
UNIVERSITY OF INDONESIA UNIVERSITY OF SOUTH-
BRITTANY

DEVELOPMENT OF SAJE PROJECT ON ANDROID OPERATING 
SYSTEM

THESIS

FITRI WIBOWO
0906578314 

FACULTY OF ENGINEERING
DEPARTMENT OF ELECTRICAL ENGINEERING
MULTIMEDIA AND NETWORK INFORMATION

DEPOK 
JULI 2011

Development of saje..., Fitri Wibowo, FT UI, 2011.



UNIVERSITY OF INDONESIA UNIVERSITY OF SOUTH-
BRITTANY

DEVELOPMENT OF SAJE PROJECT ON ANDROID OPERATING 
SYSTEM

THESIS

Submitted to the University of Indonesia
in partial fulfillment of the requirements for 

the degree of Magister Teknik 

FITRI WIBOWO
0906578314 

FACULTY OF ENGINEERING
DEPARTMENT OF ELECTRICAL ENGINEERING
MULTIMEDIA AND NETWORK INFORMATION

DEPOK 
JULI 2011

Development of saje..., Fitri Wibowo, FT UI, 2011.



ii

Development of saje..., Fitri Wibowo, FT UI, 2011.



DECLARATION OF ORIGINALITY

I hereby declare that this thesis and the work reported herein was composed 
by and originated entirely from me. Information derived from the published 

and unpublished work of others has been acknowledged in the text and 
references are given in the list of sources.

Name : Fitri Wibowo

NPM : 0906578314

Signature :

Date : 5 July 2011

iii

Development of saje..., Fitri Wibowo, FT UI, 2011.



ACKNOWLEDGMENT

I   would  like  to   acknowledge  the  following  people  for  their  support  and 

assistance in this thesis. From the CASA team of VALORIA, I  would like  to 

thank my supervisor ,  Nicolas le Sommer, for guiding me from the initial to the 

final level of this  project.  And also  my tutor at  University of South-Brittany, 

Patrice Frison, for the constant reminders and much needed motivation. 

Lastly, I offer my regards and blessings to all of those who supported me in any 

respect during the completion of the project.

iv

Development of saje..., Fitri Wibowo, FT UI, 2011.



DECLARATION OF PUBLICATION APPROVAL PAGE FOR ACADEMIC 
PURPOSE

As an civitas academic of University of Indonesia, I the undersigned below:

Name : Fitri Wibowo

NPM : 0906578314

Study Program : Electrical Engineering

Department : Electrical Engineering

Faculty : Engineering

Type of Work : Thesis

for the development of science,  agreed to give University of Indonesia a  non-
exclusive royalty-free right on my scientific work entitled:

Development of SAJE Project on Android Operating System 

with the existing devices (if needed). With this non-exclusive, royalty-free right, 
University of Indonesia has permission to copy, re-distribute in different format 
and can publish this  Thesis by including my name as a writer   and copyright 
owner.

Vannes, 5 July 2011

Fitri Wibowo

v

Development of saje..., Fitri Wibowo, FT UI, 2011.



ABSTRACT

Name : Fitri Wibowo
Study Program : Electrical Engineering
Title : Development of SAJE Project on Android Operating System 

The  group  CASA of  VALORIA have  developed  SAJE  (System-Aware  Java 
Environment)  which  is  a  framework  dedicated  to  the  observation  of  system 
resources in Java. This platform was originally developed to run on top of a Linux 
or Windows operating system. It would now be interesting to carry on a system 
like Android, which would include the use of devices like smart-phones.

Keywords: Android, Java, Java Native Interface (JNI)

University of South-Brittany vi University of Indonesia

Development of saje..., Fitri Wibowo, FT UI, 2011.



ABSTRAK

Nama : Fitri Wibowo
Program Study : Teknik Elektro
Judul : Development of SAJE Project on Android Operating System 

Group  CASA dari  laboratorium  riset  VALORIA Universite  de  Bretagne-Sud 
mengembangkan  sebuah  framework  yang  bernama  SAJE  (System-Aware  Java 
Environment).  Framework ini didedikasikan untuk mengobservasi sumber daya 
yang ada dalam sebuah sistem operasi dengan menggunakan bahasa pemrograman 
Java. Pada awal pengembangannya, framework ini ditargetkan untuk berjalan di 
atas  sistem operasi  Linux  atau  Windows.  Seiring  dengan  perkembangan  pesat 
teknologi mobile saat ini,  maka akan sangat menarik jika bisa menjalankannya 
pada sistem operasi yang berbeda seperti Android.

Kata kunci: Android, Java, Java Native Interface (JNI)

University of South-Brittany vii University of Indonesia

Development of saje..., Fitri Wibowo, FT UI, 2011.



TABLE OF CONTENTS

APPROVAL PAGE..................................................................................................ii
DECLARATION OF ORIGINALITY...................................................................iii
ACKNOWLEDGMENT.........................................................................................iv
DECLARATION OF PUBLICATION APPROVAL PAGE FOR ACADEMIC 
PURPOSE................................................................................................................v
ABSTRACT............................................................................................................vi
TABLE OF CONTENTS......................................................................................viii
INDEX OF FIGURES............................................................................................ix
INDEX OF TABLES................................................................................................x
1. Introduction..........................................................................................................1

1.1 Presentation of VALORIA.............................................................................1
2. The SAJE project ................................................................................................2

2.1 Context..........................................................................................................2
2.2 Motivations....................................................................................................3
2.3 The expected  system.....................................................................................3
2.4 Known problem.............................................................................................3
2.5 Project organization.......................................................................................4
2.6 Development Environment ...........................................................................4

2.7.1 wireless-tools [4]...................................................................................9
2.7.2 net-tools [5]..........................................................................................10
2.7.3 Busybox [6].........................................................................................10
2.7.4 SuperUser [7].......................................................................................11

3. Implementation..................................................................................................12
3.1 Setting up development Environment.........................................................12
3.2 Integrating wireless-tools into Android.......................................................14
3.3 Configuring the wireless interface in ad-hoc mode on Android..................18
3.4 Porting SAJE project to Android.................................................................20

3.4.1 User Interface Prototype......................................................................21
3.4.2 Building SAJE shared library..............................................................22
3.4.3 CPU......................................................................................................24
3.4.4 Memory and Swap...............................................................................26
3.4.5 Battery..................................................................................................28
3.4.6 Wi-Fi....................................................................................................30

3.5 Developing an application to control Wi-Fi................................................34
3.5.1 Device information section..................................................................35
3.5.2 Network configuration section............................................................37
3.5.3 Profile management.............................................................................38
3.5.4 Connection information.......................................................................39

4. Conclusion..........................................................................................................40
Bibliography...........................................................................................................41
Appendix................................................................................................................42

Appendix 1 : Class diagram of Saje2Droid project...........................................43
Appendix 2 : Class definition............................................................................44
Appendix 3 : Use case diagram.........................................................................46

University of South-Brittany viii University of Indonesia

Development of saje..., Fitri Wibowo, FT UI, 2011.



INDEX OF FIGURES

Figure 1 : Project hierarchy in Eclipse IDE ..........................................................15
Figure 2 : wireless-tools integration into project ..................................................15
Figure 3 : JNI output compilation on Android project ..........................................16
Figure 4 : SAJE integrated into Android project....................................................21
Figure 5 : The UI prototype of MainActivity and the result on Android device ...22
Figure 6 : Workflow diagram of Saje2Droid project ............................................23
Figure 7 : Logcat informations of Saje2Droids shared library .............................24
Figure 8 : The UI prototype of CpuActivity and the result on Android device ....26
Figure 9 (a) : Logcat information of memory report .............................................26
Figure 9 (b) : Logcat information of swap report .................................................26
Figure 10 :  MemoryActivity and prototype the result on Android device ...........28
Figure 11 : BatteryActivity prototype and the result on Android device ..............30
Figure 12 : Logcat information of “NoSuchResource” exception ........................30
Figure 13 : WifiActivity prototype and the result on Android device ...................34
Figure 14 (a): Method selection for kernel module / wireless  name ....................36
Figure 14 (b): WiFi mode selections dialog ..........................................................36
Figure 14 (c): Channel selections dialog ...............................................................36
Figure 15 : Typical input dialog uses in network configuration section ...............37
Figure 16 : Profile management menus ................................................................38
Figure 17 : WifiRunActivity .................................................................................39

University of South-Brittany ix University of Indonesia

Development of saje..., Fitri Wibowo, FT UI, 2011.



