

UNIVERSITAS INDONESIA

SINTESIS NANOPARTIKEL ZnO DENGAN TEKNIK PRESIPITASI: PENGARUH TEMPERATUR PENCAMPURAN PREKURSOR TERHADAP PERTUMBUHAN NANOKRISTALIT OKSIDA ANORGANIK

TESIS

JANDRI JACUB 0906579544

FAKULTAS TEKNIK PROGRAM STUDI METALURGI DAN MATERIAL DEPOK JULI 2011

Sitesis Nanopartikel..., Jandri Jacub, FT UI, 2011

UNIVERSITAS INDONESIA

Sintesis Nanopartikel ZnO dengan Teknik Presipitasi: Pengaruh Temperatur Pencampuran Prekursor terhadap Pertumbuhan Nanokristalit Oksida Anorganik

TESIS

Diajukan sebagai salah satu syarat untuk memperoleh gelar Magister Teknik

Jandri Jacub 0906579544

FAKULTAS TEKNIK PROGRAM STUDI METALURGI DAN MATERIAL KEKHUSUSAN REKAYASA MATERIAL DAN PROSES MANUFAKTUR DEPOK JULI 2011

HALAMAN PERNYATAAN ORISINALITAS

Tesis ini adalah hasil karya saya sendiri, Dan semua sumber baik yang dikutip maupun dirujuk telah saya nyatakan dengan benar.

HALAMAN PENGESAHAN

Tesis ini diajukan oleh :

Nama :Jandri Jacub

NPM :0906579544

Program Studi : Teknik Metalurgi dan Material

Judul Tesis :

Sintesis Nanopartikel ZnO dengan Teknik Presipitasi: Pengaruh Temperatur Pencampuran Prekursor Terhadap Pertumbuhan Nanokristalit Oksida Anorganik.

Telah berhasil dipertahankan di hadapan Dewan Penguji dan diterima sebagai bagian persyaratan yang diperlukan untuk memperoleh gelar Megister Teknik pada Program Studi Teknik Metalurgi dan Material, Fakultas Teknik, Universitas Indonesia.

	DEWAN PENGUJI	
Pembimbing I	: Dr. Ir. A. Herman Yuwono, M.Phil.Eng.	()
PembimbingII	: Nofrijon Sofyan, Phd.	()
Penguji I	: Dr. Ir. Sotya Astuningsih, M.Eng.	()
Penguji II	: Dr. Ir. Sri Harjanto)
Penguji III	: Badrul Munir, ST. MSc., Ph.D	()

Ditetapkan di : Depok Tanggal : 01 Juli 2011

KATA PENGANTAR

Puji syukur saya panjatkan kepada Tuhan Yang Maha Esa, karena atas berkat dan rahmat-Nya pula saya dapat menyelesaikan tesis ini. Penulisan tesis ini ditulis dalam rangka memenuhi salah satu syarat untuk mencapai gelar Megister Teknik Metalurgi dan Material pada Fakultas Teknik Universitas Indonesia. Saya menyadari bahwa, tanpa bantuan dan bimbingan dari berbagai pihak, dari masa perkuliahan sampai pada penyusunan tesis ini, sangatlah sulit bagi saya untuk menyelesaikan tesis ini. Oleh karena itu, saya mengucapkan terima kasih kepada:

- 1. Dr. Ir. Akhmad Herman Yuwono, M. Phil. Eng. dan Nofrijon Sofyan, Phd., selaku dosen pembimbing I dan II yang telah menyediakan waktu, tenaga, dan pikiran untuk mengarahkan saya dalam penyusunan tesis ini;
- 2. Orang tua yang telah memberikan dorongan, semangat dan doanya,
- 3. Emiliya MSi dan Amanda L. Jacob selaku istri dan anak tercinta, yang telah memberikan dukungan moril dan spiritual;
- 4. Sahabat dan seluruh pihak yang telah membantu saya dalam menyelesaikan tesis ini.

Akhir kata, saya berharap Tuhan Yang Maha Esa berkenan membalas kebaikan semua pihak yang telah membantu dalam penelitian dan penyusunan tesis ini. Semoga tesis ini membawa manfaat bagi pengembangan ilmu pengetahuan dan teknologi.

Depok, 01 Juli 2011

Penulis

Sebagai sivitas akademik Universitas Indonesia, saya yang bertanda tangan di bawah ini:

Nama	:	Jandri Jacub	
NPM	i.	0906579544	
Departemen	:	Metalurgi dan Material	
Fakultas	:	Teknik	
Program Studi	:	Rekayasa Material dan Proses Manufaktur	
Jenis Karya	:	Tesis	

demi pengembangan ilmu pengetahuan, menyetujui untuk memberikan kepada Universitas Indonesia **Hak Bebas Royalti Non-eksklusif** (*Non-exclusive Royalty-Free Right*) atas karya ilmiah saya yang berjudul:

Sintesis Nanopartikel ZnO dengan Teknik Presipitasi: Pengaruh Temperatur Pencampuran Prekursor terhadap Pertumbuhan Nanokristalit Oksida Anorganik.

beserta perangkat yang ada (jika diperlukan). Dengan Hak Bebas Royalti Noneksklusif ini Universitas Indonesia berhak menyimpan, mengalih media/formatkan, mengelola dalam bentuk pangkalan data (*database*), merawat, dan mempublikasikan tugas akhir saya selama tetap mencantumkan nama saya sebagai penulis/pencipta dan sebagai pemilik Hak Cipta. Demikian pernyataan ini saya buat dengan sebenarnya.

Dibuat di: Depok Pada tanggal: 01 Juli 2011

Yang menyatakan

(Jandri Jacub)

Universitas Indonesia

ABSTRAK

		Pertumbuhan Nanokristalit Oksida Anorganik.
		Pengaruh Temperatur Pencampuran Prekursor terhadap
Judul	:	Sintesis Nanopartikel ZnO dengan Teknik Presipitasi:
Program Studi	:	Rekayasa Material dan Proses Manufaktur
Nama	:	Jandri Jacub

Telah di sintesis nanopartikel Oksida Seng (ZnO) dalam bentuk endapan dengan metode kimia basah dengan memvariasikan temperatur pada saat pencampuran prekursor yaitu 0, 30 dan 60°C. Teknik pencampuran dilakukan dengan metoda *dropwise*, dimana kedua prekursor secara bersamaan dicampur tetes demi tetes dengan rasio molar $[Zn^{2+}]$: $[OH^{-}] = 0.277$ yang dilanjutkan dengan proses anil dan pasca-hidrotermal pada temperatur 150 °C selama 24 jam dengan tujuan untuk meningkatkan kristalinitasnya.

Hasil analisis XRD menunjukkan bahwa seiring dengan peningkatan temperatur pencampuran prekursor dalam teknik presipitasi dari 0 hingga 60°C diperoleh peningkatan ukuran kristalit nanopartikel ZnO dari 9,14 menjadi 11,24 nm pada kondisi pengeringan. Investigasi lanjut dengan spektroskopi UV-Vis menunjukkan turunnya energi celah pita dari 3,27 menjadi 3,23 eV seiring dengan meningkatnya ukuran kristalin. Studi lanjut nanopartikel ZnO mengindikasikan adanya peningkatan kristalinitas dari 10,47 menjadi 14,74 nm untuk hasil perlakuan pasca-hidrotermal. Bersesuaian dengan hasil pengeringan, sampel pasca-hidrotermal juga mengalami penurunan energi celah pita dari 3,22 eV.

ABSTRACT

In the current research work, zinc oxide nanoparticles have been synthesized using wet-chemistry method with variation of precursors mixing temperature ranging from 0 $^{\circ}$ C to 60 $^{\circ}$ C. The mixing was performed thoroughly, where both zinc acetate and sodium hydroxide precursors were dropwisely added with [Zn2+] : [OH] or molar ratio of 0.277. The process was further continued with drying, annealing and post-hydrothermal treatments, in order to enhance the nanocrystallinity of the resulting ZnO nanoparticles.

The result of XRD analysis showed that by increasing the precursor mixing temperature from 0 to 60 °C has increased the crystallite size of ZnO nanoparticles from 9.14 to 11.24 nm at drying condition, and 10.47 to 14.74 nm at post-hydrothermal treatment. The UV-Vis spectroscopy results demonstrate the decrease in band gap energy from 3.27 to 3.23 eV and 3.24 to 3.22 eV for ZnO nanoparticles at drying and post-hydrothermal conditions, respectively.

DAFTAR ISI

HALAMAN PERNYATAAN ORISINALITAS	
	. ii
HALAMAN PENGESAHAN	iii
KATA PENGANTAR	iv
HALAMAN PERNYATAAN PERSETUJUAN PUBLIKASI	
TUGAS AKHIR UNTUK KEPENTINGAN AKADEMIS	. v
ABSTRAK	vi
ABSTRACT	vii
DAFTAR ISIv	iii
DAFTAR TABEL	. x
DAFTAR GAMBAR	xi
DAFTAR LAMPIRANx	iv
1. PENDAHULUAN	. 1
1.1 Latar Belakang	. 1
1.2 Perumusan masalah	. 4
1.3 Tujuan penelitian	. 4
1.4 Ruang Lingkup Penelitian	. 5
1.5 Hipotesis	. 5
1.6 Manfaat penelitian	. 6
2. TINJAUAN PUSTAKA	. 7
2.1 Prinsip keria Sel Surva Tersensitasi Zat Pewarna (DSSC)	. 7
2.2 Efek ukuran ZnO nanopartikel terhadap efisiensi konversi energi	
pada DSSC	10
2.3 Sintesis nanopartikel ZnO	11
2.4 Teknik Hidrothermal	12
3. METODOLOGI PENELITIAN	15
3.1 Rancangan Penelitian	1.1
	15
3.2 Bahan dan Alat	15 15 16
3.2 Bahan dan Alat	15 15 16
 3.2 Bahan dan Alat. 3.2.1 Bahan-bahan: 3.2 2 Peralatan: 	15 15 16 16 17
 3.2 Bahan dan Alat	15 15 16 16 17 18
 3.2 Bahan dan Alat	15 15 16 16 17 18 20
 3.2 Bahan dan Alat	15 15 16 16 17 18 20 21
 3.2 Bahan dan Alat	15 16 16 17 18 20 21 21
 3.2 Bahan dan Alat	15 16 16 17 18 20 21 21 21
 3.2 Bahan dan Alat	15 15 16 16 17 18 20 21 21 22 22 23
 3.2 Bahan dan Alat	15 15 16 16 17 18 20 21 21 22 23 24
 3.2 Bahan dan Alat	15 15 16 16 17 18 20 21 21 22 23 24 24
 3.2 Bahan dan Alat	15 15 16 16 17 18 20 21 22 23 24 24 24 26
 3.2 Bahan dan Alat	15 15 16 16 17 18 20 21 21 22 23 24 24 24 26
 3.2 Bahan dan Alat	15 15 16 16 17 18 20 21 21 22 23 24 24 26 28
 3.2 Bahan dan Alat	15 16 16 17 18 20 21 22 23 24 24 24 26 28 30
 3.2 Bahan dan Alat	15 16 16 17 18 20 21 22 23 24 24 26 28 30 30
 3.2 Bahan dan Alat	15 16 16 17 18 20 21 21 22 23 24 24 26 28 30 30
 3.2 Bahan dan Alat	15 16 16 17 18 20 21 22 23 24 24 26 30 30 34

5. KESIMPULAN	52
5.1 Kesimpulan	52
5.2 Saran	53
DAFTAR REFERENSI	54

DAFTAR TABEL

Universitas Indonesia

Hal.

DAFTAR GAMBAR

Gambar 1.1	Ilustrasi semikonduktor tersensitasi zat pewarna; (a) molekul pewarna (b) kerangka semikonduktor tersensitasi	
	molekul pewarna [25].	6
Gambar 2.1	Susunan DSSC [26]	7
Gambar 2.2	Struktur ruthenium (a). RuL3 (b) RuL2 dan (c) RuL' L =	
	2,2'-bipyridyl-4,4'-dicarboxylic acid dan $L' = 2,2'2''-$	
	tepyridyl-4,4',4"-tricarboxylic acid [10]	8
Gambar 2.3	Ilustrasi pergerakan elektron pada DSSC [25].	9
Gambar 2.4	Karakteristik: (a) partikel hasil proses hidrotermal berupa	
	partikel-partikel yang lebih seragam dan padat serta	
	tingkat kristalinitas dan kemurnian yang tinggi; (b) hasil	
	ball milling konvensional [49].	. 13
Gambar 3.1	Diagram alir penelitian	. 16
Gambar 3.2	Konstruksi perangkat sintesis, 1. Stand, 2. Plat pemanas	
	dengan pengaduk magnet, 3. RTD, 4. Batangan magnet,	
	5. Labu leher tiga, 6. Chamber kaca, 7. Karet penyumbat,	
	8. Corong pisah, 9. Pendingin Liebieg, 10. Klem,	
	11. Penyambung kaca, 12. Pipa kaca L, 13. Selang silikon	
	14. Corong penyaring 15. Gelas beker berisi butiran	
	silicagel dan CaCl ₂	. 19
Gambar 3.3	Realisasi konstruksi perangkat sintesis.	. 20
Gambar 3.4	Timbangan digital ACIS D-300H.	. 21
Gambar 3.5	Mesin sentrifugal vakum Borco U-320R.	. 23
Gambar 3.6	Oven konvensional	. 23
Gambar 3.7	Kontainer autoklaf	. 24
Gambar 3.8	Difraktometer sinar X (XRD)Phillips PW1710/20	. 24
Gambar 3.9	Contoh grafik hasil sintesis melalui uji XRD	. 25
Gambar 3.10	Salah satu pucak hasil uji XRD	. 26
Gambar 3.11	Contoh Interpolasi hasil Uji XRD	. 26
Gambar 3.12	Sistem alat mikroskop pemindai elektron, SEM - EDX	
	merek JED-2300 Analysis Station JEOL.	. 28
Gambar 4.1	Hasil visual pencampuran prekursor pada proses sintesis	. 30
Gambar 4.2	Pencucian endapan (a). sebelum membentuk lapisan	
	(b) setelah membentuk lapisan	. 31
Gambar 4.3	Pendaran sinar partikel ZnO dibawah sinar lampu	
	ultraviolet	. 32
Gambar 4.4	Hubungan energi bebas terhadap radius partikel [50]	. 33
Gambar 4.5	Grafik XRD hasil sintesis pada kondisi pengeringan hasil	
	pencampuran prekursor pada temperatur : (a) 0 °C,	
	(b) $30 {}^{\circ}C$ dan (c) $60 {}^{\circ}C$. 35
Gambar 4.6	Grafik XRD hasil sintesis pada kondisi anil hasil	
	pencampuran prekursor pada temperatur : (a) 0 °C,	
	(b) 30 °C dan (c) 60 °C	. 35

