

# **UNIVERSITAS INDONESIA**

# DEAKTIVASI DAN REGENERASI KATALIS HZSM-5 PADA BERBAGAI RASIO Si/Al DALAM REAKSI ASETON MENJADI HIDROKARBON

## **SKRIPSI**

**ALTHA MARISSA 0806368263** 

FAKULTAS TEKNIK
PROGRAM STUDI TEKNIK KIMIA
DEPOK
JUNI 2011



# **UNIVERSITAS INDONESIA**

# DEAKTIVASI DAN REGENERASI KATALIS HZSM-5 PADA BERBAGAI RASIO Si/Al DALAM REAKSI ASETON MENJADI HIDROKARBON

## **SKRIPSI**

Diajukan sebagai salah satu syarat untuk memperoleh gelar sarjana

# **ALTHA MARISSA** 0806368263

FAKULTAS TEKNIK
PROGRAM STUDI TEKNIK KIMIA
DEPOK
JUNI 2011

# HALAMAN PERNYATAAN ORISINALITAS

Skripsi ini adalah hasil karya saya sendiri,

dan semua sumber baik yang dikutip maupun dirujuk

telah saya nyatakan dengan benar.

Nama : Altha. Marissa

NPM : 0806368263

Tanda Tangan

Tanggal: Juni 2011

#### HALAMAN PENGESAHAN

Skripsi ini diajukan oleh

Nama : Altha. Marissa NPM : 0806368263 Program Studi : Teknik Kimia

Judul Skripsi : Deaktivasi dan Regenerasi Katalis HZSM-5 pada

Berbagai Rasio Si/Al dalam Reaksi Aseton Menjadi

Hidrokarbon

Telah berhasil dipertahankan di hadapan Dewan Penguji dan diterima sebagai bagian persyaratan yang diperlukan untuk memperoleh gelar Sarjana Teknik pada Program Studi Teknik Kimia, Fakultas Teknik, Universitas Indonesia

# **DEWAN PENGUJI**

Pembimbing : Ir. Setiadi, M.Eng

Penguji : Prof. Dr. Ir. M. Nasikin, M.Eng

Penguji : Dr. Ir. Sukirno, M.Eng

Penguji :Dr. Heri Hermansyah, ST., M.Eng (

Ditetapkan di : Depok

Tanggal : Juni 2011

#### UCAPAN TERIMA KASIH

Puji syukur saya panjatkan kepada Tuhan Yang Maha Esa, karena atas berkat dan rahmat-Nya, saya dapat menyelesaikan skripsi ini. Penulisan skripsi ini dilakukan dalam rangka memenuhi salah satu syarat untuk mencapai gelar Sarjana Teknik Jurusan Teknik Kimia pada Fakultas Teknik Universitas Indonesia. Saya menyadari bahwa, tanpa bantuan dan bimbingan dari berbagai pihak, dari masa perkuliahan sampai pada penyusunan skripsi ini, sangatlah sulit bagi saya untuk menyelesaikan skripsi ini. Oleh karena itu, saya mengucapkan terima kasih kepada:

- 1. Ir. Setiadi, M.Eng. selaku dosen pembimbing yang telah menyediakan waktu, tenaga dan pikiran, serta kesabaran untuk mengarahkan saya dalam penyusunan seminar ini;
- 2. Dr. Ir. Widodo W. Purwanto, DEA. selaku Ketua Departemen Teknik Kimia Fakultas Teknik Universitas Indonesia;
- 3. Ir. Sukirno, M.Eng. selaku Pembimbing Akademik penulis;
- 4. Seluruh Dosen Teknik Kimia FTUI yang telah memberikan ilmu dan membagi wawasan kepada penulis;
- 5. Papah, mamah, kakak, adik, ponakan, mas yuyut dan keluarga tercinta yang senantiasa memberikan dukungan moril dan materil;
- 6. Mas Eko, Kang Djajat, Mang Ijal, Tiwi sebagai penangung jawab laboratorium yang selalu mendampingi selama penelitian ini.
- 7. Lia, Anggi, Novi, Eci, Dora, Tatink, Gondang, Haris, Antony, Friadi atas dukungan dan persahabatannya dalam bertukar informasi dan wawasan yang ada;
- 8. Damar dan Yasir atas kerjasamanya dalam pengerjaan skripsi ini;
- 9. Rekan-rekan mahasiswa Teknik Kimia Ekstensi '08 atas semua kerjasamanya;
- 10. Serta berbagai pihak yang tidak dapat disebutkan satu persatu untuk segala kontribusinya.

Akhir kata, saya berharap Tuhan Yang Maha Esa berkenan membalas segala kebaikan semua pihak yang telah membantu. Semoga skripsi ini membawa manfaat bagi pengembangan ilmu.

Depok, 20 Desember 2006



# HALAMAN PERNYATAAN PERSETUJUAN PUBLIKASI TUGAS AKHIR UNTUK KEPENTINGAN AKADEMIS

Sebagai sivitas akademik Universitas Indonesia, saya yang bertanda tangan di bawah ini:

Nama : Altha. Marissa
NPM : 0806368263
Program Studi : Teknik Kimia
Departemen : Teknik Kimia

Fakultas : Teknik Jenis karya : Skripsi

demi pengembangan ilmu pengetahuan, menyetujui untuk memberikan kepada Universitas Indonesia **Hak Bebas Royalti Noneksklusif** (*Non-exclusive Royalty-Free Right*) atas karya ilmiah saya yang berjudul:

# DEAKTIVASI DAN REGENERASI KATALIS HZSM-5 PADA BERBAGAI RASIO Si/Al DALAM REAKSI ASETON MENJADI HIDROKARBON

beserta perangkat yang ada (jika diperlukan). Dengan Hak Bebas Royalti Noneksklusif ini Universitas Indonesia berhak menyimpan, mengalihmedia/formatkan, mengelola dalam bentuk pangkalan data (*database*), merawat, dan memublikasikan tugas akhir saya selama tetap mencantumkan nama saya sebagai penulis/pencipta dan sebagai pemilik Hak Cipta.

Demikian pernyataan ini saya buat dengan sebenarnya.

Dibuat di : Depok Pada tanggal : Juni 2011 Yang menyatakan

(Altha. Marissa)

#### **ABSTRAK**

Nama : Altha Marissa

Program Studi: Teknik Kimia

Judul : Deaktivasi Dan Regenerasi Katalis HZSM-5 Pada

Berbagai Rasio Si/Al Dalam Reaksi Aseton Menjadi

Hidrokarbon.

Katalis HZSM-5 biasa digunakan untuk mengkonversi aseton menjadi hidrokarbon. Katalis ini akan mengalami deaktivasi pada waktu tertentu dan hal tersebut dipengaruhi oleh kandungan rasio Si/Al. Pada penelitian ini, katalis diuji dengan mengunakan reaktor unggun tetap (*fixed bed*), dengan variasi Si/Al 27, 75 dan 140. Karakterisasi katalis menggunakan metode BET, FT-IR dan uji keasaman. Dari penelitian diperoleh hasil bahwa katalis dengan rasio Si/Al=75 memiliki stabilitas konversi aseton selama 7 jam dan memiliki tingkat keasaman paling tinggi. Penyebab deaktivasi katalis yaitu terbentuknya kokas. Keberadaan kokas ini diamati dengan mengunakan FT-IR pada rentang 1540-1600 cm<sup>-1</sup> dan metode BET yang menunjukan penurunan luas permukaan sebesar 85-90%. Regenerasi katalis telah berhasil dilakukan dengan mengunakan udara. Luas permukaan katalis setelah regenerasi diperoleh sebesar 285,4 m²/gram dan terdapat pita kokas pada spektrum serapan FT-IR dengan rentang bilangan gelombang 1540-1600 cm<sup>-1</sup>.

Kata Kunci: Deaktivasi, Regenerasi, HZSM-5, Rasio Si/Al

#### **ABSTRACT**

Name : Altha Marissa

Program : Chemical Engineering

Title : Deactivation and Regeneration of HZSM-5 Catalyst at Various

Ratios of Si / Al Reaction of Acetone Being in Hydrocarbons.

HZSM-5 catalysts used to convert acetone into hydrocarbons. The catalyst will undergo deactivation at any given time and it is influenced by the content ratio of Si / Al. In this study, the catalyst was tested by using a fixed bed reactor (fixed bed), with variations of Si / Al 27, 75 and 140. Characterization of catalysts using the BET method, FT-IR and acidity test. From the studies obtained results that the catalyst with the ratio Si / Al = 75 has the stability of the conversion of acetone for 7 hours and has the highest acidity. The cause of catalyst deactivation is coke formation. The presence of coke is observed by using FT-IR in the range 1540-1600 cm<sup>-1</sup> and BET methods that show a decrease of 85-90% of surface area. Regeneration of the catalyst has been successfully performed by using air. The surface area of the catalyst after regeneration is obtained at 285.4 m²/gram and there is a ribbon coke in the FT-IR absorption spectrum with the wavenumber range 1540-1600 cm<sup>-1</sup>.

Keywords: Deactivation, Regeneration, HZSM-5, the ratio of Si/Al

# **DAFTAR ISI**

| HALAMAN PERNYATAAN ORISINALITAS                   | ii   |
|---------------------------------------------------|------|
| HALAMAN PENGESAHAN                                | iii  |
| KATA PENGANTAR                                    | iv   |
| HALAMAN PERNYATAAN PERSETUJUAN PUBLIKASI          | vi   |
| ABSTRAK                                           | vii  |
| ABSTRACT                                          | viii |
| DAFTAR ISI                                        | ix   |
| DAFTAR TABEL                                      | xi   |
| DAFTAR GAMBAR                                     | xii  |
|                                                   |      |
| BAB I PENDAHULUAN                                 | 1    |
| 1.1 Latar Belakang                                | 1    |
| 1.2 Perumusan Masalah                             | 3    |
| 1.3 Tujuan Penelitian                             | 3    |
| 1.4 Batasan Masalah                               | 3    |
| 1.5 Sistematika Penulisan                         | 4    |
|                                                   |      |
| BAB II TINJAUAN PUSTAKA                           | 5    |
| 2.1 Aseton                                        | 5    |
| 2.2 Katalis                                       |      |
| 2.3 Zeolit                                        | 7    |
| 2.3.1 Sejarah Zeolit                              | 7    |
| 2.3.2 Stuktur Zeolit                              | 7    |
| 2.3.3 Penggunaan Zeolit                           | 10   |
| 2.4 ZSM-5                                         |      |
| 2.5 Deaktivasi                                    | 15   |
| 2.5.1 <i>Coking</i>                               | 17   |
| 2.6 Deaktivasi Katalis                            |      |
| 2.6.1 Pembentukan Coke                            | 21   |
| 2.6.2 Pembatasan Pembentukan Coke                 | 22   |
| 2.6.3 Meminimalisir Efek Deaktivasi Coke          | 24   |
| 2.7 Regenerasi                                    |      |
| 2.8 State of the art                              | 28   |
|                                                   |      |
| BAB III METODE PENELITIAN                         | 33   |
| 3.1 Tahapan Penelitian                            | 33   |
| 3.2 Diagram Alir                                  |      |
| 3.3 Uraian Terperinci Penelitian                  |      |
| 3.3.1 Uji Reaksi Katalis                          |      |
| 3.3.2 Uji Karakteristik Katalis                   |      |
| 3.3.3 Uji Regenerasi Katalis                      |      |
| 3.4 Hasil Yang Diharankan Dalam Metode Penelitian | 42.  |

| BAB IV HASIL DAN PEMBAHASAN                               | 45 |
|-----------------------------------------------------------|----|
| 4.1 Hasil Uji Konversi Katalitik                          | 45 |
| 4.1.1 Tahap <i>Blank Tes</i>                              |    |
| 4.1.2 Deaktivasi Katalis HZSM-5 Pada Berbagai Rasio Si/A1 | 46 |
| 4.2 Karakteristik Katalis                                 | 47 |
| 4.2.1 Uji Keasaman                                        |    |
| 4.2.2 Tingkat Keasaman Dan Deaktivasi Katalis Untuk Rasio |    |
| Si/Al=27                                                  | 50 |
| 4.2.3 Karakterisasi Dengan Metode BET                     | 51 |
| 4.2.4 Karakterisasi Dengan FT-IR                          |    |
| BAB V PENUTUP                                             | 61 |
| 5.1 Kesimpulan                                            |    |
| 5.2 Saran                                                 |    |
|                                                           |    |
| DAFTAR PUSTAKA                                            | 63 |
| LAMPIRAN                                                  | 65 |
|                                                           |    |

# **DAFTAR TABEL**

| Tabel 2.1 Rangkuman State | of the art Deaktivasi Katalis HZSM-5 | 32 |
|---------------------------|--------------------------------------|----|
| Tabel 4.1 Luas Permukaan. | Volume Pori dan Luas Pori Katalis    | 53 |



# **DAFTAR GAMBAR**

| Gambar 2.1 Skema Reaksi untuk Konversi dari Aseton Menjadi              |    |
|-------------------------------------------------------------------------|----|
| Hidrokarbon dengan Menggunakan HZSM-5                                   | 5  |
| Gambar 2.2 Kerangka dasar tetrahedral                                   | 9  |
| Gambar 2.3 Unit Pembentuk Sekunder                                      | 9  |
| Gambar 2.4 Polyhedron simetris                                          | 10 |
| Gambar 2.5 Rongga selektif reaktan zeolit                               |    |
| Gambar 2.6 Rongga selektif produk                                       | 12 |
| Gambar 2.7 Perubahan keasaman zeolit                                    | 13 |
| Gambar 2.8 Grafik konversi menunjukan penurunan aktivasi katalis        | 16 |
| Gambar 2.9 Pertambahan coke sejalan dengan waktu                        | 18 |
| Gambar 2.10 Mekanisme pembentukan coke                                  | 19 |
| Gambar 2.11 Hubungan karbon dengan tingkat konversi                     | 19 |
| Gambar 2.12 Laju deaktivasi dengan katalis silica-alumina dan faujasite |    |
| Gambar 2.13 Laju coking dan rasio C/P selama cracking n-heptan sebagai  |    |
| fungsi % exchange dari kation Na <sup>+</sup>                           | 23 |
| Gambar 2.14 Model deaktivasi zeolit dengan saluran saling berhubungan   |    |
| dan tanpa rongga (co HZSM-5). (a dan b) cakupan situs; (d)              |    |
| penyumbatan pori                                                        | 24 |
| Gambar 2.15 Hubungan antara teknologi reaktor dan kecepatan deaktivasi  |    |
| katalis dalam berbagai variasi                                          | 26 |
| Gambar 2.16 State of the art Deaktivasi Katalis                         | 28 |
| Gambar 3.1 Diagram alir penelitian secara umum                          | 34 |
| Gambar 3.2 Reaktor Uji                                                  | 35 |
| Gambar 3.3 Susunan Reaktor Uji Katalis Fixed Bed Reaktor                | 37 |
| Gambar 3.4 Skema Peralatan BET                                          | 41 |
| Gambar 3.5 Susunan reaktor uji regenerasi katalis fixed bed reactor     | 42 |
| Gambar 3.6 Hasil yang diharapkan rasio 1 Si/Al (25)                     | 43 |
| Gambar 3.7 Hasil yang diharapkan rasio 2 Si/Al (75)                     | 44 |
| Gambar 3.8 Hasil yang diharapkan rasio 3 Si/Al (140)                    | 44 |

| Gambar 4.1 Deaktivasi Katalis HZSM-5 dalam Berbagai Rasio Si/Al dalam |      |
|-----------------------------------------------------------------------|------|
| Katalis HZSM-5                                                        | . 46 |
| Gambar 4.2 Katalis HZSM-5 Terdeaktivasi dan Regenerasi                | . 47 |
| Gambar 4.3 Keasaman total zeolit HZSM-5 rasio Si/Al= 27, 75 dan 140   | . 48 |
| Gambar 4.4 Deaktivasi katalis HZSM-5 dengan Berbagai Rasio Si/Al      | . 49 |
| Gambar 4.5 Penurunan Tingkat Keasaman Katalis HZSM-5 dengan Rasio     |      |
| Si/Al=27                                                              | . 50 |
| Gambar 4.6 Penurunan Kinerja Katalis HZSM-5 dengan Rasio Si/Al=27     | . 50 |
| Gambar 4.7 Luas Permukaan Katalis HZSM-5 Rasio Si/Al=27               | . 51 |
| Gambar 4.8 Hasil Uji BET Berdasarkan Realtiv Pressure (P/Po) dan      |      |
| Volume Nitrogen Teradsopsi                                            |      |
| Gambar 4.9 Volume Pori Katalis HZSM-5                                 | . 53 |
| Gambar 4.10 Luas Pori Katalis HZSM-5                                  | . 54 |
| Gambar 4.11 FTIR Katalis Baru Rasio Si/Al=27                          | . 54 |
| Gambar 4.12 FTIR Katalis Baru Rasio Si/Al=140                         | . 55 |
| Gambar 4.13 FTIR Katalis Zeolit HZSM-5 Rasio Si/Al=27                 | . 55 |
| Gambar 4.14 Spektrum FTIR pada Kokas Katalis 0,4Pt/La-X               | . 56 |
| Gambar 4.15 Spektrum pita FTIR untuk Deposit Kokas pada Zeolit HZSM-  |      |
| 5 Si/Al=27                                                            | . 57 |
| Gambar 4.16 FTIR Katalis Zeolit HZSM-5 Rasio Si/Al=140                | . 58 |
| Gambar 4.17 Spektrum Pita FTIR untuk Deposit Kokas pada Zeolit HZSM-  |      |
| 5 Si/Al=140                                                           | . 59 |
| Gambar 4.18 Spektrum FTIR untuk Ikatan Asam Brounsted Zeolit HZSM-5   |      |
| Si/Al=27                                                              | . 60 |

## **BABI**

#### **PENDAHULUAN**

#### 1.1 Latar Belakang

Proses kimia yang menggunakan katalis adalah proses perekatan hidrokarbon. Katalis yang digunakan adalah katalis yang bersifat asam, yaitu sebuah katalis yang dapat menghasilkan karbokation pada permukaannya. Zeolit dapat digunakan sebagai katalis dalam proses katalitik. Ciri paling khusus pada zeolit adalah adanya ruang kosong yang membentuk saluran didalamnya. Bila zeolit digunakan dalam proses katalisis maka akan terjadi difusimolekul kedalam ruang bebas antar kristal dan reaksi kimia juga terjadi di permukaan saluran tersebut (Bahtia, 2000).

Pada penelitian ini zeolit yang digunakan adalah zeolit HZSM-5. Zeolit HZSM-5 dikenal sebagai zeolit sintetik yang mempunyai permukaan inti asam dan stuktur jaringan pori yang luas serta homogen. Stuktur kerangka jenis bahan alumina silika tersebut terbentuk dari bahan dasar pembangun berupa tetrahedron atom silikon atau alumunium. Kemampuan HZSM-5 untuk mempercepat berbagai jenis reaktan sangat berkaitan dengan rasio keasamannya dan parameter penting HZSM-5 yang bisa dikontrol dengan rasio Si/Al. Beragam variasi Si/Al sama sekali tidak akan mempengaruhi struktur kerangka HZSM-5, tetapi diharapkan menyebabkan pertukaran dalam asam dan distribusi kekuatan asam (Bahtia, 2000).

Berbagai hasil penelitian (Setiadi *et al.*, 2003) telah dapat menyimpulkan bahwa HZSM-5 mempunyai kemampuan selektivitas yang tinggi berdasarkan bentuk dan ukuran pori (*shape selective catalyst*) kearah terbentuknya berbagai jenis molekul yang berdiameter kinetik maksimal sekitar 0.6 nm, dimana sangat sesuai dengan hidrokarbon aromatik (benzen, toluen, xilena, grup senyawa C9 aromatis, dll). Reaksi konversi aseton menjadi hidrokarbon telah terbukti dapat dilakukan dengan baik pada suhu 673 K dan space velocity sebesar 4h<sup>-1</sup> pada tekanan atmosferik. Konversi aseton yang didapat mendekati 100%. Namun terjadi penurunan aktivitas (deaktivasi) setelah 17 jam karena penutupan pori

katalis oleh kokas yang pembentukannya berasal dari reaksi konversi aseton tersebut (Setiadi, 2005).

Idealnya, katalis seharusnya mempunyai kestabilan reaksi atau umur yang lama. Tetapi pada kenyataannya katalis dapat mati setelah digunakan akibat berbagai macam hal yang dapat menghilangkan kemampuan mereka. Beberapa katalis hanya dapat bertahan beberapa menit saja, sedangkan yang lain bisa mencapai 10 tahun (Richardson, 1982). Ketika aktivitas katalis menjadi lebih pendek, misalnya sekitar setengah tahun, fasilitas khusus untuk regenerasi katalis menjadi penting, terutama jika menyangkut mahalnya katalis. Pada metode operasi semi-regeneratif, katalis tetap berada dalam reaktor selama regenerasi berlangsung (S.T.Sie, 2001). Regenerasi katalis dapat dilakukan baik secara *exsitu* atau *in-situ*. Dalam berbagai kasus, regenerasi dapat dilakukan dengan fasilitas terpisah di lokasi yang berbeda dari proses utama dan bahkan regenerasi dapat dilakukan oleh perusahaan lain (*ex-situ*). Regenerasi *in-situ* adalah fasilitas regenerasi yang merupakan bagian integral dari proses instalasi (S.T.Sie, 2001).

Menurut Jong *et al.*, 1997, dalam regenerasi zeolit HZSM-5 yang diakibatkan oleh adanya *coke* (kokas), dilakukan selektifitas penghapusan dan transformasi senyawa karbon selama reaktivasi dengan menggunakan udara, 0,5% O<sub>2</sub> dalam N<sub>2</sub>, dan H<sub>2</sub> pada suhu 500°C. Dalam penelitiannya ditemukan bahwa pengotor katalis yang diregenerasi dengan udara berada pada dua tempat, yang pertama berada didalam kristal kokas hadir didekat situs asam Bronsted, sedangkan yang kedua berada diluar permukaan kristal.

Dari hasil penelitian sebelumnya telah disinyalir adanya kokas sebagai penyebab deaktivasi, tetapi hal ini belum cukup menjelaskan bagaimana deaktivasi itu berpengaruh terhadap karakter katalis HZSM-5, sehingga hal penting yang dilakukan pada penelitian ini adalah karakterisasi dari HZSM-5 pada keadaan awal (baru) dan sesudah deaktivasi dengan uji keasaman, FT-IR dan BET. Selain itu, pentingnya proses regenerasi katalis yang telah terdeaktivasi merupakan salah satu hal yang dipertimbangkan pada penelitian ini. Untuk itu pula pada penelitian ini digunakan udara untuk meregenerasi katalis yang telah terdeaktivasi sehingga dapat diketahui bagaimana karakteristik dari katalis yang diregenerasi dan kemungkinan penggunaan kembali katalis.

#### 1.2 Perumusan Masalah

Untuk mengetahui perilaku deaktivasi dan regenerasi katalis dalam reaksi aseton menjadi hidrokarbon, maka berbagai hal yang harus diketahui dalam penelitian ini adalah:

- Bagaimanakah perbedaan perilaku deaktivasi katalis HZSM-5 berbagai rasio Si/Al dalam mengkonversi aseton.
- 2. Bagaimanakah karakteristik HZSM-5 pada kondisi belum terdeaktivasi dan sesudah digunakan sebagai katalis dalam reaksi mengalami perubahan.
- 3. Bagaimanakah regenerasi katalis HZSM-5 setelah mengalami deaktivasi dapat dikembangkan sehingga katalis HZSM-5 menjadi katalis baru.

## 1.3 Tujuan Penelitian

- 1. Mengkaji pengaruh rasio Si/Al terhadap prilaku deaktivasi katalis HZSM-5 dalam reaksi aseton.
- 2. Karakterisasi katalis HZSM-5 dalam keadaan awal (baru), sesudah deaktivasi maupun setelah regenarasi terjadi, dengan mengunakan BET, FT-IR, GC-FID dan Uji Keasaman untuk menjelaskan prilaku karakteristik deaktivasi katalis.
- 3. Mengetahui karakterisasi katalis HZSM-5 setelah diregenerasi dengan menggunakan udara.

#### 1.4 Batasan Masalah

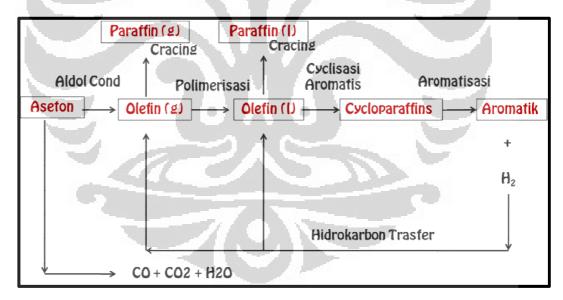
Pada penelitian ini penulis membatasi permasalahan yang akan di angkat agar lebih fokus serta sesuai dengan perumusan dan tujuan penelitian, maka dilakukan pembatasan masalah sebagai berikut:

- 1. Bahan baku yang digunakan dalam penelitian adalah aseton murni.
- Penyebab deaktivasi katalis diketahui dengan mengunakan metode karakterisasi katalis.
- 3. Regenerasi dilakukan secara kualitatif dengan mengunakan udara.
- 4. Katalis yang digunakan dalam reaksi aseton menjadi hidrokarbon adalah HZMS-5 dengan rasio Si/Al 27, 75, 140.
- 5. Reaksi konversi katalitik aseton dilakukan di dalam reaktor tabung yaitu jenis unggun tetap (*Fixed bed reactor*).

#### 1.5 Sistematika Penulisan

Sistematika penulisan terdiri dari lima bab, yaitu:

- Bab I PENDAHULUAN, bab ini berisi tentang gambaran secara umun permasalahan yang akan diungkap mencangkup latar belakan masalah, rumusan masalah, tujuan penelitian, batasan masalah dan sistematika penulisan.
- Bab II TINJAUAN PUSTAKA, bab ini mengemukakan tentang informasi dan teori-teori yang mendukung penelitian studi deaktivasi dan regenerasi katalis zeolit H-ZMS-5 dalam reaksi aseton menjadi senyawa hidrokarbon berdasarkan perbedaan temperatur dan komposisi katalisnya.
- Bab III METODE PENELITIAN, bab ini berisi tentang metode yang akan dipakai dalam penelitian yang pencangkup tahapan-tahapan penelitian yang dilakukan yaitu mulai dari metode pengumpulan data sampai pengolahan data. Menjelaskan diagram penelitian, prosedur percobaan, jenis bahan dan alat yang dipakai serta susunan dan fungsinya dalam percobaan.
- Bab IV HASIL DAN PEMBAHASAN, bab ini berisi rumusan hasil penelitian dan analisis yang berkaitan dengan fenomena deaktivasi dan regenerasi katalis yang terjadi berdasarkan variasi Si/Al.
- Bab V PENUTUP, bab ini berisi kesimpulan dan saran hasil penelitian.


## **BAB II**

#### TINJAUAN PUSTAKA

#### 2.1 Aseton

Aseton merupakan senyawa organik yang dapat diproduksi dari proses fermentasi maupun dari hasil reaksi katalitik produk turunan biomassa. Akan menjadi suatu skema rute baru, apabila senyawa aseton tersebut dapat ditrasformasi menjadi senyawa hidrokarbon aromatis. Senyawa tersebut merupakan bahan baku utama yang penting dalam proses industri kimia (Setiadi, 2005).

