bawah 3,245 62 Memasang screw washer ke CHR kanan bawah 3,053 63 Memasang screw washer ke CHR kanan bawah 1,956 64 Memasang screw wash (kiri belakang) 2,976 Memasang screw wash (kiri belakang) 2,745 Memasang screw wash (kanan belakang) 2,745 Memasang screw taping kanan 4,024 67 Mengambil CHT dari Stasiun 2 1,699 68 Memasang screw tapping kiri 4,686 70 Memasang screw tapping kiri 4,686 70 Mengambil Grip L Handle, masukkan ke lem 4,513 72 Menggulung cable hose comp front brake 2,180 Mengeluarkan grip L Handle, pasangkan 5,073	55		Memasang collar rubber cover handle MT	3,018	
Memasang screw washer ke CHR kiri atas 2,262 Memasang screw washer ke CHR kanan atas 3,000 11,55 Memasang screw washer ke CHR kanan bawah 3,245 11,55 Memasang screw washer ke CHR kanan bawah 3,053 63 Memasang screw washer ke CHR kanan bawah 1,956 Memasang screw pan pada bagian CHR tengah 1,956 Memasang screw wash (kiri belakang) 2,976 Memasang screw wash (kanan belakang) 2,745 11,70 Memasang screw taping kanan 4,024 67 Mengambil CHT dari Stasiun 2 1,699 Memasang screw tapping kiri 4,686 Mengambil Grip L Handle, masukkan ke lem 4,513 11,76 Menggulung cable hose comp front brake 2,180 Mengeluarkan grip L Handle, pasangkan 5,073 11,76 Mengeluarkan grip L Handle, pasangkan 5,073 11,76 11,76 11,76 12,76 12,76 12,76 12,76 13,76 14,76	56	17	Memasang screw washer samping kanan	5,904	13,197
60 18 Memasang screw washer ke CHR kanan atas 3,000 61 Memasang screw washer ke CHR kiri bawah 3,245 62 Memasang screw washer ke CHR kanan bawah 3,053 63 Memasang screw pan pada bagian CHR tengah 1,956 Memasang screw wash (kiri belakang) 2,976 Memasang screw wash (kanan belakang) 2,745 Memasang screw taping kanan 4,024 67 Mengambil CHT dari Stasiun 2 1,699 68 20 Memasang CHT ke STH Sub 4,395 10,78 69 Memasang screw tapping kiri 4,686 4,686 70 Mengambil Grip L Handle, masukkan ke lem 4,513 11,76 72 Mengeluarkan grip L Handle, pasangkan 5,073 11,76	57	100	Memasang screw washer samping kiri	4,275	
18	59		Memasang screw washer ke CHR kiri atas	2,262	
61 Memasang screw washer ke CHR kiri bawah 3,245 62 Memasang screw washer ke CHR kanan bawah 3,053 63 Memasang screw pan pada bagian CHR tengah 1,956 64 Memasang screw wash (kiri belakang) 2,976 Memasang screw wash (kanan belakang) 2,745 Memasang screw wash (kanan belakang) 2,745 Memasang screw taping kanan 4,024 Mengambil CHT dari Stasiun 2 1,699 Memasang Screw taping kiri 4,395 Memasang screw taping kiri 4,686 70 Mengambil Grip L Handle, masukkan ke lem 4,513 72 Menggulung cable hose comp front brake 2,180 Mengeluarkan grip L Handle, pasangkan 5,073	60		Memasang screw washer ke CHR kanan atas	3,000	44.550
Memasang screw pan pada bagian CHR tengah 1,956	61	19	Memasang screw washer ke CHR kiri bawah	3,245	11,559
64 19 Memasang screw wash (kiri belakang) 2,976 66 Memasang screw wash (kanan belakang) 2,745 67 Memasang screw taping kanan 4,024 67 Mengambil CHT dari Stasiun 2 1,699 68 20 Memasang CHT ke STH Sub 4,395 69 Memasang screw tapping kiri 4,686 70 Mengambil Grip L Handle, masukkan ke lem 4,513 72 Menggulung cable hose comp front brake 2,180 11,76 73 Mengeluarkan grip L Handle, pasangkan 5,073	62		Memasang screw washer ke CHR kanan bawah	3,053	
65 19 Memasang screw wash (kanan belakang) 2,745 66 Memasang screw taping kanan 4,024 67 Mengambil CHT dari Stasiun 2 1,699 68 20 Memasang CHT ke STH Sub 4,395 69 Memasang screw tapping kiri 4,686 70 Mengambil Grip L Handle, masukkan ke lem 4,513 72 Menggulung cable hose comp front brake 2,180 Mengeluarkan grip L Handle, pasangkan 5,073	63		Memasang screw pan pada bagian CHR tengah	1,956	
65 Memasang screw wash (kanan belakang) 2,745 66 Memasang screw taping kanan 4,024 67 Mengambil CHT dari Stasiun 2 1,699 68 20 Memasang CHT ke STH Sub 4,395 69 Memasang screw tapping kiri 4,686 70 Mengambil Grip L Handle, masukkan ke lem 4,513 72 21 Menggulung cable hose comp front brake 2,180 73 Mengeluarkan grip L Handle, pasangkan 5,073	64	1.0	Memasang screw wash (kiri belakang)	2,976	11 701
67 Mengambil CHT dari Stasiun 2 1,699 68 20 Memasang CHT ke STH Sub 4,395 10,78 69 Memasang screw tapping kiri 4,686 70 Mengambil Grip L Handle, masukkan ke lem 4,513 72 Menggulung cable hose comp front brake 2,180 11,76 73 Mengeluarkan grip L Handle, pasangkan 5,073	65	19	Memasang screw wash (kanan belakang)	2,745	11,701
68 20 Memasang CHT ke STH Sub 4,395 10,78 69 Memasang screw tapping kiri 4,686 70 Mengambil Grip L Handle, masukkan ke lem 4,513 72 Menggulung cable hose comp front brake 2,180 73 Mengeluarkan grip L Handle, pasangkan 5,073	66		Memasang screw taping kanan	4,024	
69 Memasang screw tapping kiri 4,686 70 Mengambil Grip L Handle, masukkan ke lem 4,513 72 21 Menggulung cable hose comp front brake 2,180 73 Mengeluarkan grip L Handle, pasangkan 5,073	67		Mengambil CHT dari Stasiun 2	1,699	
70 Mengambil Grip L Handle, masukkan ke lem 4,513 72 21 Menggulung cable hose comp front brake 2,180 73 Mengeluarkan grip L Handle, pasangkan 5,073	68	20	Memasang CHT ke STH Sub	4,395	10,780
72 21 Menggulung cable hose comp front brake 2,180 11,76 73 Mengeluarkan grip L Handle, pasangkan 5,073	69]	Memasang screw tapping kiri	4,686	
73 Mengeluarkan grip L Handle, pasangkan 5,073	70		Mengambil Grip L Handle, masukkan ke lem	4,513	
3 3 1 1 3	72	-		2,180	11,766
74 22 Memasang weight handle A dan screw oval 5.190 5.19	73			5,073	
	74	22	Memasang weight handle A dan screw oval	5,190	5,190

Sumber : Penulis

4.1.6 Pengelompokan Elemen Kerja dengan Metode Heuristik

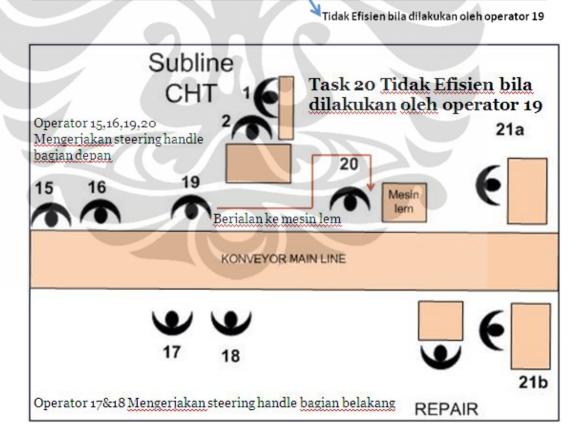
Setelah elemen gerakan mengarahkan dihilangkan, maka langkah selanjutnya adalah menyeimbangkan lintas perakitan utama berdasarkan waktu siklus yang ditentukan perusahaan. Metode yang digunakan dalam menyeimbangkan lintas perakitan adalah metode Heuristik untuk lintasan sederhana (Simple Assembly Line Balancing) dengan mengurutkan dari bobot terbesar sesuai diagram


Gambar 4.10 Diagram Ketergantungan Setelah *Task* Membalik Dihilangkan Sumber: Penulis

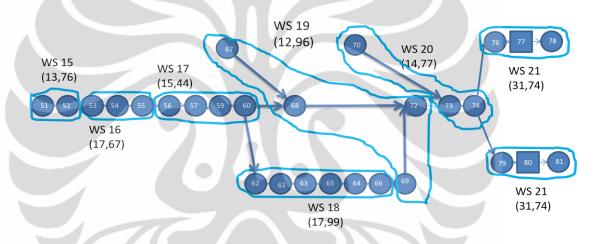
Tabel 4.10 Susunan *Task* Sebelum & Setelah Dikelompokkan Berdasarkan Bobot

		400		7 /		V	4		
No	WS	Waktu	Deskripsi Elemen	Waktu	Bobot	Urutan	Urutan	Waktu	WS
Task	lama	Stasiu	beskripsi Eremen	Standar	50000	Bobot	task	Stasiun	Baru
51	15	13,763	Memasang 2pcs screw tapping	7,948	86,398	86,398	51	13,763	15
52	17	15,705	Connect cable front top switch	5,815	78,449	78,449	52	15,705	13
53	16	14,654	Memutar dan mengencangkan nut cabble	5,365	72,635	72,635	53		
54	10	14,054	Merakit CHF ke CHR	9,288	67,269	67,269	54	17,672	16
55			Memasang collar rubber cover handle MT	3,018	57,981	57,981	55		
56	17	13,197	Memasang screw washer samping kanan	5,904	54,963	54,963	56		
57			Memasang screw washer samping kiri	4,275	49,059	49,059	57	15,440	17
59			Memasang screw washer ke CHR kiri atas	2,262	41,784	44,784	60	13,440	17
60	18	11,559	Memasang screw washer ke CHR kanan atas	3,000	44,784	41,784	59		
61	10	11,335	Memasang screw washer ke CHR kiri bawah	3,245	32,074	35,128	62		
62			Memasang screw washer ke CHR kanan bawah	3,053	35,128	32,074	61		
63			Memasang screw pan pada bagian CHR tengah	1,956	28,830	28,830	63	17,998	18
64	19	11,701	Memasang screw wash (kiri belakang)	2,976	24,128	26,874	65	17,550	10
65	15	11,701	Memasang screw wash (kanan belakang)	2,745	26,874	24,128	64		
66			Memasang screw taping kanan	4,024	21,153	21,153	66		
67			Mengambil CHT dari Stasiun 2	1,699	18,537	18,537	67		
68	20	10,780	Memasang CHT ke STH Sub	4,395	16,838	17,129	69		
69			Memasang screw tapping kiri	4,686	17,129	16,838	68	17,473	19
70			Mengambil Grip L Handle, masukkan ke lem	4,513	14,776	14,776	70		
72	21	11,766	Menggulung cable hose comp front brake	2,180	12,443	12,443	72		
73			Mengeluarkan grip L Handle, pasangkan	5,073	10,263	10,263	73	10,263	20
74	22	5,190	Memasang weight handle A dan screw oval	5,190	5,190	5,190	74	10,203	20

Sumber: Penulis


Setelah diurutkan berdasarkan bobot dan dikelompokkan hingga batas waktu siklus 18 detik, maka dihasilkan pengelompokkan elemen kerja pada diagram ketergantungan sebagai berikut:

Gambar 4.11 Diagram Ketergantungan *Task* Setelah Dikelompokkan Berdasarkan Urutan Bobot Sumber: Penulis


Berdasarkan pengelompokkan stasiun di atas, maka dihasilkan perubahan jumlah stasiun kerja pada lintas perakitan utama dari 8 stasiun kerja menjadi 6 stasiun kerja. Sedangkan stasiun tes elektrik bertambah dari 1 stasiun kerja menjadi 2 stasiun kerja. Setelah mengetahui hasil pengelompokkan elemen kerja, maka selanjutnya yang harus dilakukan adalah melakukan analisis susuna stasiun kerja untuk memastikan bahwa hasil pengelompokkan elemen kerja yang baru ini dapat diaplikasikan pada kondisi aktual.

No	ws	Deskripsi Elemen	Waktu	Sisi/Arah	Waktu	WS	
	***	beskripsi ciemen	Standar	Pengerjaan STH	Stasiun Baru	Baru	
51	15	Memasang 2 pcs screw tapping	7,948	Depan	13,763	15	
52	13	Connect cable front top switch	5,815	Depan	15,705	13	
53	16	Memutar dan mengencangkan nut cabble	5,365	Depan			
54	10	Merakit CHF ke CHR	9,288	Depan	17,672	16	
55		Memasang collar rubber cover handle MT	3,018	Depan]		
56	17	Memasang screw washer samping kanan	5,904	Samping kanan			
57		Memasang screw washer samping kiri	4,275	Samping kiri	15,440	17	\
59		Memasang screw washer ke CHR kiri atas	2,262	Belakang	15,440	17	١١
60	18	Memasang screw washer ke CHR kanan atas	3,000	Belakang			1
61	10	Memasang screw washer ke CHR kiri bawah	3,245	Belakang			
62]	Memasang screw washer ke CHR kanan bawah	3,053	Belakang			
63		Memasang screw pan pada bagian CHR tengah	1,956	Belakang	17,998	18	
64	19	Memasang screw wash (kiri belakang)	2,976	Belakang	17,558	10	l /
65	13	Memasang screw wash (kanan belakang)	2,745	Belakang			/
66	A	Memasang screw taping kanan	4,024	Samping Kanan			7
67		Mengambil CHT dari Stasiun 2	1,699	Depan)	\
68	20	Memasang CHT ke STH Sub	4,395	Depan			\ .
69	1	Memasang screw-tapping kiri	4,686	Samping kiri	17,473	19	4
70		Mengambil Grip L Handle, masukkan ke lem	4,513	Depan			
72		Menggulung cable hose comp front brake	2,180	Samping kanan			Bekerja di si
73		Mengeluarkan grip L Handle, pasangkan	5,073	Samping kiri	10,263	20	belakang ST
74	22	Memasang weight handle A dan screw oval	5,190	Samping kiri	10,203	20	

Gambar 4.12 Analisis Susunan Stasiun Kerja Berdasar Batasan Fasilitas Sumber: Penulis

Seperti yang telah diilustrasikan pada gambar di atas, terdapat *facility constraint* / batasan fasilitas dimana penempatan mesin lem tidak dapat dipindahkan sehingga elemen kerja 70, yakni mengambil Grip L Handle dan memasukkannya ke mesin lem akan sulit diaplikasikan oleh operator 19 karena jarak antara mesin lem dan operator 19 berjauhan dan menyebabkan operator 19 harus berjalan menuju mesin lem untuk melakukan elemen kerja tersebut. Oleh karena itu, elemen kerja 70 (mengambil Grip L Handle dan memasukkannya ke mesin lem) harus dilakukan oleh operator yang posisinya berdekatan dengan mesin lem. Dalam kasus ini operator yang berdekatan dengan mesin lem adalah operator 20. Sehingga susunan elemen kerja menjadi seperti di bawah ini:

Gambar 4.13 Diagram Ketergantungan Elemen Kerja Setelah Analisis berdasarkan Batasan Fasilitas
Sumber: Penulis

Tabel 4.12 Performa Lintasan Sebelum Analisis Berdasar Batasan Fasilitas

WS	17,998	Waktu Menganggur	15,381
n	6,000	Keseimbangan waktu senggang	0,142
n.ws	107,991	Efisiensi stasiun kerja	
total waktu	92,610	15	76,47%
jumlah (ws-wi)^2	60,361	16	98,19%
		17	85,78%
		18	100,00%
		19	97,08%
		20	57,02%
		Efisiensi Lintasan	85,76%
		Smoothness index	9,20

Sumber: Penulis

Tabel 4.11 Performa Lintasan Setelah Analisis Terhadap Batasan Fasilitas

WS	17,998
n	6,000
n.ws	107,991
total waktu	92,610
jumlah (ws-wi)^2	84,710

Waktu Menganggur	15,381
Keseimbangan waktu senggang	0,142
Efisiensi stasiun kerja	
15	76,47%
16	98,19%
17	85,78%
18	100,00%
19	72,01%
20	82,10%
Efisiensi Lintasan	85,76%
Smoothness index	7,77

Sumber: Penulis

Dari perbandingan performa lintasan sebelum dan setelah analisis terhadap batasan fasilitas, dapat dilihat bahwa keduanya memiliki efisiensi dan waktu menganggur yang sama, namun memiliki *smoothness index* yang berbeda. Dari tabel-tabel di atas terlihat bahwa *smoothness index* lintasan setelah analisis terhadap batasan fasilitas lebih kecil daripada *smoothness index* lintasan sebelum analisis terhadap batasan fasilitas. Berdasarkan teori yang telah dijelaskan pada BAB 2, semakin kecil *smoothness index*, maka semakin bagus lintasan tersebut karena tingkat waktu tunggu relatif dari suatu lini perakitan semakin mendekati nol sehingga semakin seimbang suatu lini, artinya pembagian *tasks* cukup merata. Setelah lintas perakitan utama diseimbangkan, maka secara otomatis waktu siklus tertinggi pada lintasan *steering handle* berubah sehingga dapat memengaruhi besarnya waktu menganggur/waktu tunggu pada stasiun inspeksi. Berikut adalah ilustrasi waktu tunggu stasiun inspeksi setelah penyeimbangan lintas perakitan utama:

Tabel 4.12 Analisis Waktu Menganggur Pada Stasiun Kerja Inspeksi Setelah Penyeimbangan Lintasan Perakitan Utama

item	detik	mesin 1	mesin 2
1	17,998	mulai tes	
2	13,75	selesai	mulai tes
2	4,248	idle 4,24dtk	
3	13,75	mulai tes	selesai
n	4,248		idle 4,24 dtk
4	13,75	selesai	mulai tes
4	4,248	idle 4,24 dtk	
5	13,75	mulai tes	selesai
3	4,248		idle 4,24 dtk
	13,75	selesai	mulai tes

Sumber: Penulis

Dari tabel di atas dapat dilihat bahwa waktu menganggur menjadi 4,24 detik setiap kedatangan item, lebih besar dari sebelumnya 2,43 detik karena waktu siklus yang bertambah.

4.2 PENGOLAHAN DATA STEERING HANDLE TIPE Y

4.2.1 Perhitungan Waktu standar

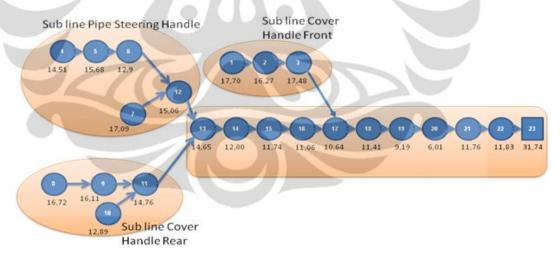
Untuk melakukan perancangan ulang stasiun kerja, maka hal yang harus dilakukan sebelumnya adalah menghitung waktu standar dari masing-masing elemen kerja. Berdasarkan teori pada bab 2, untuk menghitung waktu standar diperlukan data waktu hasil pengamatan terlebih dahulu, setelah itu diuji kecukupan dan keseragaman data nya. Setelah data dinyatakan cukup, maka dilanjutkan dengan perhitungan waktu normal dan waktu standar.