INDEX OF TABLES

Table 1 : Associated permission uses by Saje2Droid.............................................33
Table 2 : Profile management function in Saje2Droid...........................................38

University of South-Brittany x University of Indonesia

Development of saje..., Fitri Wibowo, FT UI, 2011.



1. INTRODUCTION

1.1 Presentation of VALORIA

VALORIA is  the  computer  science  laboratory  at  Université  de  Bretagne  Sud  

(UBS). It develops research activities in the scope of Ambient Intelligence (AmI), 

addressing research and development topics along three complementary research 

activities: 

• Interaction and Intelligence: This first activity aims at  providing end-

users with technological,  innovative means for greater user-friendliness, 

more efficient services support and user-empowerment, while contributing 

to user-friendly, dependable, adaptive and non-intrusive hardware/software 

environments. 

• Software  Architecture:  The  second  activity  is  dedicated  to 

architecting/refining,  testing/refactoring  and  maintaining/evolving 

dynamic, distributed, mobile and context-aware systems considered as the 

background support to ambient computing. 

• Middleware:  The  third  activity  focuses  on  providing  middleware  for 

distributed mobile and communicating systems as a support to ubiquitous 

and pervasive computing. 

VALORIA is structured in four teams: 

1. ARCHWARE (software architectures); 

2. CASA (platforms for mobile computing); 

3. SEASIDE  (SEarch,  Analyse,  Simulate  and  Interact  with  Data 

Ecosystems); 

4. RIMH (robotics and multimodal interactions towards disability).

University of South-Brittany 1 University of Indonesia

Development of saje..., Fitri Wibowo, FT UI, 2011.



2. THE SAJE PROJECT 

2.1 Context

SAJE  (System-Aware  Java  Environment)  is  a  framework  dedicated  to  the 

monitoring of  system resources  in  Java.  It  makes it  possible  to  model  system 

resources (CPU, network interfaces, etc.) as Java objects, and it provides facilities 

to monitoring these resources through the corresponding objects.  It  thus offers 

useful  functionalities  to  design  and  implement  adaptive  systems  or  resource 

monitoring  systems for  instance.  SAJE is  distributed  under  the  GNU General 

Public License

In the current version of SAJE, the following resources can be observed:

• processor: model, speed, cache size, etc.

• memory: total size, available size, etc.

• swap memory: total size, available size, etc.

• networking interfaces: type (Loopback, Ethernet, WiFi, PPP, etc.), number 

of bytes and IP packets sent and received, etc.

• battery: management type (APM), loading state, lifetime, etc.

SAJE use Java Native Interface that allows Java to interact with code written in 

another programming language.  The use of JNI will give some advantages, such 

as :

• Code re-usability: Reuse existing/legacy code with Java (mostly C/C++)

• Performance: Native code used to be up to 20 times faster than Java, when 

running in interpreted mode

• Allow Java to tap into low level O/S, H/W routines

University of South-Brittany 2 University of Indonesia

Development of saje..., Fitri Wibowo, FT UI, 2011.



3

2.2 Motivations

This  platform was originally developed to run on top of a Linux or Windows 

operating system. It would now be interesting to carry on a system like Android, 

which would include the use of devices like smart-phones.

Android operating system is based on the Linux kernel, but the user space is built 

at  top of Dalvik, a Google-designed custom JVM (Java virtual machine). This 

will give us a big opportunity to porting SAJE onto Android platform.

2.3 The expected  system

2.4 Known problem

• Android does not use APM for the battery management.

• Android phone does not support wireless ad-hoc communication mode. 

• Android's root permissions limitation.

University of South-Brittany University of Indonesia

Development of saje..., Fitri Wibowo, FT UI, 2011.



4

2.5 Project organization

Planning 

1. Setting up development environment : 1 week.

2. Integrating wireless-tools to Android : 2 weeks.

3. Configuring wireless interface in ad-hoc on Android: 3 weeks.

4. Porting SAJE  to Android: (5 weeks)

5. Porting memory & swap , cpu : 2 weeks

6. Battery: 1 week

7. Interface Wi-Fi: 2 weeks

8. Installation procedure with GNU autotools: 2 weeks

9. User manual: 2 weeks

10. Developping application to control Wi-Fi: 3  weeks

11. Project report: 2 weeks

2.6 Development Environment 

Eclipse IDE

Eclipse IDE is an Integrated development that come from Eclipse open source 

community,  whose  projects  are  focused  on  building  an  open  development 

platform  including  extensible  frameworks,  tools  and  runtimes  for  building, 

deploying and managing software across the lifecycle. We use Eclipse in order to 

develop SAJE project for the Android platform. This IDE offers many advantages.

University of South-Brittany University of Indonesia

Development of saje..., Fitri Wibowo, FT UI, 2011.



5

Indeed,  Eclipse  IDE  provides  a  plugin  for  developing  an  application  on  the 

Android platform. This plugin is ADT (Android development tools). In addition, 

Eclipse IDE also has plugins to develop JNI applications by using Eclipse CDT 

(C/C++  Development  Tools).  This  IDE  provides  a  lot  of  versioning  tools 

integration, and one of them is Subversive that uses for SVN.

ADT (Android Development Tools)

Android  Development  Tools  (ADT)  is  a  plugin  for  the  Eclipse  IDE  that  is 

designed to give a powerful, integrated environment in which to build Android 

applications. 

ADT extends the capabilities of Eclipse to  let  us quickly set  up new Android 

projects,  create  an  application  UI,  add  components  based  on  the  Android 

Framework API, debug an application using the Android SDK tools, and even 

export signed (or unsigned) .apk files in order to distribute our application. 

Developing in Eclipse with ADT is highly recommended because it is the fastest 

way to get started.  With the guided project  setup it  provides,  as well  as tools 

integration,  custom  XML editors,  and  debug  ouput  pane,  ADT  gives  us  an 

incredible boost in developing Android applications.

The current version of ADT is v11.0.0  which is designed for use with Android 

SDK Tools r11. Eclipse and the ADT plugin provide GUIs and wizards to create 

all three types of projects (Android project, Library project, and Test project).

An Android project contains all of the files and resources that are needed to build 

a project into an .apk file for installation. We need to create an Android project for 

any  application  that  we want  to  eventually  install  on  a  device.   We can also 

designate an Android project as a library project, which allows it to be shared with 

other projects that depend on it. Once an Android project is designated as a library 

University of South-Brittany University of Indonesia

Development of saje..., Fitri Wibowo, FT UI, 2011.



6

project, it cannot be installed onto a device. 

CDT (C/C++ Development tools)

The CDT plugin provides a fully functional C and C++ Integrated Development 

Environment based on the Eclipse platform. Features include: support for project 

creation and managed build for various toolchains, standard make build, source 

navigation, various source knowledge tools, such as type hierarchy, call graph, 

include browser, macro definition browser, code editor with syntax highlighting, 

folding and hyperlink navigation,  source code refactoring and code generation, 

visual debugging tools, including memory, registers, and disassembly viewers.

As mentioned in section 2.1,  the project SAJE uses JNI which allows Java to 

communicate with low-level routines of OS, therefore the development of SAJE 

for Android platform  require additional applications: the Android NDK (Native 

Development Kit).