Secara umum, berlangsungnya reaksi aseton adalah melalui mekanisme reaksi kondensasi aldol. Reaksi konversi katalitik aseton menjadi hidrokarbon pada penelitian ini melibatkan banyak reaksi, seperti reaksi polimerisasi (aldol condensation), cracking, aromatisasi dan pembentukan coke.



Gambar 2.1 Skema Reaksi untuk Konversi dari Aseton Menjadi Hidrokarbon dengan Menggunakan HZSM-5 (Enrique Costa, 1992)

Olefin C2-C4 fasa gas yang merupakan produk intermediate akan dihasilkan dari perengkahan aseton. Olefin dengan berat molekul lebih besar akan terbentuk dari reaksi polimerisasi. Setelah itu akan mengalami siklisasi membentuk sikloparafin / sikloolefin kemudian mengalami reaksi aromatisasi

sehingga menghasilkan hidrokarbon aromatik dan melepaskan hidrogen. Hidrogen yang dilepaskan ini akan bereaksi dengan olefin membentuk parafin melalui reaksi hidrogenasi. Hidrogenasi merupakan suatu penambahan senyawa hidrogen, salah satunya terjadi pada olefin sesuai dengan skema reaksi konversi katalitik pada gambar 2.1, dimana olefin akan berubah menjadi paraffin.

Pembentukan aromatik hidrokarbon, campuran polisiklik dan polialkilnaphtha dapat menyebabkan *coke*. *Coke* yang terbentuk dapat menyebabkan katalis terdeaktivasi.

#### 2.2 Katalis

Katalis adalah zat yang meningkatkan laju reaksi kimia, tetapi zat itu tidak mengalami perubahan kimia yang permanen. Katalis yang fasenya (wujudnya) sama dengan reaksi dinamakan katalis homogen (misalnya enzim dalam reaksi biokimia atau kompleks logam transisi yang digunakan dalam fase cair untuk mengkatalisis reaksi organik). Katalis yang fasenya berbeda disebut katalis heterogen (misalnya logam atau oksida yang digunakan dalam banyak reaksi gas di industri). Katalis menimbulkan lintas alternatif bagi jalannya reaksi, dengan energi aktivasi yang lebih rendah. Dengan demikian, laju pencapaian kesetimbangan dipercepat, walaupun katalis tidak merubah posisi kesetimbangan. Katalis sendiri berperan dalam reaksi, dan karena itu dapat menjalani perubahan fisik (misalnya berubah menjadi serbuk). Dalam beberapa hal, sejumlah kecil katalis dapat mempercepat reaksi dalam jumlah besar. Beberapa katalis juga sangat spesifik untuk jenis reaksi yang dikatalisisnya, terutama dalam reaksi biokimia. Biasanya, katalis yang mempercepat reaksi dinamakan katalis negatif (Oxford, 1994).

Katalis memiliki beberapa parameter yang harus diperhatikan untuk menilai kualitas suatu katalis sebagai berikut:

- 1. Aktivitas, yaitu kemampuan katalis untuk mengkonversi reaktan menjadi produk yang diinginkan.
- Selektivitas, yaitu kemampuan katalis untuk mempercepat suatu reaksi diantara beberapa reaksi yang terjadi, sehingga produk yang diinginkan dapat diperoleh dengan produk samping seminimal mungkin.

- 3. Stabilitas, yaitu lamanya katalis memiliki aktivitas dan selektivitas seperti pada keadaan semula.
- 4. Yield, yaitu jumlah produk tertentu untuk setiap satuan reaktan yang terkonsumsi.
- 5. Kemudahan diregenerasi, yaitu proses pengembalian aktivitas dan selektivitas katalis pada keadaan semula.

#### 2.3 Zeolit

## 2.3.1 Sejarah Zeolit

Zeolit secara umum didefinisikan sebagai suatu mineral Aluminosilikat dengan struktur kristal berongga, yang berisi ion-ion logam dan molekul air. Ion logam dan molekul air ini dapat bergerak bebas sehingga dapat terjadi pertukaran ion dan dehidrasi yang *reversible* tanpa ada perubahan bentuk (Srihapsari.D, 2006).

Pada tahun 1858, Einchorn menunjukkan bahwa zeolit dapat bertindak sebagai penukar kation yang sifatnya *reversible*. Zeolit berfungsi sebagai penukar kation mulai dikembangkan pada awal tahun 1960 oleh Ames dkk.

Terdapat dua jenis zeolit yang dapat digunakan sebagai katalis. Pertama, zeolit alam yang terbentuk melalui proses alami, sedangkan yang kedua adalah zeolit sintesis, zeolit ini diperoleh melalui proses sintesis dan direkayasa oleh manusia sehingga sifat-sifatnya dapat dimodifikasi dengan memvariasikan kadar alumunium (Al) dan silika (Si). (Darius, 2006)

#### 2.3.2 Struktur Zeolit

Zeolit merupakan kristal aluminasilika yang terbentuk oleh struktur pori seragam yang memiliki minimum diameter saluran sekitar 0,3-1,0 nm. Pada dasarnya ukuran tergantung pada jenis zeolit. Zeolit memiliki aktivitas dan selektivitas yang tidak biasa untuk berbagai variasi reaksi asam. Sebagian besar ini disebabkan sifat keasaman zeolit (Linna, 2010).

Struktur zeolit terdiri atas tiga dimensi SiO<sub>4</sub> atau tetrahedral AlO<sub>4</sub>. Masing-masing terdiri dari atom Silikon dan Alumunium di pusat. Atom oksigen terletak berdampingan membentuk tetrahedral, dimana dapat berada pada berbagai

rasio dan tersusun dengan berbagai cara (Prilly, 2006). Kerangka yang terbentuk terdiri atas rumus kimia unit sel zeolit adalah sebagai berikut:

$$Mn_{x/n}^{+}[(AlO_{2}^{-})_{x}(SiO_{2})_{y}]_{x}H_{2}O$$

Dengan,

 $M^{+}_{x/n}$  : merupakan katoin bervalensi n yang dapat ditukar dan tidak termasuk struktur rangka aluminasilika.

[] : melambangkan struktur rangka aluminasilika.

x : pada H<sub>2</sub>O, menunjukan jumlah molekul air didalam struktur zeolit.

x & y : pada [ ], menunjukan jumlah tetrahedron (SiAl)O<sub>4</sub> didalam suatu unit sel dimana y > x.

Berdasarkan rumus tersebut dapat disimpulkan bahwa zeolit tersebut dibagi menjadi tiga komponen, yaitu:

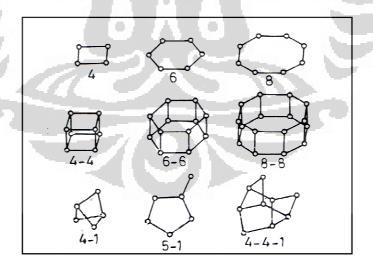
- 1. Kerangka aluminasilika.
- 2. Kation-kation.
- 3. Molekul air.

Kation-kation dan molekul-molekul air tidak termasuk pada kerangka aluminasilika, tetapi mengisi rongga diantara kerangka (Darius, 2006). Kerangka aluminasilika sebagai unit dari zeolit yang secara keseluruhan sangat kompleks tersusun menjadi unit-unit pembentuk sebagai berikut:

1. Unit pembentuk primer, yaitu tetrahedron yang mengandung (Si, Al) O<sub>4</sub>. Dikeempat sudut tetrahedronnya terdapat atom-atom oksigen yang digunakan bersama-sama oleh dua tetrehedron yang berdekatan, dimana atom-atom oksigen tersebut mengelilingi pusat-pusat silikon atau alumunium. Hal ini dapat dilihat pada gambar 2.2, sebagai berikut:



Model Bola Tongkat Model Padatan Model Kerangka Model Kelompok
Bola

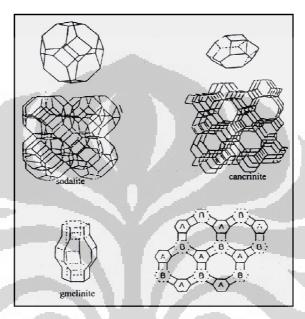

Gambar 2.2 Kerangka dasar tetrahedral

2. Unit pembentuk sekunder, yaitu pengabungan unit-unit pembentuk primer dengan cara menyusun atom-atom pusat hingga membentuk sudut-sudut tertentu yang membagi atom-atom oksigennya. Hal ini dapat dilihat pada gambar 2.3 unit pembentuk sekunder terbagi menjadi tiga jenis, yaitu:

a. *Single ring* : S4R, S6R, S8R, S10R, S12R.

b. Double ring : D4R, D6R, D8R.

c. Complex ring: 4-1, 5-1, 4-4-1.




Gambar 2.3 Unit Pembentuk Sekunder (Bahtia, 2000)

3. Polyhedron simetris, yaitu unit pembentuk sekunder bergabung membentuk satu polyhedron simetris yang arah pertumbuhannya sesuai dengan tiap-tiap

bidang kristal unit pembentuk sekunder yang dapat dilihat pada gambar 2.4 polyhedron simetris terbagi menjadi tiga jenis, yaitu:

- a. Trunkated octahedron (T,O) atau unit sodalite.
- b. 11-Hedron atau unit *cancrinite*.
- c. 14-Hedron atau unit *gmelinite*.



Gambar 2.4 Polyhedron simetris (Meier, W.M and D.H. Olson, 1992).

4. Struktur zeolit secara keseluruhan, merupakan gabungan polihedronpolihedron simetris sehingga membentuk jaringan rongga teratur kesegala arah yang dapat terisi oleh kation-kation dan molekul air.

# 2.3.3 Penggunaan Zeolit

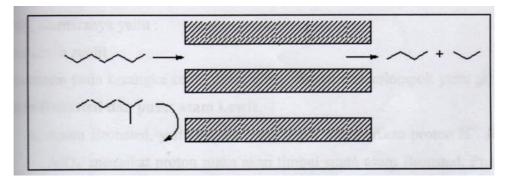
## 2.3.3.1 Zeolit sebagai Katalisator

Zeolit merupakan katalis yang cukup efektif untuk proses *hydrocarbon alkylation, isomerization,* dan perengkahan. Tiga sifat zeolit yang berperan dalam fungsinya sebagai katalis adalah:

- 1. Penyaring molekul. Sifat ini menyaring pereaksi, hasil antara produk akhir yang terlibat dalam proses katalisis oleh zeolit katalis.
- 2. Pusat asam. Adanya pusat asam ini memberikan medium yang kondusif (lebih reaktif) untuk proses katalisis.

3. Si/Al yang tinggi menyebabkan keasaman yang tinggi. Setiap zeolit memiliki batasan Si/Al yang optimum untuk bahan katalis.

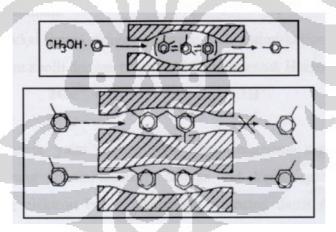
Salah satu proses kimia yang mengunakan katalis adalah proses perengkahan hidrokarbon. Katalis yang digunakan adalah katalis yang bersifat asam, yaitu sebuah katalis yang dapat menghasilkan karbokation pada permukaannya. Larutan asam dapat digunakan akan tetapi dalam operasi mengalami banyak masalah seperti korosi, pemisahan produk dan katalis ada yang hilang.


Zeolit dapat digunakan sebagai katalis dalam proses katalitik. Ciri paling khusus dari zeolit adalah adanya ruang kosong yang membentuk saluran didalamnya. Bila zeolit digunakan pada proses katalisis maka akan terjadi difusi molekul kedalam ruang bebas antara kristal dan reaksi kimia juga terjadi dipermukaan saluran tersebut.

# 2.3.3.2 Zeolit sebagai katalis selektif bentuk

Zeolit dimanfaatkan sebagai katalis karena tersedianya pusat aktif dalam sistem pori katalis dan pori tersusun atas satu atau lebih ukuran yang seragam. Sistem pori ini berhubungan dengan sifat kristal dan zeolit. Ukuran pori yang sesungguhnya terbentuk dari struktur cincin pada prakteknya menjadi lebih kecil (bervariasi dengan adanya kation-kation pada permukaan zeolit). Katalis selektivitas dikelompokan dalam beberapa kelompok berikut, yaitu:

#### 1. Selektivitas reaktan


Hal ini berlaku pada umpan yang terdiri dari beberapa molekul, sementara sebagian saja yang selektif reaktan. Contoh yang paling popular adalah reaksi dari umpan yang berisi campuran karbon berantai lurus dan rantai bercabang. Dengan kemampuan selektivitas bentuk dari zeolit, maka hanya rantai lurus saja yang dapat dilewatkan sementara rantai bercabang tidak. Proses ini dapat dilihat pada gambar 2.5 berikut.



Gambar 2.5 Rongga selektif reaktan zeolit (Bhatia, 2000)

## 2. Selektivitas produk

Selektivitas produk berfungsi manakala produk yang dihasilkan dari suatu reaktan di dalam sitem pori terlalu beragam ukuran molekulnya, sementara hanya molekul dengan ukuran tertentu yang bisa melewati mulut pori, molekul yang tidak dikehendaki akan tersaring. Selanjutnya molekul yang tidak bisa melewati mulut pori tadi akan bereaksi menjadi reaktan yang lebih kecil. Proses selektivitas produk dapat dilihat pada gambar 2.6 berikut ini.



Gambar 2.6 Rongga selektif produk (Bhatia, 2000)

## 2.5.3.4 Zeolit sebagai katalis asam

Zeolit dapat berfungsi sebagai katalis asam, karena kationnya dapat dipertukarkan. Sebagai contoh zeolit alam, umumnya memiliki kation jenis alkali (misalnya Na<sup>+</sup>), jika kation ini ditukarkan dengan Na<sub>4</sub><sup>+</sup> yang diikuti pemanasan, maka pada permukaan zeolit akan terdapat ion H<sup>+</sup>. Secara katalitik ion berfungsi sebagai pusat aktif (inti aktif).

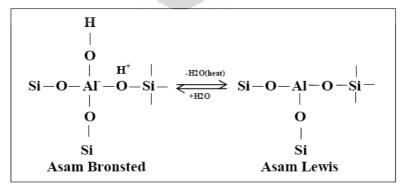
Kemampuan zeolit sebagai katalis dikarenakan zeolit memiliki sifat-sifat tertentu, diantaranya yaitu:

#### 1. Keasaman zeolit

Keasaman dalam kerangka zeolit dapat dibagi dalam dua kelompok yaitu pusat asam Bronsted dan pusat asam lewis.

- a. Asam Bronsted, yaitu spesies yang dapat memberikan proton H<sup>+</sup>. Bila AlO<sub>4</sub><sup>-</sup> mengikat proton maka akan timbul suatu asam Bronsted. Proton ini menempel pada atom-atom oksigen *framework* yang berikatan dengan atom-atom silikon dan alumunium. Asam Bronsted dapat timbul melalui beberapa cara diantaranya adalah:
- ♣ Ionisasi air oleh kation-kation polivalen.

$$Me^{n+} + {}_{x}H_{2}O \to Me(OH)_{x}^{(n-x)^{+}} + {}_{x}H_{2}$$
 (2.1)


Perlakuan dengan larutan asam

$$M - Z + HA \rightarrow H - Z + MA \tag{2.2}$$

- Lekomposisi thermal dari zeolit hasil pertukaran ion dengan garam ammonium.
- Reduksi logam dengan hidrogen oleh kation-kation logam transisi dalam zeolit dengan tujuan untuk membentuk H-zeolit.

$$2Cu^{2+} + H_2 \to 2Cu^+ + 2H^+ \tag{2.3}$$

b. Asam Lewis, yaitu spesies yang dapat menerima sepasang elektron bebas yang dikombinasikan dengan zat kedua yang mempunyai sepasang elektron bebas. Keasaman Bronsted dapat diubah menjadi keasanam lewis dengan memanaskan pada suhu tinggi.



Gambar 2.7 Perubahan keasaman zeolit (Bhatia, 2000)

Pada gambar 2.7 terlihat bahwa Al mempunyai sisi yang dapat menerima sepasang elektron bebas sehingga dapat bertindak sebagai asam lewis. Asam lewis ini dapat berubah menjadi asam Bronsted dengan hadirnya H<sub>2</sub>O pada zeolit dengan disertai pemanasan. Zeolit yang telah melalui tahap pengasaman akan memiliki luas permukaan yang lebih tinggi sehingga peranannya sebagai katalis ataupun penyangga dapat lebih baik.

#### 2. Sifat pori mikronya dapat ditentukan

Zeolit yang berbentuk kristal memiliki banyak ruang kosong yang dapat memegang peranan penting dalam proses katalisis.

# 3. Ukuran kristal dan morfologinya yang dapat diubah-ubah

Secara umum aktivitas zeolit menurun dengan semakin meningkatnya ukuran kristal. Ukuran kristal yang besar menyebabkan distribusi Al pada kristal yang tidak merata terutama pada permukaan sehingga keasaman dari katalis menurun.

#### 4. Kestabilan termal

Kestabilan termal adalah kemampuan zeolit untuk berfungsi pada temperatur tinggi.

#### 5. Kemampuan pengabungan dengan logam dan logam komplek

Permukaan ion logam atau ion komplek yang diikuti prosedur reduksi yang sesuai dapat menghasilkan zeolit yang mengandung logam sebagai katalis bagi reaksi tertentu. Partikel logam kompleks yang berukuran kecil atau sesuai dengan ukuran pori atau saluran zeolit dapat dipertukarkan ke dalam zeolit dan memberikan sifat selektivitas tertentu pada zeolit.

#### 2.4 ZSM-5

ZSM-5 (Zeolit Socony Mobil-5) merupakan salah satu dari beberapa jenis zeolit. Zeolit sintetis jenis ZSM-5 dikembangkan oleh peneliti-peneliti *Mobile Oil Corp* sekitar tahun 1960. Zeolit ZSM-5 dikenal sebagai jenis zeolit sintetik yang mempunyai permukaan inti asam dan struktur jaringan pori yang luas serta homogen. Struktur kerangka jenis bahan alumino silika tersebut terbentuk dari bahan dasar pembangun berupa tetrahedron atom silikon atau alumunium. Kemampuan ZSM-5 untuk mempercepat berbagai jenis reaksi sangat

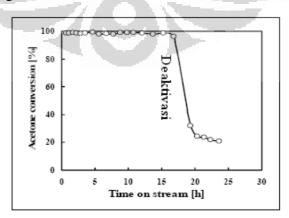
berkaitan dengan rasio keasamannya dan parameter penting ZSM-5 bisa dikontrol dengan rasio Si/Al. Namun beragamnya variasi Si/Al ini sama sekali tidak akan mempengaruhi struktur kerangka ZSM-5 tetapi diharapkan menyebabkan pertukaran dalam asam dan distribusi kekuatan asam (Bahtia, 2000).

Zeolit ZSM-5 adalah suatu material dengan pori-pori yang sangat kecil yang mampu memuat molekul-molekul kecil yang disebut sebagai molekular sieve, zeolit ini didapatkan dari substansi alam seperti *clay* dan zeolit atau dapat diperoleh secara sintetis alumina silika. ZSM-5 memiliki fungsi sebagai katalis untuk mempengaruhi kecepatan reaksi tanpa mempengaruhi kesetimbangan karena mampu menaikan perbedaan *path* molekuler dari reaksi katalis yang mempunyai luas pori-pori yang besar disebut katalis porous, pori-pori tersebut sangat kecil dimana mereka akan memuat molekul-molekul kecil tetapi mencegah molekul-molekul besar masuk.

Umumnya katalis jenis zeolit mudah mengalami deaktivasi, tidak terkecuali untuk ZSM-5. Menurut Richardson kemampuan katalis dalam menahan aktivitas dan selektivitas dalam rentang waktu tertentu tergantung dari jenis reaksi, jenis zeolit dan kondisi reaksi. Oleh karenanya Loffer menyarankan agar durability test atau time on stream reaction test tetap diperhatikan dalam memilih dan menentukan jenis katalis sesuai dengan reaksi dan kondisi reaksi (Setiadi, 2005).

Zeolit ZSM-5 mempunyai sifat unik yaitu mempunyai ukuran pori 0,54 x 0,57 nm ( $\leq$  ukuran molekul hidrokarbon  $C_{11}$ ), berstruktur dimensi tiga, bersifat organofil. Kombinasi ketiga sifat diatas menyebabkan ZSM-5 bersifat selektif terhadap pembentukan hidrokarbon  $\leq$   $C_{11}$ , mempunyai umur katalis yang panjang, serta tahan terhadap perlakuan asam dan panas (A.T Townsend, 1994).

#### 2.5 Deaktivasi


Selama proses reaksi, deaktivasi katalis tidak dapat dihindari dan harus selalu diperhitungkan dari segi proses disain. Penonaktifan katalis erat kaitannya dengan faktor ekonomi di dalam proses dan pengaruhnya terhadap kinerja reaktor. Namun, yang lebih penting penonaktifan katalis dapat mempengaruhi proses

disain, seperti proses konfigurasi, jenis reaktor dan cara pengoperasian proses industri dapat dipengaruhi oleh deaktivasi katalis (Sie S.T, 2001).

Sifat alami deaktivasi katalis dapat dihilangkan, baik selama proses operasi atau dengan cara regenerasi terpisah. Kecepatan deaktivasi adalah faktor penting yang menentukan proses ini. Berbagai alasan yang dapat menyebabkan katalis dapat kehilangan aktivitasnya adalah keracunan atau penghambatan katalis oleh kotoran di *feed* atau dari reaksi produk samping, pengendapan material polimer, hasil samping katalis (*coke*) dan hilangnya katalis dispersi oleh *sintering* partikel kecil bahan aktif. Selain itu katalis dapat dinonaktifkan oleh hilangnya komponen aktif oleh *leaching* (penguapan) atau dengan perubahan tekstur pori mereka. Perubahan tekstur pori dapat mempengaruhi kinerja suatu katalis dengan hilangnya luas permukaan spesifik melalui sintering carrier atau hilangnya permeabilitas melalui *pluging* dari pori-pori (Sie S.T, 2001).

Idealnya, katalis seharusnya berfungsi selamanya. Tetapi pada kenyataannya katalis dapat mati setelah digunakan akibat berbagai macam hal yang dapat menghilangkan kemampuan mereka. Beberapa katalis hanya bertahan beberapa menit sedangkan yang lain bisa mencapai 10 tahun. Perancang katalis dapat membuat katalis berumur lebih panjang, tetapi saat masalah ditemukan untuk memperpanjang umur, masalah lain muncul (Richardson, 1982).

Dalam pengukuran laboratorium, deaktivasi merupakan suatu masalah dan dapat menghasilkan data yang salah jika tidak diidentifikasi. Suatu permukaan katalis yang masih bersih akan mulai terdeaktivasi segera setelah katalis bertemu dengan molekul reaktan.

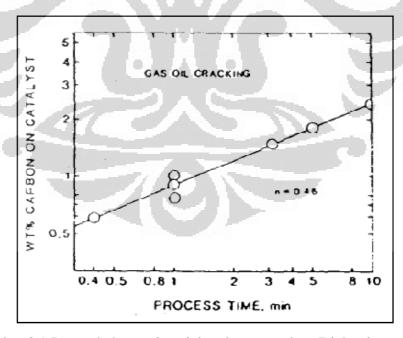


Gambar 2.8 Grafik konversi menunjukan penurunan aktivasi katalis (Richardson, 1982)

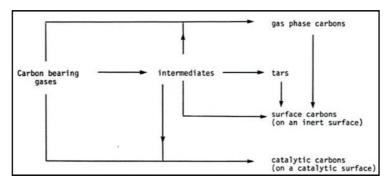
Pengurangan (dalam beberapa kasus peningkatan) temperatur, meningkatnya tekanan hidrogen, seringkali cukup untuk menurunkan laju deaktivasi. Pendekatan lain adalah dengan mempertahankan konversi yang konstan dengan cara meningkatakan temperatur secara berkala sejalan dengan turunnya katalis. Tetapi ini dibatasi oleh sensitivitas peralatan proses terhadap temperatur tinggi, kapasitas *furnace* dan *heat exchanger*, dan kemungkinan adanya reaksi samping (Richardson, 1982).

Beberapa metode modifikasi katalis yang paling umum digunakan untuk mengatasi deakitvasi yang terjadi adalah sebagai berikut:

- 1. Mengurangi keaktifan atau menganti komponen aktif yang berbeda atau support lain yang bertujuan untuk memperpanjang umur katalis walaupun hal ini dapat menurunkan aktivitas.
- 2. Optimasi kombinasi komponen aktif dengan support. Suatu support yang berbeda dapat digunakan untuk meningkatkan interaksi, yang juga menurunkan *Sintering*. Support dengan keasaman yang lebih kecil dapat digunakan untuk mengurangi pembentukan *coke*.
- 3. Penambahan promotor untuk menghambat deaktivasi. Contohnya, stabilitas support yang lebih besar pada alumina dicapai dengan penambahan sedikit silika atau zirkonia, *Sintering* dan *coking* pada platina dikurangi dengan penambahan rhenium, dan sisi asam dinetralkan dengan kalium.
- 4. Penambahan promotor untuk menghilangkan *deactiviting agent*. Contohnya pada *steam reforming* dimana karbon dihilangkan dengan cara reaksi dengan steam, yang dikatalisasi oleh aditif alkali.
- 5. Penambahan promotor untuk menetralkan racun katalis. *Poisoning* sulfur terhadap nikel dikurangi dengan menambahkan copper chormite, karena ion copper dan chromium lebih mudah membentuk sulfida (Richardson, 1982).


## 2.5.1 *Coking*

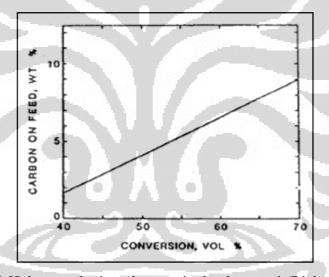
Istilah *coke* diberikan kepada residu terkarbonasi yang ada pada permukaan katalis. Deposit *coke* ditemukan dalan jumlah sampai 20% berat ekstrim, permukaan katalis tertutupi oleh lapisan deposit *coke* sehingga menurunkan luas permukaan yang dapat diakses, komponen aktif akan terbungkus


dalam karbon, dan pori katalis akan tertutup (*blocked*). Ketika efek ini sangat signifikan, maka katalis harus segera diganti atau diregenerasi (Richardson, 1982). A. *Acid Coking* 

Acid coke terbentuk pada katalis perengkahan silics-alumina, zeolit, dan pada support yang bersifat asam. Kecenderungan pembentukan *coke* ini berhubungan langsung dengan keasaman. Ada dua jenis utama struktur karbon sebagai fasa yang terdispersi sangat tinggi pada pori. Sebagian besar *coke* ada dalam bentuk *pseudografitic* atau *turbostatic* dan *random-layer lattice*, mirip dengan grafit dengan komposisi CH<sub>0.4</sub> sampai CH<sub>0.5</sub> (Richardson, 1982).

