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Abstrak 

Kemajuan teknologi informasi telah membuat orang mampu untuk memproses data secara 

real-time dan juga mengurangi ketidakpastian permintaan dalam manajemen logistik. 

Meski demikian, untuk bidang jasa, durasi waktu pelayanan (service time) seringkali masih 

tidak dapat diidentifikasi secara pasti. Studi ini mengajukan aplikasi ant colony system 

untuk menyelesaikan masalah penjadwalan rute dinamis kendaraan (dynamic vehicle 

routing problem) dengan unsur ketidakpastian pada waktu pelayanan. Studi ini 

mengajukan kasus yang lebih realistik dengan mempertimbangkan jumlah kendaraan yang 

terbatas. Pada model, teori fuzzy dan pengukuran kredibilitas digunakan untuk menghadapi 

unsur ketidakpastian. Sebuah metode heuristik konstruktif bernama clustered-insertion 

method diperkenalkan untuk meningkatkan kualitas solusi yang dihasilkan. Algoritma yang 

diajukan diuji dengan lima kasus yang memiliki tingkat kedinamikan yang berbeda. Hasil 

perhitungan menunjukkan bahwa fuzzy-ACS adalah sebuah metode yang efektif untuk 

menyelesaikan masalah ini. 

Keywords: ant colony optimization, dynamic vehicle routing, fuzzy theory, limited vehicle 

number, uncertain service time.  
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Abstract 

Recent advance in information technology has allowed people to do real-time processing 

and reduced demand uncertainty in logistics management. However, in case of service 

field, the duration of service time still often cannot be identified in certain. This study 

proposes an application of ant colony system (ACS) to solve dynamic vehicle routing 

problem with uncertainty in service time. The attempt is made to present a more realistic 

problem by considering a limited number of vehicles. In the model, fuzzy theory and 

credibility measurement are used to deal with the uncertainty. An improved constructive 

heuristic called clustered-insertion method is also introduced to improve the solution 

quality. The proposed algorithm was tested for five instances with different degrees of 

dynamism. The computational results show that fuzzy-ACS is an effective method to deal 

with the problem. 

 

Keywords: ant colony optimization, dynamic vehicle routing, fuzzy theory, limited vehicle 

number, uncertain service time. 

 

 

  

Aplikasi ant..., Budhi Sholeh Wibowo, FT UI, 2012



iii 

 

Kata Pengantar 

Alhamdulillahirabbil’alamin. Puji syukur kepada Allah, Tuhan Yang Maha Esa, karena 

atas berkat rahmat-Nya penulis dapat menyelesaikan karya ilmiah ini. Penulisan tesis ini 

dilakukan dalam rangka memenuhi syarat untuk memperoleh gelar dual degree; Magister 

Teknik (MT) dari Departemen Teknik Industri, Universitas Indonesia dan Master of 

Business Administration (MBA) dari Departemen Manajemen Industri, National Taiwan 

University of Science and Technology. Penulis menyadari tesis ini tidak dapat selesai 

tanpa bantuan dari berbagai pihak. Oleh karena itu, penulis ingin mengucapkan terima 

kasih kepada: 

1. Prof. Ren-Jieh Kuo selaku pembimbing tesis yang telah memberikan  kesabaran, 

kepercayaan, dan arahan kepada penulis selama melanjutkan studi di National 

Taiwan University of Science and Technology (NTUST). 

2. Prof. Dr. Ir. Teuku Yuri M. Zagloel selaku ketua Departemen Teknik Industri, 

Universitas Indonesia (UI) yang telah memberikan kesempatan kepada penulis 

untuk menempuh program dual degree di UI dan NTUST. 

3. Seluruh jajaran dosen dan staf di departemen Teknik Industri, UI dan NTUST 

4. Orang tua dan keluarga yang telah memberikan doa dan dukungan pernuh kepada 

penulis selama menempuh studi S2. 

5. Seluruh rekan angkatan dan sahabat atas segala bantuan dan dukungan. 

Akhir kata, penulis berharap Allah berkenan membalas segala kebaikan semua pihak yang 

telah membantu. Semoga skripsi ini membawa manfaat bagi pengembangan ilmu 

pengetahuan. 