Tabel 4.13 Waktu standar tiap elemen kerja Steering Handle Tipe Y

No	WS	Deskripsi Elemen	Waktu Obser vasi	Waktu Normal	Waktu Std	Waktu Stasiun	
1	1	Mengambil CHF, cek visual	4,007	3,646	4,230	17,706	
2	1	Memasang strip CHF kanan, letakkan di meja	12,767	11,618	13,477	17,700	
3	2	Memasang Strip CHF kiri	13,418	12,747	14,787	16,270	
4	2	Letakkan di shootter	1,346	1,279	1,483	10,270	
5	V	Mengambil CHF	0,744	0,640	0,742		
6	3	Memasang mark honda	7,205	6,197	7,188	17 400	
7	3	Memasang 4 nut clip	8,947	7,695	8,926	17,480	
8		Letakkan ke shooter	0,626	0,539	0,625		
9		Mengambil pipe comp STH	1,692	1,608	1,881		
10	4	Memasukkan Weight B kanan	5,975	5,677	6,585	14,514	
11	4	Memasukkan Weight B kiri	4,936	4,689	5,439	14,514	
12		Meletakkan ke stasiun berikutnya		0,521	0,609		
13	5	Memasang Stoper cable dan screw pan	9,129	8,672	10,060	15,683	
14	٦	Memasang lever choke dan screw pan	5,103	4,848	5,623	13,063	
15		Mengambil pipe comp STH sub	3,025	2,874	3,363		
16		Memasang Set M/C assy front brake & throtle	1,568	1,489	1,728		
17	6	Mengencangkan bolt flange	3,639	3,457	4,010	12,909	
18		Memberi marking pada socket	2,891	2,747	3,186		
19		Merenggangkan guide cable STH	0,565	0,537	0,623		
20	7	Menggabungkan housing Und Throt	5,501	5,006	5,807	17,093	

Tabel 4.13 Waktu standar tiap elemen kerja *Steering Handle* Tipe Y (lanjutan)

No	ws	Deskripsi Elemen	Waktu Obser vasi	Waktu Normal	Waktu Std	Waktu Stasiun	
25		Mengambil CHR	4,218	4,007	4,648		
26	6	Memasang nut clip	3,262	3,099	3,595		
27	8	Memasang SW Unit Dimmer, Horn, winker	2,309	2,193	2,544	12,889	
28	1	Memasang SW Unit Start, Lighting	1,908	1,812	2,102		
29		Mengambil CHR sub	1,054	1,002	1,162		
30		Memasang spidometer sub ke CHR	1,570	1,492	1,730	45445	
31	9	Memasang screw tapping	7,412	7,041	8,168	16,113	
32	1	Connect coupler switch starter	4,585	4,356	5,053		
33	. (Mengambil speedometer Assy	3,027	2,876	3,336		
34		Memasang relay assy winker	2,075	1,971	2,286		
35	10	Connect coupler sub harness	2,159	2,051	2,379	16,724	
36		Memasang cable comp speedometer	5,308	5,043	5,850		
37		Memutar nutcable comp speedometer	2,608	2,477	2,874		
38	11	Connect Coupler switch light, lighting	7,279	6,915	8,021	14.765	
39	11	Connect Coupler winker, horn, dimmer	6,120	5,814	6,744	14,765	
40		Mengambil pipe comp steering handle sub	2,401	2,281	2,646		
41	1.	Memasukkan pin housing und throt	2,817	2,676	3,104	15.005	
42	12	Mengencangkan screw pan	2,801	2,661	3,087	15,065	
43		Memasang weight A, torque bolt flange	5,652	5,369	6,228		
44		Memasang pipe STH sub pada CHR sub	3,917	3,721	4,354		
45	13	Memasukkan cable comp throttle ke CHR	1,974	1,875	2,176	14.650	
46	13	Memasukkan cable comp throttle ke guide	4,252	4,040	4,686	14,650	
47	1	Letakkan di conveyer	3,090	2,936	3,435		
48	14	Memukul kabel kaliver	2,810	2,670	3,097	12,000	
49	14	Memasang 2pcs Screw tapping	8,080	7,676	8,904	12,000	
50	15	Connect cable front top switch	4,737	4,501	5,221	11,748	
51	15	Connect cable horn atas	5,924	5,628	6,528	11,740	
52	16	Memasang rubber tail light, collar horn assy	4,900	4,655	5,400	11,067	
53		Connect cable horn bawah	5,143	4,886	5,668		
54	17	Mengencangkan nut cable	4,232	4,020	4,664	10,640	
55		Merakit CHF ke CHR	5,424	5,153	5,977	10,040	
56		Memasang screw washer samping kanan	2,617	2,486	2,884		
57	18	Memasang Screw washer samping kiri	2,973	2,803	3,251	11,412	
58	1	Membalik STH ke arah belakang	0,969	0,920	1,067	11,712	
59		Memasang screw pan tengah belakang	3,945	3,747	4,347		
60		Memasang screw washer belakang atas kiri		2,824	3,276		
61	19	Memasang screw washer belakang atas kanan	3,508	3,192	3,703	9,1983	
62	1	Membalik STH ke arah depan	2,014	1,913	2,219		

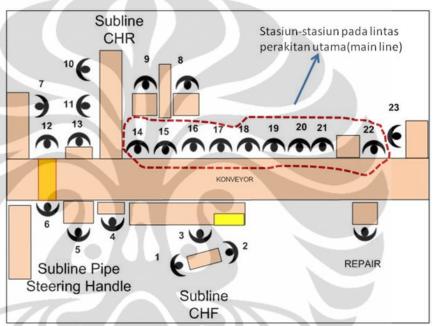

Tabel 4.13 Waktu standar tiap elemen kerja *Steering Handle* Tipe Y (lanjutan)

No	WS	Deskripsi Elemen		Waktu Normal	Waktu Std	Waktu Stasiun
63	20	Memasang screw wash (kanan depan atas)	2,807	2,667	3,094	6.0157
64	20	Memasang screw wash (kiri depan atas)	2,652	2,519	2,922	6,0157
65		Ambil Grip L Handle, masukkan ke lem	4,096	3,891	4,513	
66	21	Gulung cable hose comp front brake	1,978	1,880	2,180	11,766
67		Keluarkan grip L Handle, pasangkan	4,603	4,373	5,073	
68	22	Memasang weight handle A dan screw oval	4,710	4,474	5,190	11,853
69	22	Meletakkan STH langsung ke kereta	6,047	5,745	6,664	11,033
70		Meletakkan STH ke Stasiun kerja inspeksi	3,785	3,406	4,019	
71	23	Melakukan tes elektrik	22,946	20,651	23,956	31,748
72		Meletakkan STH dari stasiun inspeksi ke kereta	3,553	3,198	3,774	

Sumber: Penulis

4.2.2 Kondisi Susunan Stasiun Kerja Saat Ini

Seperti yang telah dilakukan pada lintasan *steering handle* tipe X, penulis harus mengetahui diagram aliran proses perakitan *steering handle* (sebelum usulan perbaikan) yang disertai dengan keterangan waktu standar di tiap stasiun kerja.

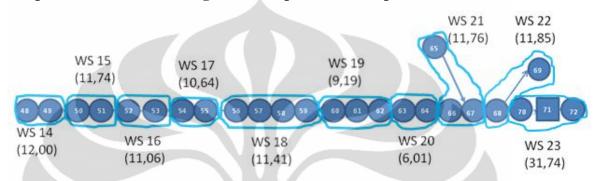


Gambar 4.14 Aliran Proses Antar Stasiun Kerja di Lintas *Steering Handle*Tipe Y
Sumber: Penulis

Hampir sama seperti *steering handle* tipe X, dari hasil perhitungan waktu standar tiap stasiun kerja, terlihat bahwa hampir semua waktu standar tiap stasiun kerja di bagian lintas perakitan utama jauh di bawah waktu siklus standar yang diharapkan perusahaan, yaitu 18 detik. Sehingga jumlah operator pada lintas perakitan utama dirasa berlebih karena masih adanya

kondisi menganggur pada tiap stasiun kerja pada lintas perakitan utama. Oleh karena itu, dibutuhkan perancangan ulang dan pengelompokkan elemen kerja untuk membentuk susunan stasiun kerja yang lebih baru. Dari penyusunan stasiun kerja yang baru ini diharapkan dapat menghasilkan jumlah stasiun kerja yang lebih hemat dari sebelumnya.

Berikut adalah deskripsi susunan stasiun kerja pada lintas perakitan steering handle tipe Y:

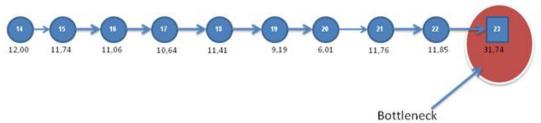


Gambar 4.15 Susunan Stasiun Kerja di Lintas Steering Handle
Tipe Y saat ini
Sumber: PT XYZ

Susunan stasiun kerja pada lintas perakitan utama *steering handle* diatur sedemikian hingga operator pada stasiun kerja 14,15,16,17, 20,21,22 dapat bekerja pada sisi depan *steering handle*, sedangkan operator pada stasiun kerja 18,19 bekerja pada sisi belakang *steering handle*. Pada stasiun kerja 22, sekitar 76% *output steering handle* langsung diletakkan di kereta oleh operator pada stasiun 22 sedangkan sisanya diinspeksi elektrik terlebih dahulu di stasiun kerja 23 barulah kemudian diletakkan di kereta. Pada gambar susunan stasiun kerja di lintas *Steering Handle* Tipe X di atas, terdapat pula stasiun kerja *REPAIR*. Stasiun kerja *REPAIR* bukan merupakan bagian dari lintas perakitan utama, melainkan hanyalah stasiun kerja perbaikan *steering handle* apabila pada *steering handle* ditemukan

cacat. Hampir serupa dengan susunan stasiun kerja *steering handle* tipe X hanya saja pada susunan stasiun kerja *steering handle* tipe Y di lintas perakitan utama ini tidak ada pemasangan CHT.

4.2.3 Diagram ketergantungan antar elemen-elemen kerja pada lintas perakitan utama Steering Handle Sepeda Motor Tipe Y



Gambar 4.16 Diagram ketergantungan antar elemen-elemen kerja pada lintas perakitan utama *Steering Handle* Sepeda Motor Tipe Y Sumber: Penulis

Sama seperti lintasan perakitan *steering handle* tipe X, pada stasiun kerja inspeksi di akhir lintasan steering handle tipe Y terjadi *bottleneck* apabila inspeksi elektrik dilakukan 100% inspeksi dengan 1 stasiun kerja inspeksi (mesin tes elektrik). Oleh karena itu, perlu dilakukan analisis lebih lanjut mengenai metode terbaik yang seharusnya diaplikasikan pada stasiun kerja inspeksi agar performa stasiun kerja inspeksi tetap dapat berjalan lancar namun tidak menyebabkan *claim next process* melebihi target yang ditetapkan perusahaan.

4.2.4 Analisis Metode Inspeksi Pada Stasiun Kerja Inspeksi Elektrik

Dari gambar di bawah ini terlihat bahwa terdapat pula *bottleneck* di stasiun kerja inspeksi yang terletak di akhir lintasan *steering handle*.

Gambar 4.17 Susunan Stasiun Kerja Inspeksi Elektrik *Steering Handle*Tipe Y saat ini
Sumber: Penulis

Seperti yang telah dilakukan sebelumnya pada stasiun inspeksi *steering handle* tipe X, maka selanjutnya dilakukan analisis lebih lanjut mengenai metode terbaik yang seharusnya diaplikasikan pada stasiun kerja inspeksi agar performa stasiun kerja inspeksi tetap dapat berjalan lancar namun tidak menyebabkan *claim next process* melebihi target yang ditetapkan perusahaan. Pola inspeksi *sampling* steering handle tipe Y sama dengan pola inspeksi *sampling* steering handle tipe X sehingga presentase diinspeksi dan tidak diinspeksi hampir sama. Dengan begitu, nilai AOQL aktualnya mendekati nilai AOQL aktual steering handle tipe X yaitu sekitar 0,793 % sedangkan AOQL yang diharapkan perusahaan adalah 0,113%. Untuk besar AOQL yang diharapkan sebesar 0,113 % dan bilangan sampling (f) sebesar 1: 2 (50%) maka diperlukan bilangan ijin sebesar (i) 213 unit. Dalam arti, setelah 213 unit diinspeksi dinyatakan *free defect*, maka barulah dimulai inspeksi sampling dengan pola 1:2 (50%) yaitu setiap dua kedatangan unit, ada 1 unit yang diinspeksi. Berikut adalah analisis lebih lanjut mengenai metode inspeksi yang mungkin dilakukan perusahaan:

- 1. Jika menerapkan metode *continuous sampling plan* F dengan 1 stasiun kerja inspeksi, maka hasilnya adalah :
 - setelah 213 item berurutan diinspeksi, akan masih ada <u>169 item yang</u> menunggu untuk di inspeksi
- 2. Jika menerapkan metode inspeksi 100 % dengan 2 stasiun kerja inspeksi (2 mesin tes lektrik), maka hasilnya adalah :

Tabel 4.14 Tabel Analisis Waktu Menganggur Pada Stasiun Kerja Inspeksi apabila inspeksi 100% diaplikasikan:

item	detik	mesin 1	mesin 2
1	17,706	mulai tes	
2	14,042	selesai	mulai tes
	3,664	idle 3,664 dtk	
3	14,042	mulai tes	selesai
	3,664		idle 3,664 dtk
4	14,042	selesai	mulai tes
	3,664	idle 3,664 dtk	
5	14,042	mulai tes	selesai
	3,664		idle 3,664 dtk
	14,042	selesai	mulai tes

Sumber: Penulis

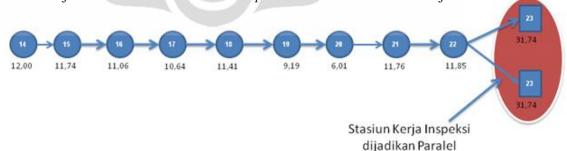
Tiap operator pada masing-masing stasiun kerja inspeksi akan menganggur selama 3,664 detik tiap kedatangan *item steering handle*

1. Jika menerapkan metode *continuous sampling plan* F dengan 2 stasiun kerja inspeksi, maka hasilnya adalah :

Tabel 4.15 Tabel Analisis Waktu Menganggur Pada Stasiun Kerja Inspeksi apabila CSP F dengan 2 Mesin diaplikasikan

Inspeksi 100% pada 213 item pertama

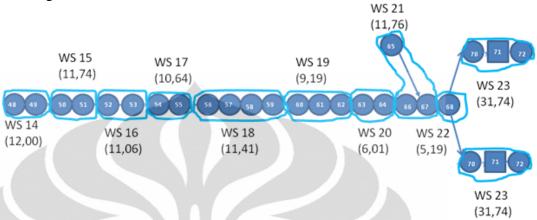
Ketika sudah free defect, Inspeksi sampling 2:1


			_0000
item	detik	mesin 1	mesin 2
1	17,706	mulai tes	
2	14,042	selesai	mulai tes
4	3,664	idle 3,664 dtk	
3	14,042	mulai tes	selesai
	3,664		idle 3,664 dtk
4	14,042	selesai	mulai tes
	3,664	idle 3,664 dtk	
5	14,042	mulai tes	selesai
	3,664		idle 3,664 dtk
	14,042	selesai	mulai tes

	item	detik	mesin 1	mesin 2	
	item	detik	mesin 1	mesin z	
tes	1	17,706	mulai tes		
tidak tes	2	14,042	selesai	idle 35,412 dtk	
tidak tes		3,664			
tes	3	14,042		mulai tes	
les	3	3,664	idle 35,412 dtk		
tidak tes	4	14,042	lule 55,412 utk	selesai	
		3,664			
tes	5	14,042	mulai tes		
tes		3,664		idle 35,412 dtk	
tidak tes	6	14,042	selesai	Tule 55,412 dtk	
tiuak tes		3,664			

Sumber: Penulis

Dari hasil perhitungan masing-masing kemungkinan banyak *bottleneck* dan banyaknya waktu menganggur, maka dapat disimpulkan bahwa metode inspeksi yang terbaik untuk diaplikasikan pada staiun 23 adalah metode inspeksi 100% dengan 2 stasiun kerja inspeksi (2 mesin tes elektrik) karena tidak adanya kemacetan/*bottleneck* dan sedikitnya waktu menganggur tiap operator yaitu 3,664 detik tiap kedatangan *item*.


Apabila mengaplikasikan metode inspeksi 100% dengan 2 stasiun kerja inspeksi, maka stasiun 23 menjadi paralel. Sehingga performa lintasan menjadi lebih baik dan *claim next process* secara otomatis menjadi 0%.

Gambar 4.18 Susunan Stasiun Inspeksi *Steering Handle* setelah usulan Sumber: Penulis

Setelah itu. apabila stasiun kerja inspeksi dibuat paralel, maka akan ada satu elemen kerja pada stasiun 22 yang hilang karena telah dilakukan oleh

stasiun inspeksi elektrik, yaitu elemen kerja 75 (meletakkan STH langsung ke kereta). Dengan demikian, susunan elemen kerja lintasan menjadi sebagai berikut :

Gambar 4.19 Susunan Elemen Kerja pada Lintasan Perakitan Utama *Steering Handle* Tipe Y setelah usulan perbaikan metode inspeksi elektrik Sumber: Penulis

Setelah ditentukan solusi terbaik dari metode inspeksi pada stasiun kerja inspeksi, maka langkah selanjutnya adalah menghitung performa lintasan pada lintas perakitan utama *steering handle* saat ini.