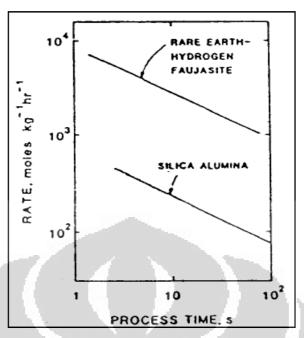
Olefin terbentuk melalui reaksi dehidrogenasi dan bertindak sebagai akseptor hydrogen untuk membentuk ion karbonium. Molekul yang belum jenuh diadopsi sangat kuat dan menaikan pengurangan hidrogen, yang pada akhirnya membentuk *coke* melalui pembentukan cincin (siklisasi). Kenaikan kekuatan asam dan densitas membantu pembentukan *coke*, yang merupakan fakta dalam katalis. Namun katalis dapat dimodifikasi untuk menunda pembentukan *coke* (Richardson, 1982).




Gambar 2.9 Pertambahan *coke* sejalan dengan waktu (Richardson, 1989)



Gambar 2.10 Mekanisme pembentukan coke


# B. Hal yang berpengaruh pada pembuatan coke

Kandungan karbon yang berhubungan dengan tingkat konversi atau kekuatan operasi ditunjukan pada gambar berikut:



Gambar 2.11 Hubungan karbon dengan tingkat konversi (Richardson, 1989)

Penambahan sejumlah kecil zeolit (5-10%) kedalam katalis dapat memperlambat deaktivasi. Hal ini merupakan konsekuensi dari *shape selectivity*, dimana pembentukan *coke* dibatasi oleh ukuran rongga zeolit (Richardson, 1982).



Gambar 2.12 Laju deaktivasi dengan katalis silica-alumina dan faujasite (Richardson,1989)

Dengan mengetahui pengaruh dari susunan dalam reaksi asam, memungkinkan untuk mengontrol geometri dan mencegah pembentukan spesies dengan molekul besar tanpa menyebabkan pemutusan menjadi molekul yang lebih kecil. Apabila katalis asam tidak diinginkan sementara *coke* terbentuk pada support, maka memungkinkan mengontrolnya dengan cara menganti support asam dengan support yang bersifat non-asam seperti magnesia menggantikan silica atau alumina. Jika ini tidak dilakukan, mungkin saja asam tersebut meracuni dirinya sendiri. Hal ini biasanya diselesaikan dengan sejumlah kecil kalium. Unsur-unsur alkali dan alkali tanah lainnya dapat berfungsi sama, akan tetapi kaliumlah yang paling umum digunakan (Richardson, 1982).

#### 2.6 Deaktivasi Katalis Zeolit

Deaktivasi katalis zeolit terutama berasal dari pembentukan residu karbon, dikenal sebagai *coke*. Pembentukan deposit karbon dan tindakan deaktivasi atas zeolit tergantung tidak hanya pada karakteristik katalis zeolit, juga pada sifat reaktan yang terlibat dan kondisi operasi terkait. Investigasi yang luas telah dibuat pada *coking* dan zeolit deaktivasi. Katalis zeolit yang terdeaktivasi dapat diregenerasi oleh pembakaran kokas pada suhu tinggi. Oksidatif tersebut

merupakan pengobatan yang biasanya dilakukan dibawah aliran udara atau diencerkan tergantung pada karakteristik kokas dan stabilitas termal katalis zeolit (Guinet.M dan Magnoux.P, 1997).

Karena sifat asam yang luar biasa dan selektivitas bentuknya, zeolit adalah katalis yang banyak digunakan dalam proses pemurnian (*cracking*, perengkahan, hydroisomerization, dll) dan proses petrokimia (alkilasi, isomerisasi dan ketidakseimbangan aromatik, dll) (Guinet.M dan Magnoux.P, 1997).

Deaktivasi zeolit dapat disebabkan oleh beberapa kemungkinan:

- 1. Peracunan situs aktif baik oleh komponen umpan dan pengotor, atau oleh non-desorbed produk berat (*coke*).
- 2. Penyumbatan akses reaktan ke situs aktif (atau dari adsorbat ke pori) oleh *coke*, atau oleh spesies kerangka tambahan yang dihasilkan dari dealuminasi, dll
- 3. Perubahan struktur.
- 4. Sintering dari logam pendukung (misalnya, dalam katalis *bifunctional*).

Coking biasanya penyebab utama penonaktifan katalis zeolit. Pertama, kokas dapat meracuni situs aktif atau memblokir akses mereka. Kedua, regenerasi katalis zeolit mengharuskan penghapusan kokain, biasanya melalui perlakuan oksidatif pada suhu tinggi. Perawatan ini memiliki efek yang merugikan seperti dealuminasi, degradasi zeolit, dan sintering logam pendukung (Guinet.M dan Magnoux.P, 1997).

#### 2.6.1 Pembentukan Coke

Coke sacara umum menggambarkan bahan karbon yang terbentuk dan menumpuk dipermukaan katalis. Komposisi yang ada tergantung reaktan, katalis, kondisi reaksi dan waktu reaksi serta bebagai rasio karbon.

Pembentukan *coke* dapat menyebabkan deaktivasi katalis dengan cepat, tetapi disisi lain pembakaran *coke* memberikan sumber panas untuk reaksi cracking endotermis. *Coke* mengandung struktur poliaromatik kental yang mendekati karakter graphite. Untuk parafins, laju *cracking* dan laju pembentukan *coke* meningkat dengan meningkatnya berat molekul reaktan terutama dari jumlah karbon. Laju pembentukan *coke* juga meningkat dengan meningkatnya kekuatan asam dari katalis.

Pembentukan *coke* berhubungan dengan sifat asam-basa dari system katalis reaktan. Beberapa peneliti menyatakan bahwa asam kuat lebih cenderung mengakibatkan pembentukan *coke* dari pada asam lemah dan begitupula asam Lewis dari pada asam Bronsted, serta adanya transisi kemurnian ion logam. Penumpukan *coke* menjadi lebih banyak pada sisi asam kuat silica-alumina.

#### 2.6.2 Pembatasan Pembentukan Coke

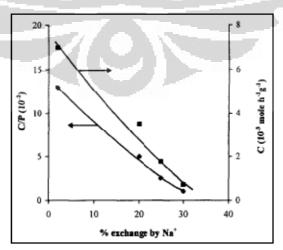
Coke hasil katalitik dari transformasi reaktan, hasil reaksi, kotoran dari umpan melalui berbagai langkah yang berurutan, sebagian besar merupakan reaksi bimolekular seperti kondensasi dan transfer hidrogen (Guinet.M dan Magnoux.P, 1997).

Oleh karena itu, laju *coking* tergantung pada parameter yang biasanya mempengaruhi laju reaksi katalitik, yaitu:

- a. Karakteristik dari reaktan hidrokarbon-pasangan situs aktif;
- b. Karakteristik dari struktur pori zeolit: khususnya ukuran dan bentuk rongga (atau saluran persimpangan) yang terletak di situs asam dan dapat dianggap sebagai mikroreaktor; dan
- c. Kondisi operasi: suhu, tekanan dan konsentrasi dari berbagai varians.

Namun, *coke* memiliki kekhasan sebagai produk non-desorbed. Oleh karena itu, dalam pembentukannya, selain memerlukan langkah-langkah reaksi, molekul *coke* dapat tertahan didalam pori-pori zeolit atau pada permukaan luar kristalit. Retensi ini terjadi karena molekul-molekul *coke* tidak cukup mudah menguap untuk dihilangkan dari zeolit di bawah kondisi operasi atau karena ukurannya lebih besar dari lubang pori (terjebak dalam rongga atau di persimpangan saluran) (Guinet.M dan Magnoux.P, 1997).

#### 2.6.2.1 Sifat Reaktan dan Laju Coking


Pada katalis asam, reaktan mengalami transformasi cepat ke dalam pembuat molekul *coke*. Sebuah korelasi memuaskan ditemukan *Appleby et al*, yang menyatakan bahwa antara jumlah deposit kokain dalam silika alumina dan kebasaan dari reaktan aromatik: semakin besar kebasaan semakin cepat pembentukan kokain (Guinet.M dan Magnoux.P, 1997).

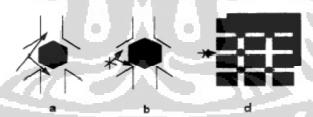
#### 2.6.2.2 Struktur Pori dan Laju Coking

Selektivitas tinggi untuk *coke* dengan zeolit pori kecil, disebabkan oleh penyumbatan cepat molekul kokas atau para pendahulu mereka yang terperangkap dalam rongga dari pori kecil zeolit. Tingkatan yang sangat lambat dari *coking* ditemukan dalam H-ZSM5 disebabkan densitas yang rendah dari situs asam dan bukan ukuran rata-rata dari pori. Pengaruh struktur pori pada selektivitas *coking* tampaknya lebih terbatas dari pada pengaruh keasaman dan khususnya densitas situs asam (Guinet.M dan Magnoux.P, 1997).

### 2.6.3.3 Keasaman dan Laju Coking

Seperti ditunjukkan dalam literatur, tingkat *coking* dan selektivitas untuk kokas (misalnya rasio *coking* / laju reaksi yang diinginkan : C/P) banyak tergantung pada kekuatan dan densitas dari situs asam. Jadi, tingkat pembentukan kokas selama cracking n-heptana pada 450°C dalam USHY yang dipertukarkan dengan kation natrium dan rasio *coking*/laju cracking (C / P) menurun dengan meningkatnya konten natrium (Gambar 2.9), yang disebabkan penurunan dari kekuatan dan densitas situs asam. Dampak positif dari densitas situs asam di rasio C / P jelas ditunjukkan dalam kasus dealuminasi zeolit HY yang memiliki kekuatan asam yang serupa. Selain itu, rasio ini lebih besar ketika dealuminasi sampel Y hadir dispesies kerangka tambahan, yang berhubungkan dengan peningkatan kekuatan dari situs protonic zeolit, hal ini disebabkan oleh interaksi mereka dengan kerangka ekstra aluminium spesies Lewis (Guinet.M dan Magnoux.P, 1997).




Gambar 2.13 Laju *coking* dan rasio C/P selama cracking n-heptan sebagai fungsi % exchange dari kation Na<sup>+</sup> (Guinet.M dan Magnoux.P, 1997).

#### 2.6.2.4 Kondisi Operasi dan Laju Coking

Laju *coking* tergantung pada kondisi operasi dan khususnya pada suhu reaksi (T). Perilaku kompleks ini dapat dihubungkan dengan fakta bahwa *coking* membutuhkan langkah-langkah reaksi, retensi prekursor *coke* dan molekul *coke* di dalam pori, kedua sifat ini merupakan tahapan kimia dan penyebab *coke* terjebak di dalam pori-pori tergantung pada suhu reaksi. Laju *coking* umumnya meningkat dengan tekanan reaktan. Penggunaan hidrogen dalam reaktan ditemukan untuk mengurangi pembentukan kokas dan meningkatkan stabilitas zeolit untuk reaksi khas katalis asam. Umumnya dampak akan lebih jelas bila hidrogen digunakan pada tekanan tinggi atau diaktifkan oleh senyawa redoks. Jelas, pembentukan *coke* lebih signifikan berkurang ketika ada perubahan dari asam untuk mekanisme *bifunctional* (Guinet.M dan Magnoux.P, 1997).

#### 2.6.3 Meminimalisir Efek Deaktivasi *Coke*

Deaktivasi bisa disebabkan oleh: (a) pembatasan akses reaktan ke situs aktif di rongga atau di persimpangan pori yang terdapat molekul *coke*, atau (b) penyumbatan akses; (c) dan (d) pembatasan atau penyumbatan akses reaktan ke situs aktif di rongga, di persimpangan pori atau bagian dari saluran di mana molekul kokain tidak berada (Guinet.M dan Magnoux.P, 1997).



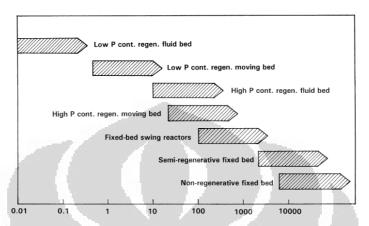
Gambar 2.14 Model deaktivasi zeolit dengan saluran saling berhubungan dan tanpa rongga (co HZSM-5). (a dan b) cakupan situs; (d) penyumbatan pori (Guinet.M dan Magnoux.P, 1997).

Dalam model (a) dan (b) pembatasan atau penyumbatan karena alasan sterik, yaitu difusi reaktan dalam rongga atau di persimpangan pori menjadi terbatas atau diblokir, atau alasan kimia - molekul kokas teradsorpsi secara reversibel atau kuasi-ireversibel di situs asam (cakupan situs). Dalam model ini deaktivasi zeolit umumnya menjadi terbatas karena situs yang terletak di rongga

atau di persimpangan saluran (seringkali hanya satu situs) yang dinonaktifkan sebagian atau seluruhnya (Guinet.M dan Magnoux.P, 1997).

Model (c) dan (d) umumnya disebut penyumbatan pori. Dalam model ini efek deaktivasi molekul *coke* sangat dibicarakan, karena sebagian besar situs aktif umumnya terletak di dalam pori-pori. Akses dari reaktan ke pori-pori tersebut menjadi terbatas atau diblokir (Guinet.M dan Magnoux.P, 1997).

Selain struktur pori-pori, secara tidak langsung kondisi operasi juga dapat mempengaruhi efek deaktivasi molekul kokain. Dengan kondisi yang mendukung pembentukan *coke* dengan cepat, molekul *coke* akan terbentuk dan disimpan dalam pori-pori bagian luar kristalit zeolit jika zeolit bukan monodimensional dan tidak memiliki rongga perangkap. Molekul-molekul *coke* ini memblokir proses difusi dari molekul reaktan ke inti situs asam dari kristalit, dengan efek deaktivasi yang besar dari molekul kokain. Mulut pori (atau *shell*) mengalami penyumbatan (Guinet.M dan Magnoux.P, 1997).


# 2.7 Regenerasi

Regenerasi atau peremajaan adalah istilah umum yang digunakan untuk mengembalikan kondisi ke keadaan semula, jika regenerasi tidak dilakukan penggunaan katalis harus dihentikan. Dalam pemakaian katalis terdapat dua pilihan yang di lakukan, membuang dan memaksimalkan kerja katalis sebagai bahan bernilai ekonomi tinggi (S.T.Sie, 2001).

Regenerasi katalis dapat dilakukan baik secara *ex-situ* atau *in-situ*. Dalam berbagai kasus, regenerasi dapat dilakukan dengan fasilitas terpisah di lokasi yang berbeda dari proses utama dan bahkan regenerasi dapat dilakukan oleh perusahaan lain (*ex-situ*). Regenerasi *in-situ* adalah fasilitas regenerasi yang merupakan bagian integral dari proses instalasi. Proses regenerasi bahkan dapat dilakukan dalam reaktor yang sama seperti yang digunakan dalam proses utama. Kemungkinan lain adalah untuk menginstalasi lebih dari satu reaktor, dengan masing-masing reaktor dioperasikan secara bergantian dalam modus proses atau dalam metode regenerasi (*operasi swing*) (S.T.Sie, 2001).

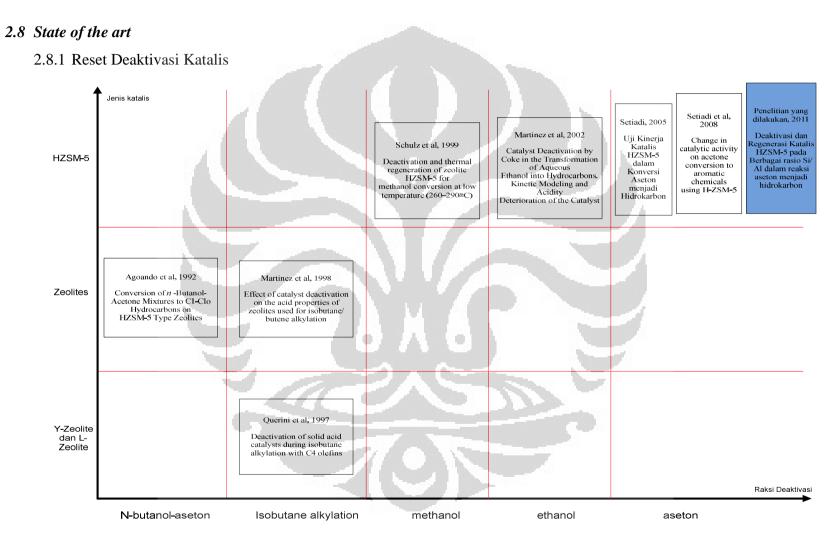
Laju deaktivasi katalis berkaitan erat dengan teknologi reaktor yang akan digunakan dalam regenerasi. Jika tingkat penonaktifan dalam *fix bed reactor* 

cukup rendah, tidak diperlukan tempat khusus untuk regenerasi, dan ketika proses regenerasi telah dilakukan, katalis dapat dibuang atau digunakan di tempat lain. Ini dilakukan untuk katalis yang memiliki kinerja katalis selama 1 tahun atau lebih (S.T.Sie, 2001).



Gambar 2.15 Hubungan antara teknologi reaktor dan kecepatan deaktivasi katalis dalam berbagai variasi (S.T.Sie, 2001).

Ketika aktivitas katalis menjadi lebih pendek, misalnya sekitar setengah tahun, fasilitas khusus untuk regenerasi ditempat menjadi penting, terutama jika menyangkut mahalnya katalis. Pada metode operasi semi-regeneratif, katalis tetap berada dalam reaktor selama regenerasi berlangsung. Fasilitas yang dibutuhkan untuk melakukan regenerasi adalah kompresor untuk sirkulasi gas inert dan dosis udara menjadi bagian unit permanen (S.T.Sie, 2001).


Tujuan dari regenerasi katalis ialah mengembalikan katalis ke keadaan semula untuk kembali memperoleh kinerja yang tinggi dengan menghilangkan deaktivatornya. Katalis hasil regenerasi harus memiliki sifat-sifat berikut ini:

- 1. Luas permukaan harus besar
- 2. Logam harus berada dalam fasa tereduksi
- 3. Logam harus terdispersi pada permukaan penyangga
- 4. Halogen atau fungsi asam katalis harus berada pada tingkat yang sesuai

Deaktivasi katalis disebabkan oleh kokas yang terbentuk sebagai hasil samping reaksi yang menutupi fasa aktif katalis. Selain itu, aglomerasi logam pengotor, keberadaan racun katalis, dan kerusakan penyangga karena temperatur yang terlalu tinggi juga merupakan faktor penyebab deaktivasi katalis. Regenerasi

katalis hanya mampu mengembalikan aktivitas katalis yang menurun karena pembentukan kokas. Karena itu, keberadaan racun katalis di aliran umpan sangat dihindari di dalam proses pengolahan minyak bumi.

Berbagai hasil penelitian (Jong *et al.*, 1997), regenerasi zeolit HZSM-5 yang diakibatkan oleh adanya *coke* (kokas), dalam regenerasi katalis dilakukan selektivitas penghapusan dan transformasi senyawa karbon selama pengaktifan kembali dengan menggunakan udara, 0,5% O<sub>2</sub> dalam N<sub>2</sub> dan H<sub>2</sub> pada suhu 500°C. Dalam penelitiannya ditemukan bahwa pengotor katalis yang diregenerasi dengan udara berada pada dua tempat, yang pertama berada didalam kristal kokas hadir didekat situs asam Bronsted, sedangkan yang kedua berada diluar permukaan kristal. Tampilan ini akan lebih jelas ketika H<sub>2</sub> digunakan sebagai gas regenerasi. Selama penghapusan oksidatif kokas dengan udara atau 0,5% O<sub>2</sub> dalam N<sub>2</sub>, sebagian dari senyawa karbon berubah ke struktur yang lebih kental sebelum sepenuhnya teroksidasi.



Gambar 2.16 State of the art deaktivasi katalis

Penelitian Aguado *et al.*, 1992. Konversi campuran n-butanol/acetone untuk C1-Cl0 hidrokarbon telah dipelajari. ZSM-5 Jenis zeolit dengan berbagai Si/Al rasio, disintesis di laboratorium kami, digunakan sebagai katalis. Para resulb terbaik diperoleh dengan HZSM-5 (Si/Al=36) zeolit, montmorilonit menggunakan 30 natrium% berat sebagai pengikat. Efek dari kondisi operasi (ruang waktu, suhu, dan tekanan) dan pengaruh kadar air pakan pada konversi reaksi telah dipelajari.

Berdasarkan penelitian Querinl et al.,1997. Formulasi coke pada katalis asam padat dipelajari selama alkilasi isobutana dengan C4 olefin. Y-zeolit, mordenite dan L-zeolit diselidiki, serta katalis zirkonia sulfat. Zeolit digunakan dalam bentuk protonic atau setelah pertukaran ion dengan nitrat lantanum. Studi dilakukan dalam fase cair dalam reaktor fixed-bed. Ditemukan bahwa Y-zeolit ditukar dengan lantanum, menjadi katalis dengan stabilitas terbaik, adalah katalis yang membentuk jumlah yang lebih tinggi dari deposito karbon. Jumlah kokas pada katalis ini dapat setinggi 13-14%. Ini kokas membutuhkan suhu yang lebih tinggi dari 500 °C untuk benar-benar dihilangkan. Suhu diprogram analisis menunjukkan bahwa jumlah kokas dihilangkan dari katalis selama regenerasi parsial, sangat tergantung pada tingkat pemanas. Hal ini karena persaingan antara gasifikasi kokas dan nya modifikasi dalam struktur mengarah ke jenis aromatik coke, yang kemudian membutuhkan suhu yang lebih tinggi untuk dibakar. poripori dan pengukuran luas permukaan katalis dilakukan pada dinonaktifkan menunjukkan bahwa pori-pori memasukkan mekanisme berlangsung selama reaksi. Katalis dengan keasaman terlalu kuat (bentuk protonic misalnya Y-zeolit atau sulfat zirkonia) memiliki aktivitas tidak untuk trimethylpentane produksi di 80 °C, kemungkinan besar karena penonaktifan sangat cepat, meskipun jumlah kokas terutama lebih rendah daripada di lantanum-dipertukarkan zeolit.

Penelitian Martoanez *et al.*, 1998. Pembentukan Coke selama reaksi alkilasi isobutana / butena selama zeolit mengurangi keasaman dan kekuatan asam dari katalis. Microcalorimetric pengukuran panas diferensial piridin adsorpsi dan spektroskopi FTIR dari teradsorpsi piridin digunakan untuk menyelidiki perubahan sifat asam disebabkan oleh proses penonaktifan. Spesifik, baru dan katalis asam dinonaktifkan komersial seperti REY, USY, dan Beta zeolit

dipelajari. Adsorpsi microcalorimetry dan Spektroskopi FTIR hasil menunjukkan bahwa USY memiliki situs asam kuat (baik Brùnsted dan Lewis) dan tertinggi Konsentrasi situs kuat diikuti dengan REY dan kemudian oleh zeolit Beta. Pesanan ini adalah kebalikan dari yang diamati untuk alkilasi katalitik kinerja dari zeolit. Secara khusus, tampaknya bahwa memiliki konsentrasi tinggi dari situs Lewis yang kuat deaktivasi katalis mempromosikan. Deposito terbentuk selama penonaktifan memiliki paraf yang kuat karakter, namun bukti spesies nic juga diamati. Tingkat ketidakjenuhan spesies permukaan terbentuk meningkat dari Beta ke USY zeolit, menyiratkan bahwa kehadiran konsentrasi tinggi asam Lewis kuat situs mempromosikan pembentukan tak jenuh senyawa. Situs Brùnsted dengan kekuatan asam menengah tampaknya menjadi lokasi yang sesuai untuk menjaga alkilasi yang baik kinerja katalitik. Kinerja katalitik terbaik dan deaktivasi paling lambat dicapai dengan Beta zeolit, diikuti oleh REY dan USY dengan kandungan sodium rendah. Isomerisasi butena hanya diamati untuk USY dengan konten natrium tinggi. Untuk katalis aktif, rute reaksi alkilasi global yang mendominasi pada awalnya, tetapi jumlah produk alkilasi menurun sebagai katalis mulai menonaktifkan ketika oligomerisasi mendominasi, dan, Nally, katalis kehilangan sebagian besar kegiatan dan isomerisasi adalah reaksi hanya diamati. Distribusi produk yang diperoleh menunjukkan bahwa, bukannya alkilasi otentik, mekanisme umum awal polimerisasi diikuti oleh b-pemotongan. Dua model penonaktifan diusulkan untuk menjelaskan penonaktifan. Obstruksi langsung dari situs alkilasi aktif dengan adsorpsi ireversibel prekursor kokas atau coke dan obstruksi langsung dari situs aktif dengan menghalangi pori-pori atau pori katalis.

Penelitian Aguayo *et al.*, 2002. Aspek dasar (kokas deposisi, penurunan keasaman) penonaktifan dengan kokas dari katalis (dibuat dari zeolit HZSM-5) yang digunakan dalam transformasi etanol berair ke hidrokarbon dalam kisaran 350-450°C telah dipelajari. Percobaan dilakukan pada reaktor fixed-bed isotermal dengan feed dari etena, campuran etanol dan air pada berbagai rasio massa, dan dietil eter. Pentingnya konten suhu dan air dalam reaksi menengah pada mekanisme coke evolusi ditunjukkan. Pengaruh variabel-variabel pada penonaktifan dijelaskan oleh model kinetik di mana peran prekursor kokas (etena,

cahaya olefin, dan bensin) dianggap. Peran ini tergantung pada kondisi operasi, khususnya suhu.

Penelitian Setiadi., 2005. Katalitik produk turunan biomassa. Akan menjadi suatu skema rute baru, apabila dari senyawa aseton tersebut dapat ditransformasi menjadi senyawa hidrokarbon aromatis. Senyawatersebut merupakan bahan baku utama yang penting dalam proses industri petrokimia. Apabila proses katalitik untuk produksihidrokarbon tersbut dapat diupayakan, maka dimasa depan bisa melepas ketergantungan pada minyak bumi.Penelitian ini bermaksud untuk mengembangkan proses reaksi katalitik untuk memproduksi senyawa monoaromatik dari aseton menggunakan katalis ZSM-5. Reaksi dilakukan didalam reaktor pipa pada suhu 673 K, space velocity 4 h-1, bertekanan atmosferik. Tiga macam sampel katalis ZSM-5 dengan rasio Si/Al=25, 75 dan 100 diuji kinerjanya untuk dievaluasi konversi, yield aromatik serta kestabilan durability test) selama 10 jam.Hasil pengujian kinerjanya (catalytic memperlihatkan ketiga katalis tersebut memiliki kinerja yang hampir sama selama 2 jam uji reaksi. Konversi aseton hampir mendekati 100 %, dengan yield diatas 70 %. Namun, katalis ZSM-5 rasio Si/Al=25 masih mampu mempertahankan kemampuan kinerjanya, sedangkan katalis ZSM-5 dengan rasio Si/Al=75 dan 100, lebih mudah mengalami deaktivasi. Hasil karakterisasi permukaan katalis baik sebelum maupun sesudah reaksi, memperlihatkan ketiga rasio katalis ZSM-5 tersebut semuanya mengalami penurunan luas permukaan katalis (luasan total maupun luasan pori katalis). Oleh karenanya, deaktivasi katalis tersebut sangat dimungkinkan karena terbentuknya kokas dan menutupi pori-pori katalis (pore blocking).

