

UNIVERSITAS INDONESIA

PENGARUH MIKRONISASI VIBRATING MILL TERHADAP KECEPATAN DISOLUSI TABLET GLIKLAZID

SKRIPSI

HANA RISKAFURI 0706264652

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI FARMASI DEPOK JULI 2011

UNIVERSITAS INDONESIA

PENGARUH MIKRONISASI VIBRATING MILL TERHADAP KECEPATAN DISOLUSI TABLET GLIKLAZID

SKRIPSI

Diajukan sebagai salah satu syarat untuk memperoleh gelar SarjanaFarmasi

HANA RISKAFURI 0706264652

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI FARMASI DEPOK JULI 2011

HALAMAN PERNYATAAN ORISINALITAS

Skripsi ini adalah hasil karya saya sendiri, dan semua sumber baik yang dikutip maupun dirujuk telah saya nyatakan dengan benar.

Nama : Hana Riskafuri

NPM : 0706264652

Tanda Tangan : Janyt

Tanggal :5Juli 2011

HALAMAN PENGESAHAN

Skripsi ini diajukan oleh

Nama : Hana Riskafuri : 0706264652 Program Studi : Farmasi

Skripsi : Pengaruh Mikronisasi Vibrating Mill terhadap

Kecepatan Disolusi Tablet Gliklazid

Telah berhasil dipertahankan di hadapan Dewan Penguji dan diterima sebagai bagian persyaratan yang diperlukan untuk memperoleh gelar sarjana S1 pada Program Studi Farmasi, Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia

DEWAN PENGUJI

Pembimbing: Sutriyo, M.Si., Apt.

Penguji I : Dr. Iskandarsyah, M.S., Apt.

Penguji II : Dr. Anton Bahtiar, M.Biomed., Apt.

Penguji III : Prof. Dr. Atiek Soemiati, M.S., Apt.

Ditetapkan di : Depok

Tanggal :5 Juli 2011

KATA PENGANTAR

Puji syukur penulis panjatkan kepada Allah SWT karena atas berkat dan rahmat-Nya, penulis dapat menyelesaikan skripsi ini. Penulisan skripsi ini dilakukan dalam rangka memenuhi salah satu syarat untuk mencapai gelar Sarjana Farmasi pada Departemen Farmasi Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia.

Penulis menyadari bahwa tanpa bantuan dan bimbingan dari berbagai pihak, sangatlah sulit untuk menyelesaikan skripsi ini. Oleh karena itu, penulis mengucapkan terima kasih kepada:

- 1. Sutriyo, M.Si., Apt. selaku pembimbing yang telah memberi pengarahan kepada penulis.
- 2. Prof. Dr. Yahdiana Harahap, M.S. selaku Ketua Departemen Farmasi FMIPA UI.
- 3. Dr. Berna Elya, M.Si., Apt. selaku pembimbing akademis yang telah memberikan bimbingan selama penulis menempuh pendidikan di Departemen Farmasi FMIPA UI.
- 4. Seluruh dosen Departemen Farmasi FMIPA UI atas ilmu, saran, dan bantuan yang diberikan selama ini.
- 5. Seluruh pegawai dan laboran Departemen Farmasi FMIPA UI, terutama Mbak Devfa, Pak Eri, Pak Rustam, Pak Imih, Pak Yono, Pak Ma'ruf dan Pak Suroto atas bantuannya selama penulis melakukan penelitian.
- 6. PT. Pyridam Farma, PT. Tempo Scan Pacific, Fakultas Teknik Departemen Teknik Metalurgi UI yang telah memberikan bantuan selama penelitian.
- 7. Keluarga tercinta, Papa, Mama, Adik Tika, dan seluruh keluarga besar yang telah banyak sekali memberikan bantuan, baik moril maupun materil, serta semangat dan doanya.
- 8. Sahabat-sahabat tersayang Rina, Hanif, Depe, Ary, Diah, dan Diandra yang selalu memberikan semangat kepada penulis.
- Seluruh teman-teman KBI Farmasetika terutama Mega, Isna, Tyas, Khairunnisya, dan Purwinda yang telah berjuang bersama dalam suka maupun duka.

- 10. Seluruh teman-teman Farmasi UI angkatan 2007 atas kebersamaan dan dorongan yang kalian berikan.
- 11. Semua pihak yang tidak dapat disebutkan satu per satu yang telah memberikan bantuan selama penelitian dan penyusunan skripsi ini.

Akhir kata, penulis berharap Allah SWT berkenan membalas segala kebaikan semua pihak yang telah membantu. Semoga skripsi ini dapat membawa manfaat bagi pengembangan ilmu pengetahuan.

HALAMAN PERNYATAAN PERSETUJUAN PUBLIKASI TUGAS AKHIR UNTUK KEPENTINGAN AKADEMIS

Sebagai sivitas akademik Universitas Indonesia, saya yang bertanda tangan di

: Hana Riskafuri

: 0706264652

Program Studi : Farmasi : Farmasi

: Matematika dan Ilmu Pengetahuan Alam

Jenis Karya : Skripsi

pengembangan ilmu pengetahuan, menyetujui untuk memberikan kepada Universitas Indonesia Hak Bebas Royalti Noneksklusif (Non-exclusive Royalty-Free Right) atas karya ilmiah saya yang berjudul:

Pengaruh Mikronisasi Vibrating Mill terhadap Kecepatan Disolusi Tablet
Gliklazid

beserta perangkat yang ada (jika diperlukan). Dengan Hak Bebas Royalti Eksklusif ini Universitas Indonesia berhak menyimpan, mengalihmedia/format-kan, mengelola dalam bentuk pangkalan data (database), merawat, dan mempublikasikan tugas akhir saya selama tetap mencantumkan nama saya sebagai penulis/pencipta dan sebagai pemilik Hak Cipta.

Demikian pernyataan ini saya buat dengan sebenarnya.

Dibuat di : Depok

Pada tanggal :5 Juli 2011

Yang menyatakan

(Hana Riskafuri)

vii

ABSTRAK

Nama : Hana Riskafuri

Program Studi : Farmasi

Judul : Pengaruh Mikronisasi Vibrating Mill terhadap Kecepatan

Disolusi Tablet Gliklazid

Gliklazid merupakan antidiabetik oral golongan sulfonilurea generasi kedua yang digunakan pada pengobatan diabetes melitus tipe 2. Namun, gliklazid dengan kelarutan rendah dalam air memiliki laju disolusi yang rendah dan menyebabkan masalah pada bioavailabilitas. Penelitian ini bertujuan untuk meningkatkan laju kelarutan dan disolusi gliklazid menggunakan metode mikronisasi. Proses mikronisasi dilakukan dengan menggunakan alat *vibrating mill* dengan variasi durasi *milling*. Mikrokristal yang terbentuk dikarakterisasi menggunakan *particle size analyzer, scanning electron microscopy, differential scanning calorimetry*, dan *X-ray powder diffraction*, serta diuji profil kelarutannya dan laju disolusinya. Hasil PSA dan SEM menunjukan terjadinya penurunan ukuran partikel. Struktur kristal tidak berubah berdasarkan hasil XRD dan terjadi penurunan suhu puncak endotermik dan entalpi peleburan berdasarkan hasil DSC. Hasil uji disolusi serbuk menunjukkan adanya peningkatan laju disolusi sebesar 2,50 kali dibandingkan serbuk gliklazid standar. Pada sediaan tablet terjadi peningkatan laju disolusi sebesar 1,13 kali dibandingkan tablet gliklazid standar.

Kata Kunci : disolusi, gliklazid, kelarutan, mikronisasi, *vibrating mill*

xiv + 71 halaman : 20 gambar; 10 tabel; 10 lampiran

Daftar Pustaka : 31 (1986-2010)

ABSTRACT

Name : Hana Riskafuri Study Program : Pharmacy

Title : Effect of Micronization with Vibrating Mill to the

Dissolution Rate of Gliclazide Tablet

Gliclazide is a second generation sulfonylurea which is useful in the treatment of type 2 diabetes mellitus. However, gliclazide with low solubility in water has low dissolution rates and hence suffer from oral bioavailability problems. This study is intended to enhance the solubility and dissolution rate of gliclazide by using micronization method. The micronization process carried out by using a vibrating mill with varying the milling duration. Microcrystals were characterized with particle size analyzer, scanning electron microscopy, differential scanning calorimetry, and X-ray powder diffraction, and also solubility and dissolution test. PSA and SEM results indicated that the particle size were decreased. Crystal structure did not change based on the results of XRD and the endothermic peak temperature and enthalpy of fusion were decreased based on the results of DSC. The rate of dissolution was increased about 2,50 times compared with standard. In tablet dosage form, the dissolution rate was increased about 1,13 times compared with standard.

Keyword : dissolution, gliclazide, solubility, micronization, vibrating mill

xiv + 71 pages: 20 figures; 10 tables; 10 appendixes

Bibliography: 31 (1986-2010)

DAFTAR ISI

1.1 Latar Belakang 1.2 Tujuan Penelitian 2. TINJAUAN PUSTAKA 2.1 Gliklazid		I
HALAMAN JUDUL HALAMAN PERNYATAAN ORISINALITAS LEMBAR PENGESAHAN KATA PENGANTAR LEMBAR PERSETUJUAN PUBLIKASI KARYA ILMIAH ABSTRAK ABSTRAK ABSTRACT DAFTAR ISI DAFTAR GAMBAR DAFTAR TABEL DAFTAR LAMPIRAN 1.1 Latar Belakang 1.2 Tujuan Penelitian 2. TINJAUAN PUSTAKA 2.1 Gliklazid 2.2 Penggilingan (Milling) 2.3 Ukuran Partikel 2.4 Kelarutan 2.5 Disolusi 2.6 Karakterisasi Partikel Hasil Mikronisasi 2.6.1 Difraksi Sinar-X Serbuk 2.6.2 Differential Scanning Calorimetry (DSC) 2.7 Tablet 2.8 Kempa Langsung 2.9 Selulosa Mikrokristal 2.9 Talk 2.10 Magnesium Stearat 3. METODOLOGI PENELITIAN 3.1 Tempat dan Waktu 3.2 Bahan 3.3 Alat 3.4 Cara Kerja 3.4.1 Proses Mikronisasi Vibrating Mill	HALAM.	AN SAMPUL
LEMBAR PENGESAHAN KATA PENGANTAR LEMBAR PERSETUJUAN PUBLIKASI KARYA ILMIAH ABSTRAK ABSTRACT DAFTAR ISI DAFTAR GAMBAR DAFTAR TABEL DAFTAR LAMPIRAN 1.1 Latar Belakang 1.2 Tujuan Penelitian 2. TINJAUAN PUSTAKA 2.1 Gliklazid 2.2 Penggilingan (Milling) 2.3 Ukuran Partikel 2.4 Kelarutan 2.5 Disolusi 2.6 Karakterisasi Partikel Hasil Mikronisasi 2.6.1 Difraksi Sinar-X Serbuk 2.6.2 Differential Scanning Calorimetry (DSC) 2.7 Tablet 2.8 Kempa Langsung 2.9 Selulosa Mikrokristal 2.9 Talk 2.10 Magnesium Stearat 3. METODOLOGI PENELITIAN 3.1 Tempat dan Waktu 3.2 Bahan 3.3 Alat 3.4 Cara Kerja 3.4.1 Proses Mikronisasi Vibrating Mill		
KATA PENGANTAR LEMBAR PERSETUJUAN PUBLIKASI KARYA ILMIAH ABSTRAK ABSTRACT DAFTAR ISI DAFTAR GAMBAR DAFTAR TABEL DAFTAR LAMPIRAN 1.1 Latar Belakang 1.2 Tujuan Penelitian 2. TINJAUAN PUSTAKA 2.1 Gliklazid 2.2 Penggilingan (Milling) 2.3 Ukuran Partikel 2.4 Kelarutan 2.5 Disolusi 2.6 Karakterisasi Partikel Hasil Mikronisasi 2.6.1 Difraksi Sinar-X Serbuk 2.6.2 Differential Scanning Calorimetry (DSC) 2.7 Tablet 2.8 Kempa Langsung 2.9 Selulosa Mikrokristal 2.9 Talk 2.10 Magnesium Stearat 3. METODOLOGI PENELITIAN 3.1 Tempat dan Waktu 3.2 Bahan 3.3 Alat 3.4 Cara Kerja 3.4.1 Proses Mikronisasi Vibrating Mill	HALAM.	AN PERNYATAAN ORISINALITAS
LEMBAR PERSETUJUAN PUBLIKASI KARYA ILMIAH ABSTRAK ABSTRACT DAFTAR ISI DAFTAR GAMBAR DAFTAR TABEL DAFTAR LAMPIRAN 1. PENDAHULUAN 1.1 Latar Belakang 1.2 Tujuan Penelitian 2. TINJAUAN PUSTAKA 2.1 Gliklazid 2.2 Penggilingan (Milling) 2.3 Ukuran Partikel 2.4 Kelarutan 2.5 Disolusi 2.6 Karakterisasi Partikel Hasil Mikronisasi 2.6.1 Difraksi Sinar-X Serbuk 2.6.2 Differential Scanning Calorimetry (DSC) 2.7 Tablet 2.8 Kempa Langsung 2.9 Selulosa Mikrokristal 2.9 Talk 2.10 Magnesium Stearat 3. METODOLOGI PENELITIAN 3.1 Tempat dan Waktu 3.2 Bahan 3.3 Alat 3.4 Cara Kerja 3.4.1 Proses Mikronisasi Vibrating Mill	LEMBAI	R PENGESAHAN
ABSTRAK ABSTRACT DAFTAR ISI DAFTAR GAMBAR DAFTAR TABEL DAFTAR LAMPIRAN 1. PENDAHULUAN 1.1 Latar Belakang 1.2 Tujuan Penelitian 2. TINJAUAN PUSTAKA 2.1 Gliklazid 2.2 Penggilingan (Milling) 2.3 Ukuran Partikel 2.4 Kelarutan 2.5 Disolusi 2.6 Karakterisasi Partikel Hasil Mikronisasi 2.6.1 Difraksi Sinar-X Serbuk 2.6.2 Differential Scanning Calorimetry (DSC) 2.7 Tablet 2.8 Kempa Langsung 2.9 Selulosa Mikrokristal 2.9 Talk 2.10 Magnesium Stearat 3. METODOLOGI PENELITIAN 3.1 Tempat dan Waktu 3.2 Bahan 3.3 Alat 3.4 Cara Kerja 3.4.1 Proses Mikronisasi Vibrating Mill	KATA P	ENGANTAR
ABSTRACT DAFTAR ISI DAFTAR GAMBAR DAFTAR TABEL DAFTAR LAMPIRAN 1. PENDAHULUAN 1.1 Latar Belakang 1.2 Tujuan Penelitian 2. TINJAUAN PUSTAKA 2.1 Gliklazid 2.2 Penggilingan (Milling) 2.3 Ukuran Partikel 2.4 Kelarutan 2.5 Disolusi 2.6 Karakterisasi Partikel Hasil Mikronisasi 2.6.1 Difraksi Sinar-X Serbuk 2.6.2 Differential Scanning Calorimetry (DSC) 2.7 Tablet 2.8 Kempa Langsung 2.9 Selulosa Mikrokristal 2.9 Talk 2.10 Magnesium Stearat 3. METODOLOGI PENELITIAN 3.1 Tempat dan Waktu 3.2 Bahan 3.3 Alat 3.4 Cara Kerja 3.4.1 Proses Mikronisasi Vibrating Mill	LEMBAI	R PERSETUJUAN PUBLIKASI KARYA ILMIAH
DAFTAR ISI DAFTAR GAMBAR DAFTAR TABEL DAFTAR LAMPIRAN 1. PENDAHULUAN 1.1 Latar Belakang	ABSTRA	K
DAFTAR GAMBAR DAFTAR TABEL DAFTAR LAMPIRAN 1. PENDAHULUAN 1.1 Latar Belakang 1.2 Tujuan Penelitian 2. TINJAUAN PUSTAKA 2.1 Gliklazid 2.2 Penggilingan (Milling) 2.3 Ukuran Partikel 2.4 Kelarutan 2.5 Disolusi 2.6 Karakterisasi Partikel Hasil Mikronisasi 2.6.1 Difraksi Sinar-X Serbuk 2.6.2 Differential Scanning Calorimetry (DSC) 2.7 Tablet 2.8 Kempa Langsung 2.9 Selulosa Mikrokristal 2.9 Talk 2.10 Magnesium Stearat 3. METODOLOGI PENELITIAN 3.1 Tempat dan Waktu 3.2 Bahan 3.3 Alat 3.4 Cara Kerja 3.4.1 Proses Mikronisasi Vibrating Mill	ABSTRA	CT
DAFTAR TABEL DAFTAR LAMPIRAN 1. PENDAHULUAN 1.1 Latar Belakang 1.2 Tujuan Penelitian 2. TINJAUAN PUSTAKA 2.1 Gliklazid 2.2 Penggilingan (Milling) 2.3 Ukuran Partikel 2.4 Kelarutan 2.5 Disolusi 2.6 Karakterisasi Partikel Hasil Mikronisasi 2.6.1 Difraksi Sinar-X Serbuk 2.6.2 Differential Scanning Calorimetry (DSC) 2.7 Tablet 2.8 Kempa Langsung 2.9 Selulosa Mikrokristal 2.9 Talk 2.10 Magnesium Stearat 3. METODOLOGI PENELITIAN 3.1 Tempat dan Waktu 3.2 Bahan 3.3 Alat 3.4 Cara Kerja 3.4.1 Proses Mikronisasi Vibrating Mill	DAFTAR	ISI
1. PENDAHULUAN 1.1 Latar Belakang 1.2 Tujuan Penelitian 2. TINJAUAN PUSTAKA 2.1 Gliklazid 2.2 Penggilingan (Milling) 2.3 Ukuran Partikel 2.4 Kelarutan 2.5 Disolusi 2.6 Karakterisasi Partikel Hasil Mikronisasi 2.6.1 Difraksi Sinar-X Serbuk 2.6.2 Differential Scanning Calorimetry (DSC) 2.7 Tablet 2.8 Kempa Langsung 2.9 Selulosa Mikrokristal 2.9 Talk 2.10 Magnesium Stearat 3. METODOLOGI PENELITIAN 3.1 Tempat dan Waktu 3.2 Bahan 3.3 Alat 3.4 Cara Kerja 3.4.1 Proses Mikronisasi Vibrating Mill	DAFTAR	GAMBAR
1. PENDAHULUAN 1.1 Latar Belakang 1.2 Tujuan Penelitian 2. TINJAUAN PUSTAKA 2.1 Gliklazid 2.2 Penggilingan (Milling) 2.3 Ukuran Partikel 2.4 Kelarutan 2.5 Disolusi 2.6 Karakterisasi Partikel Hasil Mikronisasi 2.6.1 Difraksi Sinar-X Serbuk 2.6.2 Differential Scanning Calorimetry (DSC) 2.7 Tablet 2.8 Kempa Langsung 2.9 Selulosa Mikrokristal 2.9 Talk 2.10 Magnesium Stearat 3. METODOLOGI PENELITIAN 3.1 Tempat dan Waktu 3.2 Bahan 3.3 Alat 3.3 Alat 3.4 Cara Kerja 3.4.1 Proses Mikronisasi Vibrating Mill	DAFTAR	TABEL
1.1 Latar Belakang	DAFTAR	LAMPIRAN
1.1 Latar Belakang		
1.2 Tujuan Penelitian 2. TINJAUAN PUSTAKA 2.1 Gliklazid 2.2 Penggilingan (Milling) 2.3 Ukuran Partikel 2.4 Kelarutan 2.5 Disolusi 2.6 Karakterisasi Partikel Hasil Mikronisasi 2.6.1 Difraksi Sinar-X Serbuk 2.6.2 Differential Scanning Calorimetry (DSC) 2.7 Tablet 2.8 Kempa Langsung 2.9 Selulosa Mikrokristal 2.9 Talk 2.10 Magnesium Stearat 3. METODOLOGI PENELITIAN 3.1 Tempat dan Waktu 3.2 Bahan 3.3 Alat 3.4 Cara Kerja 3.4.1 Proses Mikronisasi Vibrating Mill	1. PEN	DAHULUAN
1.2 Tujuan Penelitian 2. TINJAUAN PUSTAKA 2.1 Gliklazid 2.2 Penggilingan (Milling) 2.3 Ukuran Partikel 2.4 Kelarutan 2.5 Disolusi 2.6 Karakterisasi Partikel Hasil Mikronisasi 2.6.1 Difraksi Sinar-X Serbuk 2.6.2 Differential Scanning Calorimetry (DSC) 2.7 Tablet 2.8 Kempa Langsung 2.9 Selulosa Mikrokristal 2.9 Talk 2.10 Magnesium Stearat 3. METODOLOGI PENELITIAN 3.1 Tempat dan Waktu 3.2 Bahan 3.3 Alat 3.4 Cara Kerja 3.4.1 Proses Mikronisasi Vibrating Mill	1.1	Latar Belakang
2.1 Gliklazid 2.2 Penggilingan (Milling) 2.3 Ukuran Partikel 2.4 Kelarutan 2.5 Disolusi 2.6 Karakterisasi Partikel Hasil Mikronisasi 2.6.1 Difraksi Sinar-X Serbuk 2.6.2 Differential Scanning Calorimetry (DSC) 2.7 Tablet 2.8 Kempa Langsung 2.9 Selulosa Mikrokristal 2.9 Talk 2.10 Magnesium Stearat 3. METODOLOGI PENELITIAN 3.1 Tempat dan Waktu 3.2 Bahan 3.3 Alat 3.4 Cara Kerja 3.4.1 Proses Mikronisasi Vibrating Mill	1.2	Tujuan Penelitian
2.1 Gliklazid 2.2 Penggilingan (Milling) 2.3 Ukuran Partikel 2.4 Kelarutan 2.5 Disolusi 2.6 Karakterisasi Partikel Hasil Mikronisasi 2.6.1 Difraksi Sinar-X Serbuk 2.6.2 Differential Scanning Calorimetry (DSC) 2.7 Tablet 2.8 Kempa Langsung 2.9 Selulosa Mikrokristal 2.9 Talk 2.10 Magnesium Stearat 3. METODOLOGI PENELITIAN 3.1 Tempat dan Waktu 3.2 Bahan 3.3 Alat 3.4 Cara Kerja 3.4.1 Proses Mikronisasi Vibrating Mill		
2.2 Penggilingan (Milling) 2.3 Ukuran Partikel 2.4 Kelarutan 2.5 Disolusi 2.6 Karakterisasi Partikel Hasil Mikronisasi 2.6.1 Difraksi Sinar-X Serbuk 2.6.2 Differential Scanning Calorimetry (DSC) 2.7 Tablet 2.8 Kempa Langsung 2.9 Selulosa Mikrokristal 2.9 Talk 2.10 Magnesium Stearat 3. METODOLOGI PENELITIAN 3.1 Tempat dan Waktu 3.2 Bahan 3.3 Alat 3.4 Cara Kerja 3.4.1 Proses Mikronisasi Vibrating Mill	2. TIN.	
2.3 Ukuran Partikel 2.4 Kelarutan 2.5 Disolusi 2.6 Karakterisasi Partikel Hasil Mikronisasi 2.6.1 Difraksi Sinar-X Serbuk 2.6.2 Differential Scanning Calorimetry (DSC) 2.7 Tablet 2.8 Kempa Langsung 2.9 Selulosa Mikrokristal 2.9 Talk 2.10 Magnesium Stearat 3. METODOLOGI PENELITIAN 3.1 Tempat dan Waktu 3.2 Bahan 3.3 Alat 3.4 Cara Kerja 3.4.1 Proses Mikronisasi Vibrating Mill		Gliklazid
2.4 Kelarutan 2.5 Disolusi 2.6 Karakterisasi Partikel Hasil Mikronisasi 2.6.1 Difraksi Sinar-X Serbuk 2.6.2 Differential Scanning Calorimetry (DSC) 2.7 Tablet 2.8 Kempa Langsung 2.9 Selulosa Mikrokristal 2.9 Talk 2.10 Magnesium Stearat 3. METODOLOGI PENELITIAN 3.1 Tempat dan Waktu 3.2 Bahan 3.3 Alat 3.4 Cara Kerja 3.4.1 Proses Mikronisasi Vibrating Mill	2.2	Penggilingan (Milling)
2.5 Disolusi 2.6 Karakterisasi Partikel Hasil Mikronisasi 2.6.1 Difraksi Sinar-X Serbuk 2.6.2 Differential Scanning Calorimetry (DSC) 2.7 Tablet 2.8 Kempa Langsung 2.9 Selulosa Mikrokristal 2.9 Talk 2.10 Magnesium Stearat 3. METODOLOGI PENELITIAN 3.1 Tempat dan Waktu 3.2 Bahan 3.3 Alat 3.4 Cara Kerja 3.4.1 Proses Mikronisasi Vibrating Mill	2.3	
2.6 Karakterisasi Partikel Hasil Mikronisasi 2.6.1 Difraksi Sinar-X Serbuk 2.6.2 Differential Scanning Calorimetry (DSC) 2.7 Tablet 2.8 Kempa Langsung 2.9 Selulosa Mikrokristal 2.9 Talk 2.10 Magnesium Stearat 3.1 Tempat dan Waktu 3.2 Bahan 3.3 Alat 3.4 Cara Kerja 3.4.1 Proses Mikronisasi Vibrating Mill		Kelarutan
2.6.1 Difraksi Sinar-X Serbuk 2.6.2 Differential Scanning Calorimetry (DSC) 2.7 Tablet 2.8 Kempa Langsung 2.9 Selulosa Mikrokristal 2.9 Talk 2.10 Magnesium Stearat 3.1 Tempat dan Waktu 3.2 Bahan 3.3 Alat 3.4 Cara Kerja 3.4.1 Proses Mikronisasi Vibrating Mill	2.5	Disolusi
2.6.2 Differential Scanning Calorimetry (DSC) 2.7 Tablet 2.8 Kempa Langsung 2.9 Selulosa Mikrokristal 2.9 Talk 2.10 Magnesium Stearat 3.1 Tempat dan Waktu 3.2 Bahan 3.3 Alat 3.4 Cara Kerja 3.4.1 Proses Mikronisasi Vibrating Mill	2.6	The state of the s
2.7 Tablet 2.8 Kempa Langsung 2.9 Selulosa Mikrokristal 2.9 Talk 2.10 Magnesium Stearat 3.1 Tempat dan Waktu 3.2 Bahan 3.3 Alat 3.4 Cara Kerja 3.4.1 Proses Mikronisasi Vibrating Mill		
2.8 Kempa Langsung 2.9 Selulosa Mikrokristal 2.10 Magnesium Stearat 3. METODOLOGI PENELITIAN 3.1 Tempat dan Waktu 3.2 Bahan 3.3 Alat 3.4 Cara Kerja 3.4.1 Proses Mikronisasi Vibrating Mill		
2.9 Selulosa Mikrokristal 2.9 Talk 2.10 Magnesium Stearat 3. METODOLOGI PENELITIAN 3.1 Tempat dan Waktu 3.2 Bahan 3.3 Alat 3.4 Cara Kerja 3.4.1 Proses Mikronisasi Vibrating Mill		
2.9 Talk 2.10 Magnesium Stearat 3. METODOLOGI PENELITIAN 3.1 Tempat dan Waktu 3.2 Bahan 3.3 Alat 3.4 Cara Kerja 3.4.1 Proses Mikronisasi Vibrating Mill	2.9 Selulosa Mikrokristal	
2.10 Magnesium Stearat		
3. METODOLOGI PENELITIAN 3.1 Tempat dan Waktu 3.2 Bahan 3.3 Alat 3.4 Cara Kerja 3.4.1 Proses Mikronisasi Vibrating Mill		
 3.1 Tempat dan Waktu 3.2 Bahan 3.3 Alat 3.4 Cara Kerja 3.4.1 Proses Mikronisasi Vibrating Mill 	2.10	Magnesium Stearat
 3.1 Tempat dan Waktu 3.2 Bahan 3.3 Alat 3.4 Cara Kerja 3.4.1 Proses Mikronisasi Vibrating Mill 	2 ME	
3.2 Bahan		
3.3 Alat		1
3.4 Cara Kerja		
3.4.1 Proses Mikronisasi Vibrating Mill		
· · · · · · · · · · · · · · · · · · ·	3.4	
5.4.2 Penibuatan Kurva Kandrasi Ghkiazid		· · · · · · · · · · · · · · · · · · ·
2 4 2 1 Dombuston Vision Vallback Clil-1-14 1-1-		
		3.4.2.1 Pembuatan Kurva Kalibrasi Gliklazid dalam
-		Medium Aquadest
		3.4.2.2 Pembuatan Kurva Kalibrasi Gliklazid dalam
Medium HCl 0,1N		Medium HCl 0,1N
3.4.3 Karakterisasi Partikel Hasil Mikronisasi		3.4.3 Karakterisasi Partikel Hasil Mikronisasi