Gambar 4.7	Grafik XRD hasil sintesis pada kondisi pasca-hidrotermal	
	hasil pencampuran prekursor pada temperatur : (a) 0 °C,	
	(b) $30 {}^{\circ}C$ dan (c) $60 {}^{\circ}C$	36
Gambar 4.8	Grafik Wurszite-ZnO	36
Gambar 4.9	Grafik XRD zincite / wurtzite ZnO data American	
	Mineralogist Crystal Structure Database (AMCSD) revisi	
	no 17273, 04 juni 20011 card no.[96-900-4181] [52]	37
Gambar 4.10	Hasil analisis keberadaan Zn(OH) ₂ , hasil sintesis	
	temperatur pencampuran prekursor 0° C	38
Gambar 4 11	Hasil analisis keberadaan ZnO hasil sintesis temperatur	
Guillour 1.11	negrammuran prekursor 0° C	38
Gambar 1 12	Hasil perhitungan ukuran panopartikel 7nO hasil	50
	presipitasi soteleh pengeringen	20
Combon 112	Useil neukitungen uluuren noneneutikal ZnO hasil	39
Gambar 4.15	Hash permungan ukuran nanopartikei ZhO nash	10
a 1 414	presipitasi setelah danii	40
Gambar 4.14	Hasil perhitungan ukuran nanopartikel ZnO hasil	
	presipitasi setelah perlakuan pasca-hidrotermal	40
Gambar 4.15	Grafik XRD sampel hasil sintesis pada temperatur 0 °C	
	setelah melalui proses: (a) pengeringan, (b) anil, (c) pasca-	
	hidrotermal	42
Gambar 4.16	Grafik XRD sampel hasil sintesis pada temperatur 60 °C	
	setelah melalui proses: (a) pengeringan, (b) anil,	
	(c) pasca-hidrotermal.	42
Gambar 4.17	Spektrum serapan nanopartikel ZnO hasil sintesis pada	
	temperatur 0 °C setelah pengeringan	43
Gambar 4.18	Spektrum serapan nanopartikel ZnO hasil sintesis pada	
	temperatur 30 °C setelah pengeringan	44
Gambar 4.19	Spektrum serapan nanopartikel ZnO hasil sintesis pada	
	temperatur $60 ^{\circ}\text{C}$ setelah pengeringan	44
Gambar 4 20	Spektrum seranan nanokristalin ZnO hasil sintesis nada	
Gambai 4.20	temperatur 0 °C setelah pasca hidrotermal	15
Gambar 1 21	Spektrum serepen penckristelin ZnO besil sintesis pede	+J
Gailloai 4.21	tomporatur 20 °C actalah pasaa hidrotormal	15
Combon 1 22	Combon componence laistalin basil sintesis node	43
Gailloar 4.22	Gambar serapan nano kristann nash sintesis pada	10
C 1 4 02	c c c c c c c c c c c c c c c c c c c	40
Gambar 4.23	Grafik penentuan energi celan pita nanopartikel ZnO hasil	
	sintesis pencampuran prekursor pada temperatur 0 °C	. –
~	setelah pengeringan.	47
Gambar 4.24	Grafik penentuan energi celah pita nanopartikel ZnO hasil	
	sintesis pencampuran prekursor pada temperatur 30°C	
	setelah pengeringan	47
Gambar 4.25	Grafik penentuan energi celah pita nanopartikel ZnO hasil	
	sintesis pencampuran prekursor pada temperatur 60 °C	
	setelah pengeringan	48
Gambar 4.26	Grafik penentuan energi celah pita nanokristalin ZnO hasil	
	sintesis pencampuran prekursor pada temperatur 0 °C	
	setelah pasca-hidrotermal.	48
	*	

DAFTAR LAMPIRAN

- Lampiran 1 Analisis puncak-puncak Zn(OH)₂ pada hasil sintesis pencampuran prekursor 0 °C setelah pengeringan pada 2θ dengan rentang 65-70 derajat.
- Lampiran 2 Analisis puncak-puncak Zn(OH)₂ pada hasil sintesis pencampuran prekursor 30 °C setelah pengeringan pada 2θ dengan rentang 65-70 derajat.
- Lampiran 3 Analisis puncak-puncak Zn(OH)₂ pada hasil sintesis pencampuran prekursor 60 °C setelah pengeringan pada 2θ dengan rentang 65-70 derajat.
- Lampiran 4 Analisis puncak-puncak $Zn(OH)_2$ pada hasil sintesis pencampuran prekursor 0 °C setelah anil pada 2 θ dengan rentang 65-70 derajat.
- Lampiran 5 Analisis puncak-puncak Zn(OH)2 pada hasil sintesis pencampuran prekursor 30 °C setelah anil pada 2θ dengan rentang 65-70 derajat.
- Lampiran 6 Analisis puncak-puncak Zn(OH)₂ pada hasil sintesis pencampuran prekursor 60 °C setelah anil pada 2θ dengan rentang 65-70 derajat.
- Lampiran 7 Analisis puncak-puncak Zn(OH)₂ pada hasil sintesis pencampuran prekursor 0 °C setelah pasca-hidrotermal pada 2θ dengan rentang 65-70 derajat.
- Lampiran 8 Analisis puncak-puncak Zn(OH)₂ pada hasil sintesis pencampuran prekursor 0 °C setelah pasca-hidrotermal pada 2θ dengan rentang 65-70 derajat.
- Lampiran 9 Analisis puncak-puncak Zn(OH)₂ pada hasil sintesis pencampuran prekursor 0 °C setelah pasca-hidrotermal pada 2θ dengan rentang 65-70 derajat.
- Lampiran 10 Analisis puncak-puncak ZnO pada hasil sintesis pencampuran prekursor 0 °C setelah pengeringan pada 2θ dengan rentang 65-70 derajat.
- Lampiran 11 Analisis puncak-puncak ZnO pada hasil sintesis pencampuran prekursor 30 °C setelah pengeringan pada 2θ dengan rentang 65-70 derajat.
- Lampiran 12 Analisis puncak-puncak ZnO pada hasil sintesis pencampuran prekursor 60 °C setelah pengeringan pada 2θ dengan rentang 65-70 derajat.
- Lampiran 13 Analisis puncak-puncak ZnO pada hasil sintesis pencampuran prekursor 0 °C setelah dianil pada 2θ dengan rentang 65- 70 derajat.

Universitas Indonesia

- Lampiran 14 Analisis puncak-puncak ZnO pada hasil sintesis pencampuran prekursor 30 °C setelah dianil pada 2θ dengan rentang 65-70 derajat
- Lampiran 15 Analisis puncak-puncak ZnO pada hasil sintesis pencampuran prekursor 60 °C setelah dianil pada 2θ dengan rentang 65- 70 derajat
- Lampiran 16 Analisis puncak-puncak ZnO pada hasil sintesis pencampuran prekursor 0 °C setelah pasca-hidrotermal pada 2θ dengan rentang 65- 70 derajat
- Lampiran 17 Analisis puncak-puncak ZnO pada hasil sintesis pencampuran prekursor 30 °C setelah pasca-hidrotermal pada 2θ dengan rentang 65- 70 derajat.
- Lampiran 18 Analisis puncak-puncak ZnO pada hasil sintesis pencampuran prekursor 60 °C setelah pasca-hidrotermal pada 2θ dengan rentang 65- 70 derajat.
- Lampiran 19 Foto EDS sampel hasil sintesis pencampuran prekursor pada temperatur 30 °C setelah pasca-hidrotermal.
- Lampiran 20 Perbandingan XRD hasil sintesis pada pencampuran prekursor 0 °C pada rasio molar 0.277: (a) dengan metoda pencampuran prekursor secara bersamaan dengan menggunakan perangkat sintesis yang didisain khusus , (b) metoda yang umum dilakukan.
- Lampiran 21 Grafik perbandingan hasil uji UV-Vis hasil sintesis pada pencampuran prekursor: (a). 0 °C, (b) 30 °C dan (c) 60 °C setelah pengeringan dan pasca-hidrotermal.

BAB 1 PENDAHULUAN

1.1 Latar Belakang

Dalam dunia modern saat ini, kebutuhan akan energi listrik sangat tinggi. Akan tetapi, sumber untuk menghasilkan energi tersebut masih bersandar kepada bahan bakar fosil yang terbatas ketersediaannya. Selain dari itu, penggunaan bahan bakar ini juga memberikan dampak negatif berupa emisi gas buang yang dapat merusak lapisan ozon sehingga menimbulkan efek peningkatan temperatur pada permukaan bumi yang dikenal sebagai *global warming*. Akibat adanya efek pemasanan global ini maka terjadi ketidakstabilan cuaca yang signifikan [1].

Salah satu energi yang tersedia secara berlimpah tanpa memberikan efek gas emisi adalah energi surya. Namun sayangnya, energi surya yang menyimpan potensi sangat besar ini masih belum dimanfaatkan sepenuhnya oleh umat manusia pada saat ini. Energi surya telah banyak diterapkan dalam kehidupan sehari-hari. Beberapa diantaranya adalah pemanas air, penerangan, desanilasi dan desinfektisasi, ilmu kedokteran. Namun sayangnya, energi surya menyimpan potensi yang sangat besar ini masih belum dimanfaatkan sepenuhnya oleh umat manusia saat ini. Secara prinsip, pemanfaatan energi tersebut adalah didasarkan pada efek fotovoltaik, yaitu menghasilkan energi listrik dengan mengkonversi energi radiasi surya menjadi energi listrik secara langsung dengan menggunakan bahan semikonduktor [2].

Salah satu perkembangan terbaru di dalam teknologi sel surya adalah sel surya tersensitasi zat pewarna (*Dye-Sensitized Solar Cell, DSSC*) [3,4] yang dikembangkan untuk mengatasi kelemahan yang ada pada sel surya berbasis silikon, seperti yang akan dibahas pada sub bab 2.1.

Struktur *DSSC* terdiri atas susunan kaca konduktor dan lapisan tipis bahan semikonduktor oksida anorganik yang tersensitasi oleh molekul zat perwarna yang berfungsi untuk menyerap sinar matahari. Lapisan tersebut terhubung dengan elektrolit dan platinum pada kaca konduktor. Bahan semikonduktor oksida inorganik yang telah dipakai dalam struktur *DSSC* selama ini adalah Titanium Oksida (TiO₂) [5]. Namun demikian, saat ini Seng Oksida (ZnO) telah dipertimbangkan sebagai alternatif pengganti TiO_2 karena ZnO adalah semikonduktor yang memiliki energi celah pita langsung (*direct band gap energi semiconductor*) dan tingkat mobilitas elektron yang tinggi, *luminescence* yang kuat pada temperatur ruang, transparansi yang baik untuk elektroda pada layar kristal sehingga banyak dipergunakan dalam perangkat elektronik. ZnO memiliki energi celah pita langsung yang lebar sebesar ~ 3,37 eV (375 nm) pada temperatur ruang [6], tidak jauh berbeda dengan TiO_2 yang memiliki 3,02 eV dalam bentuk "rutile" dan 3,20 eV dalam bentuk "anatase" [7]. Selain dari itu, senyawa anorganik tersebut juga merupakan salah satu kandidat untuk material optoelektronik yang berpotensi untuk dikembangkan pada aplikasi detektor optikal [8], sensor gas [9], sel surya [10], serta peralatan laser UV panjang gelombang pendek biru atau hijau [11, 12].

Beberapa peneliti telah melakukan penelitian tentang nanopartikel ZnO ini, Chen-Hao Ku dkk., menambahkan nanopartikel pada intersisi nanowire pada TCO glass *DSSC* dengan tujuan meningkatkan ratio volume persatuan luas komposit ZnO dan molekul pewarna [13]. Sementara itu, Ahebali Manafi dkk., mempelajari pengaruh temperatur, pH dan perlakuan panas terhadap ukuran partikel. Dalam penelitiannya, pertumbuhan nanopartikel meningkat cepat pada pH diatas 7 dan temperatur diatas 400 °C [14, 15]. Pusfitasari Eka Dian telah mensintesis ZnO nanopartikel pada variasi temperatur 0, 25 dan 60 °C, ukuran partikel meningkat dari 54,7 ke 86,9 nm seiring dengan kenaikan temperatur [16].

Beberapa cara yang umum digunakan untuk mempersiapkan lapisan semikonduktor oksida seperti ZnO dalam aplikasi *DSSC* adalah teknik *sol-gel* dan presipitasi [17]. Proses presipitasi merupakan salah satu metode kimiawi basah dengan melibatkan reaksi kimia antara dua atau lebih larutan sehingga menghasilkan endapan logam hidroksida. Proses kimiawi basah ini memiliki beberapa kelebihan, antara lain: (i) konsumsi energi yang rendah karena rendahnya temperatur proses; (ii) kemurnian hasil yang tinggi, dan (iii) keleluasaan penerapan proses lain pasca *sol-gel* dan presipitasi; serta (iv) investasi peralatan yang lebih murah dibandingkan dengan teknik deposisi secara fisika seperti *sputtering, molecular beam epitaxy, pulse laser deposition* dan sebagainya. Namun di sisi lain, sebagai hasil konsekuensi rendahnya temperatur

proses kimiawi basah ini maka tingkat kristalinitas fasa inorganik yang dihasilkan juga terhitung rendah (amorfus). Aspek inilah yang menjadi keterbatasan hasil proses *sol-gel* dan presipitasi untuk aplikasi-aplikasi dimana tingkat kristalinitas yang tinggi menjadi suatu persyaratan.

Pada proses foto-kimiawi di dalam DSSC, mekanisme yang melibatkan penyerapan energi foton sangat ditentukan oleh molekul pewarna yang tersensitasi pada partikel semikonduktor [18]. Semakin banyaknya molekul pewarna yang tersensitasi pada partikel semikonduktor, maka akan semakin banyak pula sinar tampak diserap yang memberikan energi untuk mengeksitasi elektron ke pita konduksi semikonduktor. Dengan demikian elektron akan lebih cepat mengalir ke sirkuit eksternal. Molekul-molekul pewarna yang berukuran nanometer akan dapat menjaring jumlah cahaya yang masuk ke lapisan molekul pewarna sehingga perlu dibuat cukup tebal atau lebih tebal daripada molekul itu sendiri. Untuk mengatasi masalah ini, nanomaterial yang digunakan sebagai rangka untuk menahan sejumlah besar molekul pewarna dalam matriks 3-D, perlu ditingkatkan jumlah molekul pada luas permukaan sel surya [19]. Dalam desain yang ada, rangka ini diberikan oleh bahan semikonduktor, yang berfungsi tugas ganda. Oleh karena, itu efisiensi konversi energi matahari ke energi listrik bergantung pada kecepatan elektron yang melalui sirkuit yang ditentukan oleh banyaknya molekul pewarna dan semikonduktor.

Mengingat pentingnya ukuran partikel semikonduktor yang merupakan rangka matriks 3D tempat molekul pengisi yaitu molekul pewarna tersensitasi, maka dibutuhkan penelitian untuk merekayasa ukuran partikel ZnO ke arah yang lebih kecil dengan tingkat kristalinitas yang tinggi serta dapat terdistribusi merata (*effect surface to volume*) dengan demikian rangka matrik 3D dapat dibuat lebih tipis, dengan metoda yang mudah dan tidak membutuhkan fasilitas yang mahal. Berdasarkan penelitian sebelumnya dilaporkan bahwa peningkatan kristalinitas nanopartikel TiO₂ hasil proses sol-gel secara siginifikan dapat diperoleh melalui perlakuan khusus hidrotermal yang memanfaatkan uap air bertekanan di dalam wadah tertutup pada temperatur 150°C [20]. Atas dasar hasil investigasi tersebut maka dirasakan perlunya suatu penelitian untuk mengetahui efek perlakuan pascahidrotermal bilamana hal ini diaplikasikan pada nanopartikel ZnO yang diperoleh dari teknik presipitasi.

1.2 Perumusan masalah

Kinerja DSSC dalam mengkonversi energi foton kepada energi listrik bergantung pada ukuran partikel penyusun sel surya DSSC tersebut dan tingkat kristalinitas dari semikonduktor dan molekul pewarna [21]. ZnO digunakan dalam penelitian ini merupakan suatu rangka matriks dari molekul pengisi yaitu molekul pewarna tersensitasi. Pertumbuhan inti menjadi partikel dengan ukuran yang lebih besar dipengaruhi oleh beberapa faktor seperti temperatur, lama waktu proses reaksi antar prekursor, konsentrat dan pH [22]. Beberapa metoda penelitian terdahulu untuk mendapatkan ukuran ZnO partikel yang kecil dilakukan dengan metoda kimiawi basah [23]. Pengaruh ukuran partikel terhadap efisiensi konversi energi surya ke energi listrik telah dipertimbangkan sebagai salah satu faktor penting. Pada penelitian ini rekayasa ukuran partikel ZnO dilakukan melalui metoda kimia basah dengan memvariasikan temperatur pada pencampuran prekursor dengan konsentrasi yang tetap dan pengendapan senyawa anorganik tersebut merupakan suatu objek utama pada perlakuan lanjut seperti proses anil dan pasca-hidrotermal untuk memperoleh nanopartikel ZnO dengan tingkat kristalinitas yang tinggi [24].