Depok, 20 Januari 2012 

 

Budhi Sholeh Wibowo  

Aplikasi ant..., Budhi Sholeh Wibowo, FT UI, 2012



iv 

 

 Contents 

Abstract………..………..………..………..………..………..………..………..……….. i 

Acknowledgment………..………..………..………..………..………..………..……….. ii 

Contents………..………..………..………..………..………..………..………..……….. iv 

List of Figures………..………..………..………..………..………..………..………….. vii 

List of Tables………..………..………..………..………..………..………..…………… ix 

Chapter 1 Introduction………..………..………..………..………..………..………… 1 

1.1 Background………..………..………..………..………..………..……………… 1 

1.2 Research Objective………..………..………..………..………..………..………. 5 

1.3 Scope and Assumption………..………..………..………..………..…………… 5 

1.4 Organization of Thesis………..………..………..………..………..……………. 5 

Chapter 2 Literature Review………..………..………..………..………..……………. 7 

2.1 Vehicle Routing Problem………..………..………..………..………..………….. 7 

2.2 Dynamic Vehicle Routing Problem………..………..………..………..………… 9 

2.2.1 Technical requirement………..………..………..………..………..………. 11 

2.2.2 Degree of dynamism………..………..………..………..………..………… 12 

2.3 DVRP Applications………..………..………..………..………..………..……… 13 

2.3.1 Transport of Good………..………..………..………..………..…………… 13 

2.3.2 Services………..………..………..………..………..………..……………… 13 

2.3.3 Transport of Person………..………..………..………..…………………… 14 

2.4 DVRP Solution Methods………..………..………..………..………..…………. 15 

2.4.1 Exact solution methods………..………..………..………..………………. 15 

2.4.2 Heuristics methods………..………..………..………..………..………….. 15 

a) Insert and Improve Algorithm………..………..………..………..……….. 16 

b) Tabu Search………..………..………..………..………..………..……….. 17 

Aplikasi ant..., Budhi Sholeh Wibowo, FT UI, 2012



v 

 

c) Ant Colony System………..………..………..………..………..………….. 17 

d) Genetic Algorithm………..………..………..………..………..………….. 17 

e) Hyperheuristics………..………..………..………..………..…………….. 18 

2.5 Ant Colony Optimization………..………..………..………..………..……….. 18 

2.6 Fuzzy Sets Theory………..………..………..………..………..………..……… 21 

2.6.1 Membership Function………..………..………..………..……………….. 21 

2.6.2 Logical Operations………..………..………..………..…………………… 22 

2.6.3 If-Then Rules………..………..………..………..………..………..………. 23 

2.6.4 Credibility Measure Theory………..………..………..………..………….. 23 

2.7 Fuzzy Optimization in VRP………..………..………..………..………..……… 24 

2.7.1 Fuzzy Demands………..………..………..………..………..…………….. 25 

2.7.2 Fuzzy Travel Times………..………..………..………..………..………… 26 

Chapter 3 Model Formulation………..………..………..………..………..………… 27 

3.1 Problem Description………..………..………..………..………..……………… 27 

3.2 Mathematical Model………..………..………..………..………..……………. 28 

3.3 System Architecture………..………..………..………..………..……………… 30 

3.4 Single Aggregate Objective Function………..………..………..………………. 33 

3.5 Fuzzy Approximation………..………..………..………..………..…………… 34 

3.5.1 Adaptive Fuzzy Sets………..………..………..………..………………… 34 

3.5.2 Fuzzy Logic………..………..………..………..………..………………… 36 

3.5.3 Credibility Measure………..………..………..………..………..………… 36 

3.5.4 Fuzzy Chance Constrained Programming………..………..……………. 37 

3.6 Hybrid Fuzzy-Ant Colony System………..………..………..………..………. 38 

3.6.1 Initial Trail………..………..………..………..………..…………………. 38 

3.6.2 Solution Construction………..………..………..………..………………. 40 

3.6.3 Pheromone Update………..………..………..………..………..………… 42 

3.6.4 Local Search………..………..………..………..………..……………….. 43 

3.6.5 Fitness Value………..………..………..………..………..……………….. 44 

Aplikasi ant..., Budhi Sholeh Wibowo, FT UI, 2012



vi 

 