Penelitian Setiadi *et al.*, 2008. Penelitian ini dikhususkan untuk proses katalitik menggunakan H-ZSM-5 katalis untuk reaksi aseton konversi ke bahan kimia aromatik. Reaksi dilakukan dalam terus menerus reaktor aliran bawah tekanan atmosfer pada suhu 573-723 K. Pekerjaan ini dimaksudkan untuk memeriksa perubahan H-ZSM-5 katalis dalam reaksi konversi aseton pada berbagai suhu dan efek dari Si/Al rasio atom. H-ZSM-5 dengan Si/Al = 25 adalah lebih aktif dan stabil daripada Si/Al rasio 75 atau 100, ini menunjukkan bahwa reaksi konversi aseton memerlukan densitas tinggi asam H-ZSM-5 katalis. Hasil

aromatik diperoleh lebih tinggi dari 60% berat selama 6 jam reaksi. Reaksi pada 673 K adalah paling menguntungkan suhu untuk konversi aseton terhadap produk aromatik. Tinggi selektivitas dari mono-produk aromatik menunjukkan katalis H-ZSM-5 adalah bentuk selektif untuk pembentukan produk aromatik dan mampu menekan pembentukan poli-aromatik senyawa karena ukuran geometris dari poripori. Tidak ada efek negatif karena air Selain itu pada konversi aseton dan selektivitas produk aromatik mengacu tanpa keberadaan air dalam umpan, itu akan menyederhanakan proses industri. Hal ini sangat meramalkan bahwa penyebab utama dari proses penonaktifan ini terutama karena pembentukan kokain, yang ditutupi atau diblokir pada permukaan H-ZSM-5 katalis.

Tabel 2.1 Rangkuman state of the art deaktivasi katalis HZSM-5

| No | Penulis/Tahun          | Umpan/Gas Pembawa/Katalis                           | Reaktor   | %<br>pembentukan<br>kokas |
|----|------------------------|-----------------------------------------------------|-----------|---------------------------|
| 1  | Aguardo et al,<br>1992 | n-Buthanol Aseton/H2/ZSM-5                          | Fixed-bed | 46,1                      |
| 2  | Querinl et al,<br>1997 | Isobutane/H2/Y-<br>Zeolit,Mordenite,L-Zeolite       | Fixed-bed | 13-14                     |
| 3  | Setiadi, 2005          | Aceton/N2/HZSM-5                                    | Fixed-bed | 70                        |
| 4  | Setiadi, 2008          | Aceton/N <sub>2</sub> /HZSM-5                       | Fixed-bed | 60                        |
| 5  | Penelitian ini         | Aceton/N2(Deaktivasi) dan Uadara(Regenerasi)/HZSM-5 | Fixed-bed | 4                         |

# **BAB III**

### METODE PENELITIAN

# 3.1 Tahap Penelitian

Secara garis besar penelitian ini dilakukan dalam beberapa tahapan untuk melihat deaktivasi dan regenerasi katalis HZSM-5 dalam reaksi aseton menjadi hidrokarbon dengan berbagai rasio Si/Al juga untuk mengetahui penyebab terjadinya deaktivasi pada katalis.

#### 3.1.1 Katalis *Fresh*

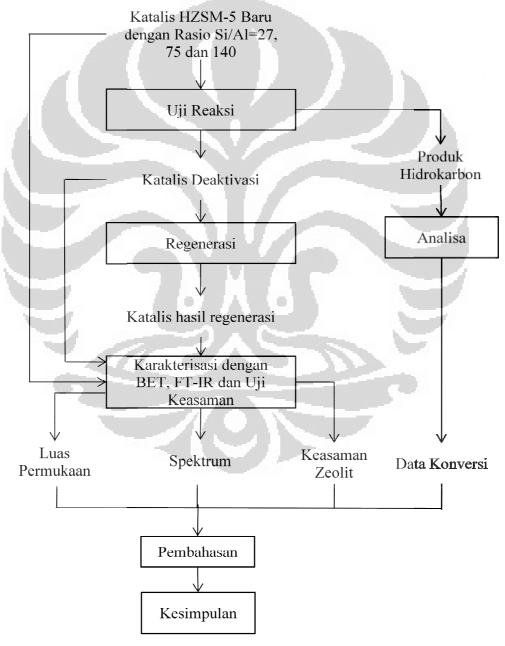
Pada penelitian ini katalis HZSM-5 yang digunakan adalah katalis komersial (*Zeolyst*) sehingga tidak dilakukan preparasi terhadap katalis tersebut. Karakterisasi katalis HZSM-5 dilakukan dengan metode BET dan FT-IR untuk mengetahui ikatan-ikatan kimia yang berada di dalam katalis tersebut.

# 3.1.2 Tahap Konversi Katalitik (Reaksi dan Kinerja Katalis)

Pada tahap ini, senyawa aseton yang dibawa oleh gas N<sub>2</sub> dikontakkan dengan katalis HZSM-5. Reaksi berlangsung dalam *fixed Bed* dimana laju alir umpan dan temperaturnya diatur pada kondisi tertentu. Tujuan dari tahapan ini yaitu untuk mengetahui kinerja dari katalis HZSM-5.

Pada tahap ini juga dilakukan identifikasi dan analisa terhadap hasil reaksi yang telah dilakukan. analisa GC-FID (*Gas Chromatography - Flame Ionization Detector*) untuk mengetahui seberapa banyak kadar aseton yang berada di dalam gas N<sub>2</sub>. Selain itu juga dilakukan analisa kadar keasaman dari zeolit itu sendiri selama mengalami deaktivasi.

#### 3.1.3 Deaktivasi Katalis


Pada penelitian ini katalis HZSM-5 yang telah terdeaktivasi, mengalami pengujian karakteristik katalis kembali. Karakterisasi katalis HZSM-5 dilakukan dengan metode BET untuk mengetahui luas permukaan katalis dan metode FT-IR untuk mengetahui jenis ikatan-ikatan kimia yang ada dalam produk cair.

# 3.1.4 Regenerasi Katalis

Regenerasi katalis dilakukan untuk mengembalikan kinerja katalis seperti sebelum mengalami reaksi. Regenerasi katalis ini akan dilakukan dengan menggunakan udara. Pada penelitian ini, katalis HZSM-5 yang telah diregenerasi diuji karakteristik katalis kembali menggunakan BET dan FT-IR.

# 3.2 Diagram Alir

Diagram alir tahap penelitian tentang deaktivasi dan regenerasi:



Gambar 3.1 Diagram alir penelitian secara umum

# 3.3 Uraian Terperinci Penelitian

Pada bagian ini dijelaskan prosedur penelitian secara lengkap dan detail (lihat Gambar 3.1). Mulai dari tahap awal, ketika katalis belum direaksikan, katalis terdeaktivasi hingga katalis mengalami regenerasi kembali. Penelitian ini terdiri dari dua pengujian, yang pertama pengujian hasil reaksi terdiri dari analisa produk hasil reaksi dengan mengunakan GC-FID dan uji keasaman (TDP-NH<sub>3</sub>). Pengujian yang kedua untuk mengetahui karakterisasi katalis dengan mengunakan uji BET dan FT-IR.

# 3.3.1 Uji Reaksi Katalis

# Analisa Produk Hasil Reaksi

Pada tahap ini senyawa aseton direaksikan dengan katalis HZSM-5 menggunakan reactor uji seperti pada gambar 3.1. Reaksi berlangsung dalam *fixed bed reactor* dimana laju alir umpan dan temperaturnya diatur pada kondisi tertentu.

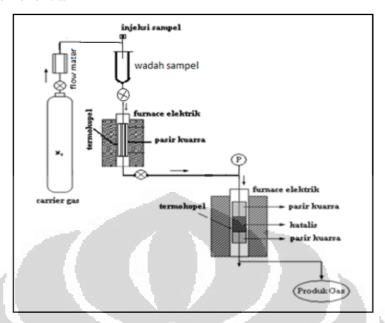


Gambar 3.2 Reaktor Uji

#### A. Alat dan Bahan

- Spatula
- Kertas timbang
- Syringe gas tight
- Alat suntik 100 ml

- Reaktor fixed bed
- Timbangan
- Aseton
- Gas N<sub>2</sub>
- Katalis HZSM-5 Rasio Si/Al=27, Si/Al=75 dan Si/Al=140


#### B. Persiapan Sampel

- Timbang katalis HZSM-5 sebanyak 0,5000 gram
- Siapkan reaktor yang telah di isi dengan pasir kuarsa (quartz wool) agar pada saat katalis dimasukan berada pada posisi yang tepat dan pada saat direaksikan tidak tejadi pressure drop pada katalis
- Masukan katalis kedalam reaktor

# C. Persiapan Alat

- Alat disiapkan terlebih dahulu sebelum sampel dialiri gas N<sub>2</sub> dan juga uap aseton
- Untuk start up, N<sub>2</sub> dialirkan terlebih dahulu untuk membersihkan reaktor dalam keadaan kosong
- Siapkan aseton
- Ambil aseton dengan mengunakan tabung suntik 100 ml
- Masukan aseton kedalam tempat sampel kemudian tutup rapat sehinga kedap udara
- Hubungkan pipa aliran gas N<sub>2</sub> dan pipa gas menuju reaktor tempat sampel
- Furnace electric dinyalakan dan diset pada preheater = 110°C dan pada reaktor = 400°C

#### D. Metode Penelitian



Gambar 3.3 Susunan Reaktor Uji Katalis Fixed Bed Reaktor

Susunan reaktor untuk tahap konversi katalitik adalah:

- Gas N<sub>2</sub> dialirkan dengan laju alir 100 ml/menit
- $\bullet$  Gas  $N_2$  yang mengalir akan kontak dengan uap aseton, kemudian uap aseton akan dibawa oleh  $N_2$  dan dikontakan dengan sampel katalis HZSM-
- Produk yang diperoleh berupa gas ditamping dengan mengunakan syringe gas tight
- Produk dianalisa dengan mengunakan GC-FID untuk mengetahui % konversi aseton yang didapat setelah dikontakan dengan katalis
- Unggun katalis yang berupa katalis HZSM-5 ditahan dengan lapisan *quartz wool* (pasir kuarsa) agar unggun katalis berada pada posisi yang tetap.
- Diatas unggun katalis ditempatkan pasir kuarsa yang dimaksudkan sebagai pemanas aseton yang masuk pada fasa cair.
- Tepat disisi luar unggun katalis, disematkan pipa kecil untuk peletakan ujung termokopel sebagai monitoring suhu katalis selama reaksi

 Reaktor yang telah disiapkan dengan susunan tersebut diatas kemudian ditempatkan pada sistem aliran uji reaksi seperti terlihat pada gambar diatas.

#### E. Analisa Produk Hasil Reaksi

Analisa produk hasil reaksi dilakukan untuk mengetahui konversi aseton yang telah dikontakan dengan katalis HZSM-5. Untuk mengetahui seberapa banyak kadar aseton yang berada di dalam gas N<sub>2</sub> maka dilakukan analisa dengan mengunakan GC-FID (*Gas Chromatography - Flame Ionization Detector*). Pada GC-FID akan terbaca luas peak area dari aseton. Dengan membandingkan luas peak area aseton pada blanko dan luas peak area yang terbentuk setelah reaksi konversi dilakukan maka dapat diketahui besar konversi aseton yang terjadi. Adapun rumus yang digunakan yaitu :

$$X_{aseton}(\%) = \frac{\text{Luas Peak Area Blanko-Luas Peak Area Aseton Sisa}}{\text{Luas Peak Area Blanko}} x 100\%$$
 (3.1)

Analisa produk hasil reaksi akan diulang untuk katalis HZSM-5 dengan rasio yang berbeda-beda.

# Uji Keasaman Zeolit (TPD-NH<sub>3</sub>)

Uji keasaman pada penelitian ini dilakukan dengan metode adsorpsidesorpsi ammonia yaitu TPD (*Temperature Programmed Desorption*).

Prosedur yang dilakukan dalam tahap uji keasaman, yaitu:

- A. Persiapan larutan amonia dan larutan asam klorida.
  - Disiapkan larutan HCl 0,005 M sebanyak 200 ml dalam tabung reaksi dan ditambahkan 2 tetes indikator PP. Larutan HCl ini berfungsi sebagai penangkap gas amonia yang keluar dari reaktor.
  - Disiapkan larutan amonia 25 % yang akan diambil uapnya. Uap amonia ini diinjeksikan ke dalam reaktor.

#### B. Persiapan reaktor dan katalis HZSM-5.

 Quartz wool disusun pada bagian bawah unggun katalis untuk menjaga katalis dari kemungkinan entrainment akibat umpan gas yang masuk selama operasi pengujian.

- Disiapkan 0,5000 gram katalis HZSM-5. Masukan kedalam reaktor yang telah dilapisi *quartz wool* untuk menghindarai terjadinya *pressure drop*.
- Reaktor dipasang dalam *furnace* elektrik dan pastikan semua sambungannya telah terpasang dengan baik.

### C. Tahapan adsorpsi-desorpsi amonia.

- Katup gas N<sub>2</sub> dibuka dan atur laju alir gas yang keluar dari reaktor. Laju alir keluaran gas dari reaksi ini sebesar 100 ml/menit.
- Furnace dinyalakan, setting pada T = 450°C, alirkan gas N<sub>2</sub> dan laju alirnya diatur. Setelah tercapai T = 450°C dan stabil, didiamkan selama 1 jam. Hal ini dilakukan untuk menghilangkan kemungkinan adanya kandungan komponen air selama penyimpanan maupun penyusunan unggun katalis. Tahapan ini disebut juga Purging.
- Setelah 1 jam, *setting* temperatur diturunkan pada T = 100°C dan ditunggu hingga stabil.
- Pada saat mencapai T = 100°C dan stabil, uap NH<sub>3</sub> diiinjeksikan sebanyak
   0,5 ml ke dalam reaktor setiap 20 menit sebanyak 4 kali. Jadi, total uap amonia yang diinjeksikan adalah 2 cc. Dibiarkan selama 1 jam untuk proses absorbsi.
- Setelah 1 jam temperatur dinaikkan menjadi 250°C dan ditunggu hingga stabil, tahap ini merupakan proses desopsi secara fisik.
- Setelah suhu stabil naikan temperatur menjadi 450°C. Gas yang keluar ditampung dengan mengunakan *urine bag*.

# D. Tahap Titrasi

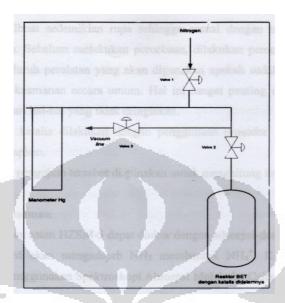
- Dilakukan proses *bubbling*, dimana gas amoniak dalam *urine bag* direaksikan dengan HCl dalam erlenmeyer.
- Diamati apakah ada perubahan warna.
- Jika tidak ada perubahan warna, dilakukan tahap titrasi dengan larutan KOH 0,005M.
- Catat volume KOH setelah terjadi perubahan warna dari tidak berwarna menjadi merah muda.

Uji keasaman ini dilakukan pada katalis HZSM-5 Rasio Si/Al=27, 75 dan 140. Pada rasio Si/Al=27 dilakukan setiap jam untuk mengetahui keasaman katalis pada saat bereaksi dengan aseton hingga terjadi deaktivasi pada katalis tersebut. Rumus yang digunakan dalam uji keasaman yaitu :

$$\textit{Keasaman Zeolit} = \frac{\textit{mmol HCl} - \textit{mmol HCl hasil titrasi dengan KOH}}{\textit{gram Katalis}}$$

#### 3.3.2 Uji Karakterisasi Katalis

Katalis HZSM-5 yang akan digunakan, dikarakterisasi terlebih dahulu dengan mengunakan metode BET dan FT-IR. Metode BET dilakukan untuk mengetahui luas permukaan katalis HZSM-5, sedangkan metode FT-IR digunakan untuk mengetahui ikatan-ikatan yang terdapat pada katalis.


# Karakteristik dengan BET

Uji karakteristik BET pada prinsipnya yaitu mengukur luas permukaan padatan dilakukan dengan cara adsorpsi fisik (*physisorption*) gas yaitu menentukan jumlah molekul gas yang dibutuhkan untuk menutupi permukaan padatan dengan satu lapisan zat (monolayer) yang diserap (adsorbat). Jika luas permukaan yang ditempati oleh satu molekul adsorbat diketahui, maka luas permukaan padatan dapat dihitung dari jumlah molekul adsorbat. Penyerapan gas ini biasanya dilakukan pada kondisi isotermis.

Prosedur percobaan pada karakterisasi BET ini adalah sebagai berikut :

- Sebelum dilakukan pengujian, peralatan BET harus di vakum terlebih dahulu. Setelah di vakum, 0,2 gram katalis dimasukkan ke dalam reaktor BET dan dipanaskan pada temperatur 200°C selama 1 jam.
- Reaktor didinginkan dengan menggunakan nitrogen cair (titik didih = -196°C) untuk mengkondensasi gas nitrogen dipermukaan katalis.
- Tekanan gas nitrogen sebelum dan sesudah masuk reaktor diukur oleh manometer air raksa. Volume gas nitrogen yang teradsorp di permukaan katalis dapat dihitung berdasarkan perbedaan tekanan yang diperoleh.

Skema peralatan pada uji karakteristik katalis dengan metode BET dapat dilihat pada gambar 3.4 sebagai berikut :

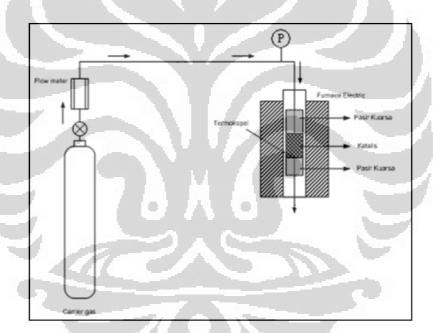


Gambar 3.4 Skema Peralatan BET (Linna, 2009)

Uji BET ini dilakukan pada sampel katalis HZSM-5 Rasio Si/Al=27 yang baru, telah terdeaktivasi dan katalis hasil regenerasi.

#### Karakterisasi FT-IR

Tujuan dari analisa FT-IR adalah untuk melihat dengan jelas ikatanikatan apa saja yang dimiliki oleh sampel yang dihasilkan dari proses konversi katalitik. Prosedur analisa FT-IR adalah sebagai berikut :


- Lakukan scanning pada keadaan FT-IR belum terisi sampel.
- Campur sampel serbuk dengan KBr
- Tumbuk sampel dan KBr hingga rata dan halus dengan lumpang
- Simpan sampel pada tempat FT-IR secara padat dan halus
- Lakukan *scanning* sampel menggunakan *software*.
- Hasil scanning dapat dilihat pada tampilan layar monitor.
- Print hasil scanning.

Uji FT-IR ini dilakukan pada sampel katalis HZSM-5 Rasio Si/Al=27 dan Rasio Si/Al=140 baik katalis yang baru, terdeaktivasi dan katalis yang telah diregenerasi.

# 3.3.3 Regenerasi Katalis

Regenerasi katalis dilakukan untuk mengembalikan kinerja katalis seperti sebelum mengalami reaksi. Regenerasi katalis ini akan dilakukan dengan menggunakan udara. Prosedur penelitian regenarasi katalis adalah sebagai berikut:

- Katalis yang telah terdeaktivasi dimasukan ke dalam *Fixed Bed Reaktor* sebesar 0,0500 gram katalis.
- Dihembuskan udara kedalam reaktor, dengan temperatur 450 °C dan laju alir 1000 ml/menit.
- Katalis yang telah mengalami regenerasi akan ditandai dengan berubahnya warna katalis, yang awalnya hitam pekat karena terdeaktivasi, setelah mengalami regenerasi menjadi serbuk putih kembali.



Gambar 3.5 Susunan Reaktor Uji Regenerasi Katalis Fixed Bed Reaktor

#### 3.4 Hasil yang Diharapkan dalam Metode Penelitian

#### 3.4.1 Data-Data Hasil Pengujian Reaksi Katalis

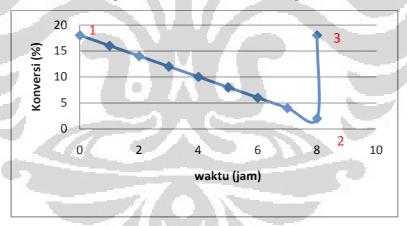
### Data Hasil GC-FID

Analisa dengan mengunakan GC-FID ini bertujuan untuk mengetahui kadar aseton yang berada didalam gas  $N_2$ .

# Data Hasil Uji Keasaman

Uji keasaman ini bertujuan untuk mengetahui seberapa besar senyawa asam yang berada didalam katalis tersebut.

#### 3.4.2 Data-Data Hasil Karakterisasi Katalis

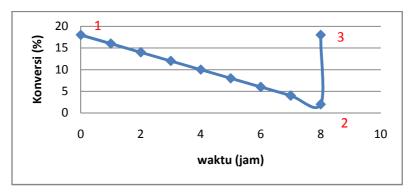

### Data Hasil BET

Digunakan untuk mengetahui luas permukaan katalis sebelum dan sesudah dipakai (terdeaktivasi). Diperkirakan katalis bekas akan mengalami penyempitan atau penurunan luas permukaan, dikarenakan adanya penumpukan *coke* didalam pori zeolit.

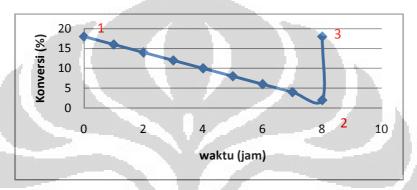
# Data Hasil FT-IR

Data hasil FT-IR ini digunakan untuk menganalisis ikatan-ikatan yang terdapat pada katalis khususnya untuk mengamati keberadaan kokas yang terbentuk. Bilangan gelombang pada pita transmisi katalis terdeaktivasi akan dibandingkan dengan katalis baru.

Hasil yang diharapkan dari penelitian adalah adanya keterkaitan datadata hasil karakterisasi dengan deaktivasi katalis dan regenerasi.




Gambar 3.6 Hasil yang Diharapkan Rasio 1 Si/Al (25)


1. Sampel Katalis (1) = Katalis segar

2. Sampel Katalis (2) = Katalis yang telah mengalami reaksi dan mengalami deaktivasi katalis.

3. Sampel Katalis (3) = Katalis yang telah diregenerasi.



Gambar 3.7 Hasil yang Diharapkan Rasio 2 Si/Al (75)



Gambar 3.8 Hasil yang Diharapkan Rasio 3 Si/Al (140)

Setelah katalis mengalami regenerasi, diharapkan karakteristik dan kinerja katalis akan sama seperti pada saat katalis segar (belum terjadi reaksi). Hal ini dapat dilihat pada berbagai percobaan yang telah dilakukan, baik uji karakteristik katalis maupun identifikasi dan analisi katalis dalam berbagai rasio Si/Al.

Rasio Si/Al yang beragam akan memiliki karakteristik dan kinerja katalis yang beragam. Sampel katalis dengan berbagai rasio Si/Al akan dibandingkan antara katalis yang telah diregenerasi dengan katalis segar. Hasil akhir yang diharapkan, dapat mengetahui rasio Si/Al terbaik yang memiliki karakteristik dan kinerja katalis yang mendekati kondisi awal, sehingga dapat digunakan kembali sebagai katalis.

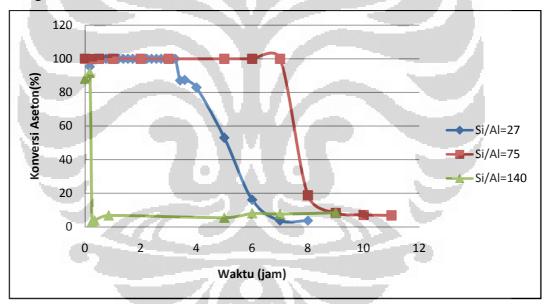
#### **BAB IV**

### HASIL DAN PEMBAHASAN

Pada bab ini akan dibahas hasil penelitian yang telah dilakukan, meliputi pengujian berbagai katalis HZSM-5 pada konversi katalitik senyawa aseton untuk menghasilkan senyawa hidrokarbon, yang dilanjutkan dengan karakterisasi katalis menggunakan metode adsorpsi-desorpsi amoniak (TPD-NH<sub>3</sub>), BET dan FT-IR. Hasil reaksi konversi aseton berupa produk hidrokarbon telah dikerjakan secara detail oleh Linna dan Mondy (Skripsi, 2010) dengan mengunakan *gas chromatografi mass spectrometer* (GC-MS) serta *flame ionization detector* (FID). Dalam bab ini dipertimbangkan tidak membahas kembali tentang produk senyawa tersebut.

# 4.1 Hasil Uji Konversi Katalitik

Uji konversi katalitik dilakukan pada aseton dengan menggunakan katalis HZSM-5 dengan variasi rasio Si/Al sebagai variabel bebas. Variasi rasio Si/Al yang digunakan adalah 27, 75 dan 140, dengan laju alir *carrier gas* N<sub>2</sub> 100 ml/menit. Variasi rasio Si/Al akan mempengaruhi waktu terjadinya deaktivasi katalis. Reaksi konversi katalitik dilakukan dengan mengalirkan *carrier gas* N<sub>2</sub> yang membawa gas aseton dan dikontakan dengan katalis, sehingga terjadi konversi aseton menjadi hidrokarbon. Berat katalis yang digunakan bernilai tetap yaitu 0,5 gram. Produk reaksi dalam fasa gas dianalisis dengan *Gas Chromatograpy* (GC) untuk mengetahui komposisi aseton yang bereaksi dengan katalis HZSM-5.


#### 4.1.1 Tahap *Blank Test*

Pada tahap ini dilakukan pengaliran aseton di dalam reaktor *fixed bed* tanpa keberadaan katalis. Di dalam reaktor hanya diisi dengan *guartz sand* sebesar 5,0000 gram. Tujuannya adalah untuk mengetahui apakah tanpa keberadaan katalis, aseton dapat terkonversi menjadi hidrokarbon atau tidak. Data yang digunakan sebagai pembanding adalah komposisi produk yang dihasilkan. Dari penelitian, diperoleh produk berupa aseton 100% yang menunjukkan bahwa tanpa adanya katalis HZSM-5 tidak terjadi reaksi konversi.

#### 4.1.2 Deaktivasi Katalis HZSM-5 pada Berbagai Rasio Si/Al

Untuk mengetahui kinerja katalis HZSM-5 pada berbagai rasio Si/Al, dilakukan pengaliran aseton ke dalam reaktor dan diamati bagaimana konversi dari aseton pada katalis tersebut. Pengujian ini dilakukan dengan kurun waktu dan kondisi operasi yang tetap pada semua katalis. Pada percobaan ini dilakukan pengujian kinerja katalis HZSM-5 selama 8 jam dengan besarnya rasio Si/Al pada katalis = 27, 75 dan 140, dengan laju alir  $N_2$  100 ml/menit, temperatur *preheater* =  $110^{\circ}$ C dan temperatur reaksi =  $400^{\circ}$ C.

Produk yang dihasilkan dari konversi aseton, dianalisis dengan menggunakan *Gas Chromatography Flame Ionization Detector* (GC-FID). Setelah dilakukan perhitungan, maka diperoleh kurva konversi aseton sepanjang waktu seperti terlihat pada Gambar 4.1. Kurva ini kemudian digunakan untuk mengetahui waktu deaktivasi katalis HZSM-5.



