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ABSTRACT 

 

Name  : Annie Wulandari 

Study Program : Civil Engineering 

Title  : Modelling Size Effect in Concrete Specimen 

 
Size effect on structural strength is normally understood as the effect of the 

characteristic structure size on the nominal strength of the structure when 

geometrically similar structures are compared. Fracture test are usually conducted 

on relatively small specimen and them this information is extrapolated to large 

structures. The question is that are we able to reproduce the size effect in the 

modern numerical techniques. Numerical calculations by computational code 

based on finite element have been done. The results show that in order to produce 

a size effect, it is necessary to use a regularization method.  
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CHAPTER 1 

INTRODUCTION 

 

The study of propagation of cracks in concrete elements of structures is 

considered important since it influences the ultimate strength and the resistance of 

a structure. One of the approaches that can be used to analyze this crack 

propagation is by Continuum Damage Mechanics. Continuum damage mechanics 

approach allows one to describe the material damage, from an undamaged state to 

its final state, corresponding to the macrocrack initiation and propagation. 

Throughout the years, different concepts involving continuum damage mechanics 

have been used to simulate the experimentally observed behavior of concrete 

materials. Many researchers applied continuum damage mechanics to linear 

elastic analysis of concrete where the mechanical effect of the progressive 

microcracking and strain softening are represented by a set of internal state 

variables which act on the elastic behavior (Mazars, 1984; Mazars and Pijaudier-

Cabot, 1989; Willam et. al., 2001; Comi and Perego, 2001; Tao and Phillips, 

2005; Labadi and Hannachi, 2005; Junior and Venturini, 2007; Khan et. al., 

2007). One of the model, which is the model behavior of MAZARS1 is a simple 

model based on the damage mechanics2, which makes it possible to describe the 

decrease of material under the effect of the microcracks propagation in concrete. It 

relies on a single internal scalar variable D, describing the damage isotropically, 

but still distinguishing the damage of traction and compression.  

Meanwhile, the study of structural strength cannot be separated from the 

scaling problem, especially on the quassibrittle materials, where these materials 

are incapable of fracture yielding, failing due to fracture that is characterized by a 

large fracture process zone 3 . Considering any type of geometrically similar 

specimens or structures of various sizes as shown in figure 1.1, with geometrically 

similar cracks, and plot the logarithm of the nominal stress σN versus logarithm of 

size. The strength criterion predicts σN at failure to be independent of size, while 

all tests indicate a decrease of σN with an increase of size.  According to the 

classical linear fracture mechanics, σN in figure I.1 is then proportional to (size)- ½ . 

However with the exception of very large structures, this slope appears to be too 

Modelling size..., Annie Wulandari, FTUI, 2010



 

Universitas Indonesia 

2

steep in comparison with most existing data. The reality seems to be a gradual 

transition from the horizontal straight line for the strength criterion to the inclined 

straight line of slope – ½. An analytical study of the size effect due to localization 

of distributed cracking was begun in 19764. Later, a simple formula for the size 

effect, which describes the size effect for quasibrittle failures preceded by large 

stable crack growth and allows determination of material fracture parameters from 

maximum load tests, was derived5 and the crack band model6 was developed.  
 

Figure 1. 1. Illustration of structural size effect in failure 

 
 

With an approach of a crack in a smeared manner, it is convenient to 

model the concrete in large finite element programs since its convenience in 

computational work as well as resemblance to reality. In this approach, introduced 

by Rashid (1968), many parallel cracks of infinitely small opening are imagined to 

be continuously distributed (smeared) over the finite elements. This can be 

conveniently modeled by reducing the material stiffness and strength in the 

direction normal to the cracks after the peak strength of the material has been 

reached. The evolution of the cracking process down to full fracture implies strain 

softening, a term which describes the post-peak gradual decline of stress at 

increasing strain. However, the smeared cracking approach leads to certain 

theoretical difficulties. They consist of the localization instabilities and spurious 

mesh sensitivity of finite element calculation. Therefore, one must seek an 

appropriate model to overcome the problem of mesh independency. 
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Regularization of fracture energy, which is introduced by La Borderie 7  and 

Hillerborg8 is generally considered as a useful method to overcome this problem. 

The main objective of this thesis is show whether it is possible to simulate 

size effect by using the modern regularization numerical methods; i.e is to seek 

the correlation between damage models, the crack concept along with the 

computational aspect implanted in the computer code based on finite element 

method. To understand the problem, the computation on this thesis will be divided 

into two models, a simple one dimensional concrete bar and a three point bending 

test of a concrete beam.  

The second chapter on this thesis report will contain the theoretical 

approach which is the main basic of the numerical analysis that will be done. In 

this chapter, a brief explanation about smeared crack theory, as the concept used 

in the numerical analysis, will be presented. In this chapter also, the basic concept 

of scaling effect based on the crack band theory will be explained. 

On the third chapter, the modeling techniques that the author will 

implement during the numerical analysis will be explained. This include the basic 

theory of Mazars law, the Hillerborg approach for regularization of mesh 

independency, and the La Borderie approach for crack propagation. 

The fourth chapter will describe the numerical studies that the author has 

done. The first model is a one dimension concrete bar with a size of 0.1m × 1m, 

imposed by uniaxial force in the horizontal (x) direction. The damage model that 

will be used is the Mazar damage law, while the computational is done several 

approaches, i.e. local calculation, non-local calculation, the using of the 

Hillerborg7 to obtain the regularization and La Borderie8 method to validate the 

crack opening. To obtain the result regarding to the mesh dependency, the 

concrete is modeled in four different types of meshes, i.e. 11, 21, 31 and 61 

meshes. The second model is the three point bending test, where a beam is 

considered to be imposed by a single load in the center of the beam. In order to 

seek the size effect, there will be three different size of concrete beams, i.e. D1 = 

0,4m × 0,1m, D2 = 0,8m × 0,2m, and D3 = 1,6m × 0,4m. For the reason of 

simplicity, beams will be modeled only half of them. Using the Mazars damage 
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law, concrete is analyzed by two types of apporach, which are the non-local 

calculation and the Hillerborg method.  

The result of the numerical studies will be presented in the fourth chapter. 

In the end of the chapter, the numerical result will be compared with the 

experimental result done by SYED Yasir Alam (2009).  

In the last chapter of this thesis report, the main conclusion and notes for 

future work will be discussed.  
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CHAPTER 2 

THEORITICAL APPROACH 

 

2. 1. CRACK BAND THEORY 

Basically, the concept of crack can be categorized into two; discrete 

concepts and smeared concepts. The former approach models a crack as a 

geometrical discontinuity, whereas the latter imagines a cracked solid to be a 

continuum. In the early days of finite element analysis cracks were modeled by 

means of a separation between element edges9 . The approach suffers from two 

drawbacks. First, it implies a continuous change in nodal connectivity, which does 

not fit the nature of the finite element displacement method. Secondly, the crack is 

constrained to follow a predefined path along the element edges, which puts 

doubts on the fidelity of the approach.  