		3.4.3.1 Analisis Ukuran dan Distribusi Ukuran	
		Partikel	21
		3.4.3.2 Analisis Morfologi Partikel	21
		3.4.3.3 Analisis X-Ray Difraktometri	21
		3.4.3.4 Analisis Termal	22
		3.4.3.5 Uji Kelarutan Serbuk	22
		3.4.3.6 Uji Disolusi Serbuk	22
			23
		3.4.5 Uji Disolusi Tablet	24
4.	HAS	L DAN PEMBAHASAN	25
	4.1		25
	4.2	Karakterisasi Partikel Hasil Mikronisasi	26
		4.2.1 Analisis Ukuran dan Distribusi Ukuran Partikel	26
		4.2.2 Analisis Morfologi Partikel	28
		4.2.3 Analisis X-Ray Difraktometri	28
		4.2.4 Analisis Termal	29
		4.2.5 Uji Kelarutan Serbuk	30
		4.2.6 Uji Disolusi Serbuk	31
	4.3		32
	4.4	Uji Disolusi Tablet	33
5.	KES		35
	5.1	Kesimpulan Saran	35
	5.2	Saran	35
DA	FTAR	REFERENSI	36

DAFTAR GAMBAR

	I	Halamar
Gambar 2.1.	Struktur kimia gliklazid	3
Gambar 2.2.	Perpecahan partikel dalam <i>milling</i>	6
Gambar 2.3.	Mekanisme pelarutan zat terlarut	9
Gambar 4.4.	Makroskopis dari serbuk [a] GL, [b] GL VM10, [c] GL	
	VM15, dan [d] GL VM30	39
Gambar 4.5.	Kurva serapan gliklazid dalam medium aquadest	40
Gambar 4.6.	Grafik linearitas gliklazid dalam medium aquadest pada	
	panjang gelombang 225,80 nm dengan persamaan	
	y = -0.00303 + 0.03946x; $r = 0.9994069$	40
Gambar 4.7.	Kurva serapan gliklazid dalam medium HCl 0,1N	41
Gambar 4.8.	Grafik linearitas gliklazid dalam medium HCl 0,1N pada	
	panjang gelombang 227,60 nm dengan persamaan	
	y = 0.00208 + 0.04200x; $r = 0.999884988$	41
Gambar 4.9.	Kurva distribusi volume hasil pengukuran menggunakan	
	Particle Size Analyzer dari serbuk [a] GL, [b] GL VM10,	
	[c] GL VM15, dan [d] GL VM30	42
Gambar 4.10.	Hasil Scanning Electron Microscopy (SEM) dengan	
	pembesaran 2000x dari [a] GL, [b] GL VM10, [c] GL	
	VM15, dan [d] GL VM30	43
Gambar 4.11.	Pola difraktogram XRD dari [a] GL, [b] GL VM10, [c]	
	GL VM15, dan [d] GL VM30	43
Gambar 4.12.	Termogram Differential Scanning Calorimetry dari [a]	
9 1 110	GL dan [b] GL VM10	44
Gambar 4.13.	Termogram Differential Scanning Calorimetry dari [a]	4.5
0 1 414	GL VM15 dan [b] GL VM30	45
Gambar 4.14.	Profil kelarutan dari serbuk gliklazid standar dan hasil	
	mikronisasi <i>vibrating mill</i> dalam medium aquadest 250	16
Combon 4.15	ml mengandung 0,25% tween 20	46
Gambar 4.15.	Profil disolusi serbuk dari serbuk gliklazid standar dan	
	hasil mikronisasi <i>vibrating mill</i> dalam medium HCl 0,1N dengan alat disolusi tipe 2 (dayung) kecepatan 50 rpm	46
Gambar 1 16	Penampilan fisik dari tablet [a] GL dan [b] GL VM15	40 47
	Profil disolusi dari tablet GL dan tablet GL VM15	4/
Gaillual 4.17.	medium HCl 0,1N dengan alat disolusi tipe 1 (basket)	
	kecepatan 50 rpm	47
Gambar 4.18	Alat [a] Timbangan analitik, [b] Spektrofotometer UV-	47
Gainbar 4.16.	Vis, [c] Cetak tablet, dan [d] Uji disolusi	48
Gambar 4 10	Alat [a] Vibrating mill dan [b] X-Ray Diffractometer	70
Jamoar 4.17.	(XRD)	49
Gambar 4 20	Alat [a] Scanning Electron Microscopy (SEM), [b]	7
Janioai 7.20.	Differential Scanning Calorimetry (DSC), dan [c]	
	Particle Size Analyzer (PSA)	49
	1 OV V V O V O D V A, O I 11 V O V V A, O I \ 1 D I 1 1	17

DAFTAR TABEL

		Halaman
Tabel 2.1.	Istilah perkiraan kelarutan	8
Tabel 3.2.	Formulasi tablet gliklazid	
Tabel 4.3.	Data serapan gliklazid dalam berbagai konsentrasi dalam	
	medium aquadest pada $\lambda = 225,80 \text{ nm}$	50
Tabel 4.4.	Data serapan gliklazid dalam berbagai konsentrasi dalam	
	medium aquadest pada $\lambda = 227,60 \text{ nm}$	50
Tabel 4.5.	Hasil pengukuran distribusi ukuran partikel (volume)	51
Tabel 4.6.	Hasil titik lebur dan entalpi peleburan	51
Tabel 4.7.	Perbandingan spektrum difraksi sinar-x	52
Tabel 4.8.	Kelarutan GL, GL VM10, GL VM15, GL VM30 dalam	
	medium aquadest 250 ml mengandung 0,25% tween 20	
	pada λ = 225,80 nm	54
Tabel 4.9.	Hasil disolusi serbuk GL, GL VM10, GL VM15, GL VM30)
	dalam medium HCl 0,1N pada $\lambda = 227,60 \text{ nm}$	54
Tabel 4.10	Hasil disolusi tablet GL dan tablet GL VM15 dalam	
	medium HCl 0,1N pada λ = 227,60 nm	55

DAFTAR LAMPIRAN

		Halaman
Lampiran 1.	Perhitungan jumlah rendemen hasil mikronisasi <i>vibrating</i> mill	
Lampiran 2.	Bagan perhitungan kurva kalibrasi larutan standar	30
•	gliklazid dalam medium aquadest	57
Lampiran 3.	Bagan perhitungan kurva kalibrasi larutan standar	
	gliklazid dalam medium HCl 0,1 N	. 58
Lampiran 4.	Rumus perhitungan kelarutan dan disolusi	59
Lampiran 5.	Tabulasi data difraksi sinar-x	61
Lampiran 6.	Perhitungan data difraktogram sinar-x	64
Lampiran 7.	Nilai $\sin^2 \theta$	66
Lampiran 8.	Quadratic forms of Miller indices	68
Lampiran 9.	Sertifikat analisis Gliklazid	70
Lampiran 10.	Sertifikat analisis Avicel PH 102	71
	A V	

BAB 1 PENDAHULUAN

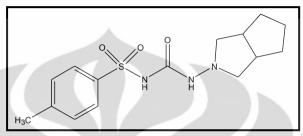
1.1 Latar Belakang

Gliklazid merupakan antidiabetik oral golongan sulfonilurea generasi kedua yang digunakan pada pengobatan diabetes melitus tipe 2. Gliklazid menunjukkan toleransi yang baik dan insiden hipoglikemik yang rendah. Hal tersebut menjadikan gliklazid sebagai obat terpilih dalam terapi jangka panjang dari diabetes melitus tipe 2 (Demirturk & Oner, 2004).

Gliklazid termasuk senyawa aktif yang masuk dalam golongan II dari Sistem Klasifikasi Biofarmasetika atau *Biopharmaceutics Classification System* (BCS) yang berarti gliklazid memiliki kelarutan rendah dalam air namun memiliki permeabilitas yang tinggi (Demirturk & Oner, 2004; Zimper *et al*, 2010). Kelarutan yang rendah dalam air diasosiasikan dengan laju disolusi yang rendah, sehingga akan membatasi absorbsinya dan menghasilkan bioavailabilitas yang rendah (Keraliya *et al*, 2010).

Upaya yang dapat dilakukan untuk memperbaiki kelarutan dan meningkatkan laju disolusi dari senyawa yang sukar larut dalam air dapat dilakukan antara lain melalui proses mikronisasi, pembentukan kompleks dengan siklodekstrin, penggunaan surfaktan, modifikasi kimia, dan dispersi padat (Babu, Areefulla, & Mallikarjun, 2010).

Proses mikronisasi dapat menghasilkan partikel dengan ukuran yang lebih kecil sehingga diharapkan dapat meningkatkan luas permukaan efektif obat yang merupakan luas permukaan partikel yang kontak dengan pelarut. Salah satu cara dari proses mikronisasi yaitu reduksi ukuran partikel secara mekanik (Hite, Turner, & Federici, 2003; Patel & Baria, 2008). Modifikasi fisik dengan proses reduksi ukuran partikel secara mekanik dapat dilakukan menggunakan *milling* atau penggilingan yang melibatkan gaya tekan, gaya geser dan gaya bentur yang diharapkan dapat mengurangi ukuran partikel dari senyawa aktif farmasetik (Patel & Pandya, 2010; Voight, 1994). Proses *milling* saat ini juga banyak digunakan dalam dunia nanoteknologi yang memungkinkannya menghasilkan partikel dengan rentang ukuran 100-200 nm (Krishnaiah, 2010).


Dalam penelitian ini akan dilakukan percobaan peningkatan laju disolusi dari tablet gliklazid dengan menggunakan metode *milling*, yaitu *vibrating mill*. Dari perlakuan *milling* diharapkan dapat membentuk mikrokristal atau nanokristal. Partikel yang dihasilkan akan dikarakterisasi dengan menggunakan *particle size analyzer, scanning electron microscopy, differential scanning calorimetry*, dan *X-ray powder diffraction*, serta akan diuji profil kelarutannya dan laju disolusinya. Selanjutnya, dari tiga waktu *milling* yang berbeda akan dipilih satu waktu yang menghasilkan partikel gliklazid dengan profil kelarutan dan peningkatan laju disolusi yang paling baik. Partikel gliklazid standar dan hasil mikronisasi kemudian diformulasikan dalam bentuk sediaan tablet. Proses tabletasi akan dilakukan menggunakan metode kempa langsung. Pada tablet yang terbentuk akan dilakukan uji disolusi untuk melihat efek dari perlakuan khusus, yaitu mikronisasi *vibrating mill*.

1.2 Tujuan Penelitian

Mengetahui pengaruh proses mikronisasi *vibrating mill* terhadap profil kelarutan dan laju disolusi dari serbuk dan tablet gliklazid.

BAB 2 TINJAUAN PUSTAKA

2.1 Gliklazid

[Sumber: British Comission Secretariat, 2007]

Gambar 2.1. Struktur kimia gliklazid (telah diolah kembali)

Nama Kimia :1-(hexahydrocyclopenta[c]pyrrol-2(1H)-yl)-3-[(4-

methylphenyl)sulphonyl]urea.

Rumus Empiris : $C_{15}H_{21}N_3O_3S$

BM : 323.4

Karakteristik gliklazid berupa serbuk putih atau hampir putih, praktis tidak larut dalam air, mudah larut dalam metilen klorida, larut dalam aseton, sedikit larut dalam alkohol. Gliklazid mengandung tidak kurang dari 99.0% dan tidak lebih dari 101.0% 1-(hexahydrocyclopenta [c]pyrrol-2(1H)-yl)-3-[(4-methylphenyl)sulphonyl] urea, dihitung dari serbuk yang telah dikeringkan. Suhu lebur berkisar pada 181°C. Susut pengeringan kurang dari 0,25%, digunakan 1 gram zat dikeringkan dalam oven pada suhu 100°-105°C selama 2 jam (British Comission Secretariat, 2007; Moffat, Osselton, & Widdop, 2005). Berdasarkan Sistem Klasifikasi Biofarmasetik, gliklazid termasuk dalam kelas II yang merupakan senyawa obat yang memiliki kelarutan rendah dalam air namun memiliki permeabilitas yang tinggi (Demirturk & Oner, 2004).

Gliklazid termasuk antidiabetik golongan sulfonilurea generasi kedua yang diberikan secara oral dalam pengobatan diabetes melitus tipe 2 (Sweetman, 2007). Diabetes melitus (DM) adalah suatu sindroma klinik yang ditandai oleh poliuri (peningkatan pengeluaran urin), polidipsi (peningkatan rasa haus) dan polifagi

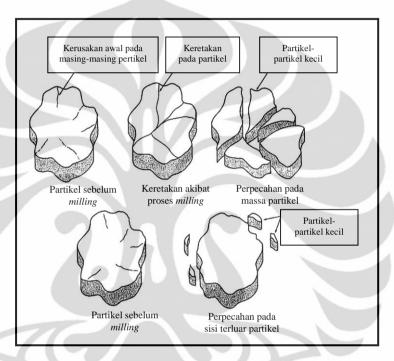
(peningkatan rasa lapar), disertai peningkatan kadar glukosa darah atau hiperglikemia (glukosa puasa $\geq 126 \text{ mg/dL}$ atau postprandial $\geq 200 \text{ mg/dL}$ atau glukosa sewaktu ≥ 200 mg/dL). Melihat etiologinya, DM dapat dibedakan menjadi DM tipe 1, tipe 2, dan DM jenis lainnya, misalnya DM pada kehamilan, DM akibat penyakit endokrin atau akibat penggunaan obat. Gliklazid merupakan salah satu antidiabetik oral untuk DM tipe 2, dimana diabetes melitus tipe 2 merupakan penyakit hiperglikemia akibat insensitivitas sel terhadap insulin. Kadar insulin mungkin sedikit menurun atau berada pada rentang normal. Karena insulin tetap dihasilkan oleh sel-sel ß pankreas dan terkadang pengobatan cukup dengan diet atau antidiabetik oral, maka DM tipe 2 dianggap sebagai noninsulin dependent diabetes mellitus (NIDDM). DM tipe 2 terjadi pada 90% dari semua kasus diabetes. Penyebab DM tipe 2 dapat berkaitan dengan obesitas. Selain itu, dapat pula dikarenakan adanya pengaruh genetik, serta dapat pula pasien DM tipe 2 menghasilkan suatu otoantibodi insulin yang berikatan dengan reseptor insulin, menghambat akses insulin ke reseptor, tetapi tidak merangsang aktivitas pembawa (Suherman, 2007; Corwin, 2001).