Gambar 4.1 Deaktivasi Katalis HZSM-5 dalam Berbagai Rasio Si/Al dalam Katalis HZSM-5

Gambar 4.1 menunjukan secara jelas adanya pengaruh rasio Si/Al terhadap deaktivasi katalis HZSM-5. Pada gambar terlihat bahwa kinerja katalis untuk mengkonversi aseton menjadi hidrokarbon berbeda-beda. HZSM-5 dengan rasio Si/Al=27 menghasilkan konversi aseton 100% selama 4 jam, selanjutnya terjadi deaktivasi katalis secara bertahap hingga konversi 5%.

Untuk HZSM-5 dengan rasio Si/Al=75 menunjukan kinerja yang lebih baik dibandingkan dengan dua rasio lainnya. HZSM-5 dengan rasio Si/Al=75 Universitas Indonesia

menghasilkan konversi aseton 100% selama 7 jam kemudian pada jam ke-8 mengalami penurunan kinerja katalis yang signifikan. Untuk HZSM-5 dengan rasio Si/Al=140 langsung mengalami deaktivasi setelah reaksi satu jam.

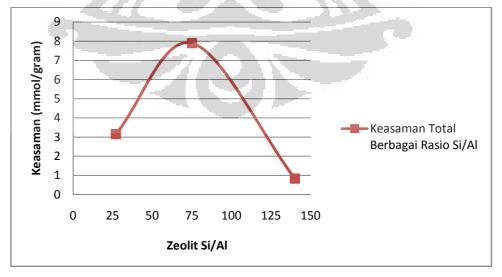
Deaktivasi katalis diikuti dengan perubahan warna yang terjadi pada katalis. Katalis baru HZSM-5 memiliki warna putih bersih, sedangkan katalis yang mengalami deaktivasi akan menjadi hitam pekat seperti terlihat pada Gambar 4.2. Warna hitam pada katalis yang terdeaktivasi diakibatkan terbentuknya kokas yang menempel pada sisi aktif katalis. Sisi aktif katalis yang tertutupi mengakibatkan menurunnya luas permukaan pada katalis. Terbentuknya kokas tidak langsung menutupi pintu pori tetapi melapisi dinding pori terlebih dahulu sehingga deaktivasi terjadi secara bertahap.



Gambar 4.2 Katalis HZSM-5 Terdeaktivasi (Kiri) dan Regenerasi (Kanan)

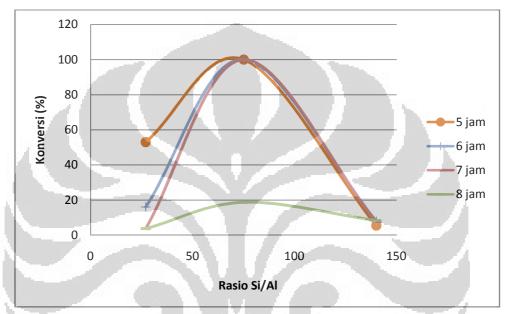
Pada penelitian ini juga dilakukan regenerasi katalis dengan mengalirkan udara pada ungun katalis. Kokas merupakan persenyawaan karbon yang bisa bereaksi dengan udara dan menghasilkan gas CO<sub>2</sub> dan H<sub>2</sub>O. Keberhasilan regenerasi ditandai dengan perubahan fisik warna katalis, katalis yang terdeaktivasi berwarna hitam pekat menjadi putih bersih kembali setelah diregenerasi. Berat katalis juga mengalami penurunan dibandingkan berat sebelum diregenerasi.

### 4.2 Karakterisasi Katalis


Karakterisasi katalis yang dilakukan baik untuk katalis baru maupun katalis yang terdeaktivasi dimaksudkan untuk mengetahui karakteristik katalis dan menjelaskan perilaku deaktivasi dari katalis sesuai dengan rasio Si/Al yang telah didapat hasilnya pada sub bab 4.1.2. Uji FT-IR, uji keasaman dan uji BET digunakan dalam karakterisasi ini untuk mengetahui perubahan katalis setelah

digunakan dalam reaksi konversi aseton, khususnya untuk mengetahui keberadaan kokas pada katalis. Uji FT-IR dilakukan untuk mengetahui secara kualitatif ikatan-ikatan yang terdapat pada katalis yang bertujuan untuk mengidentifikasi kandungan sampel katalis HZSM-5. Uji keasaman dengan metode adsorpsidesorpsi amoniak (TPD-NH<sub>3</sub>) dilakukan untuk mengetahui keasaman dari katalis baik yang baru maupun yang telah terdeaktivasi. Uji BET digunakan untuk mengetahui luas permukaan pada zeolit baru, terdeaktivasi dan yang telah diregenerasi.

### 4.2.1 Uji Keasaman

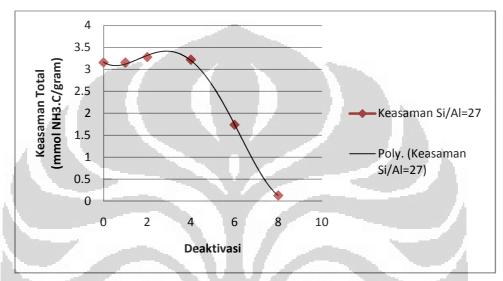

Kemampuan zeolit HZSM-5 untuk mengkonversi berbagai jenis reaktan sangat berkaitan dengan sifat keasamannya terutama pada sisi inti aktif asam *Bronsted*. Zeolit HZSM-5 dapat berfungsi sebagai katalis asam karena pada permukaan zeolit terdapat proton (H<sup>+</sup>) yang berfungsi sebagai pusat inti aktif. Karakterisasi keasaman zeolit dapat diketahui dengan metode adsorpsi-desorpsi NH<sub>3</sub> dimana kuantitas NH<sub>3</sub> yang terserap mengindikasi jumlah keasaman katalis. NH<sub>3</sub> bersifat basa sehingga dijadikan barometer atau ukuran tingkat keasaman suatu katalis untuk asam *Bronsted*.

Asam *Bronsted* akan mengadsorb NH<sub>3</sub> membentuk NH<sub>4</sub><sup>+</sup>. Semakin banyak NH<sub>4</sub><sup>+</sup> yang terserap oleh katalis menunjukan semakin tinggi keasaman dari katalis HZSM-5. Bila terdesorpsi pada suhu yang lebih tinggi menunjukan semakin tinggi kekuatan asamnya.

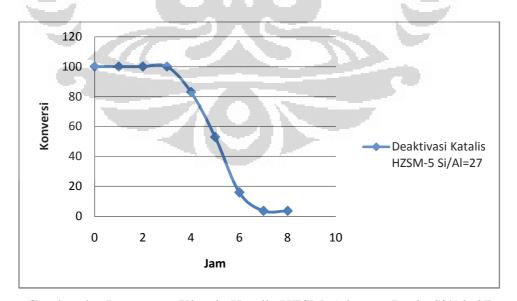


Gambar 4.3 Keasaman total zeolit HZSM-5 rasio Si/Al= 27, 75 dan 140

Hasil TPD NH<sub>3</sub> terlihat pada Gambar 4.3. Gambar ini menunjukan keasaman total yang diukur dengan mendesorpsi amoniak pada rentang 250-450°C diplot dengan rasio Si/Al. Katalis HZSM-5 dengan rasio Si/Al=27 memiliki keasaman sebesar 3,1547 mmol NH<sub>3</sub>/gram katalis, katalis HZSM-5 dengan rasio Si/Al=75 memiliki keasaman yang paling tinggi sebesar 7,98 mmol NH<sub>3</sub>/gram katalis dan katalis HZSM-5 dengan rasio Si/Al=140 memiliki keasaman yang rendah hanya sebesar 0,8411 mmol NH<sub>3</sub>/gram katalis.




Gambar 4.4 Deaktivasi katalis HZSM-5 dengan Berbagai Rasio Si/Al

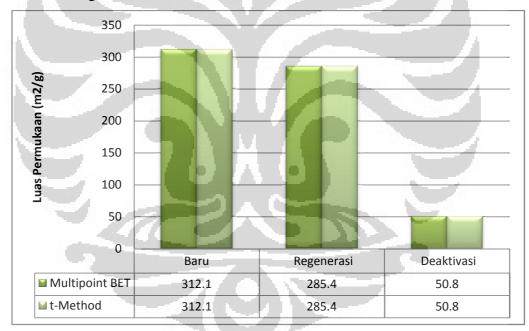

Hasil uji keasaman zeolit HZSM-5 berbagai rasio, sangat berkaitan dengan hasil uji katalitik katalis yang telah dilakukan pada sub bab 4.2.1. Dimana zeolit dengan rasio Si/Al=75 yang memiliki keasaman katalis tertinggi mengalami aktivitas katalis terlama, sedangkan zeolit dengan rasio Si/Al=140 yang memiliki keasaman katalis terendah mengalami deaktivasi katalis tercepat. Bila diperhatikan Gambar 4.3 dan Gambar 4.4 terlihat bahwa adanya korelasi yang kuat antara keasaman dengan keaktifan katalis, dimana pola kurva yang terbentuk mirip khususnya pada puncak Si/Al=75 memiliki keasaman tertinggi begitu juga pada Gambar 4.4, Si/Al=75 terlihat pada puncak tertinggi, hal ini kuat mengindikasikan bahwa keaktifan katalis sangat ditentukan oleh pusat inti aktif asam.

### 4.2.2 Tingkat Keasaman dan Deaktivasi Katalis untuk Rasio Si/Al=27

Pengujian keasaman dilakukan pada setiap waktu tertentu saat reaksi aseton berlangsung yakni 0, 1, 2, 4, 6, dan 8 jam. Pada jam tersebut reaksi aseton dihentikan dan sampel katalis dilakukan uji keasaman. Pengujian keasaman dilakukan pada katalis dengan rasio Si/Al=27. Hasil dari penurunan keasaman dapat dilihat pada Gambar 4.5 dan penurunan kinerja katalis dapat dilihat pada Gambar 4.6.



Gambar 4.5 Penurunan Tingkat Keasaman Katalis HZSM-5 dengan Rasio Si/Al=27

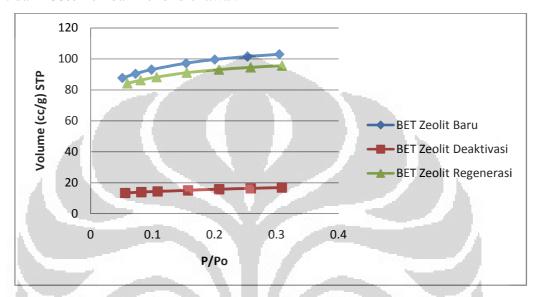



Gambar 4.6 Penurunan Kinerja Katalis HZSM-5 dengan Rasio Si/Al=27

Pada Gambar 4.6, dapat dilihat bahwa saat zeolit HZSM-5 memiliki tingkat keasaman yang tinggi yaitu sebesar 3,1546 mmol NH<sub>3</sub>/gram katalis maka konversi aseton yang dihasilkan sebesar 100%. Penurunan aktivitas katalis terjadi ketika katalis telah bereaksi selama 4 jam. Dari kedua Gambar 4.5 dan 4.6 dapat dilihat bahwa keasaman total dan konversi aseton menurun secara bersama-sama atau sebanding. Hal ini menandakan bahwa inti aktif asam katalis HZSM-5 merupakan penentu berlansungnya reaksi konversi aseton. Penurunan keasaman akibat dari deaktivasi katalis sangat dimungkinkan karena inti aktif katalis tertutup (bloking) oleh terbentuknya kokas berwarna hitam seperti pada sub bab 4.1.2.

# 4.2.3 Karakterisasi Dengan Metode BET

Brunaver, Emmett, Teller (BET) digunakan untuk menganalisis luas permukaan pada zeolit. Katalis yang digunakan untuk analisis BET adalah zeolit HZSM-5 dengan rasio Si/Al=27.




Gambar 4.7 Luas Permukaan Katalis HZSM-5 Rasio Si/Al=27

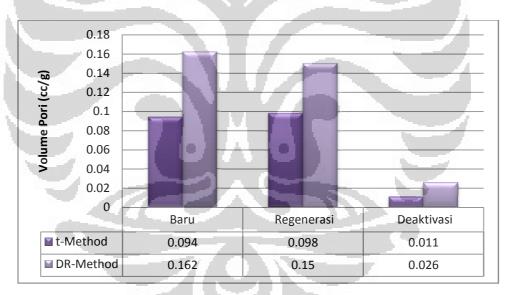
Dari Gambar 4.7 terlihat perubahan luas permukaan zeolit untuk katalis baru, katalis terdeaktivasi dan katalis yang telah di regenerasi. Analisis BET dapat digunakan untuk mengetahui kemungkinan terjadinya deaktivasi yang disebabkan oleh penurunan pori katalis (*pore blocking*).

Dari penelitian, diperoleh hasil bahwa katalis baru memiliki luas permukaan sebesar 312,1 m²/gram, katalis terdeaktivasi memiliki luas permukaan yang kecil yaitu sebesar 50,8 m²/gram dan katalis yang telah diregenerasi Universitas Indonesia

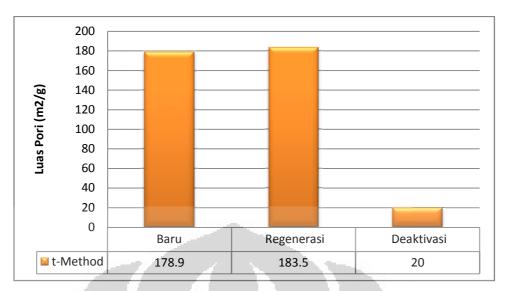
memiliki luas permukaan 285,4 m²/gram. Berdasarkan analisis secara fisik terjadi perubahan warna pada katalis, katalis baru berwarna putih bersih menjadi berwarna hitam pekat ketika terjadi deaktivasi seiring dengan menurunnya luas permukaan katalis. Katalis akan berubah warna menjadi putih kembali ketika katalis telah diregenerasi dan luas permukaan katalis kembali menjadi besar tetapi tidak 100% kembali kekondisi awal.



Gambar 4.8 Hasil Uji BET Berdasarkan Realtive Pressure (P/Po) dan Volume Nitrogen Teradsopsi.


Hasil pengukuran BET dengan mengunakan adsopsi nitrogen pada suhu160°C dapat dilihat pada Gambar 4.8. Data hasil pengukuran diplot antara relatif pressure (P/Po) dengan volume nitrogen terlihat bahwa kemampuan zeolit baru paling tinggi dalam rentang harga P/Po. Hasil pengukuran dari sampel katalis hasil regenerasi terlihat kemampuan adsopsinya sedikit dibawah kemampuan katalis baru, katalis yang diregenerasi tidak sepenuhnya kembali ke kondisi awal sebelum terjadi reaksi. Udara yang digunakan regenerasi mampu membuka kembali saluran pori zeolit yang telah tertutup kokas (bloking kokas) yang terbentuk selama berlangsungnya reaksi, akan tetapi kokas tidak sepenuhnya hilang dari stuktur pori katalis, bloking oleh kokas masih terjadi pada stuktur pori yang sulit terjangkau biasanya berada pada pori bagian dalam. Disisi lain, kurva hasil pengukuran BET untuk katalis yang terdeaktivasi menunjukan kemampuan adsopsi yang relatif rendah seperti terlihat pada Gambar 4.8 hal ini terjadi akibat

adanya *bloking* total (*full bloking*) pada saluran pori sehingga molekul nitrogen hanya mengukur permukaan katalis eksternal saja.

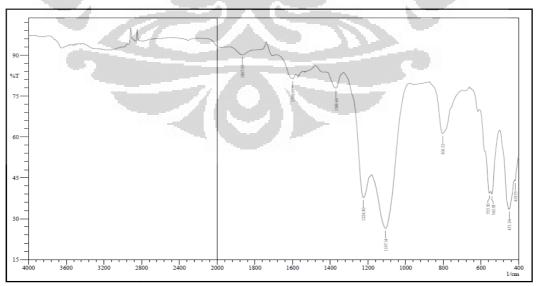

Perbandingan luas permukaan, volume pori dan luas pori hasil pengukuran katalis baru, regenerasi dan deaktivasi dapat terlihat pada tabel 4.1.

Tabel 4.1 Luas Permukaan, Volume Pori dan Luas Pori Katalis

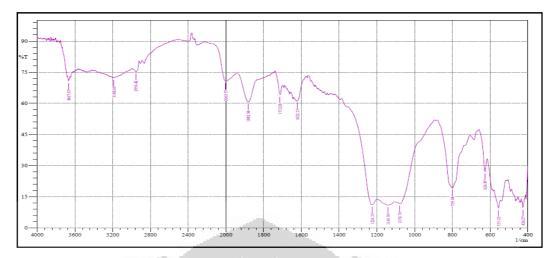
| Katalis    | Luas Permukaan (m2/g) |          | Volume Pori (cc/g) |               | Luas Pori<br>(m2/g) |
|------------|-----------------------|----------|--------------------|---------------|---------------------|
| Rataiis    | Multipoint<br>BET     | t-Method | t-Method           | DR-<br>Method | t-Method            |
| Baru       | 312,1                 | 312,1    | 0,094              | 0,162         | 178,9               |
| Regenerasi | 285,4                 | 285,4    | 0,098              | 0,15          | 183,5               |
| Deaktivasi | 50,8                  | 50,8     | 0,011              | 0,026         | 20                  |



Gambar 4.9 Volume Pori Katalis HZSM-5

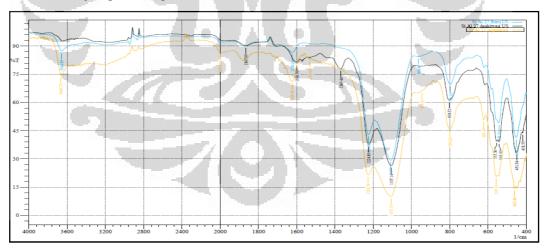



Gambar 4.10 Luas Pori Katalis HZSM-5


Pada Gambar 4.9 volume pori katalis akan mengalami penurunan, kemudian akan terjadi kenaikkan kembali setelah mengalami regenerasi katalis. Pada Gambar 4.10 luas pori katalis akan mengalami penurunan saat terjadi deaktivasi katalis dan mengalami kenaikan kembali setelah katalis diregenerasi.

# 4.2.4 Karakterisasi dengan FT-IR

Fourier Trasform Infra Red (FT-IR) digunakan untuk menganalisis ikatan-ikatan yang terdapat pada katalis khususnya untuk mengamati keberadaan kokas yang terbentuk pada saat bereaksi. Sampel katalis yang diidentifikasi dengan mengunakan FT-IR adalah zeolit HZSM-5 rasio Si/Al= 27 dan Si/Al=140.

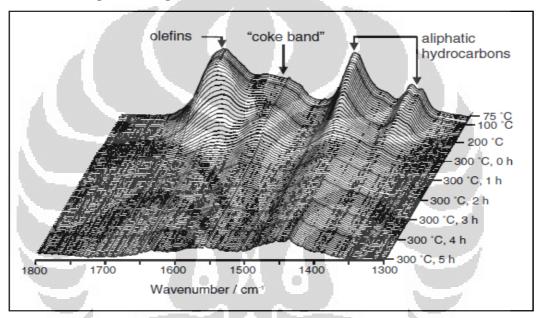



Gambar 4.11 FT-IR Katalis Baru Rasio Si/Al=27



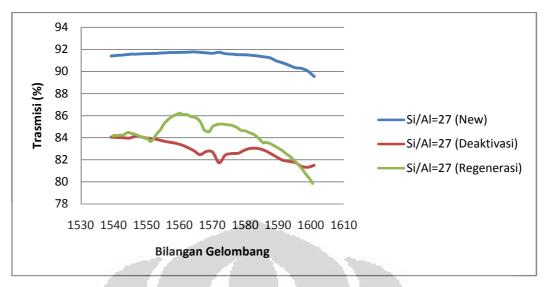
Gambar 4.12 FT-IR Katalis Baru Rasio Si/Al=140

Gambar 4.11 dan Gambar 4.12 menunjukkan hasil pengujian FT-IR pada katalis baru sebelum terjadinya reaksi. Pada Gambar terlihat berbagai macam bilangan gelombang. Bilangan gelombang 1000-1300 cm<sup>-1</sup> menunjukan keberadaan ikatan Si-H, ikatan Si-O maupun ikatan kimia dengan Si lainnya yang merupakan senyawa penyusun HZSM-5. Selain itu terdapat *peak* pada 1400 cm<sup>-1</sup> yang merupakan *peak* dari ikatan H-Si sedangkan untuk *peak* 1630 cm<sup>-1</sup> merupakan *peak* dari ikatan Al. Untuk bilangan gelombang 3600 cm<sup>-1</sup> merupakan ikatan O-H yang menunjukkan suatu ikatan *Bronsted*.




Gambar 4.13 FT-IR Katalis Zeolit HZSM-5 Rasio Si/Al=27

- a. Warna biru adalah katalis baru
- b. Warna hitam adalah katalis terdeaktivasi
- c. Warna kuning adalah katalis regenerasi


Gambar 4.13 menujukan hasil pengujian FT-IR pada katalis zeolit HZSM-5 rasio Si/Al=27. Pada Gambar 4.13 terlihat bilangan gelombang yang berbeda pada saat katalis baru, terdeaktivasi dan setelah di regenerasi. Bilangan gelombang yang berbeda terlihat pada *transmisi* pita kokas (1540-1600 cm<sup>-1</sup>) dan bilangan gelombang disekitar 3600 cm<sup>-1</sup> merupakan ikatan O-H yang menunjukan suatu ikatan asam *Brounstd*.

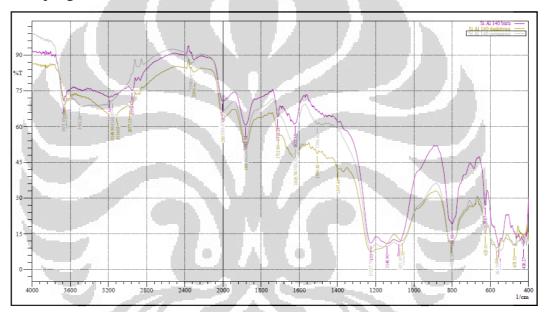
Identifikasi ikatan kokas mengacu pada penelitian yang telah dilakukan oleh Weitkamp *et al.*, 2004. Ikatan kokas berada pada bilangan gelombang 1540-1600 cm<sup>-1</sup>. Dapat dilihat pada Gambar 4.14.



Gambar 4.14 Spektrum FT-IR pada Kokas Katalis 0,4Pt/La-X (Weitkamp, 2004).

Mengacu pada Gambar 4.14 bahwa hasil FT-IR pada penelitian ini terbentuk ikatan kokas dibilangan gelombang 1540-1600 cm $^{-1}$  untuk setiap laju carrier gas  $N_2$ . Hal ini sesuai terhadap apa yang telah dilakukan oleh peneliti sebelumnya Weitkamp *et al.*, 2004. Bahwa terbentuk ikatan kokas pada bilangan gelombang 1540-1600 cm $^{-1}$ .

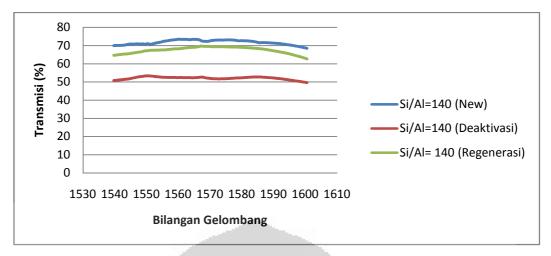



Gambar 4.15 Spektrum pita FT-IR untuk Deposit Kokas pada Zeolit HZSM-5 Si/Al=27

Pada Gambar 4.15 rentang daerah transmisi pita kokas, yakini antara 1540-1600 cm<sup>-1</sup> yang ditunjukan dalam % transmisi dan 1/cm. Untuk zeolit baru yang belum digunakan dalam reaksi terlihat bahwa tidak adanya *peak* yang muncul pada rentang spektrum FT-IR tersebut dan dengan % transmisi sekitar 90-92% tidak ada ikatan sejenis apapun yang terbentuk pada sampel katalis.

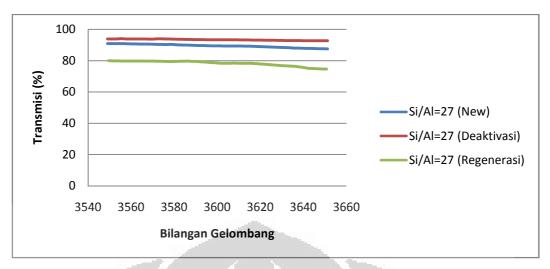
Untuk katalis yang mengalami deaktivasi, hasil spektrum yang didapat terlihat bahwa posisi kurva jauh berada dibawah kurva spektrum katalis baru, yakni berada pada rentang transmisi 82-84% hal ini menunjukan terjadi penyerapan energi infra red oleh ikatan pita FT-IR kokas. Penyerapan yang terjadi dilihat dari Gambar 4.15 sekitar 8% (dari 92% ke 84%) dan khusunya pada rentang bilangan gelombang sekitar 1573 cm<sup>-1</sup> terdapat *peak* yang cukup kuat, *peak* 1573 cm<sup>-1</sup> ini menandakan penyerapan energi infra red oleh ikatan yang terbentuk dalam senyawa kokas. Hal ini memperkuat dugaan bahwa terjadinya deaktivasi disebabkan terbentuknya kokas pada permukaan katalis.

Upaya penghilangan kokas pada katalis dengan cara regenerasi katalis mengunakan oksidasi udara. Pita spektrum pada FT-IR yang mengalami regenerasi katalis berada diantara spektrum katalis baru dan spektrum katalis yang terdeaktivasi. Dari data percobaan, hasil regenerasi belum bisa mengembalikan katalis seperti katalis baru. Pada katalis regenerasi masih terdapat ikatan kokas khususnya yang terlihat pada puncak gelombang 1568 cm<sup>-1</sup> (daerah resapan


kokas). Posisi pada *peak* sedikit berbeda dengan *peak* yang muncul pada katalis yang terdeaktivasi, hal ini diperkirakan ikatan senyawa kokas mengalami perubahan akibat oksidasi oleh udara pada suhu 450°C sehingga ikatan senyawa kokas pada *peak* 1573 cm<sup>-1</sup> hilang. Ketidakmampuan regenerasi katalis selama 3 jam dengan laju udara 1000 cc/menit, kemungkinan besar dikarenakan kokas yang terbentuk lokasinya jauh berada didalam stuktur pori sehingga udara tidak menjangkau dan tidak dapat berdifusi didalam saluran stuktur pori secara sempurna, sehingga kokas masih berada dalam saluran pori dan menutupi sebagian pori (*partial bloking*). Hal ini diperkuat dengan analisa luas permukaan hasil pengukuran BET.



Gambar 4.16 FT-IR Katalis Zeolit HZSM-5 Rasio Si/Al=140


- a. Warna ungu adalah katalis baru
- b. Warna kuning adalah katalis terdeaktivasi
- c. Warna abu-abu adalah katalis regenerasi

Hasil pengujian FT-IR untuk katalis HZSM-5 rasio Si/Al=140 dapat dilihat pada Gambar 4.16 bilangan gelombang ketiga katalis ini berbeda-beda, sama seperti katalis dengan rasio Si/Al=27 katalis ini memiliki perbedaan panjang gelombang pada transmisi pita kokas dan ikatan asam *Brounsted*nya.



