
UNIVERSITAS INDONESIA UNIVERSITÉ DE BRETAGNE SUD

STUDY AND IMPLEMENTATION OF PORTING 3D
APPLICATION ON IPAD

THESIS

LANG JAGAT
0906577974

FACULTY OF ENGINEERING
DEPARTMENT OF ELECTRICAL ENGINEERING
MULTIMEDIA AND INFORMATION NETWORK

DEPOK
JULI 2011

Study and..., Lang Jagat, FT UI, 2011

UNIVERSITAS INDONESIA UNIVERSITÉ DE BRETAGNE SUD

STUDY AND IMPLEMENTATION OF PORTING 3D
APPLICATION ON IPAD

THESIS

Submitted to the Graduate Faculty of Engineering in partial fulfillment of
the requirements for the master degree

LANG JAGAT
0906577974

FACULTY OF ENGINEERING
DEPARTMENT OF ELECTRICAL ENGINEERING
MULTIMEDIA AND INFORMATION NETWORK

DEPOK
JULI 2011

Study and..., Lang Jagat, FT UI, 2011

ii

Study and..., Lang Jagat, FT UI, 2011

iii

Study and..., Lang Jagat, FT UI, 2011

ACKNOWLEDGMENT

Thank’s God for His blessings and His mercy, I can complete a thesis entitled

"Study and Implementation of Porting 3D Application on iPad". Writing a thesis is

done in order to meet one of the requirements to achieve the degree Master of

Engineering, Department of Electrical Engineering Universitas Indonesia. I can

not realize that, without the help and guidance from various parties, from the

lecture to the preparation of this thesis. Therefore, I would like to thank:

1. Dr. Nicolas COURTY, as my supervisor who giving me the opportunity to

work in their respective research groups for my project of internship in

VALORIA laboratory, Université de Bretagne Sud.

2. Prof. Sylvie GIBET as my tutor, for all of her advice, support and enthusiasm

during my internship.

3. Prof. Irwan Katili as Coordinator DDIP (Double Degree Indonesia

Perancis) .

4. All the teachers in Department of Electrical Engineering University

Indonesia.

5. All the teachers of UBS which are sometimes very severe, for teaching me

and gave me valuable lessons during my studies.

6. To my family, my parents and my brothers and my sisters, my great familly

who are always close to me and gave me the support all the times.

7. My colleague that always stay for assisting me with technique.

Finally, I hope that God Almighty is pleased to reply to all the good of all

parties who have been helped. Hopefully this thesis brings benefits to the

development of science.

Vannes, 4 July 2011

iv

Study and..., Lang Jagat, FT UI, 2011

v

Study and..., Lang Jagat, FT UI, 2011

ABSTRACT

Name : Lang Jagat
Study Program: Multimedia and Information Network
Title : Study and Implementation of Porting 3D Application on iPad

A virtual character is graphics simulation of real or imaginary persons that
enable natural can be interact with the user by means of voice, facial expression,
gesture, and gaze direction. Many research has developed 3D virtual character
animation not only in PC platform but also in Mobile device.
This Theses present an implementation of a 3D virtual character animation and
rendering engine running on iPad using OpenGL-ES with Objective-C and C++.
The Objective of this project is a port of the library SMR that has developed by the
team SAMSARA from Valoria laboratory at Université du Bretagne Sud (UBS).
This library used for developing applications that make use of real time 3D graphics
for visualization and animation of 3D virtual human character use sign language
in French. Real time animation of virtual character on iPad represent a challenging
task since many limitation must be taken into account with respect the processing
power like graphics capabilities, disk spaces, and memory size. The original
source code has been modified to make SMR library work on the iPad platform,
and further optimizations have been done to increase the runtime performance as
well.

Keyword : OpenGL 2 ES, Objective-C++, SMR Library

University of South-Brittany vi University of Indonesia

Study and..., Lang Jagat, FT UI, 2011

ABSTRAK

Nama : Lang Jagat
Program Studi : Jaringan Informasi dan Multimedia
Judul : Study and Implementation of Porting 3D Application on iPad

Karakter virtual merupakan simulasi grafik yang bisa berupa objek manusia riil
maupun imaginer yang memungkinkan objek berinteraksi dengan pengguna baik
melalui suara, ekspresi wajah, isyarat, dan pandangan. Banyak penelitian telah
dilakukan dalam pengembangan karakter animasi 3D yang tidak hanya pada platform
PC melainkan juga pada platform mobile.
Pada thesis ini membahas mengenai implementasi dari karakter anamasi virtual 3D
dan 3D engine di iPad dengan menggunakan library graphics OpenGL ES dan
bahasa pemrograman Objective-C dan C++. Tujuan dari projek ini adalah porting
library SMR yang telah dikembangkan oleh tim SAMSARA dari laboratorium
SAMSARA di Universtité de Bretagne Sud (UBS). Library ini digunakan untuk
mengembangkan applikasi 3D real time untuk visualisasi dan animasi karakter
manusia yang menggunakan bahasa isyarat Perancis (Sign Language on French).
Animation real time dari karakter virtual di iPad harus memperhitungkan beberapa
keterbatasan yang dimiliki oleh oeh iPad seperti kemampuan grafik , ruang disk, dan
ukuran memori. Source Code library SMR harus dilakukan beberapa modifikasi
sehingga memungkinkan untuk berjalan dengan baik di platform iPad.

Kata Kunci : OpenGL 2 ES, Objective-C++, Library SMR

University of South-Brittany vii University of Indonesia

Study and..., Lang Jagat, FT UI, 2011

RÉSUMÉ

Un personnage virtuel est la simulation graphiques de personnes réelles ou
imaginaires qui permettent naturels peuvent être d'interagir avec l'utilisateur au
moyen de la voix, l'expression du visage, le geste et la direction du regard.
Beaucoup de recherches a développé animation de personnages 3D virtuels, non
seulement dans la plate-forme PC, mais aussi dans l'appareil mobile. Ce rapport
présente une mise en œuvre d'une animation de personnage virtuel en 3D et le
moteur de rendu des vues fonctionne en utilisant OpenGL iPad-ES avec
Objective-C et C + +.
L'objectif de ce projet est portage du SMR bibliothèque qui a mis au point par
l'équipe SAMSARA du laboratoire Valoria à l'Université du Bretagne Sud (UBS).
Cette bibliothèque utilisée pour développer des applications qui font usage de
vrais graphics en 3D temps réel pour la visualisation 3D et d'animation de langue
signe français (LSF). Animation en temps réel du personnage virtuel sur iPad
représentent une tâche difficile car de nombreuses limites doivent être prises en
considération à l'égard de la puissance de traitement, comme les capacités
graphiques, espaces disques, et la taille de la mémoire. Le code source original a
été modifié pour faire fonctionner la bibliothèque de SMR sur la plateforme iPad,
et d'autres optimisations ont été faites pour augmenter les performances
d'exécution aussi bien.