The Android NDK is a tool set that lets us embed components that make use of 

native code in the Android applications. Android applications run in the Dalvik 

virtual machine. The NDK allows us to implement parts of our applications using 

native-code languages such as C and C++. This can provide benefits to certain 

classes of applications, in the form of reuse of existing code and in some cases 

increased speed.

The Android NDK provides:

• A set of tools and build files used to generate native code libraries from C 

and C++ sources

• A way to  embed the  corresponding  native  libraries  into  an  application 

package file (.apk) that can be deployed on Android devices

• A set of native system headers and libraries that will be supported in all 

future  versions  of  the  Android  platform,  starting  from  Android  1.5. 

University of South-Brittany University of Indonesia

Development of saje..., Fitri Wibowo, FT UI, 2011.



7

Applications that use native activities must be run on Android 2.3 or later.

• Documentation, samples, and tutorials

The latest release of the NDK supports these ARM instruction sets:

• ARMv5TE (including Thumb-1 instructions)

• ARMv7-A  (including  Thumb-2  and  VFPv3-D16  instructions,  with 

optional support for NEON/VFPv3-D32 instructions)

The future releases of the NDK  will include x86 instructions

The contents of Android NDK are: 

• The NDK APIs, documentation, and sample applications that help us to 

write a native code. 

• a set of cross-toolchains (compilers, linkers, etc..) that can generate native 

ARM binaries on Linux, OS X, and Windows (with Cygwin) platforms.  

It provides a set of system headers for stable native APIs that are guaranteed to be 

supported in all later releases of the platform, such as:

• libc (C library) headers 

• libm (math library) headers 

• JNI interface headers 

• libz (Zlib compression) headers 

• liblog (Android logging) header 

• OpenGL ES 1.1 and OpenGL ES 2.0 (3D graphics libraries) headers 

• libjnigraphics (Pixel buffer access) header (for Android 2.2 and above). 

• A Minimal set of headers for C++ support 

• OpenSL ES native audio libraries 

• Android native application APIS

University of South-Brittany University of Indonesia

Development of saje..., Fitri Wibowo, FT UI, 2011.



8

Pencil 

In order to create the user interface of Saje2Droid, we use the Pencil application[1]. 

Pencil is an open source applications for prototyping the graphical user interface, 

including both desktop base and mobile base application.  It has two modes of 

installation,  first;  in  the  form  of  Firefox  browser  extension.  Second  mode, 

standalone application that is executed with the help of  xulrunner[2]. As well as 

eclipse, Pencil is also extensible, in which to create a prototype user interface of 

android application, we use plugins called android-ui-tools[3] which is available 

for free.

android-ui-tools 

This  utilities  help  in  the  design  and  development  of  Android  application  user 

interfaces. This library currently consists of three individual tools for designers 

and developers:

1. UI Prototyping Stencils 

A set of stencils for the Pencil GUI prototyping tool, which is available as 

an add-on for Firefox or as a standalone download.  Pencil 1.2 and Firefox 

3.5 or later are required. 

2. Android Asset Studio 

A web-based set  of  tools  for  generating  graphics  and other  assets  that 

would eventually be in an Android application's res/ directory. Currently 

available asset generators area available for:  

◦ Launcher icons 

◦ Menu icons 

◦ Tab icons 

◦ Notification icons 

◦ Support for creation of XML resources and nine-patches is planned for 

a future release.

University of South-Brittany University of Indonesia

Development of saje..., Fitri Wibowo, FT UI, 2011.



9

3. Android Icon Templates 

A set of Photoshop icon templates that follow the icon design guidelines, 

complementing  the  official  Android  Icon  Templates  Pack.2.7  Required 

applications

In the beginning of its  development,  SAJE project is  designed to run only on 

Linux  operating  system.  Therefore,  there  are  some  applications  or  additional 

libraries in Linux that are required by SAJE, such as the wireless tools which is 

the back-end of the the wireless device configuration, and net-tools which is a 

collection  of  standard  tools  to  configure  network  in  Linux  operating  system. 

Additionally,  to  make adjustments  with  the  Android  operating  system  on  the 

porting process, it is also needed some additional applications to be exist on the 

Android operating system . Among of these are: administrator access (root) on the 

Android operating system level that can be configured by SuperUser application, 

and  also  a  collection  of  standard  Linux  commands  that  are  available  in  the 

Busybox application. Both of these applications is available in Android market. 

2.7.1 wireless-tools [4]

The Linux Wireless Extension and the Wireless Tools are an Open Source project 

sponsored by Hewlett  Packard  since  1996.  The Wireless  Extension  (WE) is  a 

generic  API  allowing  a  driver  to  expose  to  the  user  space  configuration  and 

statistics specific to common Wireless LANs. The advantage of it is that a single 

set of tool can support all the variations of Wireless LANs, regardless of their type 

(as long as the driver support Wireless Extension).  Another advantage is these 

parameters may be changed on the fly without restarting the driver (or Linux). 

The Wireless Tools (WT) is a set of tools allowing to manipulate the Wireless 

Extensions. They use a textual interface and are rather crude, but aim to support 

the full Wireless Extension. There are many other tools you can use with Wireless 

Extensions, however Wireless Tools is the reference implementation. 

University of South-Brittany University of Indonesia

Development of saje..., Fitri Wibowo, FT UI, 2011.



10

• iwconfig manipulate the basic wireless parameters 

• iwlist allow to initiate scanning and list frequencies, bit-rates, encryption 

keys... 

• iwspy allow to get per node link quality 

• iwpriv allow to manipulate the Wireless Extensions specific to a driver 

(private) 

• ifrename allow to name interfaces based on various static criteria 

Our objectif is to run this set of wireless tools on Android operating systems. 

2.7.2 net-tools [5]

Android  operating  system  comes  with  some  standard  Linux  command  like 

ifconfig. But this version of ifconfig is a modified version that made for fit to run 

on Android operating system, which mean that its size is optimized. Since SAJE 

project need some output of the original command of Linux's ifconfig, we decided 

to try to compile original net-tools on Android operating system so SAJE could 

run perfectly on Android.

The Linux's net-tools is a collection of programs that form the base set of the 

NET-3  networking  distribution  for  the  Linux  operating  system.  This  package 

includes  arp,  hostname,  ifconfig,  ipmaddr,  iptunnel,  mii-tool,  nameif,  netstat, 

plipconfig, rarp, route and slattach. We do not need to compile all of this binary, 

since SAJE just need the ifconfig command.

2.7.3 Busybox [6]

BusyBox is a software application that provides many standard Unix tools, much 

like the larger (but more capable) GNU Core Utilities. BusyBox is designed to be 

a small executable for use with the Linux kernel, which makes it ideal for use with 

embedded devices. It has been self-dubbed "The Swiss Army Knife of Embedded 

Linux".

University of South-Brittany University of Indonesia

Development of saje..., Fitri Wibowo, FT UI, 2011.



11

2.7.4 SuperUser [7]

The Superuser application is intended to grant and manage superuser rights for 

Android device. This application requires that we already have root access, or a 

custom recovery image to work.

University of South-Brittany University of Indonesia

Development of saje..., Fitri Wibowo, FT UI, 2011.



3. IMPLEMENTATION

3.1 Setting up development Environment

Eclipse + plugins

The installation of Eclipse IDE can be done in two ways, first we can install it  

from a distributed package that come with the Linux distribution, or to install it 

from an archive package that could work on every Linux distribution as long as it 

matched with the processor architecture.

The standard Eclipse installation does not have any plugins mentioned above. So 

we need to install it manually one by one. First we need to add software site for 

each plugins  to  Eclipse.  A software site  is   a  collection of  URL that  contains 

Eclipse plugins. The URL for the plugins mentioned above (assuming that we use 

Eclipse helios version):

- ADT (Android Development Tools)  - https://dl-ssl.google.com/android/eclipse/

- CDT (C/C++ Development Tools) -

 http://download.eclipse.org/tools/cdt/releases/helios

- Subversive  -  http://download.eclipse.org/releases/helios

The  Subversive  plugin  is  part  of  Helios  update  release,  so  once  the  software 

update catalog is updated the Subversive plugin should be listed in software site. 