1.3 Tujuan penelitian

Tujuan penelitian ini adalah:

- 1. Menginvestigasi pengaruh temperatur pencampuran prekursor, perlakuan anil dan pasca-hidrotermal terhadap pertumbuhan nanokristalit oksida anorganik pada rasio konsentrasi prekursor yang tetap yaitu $[Zn^{2+}]/[OH^{-}] = 0,277$ terhadap ukuran ZnO partikel. Dasar pemilihan rasio tersebut akan dibahas pada sub-bab. 3.4.
- Mengetahui pengaruh karakteristik nanostruktural pada nanopartikel ZnO terhadap sifat-sifat elektronik fundamental material (energi celah pita, tingkat penyerapan pada spektrum cahaya tampak dan ultraviolet) sebagai dasar analisis mekanisme eksitasi elektron pada kristalit ZnO.

1.4 Ruang Lingkup Penelitian

Pembuatan serbuk nanopartikel ZnO dilakukan dengan menggunakan teknik presipitasi hasil reaksi pencampuran Zn asetat dan NaOH pada konsentrasi yang tetap yaitu dengan rasio molar [Zn2+]: [OH-] = 0.277 dalam etanol absolut sebagai pelarut. Dalam penelitian ini dilakukan variasi temperatur pencampuran prekursor 0, 30, dan 60 °C.

Endapan putih susu yang diprediksi sebagai Zn(OH)₂ dipisahkan dari pelarut sisa sintesis dan dicuci dengan teknik sentrifus dan didekantasi secara berulang kali dimana larutan pencuci yang digunakan untuk setiap tahap pencucian dimulai dari etanol destilasi, campuran air destilasi dan etanol dengan perbandingan 80:20, air destilasi panas dan terakhir dengan air destilasi dingin dimana etanol yang digunakan adalah etanol yang telah didestilasi, dan selanjutnya koloid yang telah dicuci tersebut dikeringkan pada temperatur ruang (30°C) dan dehidrasi pada temperatur 65 °C selama 3 hari. Serbuk yang diperoleh melalui tahapan ini dilanjutkan dengan perlakuan anil dan pasca-hidrotermal pada temperatur 150 °C selama 24 jam dengan tujuan untuk meningkatkan kristalinitasnya. Pengaruh variasi temperatur pencampuran prekursor terhadap pertumbuhan nanopartikel diamati dan dikarakterisasi dengan menggunakan Difraksi Sinar X, Spektroskopi Visual Ultra Violet (UV-Vis), dan Pemindai Magnetik Elektron (*SEM*).

1.5 Hipotesis

DSSC adalah sel surya yang tersensitasi molekul perwarna yang tersusun dari semikonduktor, molekul pewarna, larutan elektrolit dan gelas TCO. Semikonduktor berperan sebagai kerangka untuk molekul pewarna bersensitasi. seperti yang diilustrasikan pada Gambar 1.1. Untuk memperoleh konstruksi DSSC dengan luas permukaan TCO yang lebih ekonomis dan memiliki kinerja yang baik, maka dibutuhkan jumlah partikel dan molekul pewarna dengan volume per satuan luas yang lebih banyak agar dapat menyerap energi foton yang lebih banyak pula. Oleh karena itu partikel rangka harus dibuat kecil agar molekul pewarna dapat bersensitasi lebih banyak. Disamping itu, ukuran partikel yang kecil dengan tingkat kristalinitas yang tinggi adalah penting sebagai jalur elektron agar dapat bergerak lebih cepat melalui pita konduksi menuju ke gelas TCO, sebagaimana yang akan dideskripsikan pada sub.bab. 2.1.

Gambar 1.1 Ilustrasi semikonduktor tersensitasi zat pewarna; (a) molekul pewarna (b) kerangka semikonduktor tersensitasi molekul pewarna [25].

Berdasarkan hasil dari penelitian seperti yang dijelaskan pada paragrap 5 pada sub bab.1.1, ukuran partikel yang diperoleh adalah 13~22 nm setelah dianil pada temperatur 400 ~ 500 °C. Data lain melaporkan ukuran partikel hasil sintesis pada temperatur 0, 25 dan 60 °C meningkat dari 54,7 nm sampai 86,9 nm.

Dengan demikian, dalam penelitian ini dihipotesiskan bahwa teknik pencampuran *dropwise* yang dilakukan, dimana kedua prekursor dicampur bersamaan pada perangkat yang telah didisain seperti yang diilustrasikan pada Gambar 3.2 dan Gambar 3.3, maka pertumbuhan nanopartikel dapat terkontrol dan bisa didapatkan ukuran yang lebih kecil dari yang sudah dilakukan sebelumnya.

1.6 Manfaat penelitian

Penelitian ini diharapkan dapat memberikan suatu masukan dalam usaha meningkatkan efisiensi konversi energi surya kepada energi listrik, terutama pada *DSSC* yang masih terus dikembangkan untuk mencapai efisiensi konversi energi yang setara atau lebih dari sel surya berbasis silikon.

BAB 2

TINJAUAN PUSTAKA

2.1 Prinsip kerja Sel Surya Tersensitasi Zat Pewarna (DSSC)

DSSC merupakan sel surya hasil pengembangan terbaru dalam usaha menutupi kelemahan sel surya konvensional yang tersusun dari lapisan gelas dan lapisan tipis dari nanopartikel semikonduktor. Senyawa oksida anorganik yang ditutupi molekul berwarna, menyerap sinar matahari dimana lapisan tersebut terhubung dengan lapisan elektrolit dan lapisan platinum pada gelas konduktor. Susunan DSSC tersebut diilustrasikan pada Gambar 2.1.

Platinum berfungsi untuk memberikan konduktifitas lebih baik pada transfer elektron dari sirkuit eksternal. Prinsip konversi energi pada *DSSC* berbeda dari jenis sel surya berbasis silikon, dimana pada sel surya tersebut, semikonduktor berfungsi sebagai sumber foto elektron yang memberikan medan listrik untuk pengisian dan menghasilkan arus listrik. Pada *DSSC* cahaya matahari melewati elektroda yang transparan menuju lapisan berwarna dan akan memberikan energi kepada molekul warna untuk mengeksitasi elektron. Elektron tereksistasi akan meninggalkan lubang elektron yang selanjutnya diinjeksikan ke pita konduktor partikel anorganik (TiO₂, ZnO). Elektron tersebut akan meninggalkan gelas konduktor melewati sirkuit eksternal menuju anoda (*counter glass*) yang selanjutnya kembali ke elektrolit. Pada tahap ini akan terjadi reaksi oksidasi-reduksi pada mediator yang pada umumnya adalah pasangan iodine/triodine sedangkan molekul pewarna adalah *ruthenium* yang berwarna, kuning, merah dan biru seperti pada Gambar 2.2 dimana warna-warna tesebut berpengaruh pada efisiensi konversi sinar surya pada rentang sinar tampak [27]. Molekul pewarna dengan warna yang memiliki panjang gelombang yang lebih pendek (merah) akan memberikan energi yang besar untuk mengeksitasi elektron, dengan demikian efisiensi konversi energi lebih baik jika dibandingkan dengan warna yang memilki panjang gelombang yang panjang. Selanjutnya, elektron hasil oksidasi pada elektrolit akan didonasikan kepada lubang pada molekul pewarna.

Gambar 2.2 Struktur ruthenium (a). RuL3 (b) RuL2 dan (c) RuL' L = 2,2'bipyridyl-4,4'-dicarboxylic acid dan L' = 2,2'2''-tepyridyl-4,4',4''tricarboxylic acid [10].

Reaksi yang terjadi pada tahap ini dapat digambarkan pada mekanisme reaksi sebagai berikut:

$$I_3 \leftrightarrow I_2 + I$$
 (2.1)

$$I_2 + e_{(ZnO)} \leftrightarrow I_2^{-\bullet}$$
 (2.2)

Pergerakan elektron dari nanopartikel inorganik lebih lambat dibandingkan dari *counter* elektroda. I_2^{-*}/Γ merupakan pasangan yang berpotensi dalam menentukan kekuatan pendorong termodinamik untuk mentransfer elektron ke lubang pada molekul pewarna yang teroksidasi. Regenerasi molekul pewarna ke bentuk asal melibatkan reduksi molekul pewarna yang teroksidasi oleh radikal iodine [10].

$$.I_2^{-\bullet} + e_{(ZnO)} \rightarrow 2I$$
 (2.3)

$$\operatorname{Ru}(\operatorname{III}) + 2I^{-} \rightarrow \operatorname{Ru}(\operatorname{II}) + I_{2}^{-}$$
 (2.4)

Prinsip kerja dari *DSSC* diilustrasikan pada Gambar 2.3. Mediator pada umumnya merupakan pasangan oksidasi reduksi iodine/triodine.

Gambar 2.3 Ilustrasi pergerakan elektron pada DSSC [25].

Agar dapat menjaring jumlah cahaya yang masuk, molekul pewarna yang berukuran nanometer perlu dibuat cukup tebal atau lebih tebal daripada molekul itu sendiri [28]. Untuk mengatasi masalah ini, nano material yang digunakan sebagai rangka untuk menahan sejumlah besar molekul pewarna dalam matriks 3-D, perlu ditingkatkan jumlah molekul pada luas permukaan sel surya. Dalam desain yang ada, rangka ini diberikan oleh bahan semikonduktor, yang berfungsi tugas ganda, cepatnya elektron yang melalui sirkuit, ditentukan dari banyaknya molekul pewarna dan semikonduktor.

Dengan merekayasa ukuran partikel menjadi lebih kecil, dimana partikel berperan sebagai rangka matrix 3D, maka molekul pewarna akan lebih banyak tersensitasi pada partikel tersebut sehingga dapat meningkatkan penyerapan sinar surya untuk mengeksitasi elektron lebih banyak. Dengan banyaknya elektron yang tereksitasi dan keluar melalui pita konduksi semikonduktor ke sirkuit eksternal maka efisiensi konversi energi akan meningkat.

2.2 Efek ukuran ZnO nanopartikel terhadap efisiensi konversi energi pada *DSSC*

ZnO sebenarnya telah lebih dahulu dipergunakan dalam memfabrikasi elektroda yang terbuat dari material TiO₂. Awal tahun 1969, Gerischer [29] telah mempelajari kelayakan kristal ZnO elektroda pada sel surya. Pada tahun 1976, karakteristik optoelektronik DSSC dengan elektroda ZnO telah diteliti oleh Matsumura [30] dan selanjutnya pada tahun 1980 peneliti menggunakan porous ZnO sebagai elektroda untuk mencapai koefisien energi konversi 2.5% pada panjang gelombang 562 nm [31]. Pada tahun 1994, Fitzmaurize [32] menggunakan ruthenium komplek sebagai pewarna dengan metoda sol-gel untuk mencapai konversi monokromatik efisiensi 13% pada panjang gelombang 520 nm dan konversi efisiensi 0.4% dibawah terpaan sinar surya langsung. Dalam penelitiannya tersebut, aktifitas photocatalytic pada konversi NiO dan degradasi dari methylene blue oleh ZnO nanorods meningkat cukup tajam dengan penambahan ZnO nano yang berukuran kecil. Pada tahun 1997, Hagfelt [33] melaporkan efisiensi konversi energi monokromatik yang diperoleh 58% dan konversi pada terpaan sinar surya langsung 2%. Pada penelitiannya tersebut ZnO nano struktur dengan ukuran 150 nm memberikan efisiensi konversi energi monokromatik 13% dan 0.5% dari keseluruhan konversi energi surya. Disamping itu juga memberikan efisiensi yang tinggi pada daerah rentang sinar ultraviolet. Selanjutnya Helfeldt pada tahun 2002 [34], membuktikan dengan meningkatkan kontak antara pewarna dan partikel ZnO yang terdistribusi merata dalam lapisan tipis film dapat meningkatkan efisiensi konversi energi surya menjadi 5%, sementara itu, koefisien efisiensi sel surya ZnO di bawah terpaan sinar surya langsung sebesar 4.1% dicapai oleh Fujihara [35].

Atas dasar sejarah perkembangan sel surya tersebut diatas, Shih-Fong Lee dkk. [36], melakukan penelitian pengaruh ukuran nanopartikel ZnO 400,25 nm, 524,36 nm, 768 nm dan 854 nm terhadap performa *DSSC*. Hasil penelitian tersebut, didapatkan bahwa semakin besar ukuran ZnO nano akan memberikan efiesiensi konversi energi yang rendah. Dari beberapa penelitian yang telah dipaparkan diatas membuktikan bahwa efisiensi konversi energi meningkat

dengan semakin kecilnya ukuran partikel penyusun lapisan semikonduktor tersebut.

2.3 Sintesis nanopartikel ZnO

Beberapa cara yang umum digunakan untuk mempersiapkan lapisan semikonduktor oksida seperti ZnO dalam aplikasi *DSSC* adalah teknik *sol-gel* dan presipitasi. Proses presipitasi merupakan salah satu metode kimiawi basah yang melibatkan reaksi kimia antara dua atau lebih larutan sehingga menghasilkan endapan logam hidroksida. Proses kimiawi basah ini memiliki beberapa kelebihan, antara lain: (i) konsumsi energi yang rendah karena rendahnya temperatur proses, (ii) kemurnian hasil yang tinggi, dan (iii) keleluasaan menerapkan proses pasca *sol-gel* dan presipitasi, dan (iv) investasi peralatan yang lebih murah dibandingkan teknik deposisi secara fisika seperti *sputtering, molecular beam epitaxy, pulse laser deposition* dan sebagainya. Namun di sisi lain, hasil konsekuensi rendahnya temperatur proses kimiawi basah ini maka tingkat kristalinitas fasa inorganik yang dihasilkan juga terhitung rendah (amorfus). Aspek inilah yang menjadi keterbatasan hasil proses *sol-gel* dan presipitasi untuk aplikasi-aplikasi dimana tingkat kristalinitas yang tinggi menjadi suatu persyaratan [50].

Eva M. Wong dkk. [37], telah melakukan penelitian sintesis nanopartikel dengan menggunakan material Zn(CH₃COOH)₂ dan NaOH sebagai prekursor. Pada penelitian tersebut dipelajari pertumbuhan partikel sebagai fungsi waktu. Pertumbuhan nanopartikel ZnO yang disintesis dari prekursor Zn(CH₃COO)₂ dan NaOH dalam alkanol telah dipelajari oleh Gerko Oskam dkk. [38]. Sintesis dilakukan dengan metoda kimia basah dimana laju pertumbuhan inti ZnO meningkat seiring dengan meningkatnya konsentrasi prekursor. Selanjutnya, Atul Gupta dkk. [39], memodifikasi metoda yang telah ada untuk mendapatkan ukuran partikel yang beragam. Dalam penelitian tersebut, perlakuan teknik pengendapan dilakukan dengan variasi kecepatan sentrifus yang berbeda dalam proses pembuatannya. Dalam penelitian tersebut, didapatkan bahwa ukuran nanopartikel ZnO dengan kecepatan sentrifus 2500 rpm berukuran lebih besar dibandingkan dengan kecepatan 3000 rpm. Sementara itu, Bin Cheng dkk. [40], mensintesis

nanopartikel pada berbagai aspek rasio molar. Pengontrolan pertumbuhan ZnO nanopartikel telah diteliti pula oleh Hui Zhang dkk. [41], dengan menggunakan prekursor yang sama dan dilanjutkan dengan proses hidrotermal untuk meningkatkan tingkat kristalinitasnya. Disamping itu, P.M. Anesh dkk. [42], menyatakan bahwa temperatur dan ratio molar [OH⁻] terhadap [Zn²⁺] adalah faktor dominan pada pertumbuhan ukuran butir ZnO nanopartikel.

2.4 Teknik Hidrothermal

Metoda hidrotermal adalah suatu teknik untuk mendapatkan kristal tunggal atau tingkat kristalinitas yang tinggi melalui proses penumbuhan kristal kembali (*re-crystallization*) yang bergantung kepada kelarutan suatu subtansi dalam pelarut air pada temperatur dan tekanan yang tinggi [50].

Rekristalisasi merupakan suatu proses untuk mendapatkan kristal murni dengan melarutkan kembali kristal yang tidak murni pada pelarut tunggal atau multi pelarut pada temperatur dan tekanan tertentu [43]. Teknik ini didasarkan pada kelarutan suatu substansi pada pelarut, baik itu pelarut tunggal atau kombinasi pelarut (polar atau non polar). Kekurangan cara ini adalah sulit mempertahankan ukuran kristal semula, disebabkan oleh adanya pertumbuhan ulang kristal yang tidak terkontrol. Untuk mengatasi hal tersebut, maka substansi yang akan ditingkatkan kristalinitasnya ditempatkan terpisah dari pelarut dengan menggunakan perangkat kontainer tertutup (autoklaf). Teknik ini dikenal dengan perlakuan pasca-hidrotermal.