University of South-Brittany viii University of Indonesia

Study and..., Lang Jagat, FT UI, 2011

TABLE OF CONTENTS

PAGE OF TITLE... i
APPROVAL FORM.. ii
ACKNOWLEDGMENTS... iii
ABSTRACT.. v
TABLE OF CONTENTS.. ix
LIST OF FIGURES.. x
CHAPTER 1.. 1
INTRODUCTION.. 1
1.1 Presentation of Valoria Laboratory... 1
1.2 Introduction of Project 3D on iPad... 3

1.2.1 Objectives.. 4
1.2.2 Scope of Project.. 4
1.2.3 Requirement.. 5
1.2.4 Software Development Plan... 7

1.3 Thesis Outline ... 8
CHAPTER 2 .. 9
BACKGROUND ... 9
2.1 iOS SDK ... 9
2.2 Concept 3D Engine ... 11

2.2.1 Resource Handling ... 11
2.2.2 Scene Graphs .. 16
2.2.3 Rendering ... 16

CHAPTER 3 .. 18
PROGRAMMING WITH OBJECTIVE-C ++ AND OPENGL ES....... 18
3.1 Using Objective-C with C++ .. 19
3.2 OpenGL ES Library .. 19
CHAPTER 4 .. 21
IMPLEMENTATION ... 21
4.1 Description of SMR Library.. 21
4.2 SMR Library on iPad .. 23
4.3 Objective-C and C++ .. 26
4.4 OpenGL to OpenGL ES .. 29
CHAPTER 4 .. 33
CONCLUSION AND FUTURE WORK.. 33
5.1 Conclusion ... 33
5.2 Future Work ... 33
BIBLIOGRAPHY .. 34

University of South-Brittany ix University of Indonesia

Study and..., Lang Jagat, FT UI, 2011

LIST OF FIGURES

Figure 1.1 Project Timeline... 7
Figure 2.1 iPhone Programming Stacks ... 10
Figure 2.2 Model Human Object in Wireframe Mode.................................... 12
Figure 2.3 Texture with u,v Dimension .. 13
Figure 2.4 File BVH Format ... 14
Figure 4.1 Cross Platform SMR Library for OpenGL ES and MacOS/Wind.. 22
Figure 4.2 Class Diagram generally of Project ... 22
Figure 4.3 Class Diagram for Objective-C .. 23
Figure 4.4 Code Snippets definition of Class GLView 23
Figure 4.5 Code Snippets implementation of Class GLView 24
Figure 4.6 Class Diagram SmrApplication and SmrHumanoid in C++......... 29
Figure 4.7 Code Snippets from SmrRenderer in OpenGL.............................. 30
Figure 4.8 Code Snippets from SmrRenderer in OpenGL ES......................... 31

University of South-Brittany x University of Indonesia

Study and..., Lang Jagat, FT UI, 2011

1

CHAPTER 1

INTRODUCTION

In this chapter, described the introduction of the these work. Includes a

presentation of laboratory Valoria, introduction the background of the project

topic, problem formulation, objectives, constraints problems, working

methodology.

1.1 Presentation of VALORIA

Valoria is the computer science laboratory at Université de Bretagne Sud. It

develops research activities in the scope of Ambient Intelligence (AmI),

addressing research and development topics along three complementary research

activities:

1.1.1 Interaction and Intelligence

This first activity aims at providing end-users with technological,

innovative means for greater user-friendliness, more efficient services

support and user-empowerment, while contributing to user-friendly,

dependable, adaptive and non-intrusive hardware/software environments.

1.1.2 Software Architecture

The second activity is dedicated to architecting/refining, testing/refactoring

and maintaining/evolving dynamic, distributed, mobile and context-aware

systems considered as the background support to ambient computing.

1.1.3 Middleware

The third activity focuses on providing middleware for distributed mobile

and communicating systems as a support to ubiquitous and pervasive

computing.

Université de Bretagne Sud Universitas Indonesia

Study and..., Lang Jagat, FT UI, 2011

2

There are some group that work in these domain, one of them is Group

SAMSARA. Group SAMSARA (synthesis and analysis of motion for the

simulation and animation of realistic agents) has research activities on model

gesture and motion in a computer graphics context. The objectives are centered on

real time simulation of biomimetic gestures, with a particular focus on realism and

reactivity to the environment. The finality is to build interactive, communicative

and artificial humanoids endowed with human-like gestural abilities.

The aim of the research conducted by SAMSARA is to model and simulate

motion, with respect to different application fields mainly to design virtual

humanoids endowed with communicative behaviors. The build synthetic

characters can communicate with the user in a human-like way. This supposes to

have a better understanding of the inherent mechanisms of sensorimotor control

for communication gestures and skilled motion, as well as to build animation

methods to embody the virtual character. Realism can be achieved by developing

synthesis models with respect to sensory-motor principles, or to integrate within

animation system properties of human motions extracted from data captured on

real subjects. Communication and interaction can be supported by high-level

description languages and real-time control mechanisms.

Some of them are dedicated to the development of software tools and methods for

creating and animating communicative virtual characters, which can be embedded

in immersive devices or in mobile communication systems (PDA, etc.). This

application domain fits with some objectives of Ambient Intelligence, in the sense

that (intelligent) interactions might be improved by using humanoid

representations as a mean of communication (humanisation of interface). The

principles of the different animation prototypes might also interest the video

games community, 3D oriented CAO tools, and robotics (new paradigms to

control robots). Other virtual reality applications are related to the design,

evaluation and adaptation of workplaces dedicated to physically disabled persons.

In the context of mobile communication such as in-vehicle systems, gestural

Université de Bretagne Sud Universitas Indonesia

Study and..., Lang Jagat, FT UI, 2011

3

interaction was studied based on gestural interaction techniques.

The Valoria laboratory is essentially located on the Campus of Tohannic, in the

south of Vannes. Valoria offices are in ENSIbs building.

Postal address :

Valoria Laboratory

Université de Bretagne-Sud, Campus de Tohannic

BP 573

56017 Vannes cedex

Telephone : 02 97 01 35

Fax 02 97 01 72 79

1.2 Introduction of Project 3D on iPad

The research activities of the SAMSARA group cover a wide variety of

applications. Some of them are dedicated to the development of software tools and

methods for creating and animating communicative virtual characters, which can

be embedded in immersive devices or in mobile communication systems.

SAMSARA actively design and implement a generic platform for humanoid

animation on C++ code along with an OpenGL based visualization.

The first one is dedicated to motion database handling. The second one, called

Animation Engine , is responsible for managing actuators (which compute new

motions or play captured motions) in combination with blenders (which blend

several types of motion together). Finally the Rendering Engine is responsible for

displaying the scene along with different virtual actors. This engine uses modern

graphics features for enhancing the quality of rendering like, for instance, the

OpenGL Shading Language.