Subversive  installation  includes  Subversive  plug-in  and  Subversive  SVN 

Connectors plug-in. In order to start work with Subversive we should install both 

of them. 

The installation process of Eclipse plugins can be done by selecting Help menu 

from Eclipse and then clicking the Install new software menu. This step will show 

an install window. From this window we can select the available software sites 

that we have defined in the previous process.

University of South-Brittany 12 University of Indonesia

Development of saje..., Fitri Wibowo, FT UI, 2011.



13

Setting up ADT (Android Development Tools)

After we have successfully downloaded the ADT as described above, the next step 

is to modify  ADT preferences in Eclipse to point to the Android SDK directory. 

The  Android   SDK  location's  settings  is  located  in  the  preferences  panel  of 

Eclipse. 

Setting up CDT to use Android NDK

By default CDT does not have integration feature with Android NDK. However, 

the CDT plugins support the C/C++  Makefile project. We can anticipate this by 

setting  up  system  environment  which  locate  the  Android  NDK  or  set  the 

parameters in the Makefile of the project. This is the code snippets in the Makefile 

that we use:

# Set this variable to the android-ndk location
ANDROID_NDK_BASE:=/home/user/Apps/android-ndk-r5b
PATH:=${PATH}:${ANDROID_NDK_BASE}

all:
ndk-build

clean:
ndk-build clean

So instead of  using Java perspective in Eclipse IDE, we use C/C++ perspective to 

develop this project.

Setting up Subversive and SVN CASA

To help us with the synchronization and project management, we use a versioning 

tool SVN (Subversion). Saje2droid project is uploaded to SVN Casa that located 

at  "https://www-valoria.univ-ubs.fr/svn/casa/devlpts/Saje2Droid".  The  access  to 

the  SVN  CASA is  currently  private  which  means  only  the  members  of  the 

Laboratoire Valoria can access it. 

University of South-Brittany University of Indonesia

Development of saje..., Fitri Wibowo, FT UI, 2011.



14

To configure Subversive with SVN CASA, we have to define a SVN Repository 

by selecting menu File → New → Other in Eclipse.  The next step we need to fill  

in the Repository address of SVN Casa, and provide the credential login for this 

repository. If the process is done successfully, we can explore the repository by 

selecting SVN repository perspective in Eclipse. 

3.2 Integrating wireless-tools into Android.

Based on the project planning, we need to know first that the wireless tools can 

run on the Android operating system. In this  process we try to cross  compile 

wireless tools into executable binary files that can be executed on the Android 

operating system with the help of toolchain / cross platform tools provided by 

Android NDK. 

There  are  two  ways  to  distribute  a  binary  of  the  wireless  tools  that  will  be 

compiled. First, distributed it along with the Android operating system. If we want 

to use this way, we need the full source code of the Android operating system that  

we  compiled  with  some  options  which  is  suitable  with  the  target  device 

architecture. In addition we must add the source code from the wireless tools into 

the Android source code tree (normally in android/system/extras/). The next step 

is to make Android.mk which is written to describe the sources configuration to 

the build system. 

The Android.mk is a tiny fragment of GNU Makefile that will be parsed one or 

more times by the build system. This file contains several compilation options 

such  as  library/headers,  and  the  result  of  compilation  like  executable,  shared 

libraries,  static  libraries,  etc.  The output  location of the binary/library wireless 

tools  will  be  affected  by  compilations  settings  defined  in  Android.mk.  For 

example,  to  build  a  single  executable  file,  we  have  to  define 

BUILD_EXECUTABLE option. However to build a shared/static library, we need 

to define LOCAL_MODULE option.

University of South-Brittany University of Indonesia

Development of saje..., Fitri Wibowo, FT UI, 2011.



15

The default output of the compilation is in out/target/product/generic/ (relative to 

the Android source code). The next step is uploading the compilation's result of 

wireless tools to Android device. This process can be done with the help of adb 

(Android Debug Bridge) command that include in the Android SDK package. 

The second way to integrate wireless tools to the Android operating system is 

compiling it as a native interface of Android application. In this way we do not 

need the full source of Android, but as JNI application, we need Android NDK. As 

explained in the previous section, after creating a Makefile project in eclipse, we 

still  have  to  create  an  Android.mk  file,  and  some  additional  directory  in  the 

Eclipse projects.  These directory are:

- libs, obj – that used for maintaining the output of compilation process

- jni – that will be contains the C code of JNI which include wireless-tools

Figure 1 : Project hierarchy in Eclipse IDE Figure 2 : wireless-tools integration into project

This  is  the  code  snippet  from Android.mk  used  by  wireless-tools  to  compile 

“iwconfig” binary. The result file name specified by LOCAL_MODULE variable.

University of South-Brittany University of Indonesia

Development of saje..., Fitri Wibowo, FT UI, 2011.



16

include $(CLEAR_VARS)
LOCAL_SRC_FILES := iwconfig.c
LOCAL_MODULE := iwconfig_saje
LOCAL_STATIC_LIBRARIES := iwlib
LOCAL_CFLAGS := $(WT_INCS) $(WT_DEFS)
include $(BUILD_EXECUTABLE)

With this second way, the wireless-tools binary will be compiled along with the 

Android package. The default location of the Android package kit is inside "bin" 

directory, while for JNI objects and binaries are in the "libs/armeabi" directory.

Figure 3 : JNI output compilation on Android project 

When the android package kit is installed into the Android operating system, the 

binary  files  from  C/C++  code  is  not  installed  automatically.  To  include  the 

executable binary file into the Android package can be done by copying it into the 

"res/raw" folder.

The next process is extracting the raw file from the Android package kit. Android 

provides a method called openRawResource from the class Resource with ID of 

resource as parameter. This method will return an InputStream of raw file that we 

specified by it's ID[8]. From this input stream we can put it to OutputStream line by 

University of South-Brittany University of Indonesia

Development of saje..., Fitri Wibowo, FT UI, 2011.



17

line to get the original raw file.  Here is the code snippet that we use to copy 

iwconfig_saje binary to Android package kit, and then extracting it automatically 

when the Saje2Droid application is executed.

File outFile = new 
File("/data/data/casa.saje/bin/iwconfig_saje");
InputStream is = 
this.getResources().openRawResource(R.raw.iwconfig_saje);
byte buf[] = new byte[1024];
int len;
try {

OutputStream out = new FileOutputStream(outFile);
while ((len = is.read(buf)) > 0) {

out.write(buf, 0, len);
}
out.close();
is.close();

} catch (IOException e) {
return "Couldn't install file - " + filename + "!";

}

We  set  the  location  of  wireless-tools  binary  in  " bin "  directory  inside 

/data/data/casa.saje which is the default data path of android application. Once the 

file  is  copied  from  Android  ressource  to  the  system  we  need  to  change  its 

permission to executable. There was a little problem while testing wireless-tools 

binary  in  Android  OS,  since  the  Android  emulator  does  not  support  yet  WiFi 

device emulation[9], we need to test it on "real" Android device.  These are the 

ouput  of iwconfig command tested on rooted HTC Desire  and android device 

emulator :

HTC Desire :

# ./iwconfig_saje 
lo        no wireless extensions. 
dummy0    no wireless extensions. 
rmnet0    no wireless extensions. 
rmnet1    no wireless extensions. 
rmnet2    no wireless extensions. 
usb0      no wireless extensions. 
sit0      no wireless extensions. 

University of South-Brittany University of Indonesia

Development of saje..., Fitri Wibowo, FT UI, 2011.