The counterpart of the discrete crack concept is the smeared crack concept, 

in which a cracked solid is imagined to be a continuum. The approach, introduced 

by Rashid10, starts from the notion of stress and strain and permits a description in 

terms of stress-strain relations. The procedure is attractive not only because it 

preserves the topology of the original finite element mesh, but also because it does 

not impose restrictions with respect to the orientation of the crack planes. It is for 

these two reasons that the smeared concept quickly replaced the early discrete 

concepts and came into widespread use during the 1970s. 

Bažant and Oh11 introduce a model where a heterogeneous material such 

as concrete can be modeled as a band of densely distributed microcracks with a 

blunt front. When a heterogeneous material is approximated by an equivalent 

homogenous continuum (without couple stresses), as is standard for concrete 

structures, one must distinguish the continuum stresses and strains (macrostresses 

and microstrains) from the actual stress and strain in the microstructure, called the 

microstresses and microstrains. In the theory of the randomly inhomogeneous 

materials, the equivalent continuum stresses and strain are defined as the averages 

of the microstresses and microstrains over a certain representative volume. The 

cross section of this volume should be ideally taken to be much larger than the 

size of the inhomogeneities, and even for a crude modeling must be considered to 
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be at least several times their size, e.g., several times the maximum aggregate size 

in case of concrete. 

Consequently, in the usual analysis, in which only the average elastic (or 

inelastic) material properties are considered and the geometry of the 

microstructure with the differences in the elastic constants between the aggregate 

and the cement paste is not taken into account, the distribution of stress and strain 

over distance less than several aggregate sizes has no physical meaning. Only the 

stress resultants and the accumulated strain over the cross section of the 

characteristic volume do. In the finite element context, this means, therefore, that 

it makes no sense to use finite elements smaller than several aggregates sizes. In 

case of fracture, this further means that if an equivalent homogenous continuum is 

assumed, it makes no sense to consider concentrations of stress (or of microcrack 

density) within volumes less than several aggregat sizes. A similar conclusion 

follows when we realize that the actual crack path in concrete is not smooth but 

highly tortuous. Since the crack tends to pass around the hard aggregate pieces 

and randomly sways to the side of a straight path by distances roughly equal to the 

aggregat size, again the actual stress (microstress) variation over such distances 

can be relevant for the macroscopic continuum model. According to the foregoing 

justification, one should not attempt to subdivide the width of the crack band front 

into several finite elements. 

Various measurements are being made to observe the formation of 

microcracks at the fracture front12,13. From these observations, it seems that the 

larger microcracks that can be seen are not spread over a band of large width but 

are concentrated essentially on a line. However, the line along which the 

microcracks are scattered is not straight but is highly tortuous, deviating to each 

side of the straight line extension by a distance equal to about the aggregate size, 

as the crack is trying to pass around the harder aggregate pieces. In the equivalent, 

smoothed macroscopic continuum which is implied in structural analysis, the 

scatter in the locations of visible microcrakcs relative to a straight line is 

characterized by a microcrack better than by a straight row of microcracks. 

  At the same time, we should realize that the boundary of the fracture 

process zone should not be defined as the boundary of visible microcracks, but as 
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the boundary of the strain – softening region. Since the strain softening is caused 

not only by microcracking but also by any bond ruptures, the fracture process 

zone could be much wider (as well as longer) than the region of visible 

microcracks. 

 

Equivalence of Smeared Crack and Cohesive Crack 

For an elastic material which the stress drops suddenly to zero at the 

fracture front, it was found that a sharp inter-element crack and a smeared crack 

band give essentially the same results for the energy release rate and agree closely 

(within a few percent) with the exact elasticity solution, provided that the finite 

element is not larger than about  of the cross section dimension (square meshes 

without any singularity elements were used). This is true regardless to the 

aggregate size11.  

  The same equivalence of line cracks and crack bands may be expected 

when a gradual stress drop is considered. The reason for this equivalence is that 

the fracture propagation depends essentially on the flux of energy into the fracture 

process zone at the crack front, and this flux is a global characteristic of the entire 

structure. 

The basic concept of crack band model, which was proposed in general 

terms in Bažant (1976) and was developed in full detail for sudden cracking in 

Bažant  and Cedolin (1979, 1980, 1983) and Cedolin and Bažant  (1980) and for 

gradual strain softening in Bažant  (1982) and Bažant  and Oh (1983a), is that the 

given constitutive relation with strain softening must be associated with a certain 

width of hc of the crack band, which represent a reference width and is treated as a 

material property. 

In Bažant approach, the width of the band cannot be less than a certain 

characteristic value hc, therefore an expression will be obtained as: 

 
 (Eq. 2.1.1) 

 
where εf is the inelastic fracturing  strain, graphically defined as shown in figure 

I.2 and w is the cohesive crack opening displacement. Thus, the stress – 

elongation curve for the band model and for the cohesive model will coincide if 
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one relate the softening of stress vs. fracturing strain φ(εf) to the softening curve of 

stress vs. crack opening of the cohesive crack : 

 
 (Eq. 2.1.2) 

 
where f(w) is the equation of the softening curve for the cohesive crack model. 

Therefore, there is a unique relationship between the crack band model and the 

cohesive crack model, at least for the simple elastic – softening case. The 

correspondence is illustrated in figure I.3 which shows the softening curve for 

cohesive crack (a) and the corresponding stress strain curve for the crack band (b). 

Also shown in the correspondence for the initial linear approximation to the curve, 

the horizontal intercept of which satisfies  . It follows that a linear 

approximation for the softening crack band will be a good approximation in the 

same circumstances as it was for the cohesive crack model. 

 
Figure 2.1. 1.Correspondance between the softening curve of the cohesive crack model (a) 

and the stress – strain curve of the crack band model (b) 

 
 

Therefore, the softening curves for cohesive crack can be directly 

implemented in the crack band model. The only difference between the result for 

cohesive crack model and crack band model is in the strain and displacement 

distribution. Figure 2.1.2 show the comparison of the axial displacement 

distribution. Obviously, the difference is nil for engineering purposes if hc « L. 

The correspondence is obviously maintained for the specific fracture 

energy Gf. It follows that the energy required to form a complete crack is  
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 (Eq. 2.1.3) 

 
where WF  is the total supply work, A is the area of the cross section of the bar. In 

terms of the properties of the crack band model, the characteristic size lch can be 

obtained as 

 
 (Eq. 2.1.4) 

A parameter of interest in numerical calculation using the crack band 

model is the softening modulus  for the linear approximation. It is shown that  

 
 (Eq. 2.1.5) 

 
  From here, we can derived the equation for the fracture energy as : 

 
 (Eq. 2.1.6) 

 
 

Figure 2.1. 2. Comparison of the distribution of axial displacement in a bar for the cohesive 
crack model (a, b) and crack band model (c, d) 
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Crack Band Width 

  In a finite element formulation with free element size, the strain – 

softening curve must be adjusted according to the element size so that the 

calculation would yield macroscopically consistent result whatever the element 

size. This is close to saying that the crack band width hc is arbitrary since it is 

replaced by the size of the element h(e) without a noticeable effect (as long as the 

element size is kept small). This means that hc cannot be determined from fracture 

tests in which a single crack is formed14. 