Tabel 4.16.1 Performa Lintas Perakitan Utama Steering Handle Tipe Y Saat ini

No	WS	Deskripsi Elemen	Waktu Standar	Waktu Stasiun	ws-wi	(ws- wi)^2	
48	14	Memukul kabel kaliver	3,097	10.00070	0	0	
49	14	Memasang 2pcs Screw tapping	8,9038	12,00078	0	U	
50	15	Connect cable front top switch	5,2206	11,74854	0,2522	0,063623	
51	15	Connect cable horn atas	6,5279	11,74634	0,2322	0,003023	
52	16	Memasang rubber tail light, collar horn assy	5,3998	11,06775	0,933	0,870539	
53	10	Connect cable horn bawah	5,668	11,00773	0,555	0,870539	
54	17	Mengencangkan nut cable	4,6637	10,64078	1,36	1,849594	
55	17	Merakit CHF ke CHR	5,9771	10,04076	1,30	1,043334	
56		Memasang screw washer samping kanan	2,8839				
57	18	Memasang Screw washer samping kiri 3,114	11,41281	0,588	0,345703		
58	10	Membalik STH ke arah belakang	1,0675	(11,11201)	0,500	0,343703	
59		Memasang screw pan tengah belakang	4,3474				
60		Memasang screw washer belakang atas kiri	3,2762				
61	19	Memasang screw washer belakang atas kanan	3,703	9,198351	2,8024	7,853606	
62		Membalik STH ke arah depan	2,2191				
63	20	Memasang screw wash (kanan depan atas)	3,0936	6,015748	5,985	35,82061	
64	20	Memasang screw wash (kiri depan atas)	2,9222	0,013748	3,363	33,82001	
65		Ambil Grip L Handle, masukkan ke lem	4,5134)	
66	21	Gulung cable hose comp front brake	2,1802	11,76626	0,2345	0,054999	
67		Keluarkan grip L Handle, pasangkan	5,0726				
68	22	Memasang weight handle A dan screw oval	5,1901	5,190076	6,8107	46,38569	

Tabel 4.16.2 Performa Lintas Perakitan Utama Steering Handle Tipe Y Saat ini

WS	12,00078
n	9
n.ws	108,007
total waktu	89,04111
jumlah (ws-wi)^2	92,24437

Waktu Menganggur	18,96591
Keseimbangan waktu senggang	21,30%
Efisiensi stasiun kerja	
14	100,00%
15	97,90%
- 16	92,23%
17	88,67%
18	96,24%
19	78,00%
20	50,13%
21	98,05%
22	43,25%
Efisiensi Lintasan	82,44%
Smoothness index	9,66

4.2.5 Analisis Gerakan Dasar THERBLIG

Seperti yang telah dilakukan pada elemen kerja *steering handle* tipe X, sebelum dilakukan penyeimbangan lintasan perakitan utama *steering handle* ipe Y ini, penulis terlebih dahulu menganalisis gerakan yang ada pada masing-masing stasiun kerja pada lintas perakitan utama. Analisis gerakan ini terbatas pada analisis gerakan yang mungkin untuk dihilangkan agar dapat menghemat waktu kerja. Pada elemen-elemen gerakan di lintas perakitan *steering handle*, terdapat gerakan yang menurut teori THERBLIG adaah gerakan yang tidak efektif dan mungkin untuk dihilangkan, yaitu:

1. Mengarahkan (P)

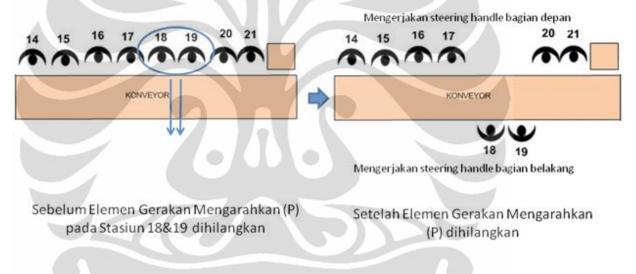
Gerakan mengarahkan pada lintas perakitan utama *steering handle* tipe Y terdapat pada stasiun kerja 18 dan 19. Untuk menghilangkan/memperbaiki gerakan mengarahkan adalah dengan mempertimbangkan hal-hal berukut:

- a. Apakah pengarahan diperlukan?
 Dalam kasus ini pengarahan pada stasiun 18 dan 19 tidak diperlukan apabila arah operator telah sesuai dengan sisi obyek yang akan dituju (steering handle)
- b. Apakah obyek yang akan dipegang telah diletakkan sedemikian rupa sehingga memudahkan pengarahan?
 Dalam hal ini obyek belum ditempatkan sedemikian rupa sehingga pengarahan harus dilakukan oleh operator.
- c. Dapatkah dipakai peralatan sebagai penuntun obyek yang akan ditempatkan?
 - Dalam hal ini belum adanya alat bantu yang disediakan oleh perusahaan untuk mengarahkan *steering handle*.

Berikut ilustrasi gerakan mengarahkan pada stasiun kerja 18 dan 19 : **Tabel 4.17** Ilustrasi Gerakan Mengarahkan pada Stasiun Kerja 18

No	Ilustrasi	Deskripsi Gerak	Simbol Gerak	Kelompok Gerakan	Dapat Dihilangkan	Jenis Gerakan
6		Menjangkau Stang STH	TL	Penunjang	Sulit	Efektif
ь		Memegang Stang STH	G	Penunjang	Sulit	Efektif
7		Mengarahkan STH Sub ke arah Belakang	P	Pembantu	Mungkin	Tidak efektif
8		Menggunakan impact/impulse untuk memasang screw pan	U	Utama	Tidak Bisa	Efektif
		Merakit screw pan ke STH Sub bagian belakang	A	Utama	Tidak Bisa	Efektif
9		Melepas screw pan dan STH Sub	RL	Penunjang	Sulit	Efektif

Sumber: Penulis


Tabel 4.18 Ilustrasi Gerakan Mengarahkan pada Stasiun Kerja 19

No	flustrasi	Deskripsi Gerak	Simbol Gerak	Kelompok Gerakan	Dapat Dihilangkan	Jenis Gerakan
Z.		Menggunakan impulse/impact untuk memasang screw washer	U	Utama	Tidak Bisa	Efektif
6		Merakit screw washer ke STH Sub Atas kanan	А	Utama	Tidak Bisa	Efektif
7	5	Menjangkau Stang STH Sub	TE	Penunjang	Sulit	Efektif
		Memegang stang STH Sub	G	Penunjang	Sulit	Efektif
8		Mengarahkan STH Sub ke arah depan	Р	Pembantu	Mungkin	Tidak Efektif

Sumber: Penulis

Universitas Indonesia

Gerakan mengarahkan/membalik arah steering handle pada stasiun 18 dan 19 ini terjadi kerena pada stasiun kerja 14,15,16,17,20,21,22 operator bekerja pada sisi depan *steering handle*, sedangkan operator pada stasiun kerja 18,19 bekerja pada sisi belakang *steering handle* dan semua posisi operator tersebut diletakkan searah. Lain hal nya jika operator pada stasiun kerja 18 dan 19 diletakkan di arah yang berlawanan, maka gerakan membalik tidak perlu lagi dilakukan karena operator 18 dan 19 bekerja pada bagian belakang steering handle (berlawanan arah dengan stasiun kerja 14,15,16,17,20,21,22). Maka ilustrasi perubahan susunan stasiun kerja dapat dilihat pada gambar 4.20.

Gambar 4.20 Perubahan susunan stasiun kerja 18 dan 19 Sumber: Penulis

Dengan perubahan susunan stasiun kerja seperti gambar di atas, maka gerakan mengarahkan/membalik dapat dihilangkan. Dengan demikian, susunan elemen kerja menjadi seperti di bawah ini:

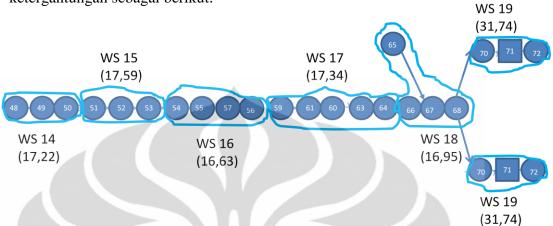
Tabel 4.19 Susunan *Task* Sebelum & Setelah Membalik Dihilangkan

_				
No	WS	Deskripsi Elemen	Waktu	Waktu
140	***3			Stasiun
48	14	Memukul kabel kaliver	3,097	12,00078
49	14	Memasang 2pcs Screw tapping	8,9038	12,00078
50	15	Connect cable front top switch	5,2206	11,74854
51	13	Connect cable horn atas	6,5279	11,74034
52	16	Memasang rubber tail light, collar horn assy	5,3998	11,06775
53	10	Connect cable horn bawah	5,668	11,00773
54	17	Mengencangkan nut cable	4,6637	10,64078
55	1/	Merakit CHF ke CHR	5,9771	10,04078
56	A	Memasang screw washer samping kanan	2,8839	
57	18	Memasang Screw washer samping kiri	3,114	11,41281
58	10	Membalik STH.ke arah belakang	1,0675	11,41201
59	_	Memasang screw pan tengah belakang	4,3474	
60		Memasang screw washer belakang atas kiri	3,2762	
61	19	Memasang screw washer belakang atas kanan	3,703	9,198351
62		Membalik STH ke arah depan	2,2191	
63	20	Memasang screw wash (kanan depan atas)	3,0936	6,015748
64	20	Memasang screw wash (kiri depan atas)	2,9222	0,013746
65		Ambil Grip L Handle, masukkan ke lem	4,5134	
66	21	Gulung cable hose comp front brake	2,1802	11,76626
67		Keluarkan grip L Handle, pasangkan	5,0726	
68	22	Memasang weight handle A dan screw oval	5,1901	5,190076

			100		
No	ws	Deskripsi Elemen		Waktu	
IVO	VVJ	Deskripsi Elemen	Standar	Stasiun	
48	14	Memukul kabel kaliver	3,097	12,00078	
49	Memasang 2pcs Screw tapping		8,9038	12,00076	
50	15	Connect cable front top switch	5,2206	11,74854	
51	13	Connect cable horn atas	6,5279	11,74034	
52	16	Memasang rubber tail light, collar horn assy	5,3998	11,06775	
53	10	Connect cable horn bawah	5,668	11,00773	
54	17	Mengencangkan nut cable	4,6637	10,64078	
55	Merakit CHF ke CHR		5,9771	10,04078	
56		Memasang screw washer samping kanan	2,8839		
57	18	Memasang Screw washer samping kiri	3,114	10,34534	
59		Memasang screw pan tengah belakang	4,3474		
60	19	Memasang screw washer belakang atas kiri	3,2762	6,979291	
61	13	Memasang screw washer belakang atas kanan	3,703	0,575251	
63	20	Memasang screw wash (kanan depan atas)	3,0936	6,015748	
64	20	Memasang screw wash (kiri depan atas)	2,9222	0,013746	
65		Ambil Grip L Handle, masukkan ke lem	4,5134		
66	21	Gulung cable hose comp front brake	2,1802	11,76626	
67		Keluarkan grip L Handle, pasangkan	5,0726		
68	22	Memasang weight handle A dan screw oval	5,1901	5,190076	

4.2.6 Pengelompokan Elemen-Elemen kerja dengan Metode Heuristik

Setelah elemen gerakan mengarahkan dihilangkan, maka langkah selanjutnya adalah menyeimbangkan lintas perakitan utama berdasarkan waktu siklus yang telah ditentukan perusahaan. Adapun metode yang digunakan dalam menyeimbangkan lintas perakitan adalah metode *Rank Positional Weight* yang merupakan metode Heuristik untuk lintasan sederhana (*Simple Assembly Line Balancing*). Diurutkan berdasarkan bobot terbesar sesuai dengan diagram ketergantungan di bawah ini:

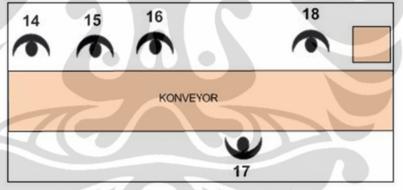


Gambar 4.21 Diagram Ketergantungan Task Setelah Membalik Dihilangkan Sumber: Penulis

Tabel 4.20 Susunan Elemen Kerja Sebelum dan Setelah Dikelompokkan Berdasarkan Bobot

			Waktu	Waktu		Urutan	Urutan	Waktu	WS
No	WS	Deskripsi Elemen	Standar	Stasiun	Bobot	Bobot	task	Stasiun Baru	Baru
48	14	Memukul kabel kaliver	3,097	12,00078	82,641	82,641	48		
49	14	Memasang 2pcs Screw tapping	8,9038	12,00078	79,544	79,544	49	17,221	14
50	15	Connect cable front top switch	5,2206	11,74854	70,64	70,64	50		
51	15	Connect cable horn atas	6,5279	11,74034	65,419	65,419	51		
52	16	Memasang rubber tail light, collar horn assy	5,3998	11,06775	58,891	58,891	52	17,596	15
53	10	Connect cable horn bawah	5,668	11,00773	53,491	53,491	53		
54	17	Mengencangkan nut cable	4,6637	10,64078	47,823	47,823	54		
55	1/	Merakit CHF ke CHR	5,9771	10,04078	43,16	43,16	55	16,639	16
56		Memasang screw washer samping kanan	2,8839		37,183	40,297	57		10
57	18	Memasang Screw washer samping kiri	3,114	10,34534	40,297	37,183	56		
59		Memasang screw pan tengah belakang	4,3474		34,299	34,299	59		
60	19	Memasang screw washer belakang atas kiri	3,2762	6,979291	26,248	29,951	61		
61	15	Memasang screw washer belakang atas kanan	3,703	0,373231	29,951	26,248	60	17,342	17
63	20	Memasang screw wash (kanan depan atas)	3,0936	6,015748	22,972	22,972	63		
64	20	Memasang screw wash (kiri depan atas)	2,9222	0,013748	19,879	19,879	64		
65		Ambil Grip L Handle, masukkan ke lem	4,5134		16,956	16,956	65		
66	21	Gulung cable hose comp front brake	2,1802	11,76626	12,443	12,443	66	16,956	18
67		Keluarkan grip L Handle, pasangkan	5,0726		10,263	10,263	67	10,530	10
68	22	Memasang weight handle A dan screw oval	5,1901	5,190076	5,1901	5,1901	68		

Setelah diurutkan berdasarkan bobot dan dikelompokkan hingga batas waktu siklus 18 detik, maka dihasilkan pengelompokkan elemen kerja pada diagram ketergantungan sebagai berikut:



Gambar 4.22 Diagram Ketergantungan Elemen Kerja Setelah Dikelompokkan Berdasarkan Urutan Bobot Sumber: Penulis

Berdasarkan pengelompokkan stasiun di atas, maka dihasilkan perubahan jumlah stasiun kerja pada lintas perakitan utama dari 9 stasiun kerja menjadi 5 stasiun kerja. Sedangkan stasiun tes elektrik bertambah dari 1 stasiun kerja menjadi 2 stasiun kerja. Setelah mengetahui hasil pengelompokkan elemen kerja, maka selanjutnya yang harus dilakukan adalah melakukan analisis susunan stasiun kerja untuk memastikan bahwa hasil pengelompokkan elemen kerja yang baru ini dapat diaplikasikan pada kondisi aktual.

NI-	we	Dealwinei Flames	Waktu	Waktu	Sisi/Arah	Waktu	WS
INO	WS	Deskripsi Elemen	Standar	Stasiun	Pengerjaan STH	Stasiun	Baru
48	14	Memukul kabel kaliver	3,097	12,00078	Depan		
49	14	Memasang 2pcs Screw tapping	8,9038	12,00078	Depan	17,221	14
50	15	Connect cable front top switch	5,2206	11,74854	Depan		
51	13	Connect cable horn atas	6,5279	11,74034	Depan		
52	16	Memasang rubber tail light, collar horn assy	5,3998	11,06775	Depan	17,596	15
53	10	Connect cable horn bawah	5,668	11,00773	Depan		
54	17	Mengencangkan nut cable	4,6637	10,64078	Depan		
55	17	Merakit CHF ke CHR	5,9771	10,04076	Depan	16,639	16
56		Memasang screw washer samping kanan	2,8839		Samping kanan	10,035	
57	18	Memasang Screw washer samping kiri	3,114	10,34534	Samping kiri		
59		Memasang screw pan tengah belakang	4,3474		Belakang		
60	19	Memasang screw washer belakang atas kiri	3,2762	6,979291	Belakang		
61		Memasang screw washer belakang atas kanan	3,703	0,575251	Belakang	17,342	17
63	20	Memasang screw wash (kanan depan atas)	3,0936	6,015748	Belakang		
64	20	Memasang screw wash (kiri depan atas)	2,9222	0,013746	Belakang		
65		Ambil Grip L Handle, masukkan ke lem	4,5134		Depan		
66	21	Gulung cable hose comp front brake	2,1802	11,76626	Depan	16,956	18
67		Keluarkan grip L Handle, pasangkan	5,0726		Depan	10,550	
68	22	Memasang weight handle A dan screw oval	5,1901	5,190076	Depan		

Operator 14, 15, 16, 18 Mengerjakan steering handle bagian depan

Operator 17 Mengerjakan steering handle bagian belakang

Gambar 4.23 Analisis Susunan *Task* berdasarkan Batasan Fasilitas Sumber : Penulis

Berdasarkan ilustrasi di atas, terlihat bahwa batasan fasilitas telah dipenuhi karena *task* 65, yakni mengambil Grip L Handle dan memasukkannya ke mesin lem, dilakukan ileh operator 18 yang posisinya berdekatan dengan mesin lem yang permanen sehingga tidak perlu ada perubahan pengelompokkan task lagi karena semua *task* dapat diaplikasikan pada kondisi aktual. Setelah analisis susunan stasiun kerja, maka langkah selanjutnya adalah menghitung performa lintasan setelah usulan perbaikan. Berikut adalah tabel hasil perhitungannya:

Tabel 4.21 Performa Lintasan Setelah Analisis Berdasar Batasan Fasilitas

No	WS	Deskripsi Elemen	Waktu Standar	Waktu Stasiun Baru	WS Baru	ws- wi	(ws- wi)^2
48	14	Memukul kabel kaliver	3,097				
49	14	Memasang 2pcs Screw tapping	8,904	17,221	14	0,374	0,140
50	15	Connect cable front top switch	5,221				
51	13	Connect cable horn atas	6,528				
52	16	Memasang rubber tail light, collar horn assy	5,400	17,596	15	0,000	0,000
53	10	Connect cable horn bawah	5,668				
54	17	Mengencangkan nut cable	4,664				
55	17	Merakit CHF ke CHR	5,977	16,639	16	0,957	0,916
56	- 4	Memasang screw washer samping kanan	2,884	10,033	10	0,557	0,510
57	18	Memasang Screw washer samping kiri	3,114	7 /			
59		Memasang screw pan tengah belakang	4,347				
60	19	Memasang screw washer belakang atas kiri	3,276				
61	15	Memasang screw washer belakang atas kanan	3,703	17,342	17	0,253	0,064
63	20	Memasang screw wash (kanan depan atas)	3,094				
64	20	Memasang screw wash (kiri depan atas)	2,922				
65		Ambil Grip L Handle, masukkan ke lem	4,513				
66	21	Gulung cable hose comp front brake	2,180	16,956	18	0,639	0,409
67		Keluarkan grip L Handle, pasangkan	5,073	10,550	10	0,055	0,405
68	22	Memasang weight handle A dan screw oval	5,190				

Tabel 4.21 Performa Lintasan Setelah Analisis Berdasar Batasan Fasilitas

	All of the last of
WS	17,596
n	5
n.ws	87,97837
total waktu	85,75458
jumlah (ws-wi)^2	1,529

Waktu Menganggur	2,223795
Keseimbangan waktu senggang	2,59%
Efisiensi stasiun kerja	
14	97,87%
15	100,00%
16	94,56%
17	98,56%
18	96,37%
Efisiensi Lintasan	97,47%
Smoothness index	1,24

Sumber : Penulis

Setelah lintas perakitan utama diseimbangkan, maka secara otomatis waktu siklus tertinggi pada lintasan *steering handle* berubah sehingga dapat memengaruhi besarnya waktu menganggur/waktu tunggu pada stasiun inspeksi. Berikut adalah ilustrasi waktu tunggu stasiun inspeksi setelah penyeimbangan lintas perakitan utama:

Tabel 4.22 Analisis Waktu Menganggur Pada Stasiun Kerja Inspeksi Setelah Penyeimbangan Lintasan Perakitan Utama

item	detik	mesin 1	mesin 2
1	17,706	mulai tes	
2	14,042	selesai	mulai tes
	3,664	idle 3,664 dtk	
3	14,042	mulai tes	selesai
3	3,664		idle 3,664 dtk
4	14,042	selesai	mulai tes
4	3,664	idle 3,664 dtk	
5	14,042	mulai tes	selesai
3	3,664		idle 3,664 dtk
	14,042	selesai	mulai tes

Dari tabel di atas dapat dilihat bahwa waktu menganggur tetap 3,664 detik setiap kedatangan item, karena waktu siklus terbesar pada keseluruhan lintasan adalah tetap 17,706.