Pada umumnya mekanisme kerja golongan sulfonilurea adalah dengan merangsang sekresi insulin dari granul-granul sel-sel β Langerhans pankreas. Rangsangannya melalui interaksinya dengan *ATP-sensitive K channel* pada membran sel-sel β yang menyebabkan depolarisasi membran dan keadaan ini akan membuka kanal Ca. Dengan terbukanya kanal Ca, maka ion Ca²⁺ akan masuk sel-β, merangsang granula yang berisi insulin dan akan terjadi sekresi insulin dengan jumlah yang ekuivalen dengan peptida-C. Selain itu, golongan sulfonilurea dapat mengurangi klirens insulin di hepar (Suherman, 2007).

Gliklazid cepat diabsorpsi dari saluran cerna dan secara luas terikat protein plasma. Waktu paruhnya sekitar 10 sampai 12 jam. Gliklazid dimetabolisme di hati dan diekskresikan melalui urin (Sweetman, 2007).

2.2 Penggilingan (*Milling*)

Proses *milling* merupakan dasar operasional penting dalam bidang teknologi farmasi. Proses tersebut melibatkan perusakan dan penghalusan materi yang akan menghasilkan ukuran partikel obat yang lebih kecil sehingga akan


meningkatkan luas permukaan terbasahi. Suatu proses *milling* melibatkan satu atau kombinasi dari tiga macam gaya. Tiga macam gaya tersebut antara lain:

- a. Gaya geser: gaya yang memfasilitasi pembelahan atau perpecahan partikel.
- b. Gaya tekan: gaya untuk menghancurkan partikel.
- c. Gaya bentur/tumbukan: gaya langsung antar partikel dengan kecepatan tinggi (Voight, 1994; Lieberman, Lachman, & Schwartz, 1990)

Setiap partikel memiliki kerusakannya masing-masing pada bagian permukaannya. Dengan adanya gaya yang dihasilkan dari proses *milling* dapat menimbulkan kerusakan yang lebih lanjut berupa keretakan yang dapat berkembang lagi menjadi perpecahan partikel (partikel terbelah) sehingga terbentuk beberapa bagian yang lebih kecil. Hasil proses *milling* yang berupa partikel-partikel yang lebih kecil tersebut menghasilkan permukaan baru sehingga luas permukaan total akan meningkat. Pembelahan atau perpecahan partikel terjadi pada titik lemah atau titik yang paling berpotensi untuk saling berpisah. Perpecahan partikel juga dapat terjadi pada dua macam lokasi. Pertama, perpecahan massa partikel itu sendiri menjadi bagian-bagian yang lebih kecil. Kedua, perpecahan pada sisi terluar suatu partikel sebagai hasil dari gaya gesek (Lieberman, Lachman, & Schwartz, 1990). Proses perpecahan partikel dapat dilihat pada Gambar 2.2.

Peralatan *milling* memiliki tiga komponen dasar, yaitu wadah untuk bahan yang akan mengalami proses *milling*, bagian tempat proses *milling* berlangsung, dan wadah untuk menampung hasil *milling*. Namun untuk *ball mills*, wadah tempat bahan sebelum dan sesudah mengalami proses *milling* menjadi satu atau tidak terpisah (Lieberman, Lachman, & Schwartz, 1990). Di dalam bidang teknik, mesin yang digunakan dalam proses *milling* dapat diklasifikasikan menjadi tiga kelompok sesuai dengan tingkat kehalusan yang dicapai, yakni mesin penggiling butir kasar, butir sedang, dan butir halus. Jika dituntut suatu proses penghalusan yang berlangsung lama, maka tahapan berikut hendaknya diperhatikan. Pertamatama, dilakukan *milling* kasar, kemudian dilanjutkan dengan satu atau beberapa cara *milling* lainnya yang memungkinkan diperolehnya ukuran partikel terkecil (Voight, 1994).

Jenis peralatan *milling* yang dipilih didasarkan pada kriteria-kriteria berikut, yaitu tujuan yang dikehendaki, jumlah material dan sifat-sifat fisikanya (kekerasan, elastisitas, kerapuhan, lengket, dan sebagainya), ukuran partikel awal dari bahan yang akan mengalami proses *milling* dan ukuran partikel akhir produk yang diinginkan serta pertimbangan dari faktor ekonomi (ketersediaan alat dan energi yang dibutuhkan) (Voight, 1994; Parikh, 1997).

[Sumber: Lieberman, Lachman, & Schwartz, 1990]

Gambar 2.2. Perpecahan partikel dalam *milling* (telah diolah kembali)

2.3 Ukuran Partikel

Ukuran partikel dari suatu senyawa memiliki berbagai macam pengaruh, baik pada sifat dan karakteristik partikel itu sendiri, pengaruh pada bioavailabilitasnya dalam tubuh, serta pengaruh pada produk farmasetik ketika partikel tersebut diformulasikan menjadi suatu sediaan (Chang, Rong-Kun, & Robinson, 1990).

Pengurangan ukuran partikel merupakan proses untuk mengurangi inti massa solid besar menjadi ukuran yang lebih kecil. Pada teknologi formulasi tablet, proses pengurangan ukuran partikel memiliki beberapa keuntungan dan kerugian. Keuntungan yang dapat diperoleh, antara lain:

- 1. Dengan berkurangnya ukuran partikel dapat meningkatkan luas permukaan yang akan kontak dengan medium tempat partikel tersebut melarut sehingga akan meningkatkan laju disolusi dan juga bioavailabilitasnya.
- 2. Meningkatkan keseragaman kandungan dari sediaan tablet yang dihasilkan karena adanya peningkatan jumlah partikel per satuan berat.
- 3. Meningkatkan sifat alir dari beberapa bahan yang memiliki bentuk partikel yang tidak teratur yang dapat menghambat laju alirnya.
- 4. Meningkatkan dispersi dari bahan pewarna maupun bahan aktif pada pengisi tablet.
- 5. Kontrol distribusi ukuran partikel.
- 6. Penting pula diaplikasikan pada eksipien yang digunakan agar tercapai keseragaman karakteristik fisik.

Sedangkan kerugian yang dapat diperoleh, antara lain:

- 1. Adanya kemungkinan terjadi perubahan bentuk polimorfisme dari senyawa aktif yang menjadikannya kurang atau tidak aktif maupun tidak stabil karena panas yang dihasilkan selama proses *milling*.
- 2. Dengan adanya peningkatan luas permukaan obat dapat memungkinkan terjadi degradasi dan meningkatnya adsorpsi udara sehingga dapat menghambat laju pembasahan partikel tersebut.
- 3. Dapat terjadi peningkatan energi permukaan partikel yang dapat menyebabkan aglomerasi antar partikel atau partikel saling menggumpal.
- 4. Penurunan densitas *bulk* yang dapat menyebabkan masalah laju alir dan pemisahan dalam campuran (Chang, Rong-Kun, & Robinson, 1990; Lieberman, Lachman, & Schwartz, 1990).

2.4 Kelarutan

Kelarutan didefinisikan dalam besaran kuantitatif sebagai konsentrasi zat terlarut dalam larutan jenuh pada temperatur tertentu, dan secara kualitatif didefinisikan sebagai interaksi spontan dari dua atau lebih zat untuk membentuk dispersi molekuler homogen.

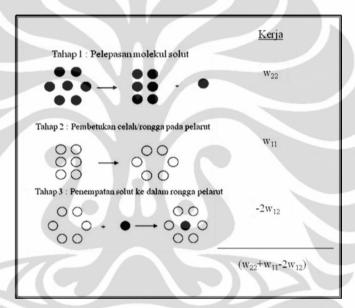
Kelarutan suatu senyawa bergantung pada sifat fisika dan kimia zat terlarut dan pelarut, temperatur, tekanan, pH larutan dan untuk jumlah yang lebih kecil,

bergantung pada hal terbaginya zat terlarut (Martin, Swarbick, & Cammarata, 1990).

Kelarutan obat dapat dinyatakan dalam beberapa cara. Menurut U.S. Pharmacopeia dan National Formulary, definisi kelarutan obat adalah jumlah ml pelarut dimana akan larut 1 gram zat terlarut (Martin, Swarbick, & Cammarata, 1990). Kelarutan zat yang tercantum dalam Farmakope dinyatakan dengan istilah sebagai berikut:

Tabel 2.1. Istilah perkiraan kelarutan

Istilah kelarutan	Jumlah bagian pelarut yang diperlukan
	untuk melarutkan 1 bagian zat
Sangat mudah larut	Kurang dari 1
Mudah larut	1 sampai 10
Larut	10 sampai 30
Agak sukar larut	30 sampai 100
Sukar larut	100 sampai 1000
Sangat sukar larut	1000 sampai 10000
Praktis tidak larut	Lebih dari 10000


[Sumber: Departemen Kesehatan RI, 1995]

Mekanisme pelarutan zat terlarut dibagi dalam tiga tahapan yaitu (Martin, Swarbick, & Cammarata, 1990):

- a. Tahap pertama menyangkut pemindahan satu molekul dari fase terlarut pada temperatur tertentu. Kerja yang dilakukan dalam memindahkan satu molekul dari zat terlarut sehingga dapat lewat ke wujud uap membutuhkan pemecahan ikatan antara molekul-molekul yang berdekatan. Kerja pemecahan ikatan antara 2 molekul yang berdekatan adalah $2w_{22}$, di mana notasi 22 adalah interaksi antara molekul zat terlarut. Tetapi apabila molekul melepaskan diri dari fase terlarut, lubang yang ditinggalkannya tertutup, dan setengah dari energi yang diterima kembali. Penerimaan energi potensial atau kerja *netto* untuk proses ini adalah w_{22} .
- b. Tahap kedua menyangkut pembentukan lubang dalam pelarut yang cukup besar untuk menerima molekul zat terlarut. Kerja yang dibutuhkan untuk tahap ini

adalah w_{11} , di mana angka itu adalah energi interaksi antara molekul-molekul pelarut.

c. Molekul zat terlarut akhirnya ditempatkan dalam lubang pelarut dan pertambahan kerja atau penurunan energi potensial dalam langkah ini adalah $-w_{12}$. Angka 12 adalah energi interaksi zat terlarut dengan pelarut. Lubang dalam pelarut yang terbentuk dalam tahap 2, sekarang tertutup, dan penurunan tambahan dalam energi, $-w_{12}$ terjadi, menyangkut kerja *netto* dalam tahap terakhir ini adalah $-2w_{12}$.

[Sumber: Martin, Swarbick, & Cammarata, 1990]

Gambar 2.3. Mekanisme pelarutan zat terlarut (telah diolah kembali)

2.5 Disolusi

Laju disolusi didefinisikan sebagai sejumlah senyawa aktif dalam bentuk padatan terlarut dalam satuan unit waktu, yang diuji pada kondisi standar dari antarmuka padatan-cairan, temperatur, dan komposisi medium disolusi. Uji disolusi dilakukan dengan tujuan untuk menjamin bioekuivalensi antar *batch* dari sediaan padat, memonitor proses formulasi dan teknologi pembuatan, langkah awal pengembangan obat dan menemukan senyawa baru untuk teknologi formulasi, serta sebagai persyaratan kompendial sebelum obat tersebut dapat masuk dalam daftar kompendial (Hanson, 1991).

Laju disolusi obat dapat dijelaskan dengan persamaan Noyes dan Whitney, yaitu:

$$\frac{\mathrm{dc}}{\mathrm{dt}} = \frac{\mathrm{DS}}{\mathrm{h}} (\mathrm{Cs} - \mathrm{Ct}) \tag{2.1}$$

Keterangan:

dc/dt = laju disolusi obat

D = koefisien difusi

S = luas permukaan zat padat yang melarut

h = ketebalan lapisan difusi

Cs = konsentrasi obat dalam lapisan difusi (kelarutan)

Ct = konsentrasi obat pada medium disolusi pada waktu t

Dari persamaan tersebut dapat diperkirakan langkah yang dapat dilakukan untuk meningkatkan laju disolusi. Peningkatan luas permukaan zat padat yang melarut serta peningkatan kelarutan obat merupakan dua faktor yang efektif untuk dapat memperoleh peningkatan laju disolusi. Kedua faktor tersebut dapat dikontrol atau dimodifikasi, dapat diukur perubahannya dan banyak penelitian yang telah dilakukan.

Untuk meningkatkan luas permukaan zat padat yang melarut (S) dapat diperoleh dengan jalan memperkecil ukuran partikel. Upaya peningkatan konsentrasi obat dalam lapisan difusi atau perbaikan kelarutan (Cs) dapat dilakukan dengan merubah bahan obat (pembentukan garam, penyisipan gugus hidrofil), memilih modifikasi polimorf atau polimorf palsu yang tepat atau dengan bahan tambahan untuk memperbaiki kelarutan obat (pembentuk kompleks, bahan hidrotopi, tensid) (Abdou, 1989; Voight, 1994).

Adapun faktor-faktor yang mempengaruhi laju disolusi dapat dikategorikan menjadi 3 kategori, yaitu (Abdou, 1989; Shargel & Yu, 2005):

a. Faktor fisikokimia obat

Sifat fisika dan kimia obat mempunyai pengaruh yang besar pada laju disolusi obat tersebut. Sifat-sifat tersebut contohnya adalah kelarutan, ukuran partikel, bentuk kristal dan amorf, densitas, viskositas, kemampuan terbasahi serta karakteristik adsorpsi.

b. Faktor formulasi

Berbagai bahan tambahan dalam produk obat juga dapat mempengaruhi laju disolusinya dengan mengubah medium tempat obat melarut atau bereaksi dengan obat itu sendiri.

c. Faktor kondisi percobaan

Pertama, ukuran dan bentuk wadah. Pertimbangan kedua adalah jumlah pengadukan dan sifat pengaduk. Kecepatan pengaduk harus dikendalikan dan sesuai spesifikasi yang membedakan antar produk. Suhu medium disolusi juga harus dikendalikan dan variasi suhu harus dihindarkan. Sebagian besar uji disolusi dilakukan pada suhu 37°C. Sifat medium pelarutan juga akan mempengaruhi uji disolusi. Medium disolusi hendaknya tidak jenuh dengan obat. Dalam uji, biasanya digunakan suatu volume medium yang lebih besar daripada jumlah yang diperlukan untuk melarutkan obat secara sempurna. Hal lain yang perlu diperhatikan adalah rancangan alat uji. Tidak satupun alat uji yang dapat digunakan untuk seluruh produk obat.

Berdasarkan Farmakope Indonesia edisi IV, jenis alat uji disolusi yang sering digunakan, yaitu (Departemen Kesehatan RI, 1995):

a. Alat 1 (Tipe Basket)

Alat ini terdiri dari sebuah wadah bertutup yang terbuat dari kaca atau bahan transparan lain yang inert, suatu motor, suatu batang logam yang digerakkan oleh motor dan keranjang berbentuk silinder. Wadah tercelup sebagian di dalam suatu tangas air yang sesuai berukuran sedemikian sehingga dapat mempertahankan suhu dalam wadah $37^{\circ} \pm 0.5^{\circ}$ C selama pengujian berlangsung dan menjaga agar gerakan air dalam tangas air halus dan tetap. Pada bagian atas wadah ujungnya melebar, untuk mencegah penguapan dapat digunakan suatu penutup yang pas. Batang logam berada pada posisi sedemikian sehingga sumbunya tidak lebih dari 2 mm pada tiap titik dari sumbu vertikal wadah, berputar dengan halus dan tanpa goyangan yang berarti. Suatu alat pengatur kecepatan digunakan sehingga memungkinkan untuk memilih kecepatan putaran yang dikehendaki dan mempertahankan kecepatan seperti yang tertera dalam masing-masing monografi dalam batas lebih kurang 4%. Sediaan dimasukkan ke

dalam keranjang yang kering pada tiap awal pengujian. Jarak antara dasar bagian dalam wadah dan keranjang adalah 25 mm \pm 2 mm selama pengujian berlangsung.

b. Alat 2 (Tipe Dayung)

Sama seperti Alat 1, perbedaannya pada alat ini digunakan dayung yang terdiri dari daun dan batang sebagai pengaduk. Sediaan dibiarkan tenggelam ke dasar wadah sebelum dayung mulai berputar. Sepotong kecil bahan yang tidak bereaksi seperti gulungan kawat berbentuk spiral dapat digunakan untuk mencegah mengapungnya sediaan.

Sebagai medium disolusi dapat digunakan pelarut seperti yang tertera pada masing-masing monografi. Interpretasi uji disolusi yaitu kecuali dinyatakan lain dalam masing-masing monografi, persyaratan dipenuhi bila jumlah zat aktif yang terlarut dari sediaan yang diuji sesuai dengan tabel penerimaan. Lanjutkan pengujian sampai tiga tahap, kecuali bila hasil pengujian memenuhi tahap S1 atau S2. Harga Q adalah jumlah zat aktif yang terlarut seperti yang tertera dalam masing-masing monografi, dinyatakan dalam persentase kadar pada etiket, angka 5% dan 15% dalam tabel adalah persentase kadar pada etiket, dengan demikian mempunyai arti yang sama dengan Q (Departemen Kesehatan RI, 1995).

Untuk membandingkan profil disolusi antar produk dapat digunakan perhitungan menggunakan faktor perbedaan atau *difference factor* (f_1) dan faktor persamaan atau *similarity factor* (f_2) :

$$f_1 = \{ [\sum_{t=1}^{n} |R_{t} - T_t|] / [\sum_{t=1}^{n} R_t] \}.100$$
 (2.2)

$$f_2 = 50.\log\{[1+(1/n)\sum_{t=1}^{n}(R_t-T_t)^2]^{-0.5}.100\}$$
 (2.3)

dimana n adalah jumlah interval waktu penentuan, R_t adalah nilai disolusi dari zat aktif produk pembanding pada interval waktu t, dan T_t adalah nilai disolusi dari zat aktif produk uji pada interval waktu t. Prosedur penentuan faktor perbedaan dan faktor persamaan, yaitu:

- 1. Menentukan profil disolusi masing-masing produk (digunakan 12 unit per produk).
- 2. Lakukan perhitungan nilai rata-rata laju disolusi, kalkulasi nilai faktor perbedaan dan faktor persamaan menggunakan rumus.

3. Nilai f_1 berada antara 0-15 dan nilai f_2 berada antara 50-100 akan menjamin kesamaan dan ekuivalensi dari profil disolusi kedua produk tersebut.

Hal-hal yang perlu diperhatikan adalah uji profil disolusi dari dua produk dilakukan pada kondisi dan interval waktu pengambilan contoh yang sama. Minimum terdapat tiga interval waktu pada saat pengujian dan hanya satu interval waktu dengan persen zat aktif terlarut sebesar lebih dari 85% yang dapat diikutsertakan dalam analisis. Pada perhitungan nilai rata-rata laju disolusi, persen koefisien variasi pada titik awal (15 menit) tidak lebih dari 20% dan pada titik berikutnya tidak lebih dari 10% (Dressman & Kramer, 2005).

2.6 Karakterisasi Partikel Hasil Mikronisasi

2.6.1 Difraksi Sinar-X Serbuk

Teknik difraksi sinar-x serbuk merupakan metode yang paling mudah dan cepat untuk memperoleh informasi fundamental tentang struktur zat kristal. Karena mayoritas senyawa obat dijumpai sebagai serbuk kristal, maka pola serbuk senyawa ini seringkali dipakai sebagai sidik jari yang segera diperoleh untuk menentukan jenis strukturnya. Aplikasi metode difraksi sinar-x serbuk secara khusus dapat meliputi evaluasi polimorfisme dan solvatomorfisme, studi transisi fase dan evaluasi level atau tingkat kristalinitas.

Dasar dari penggunaan difraksi sinar-x untuk mempelajari kisi kristal adalah berdasarkan persamaan Bragg:

$$n.\lambda = 2.d_{hkl}.\sin\theta \tag{2.4}$$

dengan n adalah bilangan bulat yang disebut orde refleksi, λ adalah panjang gelombang sinar-x yang digunakan, d_{hkl} adalah jarak antara dua bidang kisi, θ adalah sudut antara sinar datang dengan bidang normal. Bragg menjelaskan difraksi sinar-x melalui kristal menggunakan model di mana atom-atom kristal tersusun secara teratur dalam ruang, membentuk bidang-bidang tersusun sejajar dipisahkan oleh jarak yang tetap dan tegas. Jika sinar-x bertemu dengan bidang kisi dalam kristal, maka difraksi akan muncul sebagai refleksi. Sudut pantul (θ) diukur untuk setiap kelompok bidang kristal dengan jalan memutar sampel secara lambat dan mengukur sudut difraksi (sudut pantul) sinar-x dengan mengacu pada besarnya sudut datang sinar. Detektor digerakkan untuk menentukan sudut radiasi

pantulan. Dengan mengetahui harga panjang gelombang sinar datang, jarak antara bidang dapat ditentukan dengan menggunakan persamaan Bragg.

Pada pengukuran suatu pola serbuk, sampel yang dihaluskan diorientasikan secara acak sedemikian rupa sehingga seluruh bidang yang ada dalam kristal terekspos. Suatu zat dengan bentuk kristalin akan memberikan puncak jika disinari oleh sinar-x. Oleh karena itu, melalui difraksi sinar-x ini kita dapat mengetahui seberapa banyak fase kristal yang terkandung dalam suatu bahan (Soewandhi, 2006; Martin, Swarbrick, & Cammarata, 1990).