  The value of hc, however, does have an effect in those situations where 

cracking does not localize but remains distributed over large zones. Thus the value 

of hc can be identified only by comparing the results of fracture tests with the 

result of tests in which the cracking is forced to be distributed. 

  In a crude manner, the value of hc can be approximately identified from 

fracture tests for specimens of various geometries, in which the cracking is 

localized to a different extent. This has been done in Bažant and Oh (1983a); with 

the conclusion that the crack band width hc = 3da where da is the maximum 

aggregate size, is approximately optimal. However, the optimum was weak, and 

crack band width anywhere between 2da and 5da would give almost equally good 

results.  

 

Computational Notes 

  From this point of view, the crack band is more advantageous than the line 

crack model. When the crack extends through a certain node, the node must be 

split into two nodes, increasing the total number of nodes and changing the 

topological connectivity of the mesh. Unless all nodes are renumbered, the band 

structure of the structural stiffness matrix is destroyed. All this complicates 

programming. 

With the crack band model, crack is modeled by changing the isotropic 

elastic moduli matrix into an orthotropic one, reducing the material stiffness in the 

direction normal to the cracks in the band. This is easily implemented in a finite 

element program, regardless of the direction of the crack with respect to the mesh 

lines11.  
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However as this concept had been implemented in large finite element 

codes, it was discovered that the convergence properties are incorrect and the 

calculation results are unobjective as they significantly depend on the analyst’s 

choice of the mesh (Bažant 1976, 1983; Bažant and Cedolin 1979, 1980, 1983; 

Bažant and Oh 1983a; Darwin 1985; Rots et al. 1985). 
 

Figure 2.1. 3. Illustration of lack of mesh-objectivity in classical smeared crack models 
(adapted from ACI Committee 446 1992) 

 
 

The problem, known as spurious mesh sensitivity, can be illustrated, for 

example, by the rectangular panel shown in figure 2.1.3, which is subjected to a 

uniform vertical displacement at the top boundary. A small region near the center 

of the left side is assumed to have a slightly smaller strength than the rest of the 

panel, and consequently a smeared crack starts growing from left to right. The 

solution is obtained by incremental loading with two finite element meshes of 

very different mesh sizes, as shown in the figure 2.1.3b,c. Stability check indicates 

that cracking must always localize in this problem into a band of single – element 

width at the cracking front. Typical numerical results for this as well as other 

similar problems are illustrated in figure 2.1.3d – f. in the load – deflection 

diagram (fig. 2.1.3d), one can see that the peak load as well as the post – peak 

softening strongly depends on the mesh size, the peak load being roughly 

proportional to  where h is the element size. Plotting the load vs. the length 

of the crack band, one again finds large differences (fig 2.1.3f) and converges to 

zero as h → 0, which is, physically unacceptable. 
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Therefore, an approach is needed in order to overcome this this sensitivity 

of the numerical result.  There are two main approaches are : 

1. Adjustment of the softening law with respect to hc so that the 

dissipated energy is independent of the size of the finite elements11  

2. Application of a localization limiter, which leads to a size of the 

localization zone independent of the discretization. 

 

2. 2. SIZE EFFECT 

By general convention, the load capacity predicted by plastic limit analysis 

or any (deterministic) theory in which the material failure criterion is expressed in 

terms of stress or strain (or both) are said to exhibit no size effect, the size effect 

represents the deviation from such a prediction, i.e., the size effect on the 

structural strength is rate deviation, engendered by a change of structure size, of 

the actual load capacity of a structure from the load capacity predicted by plastic 

limit analysis14. 

The size effect is rigorously defined through a comparison of 

geometrically similar structures of different sizes 15 . It is conveniently 

characterized in terms of the nominal strength, σNu, representing the value of the 

nominal stress, σN, at maximum load Pu. the nominal stress, which serves as load 

parameter, may, but need not, represent any actual stress in the structure and may 

be defined simply as  

 
  (Eq. 2.2.1) 

 
when the similarity is two-dimensional or as  

 
  (Eq. 2.2.2) 

 
when the similarity is three dimensional; b is the thickness of a two-dimensional 

structure, and D is the characteristic dimension of the structure, which may be 

chosen as any dimension, e.g., the depth of the beam, or the span, or half of the 

span, since only the relative values of σN matter. The nominal strength is then 
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  (Eq. 2.2.3) 

 
According to the classical failure theories, such as the elastic analysis with 

allowable stress, plastic limit analysis, or any other theory that uses some type of 

strength limit or failure surface in terms of stress or strain, σNu is constant, i.e., 

independent of the structural size, for any given geometry, notched or not. If we 

plot log σNu vs. log D, we find that the failure states, according to the strength or 

yield criteria, to be always given by a horizontal line (figure I.1). So the failures 

according to the strength or yield criteria exhibit no size effect.  

By contrast, failures governed by linear elastic fractures mechanics exhibit 

a rather strong size effect, which is described by the inclined dashed line of slope - 

½. The reality for concrete structures is a transitional behavior illustrated by the 

solid curve. This curve approaches a horizontal line for the strength criterion if the 

structures are very small and inclined straight line of slope – ½ if the structure is 

very large. 

 

2.2. 1. Transitional Size Effect for Different Scales 

Below is a simple explanation of the deterministic size effect due to 

energy release16. Consider a rectangular panel shown in figure 2.2.1, which is 

initially under goes a uniform stress equal to the nominal stress σN. introduction of 

a crack of length a with a fracture process zone of a certain length and width h 

may be approximately imagined to relieve the stress and thus release the strain 

energy from the areas of the shaded triangles and the crak band shown in figure 

1.4. the slope of the effective boundary of the stress relief zone, k, is a constant 

when the size is varied. We may assume that, for the range of interest, the length 

of the crack at maximum load is approximately proportional to the structure size 

D while the size h of the fracture process zone is essentially a constant, related to 

the inhomogeneity size in the material. 

For very large structure sizes,  the crack band width h becomes negligible 

compared to the structure’s dimensions, and then the energy is getting released 

only from the shaded triangular zones (figure 1.4) whose area is proportional to 

D2. This means that the energy released is proportional to 
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   (Eq. 2.2.4) 

 
where E is the Young Modulus. At the same time, the energy consumed is 

proportional to the area of the band of constant width h which in turn is 

proportional to D. So the energy consumed and dissipated by fracture is 

proportional to , where  is the fracture energy.  Thus 

 

  (Eq. 2.2.5) 

 
 Then it immediately follows that the size effect law for very large structures is 

 
  (Eq. 2.2.6) 

 
 

Figure 2.2. 1. Approximate zone of stress relief in small and large structures7 

 
 

On the other hand, if the structure is very small, the triangular stress relief 

zones have a negligible area compared to the area of the crack band, which means 

that the energy release is proportional to 

 

   (Eq. 2.2.7) 

 
 Therefore, the energy balance requires that  
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  (Eq. 2.2.8) 

 
from which it follows σN is constant. So, for very small structures, there is no size 

effect.  