This platform used to visualization and animation virtual actor for realization of

avatar with French sign language (LSF). LSF is an effective method that used for

communication between normal people to communicate with the deft and hearing

Université de Bretagne Sud Universitas Indonesia

Study and..., Lang Jagat, FT UI, 2011

4

impaired communities used in France regional area and countries who use a

French language. There are many research that has developed in the domain of

computer graphics to developing and proposed technique to facilitate process of

communication.

The platform that was developed in computer based will be run on iPad device.

Ipad with iOS constitute an interesting hardware platform for developers an

application since so many people use it. However, Ipad are generally not

specifically designed to support application 3D for animation, which poses

problems for developers. One of these problems has been that Ipad have provided

comparatively simple graphics.

1.2.1 Objectives

This project aims to porting the SMR library from PC platform to platform

iPhone OS. SMR is an project for the creation of 3D real time applications that

official release supports many operating systems, like Windows, Linux and Mac

OS. On this project used openGL ES 2.0, objective-C and C++. This project also

evaluate the effective process, the difficulty of that process conversion and

evaluate the limitation of this platform. On the other hand, this project evaluate the

graphics capabilities of current and upcoming iPad, specifically focused on 3D

graphics using the OpenGL ES graphics programming interface version 2.0

(Opengl ES 2.0).

1.2.2 Scope of Project

This project focuses on the OpenGL ES API, and especially on versions OpenGL

ES 2.0 and also mainly focuses on iPhone OS. Because of iPad use same

operating system developed by Apple like on the iPhone. iPad device which

supports OpenGL ES 2.0, was released during the creation of this project. The

performance of the solution will tested with the real device.

The first step was of this project started by studying the concept OpenGL 2.1 on

the project SMR and OpenGL ES 2.0 in order to understanding the principle of

Université de Bretagne Sud Universitas Indonesia

Study and..., Lang Jagat, FT UI, 2011

5

OpenGL and shader. The goals were to examine how to develop iPad application

with OpenGL ES 2.0 and how three-dimensional graphics and shaders can be

successfully used in iPad.

The second step was integrated the code source of C++ on the SMR library with

objective-C code, this is done because the on iPad development using the

programming language Objective-C as a primary while the SMR code using C++.

On other side to be an adjustment code from OpenGL to OpenGL ES. this is done

because for embedded systems using the graphics library openGL ES.

1.2.3 Requirements

a. Hardware

On this project use iPad as environment where Apple was released iPad since

April 2010 with runs the same operating system as the iPhone and the new

released with support Wi-Fi + 3G has the following specification [6]:

a) Device size and weight : Height: 9.50 inches (241.2 mm)

Width: 7.31 inches (185.7 mm)

Depth: 0.34 inch (8.8 mm)

Weight: 1.35 pounds (613 g) (Wi-Fi + 3G model)

Weight: 1.34 pounds (607 g (Wi-Fi + 3G for Verizon model)

b) Display : 9.7-inch (diagonal) LED-backlit glossy widescreen Multi-Touch

display with IPS technology, 1024-by-768-pixel resolution at 132 pixels per

inch (ppi)

c) Storage: 16 GB to 64 GB

d) Processor : 1GHz dual-core Apple A5 custom-designed, high-performance,

low-power system-on-a-chip

e) Power and Battery : Built-in 25-watt-hour rechargeable lithium-polymer battery.

b. Programming Environment

Apple provide Xcode as an Integrated Development Environment (IDE) as a tool

to developing software for Mac OSX and iPhone Software Development Kit

(SDK) to development program in IOS. Xcode contains an iPhone simulator that

Université de Bretagne Sud Universitas Indonesia

Study and..., Lang Jagat, FT UI, 2011

6

lets developers test their software without deploying it on the device. The Xcode

includes version of free software GNU Compiler Collection (GCC apple-darwin)

and support C, C++, Objective-C, Objective C++. It also contains various tools for

debugging and measuring memory and CPU consumption [20].

In this project used the iOS SDK version 4.2, it is the core software of iPad as

mobile Platform that developed by Apple. The iOS SDK is available only for OS

X. it can be downloaded on Apple’s iPhone developer site. With only the free

SDK, it is possible to develop complex applications and even test them on the

iPhone Simulator, because it includes with Xcode IDE and iPhone simulator. The

iphone simulator allows to run, test, and debugging of iPhone application directly

on Mac. It also provides support for running both OpenGL ES 1.1 and OpenGL ES

2.0 based application.

Because of The iPhone OS is not open source, so for a developer, Apple provided

2 kinds of licenses, namely: The Standard Program, for an independent developer,

which costs $99 and The Enterprise Program, for a business developing team,

which costs $299. For iPhone application development software:

a) The iPhone SDK, which contains the frameworks needed to successfully

integrate your application as an iPhone app

b) iPhone emulator, to test your application live on Mac.

c) XCode, the developing environment which has a customization module for

iPhone app development .

d) Cross Compiler, that allow to the developer to programmed application in a

different language than Objective-C, you can sometimes find a cross compiler

for it, which will translate the binary code into Objective-C binary code .

1.2.4 Software Development Plan

a. Job Description

In the table list of jobs below show the description job with estimation and

allocation time of in the internship in accordance with the time that has been set by

Université de Bretagne Sud Universitas Indonesia

Study and..., Lang Jagat, FT UI, 2011

7

the university namely during the 22 weeks 3 days starting from 26 January to 1

July 2011.

No Job Description Estimation and Allocation Time
Duration Begin Date End Date

1. Job Description 2 days 26-01-2011 26-01-2011

2. Tool Preparation 2 days 28-01-2011 01-02-2011

3. Study Concept Development 12 days 01-02-2011 17-02-2011

4. iOS and OpenGL ES 16 days 17-02-2011 11-03-2011

5. Objective-C and C++ 14 days 11-03-2011 31-03-2011

6. Study Code SMR 10 days 31-03-2011 14-04-2011

7. Software Development 1 24 days 14-04-2011 18-05-2011

8. Software Development 2 15 days 18-05-2011 08-06-2011

9. Test 5 days 08-06-2011 15-06-2011

10. Report 10 days 15-06-2011 29-06-2011

Table : List of Job with Estimation and Allocation Time

b. Project Timeline

In the figure 1.1 below show the timeline internship in accordance with the time

that has been set as show in table above.

Figure 1.1 Project Timeline

Université de Bretagne Sud Universitas Indonesia

Study and..., Lang Jagat, FT UI, 2011

8

1.3 Thesis Outline

The thesis can be divided into tree main parts : Introduction, background,

implementation/ evaluation, and Conclusions and Further Work.

1.3.1 Introduction

Introduction described the introduction of the these work. Includes a presentation

of Laboratory Valoria, introduction of the project topic, objectives, requirement

and Software development plan.

1.3.2 Background

Background provides Somme explain the concept of application development on

the iOS platform. Some things that will be discussed in this section is about IOS

SDK and concept of 3D engine, graphics libraries. This chapter describes the

using of OpenGL ES graphic libraries.