Gambar 4.17 Spektrum Pita FT-IR untuk Deposit Kokas pada Zeolit HZSM-5 Si/Al=140

Pada Gambar 4.17 rentang daerah transmisi pita kokas, yakni antara 1540-1600 cm<sup>-1</sup> yang ditunjukan dalam % transmisi dan 1/cm. Untuk zeolit baru yang belum digunakan dalam reaksi terlihat bahwa tidak adanya *peak* yang muncul pada rentang spektrum FT-IR tersebut dan dengan % transmisi sekitar 70-80% tidak ada ikatan sejenis apapun yang terbentuk pada sampel katalis. Pada katalis yang terdeaktivasi hasil spektrum berada dibawah katalis baru dengan % transmisi berada pada kisaran 40-50% yang menunjukan adanya penyerapan energi infra red oleh ikatan pita FT-IR kokas. Katalis yang terdeaktivasi untuk rasio Si/Al=140 berbeda dengan katalis dengan rasio Si/Al=27. Pada katalis dengan rasio Si/Al=140 tidak terdapat penyerapan *peak* yang cukup kuat sepanjang daerah transmisi pita kokas, begitu juga dengan katalis hasil regenerasi yang berada diantara katalis baru dan katalis yang terdeaktivasi dengan % transmisi berkisar diantara 60-70%. Katalis yang diregenerasi dengan menggunakan oksidasi udara ini tidak 100% kembali seperti katalis baru, sama seperti katalis zeolit rasio Si/Al=27.

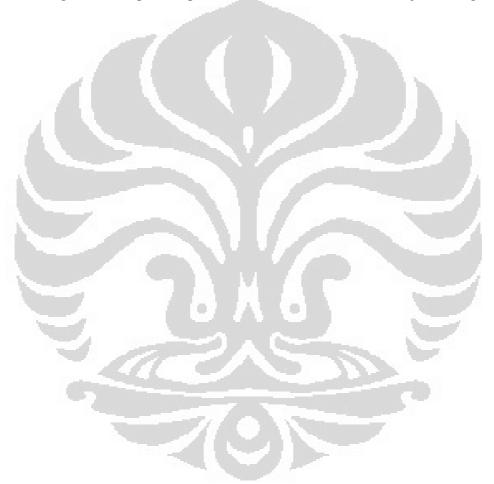


Gambar 4.18 Spektrum FT-IR untuk Ikatan Asam *Brounsted* Zeolit HZSM-5 Si/Al=27

Hasil pengujian untuk ketiga katalis dengan mengunakan FT-IR ditemukan panjang gelombang untuk ikatan asam *Bronsted* pada rentang bilangan gelombang 3600 cm<sup>-1</sup> yang mengindikasikan adanya penambahan luas area ikatan O-H yang merupakan ikatan asam *Bronsted*.

Identifikasi ikatan asam *Bronsted* pada kisaran bilangan 3600 cm<sup>-1</sup> mengacu pada penelitian yang telah dilakukan oleh Martin *et al.*,(2008). Pada Gambar 4.18 katalis zeolit HZSM-5 rasio Si/Al=27 terlihat bahwa keasaman zeolit ketika terdeaktivasi mengalami penurunan dan ketika regenerasi mengalami kenaikan keasaman kembali. Hal ini terjadi karena kokas yang memiliki sifat asam sehingga peran kokas yang seakan-akan mengantikan keasaman *Bronsted* yang dimiliki katalis.

#### **BAB V**


## **PENUTUP**

# 5.1 Kesimpulan

- 1. Reaksi aseton dengan mengunakan katalis HZSM-5 dengan rasio Si/Al 27, 75 dan 140 telah berhasil dilakukan untuk menguji kemampuan masing-masing rasio zeolit tersebut dalam rentang waktu sampai dengan 11 jam.
- 2. Katalis dengan rasio Si/Al=75 menunjukan stabilitas yang lebih tinggi dibandingkan dengan rasio lainnya. Katalis ini mulai mengalami deaktivasi setelah 7 jam reaksi, sedangkan rasio Si/Al=27 mengalami deaktivasi setelah 3 jam reaksi dan rasio Si/Al=140 dalam ½ jam sudah mengalami deaktivasi.
- 3. Hasil uji keasaman menunjukan bahwa adanya korelasi yang sangat kuat antara keasaman yang dimiliki masing-masing Si/Al dengan prilaku deaktivasi khusus pada rentang waktu kestabilannya. Katalis dengan rasio Si/Al=75 memiliki keasaman tertinggi sebesar 7,98 mmolNH<sub>3</sub>/gram katalis sehingga menyebabkan katalis memiliki konvesi aseton terlama yaitu selama 7 jam reaksi begitu juga sebaliknya, pada katalis dengan rasio Si/Al=140 memiliki keasaman terrendah 0,8411 mmolNH<sub>3</sub>/gram katalis yang menyebabkan konversi aseton menjadi cepat hanya bertahan ½ jam reaksi. Keasaman katalis dapat dilihat dengan mengunakan FT-IR pada bilangan gelombang 3600 cm<sup>-1</sup>.
- 4. Deaktivasi katalis disebabkan oleh terbentuknya kokas. Keberadaan kokas ini diamati dengan mengunakan FT-IR dan metode BET yang menunjukan penurunan sebesar 85-90% baik pada luas permukaan dan volume pori, sedangan metode FT-IR keberadaan kokas terlihat munculnya pita spektrum FT-IR pada rentang 1540-1600 cm<sup>-1</sup>.
- 5. Regenerasi katalis telah berhasil dilakukan dengan mengunakan oksidasi udara. Regenerasi dapat menghilangkan kokas pada katalis sehingga luas permukaan katalis yang awalnya tertutupi oleh kokas 50,8 m²/gram menjadi luas kembali yaitu sebesar 285,5 m²/gram. Dari hasil FT-IR, katalis setelah regenerasi didapat pita spektrum serapan pada rentang 1540-1600 cm⁻¹ dan mendekati pita spektrum katalis baru.

## 5.2 Saran

- 1. Regenerasi perlu dioptimasi lebih lanjut untuk mendapatkan waktu regenerasi yang lebih cepat.
- 2. Katalis hasil regenerasi perlu dilakukan pengujian baik dari uji reaksi maupun uji keasaman.
- 3. Uji deaktivasi dan regenerasi harus dilakukan pengujian secara siklus untuk mengetahui sampai berapa kali siklus reaksi masih bisa berjalan dengan baik.

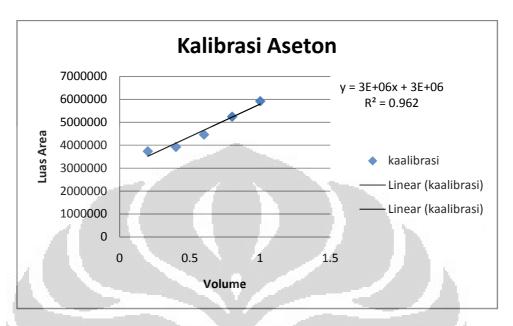


#### **DAFTAR PUSTAKA**

- Aguado, J., Costa, E., Ovejero, G., and Cafizares, P. (1992). *Conversion of n-Butanol-Acetone Mixture to C*<sub>1</sub>-C<sub>10</sub> *Hydrocarbons on HZSM-5 Type Zeolit*. Journal of Chemical Society, 31, 1021-1025.
- Aguay, A.T., Gayubo, A.G., Atutxa, A., Olazar, M., and Bilbao. (2002). Catalyst Deactivation by Coke in the Transformation of Aqueous Ethanol into Hydrocarbons. Kinetic Modeling and Acidity Deterioration of the Catalyst. Journal Ind. Eng. Chem. Res, 41, 4216-4224.
- Bahtia, S. (2000). Zeolit Katalis: Principles And Applications CRC Perss, inc, Boca Raton: Florida.
- Chumaidi, A., dan Roesyadi, A. (1999). *Pembuatan Katalis ZSM-5 Dari Zeolit Alam Untuk Sintesa Reaksi Metanol Menjadi Hidrokarbon*. Jurusan Teknik Kimia. Fakultas Teknologi Industri. Institut Teknologi Sepuluh November: Surabaya.
- Darius. (2005). Skripsi: Konversi Katalitik n-Butanol menjadi Hidrokarbon C<sub>2</sub>-C<sub>4</sub>

  Menggunakan Katalis B<sub>2</sub>O<sub>3</sub>/Zeolit Alam. Jurusan Teknik Gas dan

  Petrokimia UI: Depok.
- Dharmawan, Y. (1998). Skripsi: *Preparasi, Karakteristik dan Kinerja Katalis CuO/ZnO/ZSM-5 Untuk Reaksi Hidrogenasi CO*<sub>2</sub>. Jurusan Teknik Gas dan Petrokimia UI: Depok.
- Guisnet, M., and Magnoux, P. (1997). Deaktivation by Coking of Zeolit Catalysts.


  Prevention of Deaktivation. Optimal Conditions for Regeneration. Journal of Catalysis Today, 36, 477-483.
- Jong, S.J., Pradhan, A.R., Wu, J.F., Tsai, T.C., and Liu, S.B. (1997). On The Regeneration of Coked HZSM-5 Catalysts. Journal of Catalysis, 174, 210-218.
- Jentys, A., and Lercher, J.A. (2001). Introduction to Zeolite Science and Practice (2nd ed.). Elsevier: Amsterdam.
- Linna. (2010). Skripsi: Pengaruh Kondisi Operasi Terhadap Konversi Aseton Menjadi Hidrokarbon Aromatik Menggunakan Katalis HZSM-5. Jurusan Teknik Kimia UI: Depok.

- Martinez, C. N., Mendoza, F. A. D., and Bolano, L. P. (1998). *Effect of catalyst deactivation on the acid properties of zeolites used for isobutane/butene alkylation*. Journal Thermochimical Acta, 312, 47-61.
- Prilly. (2006). Skripsi: Konfersi Katalitik Senyawa Aseton-Butanol-Etanol (ABE)

  Menjadi Hidrokarbon Menggunakan Katalis HZSM-5 Dengan Variasi

  Rasio Si/Al. Jurusan Teknik Kimia UI: Depok.
- Querinni, C. A., and Roa, E. (1997). Deactivation of solid acid catalysts during isobutene alkylation with C4 olefins. Journal Applied Catalysis, 163, 199-215.
- Richardson, J. (1982). *Principles of Catalyst Development*. Plenum Press. New York and London.
- Setiadi. (2005). *Uji Kinerja Katalis ZSM-5 Dalam Konversi Aseton Menjadi Hidrokarbon Aromatik*. Simposium dan Kongres Teknologi Katalis Indonesia. Serpong.
- Setiadi., Selamet., Nasikin, M., Tsutsui, T., and Kojima, T. (2008). *Change in catalytic activity on acetone conversion to aromatic chemicals using H-ZSM-5*. Proceeding of the International Seminaron Chemisty. 464-468.
- Schulz, H., and Wei, M. (1999). *Deactivation and thermal regeneration of zeolite*HZSM-5 for methanol conversion at low temperature (260–29 °C). Journal Microporous and Mesoporous Materials, 29, 205-218.
- Sie, S.T. (2001). Consequences of Catalyst Deaktivation for Proces Design and Opration. Journal of Applied Catalysis A: General, 212, 129-151.
- Weitkamp, J., Josl, R., Klngmann, R., Traa, Y., and Roger. (2004). Regeneration of Zeolite Catalysts Deactivated in Isobutane/Butene Alkylation: an in Situ FTIR Investigation at Elevated H<sub>2</sub> Pressure. Journal of Catalysis Communication, 5, 239-241.

# LAMPIRAN A DATA KALIBRASI



Gambar 1 Kurva Kalibrasi Aseton

# LAMPIRAN B HASIL PERCOBAAN

Tabel 1. Data Deaktivasi Katalis HZSM-5 Rasio Si/Al=27

| Sampel<br>(Jam) | Laju Alir<br>(ml/mnt) | Luas Area Blangko<br>Aseton | Luas Arean<br>Aseton yang<br>Telah Bereaksi | Konversi |
|-----------------|-----------------------|-----------------------------|---------------------------------------------|----------|
| 0               | 100                   | 2634489                     | 0                                           | 100      |
| 1               | 100                   | 2634489                     | 0                                           | 100      |
| 2               | 100                   | 2634489                     | 0                                           | 100      |
| 3               | 100                   | 2634489                     | 0                                           | 100      |
| 4               | 100                   | 2634489                     | 449066                                      | 82,95434 |
| 5               | 100                   | 2634489                     | 1238787                                     | 52,97809 |
| 6               | 100                   | 2634489                     | 2212153                                     | 16,03104 |
| 7               | 100                   | 2634489                     | 2537067                                     | 3,697947 |
| 8               | 100                   | 2634489                     | 2537067                                     | 3,697947 |

Tabel 2. Data Deaktivasi Katalis HZSM-5 Rasio Si/Al=75

| Sampel<br>(Jam) | Laju Alir<br>(ml/mnt) | Luas Area Blangko<br>Aseton | Luas Arean<br>Aseton yang<br>Telah Bereaksi | Konversi |
|-----------------|-----------------------|-----------------------------|---------------------------------------------|----------|
| 0               | 100                   | 2634489                     | 0                                           | 100      |
| 1               | 100                   | 2634489                     | 0                                           | 100      |
| 2               | 100                   | 2634489                     | 0                                           | 100      |
| 3               | 100                   | 2634489                     | 0                                           | 100      |
| 4               | 100                   | 2634489                     | 0                                           | 100      |
| 5               | 100                   | 2634489                     | 0                                           | 100      |
| 6               | 100                   | 2634489                     | 0                                           | 100      |
| 7               | 100                   | 2634489                     | 0                                           | 100      |
| 8               | 100                   | 2634489                     | 2141292                                     | 18,72078 |

Tabel 3. Data Deaktivasi Katalis HZSM-5 Rasio Si/Al=140

| Sampel<br>(Jam) | Laju Alir<br>(ml/mnt) | Luas Area Blangko<br>Aseton | Luas Arean<br>Aseton yang<br>Telah Bereaksi | Konversi |
|-----------------|-----------------------|-----------------------------|---------------------------------------------|----------|
| 0               | 100                   | 2634489                     | 315465                                      | 88,02557 |
| 1               | 100                   | 2634489                     | 219737                                      | 91,65922 |
| 2               | 100                   | 2634489                     | 2554301                                     | 3,043778 |
| 3               | 100                   | 2634489                     | 2538028                                     | 3,661469 |
| 4               | 100                   | 2634489                     | 2458016                                     | 6,698567 |
| 5               | 100                   | 2634489                     | 2491410                                     | 5,430996 |
| 6               | 100                   | 2634489                     | 2425435                                     | 7,935277 |
| 7               | 100                   | 2634489                     | 2435138                                     | 7,56697  |
| 8               | 100                   | 2634489                     | 2415436                                     | 8,314819 |



Tabel 4. Data Percobaan Deaktivasi Katalis Berbagai Rasio

| Grafik | Katalis | Sampel (Jam) | Laju<br>Alir<br>(ml/mnt) | Luas Area<br>Blangko<br>Aseton | Luas Arean<br>Aseton yang<br>Telah<br>Bereaksi | Konversi    |
|--------|---------|--------------|--------------------------|--------------------------------|------------------------------------------------|-------------|
|        | 27      |              | 100                      | 2634489                        | 0                                              | 100         |
| 1      | 75      | 0            | 100                      | 2634489                        | 0                                              | 100         |
|        | 140     |              | 100                      | 2634489                        | 315465                                         | 88,02557156 |
|        | 27      |              | 100                      | 2634489                        | 0                                              | 100         |
| 2      | 75      | 1            | 100                      | 2634489                        | 0                                              | 100         |
|        | 140     |              | 100                      | 2634489                        | 219737                                         | 91,6592174  |
|        | 27      |              | 100                      | 2634489                        | 0                                              | 100         |
| 3      | 75      | 2            | 100                      | 2634489                        | 0                                              | 100         |
|        | 140     |              | 100                      | 2634489                        | 2554301                                        | 3,043778129 |
|        | 27      |              | 100                      | 2634489                        | 0                                              | 100         |
| 4      | 75      | 3            | 100                      | 2634489                        | 0                                              | 100         |
|        | 140     |              | 100                      | 2634489                        | 2538028                                        | 3,661469074 |
|        | _ 27    |              | 100                      | 2634489                        | 449066                                         | 82,95434143 |
| 5      | 75      | 4            | 100                      | 2634489                        | 0                                              | 100         |
|        | 140     |              | 100                      | 2634489                        | 2458016                                        | 6,698566591 |
|        | 27      |              | 100                      | 2634489                        | 1238787                                        | 52,97809177 |
| 6      | 75      | 5            | 100                      | 2634489                        | 0                                              | 100         |
|        | 140     | All has      | 100                      | 2634489                        | 2491410                                        | 5,430996296 |
|        | 27      |              | 100                      | 2634489                        | 2212153                                        | 16,03104055 |
| 7      | 75      | 6            | 100                      | 2634489                        | 0                                              | 100         |
| -      | 140     |              | 100                      | 2634489                        | 2425435                                        | 7,935277012 |
|        | 27      |              | 100                      | 2634489                        | 2537067                                        | 3,697946737 |
| 8      | 75      | 7            | 100                      | 2634489                        | 0                                              | 100         |
|        | 140     |              | 100                      | 2634489                        | 2435138                                        | 7,566970293 |
|        | 27      |              | 100                      | 2634489                        | 2537067                                        | 3,697946737 |
| 9      | 75      | 8            | 100                      | 2634489                        | 2141292                                        | 18,72078418 |
|        | 140     | Bearing St.  | 100                      | 2634489                        | 2415436                                        | 8,314819307 |

Tabel 2. Data Keasaman Total Katalis HZSM-5 Berbagai Rasio

| Katalis | Vol HCl<br>0,005M | Kadar<br>HCl | Vol KOH<br>0,005M | Kadar<br>KOH | HCl<br>berlebih<br>hasil titrasi | HCl yang<br>menyerap | NH3    | Suhu<br>Tabung | K <mark>easaman</mark><br>Tabung | Keasaman Total        |
|---------|-------------------|--------------|-------------------|--------------|----------------------------------|----------------------|--------|----------------|----------------------------------|-----------------------|
| Si/Al   | (ml)              | (mmol)       | (ml)              | (mmol)       | (mmol)                           | (mmol)               | (mmol) | ('C)           | (mmol NH3.<br>C/gram)            | (mmol NH3.<br>C/gram) |
| 140     | 100               | 0,5000       | 51,40             | 0,2570       | 0,2570                           | 0,2430               | 0,2430 | 250 - 350      | 0,8078                           | 0,8411                |
| 140     | 100               | 0,5000       | 98,00             | 0,4900       | 0,4900                           | 0,0100               | 0,0100 | 350 - 450      | 0,0332                           | 0,0411                |
| 27      | 125               | 0,6250       | 13,60             | 0,0680       | 0,0680                           | 0,5570               | 0,5570 | 250 - 350      | 1,1124                           | 3,1546                |
| 27      | 210               | 1,0500       | 5,50              | 0,0275       | 0,0275                           | 1,0225               | 1,0225 | 350 - 450      | 2,0421                           | 3,1340                |

Untuk Keasaman Katalis HZSM-5 Rasio Si/Al=75 data diambil dari percobaan terdahulu (Prilly,2008).

Tabel 3. Data Keasaman Zeolit HZSM-5 Rasio Si/Al=27

|            | Vol HCl  | Kadar  | Vol KOH | Kadar  | HCl berlebih  | HCl yang |        | Suhu          | Keasaman    | Keasaman        |
|------------|----------|--------|---------|--------|---------------|----------|--------|---------------|-------------|-----------------|
| Deaktivasi | 0,005M   | HCl    | 0,005M  | KOH    | hasil titrasi | menyerap | NH3    | <b>Tabung</b> | Tabung      | Total           |
|            |          |        | 7 6     |        |               | B 1      | 2      |               | (mmol NH3.  | (mmol NH3.      |
| (Jam)      | (ml)     | (mmol) | (ml)    | (mmol) | (mmol)        | (mmol)   | (mmol) | ('C)          | C/gram)     | C/gram)         |
| 0          | 125      | 0,625  | 13,6    | 0,068  | 0,068         | 0,557    | 0,557  | 250 - 350     | 1,11244258  | 3,154583583     |
|            | 210      | 1,05   | 5,5     | 0,0275 | 0,0275        | 1,0225   | 1,0225 | 350 - 450     | 2,042141003 | 3,13 1303303    |
| 1,0000     | 125,0000 | 0,625  | 13,6000 | 0,068  | 0,068         | 0,557    | 0,557  | 250 - 350     | 1,11244258  | 3,154583583     |
| 1,0000     | 210,0000 | 1,05   | 5,5000  | 0,0275 | 0,0275        | 1,0225   | 1,0225 | 350 - 450     | 2,042141003 | 3,13 13 03 3 03 |
| 2,0000     | 170,0000 | 0,85   | 8,6000  | 0,043  | 0,043         | 0,807    | 0,807  | 250 - 350     | 1,611743559 | 3,278410226     |
| 2,0000     | 185,0000 | 0,925  | 18,1000 | 0,0905 | 0,0905        | 0,8345   | 0,8345 | 350 - 450     | 1,666666667 | 3,270110220     |
| 4,0000     | 225,0000 | 1,125  | 17,6000 | 0,088  | 0,088         | 1,037    | 1,037  | 250 - 350     | 2,071100459 | 3,21949271      |
| 4,0000     | 135,0000 | 0,675  | 20,0000 | 0,1    | 0,1           | 0,575    | 0,575  | 350 - 450     | 1,148392251 | 3,217+7211      |
| 6,0000     | 125,0000 | 0,625  | 17,4000 | 0,087  | 0,087         | 0,538    | 0,538  | 250 - 350     | 1,074495706 | 1,738566008     |
| 0,0000     | 75,0000  | 0,375  | 8,5000  | 0,0425 | 0,0425        | 0,3325   | 0,3325 | 350 - 450     | 0,664070302 | 1,730300000     |
| 8,0000     | 100,0000 | 0,5    | 92,0000 | 0,46   | 0,46          | 0,04     | 0,04   | 250 - 350     | 0,079888157 | 0,129818254     |
| 0,000      | 100,0000 | 0,5    | 95,0000 | 0,475  | 0,475         | 0,025    | 0,025  | 350 - 450     | 0,049930098 | 0,127010234     |

Tabel 4. Data Luas Permukaan Katalis Berdasarkan Realtif Pressure dan Volume Nitrogen.

| HZSM-5      | Zeolit     | P/Po     | Volume (cc/g) STP |
|-------------|------------|----------|-------------------|
|             |            | 5,12E-02 | 87,6802           |
|             |            | 7,25E-02 | 90,3795           |
|             |            | 9,83E-02 | 93,0264           |
|             | New        | 1,54E-01 | 97,2165           |
|             |            | 2,00E-01 | 99,6107           |
|             |            | 2,53E-01 | 101,4976          |
|             |            | 3,04E-01 | 103,0137          |
| 100         | Deaktivasi | 5,57E-02 | 13,3173           |
|             |            | 8,19E-02 | 13,89             |
| 7.00        |            | 1,08E-01 | 14,3476           |
| Si/Al=27    |            | 1,57E-01 | 15 <b>,02</b> 24  |
|             |            | 2,07E-01 | 15,7416           |
|             |            | 2,58E-01 | 16,315            |
|             |            | 3,09E-01 | 16,825            |
|             |            | 5,93E-02 | 84,1287           |
|             |            | 8,08E-02 | 86,2235           |
|             |            | 1,07E-01 | 88,2438           |
|             | Regenerasi | 1,55E-01 | 91,0531           |
|             |            | 2,07E-01 | 93,0689           |
| Toward Park |            | 2,58E-01 | 94,5032           |
|             | A B A B A  | 3,09E-01 | 95,6081           |

Tabel 5. Data Pita Spektrum FTIR untuk Deposit Kokas Zeolit HZSM-5 Si/Al=27

| Ġ    | Si Al=27 |         |     |         |     |  |  |  |
|------|----------|---------|-----|---------|-----|--|--|--|
| Nev  | N .      | Deaktiv | asi | Regener | asi |  |  |  |
| 1539 | 91       | 1539    | 84  | 1540    | 84  |  |  |  |
| 1541 | 91       | 1541    | 84  | 1540    | 84  |  |  |  |
| 1543 | 92       | 1543    | 84  | 1541    | 84  |  |  |  |
| 1545 | 92       | 1545    | 84  | 1541    | 84  |  |  |  |
| 1547 | 92       | 1547    | 84  | 1542    | 84  |  |  |  |
| 1549 | 92       | 1549    | 84  | 1542    | 84  |  |  |  |
| 1551 | 92       | 1551    | 84  | 1543    | 84  |  |  |  |
| 1553 | 92       | 1553    | 84  | 1543    | 84  |  |  |  |
| 1555 | 92       | 1555    | 84  | 1544    | 84  |  |  |  |
| 1557 | 92       | 1557    | 84  | 1544    | 84  |  |  |  |
| 1558 | 92       | 1558    | 84  | 1545    | 84  |  |  |  |

| 1560     | 92 | 1560    | 83  | 1545 | 84 |
|----------|----|---------|-----|------|----|
| 1562     | 92 | 1562    | 83  | 1545 | 84 |
| 1564     | 92 | 1564    | 83  | 1546 | 84 |
| 1566     | 92 | 1566    | 82  | 1546 | 84 |
| 1568     | 92 | 1568    | 83  | 1547 | 84 |
| 1570     | 92 | 1570    | 83  | 1547 | 84 |
| 1572     | 92 | 1572    | 82  | 1548 | 84 |
| 1574     | 92 | 1574    | 82  | 1548 | 84 |
| 1576     | 92 | 1576    | 83  | 1549 | 84 |
| 1578     | 92 | 1578    | 83  | 1549 | 84 |
| 1580     | 92 | 1580    | -83 | 1550 | 84 |
| 1582     | 91 | 1582    | 83  | 1550 | 84 |
| 1584     | 91 | 1584    | 83  | 1551 | 84 |
| 1585     | 91 | 1585    | 83  | 1551 | 84 |
| 1587     | 91 | 1587    | 83  | 1552 | 84 |
| 1589     | 91 | 1589    | 82  | 1552 | 84 |
| 1591     | 91 | 1591    | 82  | 1553 | 84 |
| 1593     | 91 | 1593    | 82  | 1553 | 84 |
| 1595     | 90 | 1595    | 82  | 1554 | 85 |
| 1597     | 90 | 1597    | 81  | 1554 | 85 |
| 1599     | 90 | 1599    | 81  | 1555 | 85 |
| 1601     | 90 | 1601    | 81  | 1555 | 85 |
|          |    |         |     | 1556 | 85 |
|          |    |         |     | 1556 | 86 |
|          | 8  |         |     | 1557 | 86 |
| The same |    |         | (   | 1557 | 86 |
|          |    |         |     | 1558 | 86 |
| - 4      |    |         |     | 1558 | 86 |
|          |    |         |     | 1558 | 86 |
|          |    | /// (8) | 11  | 1559 | 86 |
|          |    |         |     | 1559 | 86 |
|          |    |         |     | 1560 | 86 |
|          |    |         |     | 1560 | 86 |
|          |    |         |     | 1561 | 86 |
|          |    |         |     | 1561 | 86 |
|          |    |         |     | 1562 | 86 |
|          |    |         |     | 1562 | 86 |
|          |    |         |     | 1563 | 86 |
|          |    |         |     | 1563 | 86 |
|          |    |         |     | 1564 | 86 |
|          |    |         |     | 1564 | 86 |

| l I | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 1      |              |    |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|----|
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1565         | 86 |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1565         | 86 |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1566         | 86 |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1566         | 85 |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1567         | 85 |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1567         | 85 |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1568         | 85 |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1568         | 85 |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1569         | 85 |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1569         | 85 |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1570         | 85 |
| 7   | A 100 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | 1570         | 85 |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1571         | 85 |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1571         | 85 |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1572         | 85 |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1572         | 85 |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1572         | 85 |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1573         | 85 |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1573         | 85 |
|     | - A 40 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | /        | 1574         | 85 |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A second | 1574         | 85 |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1575         | 85 |
|     | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 1575         | 85 |
|     | 7 A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | 1576         | 85 |
|     | ( W ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100      | 1576         | 85 |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1577         | 85 |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1577         | 85 |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1578         | 85 |
|     | and the same of th |          | 1578         | 85 |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1579         | 85 |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100      | 1579         | 85 |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1580         | 85 |
|     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | 1580         | 85 |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1581         | 85 |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1581         | 84 |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1582         | 84 |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1582         | 84 |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1583         | 84 |
|     | i.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1        |              |    |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1583         | 84 |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1583<br>1584 | 84 |

|     |          |                |         | 1585 | 84 |
|-----|----------|----------------|---------|------|----|
|     |          |                |         | 1585 | 84 |
|     |          |                |         | 1585 | 84 |
|     |          |                |         | 1586 | 84 |
|     |          |                |         | 1586 | 84 |
|     |          |                |         | 1587 | 84 |
|     |          |                |         | 1587 | 83 |
|     |          |                |         | 1588 | 83 |
|     |          |                |         | 1588 | 83 |
|     |          |                |         | 1589 | 83 |
|     |          |                |         | 1589 | 83 |
|     | 7000000- |                |         | 1590 | 83 |
|     |          |                | 1       | 1590 | 83 |
|     | / (      |                |         |      | -  |
| - 4 | - 4      |                |         | 1591 | 83 |
|     |          |                |         | 1591 | 83 |
| -4- |          |                |         | 1592 | 83 |
|     |          |                |         | 1592 | 83 |
|     |          |                |         | 1593 | 82 |
|     |          |                |         | 1593 | 82 |
|     |          |                |         | 1594 | 82 |
|     |          |                |         | 1594 | 82 |
|     |          |                |         | 1595 | 82 |
|     |          |                |         | 1595 | 82 |
|     |          |                |         | 1596 | 82 |
|     | i i      |                |         | 1596 | 82 |
|     |          | ) <sub>A</sub> | <u></u> | 1597 | 81 |
|     | 144      |                |         | 1597 | 81 |
|     |          |                |         | 1598 | 81 |
|     |          |                |         | 1598 | 81 |
|     | 7        | /// 0          |         | 1599 | 81 |
|     |          |                |         | 1599 | 80 |
|     |          |                |         | 1599 | 80 |
|     |          |                |         | 1600 | 80 |
|     |          |                |         | 1600 | 80 |