 
Figure 2.2. 2. Load – Deflection Curves for quassibrittle materials of different sizes7 

 
 

On the other hand, the curves of nominal strength versus the relative 

structure deflection have, for small and large structures, the shapes indicated in 

figure 2.2.2. Aside from the size effect on the maximum load, there is a size effect 

on the shape of the post – peak descending load – deflection curves. For small 

structures, the post – peak curves descend slowly while for larger structures, it 

descend steeper, and for sufficiently larger structures, it may even exhibit a 

snapback, which is a change of slope from negative to positive. 

Therefore, it can be seen that small quasibrittle structures have a high 

ductility while large quasibrittle structures have a low ductility. 

 

2.2. 2. Size Effect from Crack Band Theory 

  To illustrate the size effect resulting from the crack band theory, one can 

consider first a plain concrete center-cracked rectangular panel (figure 2.2.3) of 

thickness b, width 2d, and a sufficiently large length 2L16. The panel is loaded by 

vertical normal stresses σ at top and bottom. The crack band is horizontal, 

symmetrically located, and has length 2a and width wc = nda. 
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  The next step is to determine the value of σ which the crack band 

propagates. Before cracking, the strain energy density in the panel is uniform and 

equals to . The formation of the crack band may be imagined, as an 

approximation, to relieve strain energy and stress from the stress relief area 

1234561 in figure 2.2.3 (a), in which the stress diffusion line 25, 45, 16, 36 have a 

certain fixed slope k1 (close to 1). Thus the total energy release from the panel is 

 
W = W1 + W2 (Eq. 2.2.9) 

 
in which : 

 
 (Eq.2.2.10) 

Considering the top and bottom boundaries to be fixed during cracking, and 

therefore the contribution of the work of load σ applied at the boundaries is zero. 

So, the potential energy release rate of the panel is  

 
  (Eq.2.2.11) 

 
  Due to the requirement of energy balance,  must be equal to the energy 

consulted per unit crack band extension 

 
 (Eq.2.2.12) 

 
Figure 2.2. 3. Examples of Crack Band Propagation8 
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  After substituting for Gf from equation 2.1.6, an equation from which is 

obtained as the following solution : 

 
 (Eq.2.2.13) 

 
 (Eq.2.2.14) 

 
and    

 

 (Eq.2.2.15) 

 

in which is relative to structure size; while B and λ0 is constant when 

geometrically similar beams are considered. They are independent of size. 

Meanwhile, ft* may be called as the size reduced strength. It is a characteristic of 

the entire structure, rather than a material. 

  Equation 2.2.14 can be similarly derived for various other situation, e.g., 

edge-cracked panels, crack band in infinite medium, etc. The solutions are 

approximate in the evaluation of energy release; however, the approximate nature 

of the solution causes uncertainty only in the constants k1 and k0, but not the form 

of equation 2.2.14. 
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CHAPTER 3 

MODELLING TECHNIQUES 

 

In this chapter, the damage model that the author will use for numerical 

analysis is to be described. Also, two approaches of numerical techniques in order 

to permit arbitrary mesh refinement and overcome the problem of mesh sensitivity 

of the numerical analyses will be discussed. 

 

3. 1. MAZARS DAMAGE MODEL 

The model of behavior of Mazars17 is a simple model based on the damage 

mechanics18, which makes it possible to describe the decrease of material under 

the effect of the microcracks propagation in concrete. It relies on a single internal 

scalar variable D, describing the damage isotropically, but still distinguishing the 

damage of traction and compression. Mazars damage model does not allow the 

phenomenon of reclosing of the cracks (restoration of rigidity). Moreover, it does 

not take a count of any plastic deformations or viscous effects that can be 

observed during the deformation of concrete. 

 

3.1. 1. Description of the Model 

Evolution of damage is considered isotropic and therefore the damage 

variable D is a scalar, which varies from 0 (without damage) until 1 (completely 

damaged). Stress is given by equation below : 

 

σ  = (1 – D) A εe (Eq. 3.1.1) 

 

where A is the matrices of hooke and εe is the elastic deformation. 

The damage variable D is a combination of damage of traction Dt and 

damage of compression Dc : 

 

 (Eq. 3.1.2) 
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The coefficient β is a material parameter, when it is higher than 1, it is 

possible to improve the result of shear. The damage is controlled by the equivalent 

strain εeq which allows one to describe the triaxial state from equivalence of an 

uniaxial state. As extensions are essential in the phenomenon of cracking of 

concrete, the equivalent strain introduced is determined from eigenvalues of 

positive strain tensor, such as : 

 

 (Eq. 3.1.3) 

 

where εi is the principal deformation. In this equation, <εi>+ equals to εi when εi ≥ 

0 and equals to zero when εi < 0. 

The damage variables of traction and compression is described below 

when εeq ≥ εd0 

 

 (Eq. 3.1.4) 

 

 (Eq. 3.1.5) 

 

where At, Ac, Bt, Bc are the parameters to be found.  

The determination of αt and αc in equation 3.1.2 is done by using the 

deformations εti and  εci due to the positive and negative principal stresses 

respectively as shown below : 

 

 (Eq. 3.1.6) 

 

 (Eq. 3.1.7) 
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Hi  equals to 1 if εi = εti + εci ≥ 0 , or else Hi equals 0. From the equation 

3.1.6 and 3.1.7, it can be verified that for uniaxial loading of tension, αt = 1, αc = 0, 

D = Dt and vice versa for compression. The constitutive model is finally described 

as : 

 

 (Eq. 3.1.8) 

 

with σ and ε as the second order tensor of stress and deformation and A is the 

fourth order of modulus elasticity. 

 

3.1. 2. Identification of parameters 

Besides the thermo – elastic parameters such as E, υ, α, there are six 

parameters to be defined in Mazars damage model, which are At, Ac, Bt, Bc, εd0, β.  

 
Figure 3.1. 1. Influence of A Parameters (a) and B Parameters (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

(b) 
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a. εd0 is the damage threshold. This value influences the stress at peak as well 

as the curve of post peak. The stress drop will be less brittle if the value of 

εd0 is small. Normally, εd0 is taken as 0,5 until 1,5 10-4. 

b. Coefficients of A influence the part of post-peak curve. This coefficient 

gives the horizontal asymptote of ε axis when A equals to 1 and a 

horizontal line passing the peak if A is taken as 0. 

c. Coefficients of B also influence the part of post – peak curve. Based on its 

value, B may influence a stress drop if the value is too high (B > 10000). 

Normally, Bc is taken between 1000 – 2000 and Bt is taken between 10000 

– 100000. 

d. β is a corrective factor which makes it possible to improve the result in 

shearing compared to the initial version of the model (which corresponds 

to β =1). Normally, the value used is 1.06. 

 

3. 2. FICTITIOUS CRACK MODEL BY HILLERBORG 

Hillerborg et al19. first introduce a fictitious crack model for fracture of 

concrete. Fictitious crack approach basically assumes that energy to create the 

new surfaces is small compared to one required to separate them. As a result, the 

energy dissipation for crack propagation can be characterized by the cohesive 

stress separation : 

 

 (Eq. 3.2.1) 

  

This equation is valid for structures with a unit constant thickness.  
 