1.3.3 Implementation/evaluation

In the part of Implementation/evaluation describes the details implementation of

the engine and prototype, as well as an evaluation of the results. The chapters of

this part is as follows: Approach, Implementation details, focusing on the 3D

graphics engine. An evaluation of results as well as some more general discussion

about 3D graphics and animation for mobile phones and how the limitations of the

hardware affect the design of engines for iOS platforms.

1.3.4 Conclusions and Further Work

This part provide information about works conclusions and suggestions for further

study .

Université de Bretagne Sud Universitas Indonesia

Study and..., Lang Jagat, FT UI, 2011

9

CHAPTER 2

BACKGROUND

In this chapter will explain the concept of application development on the IOS

platform. Some things that will be discussed in this section is about IOS SDK and

concept of 3D engine.

2.1 iOS SDK

The iOS platform consists of an operating system and a set of tools developed by

Apple. The iPhone platform targets portable, multi-touch devices and is currently

only available on the Apple iPhone, iPod touch and iPad. The iPad has its very

own operating system, It is means that there is a maximization of the software-

hardware compatibility. Apple neatly organizes all of the iPad’s public APIs into 4

layers including the core OS : Cocoa Touch, Core Services, Media service, and

core OS.

Most of the programs in this report were implemented in Cocoa Touch Layer and

media layer as show in Figure 2.1. This layer is very important for application

developers, because it contains the key frameworks that provide the infrastructure

that need to implement applications. Cocoa Touch layer with UIKit frameworks,

and Media layer. UIKit Framework is the frameworks that mainly used for the

implementation of the graphical user interface, and the Foundation Framework,

mainly used to communicate with the Core Foundation Framework. Media layer

has 3 frameworks : Core Graphics, OpenGL ES, Quartz Core frameworks.

2. 1.1 Core Graphics frameworks

Core Graphics is Vanilla C interface to Quartz core Frameworks. The Core

Graphics framework is a C-based API that is based on the Quartz advanced

drawing engine. It provides low-level, lightweight 2D rendering with unmatched

output fidelity. This framework used to handle path-based drawing,

transformations, color management, off screen rendering, patterns, gradients and

Université de Bretagne Sud Universitas Indonesia

Study and..., Lang Jagat, FT UI, 2011

10

shadings, image data management, image creation, masking, and PDF document

creation, display, and parsing[2].

2.1.2 OpenGL ES frameworks

OpenGL ES frameworks is Low-level hardware-accelerated C API for rendering

2D or 3D graphics. In OpenGL ES has EAGL , tiny glue API between OpenGL

ES and UIKit. Some EAGL classes (such as CAEGLLayer) are defined in Quartz

Core framework, while others (such as EAGLContext) are defined in the OpenGL

ES framework[13].

EAGL is derives from UIView class abstract, since all rendering on the iPhone

must take place within a view. It class controls a rectangular area of the screen,

handles user events, and sometimes serves as a container for child views. Almost

all standard controls such as buttons, sliders, and text fields are descendants of

UIView . EAGL is a small Apple-specific API that links the iPhone operating

system with OpenGL.

Figure 2.1 iPhone Programming stacks [13]

Université de Bretagne Sud Universitas Indonesia

Study and..., Lang Jagat, FT UI, 2011

11

2.1.3 Quartz Core Frameworks

Quartz Core frameworks has Core animation that facilitates complex

animations[13]. Quartz core has vector-based graphics library that supports alpha

blending, layers, and antialiasing.

2.2 Concept of 3D Engine

This platform was originally developed to run on top of a Linux or Windows

operating system. It would now be interesting to carry on a system like Android,

which would include the use of devices like smart-phones.

Generally the core functionality typically provided by a 3D engine includes a

rendering engine for 2D or 3D graphics, a physics engine or collision detection

(and collision response), sound, scripting, animation, artificial intelligence,

networking, streaming, memory management, threading, localization support, and

a scene graph. 3D Engine is a software which is intended to perform certain tasks,

such as handling resources, scene graphs and rendering.

2.2.1 RESOURCE HANDLING

Resources are the content of the scene, i.e. what eventually is drawn on the screen.

Resources may include models, textures, shaders, materials and animations.

a. Model

Models are the geometries of the scene, which are bound to objects in the scene

graph. A model is essentially a list of polygons and associated information, such as

texture coordinates or vertex normals[19]. Models can be generated through code,

but most often they are read from a file, which usually has been exported from a

modeling application, such as Autodesk's Maya or Blender and imported to an

application using model loader[6][19]. The geometry consists of vertex data, as

well as a surface description which describes how vertices are connected to create

primitives such as polygons, triangle strips, lines or points. Figure 2.1 shows an

example of model.

Université de Bretagne Sud Universitas Indonesia

Study and..., Lang Jagat, FT UI, 2011

12

Figure 2.2 : Model Human Object in wireframe mode

b. Texture

To create 3D object becomes more attractive and more look like a real object

usually add texture. The texture differentiates the model from others and provides

more detailed information generally texture is image in 2D still with many format

file like .bmp, .jpeg, .png, .gif, .tga. Files can be applied to a 3D surface (a

triangle) by adding a pair of coordinates (U,V) to each vertex of the 3D mesh[14].

We use UV mapping method for mapping images onto mesh faces. We use several

images from different angles to cover whole mesh. The UV means, that each

vertex of a face has its UV coordinates in the texture space. The texture is

interpolated during the mapping. Faces have an associated texture. The texture

mapping is an affine transformation defined by the vertex UV coordinates. Textures

can be one-, two- or three-dimensional, thought OpenGL ES 2.0 only supports

two-dimensional textures. When data is read from a texture it is usually filtered to

make the output continuous and reduce aliasing. Figure 2.2 shows an example of

texture in u,v dimension.

Université de Bretagne Sud Universitas Indonesia

Study and..., Lang Jagat, FT UI, 2011

13

Figure 2.3 : Texture with U,V Dimension

c. Shaders

Shaders are short programs that are usually executed on graphics hardware or

graphics processing unit (GPU)[6][19]. In the OpenGL ES 2.0 specification, there

are two kinds of shader programs: vertex shaders and fragment shaders[6].

Shaders receive data in the form of attributes and uniforms. Attributes vary with

every element that is processed and are provided either from the previous shader

in the pipeline or by the engine. Uniforms on the other hand vary at most once per

draw call. Typical examples of uniforms are object properties such as position,

texture bindings and material properties. On Embedded system, there are 2 type of

shaders available: vertex shaders and fragment shaders[6].

d. Animations

There are some of methods for animation 3D, one of the most common methods

for is bone animation. This method can be implemented using either forward

kinematics or inverse kinematics. The former is a technique for directly

interpolating bone positions between certain positions, defined in keyframes[6].

Bone animations modifies the position, rotation or scale of certain nodes known as

bones. Vertices in a model are linked to one or many of these bones in order to

follow their movement. This technique is known as skinning. Bones are usually

linked in a hierarchical manner to affect each other, mimicking the behavior of, for

example, a skeleton[5].