18

ip6tnl0   no wireless extensions. 
eth0      IEEE 802.11-DS  ESSID:""  Nickname:"" 
          Mode:Managed  Frequency:2.412 GHz  Access Point: 

Not-Associated   
          Bit Rate:54 Mb/s   Tx-Power:32 dBm   
          Retry min limit:7   RTS thr:off   Fragment thr:off 
          Encryption key:off 
          Power Managementmode:All packets received 
          Link Quality=5/5  Signal level=0 dBm  Noise 
level=0 dBm 
          Rx invalid nwid:0  Rx invalid crypt:0  Rx invalid 
frag:0 
          Tx excessive retries:0  Invalid misc:0   Missed 
beacon:0

Android device emulator :

# ./iwconfig_saje 
lo        no wireless extensions. 
eth0      no wireless extensions. 
tunl0     no wireless extensions. 
gre0      no wireless extensions. 

3.3 Configuring the wireless interface in ad-hoc mode on Android

After integrating succesfully  the wireless-tools into Android operating system , 

the next step is to configure the WiFi interface on Android by using the wireless 

tools.  There  are  several  processes  that  needed  to  be  done to  ensure  that   the 

wireless tools can be run on the Android operating system. We  know that wireless 

tools requires the wireless extensions to be enabled in Android kernel. So we must 

check first whether the kernel of Android has wireless extensions enabled in its 

kernel.

First  method  to  check  wireless  extension  on  Android  operating  system is  by 

checking  the  variable  CONFIG_WIRELESS_EXT=y  or 

CONFIG_NET_RADIO=y  (depends  on  the  kernel  version)  inside  the  kernel 

University of South-Brittany University of Indonesia

Development of saje..., Fitri Wibowo, FT UI, 2011.



19

configuration.  The  second  method  is  verifying  the  existence  of  the  file 

/proc/net/wireless, since by default this file will be created when the Linux kernel 

has wireless extensions support [10].

When the wireless extension is enabled in the kernel of the Android operating 

system,  the  wireless  device  configuration  can  be  done with  the  wireless  tools 

which have been integrated before. To avoid crash configuration with the default 

wireless  management  tools  on  Android,  it  must  be  noticed  earlier  that  the 

wpa_supplicant  process  is  terminated.  After  that  we need  to  know the  kernel 

module for the wireless interface so it can be loaded manually.

To change the wireless mode settings is  using the iwonfig command,  with an 

option "mode". In certain cases, the channel option must be specified. Since this 

command is configuring the hardware settings, this requires administrator (root) 

access  on  the  Android  operating  system  side.  At  this  stage,  to  verify  the 

connectivity on an ad-hoc networks in Android operating system, we can use the 

command  ICMP Echo  Request  (ping).  At  the  end  of  the  project,  testing  the 

connectivity is done by including client server applications using UDP protocol.

We did an ad-hoc test  between Android devices and a personal computer. The 

result  shows that  the  ICMP echo request  works  successfully.  There  is  no  big 

problem in  this  test  except  that  some Android  device  has  power  management 

turned  ON  by  default,  to  solve  this  issue,  we  have  to  modify  its  power 

management by turning it OFF. This is the example ad-hoc configuration step that 

we use on HTC Desire running on Android rooted Android 2.2 :

# killall wpa_supplicant
# insmod /system/lib/modules/bcm4329.ko
# ./iwlist_saje eth0 scan
eth0      Scan completed :
          Cell 01 - Address: BE:D0:3D:6C:F8:1A
                    ESSID:"ika"
                    Mode:Ad-Hoc

University of South-Brittany University of Indonesia

Development of saje..., Fitri Wibowo, FT UI, 2011.



20

                    Frequency:2.412 GHz (Channel 1)
                    Quality:5/5  Signal level:-43 dBm  Noise 
level:-92 dBm
                    Encryption key:off
                    Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 11 Mb/s; 
6 Mb/s
                              9 Mb/s; 12 Mb/s; 18 Mb/s; 24 Mb/s; 
36 Mb/s
                              48 Mb/s; 54 Mb/s

# ./iwconfig_saje eth0 power off
# ifconfig eth0 down       
# ./iwconfig_saje eth0 mode ad-hoc channel 1
# ifconfig eth0 192.168.0.3 up
# ./iwconfig_saje eth0 essid ika
# ping -c1 192.168.0.1
PING 192.168.0.1 (192.168.0.1) 56(84) bytes of data.
64 bytes from 192.168.0.1: icmp_seq=1 ttl=128 time=7.59 ms
--- 192.168.0.1 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 7.599/7.599/7.599/0.000 ms

3.4 Porting SAJE project to Android

In this task, we start to integrate SAJE to the Android project Saje2Droid. We use 

the latest revision of SAJE. This version of SAJE contains some improved code 

for Android like system command execution and better wireless device detection. 

Since  we  need  to  modify  some  code  in  SAJE  to  match  with  Android  OS 

requirement, we included the SAJE source code tree to the project and not just as 

JAR library. To integrate a Java project like SAJE to Android project, we just need 

to copy it inside “src” directory.

University of South-Brittany University of Indonesia

Development of saje..., Fitri Wibowo, FT UI, 2011.



21

Figure 4 : SAJE integrated into Android project

3.4.1 User Interface Prototype

The important step when developing an Android application is prototyping the 

user interface.  We did the prototype with Pencil  and android-ui-utils.  The first 

prototype created was using TabView activity, but at the end we decided to use 

ListView activity since it is more simple and like common Android  applications 

so it improve the user experience and interaction.

There  are  6  Android  activites  used  in  this  project.  The  first  activity  is 

MainActivity that will showed up when the Application is executed and within 

this activity, the other activity can be started. The other activities are CpuActivity 

that contains CPU information, MemoryAcitivity that contains memory and swap 

information,  BatteryActivity  that  contains  current  Battery  status,  WifiActivity 

contains  wireless  and  network  configurations,  and  the  last  Activity  is 

WifiRunActivity  that  will  be started when all  WiFi  settings  in  WifiActivity  is 

applied successfully and it will show a notification and connections information 

like SSID  and IP of the WiFi interface:

University of South-Brittany University of Indonesia

Development of saje..., Fitri Wibowo, FT UI, 2011.



22

Figure 5 : The UI prototype of MainActivity and the result on Android device

3.4.2 Building SAJE shared library

A shared library is a binary file that contains a set of callable C functions. In this 

case, we tried to make a function collections from C sources of SAJE project so 

Android application   may load and unload this  shared libraries at  will.  The C 

sources  of  SAJE  project  itself  depends  on  wireless  tools  headers  for  its 

compilation. This figure shows the workflow diagram of Saje2droid projects.

University of South-Brittany University of Indonesia

Development of saje..., Fitri Wibowo, FT UI, 2011.



23

Figure 6 : Work-flow diagram of Saje2Droid project

The  Android.mk configure  the  build  parameters  for  the  C source.  To build  a 

shared library libsaje.so we specified a variable $(BUILD_SHARED_LIBRARY) 

at the end of our configuration. This code snippet shows the build configuration 

Android.mk of Saje2Droid

## libsaje

include $(CLEAR_VARS)
LOCAL_PATH := $(BASE_PATH)
LOCAL_SRC_FILES := $(SAJE_SRC_FILES)
LOCAL_C_INCLUDES += \

$(LOCAL_PATH)/include \
$(LOCAL_PATH)/wireless-tools

LOCAL_STATIC_LIBRARIES := iwlib
LOCAL_MODULE := saje
include $(BUILD_SHARED_LIBRARY) 

The above code will tell Android build system to generate a shared library from 

the  source  file  defined  in  LOCAL_SRC_FILES  variable.  Since  Saje2Droid 

depends on wireless tools header , we specified it with LOCAL_C_INCLUDES 

variable  and  LOCAL_STATIC_LIBRARIES.  Once  the  project  compilations  is 

done the libsaje.so will be founded in output directory (libs/armeabi/libsaje.so) 

and  will  be  included  automatically  to  android  package  kit  as  application 

dependencies.