Rekristalisasi dengan metoda hidrotermal memiliki beberapa keuntungan dibandingkan dengan proses konvensional lainnya seperti penghematan energi, kesederhanaan proses, efisiensi biaya, kontrol inti yang lebih baik, bebas polusi karena reaksi dilakukan pada sistem tertutup (autoklaf), dispersi dan tingkat reaksi yang tinggi, lebih mudah untuk mengontrol bentuk serta temperatur operasi yang lebih rendah dengan menggunakan pelarut yang tepat [44]. Gambar 2.4 di bawah ini menggambarkan hasil proses hidrotermal yang mampu memberikan partikel yang lebih seragam dan padat serta tingkat kristalinitas dan kemurnian yang tinggi (a) dan perbandingannya dengan hasil *ball milling konvensional* (b).

Gambar 2.4 Karakteristik: (a) partikel hasil proses hidrotermal berupa partikelpartikel yang lebih seragam dan padat serta tingkat kristalinitas dan kemurnian yang tinggi; (b) hasil ball milling konvensional [49].

Byrappa dan Yoshimura [45] menjelaskan hidrotermal sebagai keseragaman atau ketidakseragaman reaksi kimia sebagai akibat dari adanya bahan pelarut di atas temperatur dan tekanan yang sangat tinggi di atas 1 atmosfer (atm) pada sistem tertutup.

Hal yang perlu diperhatikan dalam melakukan proses hidrotermal adalah lingkungan kimia yang harus disesuaikan dengan material yang akan diproses. Meskipun proses ini memiliki waktu reaksi yang lebih lama jika dibandingkan dengan proses pendeposisian pada fasa uap, atau milling, proses ini mampu menghasilkan partikel dengan tingkat kristalinitas yang tinggi dengan pengontrolan yang lebih baik dari segi ukuran dan bentuk [46]. Dewasa ini, proses hidrotermal telah membuka babak baru pada pemrosesan material termasuk pada skala nanometer. Pada teknik hidrotermal telah diketahui bahwa temperatur, tekanan, dan potensial kimia adalah variabel utama untuk memberikan hasil yang diinginkan [47].

P.M. Annesh dkk. [48], melakukan sintesis ZnO partikel dengan teknik hidrotermal dengan memvariasikan temperatur dan konsentrasi prekursor. Ukuran partikel yang diperoleh antara 7~24 nm. Hasil difusi reflektansi spektroskopi pita bergerak dari merah ke biru dengan meningkatnya ukuran partikel. Penelitian ini membuktikan ukuran partikel yang disintesis dengan metoda hidrotermal meningkat dengan meningkatnya temperatur pertumbuhan dan menurunnya konsentrasi prekursor. Rasio molar [OH⁻] : [Zn²⁺] dan temperatur merupakan faktor yang dominan dalam pembentukan ZnO partikel. Analisis XRD pada penelitian ini bertujuan untuk membuktikan peningkatan tingkat kristalinitas dengan meningkatnya temperatur.

Dalam penelitian ini diharapkan dengan dilakukannya perlakuan pascahidrotermal pada nanopartikel ZnO hasil sintesis dengan teknik presipitasi yang telah dikeringkan dan dianil, tingkat kritalinitas ZnO nanopartikel dapat ditingkatkan secara signifikan.

BAB 3 METODOLOGI PENELITIAN

3.1 Rancangan Penelitian

Secara garis besar penelitian ini terdiri atas dua kegiatan utama, yaitu: sintesis ZnO nanopartikel dengan memvariasikan temperatur pencampuran prekursor dan karakterisasi hasil sintesis tersebut. Proses dan tahap penelitian diilustrasikan pada Gambar 3.1.

Gambar 3.1 Diagram alir penelitian.

3.2 Bahan dan Alat

3.2.1 Bahan-bahan:

- 1. Zn(CH₃COO)₂.2H₂O katalog No. 1.08802.0250 EMSURE
- 2. NaOH Merck katalog No. 1.06498.100 EMSURE

- 3. Etanol Absolut Merck katalog No. 1.00983.2500 Pro Analysis
- 4. Aquadest
- 5. $CaCl_2$
- 6. Silica Gel
- 7. Vaselin

3.2.2 Peralatan:

- 1. Corong pisah 125 ml, 250 ml
- 2. Labu leher tiga 500 ml
- 3. Labu Refluk 250 ml
- 4. Labu ukur 100 ml
- 5. Condenser Liebig panjang 500 mm
- 6. Adapter Y glass
- 7. Pipa kaca L Ø 8 mm
- 8. Gelas Beker 500 ml
- 9. Corong kaca
- 10. Selang silikon
- 11. Penyumbat karet
- 12. Pecahan keramik
- 13. Erlemeyer 125 ml, 250 ml, 500 ml
- 14. Vakum Erlemeyer 250 ml, 125 ml
- 15. Penyaring Buchner Porselen Ø 80 mm
- 16. Tabung reaksi/ tabung sntrifus panjang 100 mm, Ø 20 mm
- 17. Rak tabung reaksi
- 18. Kaca petri Ø 14 mm
- 19. Batang pengaduk magnet 10 mm, 25 mm, 30 mm
- 20. Spatula 316 SS
- 21. Kaca arloji
- 22. Lumpang kaca
- 23. Pipet tetes
- 24. Bath chamber kaca 2500 ml Ø 200 mm
- 25. Wadah tertutup yang berisi butiran silicagel

- 26. Botol semprot plastic 150 ml, 250 ml ,100 ml
- 27. Pipet Volumetric 10 ml, 50 ml, 100 ml
- 28. Aluminium Foil
- 29. Pinset
- 30. Gunting
- 31. Novix 3M parafilm
- 32. Kertas Label
- 33. Pecahan keramik
- 34. Termometer alcohol/ mercury
- 35. Bola karet penghisap
- 36. tiang penyangga beserta klem
- 37. Sikat pembersih
- 38. Oven konventional Oxone 250 °C
- 39. Kamera digital Sony Alpha 550L SLR
- 40. Pemanas dengan pengaduk magnet yang dilengkapi dengan *RTD thermocouple* (pengontrol temperatur yang diprogram), Yellow Line MAG HS 7
- 41. Mesin centrifugal vakum digital U 320 R Borco Germany
- 42. Timbangan digital x, xx AVIC
- 43. Tembakan pengering Krisbow 750 watt
- 44. Pengukur waktu

3.3 Persiapan Rangkaian Perangkat Sintesis

Pada penelitian sebelumnya, pengadukan campuran prekursor dilakukan menggunakan pengaduk magnet pada udara terbuka dimana larutan NaOH ditambahkan tetes demi tetes ke dalam larutan Zn asetat. Selama proses pengadukan akan membentuk suatu pulsar dimana akan menghisap udara sekitar yang mengandung beberapa komponen kimia sperti CO₂, N₂, H₂O dan O₂ ke dalam campuran tersebut. Untuk mengatasi hal tersebut, didisain suatu perangkat sintesis sebagaimana yang diilustrasikan pada Gambar 3.2. Diharapkan dengan menggunakan perangkat tersebut akan diperoleh ukuran partikel hasil sintesis yang lebih kecil dari ukuran yang diperoleh dari penelitian sebelumnya dan memiliki tingkat kristalinitas yang tinggi. Butiran *silica gel* dan CaCl₂ di dalam

gelas beker yang bernomor 15 pada Gambar 3.2 berfungsi menyerap kandungan uap air dari udara sekitar agar tidak masuk ke dalam perangkat selama sintesis berlangsung. Sementara itu, alat yang bernomor 12 pada Gambar 3.2 adalah RTD yang berfungsi sebagai sensor yang mendeteksi temperatur sintesis yang selanjutnya memberikan sinyal ke prosesor alat pemanas agar dapat mengontrol temperatur yang konstan selama proses sintesis berlangsung.

Gambar 3.2 Konstruksi perangkat sintesis , 1. Stand, 2. Plat pemanas dengan pengaduk magnet, 3. RTD, 4. Batangan magnet, 5. Labu leher tiga, 6. Chamber kaca, 7. Karet penyumbat, 8. Corong pisah, 9. Pendingin Liebieg, 10. Klem, 11. Penyambung kaca, 12. Pipa kaca L, 13. Selang silikon 14. Corong penyaring 15. Gelas beker berisi butiran *silicagel* dan CaCl₂.

Gambar 3.3 Realisasi konstruksi perangkat sintesis.

3.4 Persiapan Formulasi Larutan Prekursor

Penelitian ini dilakukan dengan metode kimia basah yaitu dengan teknik pengendapan hasil reaksi (*precipitation*). Pada penelitian ini endapan yang terbentuk dari reaksi kimia menjadi objek penelitian. Formulasi dalam mensintesis ZnO nanopowder telah dilakukan sebelumnya oleh beberapa peneliti dengan rasio konsentrasi prekursor 0,05, 0,13, 0,71 dengan rentang pH 8 ~11 [24,49,50].

Penentuan formulasi juga dapat diestimasi dari reaksi kesetimbangan dimana ratio $[Zn^{2+}]:[OH^{-}]$ adalah 0,5. Kelebihan $[OH^{-}]$ akan dapat membentuk ion komplek $Zn(OH)_4^{2-}$ dan tidak berwarna seperti pada reaksi berikut:

 $Zn(OH)_2+2OH \rightarrow Zn(OH)_4^{2-}$

Perhitungan formulasi dan reaksi kesetimbangan kimia dapat diuraikan sebagai berikut:

$$Zn(CH_{3}COOH)_{2}. H_{2}O + 2NaOH \rightarrow Zn(OH)_{2}\downarrow + 2Na(CH_{3}COO) + (3.1)$$

$$2H_2O$$

$$Zn(OH)_2 \rightarrow Zn^{2+} + OH^-$$
 (3.2)

$$\operatorname{Zn}^{2+} + 2\operatorname{OH}^{-} \xrightarrow{\uparrow} \operatorname{ZnO} + \operatorname{H}_2\operatorname{O}$$
 (3.3)

Perhitungan sederhana sebagai berikut:

100 ml Zn(CH₃COOH)₂. H₂O 0.1M = 100 ml * 0.1 mmol/ml = 10 mmol 100 ml NaOH 0.36 M = 36 mmol
Zn²⁺ dalam campuran = 10 mmol/200 ml. = 0,05 M Karena disosiasi Zn(CH₃COOH) → Zn²⁺+ 2(CH₃COO)⁻ Kesetimbangan : 10 mmol : 10 mmol : 20 mmol OH⁻ dalam campuran = 36 mmol/200 ml = 0,18 M NaOH →Na⁺ +OH⁻

Kesetimbangan : 36 mmol : 36 mmol : 36 mmol

Sehingga rasio molar $[Zn^{2+}]$: $[OH^-] = 0,05:0,18 = 0,277$ atau $[OH^-]/[Zn^{2+}] = 3,6$ Kalau dilihat dari reaksi kesetimbangan pada reaksi (1), maka dapat dituliskan perbandingan rasio molal sebagai berikut: 1: 2: 1: 2: 1 sehingga $[Zn(CH_3COOH)_2]$. H₂O] : $[NaOH] = \frac{1}{2} = 0,5$.

3.4.1 Persiapan larutan Zn(CH₃COOH)₂

Sebanyak 2,194 gram Zn(CH₃COO).2H₂O dilarutkan dalam labu refluk 250 ml dengan menggunakan etanol 50 ml . Larutan tersebut direfluk selama 3 jam pada temperatur 80 °C dengan menggunakan *magnetic stirrer* dan perangkat sintesis untuk mencegah kontak udara luar. Kemudian larutan dipindahkan ke dalam labu ukur 100 ml dan ditambahkan etanol panas sampai tanda batas. Larutan tersebut ditandai dengan larutan A (Zn(CH₃COOH)₂,1 M), kemudian larutan tersebut didinginkan sampai temperatur sintesis.

Gambar 3.4 Timbangan digital ACIS D-300H.

3.4.2 Persiapan larutan NaOH

Sebanyak 1,44 gram NaOH yang telah digerus dengan menggunakan lumpang kaca di masukkan ke dalam labu refluk 250 ml dan ditambahkan 50 ml etanol lalu direfluk selama 3 jam pada temperatur 80 °C. Larutan dipindahkan ke labu ukur 100 ml dan ditambahkan etanol panas sampai batas. Larutan tersebut

ditandai dengan larutan **B** (NaOH , 3,6 M NaOH). Larutan didinginkan sampai temperatur sintesis.

3.5 Sintesis ZnO dengan *dropwise*

Pada penelitian yang telah banyak dilakukan, teknik pencampuran dilakukan dengan menambahkan larutan NaOH yang telah difomulasikan tetes demi tetes ke dalam larutan $Zn(CH_3COOH)_2$ sementara pada penelitian ini dilakukan modifikasi teknik pencampuran, dimana kedua larutan $Zn(CH_3COOH)_2$ dan NaOH dicampur secara bersamaan tetes demi tetes dengan menggunakan perangkat sintesis yang telah didesain khusus untuk proses sintesis. Sintesis dilakukan dengan memvariasikan temperatur pencampuran prekursor yaitu 0, 30 dan 60 °C.

Larutan A dan B masing-masing dipindahkan ke corong pisah A dan B pada perangkat sintesis seperti Gambar 3.2 dan Gambar 3.3 no. 8. Pencampuran larutan dilakukan secara bersamaan 1 tetes per 3 detik dengan mengatur kran pada corong pisah. Pertumbuhan inti ditandai dengan perubahan warna campuran menjadi putih susu. Larutan tersebut didinginkan sampai pada temperatur ruang dengan tetap meneruskan pengadukan yang selanjutnya direfluk pada temperatur 80 °C selama 1,5 jam dan didinginkan sampai pada temperatur ruang. Larutan dipindahkan ke erlemeyer 250 ml dan dibungkus dengan kantong plastik selanjutnya di vakum. Hasil sintesis tersebut disimpan dalam lemari pendingin pada temperatur 6 °C selama 1 sampai 3 hari dengan tujuan untuk menghambat pertumbuhan butir yang cepat [59, 51].

Larutan hasil sintesis yang telah disimpan dalam lemari pendingin dipindahkan ke corong pisah untuk di pisah koloid dari pelarut, lalu di sentrifus dengan menggunakan mesin sentrifugal vakum Borco U-320R pada kecepatan 3.500 rpm selama 45 menit pada temperatur ruang. Endapan dicuci dengan menggunakan pelarut campuran air destilasi : etanol dengan proporsi (0 : 100), (80 : 20), (100 : 0) panas, dan (100 : 0) dingin. Etanol yang digunakan pada pencucian adalah etanol yang telah didestilasi untuk menghilangkan beberapa ion dan kandungan kimia yang terkandung dalam etanol absolut. Karena hal tersebut diduga dapat menggangu hasil akhir sintesis. Endapan yang telah dicuci

dituangkan pada kaca petri dan dikeringkan pada temperatur ruang, kemudian pengeringan dilanjutkan pada temperatur 65 °C selama 3 hari. Hasil pengeringan disimpan pada wadah tertutup yang berisi butiran *silica gel* selama 3 hari. Dari masing-masing sampel diambil secukupnya untuk dilakukan pengujian dengan mengunakan UV Vis dan XRD. Sisa dari masing-masing sampel akan di anil dan pasca-hidrotermal.

Gambar 3.5 Mesin sentrifugal vakum Borco U-320R.

3.6 Perlakuan Anil dan Pasca-hidrotermal

Hasil serbuk nanopartikel yang diperoleh dari sintesis yang telah dikeringkan, ditempatkan pada cawan petri selanjutnya dipanaskan dengan menggunakan pemanas konvensional pada temperatur 150 °C selama 24 jam, kemudian didinginkan sampai pada temperatur ruang. Hasil pengeringan tersebut disimpan pada wadah tertutup yang berisi butiran *silica gel*. Dari masing-masing sampel diambil secukupnya untuk di lakukan pengujian dengan instrumen UV-Vis dan XRD, selanjutnya sisa dari masing-masing sampel tersebut akan diberi perlakuan pasca-hidrotermal.