4.3 Analisis Hasil Pengolahan Data

4.3.1 Analisis hasil pengolahan data pada lintas perakitan steering handle tipe x dan tipe y:

Dari hasil pengolahan data, maka dihasilkan perbandingan antara kondisi lintasan *steering handle* sebelum dan setelah usulan perbaikan yang terlihat pada tabel di bawah ini:

Tabel 4.23 Perbandingan Kondisi Lintasan *Steering Handle* Tipe X Sebelum dan Setelah Usulan Perbaikan

	kondisi	kondisi setelah
Lintasan Steering Handle Tipe X	saat ini	usulan
Jumlah Elemen Gerakan di Lintas Utama	138	132
Jumlah Stasiun Kerja Perakitan	22	20
Jumlah Stasiun Kerja Inspeksi	1	2
Efisiensi Lintas Utama	80,94%	85,76%
Smoothness Index Lintas Utama	11,24	7,77
Waktu Menganggur Lintas Utama	22,347	15,381
Waktu Siklus Terbesar di Lintas Utama	14,654	17,998
Waktu Siklus Terbesar di Lintas Steering Handle	17,093	17,998
Kapasitas Produksi	1323	1256
AOQL Claim Next Process	0,789%	0%

Tabel 4.24 Perbandingan Kondisi Lintasan *Steering Handle* Tipe Y Sebelum dan Setelah Usulan Perbaikan

	kondisi	kondisi setelah
Lintasan Steering Handle Tipe Y	saat ini	usulan
Jumlah Elemen Gerakan di Lintas Utama	138	132
Jumlah Stasiun Kerja Perakitan	22	18
Jumlah Stasiun Kerja Inspeksi	1	2
Efisiensi Lintas Utama	82,44%	97,87%
Smoothness Index Lintas Utama	9,66	1,24
Waktu Menganggur Lintas Utama	18,965	2,22
Waktu Siklus Terbesar di Lintas Utama	12	17,596
Waktu Siklus Terbesar di Lintas Steering Handle	17,707	17,707
Kapasitas Produksi	1277	1277
AOQL Claim Next Process	0,789%	0%

Berdasarkan tabel perbandingan di atas, terlihat bahwa jumlah elemen gerakan pada kedua lintasan steering handle setelah usulan perbaikan adalah 132 elemen gerakan, lebih sedikit 6 gerakan dari sebelumnya. Hal ini karena 2 elemen kerja membalik dihilangkan dengan cara mengubah arah operator dimana masingmasing elemen kerja membalik steering handle memiliki 3 elemen gerakan yang dihilangkan yaitu elemen gerakan menjangkau stang steering handle, memegang stang steering handle, dan mengarahkan steering handle ke arah depan/belakang, sehingga masing-masing total nya ada 6 elemen gerakan yang dihilangkan. Sementara jumlah stasiun kerja pada lintas perakitan steering handle tipe X berkurang 2 stasiun dari 22 stasiun kerja menjadi 20 stasiun kerja perakitan dan steering handle tipe Y berkurang 4 stasiun dari 22 stasiun kerja menjadi 18 stasiun kerja perakitan. Hal ini sangat menguntungkan perusahaan karena dapat mengurangi cost tenaga kerja operator. Sedangkan pada stasiun kerja inspeksi, masing-masing jumlahnya bertambah dari 1 stasiun kerja inspeksi menjadi 2 stasiun kerja inspeksi. Hal ini membuat perusahaan harus menyediakan 1 mesin inspeksi lagi dan 1 tambahan operator karena untuk metode inspeksi 100% dibutuhkan 2 stasiun kerja inspeksi. Meskipun demikian, perusahaan mengalami keuntungan atas bertambahnya stasiun kerja inspeksi yaitu berkurangnya claim next process hingga 0%. Sementara kapasitas produksi steering handle tipe x berkurang dari 1323 unit/hari menjadi 1256 unit/hari sedangkan kapasitas produksi steering handle tipe y adalah tetap 1277 unit/hari. Perubahan kapasitas

produksi pada *steering handle* tipe x tidak merugikan perusahaan karena jumlah nya masih lebih besar dari target produksi per hari nya yaitu 1250 unit/hari karena waktu siklus terbesarnya yaitu 17,998 detik, tidak melebihi waktu siklus ideal yang ditetapkan oleh perusahaan yaitu 18 detik. Keuntungan-keuntungan lain yang diperoleh perusahaan apabila usulan ini dilaksanakan adalah bertambahnya nilai efisiensi pada lintas perakitan utama yaitu dari 80,94% menjadi 86,76%, waktu menganggur berkurang dari 22,347 detik menjadi 15,381 detik, dan *smoothness index* lintasan yang berkurang dari 11,24 menjadi 7,77. Semakin kecil nilai *smoothness index*, maka performa lintasan tersebut semakin baik karena pembagian waktu menganggur semakin merata.

4.3.2 Analisis hasil pengolahan data pada stasiun kerja inspeksi

Dari hasil pengolahan data stasiun kerja inspeksi, maka ditemukan metode inspeksi yang terbaik adalah metode inspeksi 100% dengan 2 stasiun kerja inspeksi. Dibandingkan dengan pilihan metode inspeksi yang lain, metode inspeksi 100% dengan 2 stasiun kerja inspeksi ini adalah yang terbaik karena memiliki nilai waktu menganggur yang kecil dan menghasilkan 0% kemungkinan munculnya *claim next process*. Diantara pilihan metode inspeksi adalah sebagai berikut:

- a. Metode continuous sampling plan dengan 1 stasiun kerja inspeksi
- Apabila metode ini diaplikasikan pada lintas steering handle tipe x setelah usulan perbaikan susunan stasiun kerja perakitan, maka akan ada 163 steering handle yang menunggu untuk diinspeksi setelah inspeksi 213 item steering handle berturut-turut
- Apabila metode ini diaplikasikan pada lintas steering handle tipe y setelah usulan perbaikan susunan stasiun kerja perakitan, maka akan ada 163 steering handle yang menunggu untuk diinspeksi setelah inspeksi 172 item steering handle berturut-turut

Metode ini jelas bukan yang terbaik karena mengakibatkan terlalu banyak steering handle yang menunggu untuk diinspeksi sampling setelah proses inspeksi 100% bilangan ijin *steering handle* dilakukan.

b. Metode *continuous sampling plan* dengan 2 stasiun kerja inspeksi

- Apabila metode ini diaplikasikan pada lintas steering handle tipe x setelah usulan perbaikan susunan stasiun kerja perakitan, maka di awal inspeksi 100% bilangan ijin *steering handle* sebesar 213 item, waktu menganggur operator tiap kedatangan item steering handle adalah sebesar 4,248 detik sedangkan setelah inspeksi 100% 213 item dan semua item tersebut dinyatakan *free defect*, maka waktu menganggur operator tiap melakukan *sampling* 1:2 adalah 35,996 detik
- Apabila metode ini diaplikasikan pada lintas *steering handle* tipe y setelah usulan perbaikan susunan stasiun kerja perakitan, maka di awal inspeksi 100% bilangan ijin *steering handle* sebesar 213 item, waktu menganggur operator tiap kedatangan item *steering handle* adalah sebesar 3,44 detik sedangkan setelah inspeksi 100% 213 item dan semua item tersebut dinyatakan *free defect*, maka waktu menganggur operator tiap melakukan *sampling* 1:2 adalah 35,192 detik

Metode ini juga bukan metode yang terbaik karena pada saat inspeksi 1:2 dilakukan, waktu menganggur tiap operator terlalu besar sehingga dapat mengakibatkan *wasting time*. Walaupun sebenarnya apabila metode *continuous sampling plan* ini digunakan, perusahaan masih bisa menepati target maksimum *claim next process*.

- c. Metode inspeksi 100% dengan 2 stasiun kerja inspeksi
- Apabila metode ini diaplikasikan pada lintas steering handle tipe x setelah usulan perbaikan susunan stasiun kerja perakitan, maka operator akan menganggur 4,248 deik pada setiap kedatangan item steering handle.
- Apabila metode ini diaplikasikan pada lintas steering handle tipe y setelah usulan perbaikan susunan stasiun kerja perakitan, maka operator akan menganggur 3,664 deik pada setiap kedatangan item steering handle.

Metode ini adalah metode yang terbaik karena waktu menganggur operator sangat kecil di tiap kedatangan *item steering handle*. Selain itu, apabila

steering handle diinspeksi 100% maka kemungkinan adanya *claim next* process menjadi 0%. Hanya saja perusahaan harus menyediakan 1 operator dan 1 buah mesin inspeksi elektrik lagi karena untuk melakukan inspeksi 100% dibutuhkan 2 mesin inspeksi elektrik dan 2 operator inspeksi elektrik

BAB 5 KESIMPULAN DAN USULAN

5.1 Kesimpulan

- 5.1.1 Hasil Perancangan Ulang Lintasan Steering Handle Tipe X:
- * Jumlah stasiun kerja perakitan berkurang 2 dan efisiensi lintasan bertambah 4,82%
- * Elemen gerakan berkurang 6
- * Waktu siklus terbesar tidak melebihi 18 detik
- 5.1.2 Hasil Perancangan Ulang Lintasan Steering Handle Tipe Y:
- * Jumlah stasiun kerja perakitan berkurang 4 dan efisiensi lintasan bertambah 15,43%
- * Elemen gerakan berkurang 6
- * Waktu siklus terbesar tidak melebihi 18 detik
- 5.1.3 Hasil Perancangan Ulang Stasiun Kerja Inspeksi Elektrik:
- * Metode inspeksi terbaik adalah metode inspeksi 100% dengan jumlah 2 stasiun kerja inspeksi

5.2 Usulan

- a. Sebaiknya metode inspeksi sampling yang tidak terpola dengan baik pada stasiun kerja inspeksi diubah menjadi metode inspeksi 100%
- b. Sebaiknya perusahaan menyediakan tambahan 1 mesin inspeksi lagi agar proses inspeksi 100% berjalan dengan lancar
- c. Sebaiknya perusahaan mengurangi jumlah stasiun kerja pada lintas perakitan utama *steering handle* tipe x dari 22 stasiun kerja menjadi 20 stasiun kerja dan mengurangi jumlah stasiun kerja pada lintas perakitan utama *steering handle* tipe y dari 22 stasiun kerja menjadi 18 stasiun kerja
- d. Sebaiknya perusahaan mengubah pembagian kerja dan susunan stasiun kerja pada lintas perakitan *steering handle* menjadi seperti pada hasil *output* pengolahan data di laporan ini sehingga pembagian kerja, elemen gerakan dan jumlah stasiun kerja menjadi lebih ekonomis.
- e. Sebaiknya operator yang berkurang pada lintas perakitan *steering handle* dialokasikan ke bagian lantai produksi yang lain yang lebih membutuhkan tenaga operator.

DAFTAR REFERENSI

- W.Niebel, Benjamin and Freivalds, Andris(2003)." Methods, Satndards, and Work Design". Mc Graw Hill
- Grant, E.L. and Leavenworth, R.S." Statistical Quality Control".McGraw-Hill publisher
- Dolgui, Alexandre and Proth, Jean-Marie(2010), "Supply Chain Engineering, Useful Methods and Techniques". Springer
- Barnes, Ralph M, "Motion and Time Study Design and Measurement of Work", McGraw-Hill publisher
- Perwitasari, Dyah Saptanti (2008)." Perbandingan Metode Ranked
 Positional Weight dan Kilbridge Wester Pada Permasalahan
 Keseimbangan Lini Lintasan Produksi Berbasis Single Model".

 (Maret 2011). Bandung.

 http://www.informatika.org/~rinaldi/TA/Makalah_TA%20Dyah%20
 Saptanti.pdf
- Capacho, Liliana. Pastor, Rafael. Dolgui, Alexander and Guschinskaya, Olga (April,2009). "An evaluation of constructive heuristic methods for solving the alternative subgraphs assembly line balancing problem". Journal of Heuristics. Boston. www.proquest.com
- http://www.docstoc.com/docs/38785060/mdl-4-fixrian

MIL STD 1235 B. (Maret 2001)

- Jolai. Rezaee, Jahangoshai and Vazifeh(February 20009) "Multi-criteria decision making for assembly line balancing". Journal of Intelligent Manufacturing. London. www.proquest.com
- H Chowdhury, Abdul and Rahman, M Ziaur(Apr-Jun 2010). "Case Study Application of Line Balancing Method for Service Process Improvement: The Case of a Bank in Bangladesh". South Asian Journal of Management. New Delhi: www.proquest.com

LAMPIRAN

• Lampiran 1 : Standar Operasi Perakitan *Steering Handle* tipe X (Sumber PT .XYZ)

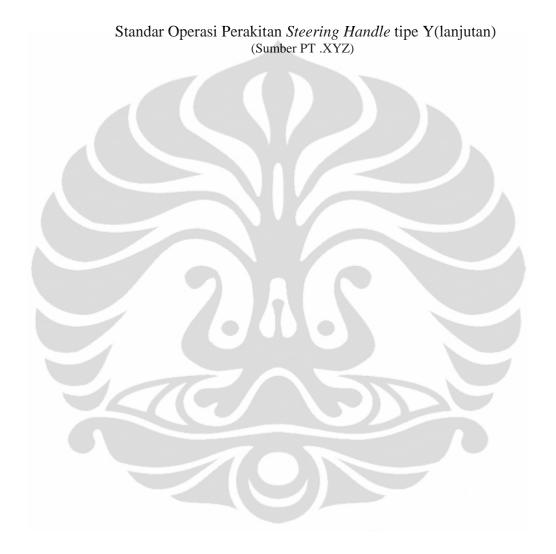
Nama Stasiun	Nama Operator	Nama Part	Aktivitas	Waktu Siklus Ideal	Jumlah operator
1	Riska Ramandanu	Cover Handle Top NH-1 Nut Spring 2 pcs	Mengambil CHT, cek visual Memasang nut spring	≤ 18"	1
2	Yudi Raharjo	Mark X Nut Spring 2 pcs	Mengambil CHT sub Mark Honda, letakkan di meja	≤ 18"	1
3	Sudarto	Cover Handle Front Set Nut Clip	Mengambil CHF Memasang nut clip	≤ 18"	1
4	M. Nuhardi	Light assy Head clip Head Light Bolt Adjust	Mengambil CHF sub Memasang light assy, head & clip Memasang bolt adjust Memasang 2 clamp & nut hex Meletakkan ke stasiun berikutnya	≤ 18"	1
5	Slamet	Weight B Assy STH Pipe Comp, STH	Mengambil pipe comp STH Memasukkan Weight B kanan, pukul dengan kayu plastik 0,5 kg Memasukkan Weight B kiri, pukul dengan kayu plastik 0,5 kg Meletakkan ke stasiun berikutnya	≤ 18"	1
6	Marfai	Stopper cable screw pan lever choke washer wave washer plain screw pan	Memasang Stoper cable, screw pan Memasang lever choke, screw pan	≤ 18"	1
7	Sigit		Mengambil pipe comp STH sub Memasang Set M/C assy front brake&throtle Mengencangkan bolt flange Memberi marking pada socket Merenggangkan guide cable STH dan letakkan ke shooter	≤ 18"	1
8	Giyanto	Cable Comp throtle Grip Comp throtle Housing Up Throtle Housing Und Throtle Screw Pan	Menggabungkan housing Und Throt Mengolesi grease ujung hose throttle Memasang grip Comp Throt Menggabungkan dg housing up throt Mengencangkan screw pan, letakkan	≤ 18"	1

Standar Operasi Perakitan $Steering\ Handle\$ tipe X (lanjutan) (Sumber PT .XYZ)

Nama Stasiun	Nama Operator	Nama Part	Aktivitas	Waktu Siklus Ideal	Jumlah
9	Satriyo	Cover Handle Rear Set Nut Clip SW Unit Dimmer SW Unit Horn SW Unit Lighting SW Unit Start SW Unit Winker	Mengambil CHR dan meletakkannya ke jig Memasang nut clip Memasang SW Unit Dimmer, Horn, winker Memasang SW Unit Start, Lighting, dan letakkan ke shooter	≤ 18"	operator 1
10	Panca Indra	Screw Tapping	Mengambil CHR sub Memasang spidometer sub ke CHR Memasang screw tapping Connect coupler switch starter, letakkan ke shooter	≤ 18"	1
11	Irvan juhri	Speedometer Assy Relay Assy Winker Cable comp, speedometer	Mengambil speedometer Assy Memasang relay assy winker Connect coupler sub harness Memasang cable comp speedometer Memutar nutcable comp speedometer	≤ 18"	1
12	Ricky		Mengambil CHR Sub, Connect Coupler switch light, lighting Connect Coupler winker, horn, dimmer, Letakkan ke station berikutnya	≤ 18"	1
13	Yudis A	weight A Assy STH Screw Oval	Mengambil pipe comp steering handle sub Memasukkan pin housing und throt Mengencangkan screw pan Memasang weight A,torque bolt flange&screw oval. Letakkan ke shooter	≤ 18"	1
14	Рорру		Memasang pipe STH sub pada CHR sub Memasukkan cable comp throttle ke CHR Memasukkan cable comp throttle ke guide Letakkan di conveyer	≤ 18"	1
15	Zul Primanto	Screw Tapping	Memasang 2 pcs screw tapping Connect cable front top switch	≤ 18"	1
16	Taufik akbar		Memutar dan mengencangkan nut cabble Merakit CHF ke CHR	≤ 18"	1

Standar Operasi Perakitan $Steering\ Handle\$ tipe X (lanjutan) (Sumber PT .XYZ)