2.6.2 Differential Scanning Calorimetry (DSC)

Teknik *Differential Scanning Calorimetry* (DSC) mengukur jumlah energi yang diabsorpsi atau dibebaskan oleh sampel saat dipanaskan, didinginkan atau dipertahankan pada suhu konstan. Energi ini dihubungkan dengan perbedaan aliran panas antara sampel dengan pembanding. Pada DSC, bahan sampel dan bahan pembanding ditempatkan dalam wadah yang terpisah dan temperatur setiap wadah dinaikkan atau diturunkan pada kecepatan yang sudah ditetapkan terlebih dahulu. Ketika sampel mengalami peristiwa termal (eksotermik atau endotermik), kenaikan panas atau penurunan panas dibutuhkan untuk dialirkan pada sampel atau pembanding agar keduanya dapat dipertahankan pada suhu yang sama. Panas yang diberikan kepada sampel atau pembanding per satuan waktu diberikan kepada suatu pencatat.

Hasil pengukuran dengan menggunakan DSC ditampilkan dalam kurva profil termal. Faktor yang dapat mempengaruhi kurva DSC salah satunya adalah pengaruh sampel, termasuk di dalamnya yaitu ukuran partikel, cemaran, bentuk kristal, dan inti polimorf. DSC digunakan cukup luas dalam bidang farmasi, antara lain untuk mendapatkan identitas dan kemurnian, untuk mendapatkan kapasitas panas dan panas peleburan, untuk melakukan kinetika penguraian zat padat, dan juga untuk membuat diagram fase untuk mempelajari polimorfi (Soewandhi, 2006; Martin, Swarbrick, & Cammarata, 1990).

2.7 Tablet

Tablet adalah sediaan padat mengandung bahan obat dengan atau tanpa bahan pengisi (Departemen Kesehatan RI, 1995). Tablet merupakan bentuk sediaan yang paling banyak digunakan. Keuntungan tablet dibandingkan dengan sediaan oral lainnya adalah ketepatan dosis, variabilitas kandungan yang rendah, biaya pembuatan yang rendah, sediaan oral yang paling mudah dan murah untuk dikemas serta dikirim, paling mudah ditelan serta paling kecil kemungkinan tertinggal di tenggorokan, bisa dijadikan profil pelepasan khusus, paling mudah diproduksi secara besar-besaran, dan merupakan bentuk sediaan oral yang memiliki sifat pencampuran kimia, mekanik, dan stabilitas mikrobiologi yang paling baik. Sedangkan kerugian tablet yaitu, beberapa obat tidak dapat dikempa menjadi padat dan kompak, obat yang sukar dibasahkan, lambat melarut ataupun dosisnya cukupan atau tinggi akan sukar diformulasi dan dipabrikasi dalam bentuk tablet yang masih menghasilkan bioavailabilitas obat cukup, serta obat yang rasanya pahit, obat dengan bau yang tidak dapat dihilangkan, atau obat yang peka terhadap oksigen atau kelembaban udara perlu pengapsulan atau penyelubungan sebelum dikempa (bila mungkin) atau memerlukan penyalutan terlebih dahulu (Banker & Anderson, 1986).

Tablet oral konvensional di samping mengandung zat aktif biasanya terdiri dari salah satu atau lebih bahan tambahan atau eksipien. Eksipien yang digunakan harus memenuhi persyaratan, yaitu bersifat nontoksik dan dapat diterima oleh regulasi yang diterapkan oleh negara di mana produk akan dipasarkan, secara komersial mudah didapat, inert, stabil secara fisik dan kimia, bebas dari agen mikrobiologi patogen dan tidak mengurangi bioavailabilitas bahan aktif obat. Eksipien yang umum digunakan dikelompokkan berdasarkan fungsinya, yaitu:

a. Pengisi (Diluents)

Fungsi bahan pengisi ialah sebagai pemenuhan kecukupan *bulk* atau massa tablet. Pengisi dapat juga ditambah karena alasan kedua yaitu memperbaiki daya kohesi sehingga dapat dikempa langsung atau untuk memacu aliran. Beberapa contoh pengisi yang dapat digunakan adalah laktosa, selulosa mikrokristal, sorbitol, manitol, kalsium sulfat dihidrat, dan dekstrosa (Banker & Anderson, 1986).

b. Pengikat (*Binders*)

Tujuan penambahan pengikat adalah untuk meningkatkan daya kohesivitas serbuk, sehingga jika dikompresi akan membentuk massa yang kohesif atau kompak sebagai tablet. Beberapa contoh pengikat diantaranya akasia, tragakan, gelatin, PVP (polivinil pirolidon), dan pasta amilum (Chang, Rong-Kun, & Robinson, 1990).

c. Penghancur (Disintegrants)

Penghancur bermanfaat untuk memfasilitasi hancurnya tablet. Penghancur dapat ditambahkan sebelum granulasi, selama tahap lubrikasi tepat sebelum proses kompresi, atau pada kedua tahap tersebut. Beberapa contoh penghancur diantaranya *starch*, alginat, gom, dan HPMC (Banker & Anderson, 1986).

d. Lubrikan, antiadheren dan glidan

Lubrikan atau pelincir diharapkan dapat mengurangi gesekan antara dinding tablet dengan dinding *die* pada saat tablet ditekan ke luar. Antiadheren atau anti lekat bertujuan untuk mengurangi adhesi bubuk atau granul pada permukaan *punch* atau dinding *die*. Sedangkan glidan atau pelicin ditujukan untuk memacu aliran serbuk atau granul dengan jalan mengurangi gesekan di antara partikel-partikel. Contoh lubrikan yaitu asam stearat, garam-garam asam stearat (kalsium dan magnesium stearat) dan derivat-derivatnya. Sebagian besar bahan-bahan yang berfungsi sebagai lubrikan juga berfungsi sebagai antiadheren, kecuali lubrikan yang larut dalam air. Bahan-bahan yang digunakan sebagai glidan antara lain jenis talk konsentrasi 1-10% dan amilum jagung konsentrasi 5-10% (Banker & Anderson, 1986).

e. Pewarna, perasa dan pemanis

Pewarna, perasa dan pemanis digunakan untuk dapat menutupi warna maupun rasa obat yang kurang baik, identifikasi hasil produksi dan membuat suatu produk menjadi lebih menarik (Banker & Anderson, 1986).

2.8 Kempa Langsung

Berdasarkan metode pembuatannya, tablet dapat dikelompokkan menjadi tablet cetak dan tablet kempa. Tablet cetak dibuat dengan cara menekan massa serbuk lembab dengan tekanan rendah ke dalam lubang cetakan. Kepadatan tablet

tergantung pada ikatan kristal yang terbentuk selama proses pengeringan selanjutnya dan tidak tergantung pada kekuatan yang diberikan. Tablet kempa dibuat dengan memberikan tekanan tinggi pada serbuk atau granul menggunakan cetakan baja (Departemen Kesehatan RI, 1995). Tablet kempa dapat dibuat dengan 3 cara umum, yaitu kempa langsung, granulasi kering, dan granulasi basah.

Kempa langsung atau tabletasi langsung adalah pencetakan bahan obat atau campuran bahan obat atau campuran bahan obat dan bahan tambahan berbentuk serbuk tanpa proses pengolahan awal. Metode kempa langsung digunakan untuk bahan-bahan yang mempunyai sifat kompresibilitas dan laju alir yang baik, misalnya beberapa zat yang berbentuk kristal, seperti KCl, KBr dan NaCl. Tahapan metode kempa langsung adalah penghalusan zat aktif dan eksipien, pencampuran bahan dan pencetakan tablet (Banker & Anderson, 1986).

Keuntungan yang utama dari kempa langsung adalah bahan obat yang sensitif terhadap panas dan lembab, serta yang stabilitasnya terganggu akibat proses granulasi, dapat dibuat menjadi tablet. Proses kempa langsung juga lebih ekonomis karena tidak memerlukan alat yang banyak, cepat, dan laju pelepasan obat cepat karena berada dalam bentuk partikel bebas bukan granul. Namun, terdapat kerugian dari metode ini yaitu hanya sedikit bahan obat yang mampu dikompresi secara langsung, tanpa pengolahan awal dan tanpa penambahan bahan tambahan atau eksipien (Voight, 1994; Banker & Anderson, 1986).

Kempa langsung menghasilkan gaya ikatan antar partikel yang rendah sehingga tablet tidak memiliki kekompakan yang cukup, serta perlu diperhatikan karakteristik sifat alir serbuk yang baik. Oleh karena itu, kondisi yang lebih baik untuk kempa langsung dapat dihasilkan dengan jalan merubah sifat serbuk (ukuran serbuk, bentuk serbuk, distribusi ukuran serbuk), melalui penambahan bahan pembantu (bahan pengikat, bahan pengatur aliran, bahan antiadheren) dan melalui alat-alat masinel (tekanan cetak lebih tinggi, peralatan yang memudahkan pengisian ruang cetak) (Voight, 1994).

2.9 Selulosa Mikrokristal

Selulosa mikrokristal atau avicel pertama kali diperkenalkan sebagai eksipien untuk tablet kempa langsung pada awal tahun 1960. Pemeriannya berupa serbuk kristal putih, tidak berbau, tidak berasa, yang terdiri dari partikel yang berpori. Persen penggunaannya sebagai pengisi berkisar pada 20-90%. Selulosa mikrokristal merupakan hasil hidrolisis selulosa kayu yang mempunyai derajat kemurnian tinggi. Banyak digunakan sebagai pengisi dan pengikat pada tablet kempa langsung karena memiliki daya kompresibilitas yang besar (American Pharmaceutical Association, 1994; Chang, Rong-Kun, & Robinson, 1990).

2.10 Talk

Talk berupa serbuk kristal yang sangat halus, berwarna putih sampai putih keabu-abuan, tidak berbau, tidak teraba dan manis. Talk sangat baik digunakan sebagai antiadheren dan glidan tetapi kurang baik sebagai lubrikan. Talk dapat mencegah melekatnya massa tablet pada dinding alat cetak tablet dan dapat memperbaiki karakteristik aliran granul. Persen penggunaannya sebagai glidan berkisar antara 1-10% (American Pharmaceutical Association, 1994).

2.11 Magnesium Stearat

Magnesium stearat berupa serbuk halus berwarna putih, licin, mudah melekat pada kulit, berbau khas lemah. Kelarutannya yaitu praktis tidak larut dalam air, etanol 95% dan eter. Pada formulasi sediaan tablet biasa digunakan sebagai lubrikan (American Pharmaceutical Association, 1994).

BAB 3

METODOLOGI PENELITIAN

3.1 Tempat dan Waktu

Lokasi penelitian adalah di Laboratorium Formulasi Tablet Departemen Farmasi Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia. Waktu pelaksanaannya adalah dari Februari hingga Mei 2011.

3.2 Bahan

Gliklazid (Zhejiang Hengdian Pharmaceutical, China) yang diberikan oleh PT. Pyridam Farma, Avicel PH 102 (PT. Brataco, Indonesia), Talk, Magnesium stearat, Tween 20, Asam hidroklorida (PT. Merck, Jerman), Natrium hidroksida (PT. Merck, Jerman), etanol 70% (PT. Merck, Jerman), metanol, aquadest.

3.3 Alat

Vibrating Mill (Shimadzu, Jepang), alat uji disolusi (Electrolab TDT-08L, India), spektrofotometer UV-Vis (UV-1800 Shimadzu UV Spectrophotometer, Jepang), Particle Size Analyzer (DelsaTMNanoC), Scanning Electron Microscope (SEM LEO 420i), X-ray Diffractometer (Philips Diffractometer PW 1710, Jepang), Differential Scanning Calorimetry (Perkin Elmer 6, USA), pengaduk magnetik yang dilengkapi dengan termostat (IKA[®] C-MAG HS 4), neraca analitik EB-330 (Shimadzu, Jepang), alat cetak tablet, pH meter, filter membran berukuran 0,45 μm, stopwatch, termometer, mortar dan alu, alat-alat gelas yang umum digunakan dalam laboratorium.

3.4 Cara Kerja

3.4.1 Proses Mikronisasi Vibrating Mill

Timbang ± 0,35 gram sampel gliklazid. Masukkan sampel gliklazid beserta *ball mill* ke dalam kapsul khusus untuk *vibrating mill*. Pasang kapsul pada tempat yang telah tersedia pada alat *vibrating mill*. Tutup kaca bagian depan alat. Sambungkan alat pada tegangan listrik 110 V. Putar waktu sesuai dengan total waktu *milling* (sekali perputaran maksimal 3 menit). Pertama, total waktu *milling*

10 menit dilakukan 3 kali perputaran 3 menit dan 1 kali perputaran 1 menit. Kedua, total waktu *milling* 15 menit dilakukan 5 kali perputaran 3 menit. Ketiga, total waktu *milling* 30 menit dilakukan 10 kali perputaran 3 menit.

3.4.2 Pembuatan Kurva Kalibrasi Gliklazid

3.4.2.1 Pembuatan Kurva Kalibrasi Gliklazid dalam Medium Aquadest

Timbang seksama 50,0 mg gliklazid standar, masukkan ke dalam labu ukur 100,0 ml. Lalu larutkan dalam larutan 5 ml NaOH 0,1N dan 5 ml etanol 70% yang telah dibuat sebelumnya. Tambahkan aquadest hingga garis batas, diperoleh larutan gliklazid konsentrasi 500 ppm. Saring larutan kemudian pipet sebanyak 10,0 ml dan masukkan ke dalam labu ukur 100,0 ml, tambahkan aquadest hingga garis batas sehingga diperoleh larutan konsentrasi 50 ppm. Dari larutan konsentrasi 50 ppm dipipet 10,0 ml lalu masukkan ke dalam labu ukur 50,0 ml. Cukupkan volume dengan aquadest hingga garis batas dan pada akhirnya diperoleh larutan konsentrasi 10 ppm untuk membuat kurva serapan. Ukur serapan dengan spektrofotometer UV-Vis pada panjang gelombang dari 190 nm – 380 nm. Tentukan panjang gelombang maksimum larutan gliklazid standar tersebut dalam medium aquadest.

Buat larutan konsentrasi 6 ppm, 8 ppm, 10 ppm, 12 ppm, 14 ppm, dan 16 ppm dari larutan gliklazid konsentrasi 50 ppm. Serapan masing-masing larutan diukur dengan spektrofotometer UV-Vis pada panjang gelombang 225,80 nm. Kemudian dibuat persamaan kurva kalibrasi dalam persamaan y = a + bx.

3.4.2.2 Pembuatan Kurva Kalibrasi Gliklazid dalam Medium HCl 0,1N

Timbang seksama 50,0 mg gliklazid standar, masukkan ke dalam labu ukur 50,0 ml. Lalu larutkan dalam 10 ml metanol. Setelah larut, tambahkan HCl 0,1N sedikit demi sedikit hingga mencapai garis batas, diperoleh larutan gliklazid konsentrasi 1000 ppm. Saring larutan kemudian pipet sebanyak 10,0 ml dan masukkan ke dalam labu ukur 100,0 ml. Tambahkan HCl 0,1N hingga garis batas, diperoleh larutan konsentrasi 100 ppm. Pipet kembali sebanyak 4,0 ml dari larutan konsentrasi 100 ppm, masukkan ke dalam labu ukur 50,0 ml dan tambahkan HCl 0,1N hingga garis batas. Diperoleh larutan gliklazid konsentrasi 8 ppm. Ukur

serapan dengan spektrofotometer UV-Vis pada panjang gelombang dari 190 nm – 380 nm. Dari serapan yang terbaca, tentukan panjang gelombang maksimum larutan gliklazid standar tersebut.

Buat larutan gliklazid dengan konsentrasi 1 ppm, 2 ppm, 4 ppm, 6 ppm, 8 ppm, 10 ppm, 12 ppm, dan 14 ppm dari larutan gliklazid konsentrasi 100 ppm. Ukur serapan masing-masing dengan spektrofotometer UV-Vis pada panjang gelombang 227,60 nm. Catat serapan dari masing-masing konsentrasi, kemudian buat persamaan kurva kalibrasi dalam persamaan y = a + bx.

3.4.3 Karakterisasi Partikel Hasil Mikronisasi

3.4.3.1 Analisis Ukuran dan Distribusi Ukuran Partikel

Dilakukan pengujian dengan *particle size analyzer* (PSA) untuk mengetahui ukuran dan distribusi ukuran partikel gliklazid standar dan partikel gliklazid hasil mikronisasi *vibrating mill* selama 10 menit, 15 menit, dan 30 menit. Dengan alat ini dilihat distribusi (sebaran) ukuran partikel dengan rentang pengujian 0,01 – 100 μm. Preparasi dikerjakan dengan mendispersikan serbuk kristal dalam medium yang sesuai yang dapat mendispersikan serbuk sampel. Dalam pengujian ini, medium pendispersi yang digunakan adalah etanol.

3.4.3.2 Analisis Morfologi Partikel

Dilakukan pengamatan mikroskopik dengan metode *scanning electron microscopy* (SEM) untuk melihat bentuk dan ukuran partikel. Sejumlah sampel ditempelkan pada *holder* yang telah dilapisi tape konduktor. Kemudian dilakukan pelapisan sampel dengan menggunakan emas (Au) dalam alat vakum evaporator. Sampel kemudian dimasukkan dalam alat SEM LEO 420i untuk diperiksa.

3.4.3.3 Analisis X-Ray Difraktometri (Biswal *et al*, 2008)

Sampel yang berupa partikel gliklazid standar dan hasil mikronisasi *vibrating mill* selama 10 menit, 15 menit, dan 30 menit dikarakterisasi secara difraksi sinar-X serbuk menggunakan difraktometer dengan tuba anoda Cu; tegangan 40 kV; arus 20 mA. Mula-mula alat *X-ray diffractometer* dan komputer sebagai alat kontrol otomatis dan sebagai pengolah data dihidupkan, kemudian

sampel diletakkan pada *holder* bentuk lempeng aluminium. Permukaan sampel diratakan sejajar dengan permukaan atas *holder*. *Holder* yang berisi sampel dimasukkan dalam goniometer kemudian diukur difraksi sinar X-nya pada interval 5°-70°/20. Difraktogram akan terbaca secara otomatis pada komputer.

3.4.3.4 Analisis Termal (Biswal et al, 2008)

Differential Scanning Calorimetry (DSC) digunakan untuk analisis termal terhadap sampel gliklazid standar serta gliklazid hasil mikronisasi vibrating mill selama 10 menit, 15 menit, dan 30 menit. Sebanyak kurang lebih 5 mg sampel diletakkan pada silinder aluminium berdiameter 5 mm. Silinder tersebut ditutup dengan lempengan aluminium lalu sampel dimasukkan ke dalam alat DSC. Pemanasan dilakukan dengan kecepatan aliran gas nitrogen kering 20 ml/menit dan kecepatan pemanasan 10°C/menit. Rentang suhu pemanasan antara 30°C – 350°C. Lempeng aluminium kosong digunakan sebagai acuan. Proses endotermik dan eksotermik yang terjadi pada sampel tercatat pada rekorder. Suhu lebur dan entalpi masing-masing partikel dicatat.

3.4.3.5 Uji Kelarutan Serbuk (Talari *et al*, 2009)

Timbang serbuk gliklazid standar, serbuk gliklazid hasil mikronisasi *vibrating mill* selama 10 menit, 15 menit, dan 30 menit masing-masing sejumlah ± 20 mg. Masukkan ke dalam 250 ml medium berupa aquadest yang mengandung 0,25% tween 20, kemudian dilakukan pengadukan dengan menggunakan alat pengaduk magnetik pada kecepatan 150 rpm pada suhu 25°C. Pengambilan sampel dilakukan pada menit ke-15, 30, 45, 60, 120, 180, dan 240 sebanyak 10 ml dan disaring dengan filter membran. Setiap kali pengambilan sampel ditambahkan 10 ml larutan medium untuk menjaga volume konstan. Ukur serapan pada panjang gelombang 225,80 nm dengan menggunakan spektrofotometer UV-Vis.

3.4.3.6 Uji Disolusi Serbuk (Biswal, Sahoo, & Murthy, 2009)

Uji disolusi serbuk dilakukan dengan menggunakan alat disolusi tipe 2 (dayung) dengan kecepatan 50 rpm selama 1 jam. Medium disolusi yang digunakan adalah 900 ml larutan HCl 0,1N dan suhu medium diatur pada 37° \pm

0,5°C. Uji disolusi masing-masing dilakukan triplo dengan sampel uji yaitu serbuk gliklazid standar, serbuk gliklazid hasil mikronisasi *vibrating mill* selama 10 menit, 15 menit, dan 30 menit masing-masing sebanyak ± 20 mg. Cairan sampel diambil sebanyak 10 ml pada menit ke-15, 30, 45, dan 60 kemudian disaring dengan filter membran dan ditentukan jumlah gliklazid yang terlarut. Untuk menjaga volume tetap, ditambahkan 10 ml medium disolusi dengan suhu yang sama. Ukur serapan dari cairan sampel yang telah diambil dengan menggunakan spektrofotometer UV-Vis pada panjang gelombang maksimum 227,60 nm. Nilai serapan yang diperoleh dikonversi ke dalam jumlah kadar zat aktif yang terlarut melalui persamaan yang didapatkan dari kurva kalibrasi dan dibuat plot antara persentase gliklazid yang terlarut terhadap waktu disolusi.

3.4.4 Formulasi Tablet Gliklazid

Dibuat 2 macam formula dengan komposisi dari tiap formula sama namun terdapat perbedaan pada perlakukan serbuk gliklazid yang digunakan. Formula pertama menggunakan serbuk gliklazid standar dan formula kedua menggunakan serbuk gliklazid hasil mikronisasi *vibrating mill*. Dari tiga jenis serbuk hasil mikronisasi *vibrating mill* yang divariasikan durasi *milling* (10 menit, 15 menit, dan 30 menit), dipilih yang terbaik berdasarkan hasil karakterisasi yang kemudian diformulasikan dalam bentuk tablet. Tiap formula dibuat 15 tablet dengan berat per tablet 200 mg dimana tablet yang dibuat hanya dimaksudkan untuk penggunaan uji disolusi. Proses tabletasi dilakukan dengan metode kempa langsung.