Université de Bretagne Sud Universitas Indonesia

Study and..., Lang Jagat, FT UI, 2011

14

Another common animation method is blend shapes, where multiple versions of a

model (each with the same number of vertices) are loaded, and animation

performed by interpolating between these variations[6].

We prefer to use motion capture data for real representation of human movements.

For motion capture data we use the BVH format (BioVision Hierarcy). This format

is widely used by animation software and can be imported into Blender or Maya.

The BVH file format was originally developed by Biovision, a motion capture

services company. The name BVH stands for Biovision hierarchical data. Its

disadvantage is the lack of a full definition of the rest pose (this format has only

translational offsets of children segments from their parent, no rotational offset is

defined). The BVH format is built from two parts, the header chapter with joint

definitions and the captured data chapter. Figure 2.3 shows an example of BVH

file.

HIERARCHY

ROOT root

{

 OFFSET 4.68667 86.1523 3.06052

 CHANNELS 6 Xposition Yposition Zposition Zrotation Xrotation Yrotatio

 JOINT l_hip

 {

 OFFSET 10.9995 -8.42114 0

 CHANNELS 6 Xposition Yposition Zposition Zrotation Xrotation Yrotation

 JOINT l_knee

 {

 OFFSET 3.52859e-005 -38.8488 0

 CHANNELS 6 Xposition Yposition Zposition Zrotation Xrotation Yrotation

 JOINT l_ankle

 {

 OFFSET -0.00230834 -31.8504 0

 CHANNELS 6 Xposition Yposition Zposition Zrotation Xrotation Yrotation

 JOINT l_midfoot

 {

Université de Bretagne Sud Universitas Indonesia

Study and..., Lang Jagat, FT UI, 2011

15

 OFFSET 0 -6.23656 8.85409

 CHANNELS 6 Xposition Yposition Zposition Zrotation Xrotation Yrotation

 JOINT l_forefoot_tip

 {

 OFFSET 0 0 7

 CHANNELS 6 Xposition Yposition Zposition Zrotation Xrotation Yrotation

 End Site

 {

 OFFSET 1 0 0

 }

 }

 }

 }

 }

 }

 JOINT abdomen

.........

MOTION

Frames: 924

Frame Time: 0.01

2.15495 86.1264 3.67291 -0.306075 2.54431 -0.773478 10.9995 -8.42114 -1.65526e-006 3.15998

-11.4707 2.85534 3.52859e-005 -38.8488 -6.51212e-012 -0.0549957 18.9671 5.6765 -0.00230834

-31.8504 -5.93801e-011 -3.59907 1.98522 -0.534339 5.12871e-008

......

Figure 2.4 File BVH format

The start of the header chapter begins with the keyword HIERARCHY. The

following line starts with the keyword ROOT followed by the name of the root

segment. The hierarchy is defined by curly braces. The offset is specified by the

keyword OFFSET followed by the X,Y and Z offset of the segment from its

parent. Note that the order of the rotation channels appears a bit odd, it goes Z

rotation, followed by the X rotation and finally the Y rotation. The BVH format

uses this rotation data order. The world space is defined as a right handed

coordinate system with the Y axis as the world up vector. Thus the BVH skeletal

segments are obviously aligned along the Y axis (this is same as our skeleton

Université de Bretagne Sud Universitas Indonesia

Study and..., Lang Jagat, FT UI, 2011

16

model).

The motion chapter begins with the keyword MOTION followed by a line

indicating the number of frames (Frames: keyword) and frame rate. The rest of the

file contains the motion data. Each line contains one frame and the tabulated data

contains data for channels defined in header chapter.

2.2.2 Scene Graphs

A scene graphs is a data structure that arranges the logical and often spatial

representation of a graphical scene that contains a number of linked nodes, usually

in such a way that a node can have multiple child nodes, but only one parent, thus

making it a directed graph. A scene graphs consists of nodes connected in a

directed, acyclic fashion. Geometry lies at the leaves of the scene graph while

internal nodes support notions such as grouping, transformation, selection, and

sequencing as well as special operations such as level-of detail switching, and

morphing.

Nodes can be divided into two categories, group nodes, which may have children,

and leaf nodes, which may not. There can be numerous types of nodes, for

instance transform nodes, object/model nodes, light nodes, camera nodes and

emitter nodes for particle systems.

A transform node is a group node which represents a transform relative to its

parent node. This arranges the scene in a hierarchical structure, which is useful for

numerous reasons, such as moving a complex object by only moving the parent

node. An object node, or a model node, is a leaf node that represents a graphical

object that can be rendered. It has references to a mesh and a material resource. All

leaf nodes, such as those for objects, lights, cameras and emitters receive

transforms from a parent transform node.

2.2.3 Rendering

Rendering is the process of generating an image from a model (or models in what

collectively could be called a scene file), by means of computer programs. A scene

Université de Bretagne Sud Universitas Indonesia

Study and..., Lang Jagat, FT UI, 2011

http://en.wikipedia.org/wiki/3D_model

17

file contains objects in a strictly defined language or data structure; it would

contain geometry, viewpoint, texture, lighting, and shading information as a

description of the virtual scene. The data contained in the scene file is then passed

to a rendering program to be processed and output to a digital image or raster

graphics image file.

There are several ways of rendering a scene, such as ray-tracing and radiosity.

Such methods allow for advanced lighting effects and global illumination. Global

illumination takes the environment into consideration so that effects such as

reflections, refractions and light bleeding are possible. However, global

illumination is generally considered too slow to be applied to games. This section

will hence focus on using hardware accelerated rasterisation, which is the most

common method employed by games. Although rasterisation only directly

supports local lighting effects, which only considers the actual surface and light

sources, modern games include many global effects such as shadows and

reflections. This, however, makes the process of rendering a modern game a very

complex task.

Université de Bretagne Sud Universitas Indonesia

Study and..., Lang Jagat, FT UI, 2011

http://en.wikipedia.org/wiki/Raster_graphics
http://en.wikipedia.org/wiki/Raster_graphics
http://en.wikipedia.org/wiki/Shading
http://en.wikipedia.org/wiki/Lighting
http://en.wikipedia.org/wiki/Texture_mapping

18

CHAPTER 3

PROGRAMMING WITH OBJECTIVE-C++ AND OPENGL ES

In this project, used legacy code of SMR library that use C++ as programming

language. Rideout.P [13] discuss in his book about using C++ code and Objective-

C code to create application on iPhone, while the iPhone-specific glue is written in

Objective-C. As show below in the Figure 3.1, Rendering Engine uses portable C+

+ with the classes where most of the work takes place and all calls to OpenGL ES

are made from here. The variation on the right separates the application engine

(also known as game logic) from the rendering engine.

Figure 3.1 Cross Platform Smr Library for OpenGLES and MacOS/Wind.

Olson [6] in his thesis use openGL ES 2.0 with shaders to create application cross-

platform for mobiles phones, where one of that is for iPhone. Nystrom[19],

Olsson[6] used OpenGL ES 2.0 for create 3D animation engine and run

application in mobile hardware with many optimizations for 3D desktop

application can be directly applied to mobile application .