Nama	Nama			Waktu Siklus	Jumlah	
Stasiun	Operator	Nama Part	Aktivitas	Ideal	operator	
Stasium	Operator	Rubber Cover Handle MT	Memasang collar rubber cover handle MT	iveal	operator	
	Collar, Main Side Cover					
17	Andi F	Screw washer	Memasang screw washer samping karian	≤ 18"	1	
		Sciew Washer	Membalik STH sub ke arah belakang			
		Screw washer 4x16 4pcs	Memasang screw washer ke CHR kiri atas			
		Screw washer 4x10 4pcs	Memasang screw washer ke CHR kanan atas			
18	Fitricahyanto		Memasang screw washer ke CHR kiri bawah	≤ 18"	1	
			Memasang screw washer ke CHR kanan bawah			
		Screw pan	Memasang screw pan pada bagian CHR tengah			
		Screw pani Screw washer	Memasang screw wash (kiri belakang)			
19	Very		Memasang screw wash (kin belakang) Memasang screw wash (kanan belakang)	≤ 18"	1	
		Screw tapping				
	_	Screw tapping	Memasang screw taping kanan Mengambil CHT dari Stasiun 2			
20	M Jafarudin	Screw tapping	Memasang CHT ke STH Sub	< 18"	1	
20	IVIJalaruum		Memasang chi ke 51n 500 Memasang screw tapping kiri	2 10	-	
			Mengambil Grip L Handle, masukkan ke lem			
21	Rol Hartono	Grip Left Handle	Membalik STH sub ke arah depan	≤ 18"	1	
			Menggulung cable hose comp front brake			
	-		Mengeluarkan grip L Handle, pasangkan ke sisi kiri pipe STH			
22	Asep Hijjaj	weight A Assy STH	Memasang weight handle A dan screw oval ke sisi kiri pipe STH	≤ 18"	1	
		Screw Oval	Meletakkan STH di kereta finish good			
			Meletakkan steering handle assy di atas jig test head light.			
			Connect coupler cable sub harness speedometer ke coupler test head light			
			Geser position light pada posisi on-1			
			Geser position light pada posisi on-2			
			Tekan dimmer switch pada posisi low			
			Tekan dimmer switch pada posisi high			
23	Azis Barkah		Geser position light ke posisi off	≤ 18"	1	
			Geser posisi switch unit winker ke kanan			
			Geser posisi switch unit winker ke kiri			
			Tekan switch unit horn			
			Tekan switch unit start			
			Lepaskan kaitan coupler sub harness speedometer pada coupler test headlight			
			Meletakkan steering handle assy di kereta			


• Lampiran 2:

Standar Operasi Perakitan *Steering Handle* tipe Y (Sumber PT .XYZ)

Nama	Nama			Waktu Siklus	Jumlah
Stasiun	Operator	Nama Part	Aktivitas	Ideal	operator
1	Riska	Cover Handle Front	Mengambil CHF,cek visual	4 401	1
1	Ramandanu	Strip kanan	Memasang strip CHF kanan, letakkan di meja	≤ 18"	1
2	Yudi Raharjo	Strip kiri	Memasang Strip CHF kiri	≤ 18"	1
	ruur kallalju		Letakkan di shootter	2 10	-
		Cover Handle Front Set	Mengambil CHF		
3	Sudarto	Nut Clip	Memasang mark honda	≤ 18"	1
-	-		Memasang 4 nut clip		_
			Letakkan ke shooter		
	. \	Weight B Assy STH	Mengambil pipe comp STH		
4	Slamet	Pipe Comp, STH	Memasukkan Weight B kanan, pukul dengan kayu plastik 0,5 kg	≤ 18"	1
			Memasukkan Weight B kiri, pukul dengan kayu plastik 0,5 kg		
			Meletakkan ke stasiun berikutnya		
		Stopper cable	Memasang Stoper cable, screw pan		
		screw pan	Memasang lever choke, screw pan		
5	Marfai	lever choke		≤ 18"	1
		washer wave		_	
		washerplain			
		screw pan			
		1	Mengambil pipe comp STH sub		
	- Vince		Memasang Set M/C assy front brake&throtie		
6	Sigit	Set M/C Assy Front Brake	Mengencangkan bolt flange	≤ 18"	1
			Memberi marking pada socket		
	_		Merenggangkan guide cable STH dan letakkan ke shooter		
		Cable Comp throtle	Menggabungkan housing Und Throt		
_		Grip Comp throtle	Mengolesi grease ujung hose throttle		
7	Giyanto	Housing Up Throtle	Memasang grip Comp Throt	≤ 18"	1
		Housing Und Throtle	Menggabungkan dg housing up throt		
		Screw Pan	Mengencangkan screw pan, letakkan		
		Cover Handle Rear Set	Mengambil CHR dan meletakkannya ke jig		
		Nut Clip	Memasang nut clip		
		SW Unit Dimmer	Memasang SW Unit Dimmer, Horn, winker		,
8	Satriyo	SW Unit Horn	Memasang SW Unit Start, Lighting, dan letakkan ke shooter	≤ 18"	1
		SW Unit Lighting			
		SW Unit Start			
		SW Unit Winker			

Standar Operasi Perakitan *Steering Handle* tipe Y(lanjutan) (Sumber PT .XYZ)

Nama Stasiun	Nama Operator	Nama Part	Aktivitas	Waktu Siklus Ideal	Jumlah operator
9	Panca Indra	Screw Tapping	Mengambil CHR sub Memasang spidometer sub ke CHR Memasang screw tapping Connect coupler switch starter, letakkan ke shooter	≤ 18"	1
10	Irvan juhri	Speedometer Assy Relay Assy Winker Cable comp,speedometer	Mengambil speedometer Assy Memasang relay assy winker Connect coupler sub harness Memasang cable comp speedometer Memutar nutcable comp speedometer	≤ 18"	1
11	Ricky		Mengambil CHR Sub, Connect Coupler switch light, lighting Connect Coupler winker, horn, dimmer, Letakkan ke station berikutnya	≤ 18"	1
12	Yudis A	weight A Assy STH Screw Oval	Mengambil pipe comp steering handle sub Memasukkan pin housing und throt Mengendangkan screw pan Memasang weight A,torque bolt flange&screw oval. Letakkan ke shooter	≤ 18"	1
13	Рорру		Mémasang pipe STH sub pada CHR sub Memasukkan cable comp throttle ke CHR Memasukkan cable comp throttle ke guide Letakkan di conveyer	≤ 18"	1
14	M Nurhadi	Screw Tapping	Memukul kabel kaliver Memasang 2pcs Screw tapping	≤ 18"	1
15	Zul Primanto		Connect cable front top switch Connect cable horn atas	≤ 18"	1
16	M Jafarudin	Rubber tail light Collar horn assy	Memasang rubber tail light, collar horn assy Connect cable horn bawah	≤ 18"	1
17	Taufik akbar		Mengencangkan nut cable Merakit CHF ke CHR	≤ 18"	1
18	Andi F	Screw washer 4x12 2 pcs Screw pan	Memasang screw washer samping kanan Memasang Screw washer samping kiri Membalik STH ke arah belakang Memasang screw pan tengah belakang	≤ 18"	1

Lampiran 3 : Pengambilan Data Elemen-Elemen Gerakan

Elemen Gerakan Stasiun Kerja 15 Steering Handle Tipe X

No. Gerakan	Ilustrasi	Deskripsi Gerak	Simbol Gerak	Kelompok Gerakan	Dapat Dihilangkan	Jenis Gerakan
1		Menjangkau screw tapping dan impact/impulse	TE	Penunjang	Sulit	Efektif
2		Memegang screw tapping dan impact/impulse	G	Penunjang	sulit	Efektif
		Membawa screw tapping dan impact/impulse	TL	Penunjang	sulit	Efektif
3		Mengarahkan sementara screw tapping ke impact/impulse	PP	Pembantu	mungkin	Efektif
4		Menggunakan impact/impulse untuk memasang screw tapping	U	Utama	Tidak Bisa	Efektif
		Merakit screw tapping kanan ke CHR sub	А	Utama	Tidak Bisa	Efektif

Elemen Gerakan Stasiun Kerja 15 Steering Handle Tipe X(lanjutan)

No.			Simbol	Kelompok	Dapat	Jenis
Gerakan	Ilustrasi	Deskripsi Gerak	Gerak	Gerakan	Dihilangkan	Gerakan
5		Mengarahkan sementara screw tapping ke impact/impulse	рр	Pembantu	mungkin	Efektif
6		Menggunakan impact/impulse untuk memasang screw tapping kiri ke CHR sub Merakit screw	U	Utama	Tidak bisa	Efektif
7		Menjangkau Cable front top switch	TE	Penunjang	Sulit	Efektif
		Memegang Cable front top switch	G	Penunjang	Sulit	<u>Efektif</u>
8		Menyambungkan/ Merakit cable front top switch	A	Utama	Tidak Bisa	Efektif
9		Melepas Cable Front Top Switch Sumber: Po	RL enulis	Penunjang	Sulit	Efektif

Elemen Gerakan Stasiun Kerja 16 Steering Handle Tipe X

1111			Simbol	Kelompok	Dapat	Jenis
No	Ilustrasi	Deskripsi Gerak	Gerak	Gerakan	Dihilangkan	Gerakan
1		Menjangkau CHR dan nut cable	TE	Penunjang	Sulit	Efektif
	AR	Memegang CHR dan nut cable	G	Penunjang	Sulit	Efektif
2		Mengencangkan nut cable	A	Utama	Tìdak Bisa	Efektif
3		Menjangkau	TE	Penuniang	Sulit	Efektif
4		Memegang CHF Sub	G	Penunjang	Sulit	Efektif
4		Membawa CHF Sub	TL	Penunjang	Sulit	Efektif
5		Merakit CHF Sub ke CHR	A	Utama	Tida <mark>k</mark> Bisa	Efektif
6		Melepas CHF Sub Sun	RL hber: Penu	Penunjang lis	Sulit	Efektif

Elemen Gerakan Stasiun Kerja 18 Steering Handle Tipe X

			Simbol	Kelompok	Dapat	Jenis
No	Ilustrasi	Deskripsi Gerak	Gerak	Gerakan	Dihilangkan	Gerakan
		Menjangkau screw washer	TE	Penunjang	Sulit	Efektif
1		Memegang screw washer & impulse/impact	G	Penunjang	Sulit	Efektif
2		Membawa Impulse dan screw washer	TL	Penunjang	Sulit	Efektif
3		Mengarahkan sementara screw wash ke impact/impulse	PP	Pembantu	Mungkin	Efektif
		Menggunakan	П	Utama	Tidak Risa	Ffektif
5		Mengarahkan sementara screw wash ke impact/impulse	PP	Pembantu	Mungkin	Efektif
6	The state of the s	Menggunakan impulse/impact untuk memasang screw	>	Utama	Tidak Bisa	Efektif
		Merakit Screw wash ke STH sub	А	Utama	Tidak Bisa	Efektif
7		Mengarahkan sementara screw wash Se mber: F impact/impulse	PP Penulis	Pembantu	Mungkin	Efektif

Elemen Gerakan Stasiun Kerja 18 Steering Handle Tipe X(lanjutan)

			Simbol	Kelompok	Dapat	Jenis
No	Ilustrasi	Deskripsi Gerak	Gerak	Gerakan	Dihilangkan	Gerakan
8		Menggunakan impulse/impact untuk memasang screw	U	Utama	Tidak Bisa	Efektif
		Merakit Screw wash ke STH sub	А	Utama	Tidak Bisa	Efektif
9		Mengarahkan sementara screw wash ke impact/impulse	PP	Pembantu	Mungkin	Efektif
10		Menggunakan impulse/impact untuk memasang screw	U	Utama	Tidak Bisa	Efektif
		Merakit Screw wash ke STH sub	A	Utama	Tidak Bisa	Efektif
11		Melepas STH sub	RL	Penunjang	Sulit	Efektif

Elemen Gerakan Stasiun Kerja 19 Steering Handle Tipe X

900	III.	terno illoso presider del	Simbol	Kelompok	Dapat	Jenis
No	Ilustrasi	Des <mark>kri</mark> psi Gerak	Gerak	Gerakan	Dihilangkan	Gerakan
		Menjangkau screw pan,screw washer,screw tapping	TE	Penunjang	Sulit	Efektif
1		Memegang screw pan,screw washer,screw tapping	G	Penunjang	Sulit	Efektif
4		Membawa screw pan, screw washer, screw tapping	TL	Penunjang	Sulit	Efektif
2		Mengarahkan sementara screw pan ke impulse/impact	PP	Pembantu	Mungkin	Efektif
3	A W	Menggunakan impulse/impact untuk memasang screw pan	D	Utama	Tidak Bisa	Efektif
		Merakit Screw pan ke STH sub (CHR Belakang tengah)	A	Utama	Tidak Bisa	Efektif
	HARTEN A					
		Menggunakan impulse/impact untuk memasang screw washer	U	Utama	Tidak Bisa	Efektif
5		Merakit Screw washer ke STH sub (CHR Belakang kiri atas)	A	Utama	Tidak Bisa	Efektif
6		Mengarahkan sementara screw washer ke impulse/impact	PP	Pembantu	Mungkin	Efektif
7		Menggunakan impulse/impact untuk memasang screw washer	U	Utama	Tidak Bisa	Efektif
,		Merakit Screw washer ke STH sub (CHR Belakang kanan atas)	А	Utama	Tidak Bisa	Efektif

Elemen Gerakan Stasiun Kerja 19 Steering Handle Tipe X(lanjutan)

			Simbol	Kelompok	Dapat	Jenis
No	Ilustrasi	Deskripsi Gerak	Gerak	Gerakan	Dihilangkan	Gerakan
8		Mengarahkan sementara screw tapping ke impulse/impact	рр	Pembantu	Mungkin	Efektif
		Mengarahkan STH sub ke				Tidak
9		arah kanan	P	Pembantu	Mungkin	Efektif
10		Menggunakan impulse/impact untuk memasang screw tapping	U	Utama	Tidak Bisa	Efektif
		Merakit Screw tapping ke STH sub (CHR kanan)	А	Utama	Tida <mark>k B</mark> isa	Efektif
11		Melepaskan STH Sub Sumber: Per	RL Iulis	Penunjang	Sulit	Efektif

Elemen Gerakan Stasiun Kerja 20 Steering Handle Tipe X

			Simbol	Kelompok	Dapat	Jenis
No	Ilustrasi	Deskripsi Gerak	Gerak	Gerakan	Dihilangkan	Gerakan
1		Menjangkau CHT	TE	Penunjang	Sulit	Efektif
2		Memegang CHT	G	Penunjang	Sulit	Efektif
3		Membawa CHT	TL	Penunjang	Sulit	Efektif
4		Merakit CHT ke STH Sub	A	Utama	Tidak Bisa	Efektif
5		Menjangkau Impulse/Impact dan screw tapping	TE	Penunjang	Sulit	Efektif
		Memegang Impulse/Impact dan screw tapping	G	Penunjang	Sulit	Efektif
	1	· · · · · · · · · · · · · · · · · · ·	_		-	

Elemen Gerakan Stasiun Kerja 20 Steering Handle Tipe X(lanjutan)

			Simbol	Kelompok	Dapat	Jenis
No	Ilustrasi	Deskripsi Gerak	Gerak	Gerakan	Dihilangkan	Gerakan
6		Membawa Impulse/impact dan screw tapping	TL	Penunjang	Sulit	Efektif
7		Mengarahkan sementara screw tapping ke impulse/impact	PP	Pembantu	Mungkin	Efektif
8		Menggunakan impulse/impact untuk memasang screw tapping ke STH sub	U	Utama	Tidak Bisa	Efektif
		Merakit screw tapping ke sisi kiri STH Sub	А	Utama	Tidak Bisa	Efektif
9		Melepas Impuls/impact	RL	Penun)ang	Sulit	Efektif

Elemen Gerakan Stasiun Kerja 22 Steering Handle Tipe X

	1					
No	Ilustrasi	Deskripsi Gerak	Simbol Gerak	Kelompok Gerakan	Dapat Dihilangkan	Jenis Gerakan
1		Menjangkau impulse/impact, weight A dan Screw Oval	TE	Penunjang	Sulit	Efektif
		Memegang impulse/impact,Weight A dan screw Oval	G	Penunjang	Sulit	Efektif
2	600	Membawa impulse/impact,Weight A dan screw Oval	TL	Penunjang	Sulit	Efektif
	The same of the sa	Mengarahkan sementara impact/impulse ke weight A dan screw Oval	рр	Pembantu	Mungkin	Efektif
3		Menggunakan impact/impulse untuk memasang weight A dan screw Oval	U	Utama	Tidak Bisa	Efektif
		Merakit weight A dan screw Oval ke sisi kiri stang STH	A	Utama	Tidak Bisa	Efektif
4		Menjangkau STH Sub	TE	Penunjang	Sulit	Efektif
		Memegang STH Sub	G	Penunjang	Sulit	Efektif
5		Membawa STH Sub	TL	Penunjang	Sulit	Efektif
6		Melepas STH Sub	RL	Penunjang	Sulit	Efektif

Elemen Gerakan Stasiun Kerja 23 Steering Handle Tipe X

44			Simbol	Kelompok	Dapat	Jenis
No	Ilustrasi	Deskripsi Gerak	Gerak	Gerakan	Dihilangkan	Gerakan
1		Menjangkau STH Sub	TE	Penunjang	Sulit	Efektif
2		Memegang STH Sub	G	Penunjang	Sulit	Efektif
3		Membawa STH Sub	TL	Penunjang	Sulit	Efektif
		Membawa 34n 3ub		renunjang	Suit	Elektii
4		Mem Sgun b®TH Beh ul	is G	Penunjang	Sulit	Efektif

Elemen Gerakan Stasiun Kerja 23 Steering Handle Tipe X(lanjutan)

			Simbol	Kelompok	Dapat	Jenis
No	Ilustrasi	Deskripsi Gerak	Gerak	Gerakan	Dihilangkan	Gerakan
5		Mengarahkan STH Sub	P	Pembantu	Mungkin	Tidak Efektif
6		Menggunakan kabel Horn	Ü	Utama	Tidak Bisa	Efektif
7		Merakit Kabel Horn ke Alat Inspeksi Elektrik	A	Utama	Tidak Bisa	Efektif
8		Merakit Kabel Sppedometer ke Alat Inspeksi Elektrik	А	Utama	Tidak Bisa	Efektif
9		Memegang kedua stang STH Sub	G	Penunjang	Sulit	Efektif
10		Menginspeksi Elektrik STH Sub		Pembantu	Mungkin	Tidak Efektif

Elemen Gerakan Stasiun Kerja 23 Steering Handle Tipe X(lanjutan)

				Simbol	Kelompok	Dapat	Jenis
Ļ	No	Ilustrasi	Deskripsi Gerak	Gerak	Gerakan	Dihilangkan	Gerakan
	11		Memegang Kabel Horn STH Sub	G	Penunjang	Sulit	Efektif
	**		Melepas Kabel Horn dari alat inspeksi Elektrik	RL	Penunjang	Sulit	Efektif
			Memegang Kabel Speedometer STH Sub	G	Penunjang	Sulit	Efektif
4	12		Melepas Kabel Speedometer dari alat inspeksi Elektrik	RL	Penunjang	Sulit	Efektif
	13		Menjangkau pensil warna	TE	Penunjang	Sulit	Efektif
		13	Memegang pensil warna	G	Penunjang	Sulit	Efektif
			Membawa pensil warna	TL	Penunjang	Sulit	Efektif
	14		Menggunakan pensil warna untuk marking STH Sub yang telah diinspeksi	6	Utama	Tidak Bisa	Efektif
	15		Membawa pensil warna	TL	Penunjang	Sulit	Efektif
100			Melepas Pensil warna	RL	Penunjang	Sulit	Efektif

Elemen Gerakan Stasiun Kerja 23 Steering Handle Tipe X(lanjutan)

			Simbol	Kelompok	Dapat	Jenis
No	Ilustrasi	Deskripsi Gerak	Gerak	Gerakan	Dihilangkan	Gerakan
16		Memegang kedua stang STH Sub	G	Penunjang	Sulit	Efektif
17		Membawa STH Sub ke Keranjang	F	Penunjang	Sulit	Efektif
18		Melepaskan STH Sub ke keranjang	RL	Penunjang	Sulit	Efektif