University of South-Brittany University of Indonesia

Development of saje..., Fitri Wibowo, FT UI, 2011.



24

When the Saje2Droid application is installed on Android OS, the shared library 

should  be  copied  automatically  to  {APPLICATION_DATA_PATH}/

{PACKAGE_NAME}/lib.  The  default  data  path  of  Android  application  is  in 

/data/data.  So  we  can  find  libsaje.so  in  /data/data/casa.saje/lib/libsaje.so.  This 

shared library will be loaded automatically when the application is started. The 

Android's logcat will show this information.

Figure 7 : Logcat informations of Saje2Droids shared library

3.4.3 CPU

In this part, we start to test the CPU codes of SAJE into Android OS. The original 

code does not work on Android because we found that the Androids /proc/cpuinfo 

has different structure with that in Linux operating system. So we modified the 

CPU code in  SAJE to  match  with  the   structure  of  /proc/cpuinfo  on Android 

operating system.

The  modified  files  are  jni/system/linux/i386/cpuinfos.c, 

jni/include/system/cpuinfo.h,  jni/native/CpuModel.c  and 

src/casa/saje/cpu/CPUModel.java.  For the current version of Saje2Droid , we 

only use some informations from Android cpuinfo such as Processor, BogoMIPS, 

Features, CPU architecture and Hardware.  This is an example  of /proc/cpuinfo 

structure on Android OS and Linux OS.

University of South-Brittany University of Indonesia

Development of saje..., Fitri Wibowo, FT UI, 2011.



25

Android :

# cat /proc/cpuinfo
Processor       : ARMv6-compatible processor rev 2 (v6l)
BogoMIPS        : 460.06
Features        : swp half thumb fastmult edsp java 
CPU implementer : 0x41
CPU architecture: 6TEJ
CPU variant     : 0x1
CPU part        : 0xb36
CPU revision    : 2
Hardware        : trout
Revision        : 0080
Serial          : 0000000000000000

Linux :

# cat /proc/cpuinfo 
processor       : 0 
vendor_id       : GenuineIntel 
cpu family      : 6 
model           : 42 
model name      : Intel(R) Core(TM) i3-2310M CPU @ 2.10GHz 
stepping        : 7 
cpu MHz         : 800.000 
cache size      : 3072 KB 
physical id     : 0 
siblings        : 4 
core id         : 0 
cpu cores       : 2 
...

University of South-Brittany University of Indonesia

Development of saje..., Fitri Wibowo, FT UI, 2011.



26

The UI prototype of CpuActivity and the result on Android device :

Figure 8 : The UI prototype of CpuActivity and the result on Android device

3.4.4 Memory and Swap

The original memory and swap code of SAJE was expected to work on Android 

device since there is no different structure on /proc/meminfo between Linux and 

Android  OS.  But  there  was  a  problem  when  we  tried  to  show  the  result  of 

MemoryActivity. The problem was the values of memory and swap in the result is 

not correct. This is the output from the logcat command on Android device : 

Figure 9 (a) : Logcat information of memory report

University of South-Brittany University of Indonesia

Development of saje..., Fitri Wibowo, FT UI, 2011.



27

Figure 9 (b) : Logcat information of swap report

As we can see in  the figure  above,  the  MemoryActivity  reports  that  the total 

memory on the current system is  in minus values and it reports that the current 

Android OS has certain values of swap.  However it does not match with the 

contents  of  /proc/meminfo.  These  are  the  contents  of  /proc/meminfo  from the 

same Android device :

# cat /proc/meminfo
MemTotal:         256556 kB
MemFree:          123740 kB
Buffers:              12 kB
Cached:            63092 kB
SwapCached:            0 kB
…
Mlocked:               0 kB
SwapTotal:             0 kB
SwapFree:              0 kB
Dirty:                 0 kB
Writeback:             0 kB

After we investigated the memory and swap code in SAJE, we found that it uses C 

preprocessor directives #ifdef LINUX_KERNEL_2_6 or LINUX_KERNEL_2_4. 

This  cause  the  incorrect  reports  on  memory  and  swap  Activity,  even  the 

compilation process was done successfully. The problem solved by adding a new 

preprocessor  directives  called  ANDROID,  and  then  specify  it  in 

LOCAL_CFLAGS  variable  of  the  Android.mk.  This  is  the  code  snippet  of 

Android.mk that we used : 

University of South-Brittany University of Indonesia

Development of saje..., Fitri Wibowo, FT UI, 2011.



28

...
LOCAL_CFLAGS := -g -DANDROID
LOCAL_STATIC_LIBRARIES := iwlib \

  libc
LOCAL_MODULE := saje
...

The UI prototype of MemoryActivity and the result on Android device :

Figure 10 : The UI prototype of MemoryActivity and the result on Android device

3.4.5 Battery

The current version of SAJE uses APM (Advance Power Management) library to 

manage battery while running on Linux operating system. Since Android does not 

use APM to manage its battery, we can not use SAJE battery code on Android 

operating system. However Android still  provide sysfs that exports information 

about devices and drivers from the kernel device including battery information 

that located in /sys/class/power_supply/battery.

For the current version of Saje2Droid, we have not implemented yet the battery 

information from sysfs of Android operating system. However Android already 

University of South-Brittany University of Indonesia

Development of saje..., Fitri Wibowo, FT UI, 2011.



29

have a class located in android.os.BatteryManager that provides the information 

about the battery od the current Android operating system. The BatteryManager 

class  contains  string  and  constants  used  for  values  in  the 

ACTION_BATTERY_CHANGED Intent. 

To  listen  the  ACTION_BATTERY_CHANGED  Intent,  we  need  to  register  a 

BroadcastReceiver (android.content.BroadcastReceiver) when the Intent is fired. 

The  receiver  has  a  function  called  onReceive()  that  called  when  the 

BroadcastReceiver is receiving an Intent broadcast. 

 

The current version of Saje2Droid provides some battery informations such as 

level of battery in percent, voltage, temperature, technology used, status of battery 

(charging,  dis-charging,  not-charging,  full),  plug-type  (unplugged,  AC  power, 

USB power, AC/USB power, unknown) and health quality (good, over heat, dead, 

over voltage, unspecified failure, unknown). 

The UI prototype of BatteryActivity and the reesult on Android device :

Figure 11 : The UI prototype of BatteryActivity and the result on Android device

University of South-Brittany University of Indonesia

Development of saje..., Fitri Wibowo, FT UI, 2011.



30

3.4.6 Wi-Fi

The last part of SAJE project that we tried to port to Android OS is WiFi code. 

SAJE  has  network  devices  discovery  support  that  located  in 

NetworkInterfaceDiscovery class located inside casa.saje.discovery package that 

works perfectly on the Linux operating system. But we have not use this feature 

on the first attemp of porting. We have specified manually the interface name of 

WiFi interface on Android by investigating it on the Android shell, and then create 

an instance of NetworkInterface class of this interface.

There  was  a  problem  that  occured  on  first  attemp  of  porting  proccess.  This 

problem occured when the object of NetworkInterface is instantiated, SAJE will 

throw  " NoSuchResource "  exception  with  additional  message  “Cannot  get 

NetworkInterface type for resource named 'eth0'!”. In this test, we use Android 

Cyanogenmod that running on HTC Dream device that does not have wireless 

extension enabled in its kernel. This is the detailed message showed on Android 

logcat:

Figure 12 : Logcat information of “NoSuchResource” exception

The result is the same when we compared to the Android devices that supports 

wireless extension. The Android version tested was Froyo (2.2) that running on 

Nokia N900 device. This version of Android is known to have wireless extension 

support  in  its  kernel.  This  error  was  caused  by  getResourceClass  function  in 

NetworkInterface class that can not get the type of the network interface given. 

This  function  should  return  the  appropriate  subclass  of  NetworkInterface 

corresponding  to  the  type  of  the  given network  interface's  name by calling  a 

native function getType(). 