Figure 3.2. 1. Principle for fictitious crack model by Hillerborg : (a) complete stress-
elongation curve 
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In the Hillerborg approach, typical stress – elongation curve for concrete 

plate subjected to uniaxial tension is shown in figure 3.3.1 (a). The elongation of 

the plate is measured by two displacement gages, gage A and gage B, respectively. 

Gage A is assumed to measure the elongation including the cracked section, while 

gage B is to measure the elongation outside the cracked section. It is assumed that 

strain localization appears only after the maximum load is reached. As a result, the 

elongation at the location of gage A continuously increasing whereas the location 

of gage B is unloading due to the strain localization. The area under the entire 

softening stress-elongation curve σ(w) is given by  

 

 (Eq. 3.2.2) 

  

where wc is the critical crack separation displacement when the softening stress is 

equal to zero.  

In the fictitious crack model, the softening – separation curve σ(w) is 

assumed to be a material property that is independent of structural geometry and 

size. This model requires three material parameters : the value of ft, Gf and the 

shape of the σ(w) curve (the softening behaviour). When the shape of the σ(w) 

curve is determined, the material fracture property is known by the values of ft and 

Gf. In this case, it is also suitable to combine ft and Gf into a characteristic length 

 

 (Eq. 3.2.3) 

 

  The Hillerborg model underlines the general principles for crack analysis 

in concrete. First, it illustrates the fundamental importance of the tension – 

softening cracking. Second, it shows that after cracking, the general deformation 

of the cracked body is composed by two parts: the deformation of the elastic part 

and the crack – opening width of the crack. Third, the elastic body outside the 

cracking is subjected to the stress transferred through the fictitious crack, and 

therefore its deformation is also a function of σ(w).  
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3. 3. LA BORDERIE APPROACH  

La Borderie20  introduced a method to extract a crack opening from a 

continuum damage finite element computation. With the basic idea of the Crack 

Band Theory, as been discussed in the previous chapter, instead of treating cracks 

as lines, Bažant and Oh21 consider the fracture zone to have a certain width hc 

over which micro-cracks are uniformly distributed. The bandwidth hc is regarded 

as a material parameter. It is required in order to avoid spurious mesh sensitivity 

and achieve objectivity. The energy dissipation due to fracture per unit length (or 

unit width) is, therefore, a constant. The fracture energy is given by 

 

 (Eq. 3.3.1) 

 

where δ is the crack opening displacement.  

According to this theory, the material behavior in the fracture process zone 

is characterized in a smeared manner through a strain-softening constitutive 

relation. Therefore the crack opening displacement is taken as the fracture strain 

accumulated over the width hc or the finite element. 

 

  (Eq. 3.3.2) 

 

where we consider εuco as the Unitary Crack Opening strain variable (fracture 

strain)22.  

  The total strain in the fracture zone consists of an elastic portion and a 

fracture portion. Hence, the fracture energy per unit width is calculated as the area 

under the complete stress-strain diagram : 

 

 (Eq. 3.3.3) 

 

The total strain in the fracture zone consists of an elastic portion and a 

fracture portion. Hence, the fracture energy per unit width is calculated as the area 

under the complete stress-strain diagram : 
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 (Eq. 3.3.4) 

 

If we consider the damage model presented above, the constitutive law is 

given by  

 

 (Eq. 3.3.5) 

 

Using the damage evolution law, the fracture energy is the area under a 

uniaxial tensile strain-stress diagram. Therefore, we obtain: 

 

  (Eq. 3.3.6) 

 

 (Eq. 3.3.7) 

 

The first part of the fracture energy corresponds to the elastic contribution 

where the damage has not yet occurred, thus d = 1. 

 

 (Eq. 3.3.8) 

 

The integration of the first part : 

 

 (Eq. 3.3.9) 

 

The integration of the second part : 
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  (Eq.3.3.10) 

 

Therefore, after the integration, the equation will be  

 

 (Eq.3.3.11) 

 

with ft the tensile strength and E the Young Modulus (ft = E × εd0 ). This leads to 

an independent-discretization energy release upon crack propagation. Initiation 

and propagation of cracks is governed by the material tensile stress and the 

fracture energy. 

While the crack opening displacement is given by equation 3.3.2, the 

Unitary Crack Opening strain variable is computed using the following 

procedure : 

The total strain in the fracture element is written as  

 

 (Eq.3.3.11) 

 

The total strain is composed by an elastic part  and a cracking part represented 

by the unitary crack opening strain variable . Multiplying 3.3.11 by the 

elastic stiffness tensor , the equation will be  

 

 (Eq.3.3.12) 

 

So, the tensor of the crack opening will be  

 

 (Eq.3.3.13) 
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From the finite element method, the nominal stress will be obtained. The 

inelastic stress tensor is given by 

 

 (Eq.3.3.14) 

 

Equation 3.3.13 gives the unitary crack opening tensor. The normal crack 

opening displacement value is given by 

 

 (Eq.3.3.15) 

 

where n is the unit vector normal to the crack. 

For the one – dimensional test : 

 

 (Eq.3.3.16) 

 

3.3. 1. of Fracture Energy using Mazars Damage Model 

Replacing the damage law used in equation 3.3.6 by the Mazars damage 

model in equation 3.1.2 for a problem of uniaxial tension, an equation can be 

derived. When material has not yet been damaged, d equals to zero and ε varies 

between 0 - εD0. Therefore, the equation will be: 

   
 

 (Eq. 3.3.17) 

 

In the first part of equation 3.3.17 

 

 (Eq. 3.3.18) 

 

In the second part, where damaged already occurred : 
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  (Eq. 3.3.19) 

 

 
 (Eq. 3.3.20) 

 

The integration of the first part of equation 3.3.20  

 

 (Eq. 3.3.21) 

 

For a uniaxial load, εeq corresponds only on the x direction, therefore εeq 

equals to εxx which can simply equals toε. 

 

 (Eq. 3.3.22) 

 

For the case of concrete under uniaxial tension consider the material will 

always fail. For such conditions, the model parameter for At is 1. 

 

   (Eq. 3.3.23) 

 

The integration of the second part of equation 3.3.20 is 

 

   (Eq. 3.3.24) 

 

For a uniaxial load,  corresponds only on the x direction, therefore  

equals to εxx which can simply equals toε 
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   (Eq. 3.3.25) 

 

Therefore, after the integration, an equation will be obtained 

 

 (Eq. 3.3.26) 
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CHAPTER 4 

NUMERICAL ANALYSIS 

 

The numerical studies have used the CAST3M code for the calculation. 

Cast3M is a computer code for the analysis of structures by the finite element 

method (FEM). This code was developed by the Department of Mechanics and 

Technology (DMT) of the French Atomic Energy Commission (CEA). The 

general analysis carried out using the finite element method can be d4ided into 

three phases. 

The first phase is the mathematical model definition. In this phase, 

geometrical discretizations are defined. The definition of the data describing the 

model, the type of analysis (strains or stresses plane, axisymetry, etc.), the type of 

element (beams, hulls, etc.), properties of material, meshes and the boundary 

conditions. The next phase is the discrete problem solving, where the calculation 

of the stiffness and the mass matrix is done. In this phase also, external loadings 

and the boundary conditions are applied. On the last phase, the result and post – 

processing are done. The result can be either local quantities (displacements, 

contraintes, strains) or global ones (maximum strain).  