Elemen Gerakan Stasiun Kerja 14 Steering Handle Tipe Y

No	Ilustrasi	Deskripsi Gerak	Simbol Gerak	Kelompok Gerakan	Dapat Dihilangkan	Jenis Gerakan
1	1	Menjangkau Palu	TE	Penunjang	Sulit	Efektif
1		Memegang Palu	G	Penunjang	Sulit	Efektif
		Membawa Palu	TL	Penunjang	Sulit	Efektif
2		Menggunakan Palu untuk memukul kabel kaliver	U	Utama	Tidak Bisa	Efektif
3		Melepas Palu	RL	Penunjang	Sulit	Efektif
					- A	
5		Memegang impact/impuls dan screw tapping kuning	G	Penunjang	Sulit	Efektif
	23	Membawa impact/impuls dan screw tapping kuning	TL	Penunjang	Sulit	Efektif
6		Mengarahkan sementara screw tapping kuning ke impulse/impact	рр	Pembantu	Mungkin	Efektif
7		Menggunakan impulse/impact untuk memasang screw tapping	U	Utama	Tidak Bisa	Efektif
		Merakit screw tapping kuning ke STH Sub kiri	А	Utama	Tidak Bisa	Efektif

Elemen Gerakan Stasiun Kerja 14 Steering Handle Tipe Y(lanjutan)

No	Ilustrasi	Deskripsi Gerak	Simbol Gerak	Kelompok Gerakan	Dapat Dihilangkan	Jenis Gerakan
8		wiembawa impuise/impaci dan screw tapping	TL	Penunjang	Sulit	Efektif
	The state of the s	Mengarahkan sementara screw tapping kuning ke impulse/impact	PP	Pembantu	Mungkin	Efektif
9		Menggunakan impulse/impact untuk memasang screw tapping	U	Utama	Tidak Bisa	Efektif
4		Merakit screw tapping kuning ke STH Sub kanan	А	Utama	Tidak Bisa	Efektif
10	10	Mendorong STH Sub	P	Pembantu	Mungkin	Tidak Efektif
		Melepaskan STH Sub	RL	Penunjang	Sulit	Efektif

Elemen Gerakan Stasiun Kerja 15 Steering Handle Tipe Y

No	Ilustrasi	Deskripsi Gerak	Simbol Gerak	Kelompok Gerakan	Dapat Dihilangkan	Jenis Gera <mark>ka</mark> n
1		Menjangkau kabel nut trottle	TE	Penunjang	Sulit	Efektif
2		Memegang kabel nut trottle	G	Penunjang	Sulit	Efektif
3		Merakit kabel nut trottle	А	Utama	Tidak Bisa	Efektif
4		Menjangkau kabel nut trottle	TE	Penunjang	Sulit	Efektif
5		Memegang kabel main side cover	G	Penunjang	Sulit	Efektif
6		Membawa <mark>k</mark> abel main sida cover ke sisi kiri	TL	Penunjang	Sulit	Efektif

Sumber: Penulis

Elemen Gerakan Stasiun Kerja 15 Steering Handle Tipe Y(lanjutan)

Universitas Indonesia

No	Ilustrasi	Deskripsi Gerak	Simbol Gerak	Kelompok Gerakan	Dapat Dihilangkan	Jenis Gerakan
7		Melepas kabel main sida cover	RL	Penunjang	Sulit	Efektif
8		Menjangkau kabel horn atas	TE	Penunjang	Sulit	Efektif
		Memegang kabel horn atas	G	Penunjang	Sulit	Efektif
9		Merakit kabel horn atas	А	Utama	Tidak Bisa	Efektif
10		Melepas STH Sub	RL	Penunjang	Sulit	Efektif

Elemen Gerakan Stasiun Kerja 16 Steering Handle Tipe Y

No	Ilustrasi	Deskripsi Gerak	Simbol Gerak	Kelompok Gerakan	Dapat Dihilangkan	Jenis Gerakan
1		Menjangkau rubber tail light, collar horn, horn assy	TE	Penunjang	Sulit	Efektif
2		Memegang rubber tail light, collar horn, horn assy	G	Penunjang	Sulit	Efektif
3		Membawa rubber tail light, collar horn, dan horn assy	TL	Penunjang	Sulit	Efektif
4		Merakit rubber tail light, collar horn ke horn assy	А	Utama	Tidak Bisa	Efektif
	W Married Comment	Menjangkau impulse/impact	TE	Penunjang	Sulit	Efektif
	人長和獎	Memegang impulse/impact	G	Penunjang	Sulit	Efektif
5		Membawa impulse/impact	TL	Penunjang	Sulit	Efektif
		Mengarahkan sementara rubber tail light, collar horn, horn assy ke impulse/impact	PP	Pembantu	Mungkin	Efektif
6		Menggunakan impulse/impact untuk memasang rubber tail light, collar horn, horn assy	U	Utama	Tidak Bisa	Efektif
		Merakit rubber tail light, collar horn, horn assy ke STH Sub	A	Utama	Tidak Bisa	Efektif

Elemen Gerakan Stasiun Kerja 16 Steering Handle Tipe Y(lanjutan)

	No	Ilustrasi	Deskripsi Gerak	Simbol Gerak	Kelompok Gerakan	Dapat Dihilangkan	Jenis Gerakan
	7	130	Melepas Impulse/impact	RL	Penunjang	Sulit	Efektif
		Menjangkau kabel horn bawah	TE	Penunjang	Sulit	Efektif	
4	00		Memegang kabel horn bawah	G	Penunjang	Sulit	<u>Efektif</u>
	°		Merakit kabel horn bawah ke horn assy	А	Utama	Tidak Bisa	Efektif
	9		Melepas STH Sub	RL	Penunjang	Sulit	Efektif

Elemen Gerakan Stasiun Kerja 17 Steering Handle Tipe Y

No	Ilustrasi	Deskripsi Gerak	Simbol Gerak	Kelompok Gerakan	Dapat Dihilangkan	Jenis Gerakan
1		Menjangkau CHR dan nut cable	TE	Penunjang	Sulit	Efektif
	AN	Memegang CHR dan nut cable	G	Penunjang	Sulit	Efektif
2		Mengencangkan nut cable	A	Utama	Tidak Bisa	Efektif
3		Menjangkau CHF Sub	TE	Penunjang	Sulit	Efektif
4		Memegang CHF Sub	G	Penunjang	Sulit	Efektif
		Membawa CHF Sub	TL	Penunjang	Sulit	Efektif
5		Merakit CHF Sub ke CHR	A	Utama	Tidak Bisa	Efektif
6		Melepas CHF Sub	RL	Penunjang	Sulit	Efektif

Elemen Gerakan Stasiun Kerja 20 Steering Handle Tipe Y

No	Ilustrasi	Deskripsi Gerak	Simbol Gerak	Kelompok Gerakan	Dapat Dihilangkan	Jenis Gerakan
		Menjangkau Screw washer	TE	Penunjang	Sulit	Efektif
1		Memegang screw washer	G	Penunjang	Sulit	<u>Efe</u> ktif
2		Membawa screw washer dan impact/impulse	TL	Penunjang	Sulit	Efektif
4		Menggunakan impact/impulse untuk memasang screw washer	U	Utama	Tidak Bisa	Efektif
4		Merakit screw washer ke bagian kanan atas depan STH sub	А	Utama	Tidak Bisa	Efektif
5		Mengarahkan screw washer ke impulse/impact	РР	Pembantu	Mungkin	Efektif
6		Menggunakan impact/impulse untuk memasang screw washer	U	Utama	Tidak Bisa	Efektif
	里	Merakit screw washer ke bagian kiri atas depan STH sub	А	Utama	Tidak Bisa	Efektif
7		Melepas STH Sub	RL	Penunjang	Sulit	Efektif

Elemen Gerakan Stasiun Kerja 21 Steering Handle Tipe Y

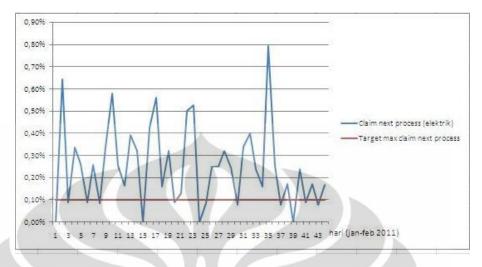
No	llustrasi	Deskripsi Gerak	Simbol Gerak	Kelompok Gerakan	Dapat Dihilangkan	Je <mark>nis</mark> Gerakan
1		Menjangkau Grip L Handle di dalam box	TE	Penunjang	Sulit	Efektif
2		Memegang Grip L Handle	G	Penunjang	Sulit	Efektif
2		Membawa Grip L Handle	TL	Penunjang	Sulit	Efektif
3		Memasukkan Grip L Handle ke anlikasi lem	РР	Pembantu	Mungkin	Efektif
		Menjangkau cable hose front brake	TE	Penunjang	Sulit	Efektif
5		Memegang cable hose front brake	G	Penunjang	Sulit	Efektif
		Menggulung/merakit cable hose front brake	А	Utama	Tidak Mungkin	Efektif
6	10-	Menjangkau Grip L Handle pada aplikasi lem	TE	Penunjang	Sulit	Efektif
		Memegang Grip L Handle yang telah di lem	G	Penunjang	Sulit	Efektif
7		Membawa Grip L Handle dari aplikasi lem	TL	Penunjang	Sulit	Efektif
		Merakit Grip L Handle ke sisi kiri stang STH	А	Utama	Tidak Mungkin	Efektif
8		Melepas STH Sub	RL	Penunjang	Sulit	Efektif

Elemen Gerakan Stasiun Kerja 22 Steering Handle Tipe Y

				Kelompok	Dapat	Jenis
No	Ilustrasi	Deskripsi Gerak	Simbol Gerak	Gerakan	Dapat	Gerakan
1		Menjangkau impulse/impact, weight A dan Screw Oval	TE	Penunjang	Sulit	Efektif
		Memegang impulse/impact,Weight A dan screw Oval	G	Penunjang	Sulit	Efektif
1	200	Membawa impulse/impact, Weight A dan screw Oval	TL	Penunjang	Sulit	Efektif
2		Mengarahkan sementara impact/impulse ke weight A dan screw Oval	PP	Pembantu	Mungkin	Efektif
3		Menggunakan impact/impulse untuk memasang weight A dan screw Oval	5	Utama	Tidak Bisa	Efektif
		Merakit weight A dan screw Oval ke sisi kiri stang STH	А	Utama	Tidak Bisa	Efektif
4	4	Menjangkau STH Sub	TE	Penunjang	Sulit	Efektif
		Memegang STH Sub	G	Penunjang	Sulit	Efektif
5		Membawa STH Sub	π	Penunjang	Sulit	Efektif
6		Melepas STH Sub	RL	Penunjang	Sulit	Efektif

Elemen Gerakan Stasiun Kerja 23 Steering Handle Tipe Y

No	Ilustrasi	Deskripsi Gerak	Simbol Gerak	Kelompok Gerakan	Dapat Dihilangkan	Jenis Gerakan
1	10	Menjangkau STH Sub	TE	Penunjang	Sulit	Efektif
2		Memegang STH Sub	G	Penunjang	Sulit	Efektif
3		Membawa STH Sub	TL	Penunjang	Sulit	Efektif
4		Memegang STH Sub	G	Penunjang	Sulit	Efektif
5		Mengarahkan STH Sub	p	Pembantu	Mungkin	Tidak Efektif
7	MES	Menggunakan kabel Horn	U	Utama	Tidak Bisa	Efektif
6	1	Merakit Kabel Horn ke Alat Inspeksi Elektrik	А	Utama	Tidak Bisa	Efektif
		Merakit Kabel Sppedometer ke Alat Inspeksi Elektrik	А	Utama	Tidak <mark>B</mark> isa	Efektif


Elemen Gerakan Stasiun Kerja 23 Steering Handle Tipe Y(lanjutan)

No	Ilustrasi	Deskripsi Gerak	Simbol Gerak	Kelompok Gerakan	Dapat Dihilangkan	Jenis Gerakan
7		Memegang kedua stang STH Sub	G	Penunjang	Sulit	Efektif
8		Menginspeksi Elektrik STH Sub		Pembantu	Mungkin	Tidak Efe k tif
		Menjangkau pensil warna	TE	Penunjang	Sulit	Efektif
9		Memegang pensil warna	G	Penunjang	Sulit	Efektif
	FIN	Membawa pensil warna	TL	Penunjang	Sulit	Efektif
1400		Membawa pensil warna	TL	Penunjang	Sulit	Efektif
11		Melepas Pensil warna	RL	Penunjang	Sulit	Efektif
		Memegang Kabel Horn STH Sub	G	Penunjang	Sulit	Efektif
	W S	Melepas Kabel Horn dari alat inspeksi Elektrik	RL	Penunjang	Sulit	Efektif
12		Memegang Kabel Speedometer STH Sub	G	Penunjang	Sulit	Efektif
		Meleoas Kabel				
13		Memegang kedua stang STH Sub	G	Penunjang	Sulit	Efektif
14		Membawa STH Sub ke Keranjang	TL	Penunjang	Sulit	Efektif
		Melepaskan STH Sub ke keranjang	RL	Penunjang	Sulit	Efektif

Lampiran 4 : Data Claim Next Process steering handle selama Januari Februari 2011 akibat tidak diinspeksi elektrik

Tabel Claim Next Process Steering Handle Januari-Februari 2011 Sumber : Penulis

Bules		Total Aktual	Claim next	% Claim				Total Aktual	Claim next	% Claim
Bulan	Tgl	Produksi	process	next	. 1	Bulan	TgI	Produksi	process	next
4		/ /		process				TTOOGRAI	process	process
	3	635	0	0,00%			1	1141	6	0,53%
44.1	4	1089	7	0,64%	"		2	1200	0	0,00%
	5	1105	/1	0,09%	4		4	1175	1	0,09%
	- 6	1190	4	0,34%			5	1200	3	0,25%
	7	1147	3	0,26%			7	1201	3	0,25%
	8	1135	1	0,09%			8	1250	4	0,32%
	10	1160	3	0,26%			9	1215	3	0,25%
	-11	1140	1	0,09%			10	1250	1	0,08%
	- 12	1175	4	0,34%		-	- 11	1172	4	0,34%
	13	1207	7	0,58%			13	1250	. 5	0,40%
JANUARI	14	1175	m	0,26%			14	1250	3	0,24%
JANUARI	17	1205	2	0,17%		FEBRUARI	16	1237	2	0,16%
	18	1020	4	0,39%	-		17	1263	10	0,79%
	19	1240	0 4	0,32%			18	1175	. 3	0,26%
	20	1250	0	0,00%			20	1250	1	0,08%
	21	1175	.5	0,43%			21	1165	2	0,17%
	24	1250	7	0,56%			22	1250	0	0,00%
	25	1250	2	0,16%			23	1250	3	0,24%
11 -	26	1240	4	0,32%			24	1138	1	0,09%
	27	1100	1	0,09%			25	1175	2	0,17%
	28	771	1	0,13%			27	1250	1	0,08%
	31	1000	5	0,50%			28	1200	2	0,17%

Grafik Claim Next Process Steering Handle Januari-Februari 2011 Sumber: Penulis

Dari grafik *claim next process* terlihat bahwa masih banyak *claim next process* yang melebihi batas maksimum yang ditentukan oleh perusahaan

Lampiran 5: Pengambilan data pola inspeksi sebelum CSP & setelah CSP

PERBANDINGAN	Hari ke	1	2	3	4	5	6	7	8	9	10
PENBANDINGAN	PROD	1263	1175	1250	1165	1250	1250	1138	1175	1250	1200
	dites	23,000%	24,000%	25,000%	26,000%	23,500%	25,500%	19,500%	25,500%	26,000%	22,500%
SEBELUM CSP F	dilewatkan	77,000%	76,000%	75,000%	74,000%	76,500%	74,500%	80,500%	64,500%	74,000%	77,500%
SEBELOIVI CSP F	claim	0,792%	0,255%	0,080%	0,172%	0,000%	0,240%	0,088%	0,170%	0,080%	0,167%
	AOQ	0,793%	0,539%	0,481%	0,488%	0,000%	0,000%	0,000%	0,000%	0,228%	0,000%
	dites	88,915%	78,638%	64,640%	82,833%	55,120%	72,960%	59,315%	68,085%	68,960%	73,00%
SETELAH CSP F	dilewatkan	11,085%	21,362%	35,360%	17,167%	44,880%	27,040%	40,685%	31,915%	31,040%	27,00%
JETELAH CSP F	claim stlh	0,158%	0,000%	0,000%	0,000%	0,000%	0,000%	0,088%	0,085%	0,000%	0,00%
	AOQ stlh	0,109%	0,116%	0,131%	0,071%	0,000%	0,089%	0,00%	0,040%	0,072%	0,062%

• Lampiran 6:

Uji kecukupan dan keseragaman data waktu siklus Steering Handle Tipe Y

No	ws	Deskripsi Elemen	Rata- Rata	n	N°	ВКА	Max	ВКВ	Min
1	1	Ambil CHF,cek	4,007	26	7	6,22	5,98	1,80	2,05
2	-	Pasang strip CHF kanan, letakkan	12,767	26	11	14,98	14,74	10,56	10,81
3	2	Strip CHF kiri	13,418	17	5	15,11	14,87	11,73	11,98
4	-	Letakkan di shootter	1,346	17	12	2,04	1,80	0,66	0,91
5		Ambil CHF	_0,744	11	2	1,27	1,03	0,22	0,47
6	3	Pasang mark honda	7,205	11	6	8,73	8,49	5,68	5,93
7	,	Pasang 4 nut clip	8,947	11	3	10,47	10,23	7,42	7,67
8		Letakkan ke shooter	0,626	11	8	1,15	0,91	0,10	0,35
9		Ambil pipe comp STH	1,692	30	6	2,94	2,70	0,45	0,70
10	4	Masukkan Weight B kanan	5,975	30	6	9,22	8,98	2,73	2,98
11		Masukkan Weight B kiri	4,936	30	7	8,18	7,94	1,69	1,94
12		Letakkan ke sation	0,548	30	9	0,79	0,55	0,30	0,55
13	5	Pasang Stoper cable, screw pan	9,129	34	12	11,56	11,32	6,70	6,95
14	1	Pasang lever choke, screw pan	5,103	34	14	7,53	7,29	2,67	2,92
15		Ambil pipe comp STH sub	3,025	30	ω	4,45	4,21	1,60	1,85
16		Set M/C assy front brake&throtie	1,568	30	00	2,99	2,75	0,14	0,39
17	6	Kencangkan bolt flange	3,639	30	ω	5,06	4,82	2,21	2,46
18		Beri marking pada socket	2,891	30	60	4,32	4,08	1,47	1,72
19		Renggangkan guide cable STH	0,565	30	15	0,99	0,75	0,14	0,39
20		Gabungkan housing Und Throt	5,501	29	29	8,59	8,35	2,41	2,66
21		Olesi grease ujung hose throttle	2,329	29	25	4,42	4,18	0,24	0,49
22	7	Pasang grip Comp Throt	2,507	29	24	4,59	4,35	0,42	0,67
23		Gabungkan dg housing up throt	1,998	29	23	2,08	1,84	1,91	2,16
24		Kencangkan screw pan, letakkan	3,858	29	26	6,95	6,71	0,77	1,02
25		Ambil CHR	4,218	37	19	6,75	6,51	1,69	1,94
26	8	Pasang nut clip	3,262	37	21	5,79	5,55	0,73	0,98
27	Ŏ	Psg:SW Unit Dimmer, Horn, winker	2,309	37	23	3,84	3,60	0,78	1,03
28		Psg: SW Unit Start, Lighting	1,908	37	18	3,44	3,20	0,38	0,63
29		Ambil CHR sub	1,054	30	- 5	1,71	1,47	0,39	0,64
30	9	Pasang spidometer sub ke CHR	1,570	30	10	2,23	1,99	0,91	1,16
31		Pasang screw tapping	7,412	30	7	9,07	8,83	5,75	6,00
32		Connect coupler switch starter	4,585	30	9	6,25	6,01	2,93	3,18