Tabel 3.2. Formulasi tablet gliklazid

Komposisi	Formula I		Formula II	
	%	mg	%	mg
Gliklazid standar	20	40		
Gliklazid vibrating mill 15 menit			20	40
Avicel PH 102	77	154	77	154
Talk	2	4	2	4
Magnesium stearat	1	2	1	2

3.4.5 Uji Disolusi Tablet (Biswal, Sahoo, & Murthy, 2009)

Uji disolusi dilakukan pada dua macam sediaan tablet gliklazid, yaitu tablet gliklazid standar dan tablet gliklazid hasil mikronisasi *vibrating mill*. Dari masing-masing jenis sediaan tablet gliklazid diambil 3 tablet. Uji disolusi menggunakan alat disolusi tipe 1 (basket) dengan kecepatan 50 rpm selama 1 jam. Medium disolusi yang digunakan adalah 900 ml larutan HCl 0,1N dan suhu medium diatur pada 37° ± 0,5°C. Sampel yang diuji setara dengan 40 mg gliklazid. Cairan sampel diambil sebanyak 10 ml dengan spuit injeksi pada menit ke-15, 30, 45, dan 60 kemudian disaring menggunakan filter membran dan ditentukan jumlah gliklazid yang terlarut. Untuk menjaga volume tetap, ditambahkan 10 ml medium disolusi dengan suhu yang sama. Ukur serapan dari cairan sampel yang telah diambil dengan menggunakan spektrofotometer UV-Vis pada panjang gelombang maksimum 227,60 nm. Nilai serapan yang diperoleh dikonversi ke dalam jumlah kadar zat aktif yang terlarut melalui persamaan yang didapatkan dari kurva kalibrasi dan dibuat plot antara persentase gliklazid yang terlarut terhadap waktu disolusi.

BAB 4 HASIL DAN PEMBAHASAN

4.1 Proses Mikronisasi Vibrating Mill

Proses mikronisasi dilakukan untuk menghasilkan ukuran partikel gliklazid yang lebih kecil. Adanya pengurangan ukuran partikel tersebut dapat meningkatkan luas permukaan efektif dari gliklazid yaitu luas permukaan yang kontak langsung dengan pelarut. Dalam Sistem Klasifikasi Biofarmasetika atau *Biopharmaceutics Classification System* (BCS), gliklazid termasuk senyawa aktif golongan II yang merupakan senyawa obat yang memiliki kelarutan yang rendah. Oleh karena itu, adanya peningkatan luas permukaan efektif dari gliklazid akan menghasilkan peningkatan laju kelarutan gliklazid dan dapat menghasilkan suatu pemecahan masalah kelarutan dari gliklazid.

Salah satu cara dari proses mikronisasi adalah proses reduksi ukuran partikel secara mekanik dengan menggunakan metode *milling* atau penggilingan. Proses *milling* yang dilakukan dalam penelitian ini menggunakan alat *vibrating milling*. Proses yang terjadi yaitu dengan adanya energi yang kuat dari alat menghasilkan getaran yang membuat serbuk mengalami gaya tekan, gaya geser dan gaya bentur. Ketiga gaya yang dialami serbuk mempengaruhi ukuran partikel yang dihasilkan yaitu menjadi lebih kecil dari sebelumnya. Pada penelitian ini dilakukan variasi terhadap durasi *milling* dan dilihat pengaruh dari perbedaan durasi *milling* terhadap laju kelarutan dan disolusi yang dihasilkan.

Pada metode mikronisasi *vibrating mill* terdapat kapsul khusus yang dijadikan wadah bagi serbuk yang akan mengalami proses *milling*. Kapsul tersebut cukup untuk menampung serbuk gliklazid dengan berat total \pm 0,4 g. Namun, hasil yang diperoleh tidak optimal karena isi dari kapsul yang terlalu penuh terutama setelah disertai dengan *ball mill* ke dalamnya. *Ball mill* yang diikutsertakan ke dalam kapsul memiliki diameter 0,790 cm. *Ball mill* tersebut digunakan untuk menghasilkan gaya tekan terhadap serbuk di dalam kapsul sehingga apabila terlalu banyak serbuk di dalam kapsul maka gaya tekan yang dihasilkan tidak dapat merata. Oleh karena itu, serbuk gliklazid yang dimasukkan dalam kapsul dikurangi menjadi \pm 0,35 g. Setelah serbuk dimasukkan dalam

kapsul khusus beserta dengan *ball mill*, kapsul dipasangkan pada tempat yang tersedia pada alat *vibrating mill*, lalu tutup kaca bagian depan alat. Alat dijalankan dengan tiga durasi *milling* yang berbeda, yaitu 10, 15, dan 30 menit.

Bobot serbuk yang dihasilkan dari proses *vibrating mill* berkurang dari bobot yang dimasukkan pada awal proses. Hal tersebut dikarenakan banyaknya serbuk yang menempel pada bagian dinding dalam kapsul sehingga sulit untuk dikeluarkan seluruhnya. Pada masing-masing durasi *milling* dilakukan sebanyak dua kali proses untuk mendapatkan bobot sampel yang cukup banyak. Pada durasi *milling* 10 menit, diakhir proses dihasilkan 0,5593 gram dengan persentase rendemen 79,84%. Pada durasi *milling* 15 menit, diakhir proses dihasilkan 0,5477 gram dengan persentase rendemen 78,17%. Pada durasi *milling* 30 menit, diakhir proses dihasilkan 0,5071 gram dengan persentase rendemen 72,40%. Pada serbuk hasil mikronisasi *vibrating mill* terdapat beberapa bagian serbuk yang saling menggumpal terutama pada durasi *milling* yang paling lama yaitu 30 menit.

4.2 Karakterisasi Partikel Hasil Mikronisasi

4.2.1 Analisis Ukuran dan Distribusi Ukuran Partikel

Analisis ukuran dan distribusi ukuran partikel dilakukan menggunakan alat particle size analyzer (PSA). Pengukuran dilihat berdasarkan distribusi volume. Sampel yang akan diukur harus dapat terdispersi dalam media cair yang digunakan. Pada pengukuran kali ini digunakan medium pendispersi etanol pada temperatur 25°C. Setiap sampel dilakukan pengukuran masing-masing sebanyak 3 kali. Dari ketiga pengukuran yang dilakukan pada masing-masing sampel ternyata didapatkan hasil yang beragam atau tidak sama antara pengukuran pertama, kedua, dan ketiga. Hal tersebut dapat disebabkan ukuran dari partikel yang digunakan tidak seragam sehingga menghasilkan hasil yang bervariasi.

Dari hasil yang diperoleh, pada partikel gliklazid standar didapatkan hasil ukuran diameter rata-rata 14,10 µm. Persen distribusi ukuran partikel mulai teramati pada 8,60 µm sebesar 3% dan persen kumulatif sebesar 100% tercapai pada ukuran 34,93 µm. Hasil persentase kumulatif yang teramati pada distribusi ukuran partikel 9; 10; 20; 30; 60 µm diperoleh secara berturut-turut yaitu 3%; 16,1%; 91,2%; 99,5%; 100%.

Partikel hasil mikronisasi *vibrating mill* juga memiliki ukuran yang beragam. Partikel gliklazid hasil mikronisasi *vibrating mill* 10 menit memiliki ukuran diameter rata-rata 16,32 μm. Hasil tersebut lebih besar 1,16 kali dibandingkan dengan diameter rata-rata partikel gliklazid standar. Persen distribusi ukuran partikel mulai teramati pada 0,03 μm sebesar 0,6% dan persen kumulatif sebesar 100% tercapai pada ukuran 61,20 μm. Hasil tersebut memperlihatkan rentang distribusi ukuran partikel yang lebar dari gliklazid hasil mikronisasi *vibrating mill* 10 menit. Hasil persentase kumulatif yang teramati pada distribusi ukuran partikel 2; 8; 9; 10; 20; 30; 60; 70 μm diperoleh secara berturut-turut yaitu 27%; 29,3%; 30,8%; 32,7%; 62,5%; 83,8%; 99,6%; 100%.

Partikel gliklazid hasil mikronisasi *vibrating mill* 15 menit memiliki ukuran diameter rata-rata 10,28 μm. Ukuran diameter rata-rata tersebut lebih kecil 1,37 kali dibandingkan dengan diameter rata-rata partikel gliklazid standar. Persen distribusi ukuran partikel mulai teramati pada 0,13 μm sebesar 0,1% dan persen kumulatif sebesar 100% tercapai pada ukuran 38,44 μm. Hasil persentase kumulatif yang teramati pada distribusi ukuran partikel 2; 6; 8; 9; 10; 20; 30; 60 μm yang diperoleh secara berturut-turut yaitu 0,4%; 6,8%; 34,6%; 44,6%; 62,8%; 96,6%; 99,7%; 100%.

Partikel gliklazid hasil mikronisasi *vibrating mill* 30 menit memiliki ukuran diameter rata-rata 6,00 μm. Ukuran diameter rata-rata tersebut jauh lebih kecil dibandingkan ukuran diameter rata-rata partikel gliklazid standar yaitu 2,35 kali lebih kecil. Persen distribusi ukuran partikel mulai teramati pada 0,27 μm sebesar 0,1% dan persen kumulatif sebesar 100% tercapai pada ukuran 48,49 μm. Hasil persentase kumulatif yang teramati pada distribusi ukuran partikel 2; 4; 6; 8; 9; 10; 20; 30; 60 μm yang diperoleh secara berturut-turut yaitu 0,1%; 29,9%; 69,4%; 83,2%; 86,5%; 91,4%; 98,6%; 99,7%; 100%.

Hasil PSA menunjukkan bahwa sebagian besar ukuran diameter partikel dari sampel memiliki rentang dari $10-20~\mu m$, kecuali pada partikel gliklazid hasil mikronisasi *vibrating mill* 30 menit dimana banyak dari ukuran diameter partikelnya berada pada rentang $4-6~\mu m$. Perbedaan tersebut dapat disebabkan karena adanya ukuran diameter partikel yang bervariasi. Namun, dapat terlihat bahwa partikel hasil mikronisasi *vibrating mill* ada sebagian kecil yang berukuran

nano, sementara partikel gliklazid standar seluruhnya berukuran mikro. Hal tersebut menandakan proses pengurangan ukuran partikel atau proses mikronisasi yang dilakukan berhasil walaupun terdapat kekurangan yaitu ukuran partikel yang dihasilkan lebih tidak seragam. Ukuran partikel yang tidak seragam dapat dilihat dari rentang distribusi ukuran partikel yang lebar.

4.2.2 Analisis Morfologi Partikel

Analisis morfologi partikel dilakukan menggunakan metode scanning electron microscopy (SEM). Hasil dari SEM juga dapat mengetahui ukuran dari partikel. Uji SEM dilakukan pada serbuk gliklazid standar dan serbuk gliklazid hasil mikronisasi vibrating mill. Sampel terlebih dahulu mengalami proses penyalutan emas pada ruangan vakum. Proses tersebut bertujuan agar sampel bersifat konduktif atau memiliki daya hantar dan untuk menghilangkan air atau pelarut lainnya yang dapat menyebabkan pengamatan yang tidak akurat.

Dari hasil pengamatan menggunakan SEM, bentuk dari serbuk gliklazid standar maupun serbuk gliklazid hasil mikronisasi tidak tergambar jelas dikarenakan partikel-partikel yang saling bersatu yang dapat disebabkan karena terlalu banyak sampel pada saat dilakukan pengujian. Namun, dapat terlihat dari Gambar 4.15, partikel-partikel gliklazid hasil mikronisasi *vibrating mill* berukuran lebih kecil dibandingkan dengan gliklazid standar, walaupun ada beberapa yang saling bersatu membentuk gumpalan. Hal tersebut mendukung hasil uji PSA yang memperlihatkan adanya partikel-partikel yang berukuran nano dari gliklazid hasil mikronisasi *vibrating mill*.

4.2.3 Analisis X-Ray Difraktometri

Pengujian menggunakan alat *X-ray diffractometer* dilakukan pada gliklazid standar dan gliklazid hasil mikronisasi *vibrating mill*. Karakterisasi menggunakan sinar-x serbuk ini dilakukan untuk mengetahui struktur zat kristal dan juga tingkat kristalinitas dari partikel gliklazid sehingga dapat diketahui apakah ada perubahan yang terjadi pada struktur kristal akibat dari proses mikronisasi *vibrating mill* yang dilakukan.

Berdasarkan hasil difraktogram sinar-x serbuk, gliklazid standar dan gliklazid hasil mikronisasi *vibrating mill* memiliki struktur atau sistem kristal yang sama yaitu kubik sederhana (*simple cubic*). Namun, jika dibandingkan dengan sampel gliklazid standar, terlihat adanya penurunan intensitas puncak difraktogram pada gliklazid hasil mikronisasi *vibrating mill*. Penurunan intensitas pada ketiga sampel gliklazid hasil mikronisasi merupakan akibat dari pengurangan kisi atau bidang dari kristal gliklazid setelah mengalami proses mikronisasi. Setiap puncak yang terdapat pada difraktogram XRD mewakili satu kisi atau bidang yang memiliki orientasi tertentu pada sumbu tiga dimensi, sehingga semakin banyak kisi atau bidang kristal yang terdapat dalam suatu sampel, maka semakin kuat intensitas yang dihasilkan.

4.2.4 Analisis Termal

Analisis termal yang dilakukan pada penelitian ini menggunakan alat differential scanning calorimetry (DSC). Analisis dilakukan pada sampel gliklazid standar serta ketiga sampel gliklazid hasil mikronisasi vibrating mill. Dari hasil pengujian dapat diketahui adanya perubahan entalpi dan suhu lebur dari suatu kristal.

Pada pengujian ini, sampel yang digunakan sebanyak \pm 5 mg dan pengujian dilakukan pada rentang suhu pemanasan antara $30^{\circ}\text{C} - 350^{\circ}\text{C}$ dengan kecepatan pemanasan 10°C/menit . Dari hasil termogram terlihat adanya pergeseran suhu puncak endotermik dan entalpi peleburan dari gliklazid hasil mikronisasi *vibrating mill* dibandingkan dengan gliklazid standar.

Suhu puncak endotermik sampel gliklazid standar adalah pada suhu 170,4°C sesuai dengan titik leburnya. Pada sampel gliklazid hasil mikronisasi *vibrating mill*, suhu puncak endotermik mengalami penurunan dibandingkan dengan standar. Pada gliklazid hasil mikronisasi *vibrating mill* 10 menit, 15 menit, dan 30 menit, suhu puncak endotermik berturut-turut menjadi 168,5 °C; 168,3 °C; dan 165,5 °C. Penurunan puncak endotermik dari gliklazid hasil mikronisasi tidak terlalu signifikan. Hal tersebut dapat didukung dari hasil XRD serbuk yang memperlihatkan bahwa tidak ada perubahan struktur kristal dikarenakan proses mikronisasi.

Entalpi peleburan (ΔH) dari sampel gliklazid hasil mikronisasi *vibrating mill* juga mengalami penurunan dibandingkan dengan entalpi peleburan gliklazid standar. Entalpi lebur gliklazid standar adalah 119 J/g dan entalpi lebur gliklazid hasil mikronisasi *vibrating mill* 10 menit, 15 menit dan 30 menit berturut-turut sebesar 109 J/g; 96,1 J/g; dan 111 J/g. Adanya penurunan entalpi lebur gliklazid hasil mikronisasi *vibrating mill* menunjukkan adanya penurunan energi yang dibutuhkan untuk meleburkan gliklazid hasil mikronisasi *vibrating mill*. Penurunan energi yang dibutuhkan untuk meleburkan dapat terjadi karena proses mikronisasi yang menghasilkan ukuran partikel yang lebih kecil.

4.2.5 Uji Kelarutan Serbuk

Uji kelarutan serbuk dilakukan untuk melihat jumlah zat aktif yang terlarut dalam medium cair yang diketahui volumenya pada suhu yang relatif konstan. Uji kelarutan kali ini dilakukan selama waktu tertentu, dimana lamanya waktu tersebut telah ditentukan terlebih dahulu. Waktu uji dibatasi ketika laju pelarutan dari glikazid standar mengalami kenaikan yang tidak terlalu signifikan. Saat uji kelarutan mencapai waktu lebih dari 4 jam, absorpsi dari larutan sampel gliklazid standar mengalami penurunan dan hasil perhitungan banyaknya gliklazid yang terlarut menunjukan kenaikan yang tidak signifikan, sehingga uji kelarutan dilakukan selama 4 jam.

Medium yang digunakan pada uji kelarutan adalah 250 ml aquadest yang tiap ml mengandung 0,25% tween 20. Pada medium ditambahkan tween 20 dikarenakan sifat gliklazid yang hidrofobik sehingga tidak dapat terdispersi dengan baik di dalam aquadest. Tween 20 akan meningkatkan sifat pembasahan gliklazid dan menjadikan gliklazid dapat terdispersi dalam aquadest. Suhu medium diatur sebesar 25°C ± 0,5°C. Kecepatan pengadukan yang digunakan adalah 150 rpm. Waktu pengambilan sampel pada menit ke-15, 30, 45, 60, 120, 180, dan 240 dengan volume pengambilan sampel sebesar 10 ml. Pada medium uji kemudian ditambahkan medium yang sama sebanyak 10 ml untuk menjaga volume konstan.

Hasil uji kelarutan yang dilakukan menunjukkan adanya peningkatan laju kelarutan dari gliklazid hasil mikronisasi *vibrating mill* 10 menit dan 15 menit jika

dibandingkan dengan gliklazid standar. Namun, pada gliklazid hasil mikronisasi vibrating mill 30 menit terjadi penurunan laju kelarutan dibandingkan dengan gliklazid standar. Dalam waktu 4 jam, gliklazid standar terlarut sebesar 63,88%. Gliklazid hasil mikronisasi vibrating mill 10 menit terlarut sebesar 68,52% atau 1,07 kali lebih besar dibandingkan dengan gliklazid standar. Gliklazid hasil mikronisasi vibrating mill 15 menit terlarut sebesar 72,20% atau 1,13 kali lebih besar dibandingkan dengan gliklazid standar. Sedangkan pada gliklazid hasil mikronisasi vibrating mill 30 menit terlarut sebesar 63,01% atau terjadi penurunan sebesar 1,01 kali dibandingkan dengan gliklazid standar. Adanya penurunan laju kelarutan pada gliklazid hasil mikronisasi vibrating mill 30 menit dapat disebabkan karena adanya partikel yang menggumpal atau bersatu akibat dari proses milling yang terlalu lama.

4.2.6 Uji Disolusi Serbuk

Uji disolusi serbuk dilakukan untuk mendukung uji kelarutan serbuk. Pada uji disolusi serbuk digunakan volume medium yang lebih besar dan medium yang digunakan juga berbeda dengan medium yang digunakan pada uji kelarutan serbuk. Medium yang digunakan pada uji disolusi serbuk adalah 900 ml HCl 0,1N dengan pH 1,20 \pm 0,05 dan suhu 37 \pm 0,5°C. Metode disolusi serbuk menggunakan alat disolusi tipe 2 (dayung) dengan kecepatan pengadukan sebesar 50 rpm. Lama uji adalah 1 jam dengan waktu pengambilan sampel pada menit ke-15, 30, 45, dan 60. Volume setiap pengambilan sampel sebesar 10 ml dan digantikan kembali dengan medium yang sama untuk menjaga volume yang konstan.

Hasil uji disolusi serbuk memperlihatkan adanya peningkatan yang lebih besar dibandingkan dengan uji kelarutan. Serbuk gliklazid standar terdisolusi sebesar 8,36% selama 1 jam. Serbuk gliklazid hasil mikronisasi *vibrating mill* 10 menit terdisolusi sebesar 15,56% atau 1,86 kali lebih besar dibandingkan dengan gliklazid standar. Serbuk gliklazid hasil mikronisasi *vibrating mill* 15 menit terdisolusi sebesar 20,89% atau 2,50 kali lebih besar dibandingkan dengan gliklazid standar. Serbuk gliklazid hasil mikronisasi *vibrating mill* 30 menit terdisolusi sebesar 10,04% atau 1,20 kali lebih besar dibandingkan dengan

gliklazid standar. Pada uji disolusi serbuk gliklazid hasil mikronisasi *vibrating mill* 30 menit diperoleh laju disolusi yang lebih tinggi dibandingkan dengan laju disolusi standar. Hal tersebut berbeda dengan hasil yang diperoleh pada uji kelarutan serbuk. Pada uji kelarutan, serbuk gliklazid hasil mikronisasi *vibrating mill* 30 menit memiliki laju kelarutan yang lebih rendah dibandingkan serbuk gliklazid standar. Perbedaan tersebut dapat dikarenakan adanya perbedaan dari kondisi percobaan, antara lain besarnya volume medium yang digunakan dan proses pengadukan dalam medium. Pada uji kelarutan serbuk, dengan adanya tween 20 yang terkandung dalam medium aquadest, serbuk uji dapat terdispersi pada seluruh bagian medium. Pada uji disolusi serbuk, serbuk uji terdapat pada bagian atas medium dan hanya berputar mengikuti perputaran dari dayung yang digunakan.