 

4. 1. ONE DIMENSION UNIAXIAL 

4.1. 1. Model Definition 

In the first section of the numerical analysis, a simple one dimension 

concrete bar is modeled as shown in figure 4.1.1. The size characteristic for the 

model are : 

- Length L = 1m 

- Height b = 0.1m 

where the thickness of the beam is not being modeled and therefore, on the 

numerical modeling, it will be considered in a default criteria that the code has 

given. 

Modelling size..., Annie Wulandari, FTUI, 2010



 

Universitas Indonesia 

30

Figure 4.1. 1. Model of the concrete bar 

 
 

Meanwhile, the material parameters are 

- Fracture Energy Gf = 100 N/m 

- Young Modulus E = 30 × 109 N/m2 

- Tensile strength ft = 3  × 106 N/m2  while in the weak area, ft = 1  × 106 

N/m2 

- Damage threshold εDO = 10-4 , while in the weak area, εDO = 3.33 × 10-5  

- Poisson ratio is considered as 0 since the displacement of the bar is desired 

strictly on the x  - direction 

The bar is restrained on the left hand side on the horizontal (x) and vertical 

(y) direction. The right hand side of the bar is considered free, where the 

increment uniaxial load is imposed. In the middle of the bar (area of h shown in 

figure 4.1.1) weakness is adjusted, by reducing the value of tensile strength ft. As 

the beam is imposed by the load, a tensile fracture zone starts developing as soon 

as the strain corresponding to the tensile strength ft is exceeded.  Therefore, crack 

propagation will be forced in the h area. Calculation will be made with four 

different numbers of elements m, i.e. m = 11, 21, 31, and 61. Computation is 

driven in plane stress, and the non-linier calculation is done by using an arc length 

method thus it will be possible to obtain better result of curve, since there is a 

possibility in reproducing curves with snapback. 

 

4.1. 2. Local Calculation 

The analysis begins with a simple local calculation, where Mazars damage 

law is simply implemented. The parameters of Mazars damage law are  
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Table 4.1. 1. Model parameters for local calculation 

At Bt Ac Bc β 

1 11000 1.2 30 × 103 1.06 

 

The global result of force – displacement curve obtained for the four types 

of mesh refinement (figure 4.1.1) shows that obviously there is a mesh 

independency if we change the size of the elements. For each type of beam, the 

peak load does not change with the number of elements; however the brittle 

behavior does as the mesh is being refined. From the local behavior point of view, 

as shown in figure 4.1.2, mesh independency also occurs.  

 
Figure 4.1. 2. Force – Displacement curve of local calculation 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.1. 3. Damage field for each different mesh refinement 
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Hillerborg Approach Using Mazars Damage Law 

In order to deal with the problem of mesh independency, one approach 

which is considered to be able to manage this problem is the Hillerborg approach. 

This model requires three material parameters: Gf, ft, and the shape of the σ(w) 

curve (the softening behaviour) that are considered as the material parameter 

independent of structural geometry and size. Thus there will be an adjustment 

with repect to h, as h is treated as a material property and is independent of the 

size of finite element.  Implementing the Hillerborg approach in the Mazars 

damage law as mentioned in Equation 3.3.26, one may obtain the Mazars model 

parameters such as Bt and At, as these parameters are ones which give influence to 

the shape of the σ(w) curve.  

However, note that the tension parameters (Bt) in Mazar damage model 

give influences in the value of the peak load. Below, several stress – strain curves 

are presented to show the influence of these tension parameters. Therefore, it will 

be unobjective if the regularization of fracture energy depends on the Bt 

parameters 

Other Mazars damage law parameter that can be used in order to regulate 

the Gf is the At parameter.  At parameter does not influence the peak load of the 

σ(w) curve. Below the values of At is presented for each type of element.  

 
Figure 4.1. 4. Influence of Bt in the Stress – strain curve 
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It can be seen that the values obtained for At are not relevant (except the 

value for m = 11 for ft = 3MPa), since At is a parameter that ranges from 0 to 1.  

Therefore, Hillerborg approach is not suitable to be implemented in Mazars 

damage law. 

 
Table 4.1. 2. Value of At for each number of elements 

ft = 3 MPa 

 m = 11 m = 21 m = 31 m = 61 

h 
  

At 0.333 -0.273 -0.879 -2.670 

ft = 1 MPa 

At -0.304 -0.892 -1.481 -3.245 

 

 

Hillerborg Approach with Modified Law by La Borderie 

 In this section, Hillerborg approach is done by using the evolution damage 

law conducted by La Borderie as mentioned in Equation 3.3.11. Table 4.1.3 gives 

the values of Bt for each type of h.  

 
Table 4.1. 3. Value of Bt for each number of elements 

ft = 3 MPa 

 m = 21 m = 31 m = 61 m = 11 

h 
  

Bt 3157,89 1538,46 1016,95 504,20 

ft = 1 MPa 

Bt 922,12 479,51 323, 164,22 

 

Global Result 

After the values of Bt is obtained, they are implemented in the numerical 

calculation. Figure 4.1.4 shows the Force – Displacement curves, where the global 

result for each type of element is the same. Figure 4.1.5 shows the stress – Crack 

opening displacement (COD) graph.  It can be seen that the mesh refinement does 
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not affect the curve. The fracture energy is represented by the area under the curve, 

and it is equal to the fracture energy used for simulation. Local Result 

As shown in figure 4.1.4 and figure 4.1.5, the Hillerborg approach using 

evolution damage law is capable in giving the same global result for each different 

type of meshes. Meanwhile, as shown in figure 4.1.6a - d, the approach does not 

seem to be able to reproduce the same local behavior where the damage occurred 

seems to behave according to the mesh refinement. Therefore, another method is 

needed in order to simulate the local behavior independent form mesh refinements. 

 
Figure 4.1. 5. Force – Displacement Graph by Hillerborg approach using evolution damage 

law 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.1. 6. Stress – COD Graph by Hillerborg Approach using Evolution Damage Law 
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Figure 4.1. 7. Damage field for each mesh refinement, (a) 11, (b) 21, (c) 31, (d) 61 

(a)  

(b)  

(c)  

(d)  
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Figure 4.1. 8. Displacement field at final state for each mesh refinement, (a) 11, (b) 21, (c) 31 

(a) 

(b) 

(c) 

 

Crack Opening using Sum of Displacement and La Borderie Method 

The crack opening can be calculated using two approaches; the sum of 

displacement and the crack opening displacement using La Borderie Method. The 

first approach is a classic method to obtain the crack opening by extracting the 

values from displacement tables; meanwhile the latter is an approach where 

another table is created to reproduce such values of crack opening. However, this 

approach may be conducted only the calculation is done by PASAPAS procedure.  

Figure 4.1.7 and figure 4.1.8 compares the results of these two methods. 

Table 4.1.4 shows a comparison between the results of these two methods. It can 
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be seen that there is a difference in the value of each method, where the largest 

difference occurred in m = 21. 