Apple use the Objective-C language within their development framework.

Objective-C is an objective oriented programming language that is superset of C

Université de Bretagne Sud Universitas Indonesia

Study and..., Lang Jagat, FT UI, 2011

19

thus it‘s allows us to write portions of code in C [4]. Instead of Objective-C is the

primary language used on the iPad development, but we can actually use pure C or

C++ for much of your application logic, if it does not make extensive use of

UIKit[13]. This is especially true for OpenGL development because it is a C API.

Files in Objective-C use the .m as file extension and used for the bridge code

between the iPhone/iPad operating system and OpenGL ES.

3.1 Using Objective-C with C++

Objective-C can be seen as a thin layer on top of C that adds object orientation to

the language. The object syntax is derived from Smalltalk and all of the non-object

related syntax is identical to that of C. Its allows to use mixed Objective-C and C

and C++. Objective–C compiler allows to mix C++ and objective-C in the same

source file that call objective-C++, language hybrid between objective-C and C++.

That mean it use the existing C++ libraries in Objective-C application. On

Objective-C++, files that contain C++ implementations should use the

extension .mm for to be enabled by the compiler instead of .m file extension[17]

[8].

In objective-C++, we can call methods from either language in C++ code and in

Objective-C methods, for this purpose we need interface between both of them.

The interface between the Objective-C class and the other C++ classes called C++

Wrapper object. The method is include pointer to objective-C objects as members

of C++ class, and includes pointers to C++ objects as instance variables of

objective-C classes[2][12] .

3.2 OpenGL ES Library

There are many different programming libraries for the purpose of rasterizing

images in computer graphics. One of the common used library is OpenGL (Open

Graphics Library). A graphics library is a low level library that provide an

interface against a lower level graphics library[6]. OpenGL is a standard

specification defining a cross-platform application programming interface (API)

for rendering 2D and 3D object. For targeted at handheld on embedded system, the

Université de Bretagne Sud Universitas Indonesia

Study and..., Lang Jagat, FT UI, 2011

20

Khronos Group released OpenGL ES, simplified version of OpenGL that

eliminates redundant functionality to provide a library that is both easier to learn

and easier to implement in mobile graphics hardware[2][12], with some

functionality was removed in order to make the library smaller and simpler.

However, fixed-point functionality was added since few embedded systems

efficiently handle floating-point calculations[8].

OpenGL ES 1.0 does not include direct mode for rendering, which means one

cannot draw polygons by sending vertices to OpenGL one vertex at a time [6]

Instead of must use vertex arrays. It also introduces functions for doing fixed-

point math, as Embedded system devices often do not have dedicated floating-

point math hardware. Many features that can make development easier but are not

strictly needed have also been removed, such as pushing and popping the OpenGL

state.

In the 2004, OpenGL ES 1.1 was released based on OpenGL 1.5. The most

important additions compared to OpenGLES 1.0 are automatic mip-mapping,

Vertex Buffer Objects (VBO), and the support of all advanced texture

(support multi texturing) environment settings in OpenGL 1.5[6]. In March 2007,

the Khronos Group released the OpenGL ES 2.0 as a subset of the OpenGL 2.0

specification which entailed a major break in backward compatibility by ripping

out many of the fixed function features and replacing them with a shading

language thus includes a programmable pipeline[12][5]. OpenGL ES is only one

of many graphics technologies supported on the iPad[6].

Unlike OpenGL 2.0 that backward compatible with OpenGL previous version,

GLES 2.0 completely removes all support for the fixed function pipeline. As a

result, GLES 2.0 is not backward compatible with previous versions of GLES, as a

result for handles multi texturing and lighting in favor of a more modern shader-

based pipeline. Shaders are specified in a version of GLSL called GLSL ES. GLES

2.0 only supports the Common profile, and the fixed point support has been

limited to vertex arrays only.

Université de Bretagne Sud Universitas Indonesia

Study and..., Lang Jagat, FT UI, 2011

21

CHAPTER 4

IMPLEMENTATION

This project was started by studying the concept of OpenGL 2.1 from the SMR

Library in order to understanding the principle of OpenGL and shaders. The goals

were to examine how to develop iPhone application with OpenGL ES 2.0 and how

three-dimensional graphics and shaders can be successfully used in iPad.

In order to do this we decided to porting code an application 3D animation in PC

Platform with shader to iOS Platform. Here we will porting 3D engine SMR that

used OpenGL to OpenGL ES 2.0 . We investigated if it would be possible to adapt

an available PC OpenGL engine but were concerned that they were too complex

and large to be easily adapted to a hand-held device. However, we also realized

that we did not have enough time to develop a complete 3D engine from scratch as

part of the project. We decided to handle this problem by trying to keep the engine

as small and simple as possible.

The implementation in this written with Objective-C++ legacy from SMR Library.

In the iPhone SDK 4.2 platform which supports OpenGL ES 2.0. Because of the

iPhone Platform use some Objective-C code had to be written but the actual

OpenGL ES implementation is only C++ making it more portable. This section

explains of the implementation project.

4.1 Description of SMR Library

The Library SMR is developed within the research team of SAMSARA from

Valoria Laboratory of Université du Bretagne Sud. It propose a feature of

animation human virtuals with the skeleton movement. This library also allows to

loading Biovision Hierarchy (BVH) file that contain the data of skeleton and his

movement that recorded from movement of real people. Generally SMR project

has some Library such as newmath, SmrMath Library, SmrAnimation, SmrCore,

SmrEngine, SmrRenderer, SmrInterprocess. As Show in the figure 4.1

Université de Bretagne Sud Universitas Indonesia

Study and..., Lang Jagat, FT UI, 2011

22

SmrApplication is used to link engine an offer a fast solution to create a

clientapplication. Here we begin, update and end the scene.

Figure 4.1 Class diagram general of project

There are some libraries dependencies that needed in the Smr Project such as

FreeType2, GLEW , Boost, SDL, fbxSDK show in figure 4.2. Along with their

purpose on the code, some details on how the port process was done are described

next.

Figure 4.2 Dependency Library SMR

4.1.1 Simple DiretMedia Layer (SDL)

The class SmrGUI is class interface that include Library SDL (SDL.h) defines

Université de Bretagne Sud Universitas Indonesia

Study and..., Lang Jagat, FT UI, 2011

23

creation windows, camera management, keyboard, and joystick. It containing

declaration functions used to managed SDLkey and SDL_Event for managed

mouse events structure used to retrieve data related to the mouse.

4.1.2 Boost C++ Library

Boost C++ Library usually use to implementation of frequent programming tasks

beyond the standard C++ Library such as asynchronous I /O, threading,

serialization, date and time, smart pointer , delegate functions, etc. On the other

side Boost Library compatible with the STL. Boost used by class

TransformationSender to send transformation in the memory.