Gambar 3.6 Oven konvensional.

Serbuk ZnO yang telah dianil dipersiapkan untuk proses pasca-hidrotermal. Sejumlah serbuk hasil anil dimasukkan ke dalam kontainer autoklaf yang berisi sebagian air destilasi. Sampel ditempatkan diatas permukaan air dengan menggunakan penyangga seperti pada Gambar 3.7. Kontainer ditutup rapat kemudian dimasukkan ke dalam oven lalu dipanaskan pada temperatur 150 °C selama 24 jam yang selanjutnya didinginkan sampai pada temperatur ruang.

Gambar 3.7 Kontainer autoklaf.

Dari masing-masing sampel diambil secukupnya untuk di lakukan pengujian dengan instrumen UV-Vis dan XRD dan SEM.

3.7 Karakterisasi Hasil Sintesis

3.7.1 Pengujian dengan menggunakan alat Difraksi Sinar X (XRD)

Uji XRD dilakukan di laboraturium XRD Badan Tenaga Atom Nasional dengan menggunakan perangkat instrument *Phillips X-ray diffractometer* PW1710/20, radiasi monokromatik Cu K α (λ = 1,54056 Å). Gambar mesin XRD ditunjukkan pada Gambar 3.8.

Gambar 3.8 Difraktometer sinar X (XRD)Phillips PW1710/20.

Pengujian menggunakan XRD bertujuan untuk mengidentifikasi jenis fasa dan ukuran rata-rata kristal hasil sintesis. Data yang terbaca oleh XRD dapat di tampilkan ke dalam suatu grafik intensitas terhadap besar sudut 2θ , sebagaimana yang diilustrasikan pada Gambar3.9.

Gambar 3.9 Contoh grafik hasil sintesis melalui uji XRD

Dengan membandingkan grafik hasil sintesis melalui uji XRD dengan grafik bank data *American Mineralogist Crystal Structure Database* (AMCSD) revisi no 17273, 04 juni 20011 card no. [96-900-4181; 96-900-4182] [52], maka dapat dipastikan jenis dan fasa senyawa hasil sintesis tersebut. Selain memastikan jenis fasa yang dihasilkan pada reaksi pembentukan, teknik XRD juga dapat menentukan besar kristalit hasil sintesis dengan menggunakan persamaan Scherrer:

$D = k\lambda / \beta \cos \theta$

dimana D adalah ukuran diameter kristalit; k adalah konstanta proporsionalitas (=0.9); λ adalah panjang gelombang dari difraksi X-ray yang digunakan (λ = 1.54056 Å); β adalah lebar keseluruhan dari puncak difraksi maksimum (*full width at half maximum*, FWHM) sebagaimana yang diilustrasikan pada Gambar 3.10 dan θ adalah sudut *Bragg* yang terbaca oleh mesin XRD. Puncak-puncak yang dihasilkan pada pengujian XRD terhadap sampel hasil sintesis akan digunakan untuk mengestimasi ukuran kristalit ZnO melalui analisis nilai pelebaran puncak. Setiap puncak akan memberikan nilai FWHM. Hasil pengurangan nilai tersebut dengan FWHM yang diakibatkan oleh peralatan instrumen akan diaplikasikan pada analisis dengan metoda persamaan *Scherrer*.

(3.4)

Gambar 3.10 Salah satu pucak hasil uji XRD.

Dengan mengkonversi nilai pelebaran setiap puncak ke dalam bentuk diagram *scatter* dan hasil interpolasi dari nilai tersebut memberikan suatu persamaan linier dengan konstanta yang dapat dipergunakan dalam mengestimasi ukuran besar kristal rata-rata. Interpolasi dan diagram *scatter* diilustrasikan pada Gambar 3.11.

Gambar 3.11 Contoh Interpolasi hasil Uji XRD.

3.7.2 Pengujian dengan menggunakan alat UV-Vis Spektroskopi

Pengujian dengan menggunakan UV-Vis Spektroskopi bertujuan untuk mengetahui energi celah pita dan radius partikel dari kristal hasil rekayasa, dimana perbedaan ukuran dalam skala nanometer memberikan perbedaan yang sangat signifikan terhadap sisi absorbsi dan puncak maksimum kurva absorbsi hasil spektroskopi UV tersebut (*size-dependent optical absorption*). Dengan mengaplikasi persamaan Tauc [53] dan Brus [54] maka energi celah pita (E_g) dan ukuran kristalit dari nanopartikel ZnO dapat tentukan.

$$(\alpha_o h v)^n = A(h v - E_o) \tag{3.5}$$

dimana α_o adalah koefisien absorbsi linear; $h\nu$ adalah energi foton dari cahaya; A adalah parameter lebar sisi penyerapan; dan E_g adalah energi celah pita optis, masing-masing. Koefisien absorbsi pada sisi absorbsi dengan energi tinggi (UV-range) dapat digunakan untuk mem-fit persamaan di atas untuk mendapatkan nilai E_g dengan mengekstrapolasi plot $(\alpha_o h v)^n$ sebagai suatu garis lurus terhadap perpotongannya dengan sumbu $h v [(\alpha_o h v)^n=0]$. Nilai dari n dapat diasumsikan dengan mempertimbangkan karakteristik inheren transisi elektronik yang bertanggung jawab terhadap mekanisme serapan cahaya, dimana nilai n adalah setara dengan 2 dan $\frac{1}{2}$ untuk material semikonduktor *direct* dan *indirect band gaps* masing-masing.

Selanjutnya informasi dari estimasi nilai energi celah pita ini digunakan untuk memprediksi besarnya ukuran nanopartikel ZnO. Hal ini didasarkan atas fenomena bahwa bila ukuran kristalit material semikonduktor berada di bawah radius Bohr dari pasangan elektron dan lubang (*elektron-hole pair*) maka sisi absorbsi material akan menunjukkan pergeseran ke panjang gelombang yang lebih pendek sebagai perbandingan terhadap nilai material ruahnya sebagimana diformulasikan oleh Brus sebagai berikut:

$$E^{*} = E_{g}^{Bulk} + \frac{\hbar^{2}\pi^{2}}{2er^{2}} \left(\frac{1}{m_{e}^{*}m_{o}} + \frac{1}{m_{h}^{*}m_{o}} \right) - \frac{1.8e^{2}}{4\pi\varepsilon\varepsilon_{0}r} - \frac{0.124e^{3}}{(2\hbar^{2}\varepsilon\varepsilon_{0})^{2}} \left(\frac{1}{m_{e}^{*}m_{o}} + \frac{1}{m_{h}^{*}m_{o}} \right)^{-1} (3.6)$$

dimana E_g adalah energi celah pita untuk material ruah; R adalah jari-jari partikel; ε adalah dielectric constant; m_e dan m_h adalah massa efektif dari elektron dan hole masing-masing; \hbar adalah konstanta Planck's; dan e adalah muatan elektron. Gugus kedua dari persamaan di atas mewakili energi lokalisasi kuantum dan memiliki ketergantungan pada $1/R^2$, Sementara gugus ketiga dari persamaan itu memberikan energi *Coulomb*, energi yang juga bergantung pada 1/R. Beberapa referensi data dielektrik ZnO tercantum pada Tabel 4.1.

Tabel 3.1 Data dielektrik ZnO [55].

Parameter	Nilai dan referensi	Keterangan	
Masa efektif elektron	0.24; 0.28; 0.28; 0.24; 0.26 [56]		
m _e			
massa efektif hole m_h	0.45; 0.59; 0.50; 0.45		
Eksitasi binding energi	59		
<i>R</i> [meV]			
Konstanta Bulk	3.7		
dielektrik E _r			
Indek refraktif pada 625	1.92		
Konstanta Zero	$\epsilon_0 = 8.8 \pm 0.4; \epsilon_{1/0} = 7.8 \pm 0.3$	Pengukuran	
frequency dielectric		dan IR	
		spectroscopy	
Konstanta static	$\varepsilon_0 = 11; = 8.5$	Paengukuran	
dielectric		pada radio	
		frequency	
Static relative	6.51		
permittivity			
Radius eksiton	13; 18; 25	14	
Radius eksiton	28.7	Pengukuran	
		dengan $h^2 \epsilon_r$	
		$\epsilon_{o}/\mu\pi e^{2}$	

3.7.3 Pengujian dengan menggunakan alat Mikroskop Pemindai Elektron (Scanning Electron Microscope)

Uji SEM dilakukan di laboratorium Departemen Badan Tenaga Atom Nasional Serpong. Ilustrasi perangkat SEM dapat dilihat pada Gambar 3.12.

Gambar 3.12 Sistem alat mikroskop pemindai elektron, SEM - EDX merek JED-2300 Analysis Station JEOL.

Mikroskop pemindai elektron (*SEM*) digunakan untuk mempelajari bentuk detil arsitektur permukaan sel dan obyek diamati secara tiga dimensi. Pada *SEM*, gambar dibuat berdasarkan deteksi elektron baru (elektron sekunder) atau elektron pantul yang muncul dari permukaan sampel ketika permukaan sampel tersebut dipindai dengan sinar elektron. Sinyal elektron sekunder atau elektron pantul yang terdeteksi diperkuat oleh suatu amplifier, besar amplitude hasil penguatan tersebut ditampilkan dalam gradasi gelap-terang pada layar monitor CRT (*cathode ray tube*) dan gambar struktur obyek tersebut dapat diperbesar.

BAB 4 PEMBAHASAN

Pada bab ini akan dibahas pengaruh temperatur pencampuran prekursor, terhadap pertumbuhan nanopartikel serta perlakuan anil dan pasca-hidrotermal terhadap tingkat kristalinitas dan energi celah pita nanopartikel ZnO.

4.1 Larutan hasil pencampuran prekursor dengan variasi temperatur

Sintesis dilakukan dengan menggunakan perangkat yang didisain seperti yang digambarkan pada Gambar 3.2 dan 3.3 dengan tujuan untuk mengurangi kontak langsung senyawa kimia selama proses sintesis dengan udara luar yang mengandung beberapa unsur kimia seperti CO₂, H₂, O₂, NO₂ dan H₂O dan lainlain yang akan mengganggu dalam proses dan hasil sintesis ZnO. Pencampuran kedua larutan dilakukan secara bersamaan tetes demi tetes (dropwise) dimana teknik ini berbeda dengan teknik yang umum dilakukan dengan meneteskan larutan hidrolisis (NaOH) ke dalam larutan Zn(CH₃COO)₂ sehingga membutuhkan waktu yang lama untuk mencapai titik kritikal pertumbuhan embrio partikel. Pertumbuhan inti Zn(OH)₂ diawali dengan terbentukya larutan keruh yang transparan (Gambar 4.1). Kondisi ini mengindikasikan adanya pertumbuhan inti Zn(OH)₂. Larutan keruh dan transparan kemudian berubah menjadi putih susu dan membentuk suatu koloid yang stabil setelah didiamkan selama 30 menit di dalam lemari pendingin pada temperatur 6 °C.

Gambar 4.1 Hasil visual pencampuran prekursor pada proses sintesis.

Universitas Indonesia

Pemisahan dan pencucian koloid dilakukan dengan menggunakan corong pisah (Gambar 4.2), untuk selanjutnya disentrifus selama 45 menit dengan menggunakan mesin sentrifugal vakum Borco U-320R pada kecepatan 3500 rpm, tekanan dan temperatur ruang.

Gambar 4.2 Pencucian endapan (a). sebelum membentuk lapisan(b) setelah membentuk lapisan.

Pencucian dilakukan berulang kali dengan menggunakan larutan campuran air dan etanol destilasi dengan pernbandingan proporsional (100: 0), (80: 20), (100: 0) panas dan (100: 0) dingin. Hal tersebut bertujuan untuk menarik ion sisa dengan yang memiliki tingkat kepolaran yang berbeda. Pada proses pencucian akan terbentuk 3 lapisan yaitu bening, koloid transparan serta koloid yang berwarna putih susu pada sisi bawah corong pisah. Selama proses pencucian, hasil sintesis pada temperatur 0 °C lebih lama mengendap jika dibandingkan dengan hasil sintesis pada temperatur 30 dan 60 °C.

Pada proses pencucian koloid dengan menggunakan perbandingan etanol : air destilasi (80 : 20), endapan melepaskan panas dan gelembung gas yang diduga adalah O₂. Partikel ZnO diperkirakan telah terbentuk ketika diberikan perlakuan panas selama proses refluk berlangsung. Hal ini terlihat ketka hasil koloid yang didispersikan dalam etanol destilasi memberikan pendaran sinar yang berwarna merah kuning hijau dan kebiruan disinari dengan lampu ultra violet (Gambar 4.3).

Gambar 4.3 Pendaran sinar partikel ZnO dibawah sinar lampu ultraviolet

Hasil koloid yang telah dicuci dimasukkan ke dalam cawan petri kemudian dikeringkan pada suhu ruang selama 3 hari dan dilanjutkan pada suhu 65 °C. Hasil pengeringan dengan jumlah koloid yang sedikit membentuk lapisan tipis yang tembus pandang sedangkan pada jumlah yang banyak akan terlihat berwarna putih sedikit tembus pandang. Setelah dilakukan anil pada temperatur 150 °C, lapisan tersebut akan menjadi putih kekuningan.

Selama proses sintesis berlangsung, proses pertumbuhan ZnO terjadi melalui mekanisme reaksi antara larutan $Zn(CH_3COOH)_2$ dengan NaOH yang menghasilkan $Zn(OH)_2$, Na(CH₃COOH) dan H₂O (reaksi 4.1). Koloid akan terbentuk ketika Zn^{2+} dan OH⁻ mencapai angka kritikal kelarutan (reaksi 4.2). Sementara itu, kelebihan ion OH⁻ akan bereaksi dengani $Zn(OH)_2$ membentuk ion komplek $Zn(OH)_4^{2-}$ (reaksi 4.3). Dengan adanya H₂O dan energi yang diberikan ketika direfluk, $Zn(OH)_4^{2+}$ terdisosiasi kembali membentuk ion Zn^{2+} dan OH⁻ seperti pada reaksi (4.3) yang selanjutnya membentuk ZnO (reaksi 4.4). Pembentukan ZnO seperti pada reaksi (4.4), dapat terjadi sebagai hasil reaksi dengan ion OH⁻ dari kondensat selama refluk berlangsung.

Mekanisme reaksi pertumbuhan dapat dituliskan sebagai berikut [57, 58]:

$$Zn(CH_{3}COOH)_{2}.2H_{2}0 + 2NaOH \quad \leftrightarrow \quad Zn(OH)_{2(\ell)} + NaCH_{3}COO + 2H_{2}0 \quad (4.1)$$

$$\operatorname{Zn}^{2+} + 2\operatorname{OH}^{-} \leftrightarrow \operatorname{Zn}(\operatorname{OH})_{2(\ell)}$$
 (4.2)

$$\operatorname{Zn}^{2+} + 4\operatorname{OH}^{-} \leftrightarrow \operatorname{Zn}(\operatorname{OH})_{4}^{2-}(\ell)$$
 (4.3)

$$\operatorname{Zn}^{2+}\operatorname{OH}^{-} \leftrightarrow \operatorname{ZnO} + \operatorname{H}_2\operatorname{O}$$
 (4.4)

$$Zn(OH)_{2 (s)} \leftrightarrow Zn^{2+\bullet} + 2OH^{-\circ}$$
 (4.5)

$$\operatorname{Zn}^{2+\bullet} + 2\operatorname{OH}^{-\circ} \quad \leftrightarrow \quad \operatorname{ZnO} + \operatorname{H}_2\operatorname{O}$$
 (4.6)

Pertumbuhan inti pada pencampuran prekursor pada temperatur 0°C lebih lambat jika dibandingkan dengan pencampuran pada temperatur 30 dan 60 °C. Hal ini disebabkan oleh adanya energi bebas yang diserap selama proses reaksi berlangsung . Hubungan pertumbuhan inti dengan energi bebas ditunjukkan pada Gambar 4.4 [59]. Sementara itu, pada pencampuran prekursor 30 dan 60 °C, temperatur memberikan energi pendorong yang lebih untuk terjadinya reaksi lebih lanjut sehingga energi bebas dan radius embrio kritikal juga akan meningkat. Hubungan fenomena ini di formulasikan seperti persamaan berikut;

$$r^* = 2g \left(\Delta G_v - \Delta G_s\right) \tag{4.6}$$

dimana r*= radius embrio, g = energi interfasial, ΔG_V = Energi bebas per unit volume dan ΔG_S = energi strain per unit volume.