Tabel 6. Data Pita Spektrum FTIR untuk deposit kokas Zeolit HZSM-5 Si/Al=140

|      | Si/Al=140 |        |      |      |        |  |  |  |
|------|-----------|--------|------|------|--------|--|--|--|
| New  | V         | Deakti | vasi | Rege | nerasi |  |  |  |
| 1540 | 70        | 1540   | 51   | 1540 | 65     |  |  |  |
| 1540 | 70        | 1540   | 51   | 1540 | 65     |  |  |  |
| 1541 | 70        | 1541   | 51   | 1541 | 65     |  |  |  |
| 1541 | 70        | 1541   | 51   | 1541 | 65     |  |  |  |
| 1542 | 70        | 1542   | 51   | 1542 | 65     |  |  |  |
| 1542 | 70        | 1542   | 51   | 1542 | 65     |  |  |  |
| 1543 | 70        | 1543   | 51   | 1543 | 65     |  |  |  |
| 1543 | 70        | 1543   | 51   | 1543 | 65     |  |  |  |
| 1544 | 70        | 1544   | 51   | 1544 | 65     |  |  |  |
| 1544 | 71        | 1544   | 52   | 1544 | 65     |  |  |  |
| 1545 | 71        | 1545   | 52   | 1545 | 66     |  |  |  |
| 1545 | 71        | 1545   | 52   | 1545 | 66     |  |  |  |
| 1545 | 71        | 1545   | 52   | 1545 | 66     |  |  |  |
| 1546 | 71        | 1546   | 52   | 1546 | 66     |  |  |  |
| 1546 | 71        | 1546   | 52   | 1546 | 66     |  |  |  |
| 1547 | 71        | 1547   | 53   | 1547 | 66     |  |  |  |
| 1547 | 71        | 1547   | 53   | 1547 | 66     |  |  |  |
| 1548 | 71        | 1548   | 53   | 1548 | 66     |  |  |  |
| 1548 | 71        | 1548   | 53   | 1548 | 67     |  |  |  |
| 1549 | 71        | 1549   | 53   | 1549 | 67     |  |  |  |
| 1549 | 71        | 1549   | 53   | 1549 | 67     |  |  |  |
| 1550 | 71        | 1550   | 53   | 1550 | 67     |  |  |  |
| 1550 | 71        | 1550   | 53   | 1550 | 67     |  |  |  |
| 1551 | 71        | 1551   | 53   | 1551 | 67     |  |  |  |
| 1551 | 71        | 1551   | 53   | 1551 | 67     |  |  |  |
| 1552 | 71        | 1552   | 53   | 1552 | 67     |  |  |  |
| 1552 | 71        | 1552   | 53   | 1552 | 67     |  |  |  |
| 1553 | 71        | 1553   | 53   | 1553 | 67     |  |  |  |
| 1553 | 71        | 1553   | 53   | 1553 | 67     |  |  |  |
| 1554 | 72        | 1554   | 53   | 1554 | 67     |  |  |  |
| 1554 | 72        | 1554   | 53   | 1554 | 67     |  |  |  |
| 1555 | 72        | 1555   | 53   | 1555 | 68     |  |  |  |
| 1555 | 72        | 1555   | 53   | 1555 | 68     |  |  |  |
| 1556 | 72        | 1556   | 52   | 1556 | 68     |  |  |  |
| 1556 | 72        | 1556   | 52   | 1556 | 68     |  |  |  |
| 1557 | 73        | 1557   | 52   | 1557 | 68     |  |  |  |
| 1557 | 73        | 1557   | 52   | 1557 | 68     |  |  |  |

| 1558 | 73 | 1558 | 52  | 1558 | 68 |
|------|----|------|-----|------|----|
| 1558 | 73 | 1558 | 52  | 1558 | 68 |
| 1558 | 73 | 1558 | 52  | 1558 | 68 |
| 1559 | 73 | 1559 | 52  | 1559 | 68 |
| 1559 | 73 | 1559 | 52  | 1559 | 68 |
| 1560 | 73 | 1560 | 52  | 1560 | 68 |
| 1560 | 73 | 1560 | 52  | 1560 | 68 |
| 1561 | 73 | 1561 | 52  | 1561 | 68 |
| 1561 | 73 | 1561 | 52  | 1561 | 68 |
| 1562 | 73 | 1562 | 52  | 1562 | 69 |
| 1562 | 73 | 1562 | 52  | 1562 | 69 |
| 1563 | 73 | 1563 | 52  | 1563 | 69 |
| 1563 | 73 | 1563 | 52  | 1563 | 69 |
| 1564 | 73 | 1564 | 52  | 1564 | 69 |
| 1564 | 73 | 1564 | 52  | 1564 | 69 |
| 1565 | 73 | 1565 | 52  | 1565 | 69 |
| 1565 | 73 | 1565 | 52  | 1565 | 69 |
| 1566 | 73 | 1566 | 52  | 1566 | 69 |
| 1566 | 73 | 1566 | 52  | 1566 | 69 |
| 1567 | 73 | 1567 | 52  | 1567 | 69 |
| 1567 | 73 | 1567 | 53  | 1567 | 70 |
| 1568 | 72 | 1568 | 53  | 1568 | 70 |
| 1568 | 72 | 1568 | 52  | 1568 | 69 |
| 1569 | 72 | 1569 | 52  | 1569 | 69 |
| 1569 | 72 | 1569 | 52  | 1569 | 69 |
| 1570 | 72 | 1570 | 52  | 1570 | 69 |
| 1570 | 73 | 1570 | 52  | 1570 | 69 |
| 1571 | 73 | 1571 | 52  | 1571 | 69 |
| 1571 | 73 | 1571 | 52  | 1571 | 69 |
| 1572 | 73 | 1572 | 52  | 1572 | 69 |
| 1572 | 73 | 1572 | 52_ | 1572 | 69 |
| 1572 | 73 | 1572 | 52  | 1572 | 69 |
| 1573 | 73 | 1573 | 52  | 1573 | 69 |
| 1573 | 73 | 1573 | 52  | 1573 | 69 |
| 1574 | 73 | 1574 | 52  | 1574 | 69 |
| 1574 | 73 | 1574 | 52  | 1574 | 69 |
| 1575 | 73 | 1575 | 52  | 1575 | 69 |
| 1575 | 73 | 1575 | 52  | 1575 | 69 |
| 1576 | 73 | 1576 | 52  | 1576 | 69 |
| 1576 | 73 | 1576 | 52  | 1576 | 69 |
| 1577 | 73 | 1577 | 52  | 1577 | 69 |

| 1577 | 73 | 1577 | 52 | 1577 | 69  |
|------|----|------|----|------|-----|
| 1578 | 73 | 1578 | 52 | 1578 | 69  |
| 1578 | 73 | 1578 | 52 | 1578 | 69  |
| 1579 | 73 | 1579 | 52 | 1579 | 69  |
| 1579 | 73 | 1579 | 52 | 1579 | 69  |
| 1580 | 73 | 1580 | 52 | 1580 | 69  |
| 1580 | 73 | 1580 | 52 | 1580 | 69  |
| 1581 | 73 | 1581 | 52 | 1581 | 69  |
| 1581 | 73 | 1581 | 52 | 1581 | 69  |
| 1582 | 73 | 1582 | 52 | 1582 | 69  |
| 1582 | 72 | 1582 | 53 | 1582 | 69  |
| 1583 | 72 | 1583 | 53 | 1583 | 69  |
| 1583 | 72 | 1583 | 53 | 1583 | 69  |
| 1584 | 72 | 1584 | 53 | 1584 | 69  |
| 1584 | 72 | 1584 | 53 | 1584 | 68  |
| 1585 | 72 | 1585 | 53 | 1585 | 68  |
| 1585 | 72 | 1585 | 53 | 1585 | 68  |
| 1585 | 71 | 1585 | 53 | 1585 | .68 |
| 1586 | 72 | 1586 | 53 | 1586 | 68  |
| 1586 | 72 | 1586 | 53 | 1586 | 68  |
| 1587 | 72 | 1587 | 53 | 1587 | 68  |
| 1587 | 72 | 1587 | 52 | 1587 | 68  |
| 1588 | 72 | 1588 | 52 | 1588 | 68  |
| 1588 | 71 | 1588 | 52 | 1588 | 68  |
| 1589 | 71 | 1589 | 52 | 1589 | 67  |
| 1589 | 71 | 1589 | 52 | 1589 | 67  |
| 1590 | 71 | 1590 | 52 | 1590 | 67  |
| 1590 | 71 | 1590 | 52 | 1590 | 67  |
| 1591 | 71 | 1591 | 52 | 1591 | 67  |
| 1591 | 71 | 1591 | 52 | 1591 | 67  |
| 1592 | 71 | 1592 | 52 | 1592 | 67  |
| 1592 | 71 | 1592 | 52 | 1592 | 66  |
| 1593 | 71 | 1593 | 52 | 1593 | 66  |
| 1593 | 71 | 1593 | 51 | 1593 | 66  |
| 1594 | 71 | 1594 | 51 | 1594 | 66  |
| 1594 | 70 | 1594 | 51 | 1594 | 66  |
| 1595 | 70 | 1595 | 51 | 1595 | 66  |
| 1595 | 70 | 1595 | 51 | 1595 | 65  |
| 1596 | 70 | 1596 | 51 | 1596 | 65  |
| 1596 | 70 | 1596 | 51 | 1596 | 65  |
| 1597 | 70 | 1597 | 51 | 1597 | 65  |

| 1597 | 70 | 1597 | 50 | 1597 | 64 |
|------|----|------|----|------|----|
| 1598 | 70 | 1598 | 50 | 1598 | 64 |
| 1598 | 69 | 1598 | 50 | 1598 | 64 |
| 1599 | 69 | 1599 | 50 | 1599 | 64 |
| 1599 | 69 | 1599 | 50 | 1599 | 63 |
| 1599 | 69 | 1599 | 50 | 1599 | 63 |
| 1600 | 69 | 1600 | 50 | 1600 | 63 |
| 1600 | 68 | 1600 | 50 | 1600 | 63 |

Tabel 7. Data Pita Spektrum FTIR untuk Ikatan Asam Brounsted Zeolit HZSM-5 Si/Al=27

|      |    |        | <u> </u> |      |         |
|------|----|--------|----------|------|---------|
| 4.1  |    | Si/Al= | =27      |      |         |
| Ne   | W  | Deakti | vasi     | Rege | enerasi |
| 3549 | 91 | 3549   | 94       | 3550 | 80      |
| 3551 | 91 | 3551   | 94       | 3550 | 80      |
| 3553 | 91 | 3553   | 94       | 3550 | 80      |
| 3555 | 91 | 3555   | 94       | 3551 | 80      |
| 3557 | 91 | 3557   | 94       | 3551 | 80      |
| 3559 | 91 | 3559   | 94       | 3552 | 80      |
| 3561 | 91 | 3561   | 94       | 3552 | 80      |
| 3563 | 91 | 3563   | 94       | 3553 | 80      |
| 3564 | 91 | 3564   | 94       | 3553 | 80      |
| 3566 | 91 | 3566   | 94       | 3554 | 80      |
| 3568 | 91 | 3568   | 94       | 3554 | 80      |
| 3570 | 90 | 3570   | 94       | 3555 | 80      |
| 3572 | 90 | 3572   | 94       | 3555 | 80      |
| 3574 | 90 | 3574   | 94       | 3556 | 80      |
| 3576 | 90 | 3576   | 94       | 3556 | 80      |
| 3578 | 90 | 3578   | 94       | 3557 | 80      |
| 3580 | 90 | 3580   | 94       | 3557 | 80      |
| 3582 | 90 | 3582   | 94       | 3558 | 80      |
| 3584 | 90 | 3584   | 94       | 3558 | 80      |
| 3586 | 90 | 3586   | 94       | 3559 | 80      |
| 3588 | 90 | 3588   | 93       | 3559 | 80      |
| 3590 | 90 | 3590   | 93       | 3560 | 80      |
| 3591 | 90 | 3591   | 93       | 3560 | 80      |
| 3593 | 90 | 3593   | 93       | 3561 | 80      |
| 3595 | 90 | 3595   | 93       | 3561 | 80      |
| 3597 | 89 | 3597   | 93       | 3562 | 80      |
|      |    |        |          |      |         |

| 3599 | 89 | 3599 | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3562 | 80 |
|------|----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|
| 3601 | 89 | 3601 | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3563 | 80 |
| 3603 | 89 | 3603 | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3563 | 80 |
| 3605 | 89 | 3605 | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3564 | 80 |
| 3607 | 89 | 3607 | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3564 | 80 |
| 3609 | 89 | 3609 | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3564 | 80 |
| 3611 | 89 | 3611 | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3565 | 80 |
| 3613 | 89 | 3613 | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3565 | 80 |
| 3615 | 89 | 3615 | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3566 | 80 |
| 3617 | 89 | 3617 | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3566 | 80 |
| 3618 | 89 | 3618 | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3567 | 80 |
| 3620 | 89 | 3620 | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3567 | 80 |
| 3622 | 89 | 3622 | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3568 | 80 |
| 3624 | 89 | 3624 | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3568 | 80 |
| 3626 | 89 | 3626 | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3569 | 80 |
| 3628 | 89 | 3628 | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3569 | 80 |
| 3630 | 88 | 3630 | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3570 | 80 |
| 3632 | 88 | 3632 | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3570 | 80 |
| 3634 | 88 | 3634 | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3571 | 80 |
| 3636 | 88 | 3636 | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3571 | 80 |
| 3638 | 88 | 3638 | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3572 | 80 |
| 3640 | 88 | 3640 | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3572 | 80 |
| 3642 | 88 | 3642 | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3573 | 80 |
| 3644 | 88 | 3644 | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3573 | 80 |
| 3645 | 88 | 3645 | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3574 | 80 |
| 3647 | 88 | 3647 | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3574 | 80 |
| 3649 | 88 | 3649 | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3575 | 80 |
| 3651 | 88 | 3651 | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3575 | 80 |
|      |    |      | The same of the sa | 3576 | 80 |
|      |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3576 | 80 |
|      |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3577 | 80 |
|      | 24 |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3577 | 79 |
|      |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3578 | 79 |
|      |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3578 | 79 |
|      |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3578 | 79 |
|      |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3579 | 79 |
|      |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3579 | 79 |
|      |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3580 | 80 |
|      |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3580 | 80 |
|      |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3581 | 80 |
|      |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3581 | 80 |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |       | 3582 | 80 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|------|----|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |       | 3582 | 80 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |       | 3583 | 80 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |       | 3583 | 80 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |       | 3584 | 80 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |       | 3584 | 80 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |       | 3585 | 80 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |       | 3585 | 80 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |       | 3586 | 80 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |       | 3586 | 80 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |       | 3587 | 80 |
| The second secon | 2       | 1     | 3587 | 80 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |       | 3588 | 80 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |       | 3588 | 80 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |       | 3589 | 80 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |       | 3589 | 80 |
| II I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |       | 3590 | 80 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |       | 3590 | 80 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |       | 3591 | 80 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |       | 3591 | 79 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 65    | 3591 | 79 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |       | 3592 | 79 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |       | 3592 | 79 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |       | 3593 | 79 |
| The same of the sa | U /\    |       | 3593 | 79 |
| The same of the same of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |       | 3594 | 79 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |       | 3594 | 79 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |       | 3595 | 79 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |       | 3595 | 79 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /// (8) |       | 3596 | 79 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 10000 | 3596 | 79 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |       | 3597 | 79 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |       | 3597 | 79 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |       | 3598 | 79 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |       | 3598 | 79 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |       | 3599 | 79 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |       | 3599 | 79 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |       | 3600 | 79 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |       | 3600 | 79 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |       | 3601 | 78 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |       | 3601 | 78 |

| I     | I    | 1 1  |      | l  |
|-------|------|------|------|----|
|       |      |      | 3602 | 78 |
|       |      |      | 3602 | 78 |
|       |      |      | 3603 | 78 |
|       |      |      | 3603 | 78 |
|       |      |      | 3604 | 78 |
|       |      |      | 3604 | 78 |
|       |      |      | 3605 | 78 |
|       |      |      | 3605 | 78 |
|       |      |      | 3605 | 78 |
|       |      |      | 3606 | 78 |
|       |      |      | 3606 | 78 |
| and d | /    |      | 3607 | 78 |
|       | 6    |      | 3607 | 78 |
| 7 1   |      |      | 3608 | 78 |
|       |      |      | 3608 | 78 |
|       |      |      | 3609 | 78 |
| 1 1   |      |      | 3609 | 78 |
|       |      |      | 3610 | 78 |
|       |      |      | 3610 | 78 |
|       |      |      | 3611 | 78 |
|       |      | A    | 3611 | 78 |
|       |      |      | 3612 | 78 |
|       |      |      | 3612 | 78 |
|       |      |      | 3613 | 78 |
| 1     | U /1 |      | 3613 | 78 |
|       |      |      | 3614 | 78 |
| 7 /// |      | 7    | 3614 | 78 |
|       |      |      | 3615 | 78 |
|       |      |      | 3615 | 78 |
|       |      |      | 3616 | 78 |
|       |      | 1    | 3616 | 78 |
|       |      |      | 3617 | 78 |
|       |      | 2.55 | 3617 | 78 |
|       |      |      | 3618 | 78 |
|       |      |      | 3618 | 78 |
|       |      |      | 3618 | 78 |
|       |      |      | 3619 | 78 |
|       |      |      | 3619 | 78 |
|       |      |      | 3620 | 78 |
|       |      |      | 3620 | 78 |
|       |      |      | 3621 | 78 |
|       |      |      | 3041 | 70 |

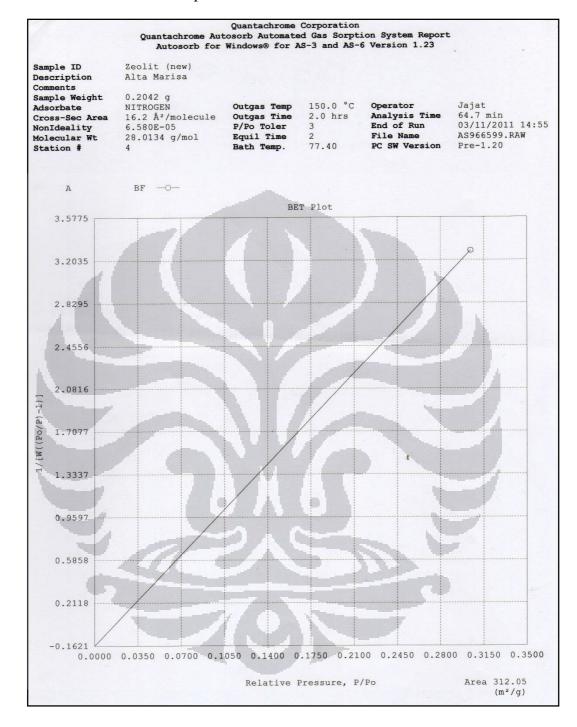
|        |                    |         | 3621 | 78 |
|--------|--------------------|---------|------|----|
|        |                    |         | 3622 | 78 |
|        |                    |         | 3622 | 78 |
|        |                    |         | 3623 | 78 |
|        |                    |         | 3623 | 78 |
|        |                    |         | 3624 | 78 |
|        |                    |         | 3624 | 77 |
|        |                    |         | 3625 | 77 |
|        |                    |         | 3625 | 77 |
|        |                    |         | 3626 | 77 |
|        |                    |         | 3626 | 77 |
| 200    |                    |         | 3627 | 77 |
|        |                    |         | 3627 | 77 |
|        |                    |         | 3628 | 77 |
|        |                    |         | 3628 | 77 |
|        |                    |         | 3629 | 77 |
|        |                    |         | 3629 | 77 |
|        |                    |         | 3630 | 77 |
|        |                    |         | 3630 | 77 |
|        |                    |         | 3631 | 77 |
|        |                    | All and | 3631 | 77 |
|        |                    |         | 3632 | 77 |
|        |                    |         | 3632 | 77 |
|        | <b>PL PL</b>       |         | 3632 | 77 |
|        | W / 1              | - L     | 3633 | 77 |
|        | ~~) <sub>A</sub> ( |         | 3633 | 77 |
| 7 //// |                    |         | 3634 | 77 |
|        |                    |         | 3634 | 77 |
|        |                    |         | 3635 | 77 |
|        | /// (9)            |         | 3635 | 76 |
|        |                    |         | 3636 | 76 |
|        |                    |         | 3636 | 76 |
|        |                    |         | 3637 | 76 |
|        |                    |         | 3637 | 76 |
|        |                    |         | 3638 | 76 |
|        |                    |         | 3638 | 76 |
|        |                    |         | 3639 | 76 |
|        |                    |         | 3639 | 76 |
|        |                    |         | 3640 | 76 |
|        |                    |         | 3640 | 76 |
|        |                    |         | 3641 | 76 |

|    |     |        | 3641 | 75 |
|----|-----|--------|------|----|
|    |     |        | 3642 | 75 |
|    |     |        | 3642 | 75 |
|    |     |        | 3643 | 75 |
|    |     |        | 3643 | 75 |
|    |     |        | 3644 | 75 |
|    |     |        | 3644 | 75 |
|    |     |        | 3645 | 75 |
|    |     |        | 3645 | 75 |
|    |     |        | 3645 | 75 |
|    |     |        | 3646 | 75 |
|    | 100 |        | 3646 | 75 |
| 33 |     |        | 3647 | 75 |
|    |     |        | 3647 | 75 |
| 4  |     |        | 3648 | 75 |
|    |     |        | 3648 | 75 |
|    |     |        | 3649 | 75 |
|    |     |        | 3649 | 75 |
|    |     |        | 3650 | 75 |
|    |     | A      | 3650 | 75 |
|    |     | W area | 3651 | 75 |