 
Figure 4.1. 9. COD field at final state for each mesh refinement, (a) 11, (b) 21, (c) 31 

(a)  

(b)  

(c)  

 

 
Table 4.1. 4. Difference in calculating crack opening 

 

 m = 11 m = 21 m = 31 
Sum of 

Displacement (m) 0,0009523 0,001049 0.,001549 

La Borderie 
Method (mm) 0.00105 0.00144 0.0018 

Difference (%) 9,35 27,15 11,48 

Table IV.1.4. Difference in Calculating Crack Opening

Modelling size..., Annie Wulandari, FTUI, 2010



 

Universitas Indonesia 

38

4.1. 3. Non Local Calculation 

Another approach which may overcome the problem of mesh sensitivity is 

the non – local approach. This approach uses a localization limiter which forces a 

specific size of an inelastic strain region which is independent of the mesh 

refinement.  

However, a hindrance is found in modeling the non local calculation using 

CAST3M. It is figured that CAST3M is not able to connect two different types of 

material properties as shown in figure 4.1.10. This incapability leads to a situation 

where the size of localization is independent with the size of the element.  Thus a 

localization limiter is not able to be implemented in CAST3M. 

 
Figure 4.1. 10. CAST3M hindrance in lon local model 

 
 

4.1. 4. Random Distributed Property Method 

Since there is an obstacle in modeling a non – local damage model, 

another method is thus applied which uses the spatial variability of concrete 

properties and thus creates a randomly property field. This random Property 

method also overcomes the complicated condition of predicting the crack position 

and number.   

In the random method, no such weak area hc is defined so that the crack 

will not be forced in a specific area. Instead, the crack will be distributed along the 

beam. Computation is driven in plane stress. Standard model parameters have 

been chosen for the simulation. Damage model used in this calculation is the non 

– local Mazars Damage Law, with parameter used is given in table 4.1.1. 

Localization limiters used is 0,3. 
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Figure 4.1.11 shows the load – displacement curves for each types of mesh 

refinement. The result shows that in any type of mesh refinements, it gives almost 

the same value of peak load and almost the same shape of the curve. Meanwhile 

for the local result, which is represented by the damage field in figure 4.1.12, it 

satisfies the independency of mesh refinement. Damage occurs in such an area 

where it has been specified by the localization limiters. 

 
Figure 4.1. 11. Force – Displacement graph using random distributed property 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.1. 12. Damage field by random distributed property method, for m = 11 (a), m = 21 

(b), m = 31 (c), m = 61 (d) 
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(b) 

(c) 

(d) 

 

 

4.2 . THREE POINT BENDING TEST  

4.2. 1. Model Definition  

The experimental three point bending test of concrete beams has been 

done by SYED Yasir - Alam (2009) in research of scaling problem. In this section, 

a numerical three point bending calculation of notched concrete beam will be 

done. The beams are subjected by a concentrated vertical load F in the centre of 

the beam, and it is pin – roll supported at the bottom edge of the beam. 

Calculations are driven by plane stress and three different sizes of beams are to be 

calculated, where characteristic size may be seen in table 4.2.1. 
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Table 4.2. 1. Characteristic size for each specimen 

Specimen Length Height Notch 
thickness 

Notch 
length 

Support 
location 

D1 L/2 h/2 0.00175 h/5 s/2 
D2 L H 0.00175 h/5 s 
D3 2L 2h 0.00175 h/5 2s 

 

where L is 0,8m, h is 0,4m and s is 0,1m. For the reason of simplicity, only half of 

the beam will be modeled as shown in figure 4.2.1. 

 
Figure 4.2. 1. Size model of the beams (a) D3, (b) D2, (c) D1 

 
 

The material parameters used are  

- Young Modulus E = 30 × 109 N/m2 

- Tensile strength ft = 1,65  × 106 N/m2  

- Damage threshold εDO = 5,5 × 10-4  

- Poisson ratio υ  = 0,25 
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Figure 4.2. 2. Modeling of the beam and the mesh refinement of D1 (a), D2 (b), D3 (c) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2. 2. Local Calculation  

The local calculation is derived in order to see how the structure behaves 

in a local damage law. The concrete beam is modeled by Mazars damage model 

with standard parameters. Figure 4.2.3 shows the Force - Crack Opening 

Displacement (COD) for each type of beam, compared with the experimental 

result. 

(a)

(b)

(c)
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Figure 4.2. 3. Force – COD curve of local calculation 

 
 

From figure above, it is shown that the numerical result and the 

experiment result are different. However, this is expected, since the parameters 

used for the numerical calculation is not calibrated from the experimental result. 

Figure 4.2.4 – 4.2.6 shows the crack opening of the beam in order to see 

how the beam behaves locally. It shows that the crack propagates following the 

mesh refinement, where this result shows that the local behavior depends on the 

mesh refinement. 

 
Figure 4.2. 4. Damage field D1 at final state, local calculation 
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Figure 4.2. 5. Damage field D2 at final state, local calculation 

 
 
 
 

 

 

 

 

 

 
Figure 4.2. 6. Damage field D3 at final state, local calculation 

 

 

 

 

 

 

 

4.2. 3. Non Local Calculation  

To overcome the mesh dependency, another calculation to be derived is 

the non - local calculation. The concrete beam is modeled by Mazars damage 

model with parameters given by SYED Yasir Alam (2009) based on the 

experimental result. These parameters (shown in table 4.2.2) are obtained by 

calibrating the experimental result of Force – Crack Opening Displacement 

(COD) curve of D2, from 60% before peak load until 60% after peak load. 

 
Table 4.2. 2. Mazars damage parameters for non local calculation 

At Bt Ac Bc β Lc 

0,731 8668,7 1.2 30 × 103 1.06 3,49 
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Global Result 

Figure 4.2.7 shows the Force – COD curve obtained from each different 

size of beam. The size effect can be seen, where as the beam size is increased, the 

peak load also increases. Also in figure 4.2.7, a comparison of numerical result 

and experimental result obtained by SYED Yasir Alam (2009) is presented.  

It can be seen that for D2, the Force - COD curve by numerical calculation 

gives almost the same curve as the experimental one, until a certain point where it 

differs; this is the point where the calibration was not taken into account. The 

maximum force of D2 given by numerical calculation is 12,20kN while the 

experimental gives 12,25kN, thus 2,24% of relative error. For D1, one may see 

that the numerical calculation gives a different Force – COD curve from the 

experimental result. The peak load from the numerical result is 7,80kN, while the 

experimental result is 5,546kN, which gives 40,6% of relative error. Meanwhile, 

for D3, the numerical result of Force – COD displacement is almost the same with 

the experimental result, where for the numerical result, the peak load is 17,8kN 

while the experimental test gives 19,33kN, which gives a relative error of 7,92% 

 

Figure 4.2. 7. Force – COD curve, non local calculation 

 
 

Damage Field 

Figure 4.2.8 – 4.2.10 show the field of the beam.  