Peningkatan hasil uji disolusi serbuk gliklazid hasil mikronisasi disebabkan terjadinya pengurangan ukuran partikel yang menyebabkan peningkatan luas permukaan efektif obat. Hal ini sesuai dengan persamaan Noyes dan Whitney dimana kecepatan disolusi zat berbanding lurus dengan luas permukaan partikel. Pada proses *milling* partikel-partikel akan mengalami perpecahan atau pembelahan membentuk partikel-partikel yang lebih kecil sehingga menghasilkan permukaan partikel baru dan akan terjadi peningkatan luas permukaan obat yang kontak dengan pelarut. Pada akhirnya, laju disolusi juga akan meningkat seiring dengan peningkatan luas permukaan partikel tersebut.

4.3 Formulasi Tablet Gliklazid

Pada penelitian ini juga dilakukan percobaan untuk menguji apakah peningkatan laju kelarutan dan laju disolusi dari serbuk gliklazid hasil mikronisasi *vibrating mill* akan tetap menghasilkan peningkatan laju disolusi ketika diformulasikan dalam bentuk sediaan tablet. Dari 3 durasi *milling* yang dilakukan, dipilih satu durasi yang menghasilkan peningkatan kelarutan dan disolusi terbesar. Berdasarkan uji kelarutan dan uji disolusi serbuk, gliklazid hasil mikronisasi *vibrating mill* dengan durasi *milling* selama 15 menit memiliki peningkatan laju kelarutan dan laju disolusi yang lebih besar dibandingkan dengan gliklazid hasil mikronisasi *vibrating mill* dengan durasi *milling* selama 10 menit dan 30 menit.

Oleh karena itu, tablet yang dibuat adalah 2 macam tablet. Tablet pertama mengandung zat aktif gliklazid standar dan tablet kedua mengandung gliklazid hasil mikronisasi *vibrating mill* 15 menit.

Proses pembuatan tablet dilakukan dengan cara kempa langsung. Metode tersebut dipilih untuk meminimalisir adanya pengaruh proses dalam pengamatan laju disolusi, sehingga pengamatan dapat lebih difokuskan pada pengaruh dari perlakuan khusus yang dilakukan yaitu proses mikronisasi. Tablet yang dibuat memiliki bobot masing-masing 200 mg dan setiap formula dibuat sebanyak 15 tablet. Jumlah tablet yang dibuat hanya dipergunakan untuk uji disolusi. Sebagai zat aktif, yaitu gliklazid digunakan sebesar 20% dari bobot tablet, setara dengan 40 mg dalam setiap tablet. Eksipien yang digunakan dalam formulasi tablet antara lain avicel PH 102, magnesium stearat, dan talk. Avicel PH 102 digunakan sebagai pengisi. Avicel PH 102 banyak digunakan pada proses tabletasi secara kempa langsung karena daya kompresibilitasnya yang besar. Persentase avicel PH 102 yang digunakan sebesar 77%. Sebagai lubrikan atau pelincir digunakan magnesium stearat dengan persentase sebesar 1% dan sebagai glidan atau pelicin digunakan talk dengan persentase sebesar 2%.

4.4 Uji Disolusi Tablet

Uji disolusi tablet dilakukan untuk melihat apakah terjadi peningkatan laju disolusi dari tablet gliklazid hasil mikronisasi *vibrating mill* 15 menit dibandingkan dengan tablet gliklazid standar. Medium yang digunakan untuk uji disolusi tablet sama seperti medium yang digunakan pada uji disolusi serbuk yaitu 900 ml HCl 0,1N dengan pH 1,20 \pm 0,05 dan suhu 37 \pm 0,5°C. Lama ujipun sama, yaitu 1 jam dengan waktu pengambilan sampel pada menit ke-15, 30, 45, dan 60. Volume setiap pengambilan sampel adalah sebesar 10 ml dan digantikan kembali dengan medium yang sama untuk menjaga volume yang konstan.

Pada awalnya digunakan alat uji disolusi tipe 2 (dayung), namun pada saat pengujian, tablet gliklazid hasil mikronisasi mengalami pemisahan lapisan bagian atas dengan bagian bawah tablet (*capping*). Pemisahan menyebabkan sebagian tablet mengapung karena adanya pengadukan dari dayung. Hal tersebut berbeda dengan tablet gliklazid standar sehingga menyebabkan kondisi disolusi yang tidak

sama. Oleh karena itu, untuk memperoleh kondisi disolusi yang sama antara tablet gliklazid standar dan tablet gliklazid hasil mikronisasi, digunakan alat uji disolusi tipe 1 (basket). Dari hasil uji disolusi selama 1 jam tablet gliklazid standar terdisolusi sebesar 7,36% dan tablet gliklazid hasil mikronisasi terdisolusi sebesar 8,35%. Peningkatan yang terjadi tidak terlalu signifikan, yaitu hanya sebesar 1,13 kali jika dibandingkan dengan tablet gliklazid standar. Besarnya peningkatan dalam uji disolusi tablet tidak sebesar peningkatan pada uji disolusi serbuk. Hal tersebut dikarenakan adanya proses tambahan yang harus dilalui suatu bentuk sediaan tablet untuk dapat menjadi bentuk serbuk, yaitu melalui proses disintegrasi menjadi granul atau agregat, kemudian proses deagregasi menjadi partikel halus.

Peningkatan laju disolusi gliklazid disebabkan adanya pengurangan ukuran partikel dari gliklazid hasil mikronisasi vibrating mill. Adanya pengurangan ukuran partikel dapat dilihat dari hasil analisis ukuran dan distribusi ukuran partikel menggunakan PSA dan dari hasil analisis menggunakan SEM. Hasil analisis termal dengan DSC juga menunjukkan adanya penurunan entalpi peleburan pada partikel hasil mikronisasi vibrating mill. Penurunan entalpi peleburan menandakan adanya penurunan energi yang dibutuhkan untuk meleburkan gliklazid hasil mikronisasi vibrating mill dikarenakan ukuran partikel yang berkurang. Selain itu, peningkatan laju disolusi gliklazid juga dikarenakan adanya penurunan derajat kristalinitas. Hal tersebut dapat dilihat dari hasil analisis XRD yang menunjukkan adanya penurunan intensitas puncak akibat dari penurunan kisi kristal atau derajat kristalinitas. Penurunan derajat kristalinitas menandakan adanya ketidakteraturan kisi sehingga proses pelarutan menjadi lebih mudah pada tablet yang mengandung gliklazid hasil mikronisasi vibrating mill.

BAB 5

KESIMPULAN DAN SARAN

5.1 Kesimpulan

- 5.1.1 Proses mikronisasi *vibrating mill* menghasilkan peningkatan laju kelarutan dan disolusi dari gliklazid hasil mikronisasi *vibrating mill* jika dibandingkan dengan gliklazid standar.
- 5.1.2 Tablet gliklazid hasil mikronisasi *vibrating mill* menunjukkan adanya peningkatan laju disolusi sebesar 1,13 kali dibandingkan dengan tablet gliklazid standar.
- 5.1.3 Durasi *milling* memberikan pengaruh terhadap partikel yang dihasilkan. Durasi *milling* optimal menggunakan alat *vibrating mill* dicapai pada durasi *milling* 15 menit.

5.2 Saran

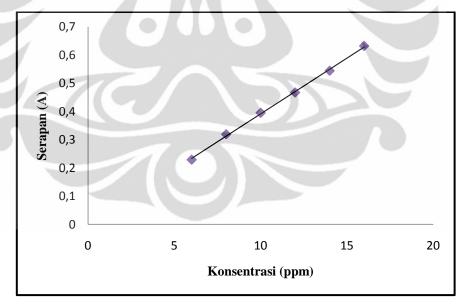
Diperlukan penelitian yang lebih lanjut mengenai pengaruh *milling* terhadap peningkatan laju kelarutan dengan menggunakan metode *milling* jenis lainnya. Selain itu, ketika akan dilakukan uji disolusi dalam bentuk sediaan tablet, diperlukan penyusunan formula sediaan yang optimal agar didapatkan kondisi uji disolusi yang sesuai.

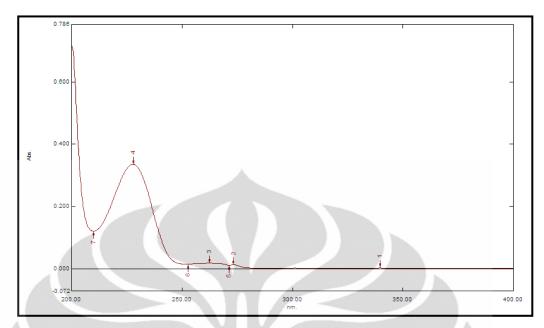

DAFTAR REFERENSI

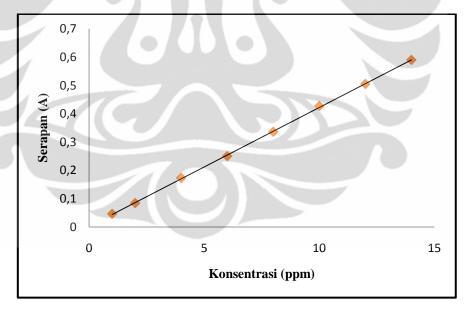
- Abdou, H. M. (1989). *Dissolution, Bioavailability and Bioequivalence*. Pennysylvania: Mack Publishing Company, 53-70, 265-282.
- American Pharmaceutical Association. (1994). *Handbook of Pharmaceutical Excipients, second edition*. London: The Pharmaceutical Press, 84-87, 280-281, 519-521.
- Babu, V. R., Areefulla, S., & Mallikarjun, V. (2010). Solubility and Dissolution Enhancement: An overview. *Journal of Pharmacy Research*, 141-145.
- Banker, G., & Anderson, N. (1986). Tablets. In: Lachman L., Lieberman H.A., and Kaning J.L. (eds). Teori dan Praktek Farmasi Industri Vol. II, Edisi ketiga. (1994). Jakarta: UI Press, 643-705.
- Biswal, S., Sahoo, J., Murthy, P. N., Giradkar, R. P., & Avari, J. G. (2008). Enhancement of Dissolution Rate of Gliclazide Using Solid Dispersions with Polyethylene Glycol 6000. *AAPS PharmSciTech*, Vol. 9, No. 2, 563-570.
- Biswal, S., Sahoo, J., & Murthy, P. N. (2009). Physicochemical Properties of Solid Dispersions of Gliclazide in Polyvinylpyrrolidone K90. *AAPS PharmSciTech*, Vol. 10, No. 2, 329-334.
- British Comission Secretariat. (2007). *British Pharmacopoeia*. London: British Comission Secretariat.
- Chang, Rong-Kun, & Robinson, J.K. (1990). *Pharmaceutical Dosage Form:* Tablet, vol.1. New York: Marcel Dekker, 5-41, 93-117, 195-220.
- Corwin, E. J. (2001). *Buku Saku Patofisiologi*. Jakarta: Penerbit Buku Kedokteran EGC, 542-556.
- Demirturk, E., & Oner, L. (2004). Solubility and Dissolution Properties of Gliclazide. *FABAD J. Pharm. Sci.*, 21-25.
- Departemen Kesehatan RI. (1995). *Farmakope Indonesia edisi IV*. Jakarta: Departemen Kesehatan Republik Indonesia.
- Dressman, J., & Kramer, J. (2005). *Pharmaceutical Dissolution Testing*. Boca Raton: Taylor & Francis Group, LLC, 90-93, 335-336.
- Hanson, W. A. (1991). *Handbook of Dissolution Testing*. Oregon: Aster Publishing Corporation, 3-12.

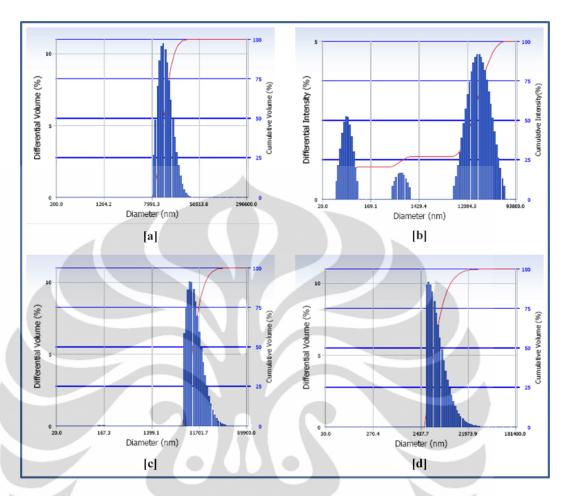
- Hite, M., Turner, S., & Federici, C. (2003). Part 1: Oral Delivery of Poorly Soluble Drugs. *Pharmaceutical Manufacturing and Packing Sourcer Summer*, 38-40.
- Keraliya, R. A., Soni, T. G., Thakkar, V. T., Gandhi, T. R., & Patel, R. C. (2010).
 Formulation and Physical characterization of microcrystals for dissolution rate enhancement of Tolbutamide. *Int. J. Res. Pharm. Sci. Vol-1, Issue-1*, 69-77.
- Krishnaiah, Y. S. (2010). Pharmaceutical Technologies for Enhancing Oral Bioavailability of Poorly Soluble Drugs. *Journal of Bioequivalence & Bioavailability*, 28-36.
- Lieberman, H. A., Lachman, L., & Schwartz, J. B. (1990). *Pharmaceutical Dosage Forms*. *Vol.* 2: *Tablets*. New York: Marcel Dekker, 107-117.
- Martin, A., Swarbick, J., & Cammarata, A. (1990). Farmasi Fisik Dasar-dasar Kimia Fisik dalam Ilmu Farmasetik, Vol.1, Edisi ketiga, Terj. Yoshita. Jakarta: UI Press, 558-560, 581-582.
- Moffat, A., Osselton, M., & Widdop, B. (2005). *Clarke's Analysis of Drugs and Poisons Third Edition*. London: Pharmaceutical Press.
- Parikh, D. M. (1997). *Handbook of Pharmaceutical Granulation Technology*. Maryland: Atlantic Pharmaceutical Services, 394-395.
- Patel, D. J., Patel, J. K., & Pandya, V. M. (2010). Improvement in the dissolution of poorly water soluble drug using media milling technique. *Thai J. Pharm. Sci.* 34, 155-164.
- Patel, R. P., Baria, A. H., & Patel, N. A. (2008). An overview of size reduction technologies in the field of pharmaceutical manufacturing. *Asian Journal of Pharmaceutics*, 216-220.
- Shargel, L., & Yu, A. B. C. (2005). *Biofarmasetika dan Farmakokinetika Terapan Edisi Kedua*. Surabaya: Airlangga University Press, 96-103.
- Soewandhi, Sundani N. (2006). *Kristalografi Farmasi I.* Bandung: School of Pharmacy Institut Teknologi Bandung, 104-105, 208-210.
- Soewandhi, Sundani N. (2006). *Kristalografi Farmasi II*. Bandung: School of Pharmacy Institut Teknologi Bandung, 36.

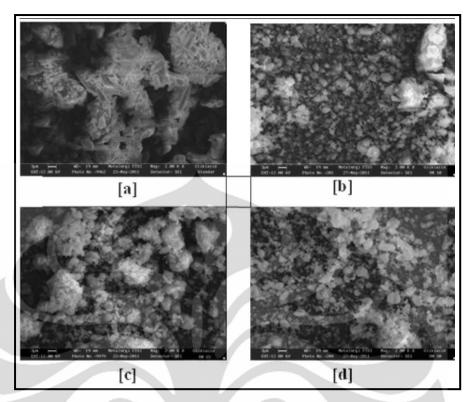
- Soewandhi, Sundani N. (2006). *Kristalografi Farmasi III*. Bandung: School of Pharmacy Institut Teknologi Bandung, 6, 21-24.
- Suherman, S.K. (2007). *Insulin dan Antidiabetik Oral*. Dalam: Gunawan, G.S. (2007). *Farmakologi dan Terapi*, *Ed.V*. Bagian Farmakologi FKUI. Jakarta: Gaya Baru.
- Sweetman, S. C. (2007). *Martindale The Complete Drug Reference 35th Ed.*London: Pharmaceutical Press.
- Talari, R., Varshosaz, J., Mostafavi, S. A., & Nokhodchi, A. (2009). Dissolution Enhancement of Gliclazide Using pH Change Approach in Presence of Twelve Stabilizers with Various Physico-Chemical Properties. J. Pharm Pharmaceut Sci, 250-265.
- Voight, R. (1994). Buku Pelajaran Teknologi Farmasi edisi 5. Terj. dari Lehrbuch der pharmazeutischen technologie oleh Soendani Noerono Soewandhi. Yogyakarta: UGM Press, 3-4, 200, 592-600.
- Zimper, U., Aaltonen, J., Krauel-Goellner, K., C.Gordon, K., J.Strachan, C., & Rades, T. (2010). The Influence of Milling on the Dissolution Perfomance of Simvastatin. *Pharmaceutics*, 419-431.

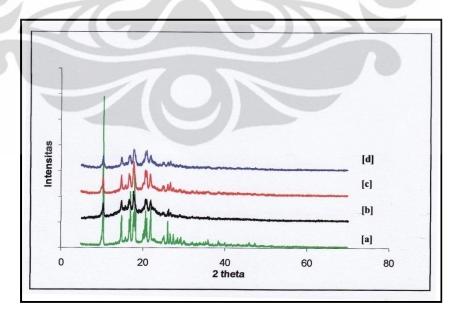


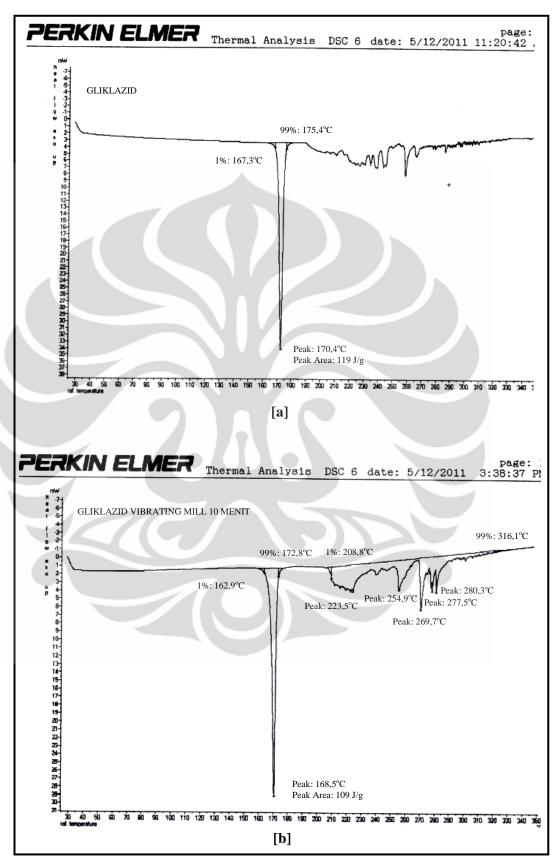

Gambar 4.4. Makroskopis dari serbuk [a] GL, [b] GL VM10, [c] GL VM15, dan [d] GL VM30

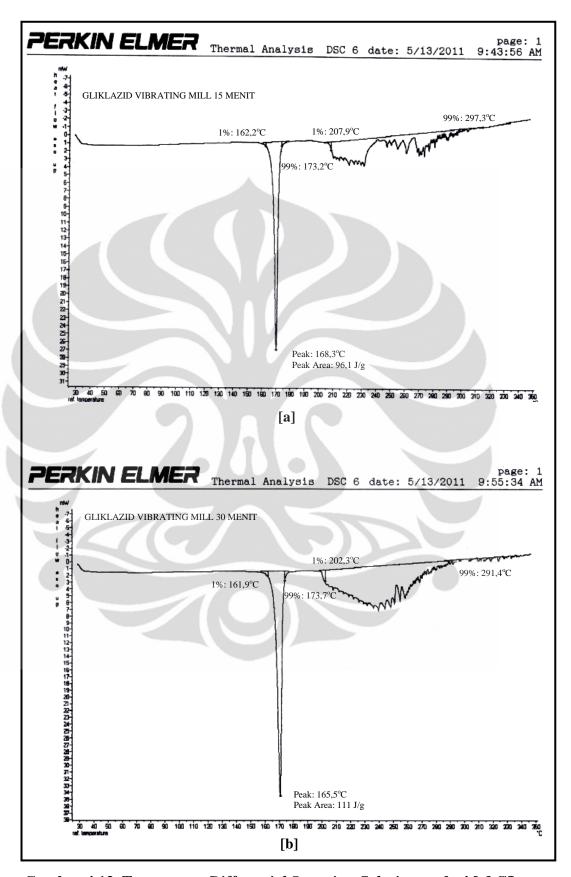

Gambar 4.5. Kurva serapan gliklazid dalam medium aquadest

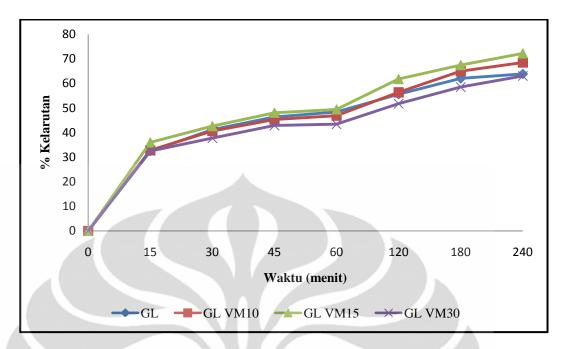

Gambar 4.6. Grafik linearitas gliklazid dalam medium aquadest pada panjang gelombang 225,80 nm dengan persamaan y=-0,00303+0,03946x; r=0,999406975