Gambar 4.4 Hubungan energi bebas terhadap radius partikel [50].

Dengan demikian pertumbuhan partikel pada sintesis akan dapat meningkat dengan meningkatnya temperatur . Hal tersebut dengan jelas diilustrasikan seperti pada Gambar 4.13.

4.2 Serbuk nanopartikel ZnO Hasil Pengeringan, Anil dan Pascahidrotermal

Serbuk nanopartikel ZnO hasil pengeringan yang telah melalui poses anil dan pasca-hidrotermal diji dengan XRD dan UV-Vis. Hasil visual grafik XRD diperlihatkan pada Gambar 4.5, Gambar 4.6 dan Gambar 4.7.

Grafik hasil XRD hasil uji sampel a, b dan c menunjukan indek puncak yang sama dengan indek puncak wurstzite-ZnO (Gambar 4.8) [60] dan dikonfirmasi oleh data *American Mineralogist Crystal Structure Database* (AMCSD) revisi no 17273, 04 juni 2011 kartu no.[96-900-4181; 96-900-4182] seperti yang terlihat pada Gambar 4.9 [52]. Hasil sintesis dengan menggunakan metode *dropwise* kedua pelarut pada perangkat sistesis yang didisain seperti pada Gambar 3.2 memberikan tahap yang lebih singkat untuk menghasilkan nanopartikel ZnO jika dibandingkan dengan hasil penelitian sebelumnya dengan menggunakan teknik yang umum dilakukan pada penelitian sebelumnya. Hal tersebut dapat dibuktikan dengan membandingkan grafik hasil uji XRD (lampiran 20) terhadap sampel yang disintesis pada kondisi temperatur dan rasio molar yang sama [61].

Pada grafik uji XRD hasil sintesis (Gambar 4.7 dan 4.8) terjadi pelebaran puncak pada 20 dari 65 sampai dengan70 derajat terjadi yang kemungkinan besar disebabkan oleh adanya $Zn(OH)_2$ yang masih belum dikonversi sepanuhnya ke bentuk nanopartikel ZnO.

20

Gambar 4.5 Grafik XRD hasil sintesis pada kondisi pengeringan hasil pencampuran prekursor pada temperatur : (a) 0 °C , (b) 30°C dan (c) 60 °C.

Gambar 4.6 Grafik XRD hasil sintesis pada kondisi anil hasil pencampuran prekursor pada temperatur : (a) 0 °C , (b) 30°C dan (c) 60 °C.

Gambar 4.7 Grafik XRD hasil sintesis pada kondisi pasca-hidrotermal hasil pencampuran prekursor pada temperatur : (a) 0 °C , (b) 30°C dan (c) 60 °C.

Gambar 4.8 Grafik Wurszite-ZnO [62].

Gambar 4.9 Grafik XRD zincite / wurtzite ZnO data American Mineralogist Crystal Structure Database (AMCSD) revisi no 17273, 04 juni 20011 card no.[96-900-4181] [52].

Hasil analisis dengan menggunakan menggunakan software Match! versi 1.10 terhadap puncak yang memiliki intensitas serapan yang rendah (Gambar 4.5, Gambar 4.6 dan Gambar 4.7) pada pada sudut 20 dengan rentang 65 hingga 70 derajat menunjukkan adanya Zn(OH)₂ yang lebih dominan daripada ZnO (Gambar 4.10 dan Gambar 4.11) yang selengkapnya dimuat pada Lampiran 1 hingga Lampiran 18.

Gambar 4.10 Hasil analisis keberadaan Zn(OH)₂. hasil sintesis temperatur pencampuran prekursor 0 °C.

Gambar 4.11 Hasil analisis keberadaan ZnO. hasil sintesis temperatur pencampuran prekursor 0 °C.

Ukuran partikel rata-rata ditentukan dengan persamaan *Schereer* seperti yang telah di bahas pada pada sub bab 3.71. Dengan batuan *software Peak Fit* Versi 4.12 yang kemudian diperoleh nilai 20 dan *Full width at half maximum* (FWHM) dalam satuan *degree*. Nilai tersebut dikonversikan ke dalam satuan radian. Oleh karena pelebaran puncak juga ditimbulkan oleh instrumen, maka nilai pelebaran puncak yang ditimbulkan partikel harus dikurangi dengan nilai pelebaran puncak yang ditimbulkan oleh instrumen. Dengan menginterpolasikan nilai-nilai $\beta r \cos \theta$ dan $\sin \theta$ ke dalam grafik *scatter* dimana $\beta r \cos \theta$ sebagai sumbu y dan $\sin \theta$ sebagai sumbu x, akan diperoleh suatu persamaan linier. Dengan mensubtitusi nilai suku kedua dari persamaan linier tersebut ke dalam persamaan *Scherrer* akan diperoleh estimasi rata-rata ukuran partikel seperti pada Tabel 4.1.

No	Kondisi perlakuan	Ukuran partikel (nm) hasil sintesis dengan variasi temperatur pencampuran prekursor,				
		0 °C	30 °C 60 °C			
1	Pengeringan	9,14	10,00 11,24			
2	Anil	9,86	12,24 13,18			
3	Hidrothermal	10,47	13,99 14,74			

 Tabel 4.1 Hasil estimasi ukuran nanopartikel ZnO hasil presipitasi dengan menggunakan persamaan Scherrer.

Hasil perhitungan ukuran kristal pada Tabel 4.1 dapat diilustrasikan ke dalam bentuk grafik batang seperti pada Gambar 4.13, Gambar 4.14 dan Gambar 4.15.

Gambar 4.12 Hasil perhitungan ukuran nanopartikel ZnO hasil presipitasi setelah pengeringan.

Gambar 4.13 Hasil perhitungan ukuran nanopartikel ZnO hasil presipitasi setelah dianil.

Gambar 4.14 Hasil perhitungan ukuran nanopartikel ZnO hasil presipitasi setelah perlakuan pasca-hidrotermal.

Dari Tabel 4.1 dan Gambar 4.12 sampai dengan Gambar 4.14 terlihat bahwa terdapat kecenderungan yang konsisten, dimana ukuran partikel meningkat seiring dengan meningkatnya temperatur pencampuran prekursor dari 0 ke 60 °C, kecenderungan yang sama juga pada perlakuan anil dan hidrotermal. Peningkatan tersebut terjadi sebagai akibat dengan meningkatnya temperatur akan meningkatkan energi pendorong untuk terjadinya pertumbuhan.

Salah satu bagian dalam penelitian ini adalah perlakuan anil pada temperatur 150 °C dengan waktu tahan 24 jam. Puncak difraksi XRD pada sampel yang dianil terlihat menajam. Hal tersebut mengindikasikan adanya peningkatan kristalinitas dan ukuran partikel ZnO. Selama proses anil berlangsung terjadi penyusunan ulang dan pertumbuhan nanopartikel. Pertumbuhan tersebut diawali dengan pembentukan radikal Zn^{2+•}dan OH^{-°} .yang bersumber dari Zn(OH)₂. Sementara itu, Zn(OH)₂ yang belum sepenuhnya mengalami dekomposisi dapat mempengaruhi penyusunan dan pertumbuhan nanopartikel. Pada penelitian sebelumnya, dilaporkan bahwa Zn(OH)₂ yang belum dikonversi menjadi ZnO dapat menghambat pertumbuhan partikel ZnO (*surface capping effect*) dimana Zn(OH)₂ akan mengalami dekomposisi pada temperatur diatas 125 °C [63, 64].

Analisis grafik XRD ditemukan puncak yang melebar pada sudut 2θ pada rentang 65 sampai dengan 70 derajat yang disebabkan oleh rendahnya intensitas sinar x yang dihambur oleh nanopartikel (gambar 4.16). Puncak-puncak tersebut akan kembali menajam setelah hasil sintesis tersebut melalui proses pascahidrotermal dimana nanokristalit ZnO akan tumbuh menjadi lebih besar dan tingkat kristalinitas juga meningkat. Hal tersebut ditandai dengan menajamnya kembali puncak-puncak pada 2 θ rentang 65-70 derajat (Gambar 4.15 (a) dan (b)). Hal ini dapat terjadi karena selama proses pasca-hidrotermal berlangsung, temperatur dan tekanan yang tinggi memberikan energi pendorong yang cukup untuk memutus ikatan HOO•Zn•OOH yang ada pada permukaan atau intersisi kristal ZnO untuk membentuk radikal Zn^{2+•} dan radikal OH^{-°}yang selanjutnya akan terjadi pertumbuhan dan penyusunan ulang nanokristalit ZnO kearah yang lebih teratur sebagai akibat interaksi antar radikal tersebut [65]. Susunan antar atom di dalam nanokristal ZnO yang tumbuh tersebut akan memberikan suatu bidang datar dengan jarak antar atom yang sama (Bragg law) sehingga hamburan sinar X oleh bidang datar kristal dengan kisi-kisi yang teratur akan saling diperkuat. Kemudian, intensitas sinar hamburan yang ditangkap oleh mesin XRD diterjemahkan ke bentuk puncak yang menajam dengan sudut 2θ yang menyempit. Selanjutnya analisis grafik XRD terhadap hasil sintesis dengan temperatur pencampuran pada 60 °C yang telah melalui proses pasca-hidrotermal ditemukan puncak pada sudut 20 31,08 derajat yang cukup tajam yang diduga besar adalah puncak yang ditimbulkan dari kesalahan alat atau yang dikenal sebagai *ghost peak* (Gambar 4.17).

Gambar 4.15 Grafik XRD sampel hasil sintesis pada temperatur 0 °C setelah melalui proses: (a) pengeringan, (b) anil, (c) pasca-hidrotermal.

Gambar 4.16 Grafik XRD sampel hasil sintesis pada temperatur 60 °C setelah melalui proses: (a) pengeringan, (b) anil, (c) pasca-hidrotermal.

Untuk mengkonfirmasi lebih lanjut maka investigasi lebih lanjut dilakukan dengan menggunakan alat spektroskopi *UV spectrophotometer Shimadzu 4240* pada temperatur ruang dengan rentang gelombang 200-800 nm. Hasil spektrum serapan panjang tersebut ditampilkan pada Gambar 4.17 hingga Gambar 4.22 dimana serapan mengalami pergeseran dari 391 ke 398 nm dengan meningkatnya temperatur sintesis dan ukuran nano partikel setelah pengeringan setelah pengeringan, dan 395 ke 398 nm pada hasil sintesis setelah melalui pasca-hidrotermal. Serapan panjang gelombang bergeser ke arah biru (Lampiran 21).

Gambar 4.17 Spektrum serapan nanopartikel ZnO hasil sintesis pada temperatur 0 °C setelah pengeringan.

Gambar 4.18 Spektrum serapan nanopartikel ZnO hasil sintesis pada temperatur 30 °C setelah pengeringan.

Gambar 4.19 Spektrum serapan nanopartikel ZnO hasil sintesis pada temperatur 60 °C setelah pengeringan.

Gambar 4.20 Spektrum serapan nanokristalin ZnO hasil sintesis pada temperatur 0 °C setelah pasca-hidrotermal.

Gambar 4.21 Spektrum serapan nanokristalin ZnO hasil sintesis pada temperatur 30 °C setelah pasca-hidrotermal.

Radius kristalin juga dihitung dengan menggunakan metoda Kubelka-Munk dimana, energi celah pita yang diperoleh dengan menginterpolasikan $(\alpha^*\hbar\nu)^2$ ke $\hbar\nu$ aksis seperti yang diilustrasikan pada Gambar 4.23, 4.24, 4.25, 4.26, 4.27 dan 4.28, kemudian energi celah pita tersebut dikonversikan ke bentuk panjang gelombang, $\lambda = \hbar\nu$ / E. Nilai radius kristalin akan diperoleh dengan mensubtitusi panjang gelombang tersebut ke dalam persamaan (4.7) [66], yaitu derivat dari persamaan (3.7.1) pada bab. 3.7.

$$r(nm) = \frac{-0.3049 + \sqrt{-26.23012 + \frac{10240.72}{\lambda_p(nm)}}}{-6.3829 + \frac{2483.2}{\lambda_p(nm)}}$$
(4.7)

Gambar 4.23 Grafik penentuan energi celah pita nanopartikel ZnO hasil sintesis pencampuran prekursor pada temperatur 0 °C setelah pengeringan.

Gambar 4.24 Grafik penentuan energi celah pita nanopartikel ZnO hasil sintesis pencampuran prekursor pada temperatur 30°C setelah pengeringan.

Gambar 4.25 Grafik penentuan energi celah pita nanopartikel ZnO hasil sintesis pencampuran prekursor pada temperatur 60 °C setelah pengeringan.

Gambar 4.26 Grafik penentuan energi celah pita nanokristalin ZnO hasil sintesis pencampuran prekursor pada temperatur 0 °C setelah pascahidrotermal.

Gambar 4.27 Grafik penentuan energi celah pita nanokristalin ZnO hasil sintesis pencampuran prekursor pada temperatur 30 °C setelah pascahidrotermal.

Gambar 4.28 Grafik penentuan energi celah pita nanokristalin ZnO hasil sintesis pencampuran prekursor pada temperatur 60 °C setelah pascahidrotermal.

Hasil perhitungan energi celah pita dan radius partikel dapat dibuat suatu Tabel seperti pada Tabel 4.2 berikut:

Tabel 4.2 Energi celah pita dan radius partikel hasil sintesis pada temperatur (a) 0°C, (b) 30°C, dan (c) 60 °C pada kondisi setelah melalui proses pengeringan dan pasca-hidrotermal.

No	Kondisi <u> </u> perlakuan	Energi	Energi celah pita (eV)		Radiu	Radius partikel (nm)		
		(a)	(b)	(c)	(d)	(e)	(f)	
1	Pengeringan	3,27	3,24	3,23	5,01	6,50	7,30	
2	Pasca- hidrothermal	3,24	3,23	3,22	6,50	7,30	8,68	

Tabel 4.2 menginformasikan dengan meningkatnya radus ukuran partikel maka energi celah pita menurun. Hal tersebut juga telah diperoleh dan dibuktikan peneliti sebelumnya [67]. Ukuran radius kristal pada hasil sintesis pencampuran prekursor temperatur 0, 30 dan 60 °C meningkat dengan meningkatnya temperatur sintesis. memiliki tren yang sama dengan hasil perhitungan dengan menggunakan XRD.

Analisa lebih lanjut terhadap hasil uji UV-Vis menunjukkan adanya peningkatan serapan panjang gelombang dengan meningkatnya temperatur sintesis. Nanopartikel ZnO yang berukuran kecil memiliki energi celah pita yang besar. Hal tersebut disebabkan adanya perubahan sifat optikal dengan semakin kecilnya ukuran nanopkristalit partikel ZnO dimana pasangan elektron dan lubang elektron nanokristalit partikel ZnO terkurung dalam suatu dimensi ruang yang mendekati pada pengukuran kuantum kritis.(*exciton Bohr radius*). Elektron yang terkurung tersebut membutuhkan energi yang besar untuk dapat tereksitasi ke pita konduksi. Hal ini yang sama dialami oleh elektron yang akan mengisi lubang elektron yang ditinggalkan oleh elektron yang tiserap adalah berbanding tebalik dengan panjang gelombang. Sehingga dapat terlihat hubungan bahwa semakin kecil panjang gelombang yang diserap maka semakin besar tingkat energi untuk aktifasi eksitasi elektron dan semakin kecil pula ukuran nanokristalit partikel ZnO.

Karakterisasi dengan SEM terhadap hasil sintesis 0,30 dan 60 °C yang telah melalui proses anil kemudian pasca-hidrotermal mengalami pertumbuhan

dari partikel ke nanorod. Dimana pada sampel hasil sintesis 0, 30 dan 60 °C yang telah melalui proses pengeringan, anil dan hidrotermal memperlihatkan terjadinya pertumbuhan dari nanopartikel ke nanorod. Sementara itu, analisis data SEM dan EDS tidak dapat menyimpulkan jumlah fasa yang ada.