University of South-Brittany University of Indonesia

Development of saje..., Fitri Wibowo, FT UI, 2011.



31

The  function getType() will return an integer value of the network interface type 

that is defined before as constant. For the wireless network interface it should be 

71  defined  as  IFTYPE_WIRELESS.  The  native  code  will  verify  the  wireless 

interface by calling is_wireless() function located in wirelessif.c and the problem 

was this method could not detect WiFi interface correctly. Since SAJE revision 

1978 this bug is corrected.

However the wireless network device initialitation error was not solved yet. We 

try to debug the application and we found that SAJE uses “ifonfig” command to 

find network device information by parsing in its output. The Android's “ifconfig” 

is a modified version of Linux's “ifconfig”, so it does not provide the information 

that needed by SAJE. 

To solve this problem, we did a cross compile to the original ifconfig's source by 

integrating net-tools source code to JNI code in Saje2Droid project's  tree. We 

specified to compile  “ifconfig” command line only since net-tools comes with a 

collection of standard tools for network configuration. This is the code snippet of 

Android.mk for compiling net-tools's “ifconfig” command for Android:

# build ifconfig-saje executable

include $(CLEAR_VARS)
LOCAL_PATH := $(NT_PATH)
LOCAL_SRC_FILES:= ifconfig.c
LOCAL_C_INCLUDES += $(LOCAL_PATH)/include \

$(LOCAL_PATH)/lib

LOCAL_STATIC_LIBRARIES := netlib
LOCAL_MODULE := ifconfig_saje
include $(BUILD_EXECUTABLE)

Wireless device can be initiated successfully after the compilation of “ifconfig”. 

The next step was getting WiFi device information such as SSID name, channel 

University of South-Brittany University of Indonesia

Development of saje..., Fitri Wibowo, FT UI, 2011.



32

used by device, WiFi mode (ad-hoc, managed) trough the native code in shared 

library. The current version of Saje2Droid can implement the getEssid() function 

from WirelessInterface class but for the others function we have not implement it 

yet.

The last work on porting wireless interface code is set the WiFi parameters with 

SAJE.  The current  version of  SAJE provides  several  function  to  set  the  WiFi 

parameters through wireless tools library. This function includes set essid, WiFi 

channel, WiFi mode, and frequencies used by the WiFi device.  This function is 

known to work on Linux operating system with administrator (root) privileges 

because wireless tools uses “ioctl” function to set and get network parameters on 

wireless device[3]. This function indeuces a problem on Android device because 

Android would never run an application as root.

Android  uses associated permission mechanism that allow an application to do a 

specific operations. This permission is defined in AndroidManifest.xml that can 

be  found  inside  each  Android  project  within  tag  <uses-permission 

android:name”REQUIRED_PERMISSION”/>.  The  REQUIRED_PERMISSION 

is a constant string that provided by Android system.  The table below shows the 

Android permissions used by current version of Saje2Droid:

University of South-Brittany University of Indonesia

Development of saje..., Fitri Wibowo, FT UI, 2011.



33

Constant string Associated permissions

HARDWARE_TEST Allows access to hardware peripherals.

ACCESS_WIFI_STATE Allows  applications  to  access  information 
about Wi-Fi networks

CHANGE_WIFI_STATE Allows  applications  to  change  Wi-Fi 
connectivity state

UPDATE_DEVICE_STATES Allows  an  application  to  update  device 
statistics.

WAKE_LOCK Allows using  PowerManager  WakeLocks  to 
keep processor from sleeping or screen from 
dimming

BATTERY_STATS Allows  an  application  to  collect  battery 
statistics 

Table 1 : Associated permission uses by Saje2Droid 

The  issue  on  Wi-Fi  parameters  setting  is  still  not  solved  yet  even  Android 

permissions  is   specified in  AndroidManifest.xml.  The solutions  that  currently 

proposed to  set  Wi-Fi  parameter  is  using binary file  of wireless tools  such as 

“iwconfig”,  “iwlist”  that  executed  by  root  user  on  Android  operating  system. 

Unfortunately, the default Android operating system does not allow root access on 

it's shell. Due to this limitation, the current solutions will work only on rooted 

Android phone.

University of South-Brittany University of Indonesia

Development of saje..., Fitri Wibowo, FT UI, 2011.



34

3.5 Developing an application to control Wi-Fi

The last step of this project is developing an Android activity that can control the 

Wi-Fi interface in Android operating system. This features uses wireless tools as 

back-end of wireless configuration and depends on several standard Linux tool 

such as iproute, net-tools to set the network parameters.  This figure below shows 

the prototype of Android activity that control the Wi-Fi and the result on Android 

device:

Figure 13 : The UI prototype of  WifiActivity and the result on Android device

This Android activity is defined by WifiActivity class. Like the others Android 

activity in  Saje2Droid project, this class uses simple ListView as  main interface. 

For each list, it consists of 3 Android's TextView objects. The first TextView is the 

title of the header in each section.  As we can see in the figure above, we separate 

the Wi-Fi device settings with the network configuration into 2 separate sections. 

The second TextView is the title of the list that we called parent TextView. The 

parent  TextView is  marked by using  a  bigger  font  size.  The last  TextView is 

University of South-Brittany University of Indonesia

Development of saje..., Fitri Wibowo, FT UI, 2011.



35

located below the parent TextView that we called child TextView. This TextView 

uses a smaller font size. The child view is used for displaying certain values, so 

we set it to dynamically changeable by the application. 

All  of these static user interface settings saved in a XML file that defined the 

layout of Android activity. This XML must be stored in “res/layout” directory. The 

static string values can be saved also in a XML file called strings.xml located 

inside “res/values” directory of the Android project. This listview is configured to 

click-able so it receives an events click/tap it will show dialog that ask user input.

3.5.1 Device information section

In  the  device  information  sections,  we  currently  implement  kernel  module 

configuration, network interface name configuration, ssid of Wi-Fi device, Wi-Fi 

mode, and channel. We have improved the kernel module configuration by adding 

an  automatic  kernel  module  name  detection.  In  the  wireless  interface  name 

configuration,  we  implement  an  automatic  detection   using  the 

NetworkInterfaceDiscovery class of SAJE. The class will return a set of string of 

the network device founded in the device. And then for each device we initiate it 

to  a NetworkInterface instance.  After  it,  we can verify a wireless interface by 

calling a native function getType. 

This features is known work on certain Android devices. Since Android is an open 

source operating system hence there are a lot of vendor that uses their own version 

of  Android  means  that  they  may  have  modified  some  default  parameters  of 

Android operating system, so this features may not work. In this situation, the 

users  still  can  use  the  manual  input  of  wireless  kernel  module  and  network 

interface name. 

University of South-Brittany University of Indonesia

Development of saje..., Fitri Wibowo, FT UI, 2011.



36

       (a)                           (b) 

(c)

Figure 14 (a): Method selection for kernel module / wireless interface name configuration,

   (b): WiFi mode selections dialog, (c): channel selections dialog

For the ssid setting, it currently supports manual input only. It will be interesting 

to  implement  wireless  network  cell  detection  in  the  future  work  since  SAJE 

already had a native function to get a list of wireless network cell. In the Wi-Fi 

University of South-Brittany University of Indonesia

Development of saje..., Fitri Wibowo, FT UI, 2011.



37

mode settings, we provide two options. First is ad-hoc and the second is managed. 

So far, we have not work a lot in the managed Wi-Fi mode , since this projects is 

focusing on an ad-hoc network between Android device.  The wireless channel 

configuration currently supports standard European model that allowing channels 

1 through 13.

3.5.2 Network configuration section

The  second  section  of  Listview  in  WifiActivity  provides  standard  netwok 

configuration.  In  the  current  version  of  Saje2Droid,  we  can  configure  IPv4 

address, netmask, gateway, DNS server, and IPv6. The IPv6 implementation is 

still under development since not all of Android device enable the IPv6 supports. 