4.1.3 fbxSDK

fbxSDK is a C++ software development kit (SDK) that allows to import and

export scenes in the .fbx file format. It also allows to create, access, or modify

various elements such as meshes, parametric surface, skeleton, lights, cameras,

and animation data.

4.1.4 OpenGL Extension Wrangler Library (GLEW)

GLEW is a cross-Platform C++ library that helps in querying and loading OpenGL

extensions. It provides efficient run-time mechanism for determining which

OpenGL extensions are supported on the target platform. All OpenGL extension

are expose in a single header file, which is machine-generated from official

extension list, on the other hand GLEW available for a variety of operating

system.

4.1.5 FreeType

FreeType is a software library written in C that implements a font rasterization

engine. it used to render text on to bitmaps and provide support for other font

related operations, by using the FreeType library we can create anti-aliased text

that look better than text made us bitmap fonts

Université de Bretagne Sud Universitas Indonesia

Study and..., Lang Jagat, FT UI, 2011

24

4.2 SMR Library on iPad

The first task performed to make SMR Library available for the iOS platform was

to port all the dependencies of SMR Library that do not have a working version

for the iOS platform, and extend the libraries that supported it to supply the

needed functionalities, such as a more complete file handling. These dependencies

are libraries used by the engine for specific tasks, like texture loading, shaders, and

file management. The libraries that officially did not support version for the iOS

platform were SDL, FreeType2, glew, Boost, fbxSDK.

4.2.1 SDL iOS

For handle the windows interface Apple provide Uikit Frameworks. This Frame

work provides the classes needed to construct and managed an application’s user

interface for iOS. It also provides an application object, event handling, drawing

model, view, and controls specifically designed for a touch screen interface. On

the other side, we can use library SDL instead of UIkit Frameworks. The

application can be ported to other platforms or other operating system more easily

without having to replace much of code. SDL 1.3 provide two headers that allows

us to chose OpenGL ES 1 or OpenGL ES 2 (SDL_opengles.h and

SDL_opengles2.h).

 In this project use SDL Library version 1.3 that combined with Cmake as build

tool. Cmake can automatically generates Xcode projects, so you can use Xcode

for the actual development if you like to do that. In fact, keeping xcode open for

compiling to automatically runs the iPhone simulator. Steps to make library SDL

for iOS:

a. Download SDL version 1.3 from site

b. Navigate to the « X-Code-iPhoneOS/SDL » folder and open the

SDLiPhoneOS.Xcodeproj.

c. During the local developement , changing 3 « iPhone Simulator» we can

change SDK by going to Project -> Edit Project Setting and Build and Run.

d. libSDL.a file can find in the « build/Debug-iphonesimulator » folder with the

Université de Bretagne Sud Universitas Indonesia

Study and..., Lang Jagat, FT UI, 2011

25

headers, the headers are in a full canonical folder structure (usr/local/include

e. instead of SDL)

f. Moved and rename a bunch of files libSDL.a to libs/SDL/Debug/libSDL.a nd

usr/local/include to libs/SDL/include.

g. For use OpenGL ES 2.0 change SDL_opengles.h ro SDL_opengles2.h

4.2.2 Boost iOS

In iOS project Boost library allows us to write platform independent C++ code

which relies on high performance. Many of the boost libraries can be used directly

without requiring any compilation. In this project use Boost version 1.44, for

building the binary boost libraries for iOS can be done from XCode project, some

steps for create library for iOS :

a. The boost sources can be download from the site[19].

b. Open the XCode project on the boost group and select the root folder of the

boost sources.

c. Open the project settings and change the BOOST_ROOT setting to match the

location where you extracted the boost archive.

d. Select the boost_all target. This is a dummy target that depends on all libraries

so you can build everything at once. Select the target SDK and build

configuration. Build. Alternatively you can build only the librariesyou require.

e. To use the libraries you can either compile them and copy them to the project or

add your code to this project.

4.2.3 FreeType 2[18]

For library Freetype on OpenGL ES use project Freetype [20] , project that

primarily designed for iPhone as portable code. To use font, TrueType font (i.e. the

.tff file) should include in the resource project. The principle class is FontAtlas,

that retrieves the size of each character from the FreeType library ,than use its bin

packing algorithm to fit them into OpenGL ES texture [3].

The distribution of the Freetype 2 library that includes an Xcode project can build

the Freetype 2 library into a static binary for the iOS operating system. The project

Université de Bretagne Sud Universitas Indonesia

Study and..., Lang Jagat, FT UI, 2011

26

includes the Freetype modules for processing TrueType and OpenType fonts. Steps

to make library SDL for iOS:

a. Download freetype2-iOS from site.

b. Navigate to the freetype2-iOS Xcodeproj.

c. During the local development , changing to « iPhone Simulator» we can change

SDK by going to Project and then Edit Project Setting and Build and Run.

d. libfreetype2.a file can find in the « build/Debug-iphonesimulator » folder with

the headers.

e. Add to the project file workspace of an existing project by dragging

freetype2.xcodeproj to the appropriate place in Xcode and link target with the

libFreetype2.a static library. From there, you will need to tell you target project

where the Freetype 2 headers are located.

f. Add a recursive link to the "include/" path of this Freetype source code distribution, to the

"Header Search Paths" entry of Xcode project. The "Header Search Path" entry needs to be

relative to the target project's location on your file system.

4.3 Objective-C and C++

In the section 3 has mentioned how to use objective-C++, we can call methods

from either language in C++ code and in Objective-C methods. The method is

include pointer to objective-C objects as members of C++ class, and includes

pointers to C++ objects as instance variables of objective-C classes[2][4] . As

show in the figure 4.3 and figure 4.4 the source Objective-c was defined on class

GLView a variable appli as a pointer to class SmrApplication on the source C++.

Université de Bretagne Sud Universitas Indonesia

Study and..., Lang Jagat, FT UI, 2011

27

4

Figure 4.3 Class Diagram for Objective-C

Figure 4.4 Code Snippets definition class GLView

Université de Bretagne Sud Universitas Indonesia

Study and..., Lang Jagat, FT UI, 2011

28

Figure 4.5 Code Snippets implementation of class GLView

Université de Bretagne Sud Universitas Indonesia

Study and..., Lang Jagat, FT UI, 2011

29

Figure 4.6 Class
Diagram SmrApplication and SmrHumanoid in C++

4.3 OpenGL to OpenGL ES

The initial OpenGL on SMR Renderer project has been modified in turn to

OpenGL ES. Many of the OpenGL ES function signatures are equivalent to

OpenGL, contributing to decrease the number of changes needed in the original

code. Some function names have little differences, like glClearDepth (OpenGL)

and glClearDepthf (OpenGL ES).