Gambar 4.29 Foto SEM sampel hasil sintesis pada temperatur (a) 0 °C (c) 30 °C dan (c) 60 °C setelah perlakuan pasca-hidrotermal dengan pembesaran 25.000 dan 50.000 kali.

BAB 5

KESIMPULAN

5.1 Kesimpulan

Berdasarkan penelitan yang telah dilakukan maka dapat ditarik beberapa kesimpulan sebagai berikut:

- 1. Nanopartikel ZnO telah berhasil disintesis dengan menggunakan teknik presipitasi menggunakan prekursor seng asetat dan natrium hidroksida.
- Dengan menggunakan teknik *dropwise* kedua prekusor pada perangkat sintesis yang telah didisain dapat mempersingkat proses untuk mendapatkan nanopartikel ZnO wurtzite jika dibandingkan dengan penelitian yang telah dilakukan sebelumnya. Hal tersebut diperlihatkan dengan perbandingan grafik XRD pada lampiran 20.
- 3. Hasil investigasi dengan menggunakan XRD menunjukan adanya pertumbuhan ukuran nanopartikel ZnO yang konsisten seiring dengan meningkatnya temperatur pencampuran prekursor dari 0 ke 60 °C, masing-masing dari 9,14 menjadi 11,24 nm pada kondisi pengeringan, 9,86 menjadi 13,18 nm pada kondisi anil, dan 10,47 menjadi 14,74 nm pada kondisi pasca-hidrotermal. Berdasarkan analisis spektroskopi UV-Vis, seiring dengan peningkatan ukuran kristalit tersebut sebagai hasil peningkatan temperatur pencampuran prekursor, maka nilai energi celah pita nanopartikel turun secara konsisten, masing-masing dari 3,27 menjadi 3,23 eV untuk sampel hasil pengeringan, 3.24 menjadi 3,22 eV untuk sampel hasil pasca-hidrotermal.
- 4. Hasil investigasi dengan menggunakan SEM terhadap hasil sintesis pada 0, 30 dan 60 °C pada sampel nanopartikel ZnO hasil pasca-hidrotermal menunjukkan adanya pertumbuhan dari bentuk nanopartikel ke bentuk nanarod. Hal ini dimungkinkan oleh adanya tekanan yang tinggi diberikan pada permukaan partikel yang menyebabkan perubahan pertumbuhan ke arah melawan gravitasi bumi.
- Hasil sintesis nanopartikel ZnO yang terbaik untuk diaplikasikan pada DSSC adalah hasil dari pencampuran prekursor pada temperatur 0 °C yang telah melalui proses anil dan pasca-hidrotermal.

5.2 Saran

Berdasarkan hasil dari penyinaran dari lampu UV seperti pada Gambar 4.3 memberikan indikasi adanya warna biru, kehijauan, kuning dan merah. Ini menunjukan bahwa hasil sintesis yang didispersi dengan etanol memiliki besar partikel yang tidak homogen. Partikel berukuran besar akan lebih cepat mengendap dibawah dan memberikan warna merah sedangkan pada sisi atas memberikan warna hijau kebiruan. Untuk mendapatkan besar partikel homogen secara terpisah maka perlu disisipkan satu langkah lagi pada diagram penelitian (Gambar 3.1) sebelum melakukan tahap anil. Pemisahan dapat dilakukan dengan cara dekantasi atau dengan kromatografi kolom dengan absorban serbuk silika dengan ukuran tertentu dimana komposisi campuran pelarut air destilasi : etanol dapat dicari dengan menggunakan kromatografi lapisan tipis.

Pada proses tahap pencucian hasil sintesis disarankan dengan memvariasikan etanol : air destilasi dengan ratio perbandingan yang lebih bervariatif dengan tujuan merubah tingkat kepolaran larutan pencuci agar dapat melarutkan beberapa komponen ion sisa hasil sistesis yang berasal dari kelebihan ion Zn²⁺, OH⁻ dari perkursor serta ion-ion logam dan kelompok ketone yang berasal dari pelarut etanol absolut (Merck Cat. No. .00983.2500 Pro Analysis).

DAFTAR REFERENSI

- 1. Jacobson, Mark Z. "Review of Solutions to Global Warming, Air Pollution, and Energy Security." *Department of Civil and Environmental Engineering, Stanford University*, Stanford California USA (2009): 1-55.
- 2. Jenny Nelson. "The Physics of Solar Cells." 1-16.
- 3. Grätzel, Michael. "Dye-sensitized solar cells." J. Photochemistry and Photobiology Chem. Photochemistry 4 (2003): 145–153.
- 4. Jenna Eddy, Dan Sanow, Michael Carver, Julie Dahl. "Dye-Sensitized Solar Cells Using organic dyes to generate electricity from light." *National Science Foundation* (2008): 1-27.
- Ismael, C., Flores, A., de Freitas a, Jilian Nei., Longoa, Claudia., De Paoli, Marco-Aurelio., Winnischofer, Herbert., Nogueira, Ana Fl'avia. "Dyesensitized solar cells based on TiO2 nanotubes and a solid-state electrolyte." *J. Photochemistry and Photobiology Chemistry* 189 (2007):153–160.
- 6. R.E Service Materials science. "Will UV lasers beat the blues science" (276 ed). (1997): 895-895.
- 7. Three Bond Technical News article, "Titaniunium-Oxide Photocatalyst." (62 ed.) 2004.
- 8. Liang, S., Sheng, H., Liu, Y., Hio, Z., Lu, Y. and Shen, H. "ZnO Schottky ultraviolet photodetectors." *J. Crystal Growth* 225 (2001): 110-113.
- 9. Golego, N., Studenikin, S. A., Cocivera, M., "Sensor photoresponse of thinfilm oxides of zinc and titanium to oxygen gas." J. The Electrochemical Society 147 (2000): 1592-1594.
- 10. Keis, K., Vayssieres, Lindquist L., Hagfeldt, S. E. A. "Nanostructured ZnO electrodes for photovoltaic application." *Nanostructured Materials J.* 12 (1999): 487-490.
- 11. Cao H., Xu, J. Y., Seelig, E. W., Chang, R. P. H., "Microlaser made of disordered media," J. Applied Physics Letters 76 (2000): 2997-2999.
- 12. Huang, M., Mao, S., Feick, H., Yan, HQ., Wu, Y.Y., Kind, H., Weber, E., Ruso, R., Yangh, P.D. "Room-Temperature Ultraviolet Nanowire Nanolasers." 292: 5523 (2001):1897-1899.
- 13. Ku, Chen-Hao., and Wu, Jih-Jen. "Electron transport properties in ZnO nanowire array/nanoparticle composite dye-sensitized solar cells." *J. Applied Physics Letter* 91 (2007): 1-3 2007.

- 14. Manafi, Ahebali., et al."Sythesis and a Investigation of Spherical ZnO nano structures by Gelatiion Method." *J. Olomouc*, *Czech Republic* 0) 2010: 12–14.
- Azam, Ameer., Ahmed, Faheem., Arshi, Nishat., Chaman , M., Naqvi, A.H. "Low temperature synthesis of ZnO nanoparticles using mechanochemical route : A green chemistry approach." *International Journal of Theoretical & Applied Sciences* 1:2 (2009): 12-14.
- 16. Pusfitasari, Eka Dian."Sintesis dan Karakterisasi nanopartikel Zinc Oxide (ZNO) dengan menggunakan metode Sol-gel berdasarkan variasi suhu", *S.Univeristas Air Langga*, 2009.
- 17. Jitianu, Dan., Goia, V. "Zinc oxide colloids with controlled size, shape, and structure." J. Colloid and Interface Science 309 (2007): 75-85.
- 18. C. Barbe, F., Arendse, P., Comte, M., Jirousek, F. Lenzmann., Shklover, V., Gratzel, M. *Journal of American. Ceramic. Society.* 80 (1997): 3157.
- 19. O'Regan, Brian., Grätzel, Michael. "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films." *J.Nature* 353(1991): 737–740.
- Yuwono , Akhmad Herman., Munir, Badrul., Ferdiansyah, Alfian., Rahman, Arif., Handini, Wulandari."Dye Sensitized Solar Cell with Conventionally Annealed and Post-Hydrothermally Tretead Nanocrsytalline Semiconductor Oxide TiO₂ Derive from Sol-Gel Process." J. Makara Teknologi 14: 2 (2010): 53-60.
- 21. Park, Min-Woo., et al. "Synthesis and Characterization of Dye-sensitized Solar Cell Using Photoanode of TiO2 Nanoparticles/Ti-Mesh Electrode." *J. Electronic Materials Letters* 5: 3 (2009): 109-112.
- 22. Ratkovicha, Anthony., Penn,R. Lee. "Zinc oxide nanoparticle growth from homogenous solution: Influence of Zn:OH, water concentration, and surfactant additives." *J. Materials Research Bulletin* 44: 5 (2009): 993-998.
- 23. Shah, M.A., Alshary, M."Zinc Oxide Nanoparticles Prepared by the Reaction of Zinc Metal with Ethanol", *J. Science* 21 (2009): 61-67.
- 24. Muth, A. L. Cai., Reed, M. J. "Effect of Growth Temperature and Annealing on ZnO." *Mat. Res. Soc. Symp. Proc.* 744 (2003): 1-6.
- 25. The Solar spark. "Dye-Sensitised Solar Cell Animation." *University consortium members*. Cited 24 Jun. 2011. http://www.thesolarkspark.co.uk; http://www.youtube.com/watch?v=3KRHJSOgzcw.

- 26. Pagliaro, Mario. et al."Working principles of dye-sensitised solar cells and future applications." *J. Photovoltaics International* (3 ed.): 47-50.
- 27. Solar & Energy Co. Ltd. "DSSC Technology Trend and Market Forecast (2008~2015)." All about Energy and Secondary Battery (2011): 1-28.
- "Dye-sensitized solar cell." Wikipedia the free encyclopedia cited 25 Jun. 2011.<http://en.wikipedia.org/wiki/Dye-sensitized_solar_cell-sensitized solar cell>.
- Gerischer, H., Tributsch, H., Bunsenger, B., "Elektrochemische Untersuchungen über den Mechanismus der Sensibilisierung und Übersensibilisierung an ZnO-Einkristallen." J. Physical Chemistry 73:1 (1969): 251-256.
- Tsubomura, H., Matsumura, M., Nomura, Y., Amamiya, T. "Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell." *J. Nature* 261:5559 (1976): 402-403.
- Matudnmura, M., Matsudaira, S., Tsubomura, H., Takata, M., Yanagida. H., "Dye sensitization and surface structures of semiconductor electrodes." J. Industrial & Engineering Chemistry Product Research and Development. 19: 3 (1980): 415-421.
- 32. Redmond, G., Fitzmaurice, D., Graetzel, M. "Visible light sensitization by cis-Bis (thiocyanato) bis (2,2'-bipyridyl-4,4'-dicarboxylato) ruthenium (II) of a transparent nanocrystalline ZnO film prepared by sol-gel techniques." *J. Chemistry of Materials* 6: 5 (1994): 686-691.
- Rensmo, H., Keis, K., Lindström, H., Södergren, S., Solbrand, A., Hagfeldt, A., Lindquist, S.E., Wang, L. N., Muhammed, M., "High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes", *J. Physical Chemistry*, 101:14 (1997): 2598-2601.
- Keis, K. Magnusson, E. Hagfeldt. A."A 5% efficient photoelectro che-mical solar cell based on nanostructured ZnO electrodes." J. Solar Energy Materials and Solar Cells. 73:1 (2002): 51-58.
- 35. Kakiuchi, K., Hosono, E. Fujihara. S. J. "Enhanced photoelectrochemical performance of ZnO electrodes sensitized with N-719." *J. Photochemistry and Photobiology American Chemistry* 179 (2006): 81-86.
- 36. Lee, Shih-Fong. Chang, Yung-Ping. Lee, Li-Ying. Hsu, Jung-Fu. "Characterization of Dye-Sensitized Solar Cell with ZnO Nanorod." *J. Engineering Technology and Education* 5: 545-552.
- 37. Wong, Eva M. "Growth Kinetics of Nanocrystalline ZnO Particles from Colloidal Suspensions." J. Physics Chemistry. 102: 102 (1998):.7770-7775.
- 38. Oskam ,Gerko. dkk. "Synthesis of ZnO and TiO2 nanoparticles." J. Sol-Gel Science Technology, 37 (2003): 157–160.
- 39. Gupta, Atul. "Nano and Bulk Crystals of ZnO: Synthesis and characterization." *J. Nanomaterials and Biostructures*, 1 (2006): 1-9.
- 40. Cheng, Bin. "Synthesis of Variable-Aspect-Ratio, Single-Crystalline ZnO nanostructures." J. Inorganic Chemistry 45 (2006): 1208-1214.
- 41. Zhang, Hui "Controllable growth of ZnO nanostructures by citric acid assisted hydrothermal process", *J. Elsevier Materials Letters*, 59 (2005): 696–1700.
- 42. Aneeshh, P.M. Vananja, K.A. Jayaray, M.K. "Sythesis of ZnO nanoparticles by hydrothermal method." *Article of Proc. of SPIE* 6639: 1-7.
- 43. Laurence, M., Christopher., Harwood, Moody. "Experimental organic chemistry: Principles and Practice." *article of Oxford: Blackwell Scientific Publications* 127–132.
- 44. Yoshimura, M., Byrappa, K. "Hydrothermal processing of materials: past, presentand future." *J. Materials Science* 43:7 (2010):2085-2103.
- 45. Byrappa, B. Yoshimura, M. "Handbook of Hydrothermal Technology : A Technology for Crystal Growth andMaterials Processing." *William Andrew Publishing* 2001.
- Geetha, D. Thilavagathi, T. "Hydrothermal Synthesis of Nano ZnO Structures from CTAB." *Digest Journal of Nanomaterials and Biostructures* 5:1(2010): 297 – 301.
- 47.Sridevi, D., Rajendran, K.V. "Preparation of ZnO Nanoparticles and Nanorods by Using CTAB Assisted Hydrothermal Method." *International Journal of Nanotechnology and Applications* 3:2 (2009):. 43-48.
- 48. Aneesh. P. M. Jayaraj, M. K. "Red luminescence from hydrothermally synthesized Eu doped ZnO nanoparticles under visible excitation." *J. Bull. Mater. Science* 33 (2010): 227.
- 49. Georgiou, Pantelitsa., et al. "Synthesis of ZnO Nanostructures by Hydrothermal Method." *J. Nano Research* 6 (2009): 157-168.

- 50. Marczak, R. Peuket, W. "Sythesis and characterization of zinc oxide nanoparticels for dye-sentitized Solar cells." *Institute of Particle Technology*. Freidrich-Alexander-University
- 51. Wood, Anabel., Michael, Giersig., Hilgendorff, Michael., Vilas-Campos, Antonio., Liz-Marzan, Luis m., Mulvaney, Paul. "Size Effect in ZnO: The Cluster to Quantum Dot Transition." *Aus.J.Chem.* 56 (2003): 1051-1057.
- 52. Putz, Holger. "Phase Indentification from Powder Diffaction." *Chrystal Impac software database*: American Mineralogist Crystal Structure Database update 13April 2011.
- 53. Grigorovich., J. Tauc, R., Vancu, A. "Phys. Status Solidi" 15: 627 (1966).
- 54. Brus, L.E. "Electronic Wavefunctions in Semiconductor Clusters." J. Phys. Chem. 90: 2555 (1986).
- 55. Murphy, C.J., Coffer, J.L. "Quantum Dots : A primer. Applied Spectroscopy." Department Chemistry and Biochemistry of University of Carolina and Department Chemistry of Texas Christian University 17-29.
- 56. Zeshan, Hu., Oskam, Gerko, Peter C., Searson. "Influence of solvent on growth of ZnO nanoparticles." *Journal of Colloid Interface Science* (2003): 454-459.
- 57. Wang, Hu., et al. "Growth Mechanism of Different Morphologies of ZnO Crystals Prepared by Hydrothermal Method." *J. Mater. Sci. Technology* 27:2 (2011): 153-158.
- 58. Xiulan, Hu., et al. "Rapid Low-temperature Synthesis of Porous ZnO Nanoparticle Film bySelf-hydrolysis Technique", J. Key Engineering Materials 445 (2010):123-126.
- 59. Microdynamic Laboratory. "Nucleation Theory." Dept. of Earth Science. University of Meine. <<u>http://www.geology.um.maine.edu/geodynamics/Microdynamics/ellemodul</u> <u>es/nucleation/theory.html</u>> cited Juni 2011.
- 60. Nano Materials Technology Pte Ltd. "Nano zinc oxide (ZnO) dispersion." http://www.nanomt.com/sc_zno.asp. cited 20 Juni 2011.
- 61. Rahman, Arif. "Fabrikasi dan KarakterisasiNanopartikel ZnO untuk aplikasi Dye-Sensitized Sollar Cell." *Tesis.FTUI* Departmen Metallurgi dan Material.Universitas Indoensia. 2011.