 

Modelling size..., Annie Wulandari, FTUI, 2010



 

Universitas Indonesia 

46

Figure 4.2. 8. Damage field D1 at final state, non local calculation 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.2. 9. Damage field D2 at final state, non local calculation 

 

 

 

 

 

 

 

 

 

 
Figure 4.2. 10. Damage field D3 at final state, non local calculation 
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As the Lc parameter is the same for every size of beam, therefore, it is 

obvious that the damage area at D1 seems to be very large while the damage area 

at D3 does not seem to be as large, regarding to its total area. However, damage is 

actually occurred in a specific area that has been determined before by the 

localization limiters Lc. Therefore, the localization limiter is able to overcome the 

problem of mesh dependency in local behavior. 

Crack Length and Crack Opening Displacement 

Besides regarding at the global result, it is also necessary to look at the 

local result, which may be given by the crack opening displacement (COD), since 

crack is the one of the essential parameter in order to study the strength behavior 

of a structure. As mentioned before that the damage parameters were calibrated by 

considering the COD, therefore, another value is needed in order to verify the 

accuracy of the calibration. One may consider the crack length as the suitable 

value, because the propagation of crack length is related to one of COD. 

Figure 4.2.11 – 4.2.13 show the curve of COD vs. crack length of the 

experimental result and the numerical result (where the numerical calculation, it 

uses the height of the beam as parameter of the crack length) at 60% before the 

peak load, at peak load, and at 60% after the peak load. 

 
Figure 4.2. 11. Crack length – crack opening curve, D1, non local calculation 
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Figure 4.2. 12. Crack length – crack opening curve, D2, non local calculation 

 
 

Figure 4.2. 13. Crack length – crack opening curve, D3, non local calculation 

 
 

Table 4.2. 3. Quantification of relative error in COD  

COD (µm) 60% before Peak Load Peak Load 60% after Peak Load 
Numeric Experiment Numeric Experiment Numeric Experiment 

D1 COD 5,26 3,38 17,02 14,90 47,30 68,62 
%RE 55,84 20,76 31,07 

D2 COD 7,29 4,55 19,78 17,60 72,28 59,72 
%RE 60,28 12,41 21,04 

D3 COD 11,02 1,26 27,37 15,94 171,47 105.1 
%RE 777,1 71,68 63,15 
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Table 4.2. 4. Quantification of relative error in crack length 

CL (µm) 60% before Peak Load Peak Load 60% after Peak Load
Numeric Experiment Numeric Experiment Numeric Experiment 

D1 CL 40 55,85 45 55,70 60 57,28 
%RE 28,39 19,21 4,74 

D2 CL 80 105,36 90 105,36 120 105,36 
%RE 24,07 14,58 13,90 

D3 CL 160 166,84 160 166,84 160 166,84 
%RE 4,10 4,10 4,10 

 

Regarding to figure 4.2.11 – 4.2.13, one may see that the crack length 

measured numerically and experimentally gives almost the same result. However 

for the crack opening, there are some significant relative errors. Table 4.2.3 and 

4.2.4 show the quantification of relative errors between the value of COD and 

crack length computed by numerical calculation and one by experiment. 

Measurements are done in certain step of load, which are 60% before peak, at 

peak load, and 60% after the peak load. It is shown that the numerical values 

overestimate the experimental value. However, numerical values are computed 

using the displacement jump, therefore such relative errors are expected.  
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CHAPTER 5 

CONCLUSION  

 

5. 1. CONCLUSION 

From the numerical calculation that has been done, here are the 

conclusions: 

 

5.1. 1. One Dimensional Uniaxial Calculation 

 A numerical calculation of one dimensional uniaxial concrete bar has been 

done. The bar is subjected to a load in the x direction and is computed as a plane 

stress.  There are four types of mesh refinement, e.g. 11, 21, 31 and 61 meshes in 

order to see the mesh – independence in numerical calculation. Beam is given a 

weak area since continuum damage models need a point for crack initiation.  

1. Local Calculation 

In doing a local numerical calculation, a result with mesh dependency 

will occur. The force – displacement graph obtained is affected by the mesh 

refinement; the graph behavior will be more brittle as the mesh being refined. 

Therefore the objectivity aspect is not fulfilled. To overcome this problem, a 

regularization numerical method is needed,  

2. Hillerborg Approach using Mazars Damage Law 

One of the regularization numerical methods is by implementing the 

Hillerborg approach into the Mazars Damage Law. Two tension parameters 

can be obtained in order to implement the approach, e.g At and Bt. Mazar’s 

tension parameter Bt gives an influence to the peak value of stress – strain 

graph thus an accurate result will not be obtained. For an approach using At, a 

suitable value of At cannot be obtained, since the values are less than 0 while 

At ranges from 0 to 1.  

Hence, Mazars damage law is not capable to be used in Hillerborg 

approach. 

3. Hillerborg Approach using Evolution Damage Law by La Borderie 

An evolution damage law has been conducted by La Borderie. The Bt 

values are obtain and implemented in the calculation. A mesh independent 

Modelling size..., Annie Wulandari, FTUI, 2010



 

Universitas Indonesia 

51

force – displacement curve is obtained. Meanwhile when the local behavior is 

observed, it gives a mesh – dependency result. Therefore, the La Borderie law 

may give good mesh independency result globally, but not in the local result. 

4. Non Local Damage Law  

Another approach to overcome mesh dependency is to use a non local 

method, by implementing a localization limiter. A calculation hindrance 

occurred due to the lack of CAST3M capability in defining the connectivity 

between two different types of material, thus a localization limiters is not 

applicable in calculating one dimension bar with weak area. 

5. Non Local Damage Law with Random Property Method 

The idea of this approach is to deal with the problem of predicting the 

crack position and number. The force – displacement curve obtained shows a 

mesh independency result. When the local behavior is observed, it is shown 

that the calculation is mesh independent. Therefore, the random property 

method is capable in giving a mesh – independent result globally and locally. 

 

5.1. 2. Three Point Bending Test 

A numerical three point bending test of concrete beam has been done. The 

beam is pin and roll supported on the bottom part of the beam and it is subjected 

to a concentrated load (–y direction) in the centre of the beam. There are three 

types of size of the beam to be analyzed, D1, D2, and D3, in order to simulate the 

size effect of the structures. Calculation is done by using Mazars Damage Law, 

therefore a notch is given at the bottom center of the, since the damage law needs 

point for crack initiation. 

1. Local Calculation with  

The force - displacement curves vary for each type of beam as the size 

effect occurs, however the results obtained are not comparable with the 

experimental result, since the parameters of damage law used are different. 

For the local behavior, cracks occur along the mesh alongside the 

symmetric line according to the mesh refinement. Therefore, the local 

behavior is mesh dependant. 

2. Non Local Calculation 
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Non Local Mazars damage parameters given are calibrated from the 

experimental results of SYED Yasir Alam (2009). The force – displacement 

curves given by each type of beam simulate the size effect, therefore for the 

global result, the regularization of numerical methods is able to simulate the 

size effect. 

At the local behavior, crack length and crack opening are measured 

and compared with the experimental result. Values compared are ones at 60% 

before peak, at peak load, and 60% after the peak load.  Given in table 4.2.3 

and 4.2.4, the numerical results are overestimate compared to the experimental 

result, where relative errors which occur should be considered. However, the 

numerical results are computed using displacement jump, therefore another 

approach in calculating the crack opening displacement in order to obtain a 

more precise value that is comparable with the experimental results. 
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