The SMR Renderer also used extensions to OpenGL, like GL ARB, which were

substituted for the equivalent OpenGL ES functions. OpenGL 2.0 that backward

compatible with OpenGL previous version, GLES 2.0 completely removes all

support for the fixed function pipeline. As a result, GLES 2.0 is not backward

compatible with previous versions of GLES, as a result for handles multitexturing

and lighting in favor of a more modern shader-based pipeline. Shaders are

specified in a version of GLSL called GLSL ES. GLES 2.0 only supports

Université de Bretagne Sud Universitas Indonesia

Study and..., Lang Jagat, FT UI, 2011

30

theCommon profile, and the fixed point support has been limited to vertex arrays

only.

The most noteworthy functionality in OpenGL ES 2.0 removed from OpenGL 2.0

is

a. Begin/end-paradigm.

b. Specific vertex arrays for attributes such as positions, normals and texture

coordinates. These functions have been removed in favor of the general

function glVertexAttribPointer.

c. Quad, quad-strip and polygon drawing primitives.

Figure 4.7 and 4.8 below show the method Drawground for in class

SmrRenderer, in this method change from OpenGL to OpenGL ES, there saw the

different of to call vertex, on OpenGL ES call vertex from array and change

GL_QUADS to GL_TRIANGLES.

Figure 4.7 Code Snippets from SmrRenderer in OpenGL

Université de Bretagne Sud Universitas Indonesia

Study and..., Lang Jagat, FT UI, 2011

31

Figure 4.8 Code Snippets from SmrRenderer in OpenGL ES

d. All functionality that modifies the current matrix transforms. The model-view

and projection matrices are removed, programmers choose which transforms

are needed and pass these as uniforms to shaders.

e. Automatic texture coordinate generation. This can be done in vertex shaders.

f. All functionality that handles lighting and material state. Programmers

implement a custom lighting solution with shaders and feed data to the shaders

with generic uniforms and vertex attributes.

g. One- and three-dimensional textures, leaving two-dimensional textures and

cube maps.

Université de Bretagne Sud Universitas Indonesia

Study and..., Lang Jagat, FT UI, 2011

32

h. Texture environment settings, these are not needed since shaders are a direct

substitute and much more powerful.

i. Fog settings, handled by shaders instead.

j. Display lists.

Université de Bretagne Sud Universitas Indonesia

Study and..., Lang Jagat, FT UI, 2011

33

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

The Objective of this project is a port of the SMR library, this library used for

developing applications that make use of real time 3D graphics for visualization

and animation of 3D virtual human character use sign language on French. Real

time animation of virtual character on iPad represent a challenging task since

many limitation must be taken into account with respect the processing power like

graphics capabilities, disk spaces, and memory size.

The original source code has been modified to make SMR library work on the

iPad platform, and further optimizations have been done to increase the runtime

performance as well. The SMR port for the iOS platform brings to the embedded

devices developer the opportunity to take advantage of the high-level features of

3D rendering engines.

5.2 Future Work

As future work, there are plans to implement a SMR Library on real device to

monitor hardware acceleration and performance. Another practice for optimizing

the runtime speed use different type processors and provides a great performance

improvement.

Some bug fixing is still needed, since some features are not working on the current

version of the engine. Finally, it is going to be applied some usability tests to

evaluate how good is the user interaction with the system and how it can be

improved.

The implementation of a render system based on OpenGL ES opens up the

possibility of having SMR library ported to other mobile platform environments,

like the android mobile base.

Université de Bretagne Sud Universitas Indonesia

Study and..., Lang Jagat, FT UI, 2011

34

BIBLIOGRAPHY

[1] Freescale Semiconductor Application Note. 2010. High-End 3D Graphics

with OpenGL ES 2.0, Document Number: AN3994 Rev. 0, 01/2010.

[2] http://developer.apple.com/library/iOS/DOCUMENTATION .

[3] http://www/codeproject.com/KB/iPhone/iPhoneFreeType.aspx

[4] Hwanyong Lee, Nakhoon Baek and James K. Hahn, OpenGL ES 1.1

software implementation on mobile phones, IEICE Electron. Express,

Vol. 7, No. 12, pp.880-885, (2010). 2010.

[5] Khronos Group, OpenGL ES 2.0 Specification. http://www.khronos.org.

[6] Mans Olson , On the Use of OpenGL ES 2.0 Shaders for Mobile Phones

using Cross-Platform Middle-Ware, Thesis , Sweden 2010.

[7] Martin Nystrom , Master of Science Thesis, Inter-Device Multiplayer and

Performance Optimization in Games for Modern Mobile Device,

Stockholm , Sweden, 2010.

[8] Mikael Gustavsson , 3D Game Engine Design for Mobile Phones with

OpenGL ES 2.0, Master Thesis, KTH Computer science and Community,

2008.

[9] Multimedia Application Division Freescale Semiconductor, Inc.Austin, TX

2010. High-End 3D Graphics with OpenGL ES 2.0 Document Number:

AN3994 Rev. 0, 01/2010.

[10] Nakhoon Baek · Hwanyong Lee. 2009. Implementing OpenGL ES on

OpenGL. The 13th IEEE International Symposium on Consumer

Electronics (ISCE2009). 2009.

[11] Nitin Singhal, In Kyu Park, and Sungdae Cho. 2010. Implementation and

Optimization of Image Processing Algorithms on Handheld GPU.

Proceedings of 2010 IEEE 17th International Conference on Image

Processing.

[12] Objective-C Programming Language, Apple.Inc, 2010.

[13] Rideout.P, “Iphone 3D Programming“ First Edition. O ‘Reilly Media,

University of South-Brittany University of Indonesia

Study and..., Lang Jagat, FT UI, 2011

35

Inc. 2010.

[14] Sammi Hawalani, Arabic Sign Language Translation system on Mobile

Devices, IJCSNS International Journal of Computer Science and

Network Security, VOL.8 No.1, January 2008.

[15] Steve HILL, Mathieu ROBART, and Emmanuel TANGUY.

Implementing OpenGL ES 1.1 over OpenGL ES 2.0 STMicroelectronics,

Bristol, UK. IEEE. 2008.

[16] Tae-Young Kim , Jongho Kim , and Hyunmin Hur. 2007. A Unified

Shader Based on the OpenGL ES 2.0 for 3D Mobile Game Development.

Springer-Verlag Berlin Heidelberg.

[17] Zirkle.P and Hogue.J. Iphone Game Development O’Reilly Media, Inc.,

1005 Gravenstein Highway North, Sebastopol, CA 95472. 2010.

[18] https://github.com/cdave1/freetype2-ios

[19] http://sourceforge.net/projects/boost/files/boost/1.46.1

[20] Martinsson Johannes, Trost Reimund. Implementation of Motion capture

support in smartphones. these 2010. Departement of computer Sciene and

Engineering . Chalermers university of Technology.

University of South-Brittany University of Indonesia

Study and..., Lang Jagat, FT UI, 2011

http://sourceforge.net/projects/boost/files/boost/1.46.1
https://github.com/cdave1/freetype2-ios

	Halaman Judul
	Abstrak
	Daftar Isi
	Bab I
	Bab II
	Bab III
	Bab IV
	Bab V
	Daftar Pustaka