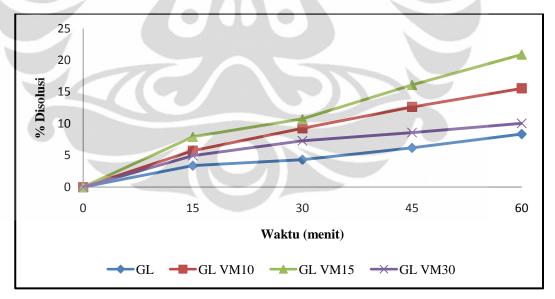

Gambar 4.7. Kurva serapan gliklazid dalam medium HCl 0,1N

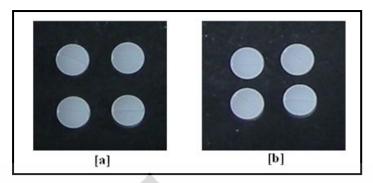

Gambar 4.8. Grafik linearitas gliklazid dalam medium HCl 0,1N pada panjang gelombang 227,60 nm dengan persamaan y=0,00208+0,04200x; r=0,999884988

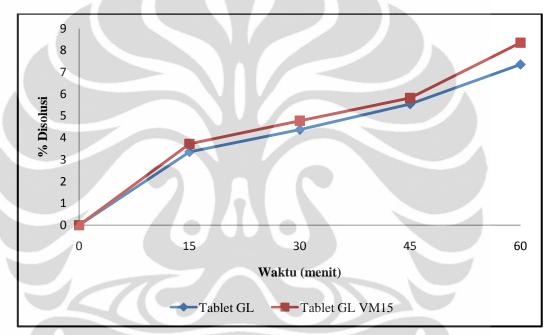

Gambar 4.9. Kurva distribusi volume hasil pengukuran menggunakan Particle Size Analyzer dari serbuk [a] GL, [b] GL VM10, [c] GL VM15, dan [d] GL VM30


Gambar 4.10. Hasil Scanning Electron Microscopy (SEM) dengan pembesaran 2000x dari [a] GL, [b] GL VM10, [c] GL VM15, dan [d] GL VM30


Gambar 4.11. Pola difraktogram XRD dari [a] GL, [b] GL VM10, [c] GL VM15, dan [d] GL VM30


Gambar 4.12. Termogram Differential Scanning Calorimetry dari [a] GL dan [b] GL VM10

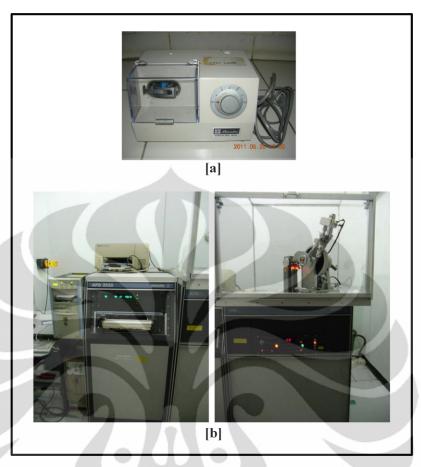

Gambar 4.13. Termogram *Differential Scanning Calorimetry* dari [a] GL VM15 dan [b] GL VM30


Gambar 4.14. Profil kelarutan dari serbuk gliklazid standar dan hasil mikronisasi *vibrating mill* dalam medium aquadest 250 ml mengandung 0,25% tween 20

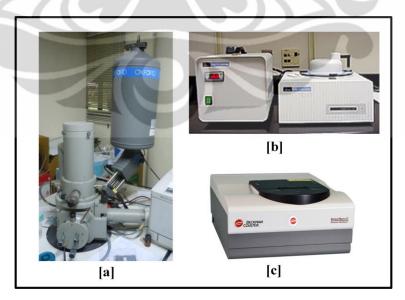
Gambar 4.15. Profil disolusi serbuk dari serbuk gliklazid standar dan hasil mikronisasi *vibrating mill* dalam medium HCl 0,1 N dengan alat disolusi tipe 2 (dayung) kecepatan 50 rpm

Gambar 4.16. Penampilan fisik dari tablet [a] GL dan [b] GL VM15

Gambar 4.17. Profil disolusi dari tablet GL dan tablet GL VM15 dalam medium HCl 0,1N dengan alat disolusi tipe 1 (basket) kecepatan 50 rpm


Keterangan:

GL = Gliklazid standar tanpa perlakuan


GL VM10 = Gliklazid hasil mikronisasi *vibrating mill* selama 10 menit
GL VM15 = Gliklazid hasil mikronisasi *vibrating mill* selama 15 menit
GL VM30 = Gliklazid hasil mikronisasi *vibrating mill* selama 30 menit

Gambar 4.18. Alat [a] Timbangan analitik, [b] Spektrofotometer UV-Vis, [c] Cetak tablet, dan [d] Uji disolusi

Gambar 4.19. Alat [a] Vibrating mill dan [b] X-Ray Diffractometer (XRD)

Gambar 4.20. Alat [a] Scanning Electron Microscopy (SEM), [b] Differential Scanning Calorimetry (DSC), dan [c] Particle Size Analyzer (PSA)

Tabel 4.3. Data serapan gliklazid dalam berbagai konsentrasi dalam medium aquadest pada $\lambda = 225,80$ nm

Konsentrasi (ppm)	Serapan (y)
6	0,229
8	0,319
10	0,395
12	0,467
14	0,544
16	0,632

Perhitungan menggunakan persamaan regresi linear:

a = -0.003028

b = 0.03946

r = 0,999406975

y = -0.00303 + 0.03946x

Tabel 4.4. Data serapan gliklazid dalam berbagai konsentrasi dalam medium aquadest pada $\lambda = 227,60$ nm

Konsentrasi (ppm)	Serapan (y)
1	0,046
2	0,084
4	0,173
6	0,25
8	0,336
10	0,427
12	0,505
14	0,590

Perhitungan menggunakan persamaan regresi linear:

a = 0.00208

b = 0.04200

r = 0,999884988

y = 0.00208 + 0.04200x

Tabel 4.5. Hasil pengukuran distribusi ukuran partikel (volume)

Diameter partikel	GL	GL VM10	GL VM15	GL VM30
(µm)	(%)	(%)	(%)	(%)
< 2	0	27,0	0,4	0,1
< 4	0	27,0	0,4	29,9
< 6	0	27,0	6,8	69,4
< 8	0	29,3	34,6	83,2
< 9	3	30,8	44,6	86,5
< 10	16,1	32,7	62,8	91,4
< 20	91,2	62,5	96,6	98,6
< 30	99,5	83,8	99,7	99,7
< 60	100	99,6	100	100
< 70	100	100	100	100

Tabel 4.6. Hasil titik lebur dan entalpi peleburan

Jenis mikrokristal	Temperatur awal	Temperatur awal	ΔΗ
	endoterm (°C)	endoterm (°C)	(J/g)
GL	167,3	175,4	119
GL VM10	162,9	172,8	109
GL VM15	162,2	173,2	96,1
GL VM30	161,9	173,7	111

Tabel 4.7. Perbandingan spektrum difraksi sinar-x

2θ GL	Rel.int.	2θ GL VM10	Rel.int.	2θ GL VM15	Rel.int.	2θ GL VM30	Rel.int.
	(%)		(%)		(%)		(%)
10,049	12,6	10,197	25,9	10,058	20,8	9,979	30,4
10,435	100	14,734	68,1	10,352	43,7	10,382	38,3
14,894	27,9	15,681	62,6	14,873	21,1	14,881	20
15,846	4,5	16,646	100	15,863	32,6	15,934	35,4
16,799	46,7	17,769	51,9	16,811	94,1	16,806	86
17,029	42	20,202	43,7	17,934	86,7	17,931	74,2
17,864	51,1	20,661	54,1	20,334	87,6	20,293	65,9
18,134	59	21,848	75,4	20,925	100	20,943	100
18,366	19,9	22,753	29,9	21,979	74,8	21,971	71,4
20,202	11,1	24,93	5	25,098	11,4	22,786	41,9
20,403	16,9	26,144	12,7	26,256	13,3	25,111	13
20,753	28	26,639	14,1	26,808	41,3	26,241	13,8
21,057	17,1	29,049	6,9	27,524	31,8	26,804	32,5
21,996	41,8	35,751	8,8	28,337	15,4	27,398	22,1
22,432	13,6	38,477	2,9	29,134	15,1	29,156	12,6
22,933	12,4	40,978	7,5	30,181	4,7	32,185	6,6
25,146	10,8			32,171	7,6	33,216	4,2
25,218	10,8			33,239	7,6		
26,202	15,8			38,642	11		
26,814	8,8			40,066	14,3		
27,567	9,7			43,4	5,8		
28,307	4,2			47,412	7,7		

Tabel 4.7. Perbandingan spektrum difraksi sinar-x (lanjutan)

2θ GL	Rel.int.	2θ GL VM10	Rel.int.	2θ GL VM15	Rel.int.	2θ GL VM30	Rel.int.
	(%)		(%)		(%)		(%)
29,163	6,1						
29,335	9,4						
30,195	6,2						
30,354	6,2						
32,021	5,1						
32,182	5,2					/	
34,094	3		/ / /				
34,955	11,8						
35,531	15,9					/	
36,03	10,1						
38,602	8,3	1					
38,875	7,2						
39,563	5,8						
40,077	10,8						
41,68	3,8		110				
43,428	4,8						
45,413	3,7				-		
46,047	4,8						
47,447	3,6						

Tabel 4.8. Kelarutan GL, GL VM10, GL VM15, GL VM30 dalam medium aquadest 250 ml mengandung 0,25% tween 20 pada λ = 225,80 nm

Waktu	GL	GL VM10	GL VM15	GL VM30
(menit)	(%)	(%)	(%)	(%)
0	0,00	0,00	0,00	0,00
15	32,44	32,82	35,99	32,50
30	41,21	40,66	42,62	37,73
45	46,36	45,34	48,07	42,86
60	48,41	46,91	49,43	43,39
120	55,61	56,39	61,79	51,73
180	62,05	64,99	67,48	58,50
240	63,88	68,52	72,20	63,01

Tabel 4.9. Hasil disolusi serbuk GL, GL VM10, GL VM15, GL VM30 dalam medium HCl 0,1N pada λ = 227,60 nm

Waktu	GL	GL VM10	GL VM15	GL VM30
(menit)	(%)	(%)	(%)	(%)
0	$0,00 \pm 0,00$	$0,00 \pm 0,00$	$0,00 \pm 0,00$	$0,00 \pm 0,00$
15	$3,38 \pm 0,96$	$5,72 \pm 0.08$	$7,92 \pm 0,30$	$4,96 \pm 1,09$
30	$4,31 \pm 0,75$	$9,27 \pm 0,76$	$10,74 \pm 1,90$	$7,30 \pm 0,98$
45	$6,18 \pm 0,86$	$12,64 \pm 0,84$	$16,11 \pm 0,96$	$8,59 \pm 0,83$
60	$8,36 \pm 0,65$	$15,56 \pm 0,09$	$20,89 \pm 0,85$	$10,04 \pm 0,29$

Tabel 4.10. Hasil disolusi tablet GL dan tablet GL VM15 dalam medium HCl 0,1N pada $\lambda = 227,60$ nm

Waktu	Tablet GL	Tablet GL VM15
(menit)	(%)	(%)
0	0.00 ± 0.00	0.00 ± 0.00
15	$3,35 \pm 0,38$	$3,72 \pm 0,04$
30	$4,37 \pm 0,47$	$4,78 \pm 0,11$
45	$5,55 \pm 0,66$	$5,82 \pm 0,08$
60	$7,36 \pm 1,60$	$8,35 \pm 1,67$

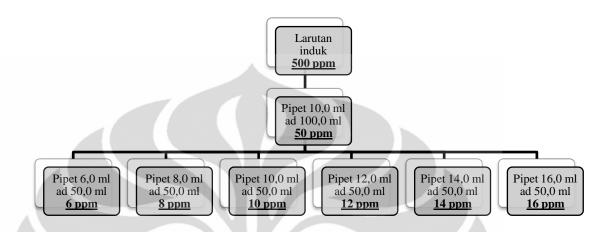
Keterangan:

GL = Gliklazid standar tanpa perlakuan

GL VM10 = Gliklazid hasil mikronisasi *vibrating mill* selama 10 menit

GL VM15 = Gliklazid hasil mikronisasi *vibrating mill* selama 15 menit

GL VM30 = Gliklazid hasil mikronisasi *vibrating mill* selama 30 menit



Lampiran 1. Perhitungan jumlah rendemen hasil mikronisasi vibrating mill

Durasi waktu	urasi waktu Berat serbuk		% rendemen
milling	awal (g)	rendemen (g)	serbuk
GL VM10	0,7005	0,5593	79,84
GL VM15	0,7006	0,5477	78,17
GL VM30	0,7004	0,5071	72,40

Lampiran 2. Bagan perhitungan kurva kalibrasi larutan standar gliklazid dalam medium aquadest

Perhitungan kurva kalibrasi larutan standar gliklazid dalam medium aquadest:


Larutan induk: Gliklazid =
$$50.0 \text{ mg}$$
 x $1000 = 500 \text{ ppm}$ 100.0 ml

Pengenceran =
$$\frac{10,0 \text{ ml}}{100,0 \text{ ml}}$$
 x 500 ppm = 50 ppm

Konsentrasi untuk kurva kalibrasi:

- 1. Konsentrasi I = $\frac{6.0 \text{ ml}}{50.0 \text{ ml}}$ x 50 ppm = 6 ppm $\frac{6.0 \text{ ml}}{50.0 \text{ ml}}$
- 2. Konsentrasi II = 8.0 ml x 50 ppm = 8 ppm 50.0 ml
- 3. Konsentrasi III = $\frac{10.0 \text{ ml}}{50.0 \text{ ml}}$ x 50 ppm = 10 ppm
- 4. Konsentrasi IV = $\frac{12.0 \text{ ml}}{50.0 \text{ ml}}$ x 50 ppm = 12 ppm $\frac{12.0 \text{ ml}}{50.0 \text{ ml}}$
- 5. Konsentrasi V = $\frac{14,0 \text{ ml}}{50,0 \text{ ml}}$ x 50 ppm = 14 ppm
- 6. Konsentrasi VI = $\frac{16,0 \text{ ml}}{50,0 \text{ ml}}$ x 50 ppm = 16 ppm

Lampiran 3. Bagan perhitungan kurva kalibrasi larutan standar gliklazid dalam medium HCl 0,1N

Perhitungan kurva kalibrasi larutan standar gliklazid dalam medium HCl 0,1N:

Larutan induk: Gliklazid =
$$50.0 \text{ mg} \times 1000 = 1000 \text{ ppm}$$

50,0 ml

Pengenceran = $\underline{10,0}$ ml x 1000 ppm = 100 ppm 100,0 ml

Konsentrasi untuk kurva kalibrasi:

1. Konsentrasi I =
$$\underline{1,0 \text{ ml}}$$
 x 100 ppm = 1 ppm
100,0 ml

2. Konsentrasi II =
$$\underline{1,0 \text{ ml}}$$
 x 100 ppm = 2 ppm $\underline{50,0 \text{ ml}}$

3. Konsentrasi III =
$$\frac{1.0 \text{ ml}}{25.0 \text{ ml}}$$
 x 100 ppm = 4 ppm

4. Konsentrasi IV =
$$3.0 \text{ ml}$$
 x 100 ppm = 6 ppm 50.0 ml

5. Konsentrasi V =
$$\frac{4.0 \text{ ml}}{50.0 \text{ ml}}$$
 x 100 ppm = 8 ppm

6. Konsentrasi VI =
$$5.0 \text{ ml}$$
 x 100 ppm = 10 ppm 50.0 ml

7. Konsentrasi VII =
$$3.0 \text{ ml}$$
 x 100 ppm = 12 ppm 25.0 ml

8. Konsentrasi VIII =
$$\underbrace{14.0 \text{ ml}}_{100,0 \text{ ml}}$$
 x 100 ppm = 14 ppm

Lampiran 4. Rumus perhitungan kelarutan dan disolusi

Persamaan garis yang diperoleh dari kurva kalibrasi: y = a + bxPerhitungan kandungan zat dalam sampel:

kadar (mg) =
$$\frac{(y-a) \times fp \times M}{b \times 1000}$$

3.6 1.1	***
Menit ke-	Konsentrasi gliklazid yang terdisolusi (mg)
15	$X_{10} = \frac{(Y_{10} - a)x \text{ fp x M}}{b \times 1000}$
30	$X_{30} = \frac{(Y_{30} - a)x \text{ fp x M}}{b \times 1000} + \frac{(Y_{15} - a)x \text{ fp x S}}{b \times 1000}$
45	$X_{45} = \frac{(Y_{45} - a)x \text{ fp x M}}{b \text{ x } 1000} + \frac{(Y_{30} - a)x \text{ fp x S}}{b \text{ x } 1000} + \frac{(Y_{15} - a)x \text{ fp x S}}{b \text{ x } 1000}$
60	$X_{60} = \frac{(Y_{60} - a)x \text{ fp x M}}{b \text{ x } 1000} + \frac{(Y_{45} - a)x \text{ fp x S}}{b \text{ x } 1000} + \frac{(Y_{30} - a)x \text{ fp x S}}{b \text{ x } 1000} + \frac{(Y_{15} - a)x \text{ fp x S}}{b \text{ x } 1000}$
120	$X_{120} = \frac{(Y_{120} - a)x \text{ fp x M}}{b \text{ x } 1000} + \frac{(Y_{60} - a)x \text{ fp x S}}{b \text{ x } 1000} + \frac{(Y_{45} - a)x \text{ fp x S}}{b \text{ x } 1000} + \frac{(Y_{30} - a)x \text{ fp x S}}{b \text{ x } 1000} + \frac{(Y_{15} - a)x \text{ fp x S}}{b \text{ x } 1000}$
180	$X_{180} = \frac{(Y_{180} - a)x \text{ fp x M}}{b \text{ x } 1000} + \frac{(Y_{120} - a)x \text{ fp x S}}{b \text{ x } 1000} + \frac{(Y_{60} - a)x \text{ fp x S}}{b \text{ x } 1000} + \frac{(Y_{45} - a)x \text{ fp x S}}{b \text{ x } 1000} + \frac{(Y_{30} - a)x \text{ fp x S}}{b \text{ x } 1000} + \frac{(Y_{15} - a)x \text{ fp x S}}{b \text{ x } 1000}$

Lampiran 4. Rumus perhitungan kelarutan dan disolusi (lanjutan)

Menit ke-	Konsentrasi gliklazid yang terdisolusi (mg)					
240	$X_{240} = \frac{(Y_{240} - a)x fp x M}{b x 1000} + \frac{(Y_{180} - a)x fp x S}{b x 1000} + \frac{(Y_{120} - a)x fp x S}{b x 1000}$					
	$+ \frac{(Y_{60}-a)x \text{ fp x S}}{b \text{ x } 1000} + \frac{(Y_{45}-a)x \text{ fp x S}}{b \text{ x } 1000} + \frac{(Y_{30}-a)x \text{ fp x S}}{b \text{ x } 1000} + \frac{(Y_{15}-a)x \text{ fp x S}}{b \text{ x } 1000}$					

Keterangan:

X_n = konsentrasi gliklazid pada menit ke-n

Y_n = serapan gliklazid pada menit ke-n

 f_p = faktor pengenceran

M = volume medium disolusi

S = volume pengambilan sampel

a = intersep

b = slope

Konsentrasi yang terdisolusi setiap menitnya (%) =

Konsentrasi gliklazid yang terdisolusi (mg)
Konsentrasi gliklazid yang ditimbang x 100%

Perhitungan Difference Factor dan Similarity Factor (%)

$$f_1 = 100 \text{ x } \left[\frac{\sum_{t=1}^{t=n} (R_t - T_t)}{\sum_{t=1}^{t=n} R_t} \right]$$

$$f_2 = 50 \times log \left[\frac{100}{\sqrt{1 + \frac{\sum_{t=1}^{t=n} (R_t - T_t)^2}{n}}} \right]$$

Keterangan:

n = jumlah interval waktu penentuan

 R_t = kadar zat aktif terdisolusi dari produk pembanding pada interval waktu t (mg)

 T_t = kadar zat aktif terdisolusi dari produk uji pada interval waktu t (mg)

Lampiran 5. Tabulasi data difraksi sinar-x

Kristal	2θ [°2θ]	$Sin^2\theta$	Sapprox	S	hkl
GL	10,049	0,0076	7,6	8	220
	10,435	0,0082	8,2	8	220
	14,894	0,0166	16,6	17	410, 322
	15,846	0,0189	18,9	19	331, 32
	16,799	0,0213	21,3	21	421, 41
	17,029	0,0218	21,8	22	332
	17,864	0,0239	23,9	24	442
	18,134	0,0245	24,5	25	500, 430, 50
	18,366	0,0250	25	25	500, 430, 50
	20,202	0,0308	30,8	31	51
	20,403	0,0314	31,4	31	51
	20,753	0,0326	32,6	33	522, 441
	21,057	0,0332	33,2	33	522, 441
	21,996	0,0364	36,4	36	600, 442, 60
	22,432	0,0371	37,1	37	610, 43
	22,933	0,0397	39,7	40	620
	25,146	0,0476	47,6	48	444, 44
	25,218	0,0476	47,6	48	444, 44
	26,202	0,0514	51,4	51	711, 551
	26,814	0,0537	53,7	54	721, 633, 552
	27,567	0,0569	56,9	57	722, 544, 71
	28,307	0,0602	60,2	60	
	28,566	0,0610	61	61	
	29,163	0,0635	63,5	64	
	29,335	0,0644	64,4	64	
	30,195	0,0679	67,9	68	
7	30,354	0,0687	68,7	69	
	32,021	0,0760	76	76	
	32,182	0,0769	76,9	77	
	34,094	0,0855	85,5	86	
	34,955	0,0904	90,4	90	
	35,531	0,0934	93,4	93	
	36,03	0,0955	95,5	96	
	38,602	0,1092	109,2	109	
	38,875	0,1103	110,3	110	
	39,563	0,1147	114,7	115	
	40,077	0,1170	117	117	
	41,68	0,1261	126,1	126	
	43,428	0,1367	136,7	137	
	45,413	0,1489	148,9	149	
	46,047	0,1527	152,7	153	
	47,447	0,1616	161,6	162	