Uji kecukupan dan keseragaman data waktu siklus *Steering Handle* Tipe X (lanjutan)

No	WS	Deskripsi Elemen	Rata2	n	N°	ВКА	Max	BKB	Min
33		Ambil speedometer Assy	3,027	31	5	4,71	4,47	1,34	1,59
34		Pasang relay assy winker	2,075	31	7	3,76	3,52	0,39	0,64
35	10	Connect coupler sub harness	2,159	31	7	3,85	3,61	0,47	0,72
36		Pasang cable comp speedometer	5,308	31	4	7,00	6,76	3,62	3,87
37		Putar nutcable comp speedometer	2,608	31	8	4,29	4,05	0,92	1,17
38	11.	Connect Coupler switch light, lighting	_7,279	36	14	9,73	9,49	4,83	5,08
39	**	Connect Coupler winker, horn, dimmer	6,120	36	17	8,57	8,33	3,67	3,92
40		Ambil pipe comp steering handle sub	2,401	33	8	4,31	4,07	0,49	0,74
41	12	Masukkan pin housing und throt	2,817	33	11	4,73	4,49	0,91	1,16
42	12	Kencangkan screw pan	2,801	33	16	4,71	4,47	0,89	1,14
43		Pasang weight A,torque boit flange	5,652	33	13	7,56	7,32	3,74	3,99
44		Pasang pipe STH sub pada CHR sub	3,917	36	9	5,83	5,59	2,01	2,26
45	13	Masukan cable comp throttle ke CHR	1,974	36	11	3,88	3,64	0,06	0,31
46	15	Masukan cable comp throttle ke guide	4,252	36	11	6,16	5,92	2,34	2,59
47	-	Letakkan di conveyer	3,090	36	16	5,00	4,76	1,18	1,43
48	14	Pukul kabel kaliver	2,810	29	3	3,99	3,75	1,63	1,88
49	14	Screw tapping kuning 2 pcs	8,080	29	-6	9,26	9,02	6,90	7,15
50	15	Connect cable trotle	4,737	27	- 5	6,87	6,63	2,60	2,85
51	15	Connect cable horn atas	5,924	27	9	8,06	7,82	3,79	4,04
52	16	Pasang rubber tail light, collar horn assy	4,900	30	18	6,60	6,36	3,20	3,45
53	100	Connect cable horn bawah	5,143	30	23	6,84	6,60	3,45	3,70
54	17	Putar/Kencangkan nut cable throtle	4,232	34	12	5,62	5,38	2,84	3,09
55	17	Pasang CHF ke CHR	5,424	34	20	6,81	6,57	4,04	4,29
56		Pasang screw washer 4x16 2 pcs	2,617	30	- 5	3,78	3,54	1,45	1,70
57	18	Pasang screw washer 4x16 2 pcs	2,950	30	9	4,11	3,87	1,79	2,04
58	10	Balik	0,969	30	14	2,13	1,89	-0,20	0,05
59		Screw pan belakang	3,945	30	13	5,11	4,87	2,78	3,03
60		Pasang screw washer 4x16 1 pcs	2,973	30	8	4,05	3,81	1,90	2,15
61	19	Pasang screw washer 4x12 2 pcs	3,508	30	16	4,59	4,35	2,43	2,68
62		bal k	2,014	30	13	3,09	2,85	0,94	1,19
63	20	Pasang screw wash (kanan depan atas)	2,652	47	16	3,89	3,65	1,41	1,66
64	20	Pasang screw wash (kiri depan atas)	2,807	47	10	4,05	3,81	1,57	1,82
65	1	Ambil Grip L Handle, masukkan kellem	4,096	32	- 5	6,52	6,28	1,68	1,93
-66	21	Gulung cable hose comp front brake	1,978	32	8	3,40	3,16	0,56	0,81
67		Keluarkan grip L Handle, pasangkan	4,603	32	7	7,02	6,78	2,18	2,43
68	22	Pasang weight handle A dan screw oval	4,710	32	12	6,26	6,02	3,16	3,41
69	22	Letakkan di kereta finish good	6,047	32	00	7,60	7,36	4,50	4,75
70		Letakkan STH assy di atas jig test	3,785	24	9	6,54	6,30	1,03	1,28
71	23	Tes Elektrik	22,946	24	19	27,70	27,46	18,19	18,44
72		Letakkan steering handle assy di kereta	3,553	24	ω	6,31	6,07	0,79	1,04

Kesimpulan:

- Semua nilai N' < n, maka semua data dinyatakan cukup
- Nilai min > BKB dan nilai max < BKA, maka data dinyatakan seragam

• Lampiran 7: Uji kecukupan dan keseragaman data waktu siklus Steering

Handle Tipe X

No	WS	Deskripsi Elemen	Rata- Rata	n	N'	ВКА	Max	вкв	Min
1	1	Mengambil CHT, cek visual	6,09	33	8	8,2	7,2	4	5
2	1	Memasang nut spring	9,31	33	8	11	10	7,2	8,2
3	2	Mengambil CHT sub	0,93	36	8	1	1	0,9	1,9
4	- 2	Mark Honda, letakkan di meja	7,24	36	8	8,3	7,3	6,2	7,2
5	3	Mengambil CHF	1	32	4	2	0,9	0	1,1
- 6	١	Memasang nut clip	8,87	32	4	9,8	8,8	7,9	8,9
7		Mengambil CHF sub	1,23	42	- 5	1,6	0,5	0,9	1,9
8		Memasang light assy,head&clip	1,57	42	- 7	2,9	1,9	0,2	1,3
9	4	Memasang bolt adjust	3,81	42	6	5,1	4,1	2,5	3,5
10		Memasang 2 clamp & nut hex	4,88	42	8	6,2	5,2	3,5	4,6
11		Meletakkan ke stasiun berikutnya	1,22	42	6	1,6	0,5	0,9	1,9
12		Mengambil pipe comp STH	1,69	30	6	2,9	1,9	0,4	1,5
13	5	Memasukkan Weight B kanan	5,98	30	6	9,2	8,2	2,7	3,8
14	-	Memasukkan Weight B kiri	4,94	30	7	8,2	7,1	1,7	2,7
15		Meletakkan ke stasiun berikutnya	0,55	30	9	0,8	0,8	0,3	1,3
16	6	Memasang Stoper cable dan screw pan	9,13	34	12	12	11	6,7	7,7
17	,	Memasang lever choke dan screw pan	5,1	34	14	7,5	6,5	2,7	3,7
18		Mengambil pipe comp STH sub	3,03	30	9	4,4	3,4	1,6	2,6
19	-4	Memasang Set M/C assy front brake&throtle	1,57	30	-8	- 3	2	0,1	1,2
20	7	Mengencangkan bolt flange	3,64	30	8	5,1	4	2,2	3,3
21		Memberi marking pada socket	2,89	30	8	4,3	3,3	1,5	2,5
22		Merenggangkan guide cable STH	0,57	30	15	_ 1	_ 1	0,1	1,2
23		Menggabungkan housing Und Throt	5,5	29	29	8,6	7,5	2,4	3,5
24		Mengolesi grease ujung hose throttle	2,33	29	25	4,4	3,4	0,2	1,3
25	8	Memasang grip Comp Throt	2,51	29	24	4,6	3,6	0,4	1,5
26		Menggabungkan dg housing up throt	2	29	23	2,1	1	1,9	- 3
27		Mengencangkan screw pan, letakkan	3,86	29	26	6,9	5,9	0,8	1,8
28		Mengambil CHR	4,22	37	19	6,7	5,7	1,7	2,7
29	0	Memasang nut clip	3,26	37	21.	5,8	4,8	0,7	1,8
30	-	Memasang SW Unit Dimmer, Horn, winker	2,31	37	23	3,8	2,8	0,8	1,8
31		Memasang SW Unit Start, Lighting	1,91	37	18	3,4	2,4	0,4	1,4
32	1	Mengambil CHR sub	1,05	30	5	1,7	0,7	0,4	1,4
38	10	Memasang spidometer sub ke CHR	1,57	30	10	2,2	1,2	0,9	2
34	10	Memasang screw tapping	7,41	30	7	9,1	8	5,8	6,8
35		Connect coupler switch starter	4,59	30	9	6,2	5,2	2,9	4

Uji kecukupan dan keseragaman data waktu siklus *Steering Handle* Tipe X (lanjutan)

$\overline{}$	_		_	$\overline{}$	-	-	-		$\overline{}$
No	WS	Deskripsi Elemen	Rata-	n	N°	ВКА	Max	BKB	Min
		,	Rata						
36		Mengambil speedometer Assy	3,027	31	5	4,7	3,67	1,34	2,4
37		Memasang relay assy winker	2,075	31	7	3,8	2,72	0,39	1,4
38	11	Connect coupler sub harness	2,159	31	7	3,8	2,81	0,47	1,5
39		Memasang cable comp speedometer	5,308	31	4	7	5,96	3,62	4,7
40		Memutar nutcable comp speedometer	2,608	31	8	4,3	3,25	0,92	2
41	12	Connect Coupler switch light, lighting	7,279	36	14	9,7	8,69	4,83	5,9
42		Connect Coupler winker,horn,dimmer	6,12	36	17	8,6	7,53	3,67	4,7
43		Mengambil pipe comp steering handle sub	2,401	33	8	4,3	3,27	0,49	1,5
44	13	Memasukkan pin housing und throt	2,817	33	_ 11	4,7	3,69	0,91	1,9
45		Mengencangkan screw pan	2,801	33	16	4,7	3,67	0,89	1,9
46		Memasang weight A,torque bolt flange	3,652	33	13	7,6	6,52	3,74	4,8
47		Memasang pipe STH sub pada CHR sub	3,917	36	9	5,8	4,79	2,01	3
48	14	Memasukkan cable comp throttle ke CHR	1,974	36	11	3,9	2,84	0,06	1,1
49	-	Memasukkan cable comp throttle ke guide	4,252	36	-11	6,2	5,12	2,34	3,4
50	-	Letakkan di conveyer	3,09	36	16	5	3,96	1,18	2,2
51	15	Memasang 2 pcs screw tapping	7,213	38	- 4	8,3	7,29	6,1	7,1
52		Connect cable front top switch	5,277	38	7	6,4	5,35	4,16	5,2
53	16	Memutar dan mengencangkan nut cabble	4,869	31	- 6	6,5	5,48	3,22	4,3
54	10	Merakit CHF ke CHR	8,429	31	- 5	10	9,04	6,78	7,8
33	-	Memasang collar rubber cover handle MT	2,739	33	10	4,7	3,67	0,77	1,8
36	17	Memasang screw washer samping kanan	5,358	33	9	7,3	6,29	3,38	4,4
57	-/-	Memasang screw washer samping kiri	3,879	33	9	5,9	4,81	1,91	2,9
38		Membalik STH sub ke arah belakang	0,838	33	. 8	1,4	0,37	0,26	1,3
39	1	Memasang screw washer ke CHR kiri atas	2,052	32	6	3,3	2,29	0,78	1,8
60	18	Memasang screw washer ke CHR kanan atas	2,722	32	- 8	4	2,96	4,45	2,5
61	10	Memasang screw washer ke CHR kiri bawah	2,944	32	8	4,2	3,18	1,67	2,7
62		Memasang screw washer ke CHR kanan bawah	2,771	32	9	4	3,01	1,49	2,5
63		Memasang screw pan pada bagian CHR tengah	1,775	33	- 6	3	1,95	0,56	1,6
64	19	Memasang screw wash (kiri belakang)	2,7	33	7	18,9	2,88	1,48	2,5
65		Memasang screw wash (kanan belakang)	2,491	33	8	3,7	2,67	1,27	2,3
66		Memasang screw taping kanan	3,651	33	9	4,9	3,83	2,43	3,5
67		Mengambil CHT dari Stasiun 2	1,541	38	10	3	_ 2	0,04	1,1
68	20	Memasang CHT ke STH Sub	3,988	38	13	3,3	4,45	2,49	3,5
69		Memasang screw tapping kiri	4,252	38	12	5,8	4,71	2,75	3,8
70	10000	Mengambil Grip L Handle, masukkan ke lem	4,096	32	. 5	5,3	4,3	2,85	3,9
71	21	Membalik STH sub ke arah depan	1,226	32	11	4,5	0,48	0,98	_2
72	4.	Menggulung cable hose comp front brake	1,978	32	12	3,2	2,18	0,74	1,8
73		Mengeluarkan grip L Handle, pasangkan	4,603	32	- 6	5,8	4,81	3,36	4,4
74	22	Memasang weight handle A dan screw oval	4,71	34	12	6,3	5,22	3,16	4,2
75	22	Meletakkan STH langsung ke kereta	6,047	34	8	7,6	6,56	4,5	3,5
76		Meletakkan STH ke Stasiun kerja inspeksi	3,785	32	9	6,5	3,3	1,03	2,1
77	23	Melakukan tes elektrik	22,95	32	19	28	26,7	18,2	19
78		Meletakkan STH dari stasiun inspeksi ke kereta	3,553	32	8	6,3	5,27	0,79	1,8
_				_	_				

Kesimpulan:

- Semua nilai N' < n, maka semua data dinyatakan cukup
- Nilai min > BKB dan nilai max < BKA, maka data dinyatakan seragam

• Lampiran 8 : Perhitungan Waktu Standar Elemen Kerja pada Lintas Perakitan *Steering Handle* Tipe Y

s.	ctio	n : General Subassembly Steering Handle 2	DR Tipe VWR	Date	of Stud	ly : Feb	ruary-M	arch 201:	1				Opera	etor:	Α						
36	CLIO	1. General Subassembly Steering Handle 2	zo Tipe KWb	Study	/ by	: Wic	dhi Wah	yuniarti					Equip	ment : Sto	pwatch						
				The same		RATIN	VG	100.40						ALLOWA	ANCE						
No	WS	Description of Element	AVERAGE	Skill	Effort	Condi tion	Consis tency	Total Rating	Normal Time	Perso nal Need	Basic Fatigue		Light ing	Athmosp here Condition	Close Attenti on	Noise Level	Mono tony	Tedi uous	Total Allow ance	Standar Time	Waktu Stasiun
1	1	Ambil CHF,cek	4,00692308	0,00	-0,04	-0,03	-0,02	91%	3,6463	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	4,22971	17,707
2	1	Pasang strip CHF kanan, letakkan	12,7673077	0,00	-0,04	-0,03	-0,02	91%	11,6183	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	13,4772	17,707
3	2	Strip CHF kiri	13,4182353	0,00	0,00	-0,03	-0,02	95%	12,7473	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	14,7869	16,27
4	4	Letakkan di shootter	1,34588235	0,00	0,00	-0,03	-0,02	95%	1,27859	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	1,48316	10,27
5		Ambil CHF	0,74363636	-0,05	-0,04	-0,03	-0,02	86%	0,63953	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	0,74185	
6	3	Pasang mark honda	7,20545455	-0,05	-0,04	-0,03	-0,02	86%	6,19669	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	7,18816	17,481
- 7	_	Pasang 4 nut clip	8,94727273	-0,05	-0,04	-0,03	-0,02	86%	7,69465	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	8,9258	17,401
8		Letakkan ke shooter	0,62636364	-0,05	-0,04	-0,03	-0,02	86%	0,53867	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	0,62486	
9		Ambil pipe comp STH	1,69233333	0,00	0,00	-0,03	-0,02	95%	1,60772	5%	4%	2%	0%	1%	0%	2%	1%	2%	17%	1,88103	
10 11	4	Masukkan Weight B kanan	5,97533333	0,00	0,00	-0,03	-0,02	95%	5,67657	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	6,58482	14.515
	-	Masukkan Weight B kiri	4,93583333	0,00	0,00	-0,03	-0,02	95%	4,68904	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	5,43929	14,515
12		Letakkan ke sation	0,54833333	0,00	0,00	-0,03	-0,02	95%	0,52092	5%	4%	2%	0%	1%	0%	2%	1%	2%	17%	0,60947	
13	5	Pasang Stoper cable, screw pan	9,12852941	0,00	0,00	-0,03	-0,02	95%	8,6721	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	10,0596	15.683
14	_	Pasang lever choke, screw pan	5,10294118	0,00	0,00	-0,03	-0,02	95%	4,84779	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	5,62344	15,005
15		Ambil pipe comp STH sub	3,02533333	0,00	0,00	-0,03	-0,02	95%	2,87407	5%	4%	2%	0%	1%	0%	2%	1%	2%	17%	3,36266	.
16		Set M/C assy front brake&throtle	1,56766667	0,00	0,00	-0,03	-0,02	95%	1,48928	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	1,72757] !
17	6	Kencangkan bolt flange	3,63866667	0,00	0,00	-0,03	-0,02	95%	3,45673	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	4,00981	12,909
18		Beri marking pada socket	2,89133333	0,00	0,00	-0,03	-0,02	95%	2,74677	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	3,18625	
19		Renggangkan guide cable STH	0,56533333	0,00	0,00	-0,03	-0,02	95%	0,53707	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	0,623	
20		Gabungkan housing Und Throt	5,50137931	0,00	-0,04	-0,03	-0,02	91%	5,00626	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	5,80726	
21		Olesi grease ujung hose throttle	2,32896552	0,00	-0,04	-0,03	-0,02	91%	2,11936	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	2,45846]
22	7	Pasang grip Comp Throt	2,50689655	0,00	-0,04	-0,03	-0,02	91%	2,28128	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	2,64628	17,093
23		Gabungkan dg housing up throt	1,99758621	0,00	-0,04	-0,03	-0,02	91%	1,8178	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	2,10865]
24		Kencangkan screw pan,letakkan	3,85827586	0,00	-0,04	-0,03	-0,02	91%	3,51103	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	4,0728	

Perhitungan Waktu Standar Elemen Kerja pada Lintas Perakitan Steering Handle Tipe Y (Lanjutan)