In an ad-hoc network,  we do not  have to fill  in  the gateway and DNS server 

configuration if the device is not connected to a network router. So when the value 

of gateway and DNS server is empty, the application will not update the routing 

table and DNS server address of the Android operating system.  This figure below 

shows a dialog to input an IPv4 address:

Figure 15 : Typical input dialog uses in network configuration section

University of South-Brittany University of Indonesia

Development of saje..., Fitri Wibowo, FT UI, 2011.



38

3.5.3 Profile management

For easier configuration of Wi-Fi device, we made a simple profile management 

for Wi-Fi configuration. Basically, this profile management's task is saving the 

Wi-Fi parameters that showed on the Activity to a configuration file, then load it 

whenever user need it. Currently it provides these method:

save profile Save a profile base on its SSID 

delete profile Delete profile saved on the system

load profile Load  a  saved  profile  to  the  current 
configuration

apply profile Apply the wireless & network settings 
Table 2 : profile management function in Saje2Droid

To access this function, the user should click Android menu button, that will show 

an  application's  menu.  The  figures  below  show  some  of  profile  management 

features:

Figure 16 : Profile management menus

University of South-Brittany University of Indonesia

Development of saje..., Fitri Wibowo, FT UI, 2011.



39

3.5.4 Connection information

The latest Android activity that we have developed in the Saje2Droid project was 

WifiRunActivity. This activity provides some basic info on an ad-hoc network of 

the Android device by showing current IPv4 address and SSID of the network. 

This  activity  will  be launched when all  of  the profile  configuration is  applied 

successfully.  It  will  show  first  a  notification  on  the  Android  status  bar.  This 

notification is used to make sure that the WifiRunActivity  is always running even 

the  user  start  another  application  on  Android.  To  test  a  connection  between 

Android  devices,  we  provides  simple  client-server  application  that  can 

send/receive a message trough port 4444 UDP protocol The figure below show the 

WifiRunActivity:

 Figure 17 : WifiRunActivity 

University of South-Brittany University of Indonesia

Development of saje..., Fitri Wibowo, FT UI, 2011.



4. CONCLUSION

Although  there  are  some problems in  the  process  of  porting  SAJE project  to 

Android, with some adaptation, most of the code of SAJE project can be ported to 

Android,  because Android is  a  Linux-based operating system. There are  some 

parts  that  still  need  to  be  developed.  SAJE  currently  only  supports  APM 

(Advanced Power Management) for battery management, for the future work it 

will be interesting to add the JNI code on a package casa.saje.battery to manage 

battery on Android operating system .

The  current  application  user  interface  is  very  simple  and  it  still  needs  an 

improvement. For example by adding a CPU and Memory usage visualization. 

And also it would be interesting to implement  wireless network cell detection in 

the WifiActivity for the future work since SAJE already have a native function to 

get a list of wireless network cell.

We have successfully set-up an ad-hoc communication mode in Android by using 

wireless tools. With this mode, we do not need to set up a network infrastructure 

to communicate Android device. In this version of Saje2Droid we have not yet 

implement  the  wireless  security.  Simple  encryption  schemes,  such as  WEP, is 

supported by wireless tools. This encryption scheme is usually easy to set-up. But 

for higher level of security, we would advise to use WPA encryption which have 

better key management and using AES instead of RC4.

University of South-Brittany 40 University of Indonesia

Development of saje..., Fitri Wibowo, FT UI, 2011.



41

BIBLIOGRAPHY

[1] Pencil, Pencil project homepage. [online, June 2011] 

http://pencil.evolus.vn/en-US/Home.aspx

[2] Xulrunner, Xulrunner homepage. [online, June 2011] - 

https://developer.mozilla.org/en/XULRunner

[3] android-ui-utils, Android UI utilities – Pencil extension. [online, June 

2011] - http://code.google.com/p/android-ui-utils

[4] wireless-tools, Wireless tools for Linux. [online, June 2011] - 

http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Tools.html

[5] net-tools, net-tools project. [online, June 2011] - 

https://developer.berlios.de/projects/net-tools/

[6] Android market, BusyBox for Android. [online, June 2011] - 

https://market.android.com/details?id=stericson.busybox

[7] Android market, SuperUser application for Android. [online, June 2011] 

- https://market.android.com/details?id=com.noshufou.android.su&hl=en

[8] Android documentation, Providing Resources in Android application. 

[online, June 2011] - 

http://developer.android.com/guide/topics/resources/providing-

resources.html

[9] Android documentation, Android emulator. [online, June 2011] - 

http://developer.android.com/guide/developing/devices/emulator.html

[10] wireless-tools, wireless-tools documentation. [online, June 2011] - 

http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Linux.Wireless.Exte

nsions.html

University of South-Brittany University of Indonesia

Development of saje..., Fitri Wibowo, FT UI, 2011.



42

APPENDIX

Development of saje..., Fitri Wibowo, FT UI, 2011.



43

Appendix 1 : Class diagram of Saje2Droid project

Development of saje..., Fitri Wibowo, FT UI, 2011.



44

Appendix 2 : Class definition

1. MainActivity 2. SajeApplication

3. CpuActivity

4. MemoryActivity

University of South-Brittany University of Indonesia

Development of saje..., Fitri Wibowo, FT UI, 2011.



45

5. WifiActivity 6. WifiConfig

7. WifiRunActivity

University of South-Brittany University of Indonesia

Development of saje..., Fitri Wibowo, FT UI, 2011.



46

Appendix 3 : Use case diagram

Development of saje..., Fitri Wibowo, FT UI, 2011.



1. Show CPU information

2. Show Memory information

Click on 
“CPU” list

Click on 
“Memory & Swap”

Development of saje..., Fitri Wibowo, FT UI, 2011.



3. Show Battery information

Click on 
“Battery”

Development of saje..., Fitri Wibowo, FT UI, 2011.



49

4. Configure WiFi & network

Click on 
“Wireless

&
Networks”

Click on 
“kernel module /

device name”

Click on 
“ipv4”

Click on 
“mode”

Click on 
“channel”

Development of saje..., Fitri Wibowo, FT UI, 2011.



50

Click on 
“Android menu 

button”

Click on 
“Delete/Load profile”

Click on 
“Apply profile”

Development of saje..., Fitri Wibowo, FT UI, 2011.


	DECLARATION OF ORIGINALITY
	ACKNOWLEDGMENT
	DECLARATION OF PUBLICATION APPROVAL PAGE FOR ACADEMIC PURPOSE
	ABSTRACT
	TABLE OF CONTENTS
	INDEX OF FIGURES
	INDEX OF TABLES
	1. Introduction
	1.1 Presentation of VALORIA

	2. The SAJE project 
	2.1 Context
	2.2 Motivations
	2.3 The expected  system
	2.4 Known problem
	2.5 Project organization
	2.6 Development Environment 
	2.7.1 wireless-tools [4]
	2.7.2 net-tools [5]
	2.7.3 Busybox [6]
	2.7.4 SuperUser [7]


	3. Implementation
	3.1 Setting up development Environment
	3.2 Integrating wireless-tools into Android.
	3.3 Configuring the wireless interface in ad-hoc mode on Android
	3.4 Porting SAJE project to Android
	3.4.1 User Interface Prototype
	3.4.2 Building SAJE shared library
	3.4.3 CPU
	3.4.4 Memory and Swap
	3.4.5 Battery
	3.4.6 Wi-Fi

	3.5 Developing an application to control Wi-Fi
	3.5.1 Device information section
	3.5.2 Network configuration section
	3.5.3 Profile management
	3.5.4 Connection information


	4. Conclusion
	Bibliography
	Appendix
	Appendix 1 : Class diagram of Saje2Droid project
	Appendix 2 : Class definition
	Appendix 3 : Use case diagram