Lampiran 5. Tabulasi data difraksi sinar-x (lanjutan)

Kristal	2θ [°2θ]	$Sin^2\theta$	Sapprox	S	hkl
GL VM10	10,197	0,0079	7,9	8	220
	14,734	0,0166	16,6	17	410, 322
	15,681	0,0184	18,4	18	411, 330
	16,646	0,0208	20,8	21	421, 41
	17,769	0,0239	23,9	24	422
	20,202	0,0308	30,8	31	51
	20,661	0,0320	32	32	440
- 1	21,848	0,0358	35,8	36	600, 442, 60
	22,753	0,0391	39,1	39	52
	24,93	0,0468	46,8	47	
	26,144	0,0514	51,4	51	711, 551
	26,639	0,0529	52,9	53	720, 641
	29,049	0,0627	62,7	63	
	35,751	0,0945	94,5	95	
	38,477	0,1082	108,2	108	
	40,978	0,1226	122,6	123	
GL VM15	10,058	0,0076	7,6	8	220
	10,352	0,0082	8,2	8	220
	14,873	0,0166	16,6	17	410, 322
	15,863	0,0189	18,9	19	331, 32
	16,811	0,0213	21,3	21	421, 41
	17,934	0,0245	24,5	25	500, 430, 50
	20,334	0,0314	31,4	31	51
	20,925	0,0332	33,2	33	522, 441
	21,979	0,0364	36,4	36	600, 442, 60
	25,098	0,0468	46,8	47	
	26,256	0,0514	51,4	51	711, 551
	26,808	0,0537	53,7	54	721, 633, 552
	27,524	0,0569	56,9	57	722, 544, 71
	28,337	0,0602	60,2	60	
	29,134	0,0635	63,5	64	
	30,181	0,0679	67,9	68	
	32,171	0,0769	76,9	77	
	33,239	0,0816	81,6	82	
	38,642	0,1092	109,2	109	
	40,066	0,1170	117	117	
	43,4	0,1367	136,7	137	
	47,412	0,1616	161,6	162	

Lampiran 5. Tabulasi data difraksi sinar-x (lanjutan)

Kristal	2θ [°2θ]	$Sin^2\theta$	Sapprox	S	hkl
GL VM30	9,979	0,0076	7,6	8	220
	10,382	0,0082	8,2	8	220
	14,881	0,0166	16,6	17	410, 322
	15,934	0,0194	19,4	19	331, 32
	16,806	0,0213	21,3	21	421, 41
	17,931	0,0245	24,5	25	500, 430
	20,293	0,0308	30,8	31	51
	20,943	0,0332	33,2	33	522, 441
	21,971	0,0364	36,4	36	600, 442, 60
	22,786	0,0391	39,1	39	52
	25,111	0,0476	47,6	48	444, 44
	26,241	0,0514	51,4	51	711, 551
	26,804	0,0537	53,7	54	721, 633, 552
	27,398	0,0561	56,1	56	642
	29,156	0,0635	63,5	64	
	32,185	0,0769	76,9	77	
	33,216	0,0816	81,6	82	

Lampiran 6. Perhitungan data difraktogram sinar-x

Cara perhitungan data difraktogram sinar-x:

• Tentukan nilai sin²θ

Hitung nilai θ dari setiap sudut pantul (2 θ) kemudian tentukan nilai $\sin^2\theta$ dilihat pada tabel nilai $\sin^2\theta$ (lampiran 7).

Contoh:
$$2\theta = 10,049$$

 $\theta = \frac{10,049}{2}$
 $= 5,0245 \approx 5,0 \text{ (lihat tabel sin}^2\theta)$
 $\sin^2\theta = 0,0076$

• Tiga harga $\sin^2\theta$ pertama dicatat menjadi 3 kolom. Bagi masing-masing harga $\sin^2\theta$ dengan sejumlah bilangan sedemikian rupa sehingga diperoleh besaran yang sama dalam ketiga kolom. Harga $\sin^2\theta$ dengan yang sama adalah $\sin^2\theta_{100}$.

Contoh:

Difraktogram kristal gliklazid (lampiran 5):

Angka	$\sin^2\theta$ (1)	$\sin^2\theta$ (2)	$\sin^2\theta$ (3)
2 (1	0,0076	0,0082	0,0166
$\frac{2}{2}$ ($\frac{2}{2}$	0,0038	0,0041	0,0083
, 3	0,0019	0,0020	0,0042
1,25 (0,0015	0,0016	0,0034
1,5 (5	0,0010	0,0011	0,0023
1,1 (6	0,0009	0,0010	0,0021
1,75 (0,0005	0,0006	0,0012
1,2 (8	0,0004	0,0005	0,0010

 $Maka\ sin^2\theta_{100}=0,\!0010$

Lampiran 6. Perhitungan data difraktogram sinar-x (lanjutan)

• Tentukan nilai S dengan membagi setiap harga $\sin^2\theta$ dengan $\sin^2\theta_{100}$ Contoh (lampiran 5):

Sapprox =
$$\frac{0,0076}{0,0010}$$
 = 7,6
S ≈ 8

• Tentukan nilai hkl berdasarkan nilai S dengan melihat tabel *quadratic form of miller indices* (lampiran 8).

Lampiran 7. Nilai $\sin^2\!\theta$

6	Э°												D	ifferen	res	
`		.0	.1	.2	.3	.4	.5	.6	.7	.8	.9	.01	.02	.03	.04	.05
	00	.0000	0000	0000	0000	0000	0001	0001	0001	0002	0002	.01	.02	.03	.01	.05
	1	.0003	0004	0004	0005	0006	0007	0001	0009	0010	0011					
	2	.0012	0013	0015	0016	0018	0019	0021	0002	0024	0026					
	3	.0012	0029	0031	0033	0035	0037	0039	0042	0044	0046					
	4	.0049	0025	0054	0056	0059	0062	0064	0042	0070	0073					
	7	.0047	0051	0054	0050	0037	0002	0004	0007	0070	0073		T,	nterpola	nto	
	5	.0076	0079	0082	0085	0089	0092	0095	0099	0102	0106		11	пегроп	ate	
	6	.0109	0113	0117	0120	0124	0128	0132	0136	0102	0100					
	7			0117			0170	0132		0140	0144					
		0149	0153		0161	0166			0180							
	8	.0194	0199	0203	0208	0213	0218	0224	0229	0234	0239					
	9	.0245	0250	0256	0261	0267	0272	0278	0284	0290	0296					
١,	ا ۱	0202	0200	0214	0220	0226	0222	0220	0245	0251	0250	1	1	2	2	2
	10	.0302	0308	0314	0320	0326	0332	0338	0345	0351	0358	1	1	2	2	3
	1	.0364	0371	0377	0384	0391	0397	0404	0411	0418	0425	1	1	2	2	3
	2	.0432	0439	0447	0454	0461	0468	0476	0483	0491	0498	1	1	2	3	4
	3	.0506	0514	0521	0529	0537	0545	0553	0561	0569	0577	1	2	2	3	4
	4	.0585	0593	0602	0610	0618	0627	0635	0644	0653	0661	1	2	3	3	4
1.		0.570	0.570	0.605	0.60.5	0705	0711	0722	0722	07.11	0751	4	_	•		
- 4	15	.0670	0679	0687	0696	0705	0714	0723	0732	0741	0751	1	2	3	4	4
	6	.0760	0769	0778	0788	0797	0807	0816	0826	0835	0845	1	2	3	4	5
	7	.0855	0865	0874	0884	0894	0904	0914	0924	0934	0945	1	2	3	4	5
	8	.0955	0965	0976	0986	0996	1007	1017	1028	1039	1049	-1	2	3	4	5
1	9	.1060	1071	1082	1092	1103	1114	1125	1136	1147	1159	1	2	3	4	6
						0 1								A.		
2	20	.1170	1181	1192	1204	1215	1226	1238	1249	1261	1273	1	2	3	5	6
	1	.1284	1296	1308	1320	1331	1343	1355	1367	1379	1391	1	2	4	5	6
	2	.1403	1415	1428	1440	1452	1464	1477	1489	1502	1514	1	2	4	5	6
	3	.1527	1539	1552	1565	1577	1590	1602	1616	1628	1641	1	3	4	5	6
	4	.1654	1667	1680	1693	1707	1720	1733	1746	1759	1773	- 1	3	4	5	7
)						o. #										
2	25	.1786	1799	1813	1826	1840	1853	1867	1881	1894	1908	1	3	4	5	7
	6	.1922	1935	1949	1963	1977	1991	2005	2019	2033	2047	1	3	4	6	7
	7	.2061	2075	2089	2104	2118	2132	2146	2161	2175	2190	1	3	4	6	7
	8	.2204	2219	2233	2248	2262	2277	2291	2306	2321	2336	1	3	4	6	7
	9	.2350	2365	2380	2395	2410	2425	2440	2455	2470	2485	2	3	5	6	8
	300															
3	30	.2500	2515	2530	2545	2561	2576	2591	2607	2622	2637	2	3	5	6	8
	1	.2653	2668	2684	2699	2715	2730	2746	2761	2777	2792	2	3	5	6	8
	2	.2808	2824	2840	2855	2871	2887	2903	2919	2934	2950		3	5	6	8
	3	.2966	2982	2998	3014	3030	3046	3062	3079	3095	3111	2 2	3	5	6	8
	4	.3127	3143	3159	3176	3192	3208	3224	3241	3257	3274	2	3	5	7	8
		.5121	3173	3137	3170	3172	2200	3224	3241	3231	3217	_	3	5	,	9
1	35	.3290	3306	3323	3339	3356	3372	3398	3405	3422	3438	2	3	5	7	8
	6	.3455	3472	3488	3505	3521	3538	3555	3572	3588	3605	2	3	5	7	8
	7	.3622	3639	3655	3672	3689	3706	3723	3740	3757	3773	2	3	5	7	8
	8	.3022	3807	3824	3841	3858	3875	3892	3909	3926	3943	2	3	5	7	8
	9	.3960	3978	3995	4012	4029	4046	4063	4080	4097	4115	2	3	5	7	9
	,	.3700	3710	3773	4012	4029	4040	4003	4000	4077	4113		3	3	,	,
,	10	.4132	4149	4166	4183	4201	4218	4235	4252	4270	4287	2	3	5	7	9
															7	
	1	.4303	4321	4339	4356	4373	4391	4408	4425	4443	4460	2 2	3	5		9
	2	.4477	4495	4512	4529	4547	4564	4582	4599	4616	4634		3	5	7	9
	3	.4651	4669	4686	4703	4721	4738	4756	4773	4791	4808	2	3	5	7	9
	4	.4826	4843	4860	4878	4895	4913	4930	4948	4965	4983	2	3	5	7	9
1.		5000	5017	5025	5050	5070	5007	5105	5100	5140	5157	_	2	~	7	0
	15	.5000	5017	5035	5052	5070	5087	5105	5122	5140	5157	2	3	5	7	9
	6	.5174	5192	5209	5227	5244	5262	5279	5297	5314	5331	2	3	5	7	9
	7	.5349	5366	5384	5401	5418	5436	5453	5471	5488	5505	2	3	5	7	9
	8	.5523	5540	5557	5575	5592	5609	5627	5644	5661	5679	2	3	5	7	9
	9	.5696	5713	5730	5748	5765	5782	5799	5817	5834	5851	2	3	5	7	9

Lampiran 7. Nilai $\sin^2\theta$ (lanjutan)

Θ ^o												Di	fferenc	es	
	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9	.01	.02	.03	.04	.05
50	.5868	5885	5903	5920	5937	5954	5971	5988	6005	6022	2	3	5	7	9
1	.6040	6057	6074	6091	6108	6125	6142	6159	6176	6193	2	3	5	7	9
2	.6210	6227	6243	6260	6277	6294	6311	6328	6345	6361	2	3	5	7	8
3	.6378	6395	6412	6428	6445	6462	6479	6495	6515	6528	2	3	5	7	8
4	.6545	6562	6578	6595	6611	6628	6644	6661	6677	6694	2	3	5	7	8
55	.6710	6726	2743	6759	6776	6792	6808	6824	6841	6857	2	3	5	7	8
6	.6873	6889	6905	6921	6938	6954	6970	6986	7002	7018	2	3	5	7	8
7	7034	7050	7066	7081	7097	7113	7129	7145	7160	7176	2	3	5	6	8
8	.7192	7208	7223	7239	7254	7270	7285	7301	7316	7332	2	3	5	6	8
9	.7347	7363	7378	7393	7409	7424	7439	7455	7470	7485	2	3	5	6	8
60	.7500	7515	7530	7545	7560	7575	7590	7605	7620	7635	2	3	5	6	8
1	.7650	7664	7679	7694	7709	7723	7738	7752	7767	7781	2	3	5	6	8
2	.7796	7810	7825	7839	7854	7868	7882	7896	7911	7925	1	3	4	6	7
3	.7939	7953	7967	7981	7995	8009	8023	8037	8051	8065	1	3	4	6	7
4	.8078	8092	8106	8119	8133	8147	8160	8174	8187	8201	1	3	4	6	7
65	.8214	8227	8241	8254	8267	8280	8293	8307	8320	8333	1	3	4	5	7
6	.8346	8359	8371	8384	8397	8410	8423	8435	8448	8461	1	3	4	5	7
7	.8473	8486	8498	8511	8523	8536	8548	8560	8572	8585	1	3	4	5	6
8	.8597	8609	8621	8633	8645	8657	8669	8680	8692	8704	1	2	4	5	6
9	.8716	8727	8739	8751	8762	8774	8785	8796	8808	8819	1	2	4	5	6
70	0020	0044	0050	0054	0055	0005	000	0000	0010	0000			4	_	6
70	.8830	8841	8853	8864	8875	8886	8897	8908	8918	8929	1	2	3	5	6
1	.8940	8951	8961	8972	8983	8993	9004	9014	9024	9035	1	2	3	4	_
2	.9045	9055	9066	9076	9086	9096	9106	9116	9126	9135	1	2	3	4	5
3	.9145	9155	9165	9174	9184	9193	9203	9212	9222	9231	1	2	3	4	5
4	.9240	9249	9259	9268	9277	9286	9295	9304	9413	9321	1	2	3	4	5
75	.9330	9339	9347	9356	9365	9373	9382	9390	9398	9407	1	2	3	4	4
6	.9415	9423	9431	9439	9447	9455	9463	9471	9479	9486	1	2	3	3	4
7	.9494	9502	9509	9517	9524	9532	9539	9546	9553	9561	1	2	2	3	4
8	.9568	9575	9582	9589	9596	9603	9609	9616	9623	9629	1	1	2	3	4
9	.9636	9642	9649	9655	9662	9668	9674	9680	9686	9692	1	1	2	3	3
80	.9698	9704	9710	9716	9722	9728	9733	9739	9744	9750	1	1	2	2	3
1	.9755	9761	9766	9771	9776	9782	9787	9792	9797	9801					
2	.9806	9811	9816	9820	9825	9830	9834	9839	9843	9847	7 1				
3	.9851	9856	9860	9864	9868	9872	9876	9880	9883	9887					
4	.9891	9894	9898	9901	9905	9908	9911	9915	9918	9921		T.	terpola	to	
85	.9924	9927	9930	9933	9936	9938	9941	9944	9946	9949		111	terpora	iie	
6	.9951	9954	9956	9958	9961	9963	9966	9967	9969	9971					
7	.9973	9974	9976	9978	9979	9981	9982	9984	9985	9987					
8	.9988	9989	9990	9991	9992	9993	9994	9995	9996	9996					
9	.9997	9998	9998	9999	9999	9999	1.00	1.00	1.00	1.00					

Lampiran 8. Quadratic forms of Miller indices

2 2 2		Неха	gonal			
$h^2 + k^2 + l^2$	G: I	hl			12 12 12	.,
	Simple	Face centered	Body centered	Diamond	$h^2 + k^2 + l^2$	hk
1	100				1	10
2	110		110		2	
3	111	111		111	3	11
4	200	200	200		4	20
5	210		211		5	
6 7	211		211		6 7	21
8	220	200	220	220	8	21
9	300, 221	200	220	220	9	30
10	210		210		10	
10	310		310	211	10	
11 12	311 222	311 222	222	311	11 12	22
13	320	222	222		13	31
13	321		321		14	31
15	321	- T	321		15	
16	400	400	400	400	16	40
17	410, 322	.00	100		17	.0
18	411, 330		411, 330		18	
19	331	331		331	19	32
20	420	420	420		20	
21	421				21	41
22	332	_ // 1			22	
23			A C. M		23	
24	422	422	422	422	24	50
25	500, 430		510 421	\	25	50
26 27	510, 431	 511 222	510, 431	£11 222	26 27	22
28	511, 333	511, 333	A White	511, 333	28	33 42
29	520, 432	787 A			29	42
2)	320, 432				2)	
30	521		521		30	
31		116			31	51
32	440	440	440	440	32	
33	522, 441		500, 100		33	
34	530, 433	 521	530, 433	521	34	
35 36	531 600, 442	531 600, 442	600, 442	531	35 36	60
37	610	000, 442	000, 442		37	43
38	611, 532		611, 532		38	73
39	011, 552	•••	011, 332		39	52
40	620	620	620	620	40	
41	621, 540, 443		F 4.4		41	
42	541		541	500	42	C1
43	533	533		533	43	61
44 45	622 630, 542	622	622		44 45	
45 46	630, 542 631		631		45 46	
46	031	•••	031		46	
48	444	444	444	444	48	44
49	700, 632				49	70, 53

Lampiran 8. Quadratic forms of Miller indices (lanjutan)

		Hexagonal				
$h^2 + k^2 + l^2$		hl	kl			
	Simple	Face	Body centered	Diamond	$h^2 + k^2 + l^2$	hk
	-	centered	-			
50	710, 550, 543		710, 550, 543		50	
51	711, 551	711, 551		711, 551	51	
52	640	640	640		52	62
53	720, 641				53	
54	721, 633, 552		721, 633, 552		54	
55					55	
56	642	642	642	642	56	
57	722, 544				57	71
58	730	\	730		58	
59	731 553	731 553		731 553	59	

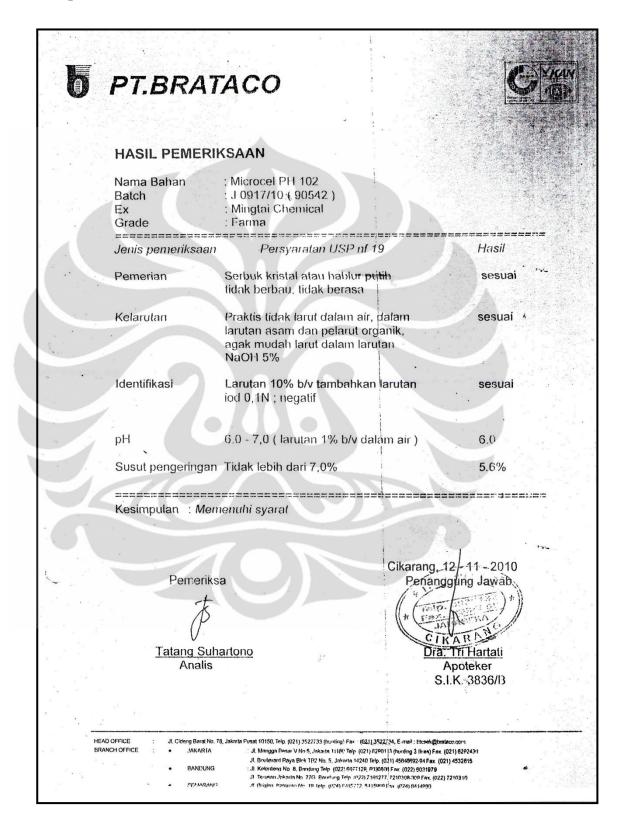
Lampiran 9. Sertifikat analisis Gliklazid

ZHEJIANG HENGDIAN PHARMACEUTICAL CO., LTD 11F, 18, Moganshan Road, Hengzhou City, Zhejiang Province, 310012, China

CERTIFICATE OF ANALYSIS

COMMODITY: GUICL AZIDE BP2007

BATCH NO.: QUANTITY: 25KGS


MANUFACTURING DATE: APR.,2010 EXPIRY DATE: MAR.,2015

Test Iten	Quality Standard	Analysis Results
Description	A white or almost white powder	Conform
Content	99.0 - 101.0% on dried basis	100.00%
Loss on drying	≤0.20%	0.1%
1- { hexahydrocyclopenta, (c) pyrrol-2 (1H) -y1) -3- (2-methy1pheny1) sulphony1 urea	≤0.10%	Undetected
The main impurity	≤0.10%	0.07%
The sum of all impurities	≤0.20%	0.18%
Sulphated ash	≤0.10%	0.05%
Heavy metals	≤10 ppm	<10ppm
2-nitrooo-octahydrocyclopenta (c) pyrrole	≤2ppm	1.49ррт
Conclusion	The Testing Results Are confe	ormed to BP2007
Tested By	GHENGDIAN PHARMACEUTICAL CO., LTD	
浙江	横店药业有限公司	

PT. SETIA KAWAN ABADI

tol. terima GA : 07.05.10

Lampiran 10. Sertifikat analisis Avicel PH 102