			D T: 1011D	Date	of Stud	ly : Feb	ruary-M	arch 201	1				Oper	ator:							
Se	ctioi	n : General Subassembly Steering Handle 2	B libe KWB	Study	y by	: Wi	dhi Wah	yuniarti	4000				Equi	pment : Sto	pwatch						
						RATII	NG	L ANT	11					ALLOWA							\Box
l				-			764		Normal	Perso				Athmosp	Close		Ī		Total	Standar	Waktu
No	WS	Description of Element	AVERAGE	Skill	Effort	Condi	Consis	Total	Time	nal	Basic	Stan	Light	here	Attenti	Noise	Mono	Tedi	Allow	Time	Stasiun
25		Ambil CHR	4,21810811	0,00	0,00	-0,03	-0,02	95%	4,0072	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	4,64836	
26	8	Pasang nut clip	3,26216216	0,00	0,00	-0,03	-0,02	95%	3,09905	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	3,5949	12.00
27		Psg:SW Unit Dimmer,Horn,winker	2,30891892	0,00	0,00	-0,03	-0,02	95%	2,19347	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	2,54443	12,89
28	l	Psg : SW Unit Start, Lighting	1,90756757	0,00	0,00	-0,03	-0,02	95%	1,81219	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	2,10214	
29		Ambil CHR sub	1,05433333	0,00	0,00	-0,03	-0,02	95%	1,00162	5%	4%	2%	0%	0%	. 0%	2%	1%	2%	16%	1,16188	
30	9	Pasang spidometer sub ke CHR	1,57	0,00	0,00	-0,03	-0,02	95%	1,4915	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	1,73014	16.113
31		Pasang screw tapping	7,412	0,00	0,00	-0,03	-0,02	95%	7,0414	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	8,16802	10,113
32		Connect coupler switch starter	4,58533333	0,00	0,00	-0,03	-0,02	95%	4,35607	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	5,05304	
33		Ambil speedometer Assy	3,02741935	0,00	0,00	-0,03	-0,02	95%	2,87605	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	3,33622	
34		Pasang relay assy winker	2,07451613	0,00	0,00	-0,03	-0,02	95%	1,97079	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	2,28612	i
35	10	Connect coupler sub harness	2,15870968	0,00	0,00	-0,03	-0,02	95%	2,05077	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	2,3789	16,725
36		Pasang cable comp speedometer	5,3083871	0,00	0,00	-0,03	-0,02	95%	5,04297	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	5,84984	
37		Putar nutcable comp speedometer	2,60774194	0,00	0,00	-0,03	-0,02	95%	2,47735	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	2,87373	
38	11	Connect Coupler switch light, lighting	7,27888889	0,00	0,00	-0,03	-0,02	95%	6,91494	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	8,02134	14,766
39		Connect Coupler winker,horn,dimmer	6,12	0,00	0,00	-0,03	-0,02	95%	5,814	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	6,74424	14,700
40		Ambil pipe comp steering handle sub	2,40090909	0,00	0,00	-0,03	-0,02	95%	2,28086	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	2,6458	
41	12	Masukkan pin housing und throt	2,8169697	0,00	0,00	-0,03	-0,02	95%	2,67612	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	3,1043	15.065
42		Kencangkan screw pan	2,80121212	0,00	0,00	-0,03	-0,02	95%	2,66115	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	3,08694	125,005
43		Pasang weight A,torque bolt flange	5,65181818	0,00	0,00	-0,03	-0,02	95%	5,36923	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	6,2283	
44		Pasang pipe STH sub pada CHR sub	3,91694444	0,00	-	-0,03	-0,02	95%	3,7211	5%	4%	2%	0%	1%	0%	2%	1%	2%	17%	4,35368	
45	13	Masukan cable comp throttle ke CHR	1,97416667	0,00	0,00	-0,03	-0,02	95%	1,87546	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	2,17553	14.65
46		Masukan cable comp throttle ke guide	4,25222222	0,00	0,00	-0,03	-0,02	95%	4,03961	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	4,68595	- 1,52
47		Letakkan di conveyer	3,09027778	0,00	0,00	-0,03	-0,02	95%	2,93576	5%	4%	2%	0%	1%	0%	2%	1%	2%	17%	3,43484	
48	14	Pukul kabel kaliver	2,81034483	0,00	0,00	-0,03	-0,02	95%	2,66983	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	3,097	12,001
49		Screw tapping kuning 2 pcs	8,07965517	0,00	0,00	-0,03	-0,02	95%	7,67567	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	8,90378	,
50	15	Connect cable trotle	4,73740741	0,00	0,00	-0,03	-0,02	95%	4,50054	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	5,22062	11,749
51		Connect cable horn atas	5,9237037	0,00	0,00	-0,03	-0,02	95%	5,62752	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	6,52792	-,
52	16	Pasang rubber tail light,collar horn assy	4,9	0,00	0,00	-0,03	-0,02	95%	4,655	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	5,3998	11,068
53		Connect cable horn bawah	5,14333333	0,00	0,00	-0,03	-0,02	95%	4,88617	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	5,66795	-,

Universitas Indonesia

Perhitungan Waktu Standar Elemen Kerja pada Lintas Perakitan Steering Handle Tipe Y(Lanjutan)

				Date	of Stud	hı : Eabı	cuan-Ma	arch 2011		Diam.	The same of		Opera	etor:							
Se	ctio	n : General Subassembly Steering Handle 2	B Tipe KWB			_					_										
\vdash				Study	by	_		yuniarti		_		· _	Equip	ment : Sto							$\overline{}$
						RATIN	IG.						-	ALLOW	ANCE						
No	we	Description of Element	AVERAGE	- 4		Condi	c:-	Total	Normal	Perso	D1-	C	Links	Athmosp	Close	N - :	Mono	:	Total	Standar	Waktu
IVO	WJ	Description of Element	AVENAGE	Skill	Effort	condi	Consis	Dating	Time	nal	Basic	Stan	Light	here	Attenti	Noise	. IVIONO	rear	Allow	Time	Stasiun
54		Putar/Kencangkan nut cable throtle	4,23205882	0,00	0,00	-0,03	-0,02	95%	4,02046	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	4,66373	10.511
55	17	Pasang CHF ke CHR	5,42382353	0,00	0,00	-0,03	-0,02	95%	5,15263	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	5,97705	10,641
56		Pasang screw washer 4x16 2 pcs	2,617	0,00	0,00	-0,03	-0,02	95%	2,48615	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	2,88393	
57	18	Pasang screw washer 4x16 2 pcs	2,95	0,00	-0,04	-0,03	-0,02	91%	2,6845	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	3,11402	11,413
58		Balik	0,96866667	0,00	0,00	-0,03	-0,02	95%	0,92023	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	1,06747	11,415
59		Screw pan belakang	3,945	0,00	0,00	-0,03	-0,02	95%	3,74775	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	4,34739	
60		Pasang screw washer 4x16 1 pcs	2,973	0,00	0,00	-0,03	-0,02	95%	2,82435	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	3,27625	
61	19	Pasang screw washer 4x12 2 pcs	3,508	0,00	-0,04	-0,03	-0,02	91%	3,19228	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	3,70304	9,1984
62		balik	2,01366667	0,00	0,00	-0,03	-0,02	95%	1,91298	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	2,21906	
63	20	Pasang screw wash (kanan depan atas)	2,65170213	0,00	0,00	-0,03	-0,02	95%	2,51912	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	2,92218	6,0157
64	20	Pasang screw wash (kiri depan atas)	2,80723404	0,00	0,00	-0,03	-0,02	95%	2,66687	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	3,09357	0,0137
65		Ambil Grip L Handle, masukkan ke lem	4,095625	0,00	0,00	-0,03	-0,02	95%	3,89084	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	4,51338	
66	21	Gulung cable hose comp front brake	1,9784375	0,00	0,00	-0,03	-0,02	95%	1,87952	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	2,18024	11,766
67		Keluarkan grip L Handle, pasangkan	4,603125	0,00	0,00	-0,03	-0,02	95%	4,37297	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	5,07264	
68	22	Pasang weight handle A dan screw oval	4,7096875	0,00	0,00	-0,03	-0,02	95%	4,4742	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	5,19008	11,854
69		Letakkan di kereta finish good	6,046875	0,00	0,00	-0,03	-0,02	95%	5,74453	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	6,66366	11,034
70		Letakkan STH assy di atas jig test	3,7846875	-0,05	0,00	-0,03	-0,02	90%	3,40622	5%	4%	2%	0%	2%	0%	2%	1%	2%	18%	4,01934	
71	23	Tes Elektrik	22,9459375	-0,05	0,00	-0,03	-0,02	90%	20,6513	5%	4%	2%	0%	0%	0%	2%	1%	_	16%	23,9556	- 1
72		Letakkan steering handle assy di kereta	3,5534375	-0,05	0,00	-0,03	-0,02	90%	3,19809	-5%	4%	2%	0%	2%	0%	2%	1%	2%	18%	3,77375	

• Lampiran 9: Perhitungan Waktu Standar Elemen Kerja pada Lintas Perakitan Steering Handle Tipe X

	Secti	on : General Subassembly Steering Handle 2	R Tine	Date	of Stur	dv : Feb	ruary-N	larch 20	11				Oper	ator:	-						
		KWW		Study		_	dhi Wal				-			pment:	Stopwa	tch					
		N.V.V.		occury	Oy.	RATIN		iyaman					Equi	ALLOV		cerr					$\overline{}$
No	WS	Description of Element	AVERAGE	Skill	Effort	Condi	Consis	Total Rating	Normal Time	Perso nal Need	Basic Fatig ue			Athmo sphere Conditi on	Close Attent ion	Noise Level	Mono tony	Tedi uous	Total Allow ance	Standar Time	Waktu Stasiun
1	1	Mengambil CHT, cek visual	6,09455	0,00	-0,04	-0,03	-0,02	91%	5,546	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	6,4334	16.258
2	_	Memasang nut spring	9,30758	0,00	-0,04	-0,03	-0,02	91%	8,4699	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	9,82508	10,230
3	2	Mengambil CHT sub	0,93194	0,00	0,00	-0,03	-0,02	95%	0,8853	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	1,027	9.0018
4	-	Mark Honda, letakkan di meja	7,23667	0,00	0,00	-0,03	-0,02	95%	6,8748	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	7,97481	. 5,0010
5	3	Mengambil CHF	0,99813	0,00	0,00	-0,03	-0,02	95%	0,9482	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	1,09993	10.875
6	ŭ	Memasang nut clip	8,87	0,00	0,00	-0,03	-0,02	95%	8,4265	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	9,77474	10,075
7		Mengambil CHF sub	1,22786	0,00	0,00	-0,03	-0,02	95%	1,1665	5%	4%	2%	- 0%	0%	0%	2%	1%	2%	16%	1,3531	_
8		Memasang light assy,head&clip	1,57048	0,00	0,00	-0,03	-0,02	95%	1,492	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	1,73066	-l I
9	4	Memasang bolt adjust	3,80619	0,00	-,	-0,03		95%	3,6159	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	4,19442	13,992
10		Memasang 2 clamp & nut hex	4,87738	0,00	0,00	-0,03	-0,02	95%	4,6335	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	-/]
11		Meletakkan ke stasiun berikutnya	1,215	0,00		-0,03	-0,02	95%	1,1543	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	1,33893	
12		Mengambil pipe comp STH	1,69233	0,00	0,00	-0,03	-0,02	95%	1,6077	5%	4%	2%	0%	1%	0%	2%	1%	2%	17%	1,88103]
13		Memasukkan Weight B kanan	5,97533	0,00	0,00	-0,03	-0,02	95%	5,6766	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	6,58482	14.515
14	-	Memasukkan Weight B kiri	4,93583	0,00	0,00	-0,03	-0,02	95%	4,689	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	5,43929	- ',
15		Meletakkan ke stasiun berikutnya	0,54833	0,00	0,00	-0,03	-0,02	95%	0,5209	5%	4%	2%	0%	1%	0%	2%	1%	2%	17%	0,60947	$oxed{oxed}$
16	6	Memasang Stoper cable dan screw pan	9,12853	0,00	0,00	-0,03	-0,02	95%	8,6721	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	10,0596	15.683
17	_	Memasang lever choke dan screw pan	5,10294	0,00	0,00	-0,03	-0,02	95%	4,8478	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	5,62344	,
18		Mengambil pipe comp STH sub	3,02533	0,00	0,00	-0,03	-0,02	95%	2,8741	5%	4%	2%	0%	1%	0%	2%	1%	2%	17%	3,36266	<u> </u>
19		Memasang Set M/C assy front brake&throtle	_	0,00	0,00	-0,03	-0,02	95%	1,4893	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	1,72757]
20	7	Mengencangkan bolt flange	3,63867	0,00	0,00	-0,03	-0,02	95%	3,4567	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	4,00981	- I
21		Memberi marking pada socket	2,89133	0,00	0,00	-0,03	-0,02	95%	2,7468	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	3,18625	- 1
22		Merenggangkan guide cable STH	0,56533	0,00	0,00	-0,03	-0,02	95%	0,5371	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	0,623	

Universitas Indonesia

Perhitungan Waktu Standar Elemen Kerja pada Lintas Perakitan Steering Handle Tipe X (Lanjutan)

		an Canasal Subaggambly Stagging 11 41- 3	D Tine	Dete	-6 Ce	door Earl		In cale 22	111				0000								
٤	ecti	on : General Subassembly Steering Handle 2	впре	-			oruary-M						Oper								
		KWW		Stud	у бу	_	dhi Wah	nyuniar	1				Equip	oment: S		icn					
						RATIN	VG		Normal	Perso	Basic			ALLOV	/ANCE Close				Total	Standar	Waktu
No	WS	Description of Element	AVERAGE	Skill	Effort	Condi tion	Consis tency	Total Rating	Time	nal	Fatig	Stan ding	Ligh ting	sphere Conditi	Attent	Noise Level	Mono tony	Tedi uous	Allow	Time	Stasiun
23		Menggabungkan housing Und Throt	5,50138	0,00	-0,04	-0,03	-0,02	91%	5,0063	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	5,80726	
24		Mengolesi grease ujung hose throttle	2,32897	0,00	-0,04	-0,03	-0,02	91%	2,1194	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	2,45846	
25	8	Memasang grip Comp Throt	2,5069	0,00	-0,04	-0,03	-0,02	91%	2,2813	5%	4%	2%	0%	0%	△ 0%	2%	1%	2%	16%	2,64628	17,093
26		Menggabungkan dg housing up throt	1,99759	0,00	-0,04	-0,03	-0,02	91%	1,8178	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	2,10865	
27		Mengencangkan screw pan, letakkan	3,85828	0,00	-0,04	-0,03	-0,02	91%	3,511	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	4,0728	
28		Mengambil CHR	4,21811	0,00	0,00	-0,03	-0,02	95%	4,0072	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	4,64836	
29	9	Memasang nut clip	3,26216	0,00	0,00	-0,03	-0,02	95%	3,0991	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	3,5949	12.89
30	9	Memasang SW Unit Dimmer, Horn, winker	/2,30892	0,00	0,00	-0,03	-0,02	95%	2,1935	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	2,54443	12,09
31		Memasang SW Unit Start, Lighting	1,90757	0,00	0,00	-0,03	-0,02	95%	1,8122	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	2,10214	1
32		Mengambil CHR sub	1,05433	0,00	0,00	-0,03	-0,02	95%	1,0016	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	1,16188	
33	10	Memasang spidometer sub ke CHR	1,57	0,00	0,00	-0,03	-0,02	95%	1,4915	5%	4%	2%	0%	0%	096	2%	1%	2%	16%	1,73014	16,113
34	10	Memasang screw tapping	7,412	0,00	0,00	-0,03	-0,02	95%	7,0414	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	8,16802	10,113
35		Connect coupler switch starter	4,58533	0,00	0,00	-0,03	-0,02	95%	4,3561	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	5,05304	1
36		Mengambil speedometer Assy	3,02742	0,00	0,00	-0,03	-0,02	95%	2,876	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	3,33622	
37		Memasang relay assy winker	2,07452	0,00	0,00	-0,03	-0,02	95%	1,9708	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	2,28612	1
38	11	Connect coupler sub harness	2,15871	0,00	0,00	-0,03	-0,02	95%	2,0508	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	2,3789	16,725
39		Memasang cable comp speedometer	5,30839	0,00	0,00	-0,03	-0,02	95%	5,043	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	5,84984	1
40		Memutar nutcable comp speedometer	2,60774	0,00	0,00	-0,03	-0,02	95%	2,4774	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	2,87373	1
41	12	Connect Coupler switch light, lighting	7,27889	0,00	0,00	-0,03	-0,02	95%	6,9149	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	8,02134	14,766
42	12	Connect Coupler winker,horn,dimmer	6,12	0,00	0,00	-0,03	-0,02	95%	5,814	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	6,74424	14,700
43		Mengambil pipe comp steering handle sub	2,40091	0,00	0,00	-0,03	-0,02	95%	2,2809	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	2,6458	
44	13	Memasukkan pin housing und throt	2,81697	0,00	0,00	-0,03	-0,02	95%	2,6761	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	3,1043	15,065
45	15	Mengencangkan screw pan	2,80121	0,00	0,00	-0,03	-0,02	95%	2,6612	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	3,08694	15,005
46		Memasang weight A,torque bolt flange	5,65182	0,00	0,00	-0,03	-0,02	95%	5,3692	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	6,2283	1
47		Memasang pipe STH sub pada CHR sub	3,91694	0,00	0,00	-0,03	-0,02	95%	3,7211	5%	4%	2%	0%	1%	0%	2%	1%	2%	17%	4,35368	
48	1.4	Memasukkan cable comp throttle ke CHR	1,97417	0,00	0,00	-0,03	-0,02	95%	1,8755	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	2,17553	14.65
49	14	Mema Perhitemgam Wakte Stand a	r Ælem	enoi	Kenja	pad	a Egippt	as ⁹ Pe	rakita	n Stee	ering	Hà	idle	Tipe:	X (1%a	mi m ta	an)1%	2%	16%	4,68595	14,65
50		Letakkan di conveyer	3,09028			-0,03		95%	2,9358	5%	4%	2%	0%	1%	0%	2%	1%	2%	17%	3,43484	
	erti	on : General Subassembly Steering Handle 2B	Tine KWV	, [oate of	Study :	: Februar	y-March	2011	•		•	Ор	erator:		<u>'</u>	•				•
		on . Series of Subassembry Steering Hallare 25	pc kwv		Study by	/	: Widhi \	Nahyun	iarti				Eq	uipment	: Stopwa	atch					
						R.	ATING							ALLC	WANCE					_	
No	ws	Description of Element	AVEF	RAGE	Skill Ef	fort Co	ndi Con	sis Tot	Norm			T Sta	n Lig	Athmo h spher	LClose	INoise	e Mond	Tedi	Total	Standar Time	Waktu Stasiun

	Section : General Subassembly Steering Handle 2B Tipe KWW				Date of Study : February-March 2011								Operator:										
	Jecti	Section . General Subassembly Steering Handle 2b Tipe KWW				Study by : Widhi Wahyuniarti									Equipment : Stopwatch								
						RATIN	NG						ALLOWANCE										
N	ws	Description of Element		Skill	Effort	tion		Total Rating		nal Need	Fatig ue	Stan	ting	Athmo sphere Conditi on	Close Attent ion	Noise	Mono tony		Allow	Standar Time	Waktu Stasiun		
5	1 15	Memasang 2 pcs screw tapping	Peranc	aŋga	an, թ	ang _{os} .	., - V ,V, <u>V</u>	ihi ₉ yya	ahyugi	artı₅ <u>"</u>	I Ų∮,	2 0 1	0%	0%	0%	2%	1%	2%	16%	7,94832	13.763		
5	13	Connect cable front top switch	5,27658	0,00	0,00	-0,03	-0,02	95%	5,0128	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	5,81479	13,703		
5	16	Memutar dan mengencangkan nut cabble	4,86871	0,00	0,00	-0,03	-0,02	95%	4,6253	5%	4%	2%	0%	0%	0%	2%	1%	2%	16%	5,36532	14.654		