Tabel 8. Data Pita Spektrum FTIR untuk Ikatan Asam Brounsted Zeolit HZSM-5 Si/Al=140

|      | Si/Al=140 |         |      |      |         |  |  |  |
|------|-----------|---------|------|------|---------|--|--|--|
| Nev  | v         | Deaktiv | vasi | Reg  | enerasi |  |  |  |
| 3550 | 76        | 3550    | 73   | 3550 | 71      |  |  |  |
| 3550 | 76        | 3550    | 73   | 3550 | 71      |  |  |  |
| 3550 | 76        | 3550    | 74   | 3550 | 71      |  |  |  |
| 3551 | 76        | 3551    | 74   | 3551 | 71      |  |  |  |
| 3551 | 76        | 3551    | 74   | 3551 | 71      |  |  |  |
| 3552 | 76        | 3552    | 74   | 3552 | 71      |  |  |  |
| 3552 | 76        | 3552    | 74   | 3552 | 71      |  |  |  |
| 3553 | 76        | 3553    | 74   | 3553 | 71      |  |  |  |
| 3553 | 77        | 3553    | 74   | 3553 | 71      |  |  |  |
| 3554 | 77        | 3554    | 74   | 3554 | 71      |  |  |  |
| 3554 | 77        | 3554    | 74   | 3554 | 71      |  |  |  |
| 3555 | 77        | 3555    | 74   | 3555 | 71      |  |  |  |
| 3555 | 77        | 3555    | 74   | 3555 | 71      |  |  |  |

| 3556 | 77 | 3556 | 74 | 3556 | 71 |
|------|----|------|----|------|----|
| 3556 | 77 | 3556 | 74 | 3556 | 71 |
| 3557 | 77 | 3557 | 74 | 3557 | 71 |
| 3557 | 77 | 3557 | 74 | 3557 | 71 |
| 3558 | 77 | 3558 | 74 | 3558 | 71 |
| 3558 | 77 | 3558 | 74 | 3558 | 71 |
| 3559 | 77 | 3559 | 74 | 3559 | 71 |
| 3559 | 77 | 3559 | 74 | 3559 | 71 |
| 3560 | 76 | 3560 | 74 | 3560 | 71 |
| 3560 | 76 | 3560 | 74 | 3560 | 71 |
| 3561 | 76 | 3561 | 74 | 3561 | 71 |
| 3561 | 76 | 3561 | 74 | 3561 | 71 |
| 3562 | 76 | 3562 | 73 | 3562 | 71 |
| 3562 | 76 | 3562 | 73 | 3562 | 71 |
| 3563 | 76 | 3563 | 73 | 3563 | 71 |
| 3563 | 76 | 3563 | 73 | 3563 | 71 |
| 3564 | 76 | 3564 | 73 | 3564 | 71 |
| 3564 | 76 | 3564 | 73 | 3564 | 71 |
| 3564 | 76 | 3564 | 73 | 3564 | 71 |
| 3565 | 76 | 3565 | 73 | 3565 | 71 |
| 3565 | 76 | 3565 | 73 | 3565 | 71 |
| 3566 | 76 | 3566 | 73 | 3566 | 71 |
| 3566 | 76 | 3566 | 73 | 3566 | 71 |
| 3567 | 76 | 3567 | 73 | 3567 | 71 |
| 3567 | 76 | 3567 | 73 | 3567 | 71 |
| 3568 | 76 | 3568 | 73 | 3568 | 71 |
| 3568 | 77 | 3568 | 73 | 3568 | 71 |
| 3569 | 77 | 3569 | 73 | 3569 | 71 |
| 3569 | 77 | 3569 | 73 | 3569 | 71 |
| 3570 | 77 | 3570 | 73 | 3570 | 71 |
| 3570 | 77 | 3570 | 73 | 3570 | 71 |
| 3571 | 77 | 3571 | 73 | 3571 | 71 |
| 3571 | 77 | 3571 | 73 | 3571 | 71 |
| 3572 | 77 | 3572 | 73 | 3572 | 71 |
| 3572 | 77 | 3572 | 73 | 3572 | 72 |
| 3573 | 77 | 3573 | 73 | 3573 | 72 |
| 3573 | 77 | 3573 | 73 | 3573 | 72 |
| 3574 | 77 | 3574 | 73 | 3574 | 72 |
| 3574 | 77 | 3574 | 73 | 3574 | 72 |
| 3575 | 77 | 3575 | 74 | 3575 | 72 |
| 3575 | 77 | 3575 | 74 | 3575 | 72 |


| 3576 | 76 | 3576 | 74 | 3576 | 72 |
|------|----|------|----|------|----|
| 3576 | 76 | 3576 | 74 | 3576 | 72 |
| 3577 | 76 | 3577 | 74 | 3577 | 72 |
| 3577 | 76 | 3577 | 74 | 3577 | 72 |
| 3578 | 76 | 3578 | 74 | 3578 | 72 |
| 3578 | 76 | 3578 | 74 | 3578 | 72 |
| 3578 | 76 | 3578 | 74 | 3578 | 72 |
| 3579 | 76 | 3579 | 73 | 3579 | 72 |
| 3579 | 76 | 3579 | 73 | 3579 | 72 |
| 3580 | 76 | 3580 | 73 | 3580 | 72 |
| 3580 | 76 | 3580 | 73 | 3580 | 72 |
| 3581 | 76 | 3581 | 73 | 3581 | 72 |
| 3581 | 76 | 3581 | 73 | 3581 | 72 |
| 3582 | 76 | 3582 | 73 | 3582 | 72 |
| 3582 | 76 | 3582 | 73 | 3582 | 72 |
| 3583 | 76 | 3583 | 73 | 3583 | 72 |
| 3583 | 76 | 3583 | 73 | 3583 | 72 |
| 3584 | 76 | 3584 | 73 | 3584 | 72 |
| 3584 | 76 | 3584 | 73 | 3584 | 72 |
| 3585 | 76 | 3585 | 73 | 3585 | 72 |
| 3585 | 76 | 3585 | 73 | 3585 | 72 |
| 3586 | 76 | 3586 | 73 | 3586 | 72 |
| 3586 | 76 | 3586 | 73 | 3586 | 72 |
| 3587 | 76 | 3587 | 73 | 3587 | 72 |
| 3587 | 76 | 3587 | 73 | 3587 | 72 |
| 3588 | 76 | 3588 | 73 | 3588 | 72 |
| 3588 | 76 | 3588 | 73 | 3588 | 72 |
| 3589 | 76 | 3589 | 73 | 3589 | 72 |
| 3589 | 76 | 3589 | 73 | 3589 | 72 |
| 3590 | 76 | 3590 | 73 | 3590 | 72 |
| 3590 | 76 | 3590 | 73 | 3590 | 72 |
| 3591 | 76 | 3591 | 73 | 3591 | 72 |
| 3591 | 76 | 3591 | 73 | 3591 | 72 |
| 3591 | 76 | 3591 | 73 | 3591 | 72 |
| 3592 | 76 | 3592 | 73 | 3592 | 72 |
| 3592 | 76 | 3592 | 73 | 3592 | 72 |
| 3593 | 76 | 3593 | 73 | 3593 | 72 |
| 3593 | 76 | 3593 | 73 | 3593 | 72 |
| 3594 | 76 | 3594 | 73 | 3594 | 72 |
| 3594 | 76 | 3594 | 73 | 3594 | 72 |
| 3595 | 76 | 3595 | 73 | 3595 | 72 |

| 3595 | 76 | 3595 | 73 | 3595 | 72 |
|------|----|------|----|------|----|
| 3596 | 76 | 3596 | 72 | 3596 | 72 |
| 3596 | 76 | 3596 | 72 | 3596 | 72 |
| 3597 | 76 | 3597 | 72 | 3597 | 72 |
| 3597 | 76 | 3597 | 72 | 3597 | 72 |
| 3598 | 76 | 3598 | 72 | 3598 | 72 |
| 3598 | 76 | 3598 | 72 | 3598 | 72 |
| 3599 | 76 | 3599 | 72 | 3599 | 71 |
| 3599 | 76 | 3599 | 72 | 3599 | 71 |
| 3600 | 76 | 3600 | 72 | 3600 | 71 |
| 3600 | 76 | 3600 | 72 | 3600 | 71 |
| 3601 | 75 | 3601 | 72 | 3601 | 71 |
| 3601 | 75 | 3601 | 72 | 3601 | 71 |
| 3602 | 75 | 3602 | 72 | 3602 | 71 |
| 3602 | 75 | 3602 | 72 | 3602 | 71 |
| 3603 | 75 | 3603 | 72 | 3603 | 71 |
| 3603 | 75 | 3603 | 72 | 3603 | 71 |
| 3604 | 75 | 3604 | 72 | 3604 | 71 |
| 3604 | 75 | 3604 | 72 | 3604 | 71 |
| 3605 | 75 | 3605 | 72 | 3605 | 71 |
| 3605 | 75 | 3605 | 72 | 3605 | 71 |
| 3605 | 75 | 3605 | 72 | 3605 | 71 |
| 3606 | 75 | 3606 | 72 | 3606 | 71 |
| 3606 | 75 | 3606 | 72 | 3606 | 71 |
| 3607 | 75 | 3607 | 72 | 3607 | 71 |
| 3607 | 75 | 3607 | 72 | 3607 | 71 |
| 3608 | 75 | 3608 | 72 | 3608 | 71 |
| 3608 | 75 | 3608 | 72 | 3608 | 71 |
| 3609 | 75 | 3609 | 72 | 3609 | 71 |
| 3609 | 75 | 3609 | 72 | 3609 | 71 |
| 3610 | 75 | 3610 | 72 | 3610 | 71 |
| 3610 | 75 | 3610 | 72 | 3610 | 71 |
| 3611 | 75 | 3611 | 72 | 3611 | 71 |
| 3611 | 75 | 3611 | 72 | 3611 | 71 |
| 3612 | 75 | 3612 | 72 | 3612 | 71 |
| 3612 | 75 | 3612 | 72 | 3612 | 71 |
| 3613 | 75 | 3613 | 72 | 3613 | 71 |
| 3613 | 75 | 3613 | 72 | 3613 | 71 |
| 3614 | 75 | 3614 | 72 | 3614 | 71 |
| 3614 | 75 | 3614 | 72 | 3614 | 71 |
| 3615 | 75 | 3615 | 72 | 3615 | 71 |

| 3615             | 75 | 3615             | 72  | 3615             | 71  |
|------------------|----|------------------|-----|------------------|-----|
| 3616             | 75 | 3616             | 72  | 3616             | 71  |
| 3616             | 75 | 3616             | 72  | 3616             | 71  |
| 3617             | 75 | 3617             | 72  | 3617             | 71  |
| 3617             | 75 | 3617             | 72  | 3617             | 71  |
| 3618             | 75 | 3618             | 72  | 3618             | 71  |
| 3618             | 75 | 3618             | 72  | 3618             | 71  |
| 3618             | 75 | 3618             | 72  | 3618             | 71  |
| 3619             | 75 | 3619             | 72  | 3619             | 71  |
| 3619             | 75 | 3619             | 72  | 3619             | 71  |
| 3620             | 75 | 3620             | 72  | 3620             | 72  |
| 3620             | 75 | 3620             | 72  | 3620             | 72  |
| 3621             | 75 | 3621             | 72  | 3621             | 72  |
| 3621             | 75 | 3621             | 72  | 3621             | 72  |
| 3622             | 75 | 3622             | 72  | 3622             | 72  |
| 3622             | 75 | 3622             | 72  | 3622             | 72  |
| 3623             | 75 | 3623             | 72  | 3623             | 72  |
| 3623             | 75 | 3623             | 71  | 3623             | 72  |
| 3624             | 75 | 3624             | 71  | 3624             | 71  |
|                  | 75 | 3624             | 71  | 3624             | 71  |
| 3624             | 75 | 3625             | 71  |                  | 71  |
| 3625             | 75 | 3625             | 71  | 3625<br>3625     | 71  |
| 3626             | 75 | 3626             | 71  | 3626             | 71  |
| 3626             | 75 | 3626             | 71  | 3626             | 71  |
| 3627             | 75 | 3627             | 71  | 3627             | 71  |
| 3627             | 75 | 3627             | 71  | 3627             | 71  |
| 3628             | 75 | 3628             | 71  | 3628             | 71  |
| 3628             | 75 | 3628             | 71  | 3628             | 71  |
| 3629             | 75 | 3629             | 71  | 3629             | 71  |
| 3629             | 75 | 3629             | 71  | 3629             | 71  |
| 3630             | 75 | 3630             | 71  | 3630             | 71  |
| 3630             | 75 | 3630             | 71  | 3630             | 71  |
| 3631             | 75 | 3631             | 71  | 3631             | 71  |
| 3631             | 75 | 3631             | 71  | 3631             | 71  |
| 3632             | 75 | 3632             | 71  | 3632             | 71  |
| 3632             | 75 | 3632             | 71  | 3632             | 71  |
| 3632             | 75 | 3632             | 71  | 3632             | 71  |
| 3633             | 75 | 3633             | 71  | 3633             | 71  |
| 3633             | 75 | 3633             | 71  | 3633             | 71  |
| 3634             | 75 | 3634             | 71  | 3634             | 71  |
| 3634             | 75 | 3634             | 71  | 3634             | 71  |
| JUJ <del>4</del> | 13 | JUJ <del>4</del> | / 1 | JUJ <del>4</del> | / 1 |

| 3635 | 75 | 3635 | 71 | 3635 | 71 |
|------|----|------|----|------|----|
| 3635 | 75 | 3635 | 71 | 3635 | 71 |
| 3636 | 75 | 3636 | 72 | 3636 | 71 |
| 3636 | 75 | 3636 | 72 | 3636 | 71 |
| 3637 | 75 | 3637 | 72 | 3637 | 71 |
| 3637 | 74 | 3637 | 72 | 3637 | 71 |
| 3638 | 74 | 3638 | 72 | 3638 | 71 |
| 3638 | 74 | 3638 | 72 | 3638 | 71 |
| 3639 | 74 | 3639 | 72 | 3639 | 71 |
| 3639 | 74 | 3639 | 72 | 3639 | 71 |
| 3640 | 74 | 3640 | 72 | 3640 | 71 |
| 3640 | 73 | 3640 | 72 | 3640 | 71 |
| 3641 | 73 | 3641 | 72 | 3641 | 71 |
| 3641 | 73 | 3641 | 72 | 3641 | 71 |
| 3642 | 73 | 3642 | 72 | 3642 | 71 |
| 3642 | 73 | 3642 | 71 | 3642 | 71 |
| 3643 | 73 | 3643 | 71 | 3643 | 71 |
| 3643 | 73 | 3643 | 71 | 3643 | 71 |
| 3644 | 73 | 3644 | 71 | 3644 | 70 |
| 3644 | 73 | 3644 | 71 | 3644 | 70 |
| 3645 | 73 | 3645 | 70 | 3645 | 70 |
| 3645 | 73 | 3645 | 70 | 3645 | 70 |
| 3645 | 73 | 3645 | 70 | 3645 | 70 |
| 3646 | 73 | 3646 | 70 | 3646 | 70 |
| 3646 | 73 | 3646 | 70 | 3646 | 70 |
| 3647 | 73 | 3647 | 70 | 3647 | 70 |
| 3647 | 73 | 3647 | 70 | 3647 | 70 |
| 3648 | 72 | 3648 | 70 | 3648 | 69 |
| 3648 | 72 | 3648 | 70 | 3648 | 69 |
| 3649 | 72 | 3649 | 70 | 3649 | 69 |
| 3649 | 72 | 3649 | 69 | 3649 | 69 |
| 3650 | 73 | 3650 | 69 | 3650 | 69 |
| 3650 | 73 | 3650 | 69 | 3650 | 69 |

## Lampiran Data BET untuk Zeolit Baru



```
Quantachrome Corporation
                   Quantachrome Autosorb Automated Gas Sorption System Report
Autosorb for Windows® for AS-3 and AS-6 Version 1.23
Sample ID
                   Zeolit (new)
Description
Comments
                   Alta Marisa
Sample Weight
                   0.2042 g
                 NITROGEN
Outgas Temp
150.0 °C
Operator
16.2 Ų/molecule
Outgas Time
2.0 hrs
Analysis Time
6.580E-05
P/Po Toler
28.0134 g/mol
Equil Time
Bath Temp.
77.40
PC SW Version
                                                                                          Jajat
Adsorbate
Cross-Sec Area
                                                                                          64.7 min
03/11/2011 14:5!
NonIdeality
Molecular Wt
                                                                                          AS966599.RAW
                                                                     PC SW Version Pre-1.20
Station #
                                  AREA-VOLUME-PORE SIZE SUMMARY
                                         SURFACE AREA DATA

      Multipoint BET.
      3.121E+02
      m²/g

      Single Point BET.
      3.119E+02
      m²/g

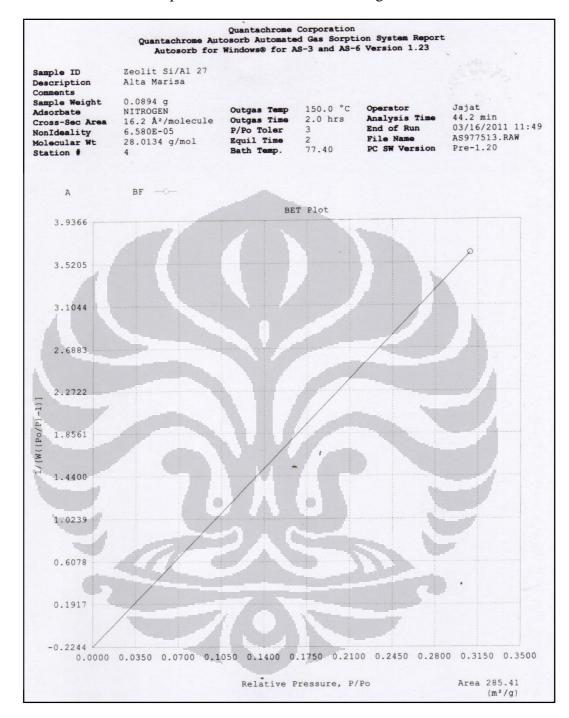
      Langmuir Surface Area.
      4.658E+02
      m²/g

    PORE VOLUME DATA
    DR Method Micro Pore Volume.

HK Method Cumulative Pore Volume.

SF Method Cumulative Pore Volume.
                                                                             1.515E-01 cc/g
                                          PORE SIZE DATA
                                     7.149E+01 Å
    DR Method Micro Pore Width

        DR
        Method Micro Fole Width
        1.640E+01 Å


        DA
        Method Pore Diameter (Mode)
        1.388E+01 Å

        HK
        Method Pore Width (Mode)
        2.600F+01 Å

        Method Pore Diameter (Mode)...... 2.602E+01 Å
                                    DATA REDUCTION PARAMETERS
                                  Thermal Transpiration : OFF
                    Last Po Acquired 768.01 mm Hg Additional Initialization Information Not Recorded.
                                 BJH/DH Moving Average Size : 1
                        Interaction Constant (K) 2.9600 nm^3 x kJ/mol
```

| 6                                                                                                        | Quantachrome Autos<br>Autosorb for W                                                 |                                                                      | Gas Sorpti                                                    |                                                                       |                                 |
|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------|
| Sample ID Description Comments Sample Weight Adsorbate Cross-Sec Area NonIdeality Molecular Wt Station # | Zeolit (new) Alta Marisa  0.2042 g NITROGEN 16.2 Å2/molecule 6.580E-05 28.0134 g/mol | Outgas Temp<br>Outgas Time<br>P/Po Toler<br>Equil Time<br>Bath Temp. | 150.0 °C<br>2.0 hrs<br>3<br>2<br>77.40                        | Operator<br>Analysis Time<br>End of Run<br>File Name<br>PC SW Version | 03/11/2011 14:5<br>AS966599.RAW |
|                                                                                                          |                                                                                      | Isotherm                                                             |                                                               |                                                                       |                                 |
|                                                                                                          | P/                                                                                   |                                                                      | Volume<br>c/g] STP                                            |                                                                       |                                 |
|                                                                                                          | 7.246<br>9.830<br>1.540<br>2.002<br>2.529                                            | 5e-02 9<br>0e-02 9<br>4e-01 9<br>8e-01 9                             | 7.6802<br>90.3795<br>93.0264<br>97.2165<br>99.6107<br>91.4976 |                                                                       |                                 |

## Lampiran Data BET untuk Zeolit Regenerasi



```
Quantachrome Corporation
                                     Quantachrome Autosorb Automated Gas Sorption System Report
Autosorb for-Windows® for AS-3 and AS-6 Version 1.23
ample ID
                                     Zeolit Si/Al 27
                               Alta Marisa
escription
omments
ample Weight disorbate NITROGEN Outgas Temp 150.0 °C Operator ross-Sec Area 16.2 Ų/molecule Outgas Time 2.0 hrs Analysis Time 2.0 hrs Decular Wt 28.0134 g/mol Equil Time 2 File Name tation # 4 Bath Temp. 77.40 PC SW Version
 ample Weight 0.0894 g
                                                                                                                                                                                 Jajat
                                                                                                                                                                                 44.2 min
03/16/2011 11:4
                                                                                                                  2 File Name
77.40 PC SW Version
                                                                                                                                                                                  AS977513.RAW
                                                                                                                                                                                 Pre-1.20
                                                                  AREA-VOLUME-PORE SIZE SUMMARY
                                                                               SURFACE AREA DATA

      Multipoint BET.
      2.854E+02 m²/g

      Single Point BET.
      2.876E+02 m²/g

      Langmuir Surface Area.
      4.308E+02 m²/g

      t-Method External Surface Area.
      1.019E+02 m²/g

      t-Method Micro Pore Surface Area.
      1.835E+02 m²/g

      DR Method Micro Pore Area.
      4.227E+02 m²/g

                                                                                 PORE VOLUME DATA

        t-Method Micro Pore Volume
        9.777E-02
        cc/g

        DR Method Micro Pore Volume
        1.502E-01
        cc/g

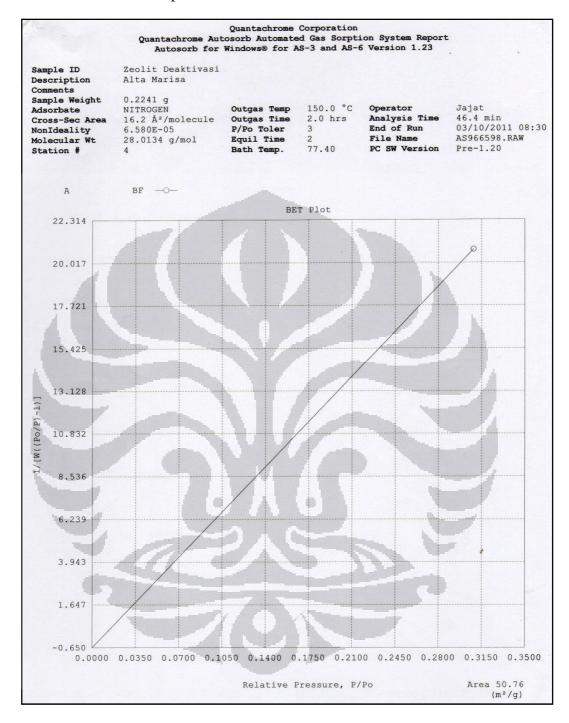
        HK Method Cumulative Pore Volume
        1.406E-01
        cc/g

        SF Method Cumulative Pore Volume
        1.417E-01
        cc/g

                                                                              PORE SIZE DATA

        DR
        Method Micro Pore Width
        6.777E+01

        DA
        Method Pore Diameter (Mode)
        1.600E+01


        HK
        Method Pore Width (Mode)
        1.427E+01

        SF
        Method Pore Diameter (Mode)
        2.685E+01

                                                                                                                                                       6.777E+01 Å
1.600E+01 Å
1.427E+01 Å
                                                                     DATA REDUCTION PARAMETERS
                                       Thermal Transpiration : OFF
Last Po Acquired 766.60 mm Hg
Additional Initialization Information Not Recorded.
                                                             BJH/DH Moving Average Size : 1
                                             Interaction Constant (K) 2.9600 nm^3 x kJ/mol
```

| / -                                                                                      | Quantac<br>Quantachrome Autosorb Au<br>Autosorb for Windows®                                   | hrome Corporation<br>tomated Gas Sorpti<br>for AS-3 and AS-6              | on System Report<br>Version 1.23                                      |                                                                  |  |  |
|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------|--|--|
| Sample ID Description Comments                                                           | Zeolit Si/Al 27<br>Alta Marisa                                                                 |                                                                           |                                                                       |                                                                  |  |  |
| Sample Weight<br>Adsorbate<br>Cross-Sec Area<br>NonIdeality<br>Molecular Wt<br>Station # | 16.2 Å <sup>2</sup> /molecule Outga<br>6.580E-05 P/Po<br>28.0134 g/mol Equil                   | s Temp 150.0 °C 2.0 hrs Toler 3 Time 2 77.40                              | Operator<br>Analysis Time<br>End of Run<br>File Name<br>PC SW Version | Jajat<br>44.2 min<br>03/16/2011 11:4<br>AS977513.RAW<br>Pre-1.20 |  |  |
|                                                                                          |                                                                                                | Sotherm                                                                   |                                                                       |                                                                  |  |  |
|                                                                                          | P/Po                                                                                           | Volume<br>[cc/g] STP                                                      |                                                                       |                                                                  |  |  |
|                                                                                          | 5.9284e-02<br>8.0804e-02<br>1.0653e-01<br>1.5516e-01<br>2.0699e-01<br>2.5819e-01<br>3.0878e-01 | 84.1287<br>86.2235<br>88.2438<br>91.0531<br>93.0689<br>94.5032<br>95.6081 |                                                                       |                                                                  |  |  |

## Lampiran Data BET untuk Zeolit Deaktivasi



```
Quantachrome Corporation
Quantachrome Autosorb Automated Gas Sorption System Report
                                      Autosorb for Windows® for AS-3 and AS-6 Version 1.23
                                Zeolit Deaktivasi
Sample ID
Description
                               Alta Marisa
Comments
Sample Weight
                                0.2241 g
                                                                                                                                                   Jajat
46.4 min
03/10/2011 08:30
AS966598.RAW
                                                                    Outgas Temp 150.0 °C Operator
Outgas Time 2.0 hrs Analysis Time
P/Po Toler 3 End of Run
                                NITROGEN
Adsorbate
                              16.2 Ų/molecule
6.580E-05
28.0134 g/mol
Cross-Sec Area
                                                                                                                     End of Run
NonIdeality
Molecular Wt
                                                                    Equil Time Bath Temp.
                                                                                                                     File Name
                                                                                               77.40 PC SW Version
                                                                                                                                                   Pre-1.20
Station #
                                                        AREA-VOLUME-PORE SIZE SUMMARY
                                                                    SURFACE AREA DATA

      Multipoint BET.
      5.076E+01
      m²/g

      Single Point BET.
      5.064E+01
      m²/g

      Langmuir Surface Area
      7.789E+01
      m²/g

      t-Method External Surface Area
      3.072E+01
      m²/g

      t-Method Micro Pore Surface Area
      2.004E+01
      m²/g

       PORE VOLUME DATA

      t-Method Micro Pore Volume.
      1.063E-02
      cc/g

      DR Method Micro Pore Volume.
      2.573E-02
      cc/g

      HK Method Cumulative Pore Volume.
      2.314E-02
      cc/g

      SF Method Cumulative Pore Volume.
      2.346E-02
      cc/g

                                                                     PORE SIZE DATA

        DR
        Method Micro Pore Width
        8.327E+01
        Å

        DA
        Method Pore Diameter (Mode)
        1.740E+01
        Å

        HK
        Method Pore Width (Mode)
        1.427E+01
        Å

        SF
        Method Pore Diameter (Mode)
        2.676E+01
        Å

                                                          DATA REDUCTION PARAMETERS
                                  Thermal Transpiration: OFF
Last Po Acquired 772.21 mm Hg
Additional Initialization Information Not Recorded.
                                                       BJH/DH Moving Average Size : 1
                                       Interaction Constant (K) 2.9600 nm^3 x kJ/mol
```

|                             |                                           |                     |            |                             | 1000                        |
|-----------------------------|-------------------------------------------|---------------------|------------|-----------------------------|-----------------------------|
| 1                           | Quantachrome Autosor<br>Autosorb for Wind |                     | Gas Sorpti |                             |                             |
| Sample ID                   | Zeolit Deaktivasi                         |                     |            |                             |                             |
| Description<br>Comments     | Alta Marisa                               |                     |            |                             |                             |
| Sample Weight               | 0.2241 g                                  |                     |            |                             |                             |
| Adsorbate                   |                                           | utgas Temp          | 150.0 °C   | Operator                    | Jajat                       |
| Cross-Sec Area              |                                           | utgas Time          | 2.0 hrs    | Analysis Time<br>End of Run | 46.4 min<br>03/10/2011 08:3 |
| NonIdeality<br>Molecular Wt |                                           | /Po Toler quil Time | 3 2        | File Name                   | AS966598.RAW                |
| Station #                   |                                           | ath Temp.           | 77.40      | PC SW Version               |                             |
| 00002011 11                 |                                           |                     |            |                             |                             |
|                             |                                           |                     |            |                             |                             |
|                             |                                           | Isothern            | n          |                             |                             |
|                             | P/Po                                      |                     | Volume     |                             |                             |
|                             |                                           | [0                  | cc/g] STP  |                             |                             |
|                             | 5.5728e-02                                |                     | 13.3173    |                             |                             |
|                             | 8.1895e-02                                |                     | 13.8900    |                             |                             |
|                             | 1.00010 01                                |                     | 14.3476    |                             |                             |
|                             | 2.0.2.0                                   |                     | 15.0224    |                             |                             |
|                             | 2.0739e-01                                |                     | 15.7416    |                             |                             |
|                             | 2.5829e-01                                |                     | 16.3150    |                             |                             |
|                             | 3.0855e                                   | -01                 | 16.8250    |                             |                             |