- 62. NMT Specialty Chemicals. "Nano zinc oxide (ZnO) dispersion." Cited 20 Juni 2011. < http://www.nanomt.com/sc_zno.asp.>
- 63. Zhou, H. Alves, D., Hofmann, M., Meyer, B.K.,"Effect of the (OH) Surface Capping." *J. phys.* 229: 2 (2002): 825–828.
- 64. Wu, Y.L., Tok, A.I.Y., Boey, F.Y.C., Zeng, X.T., Zhang, X.H., "Surface modification of ZnO nanocrystals." *J. Applied Surface Science* 253 (2007): 5473–5479.
- Zhou, H., et al. "Behind the weak excitonic emission of ZnO quantum dots of ZnO/Zn(OH)₂ core-shell structure." *J.Applied Phisics Letter* 80:2 (2002): 210-212.
- 66. Kumbhakar, D. Singh, C. S., Tiwary, A. K., Mitra, "Chemical Sythesis and Visible Phtoluminescence Emission from Monodispersed ZnO nanoparticles." *J. Chalcogenide Letters* 5:12 (2008): 387–394.
- 67. Shet, Sudhakar. et. al. "Synthesis and characterization of band gap-reduced ZnO:N and ZnO:(Al,N) films for photoelectrochemical water splitting." *J. Mater. Research* 25:1 (2010): 65 -75.
- 68. Zhang, Xinyuan., Gharbi, Mohamed., Sharma, Pradeep., T. Johnson, Harley. "Quantum field induced strains in nanostructures and prospects for optical actuation." *International Journal of Solids and Structures* 46 (2009): 3810– 3824.

Analisis puncak-puncak Zn(OH)₂ pada hasil sintesis pencampuran prekursor 0 °C setelah pengeringan pada 2θ 65-70 derajat.

Nama unsur kin (Wulfingite) (Wulfingite) (Wulfingite) (Wulfingite) Zinc hydroxide	ıia (Wu	elfingite)	Form D2 C D2 C D2 C D2 C D2 C H2 C Daftar Pu	<i>nula</i> 02 Zn 02 Zn 02 Zn 02 Zn 02 Zn ncak	No. 96- 96- 96- 96- 96-	<i>referensi</i> 901-2357 901-2358 901-2359 901-2360 101-1224
	No.	2theta [°]	d [Å]	<i>I/I0</i>	h k l	
	1	65.88	1.4178	46.07	025	
	2	66.06	1.4144	60.15	006	
	3	66.51	1.4059	53.73	230	
	4	66.92	1.3982	42.23	205	
	5	67.31	1.3911	114.16	231	
	6	67.95	1.3795	302.19	220	
	7	68.73	1.3658	165.59	313	
	8	68.85	1.3637	164.33	016	the second s
	9	68.96	1.3619	173.40	321	
	10	69.13	1.3588	131.13	106	
	11	69.85	1.3467	25.13	215	7
	12	70.06	1.3431	15.91	232	-
					-	
Intensity						antal anthrony (cinterio 0 day a trib)
340 - 320 - 300 - 280 -			A		[96-901	encar pattern: (sintesis 0 deg. c.txt) :2357] D2 O2 Zn (Wulfingite)
260 - 240 -						
220			· · · · · · · · · · · · · · · · · · ·	. ^		
180						
140				/ `		
80	\sim	8	231	m	5	
		- V	9	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Mr.	5333
	5		1.8 			
65.50 66.00 Cu-Ka (1.541874 A)	66.	50 67.00 67	7.50 68.00 6	8.50 69.00	69.50 70.00	70.50 71.00 71.50 2thete

Grafik Puncak Difraksi

2theta

Analisis puncak-puncak Zn(OH)2 pada hasil sintesis pencampuran prekursor

Grafik Puncak Difraksi

Cu-Ka (1.541874 A)

Analisis puncak-puncak Zn(OH)₂ pada hasil sintesis pencampuran prekursor 60 ^oC setelah pengeringan pada 2θ 65-70 derajat.

Grafik Puncak Difraksi

Analisis puncak-puncak Zn(OH)₂ pada hasil sintesis pencampuran prekursor

0 °C setelah anil pada 20 65-70 derajat.

Grafik Puncak Difraksi

Analisis puncak-puncak $Zn(OH)_2$ pada hasil sintesis pencampuran prekursor

30 °C setelah anil pada 2θ 65-70 derajat.

Grafik Puncak Difraksi

Analisis puncak-puncak Zn(OH)₂ pada hasil sintesis pencampuran prekursor 60 °C setelah anil pada 20 65-70 derajat.

Grafik Puncak Difraksi

Analisis puncak-puncak Zn(OH)₂ pada hasil sintesis pencampuran prekursor 0 °C setelah pasca-hidrotermal pada 2θ 65-70 derajat.

Grafik Puncak Difraksi

Analisis puncak-puncak Zn(OH)₂ pada hasil sintesis pencampuran prekursor 0 °C setelah pasca-hidrotermal pada 2θ 65-70 derajat.

Grafik Puncak Difraksi

Analisis puncak-puncak Zn(OH)₂ pada hasil sintesis pencampuran prekursor 0 °C setelah pasca-hidrotermal pada 2θ 65-70 derajat.

Grafik Puncak Difraksi

Analisis puncak-puncak ZnO pada hasil sintesis pencampuran prekursor 0 °C setelah pengeringan pada 20 65-70 derajat.

Nama unsur kimia	Formula	No.referensi
zinc_oxide	O Zn	96-230-0113
(Zincite)	O Zn	96-900-8878
(Zincite)	O Zn	96-900-4182
(Zincite)	O Zn	96-900-4180
(Zincite)	O Zn	96-901-1663
(Zincite)	O Zn	96-900-4179
(Zincite)	O Zn	96-900-4181
zinc_oxide	O Zn	96-230-0114
Zinc oxide (Zincite)	O Zn	96-101-1259
zinc_oxide	O Zn	96-230-0115
Zinc oxide (Zincite)	O Zn	96-101-1260
zinc_oxide	O Zn	96-230-0116
zinc_oxide	O Zn	96-230-0117

Daftar Puncak

2theta [°]	d [Å]	I/I0	hkl
66.45	1.4070	55.54	200
67.98	1.3791	341.62	112
69.15	1.3586	173.40	201
	2theta [°] 66.45 67.98 69.15	2theta [°] d [Å] 66.45 1.4070 67.98 1.3791 69.15 1.3586	2theta [°] d [Å] I/I0 66.45 1.4070 55.54 67.98 1.3791 341.62 69.15 1.3586 173.40

Analisis puncak-puncak ZnO pada hasil sintesis pencampuran prekursor 30 $^{\circ}$ C setelah pengeringan pada 20 65- 70 derajat.

Nama unsur kimia	Formula	No.referensi
zinc_oxide	O Zn	96-230-0113
(Zincite)	O Zn	96-900-4179
(Zincite)	O Zn	96-900-4181
(Zincite)	O Zn	96-901-1663
(Zincite)	O Zn	96-900-8878
(Zincite)	O Zn	96-900-4182
(Zincite)	O Zn	96-900-4180
zinc_oxide	O Zn	96-230-0116
Zinc oxide (Zincite)	O Zn	96-101-1260
Zinc oxide (Zincite)	O Zn	96-101-1259
zinc_oxide	O Zn	96-230-0114
zinc_oxide	O Zn	96-230-0115
zinc_oxide	O Zn	96-230-0117

Daftar Puncak

No.	2theta [°]	d [Å]	I/I0	hkl
1	64.91	1.4365	21.59	200
2	66.29	1.4101	83.27	112
 3	68.07	1.3775	235.49	201

Analisis puncak-puncak ZnO pada hasil sintesis pencampuran prekursor 60 °C setelah pengeringan pada 2θ 65- 70 derajat.

Grafik Puncak Difraksi

Analisis puncak-puncak ZnO pada hasil sintesis pencampuran prekursor 0 °C setelah dianil pada 2θ dengan rentang 65- 70 derajat.

Nama unsur kimia	Formula	No.referensi
(Zincite)	O Zn	96-900-4180
(Zincite)	O Zn	96-900-4182
zinc_oxide	O Zn	96-230-0113
(Zincite)	O Zn	96-900-8878
(Zincite)	O Zn	96-900-4179
(Zincite)	O Zn	96-900-4181
(Zincite)	O Zn	96-901-1663
zinc_oxide	O Zn	96-230-0114
Zinc oxide (Zincite)	O Zn	96-101-1259
zinc_oxide	O Zn	96-230-0115
Zinc oxide (Zincite)	O Zn	96-101-1260
zinc_oxide	O Zn	96-230-0116
zinc_oxide	O Zn	96-230-0117

Daftar Puncak

No.	2theta [°]	d [Å]	I/I0	h k l
1	66.40	1.4079	72.61	200
2	67.94	1.3798	325.19	112
3	69.07	1.3598	172.29	201

Analisis puncak-puncak ZnO pada hasil sintesis pencampuran prekursor 30 °C setelah dianil pada 20 65- 70 derajat.

Nama unsur kimia	Formula	No.referensi
(Zincite)	O Zn	96-900-4182
(Zincite)	O Zn	96-900-4180
(Zincite)	O Zn	96-900-8878
zinc_oxide	O Zn	96-230-0113
(Zincite)	O Zn	96-901-1663
(Zincite)	O Zn	96-900-4179
(Zincite)	O Zn	96-900-4181
zinc_oxide	O Zn	96-230-0114
Zinc oxide (Zincite)	O Zn	96-101-1259
zinc_oxide	O Zn	96-230-0115
zinc_oxide	O Zn	96-230-0116
zinc_oxide	O Zn	96-230-0117
Zinc oxide (Zincite)	O Zn	96-101-1260
D.C	n1	

			Janar Punc	Сак	
	No.	2theta [°]	d [Å]	I/I0	h k l
	1	66.42	1.4075	55.04	200
	2	67.92	1.3801	273.83	112
	3	69.06	1.3600	142.88	201
Sec. 19	4	70.10	1.3424	13.27	

Grafik Puncak Difraksi

Analisis puncak-puncak ZnO pada hasil sintesis pencampuran prekursor 60 $^{\circ}$ C setelah dianil pada 20 65- 70 derajat.

Nama unsur kimia	Formula	No.referensi
(Zincite)	O Zn	96-900-4182
Zinc oxide (Zincite)	O Zn	96-101-1259
zinc_oxide	O Zn	96-230-0114
zinc_oxide	O Zn	96-230-0113
zinc_oxide	O Zn	96-230-0117
zinc_oxide	O Zn	96-230-0115
(Zincite)	O Zn	96-900-8878
(Zincite)	O Zn	96-901-1663
(Zincite)	O Zn	96-900-4179
(Zincite)	O Zn	96-900-4181
zinc_oxide	O Zn	96-230-0116
Zinc oxide (Zincite)	O Zn	96-101-1260
(Zincite)	O Zn	96-900-4180
	Daftar Puncak	

		Durtur i une	uix	
No.	2theta [°]	d [Å]	I/I0	hkl
1	66.51	1.4058	34.48	200
2	67.75	1.3832	246.72	112
3	69.04	1.3604	116.44	201

Analisis puncak-puncak ZnO pada hasil sintesis pencampuran prekursor 0 °C setelah pasca-hidrotermal pada 20 65- 70 derajat.

Analisis puncak-puncak ZnO pada hasil sintesis pencampuran prekursor 30 °C setelah pasca-hidrotermal pada 2θ 65- 70 derajat.

Nama unsur kimia		Formula	No.referensi
(Zincite)		O Zn	96-900-4182
(Zincite)		O Zn	96-900-4180
zinc_oxide		O Zn	96-230-0113
(Zincite)	1000	O Zn	96-900-8878
(Zincite)		O Zn	96-900-4179
(Zincite)		O Zn	96-900-4181
(Zincite)		O Zn	96-901-1663
zinc_oxide		O Zn	96-230-0114
Zinc oxide (Zincite)		O Zn	96-101-1259
zinc_oxide		O Zn	96-230-0115
Zinc oxide (Zincite)	_	O Zn	96-101-1260
zinc_oxide		O Zn	96-230-0117
zinc_oxide		O Zn	96-230-0116
	Daftar	Puncak	
No. 2	theta [°] d	[Å] <i>I/I0</i>	hkl
1	66.36 1.40	087 72.09	200
2	67.94 1.3	798 314.89	112

Grafik Puncak Difraksi

1.3598

3

69.07

144.52

201

Grafik Puncak Difraksi

Analisis puncak-puncak ZnO pada hasil sintesis pencampuran prekursor 60 °C setelah pasca-hidrotermal pada 2θ 65- 70 derajat.

Grafik Puncak Difraksi

Foto EDS sampel hasil sintesis pencampuran prekursor pada temperatur 30 °C setelah pasca-hidrotermal.

Element C K O K Zn K Au M*	(keV) 0.277 0.525 8.630 2.121	Mass% 21.53 25.49 50.07 2.90	Error% 0.16 0.23 0.91 0.52	Atom% 43.02 38.24 18.38 0.35	Compound	Mass%	Cation	K 5.3178 25.7652 66.3426 2.5744
Total		100.00		100.00				
<u>I 002</u>				99	13-38			-
								T
						I		
							1970	
	1.01		<u>.</u> 2/		S.		⊐ 100 p	m
1000 <u>011</u> 900 <u>-</u> 800 -			1	-	Ĩ			
700 - 600 -				2				~
400 - 9 300 - 9 200 - 9 200 - 9	AuMz AuMa AuMr AuMa		Aull ZnKa	ZnKb AuLa AuLb AuLb2	Aur			
100 -	1 III			h	4			

keV ZAF Method Standardless Quantitative Analysis Fitting Coefficient : 0.3172 Element (keV) Mass% Error% Atom% Compound Mass% Cation

Universitas Indonesia Sitesis Nanopartikel..., Jandri Jacub, FT UI, 2011

Lampiran 19 (lanjutan)

keV

Universitas Indonesia Sitesis Nanopartikel..., Jandri Jacub, FT UI, 2011

ZAF Method Standardless Quantitative Analysis Fitting Coefficient : 0.2787 Element (keV) Mass% (keV) 0.277 Atom% 50.12 31.20 Error% 0.13 K 6.5818 Mass% Cation Mass* Compound C K O K 25.50 20.6606 0.525 21.14 0.20 Zn K 8.630 50.94 2.43 0.70 18.40 0.29 70.5107 Au M Total 2.121 0.40 2.2469 100.00 100.00

Perbandingan XRD hasil sintesis pada pencampuran prekusor 0 °C pada rasio molar 0.277 dengan menggunakan: (a) metoda pencampuran prekursor secara bersamaan (*dropwise*) dengan menggunakan perangkat sintesis yang didisain khusus seperti pada Gambar 3.2 dan gambar 3.3,

(b) metoda pencampuran yang umum dilakukan [62].

Lampiran 20 (lanjutan)

Setelah pasca-hidrotermal.

Grafik perbandingan hasil uji UV-Vis hasil sintesis pada pencampuran prekursor: (a). 0 $^{\circ}$ C, (b) 30 $^{\circ}$ C dan (c) 60 $^{\circ}$ C setelah pengeringan. Grafik perbandingan hasil uji UV-Vis hasil sintesis pada pencampuran prekursor: (a). 0 °C, (b) 30 °C dan (c) 60 °C setelah melalui proses pasca-hidrotermal.