3.6.6 Fuzzy-ACS Procedure………..………..………..………..………..……….. 44 

Chapter 4 Computational Experiences….………..………..………..………..…………. 47 

4.1 Data and Parameters………..……..…..………..………..………..……………… 47 

4.2 ACS Parameter Tuning………..………..………..………..………..…………… 50 

4.3 Model Performance………..………..………..………..………..……………….. 54 

4.3.1 Clustered-Insertion Method ……………………………...………………… 54 

4.3.2 Fuzzy-ACS ……………..………..………..………..………..…………….. 55 

4.4 Sensitivity Analysis……………………………………………………………… 57 

4.4.1 Number of Time Slices……..………………..………..………..…………… 57 

4.4.2 Degree of Dynamism…..…….……..………..………………..…………….. 59 

4.4.3 Credibility Preference Index……..………..………..………..………..……. 61 

4.5 Graphical Representation of Optimization Result………..………..……………. 65 

4.5.1 Case 1 (dod = 0) ………..……………………..………..………..…………….. 65 

4.5.2 Case 2 (dod = 0.25) ………..…………....………..………..………..…………. 66 

4.5.3 Case 3 (dod = 0. 5) ………..…………....………..………..………..…………. 67 

4.5.4 Case 4 (dod = 0. 75) ………..………..…..………..………..………..………… 68 

4.5.5 Case 5 (dod = 1) ………..………..………..……….…..………..…………….. 69 

Chapter 5 Conclusion and Further Study………………..………..………..…………… 71 

5.1 Conclusions………..………..………..………..………..………..………………. 71 

5.2 Contributions………..………..………..………..………..………..…..…………. 72 

5.3 Further Study….………..………..………..………..………..……..…..……….. 72 

References………..………..………..………..………..………..………..……………. 74 

Appendix A Basic Dataset………..………..………..………..………..………..……….. 79 

Appendix B Fuzzy Simulated Annealing….……………..………..………..…………… 80 

Appendix C Problem Variants …………..………..………..………..………..………… 84 

  

Aplikasi ant..., Budhi Sholeh Wibowo, FT UI, 2012



vii 

 

List of Figures 

Figure 1.1 DVRP system architecture………….………….………….…………………. 2 

Figure 1.2 Research flowchart………………….………….………….…………………. 6 

Figure 2.1 Graphical Representation of DVRP………….………….…………………… 10 

Figure 2.2 Ant Colony System pseudo-codes. ………….………….………….…………. 20 

Figure 2.3 Triangular membership function………….………….………….…………… 22 

Figure 3.1 The concepts of time slice………….………….………….…………………. 31 

Figure 3.2 DVRP system flowchart.………….………….………….………………….. 32 

Figure 3.3 Pseudo-code for event scheduler………….………….………….…………… 33 

Figure 3.4 Procedure for updating the fuzzy set………….………….…………………. 34 

Figure 3.5 Inserting new customer to the closest route. ………….………….…………. 39 

Figure 3.6 Pseudo-codes for clustered-insertion method………….………….…………. 40 

Figure 3.7 Solution representation………….………….………….………….…………. 41 

Figure 3.8 Random swap pseudo-codes………….………….………….……………….. 43 

Figure 3.9 Random swap local search………….………….………….…………………. 43 

Figure 3.10 Pseudo-codes of Fuzzy-ACS………….………….………….……………… 45 

Figure 3.11 Flowcharts of the proposed method…..………….………….……………… 46 

Figure 4.1 Distribution graph of customer location………….………….………………. 49 

Figure 4.2 Distribution of customer arrival time in full dynamic scenario……………… 49 

Figure 4.3 Distribution of actual customer service time………….………….………….. 50 

Aplikasi ant..., Budhi Sholeh Wibowo, FT UI, 2012



viii 

 

Figure 4.4 ANOVA result for the experiment………….………….…………………….. 53 

Figure 4.5 Parameters interaction plot………….………….………….…………………. 54 

Figure 4.6 Algorithm performances in static case ……………………………………… 57 

Figure 4.7 ANOVA result for number of time slices experiments………….…………… 59 

Figure 4.8 Performance behaviors in different degree of dynamism………….………… 61 

Figure 4.9 ANOVA result for preference index experiments………….………………… 63 

Figure 4.10 Main Effects plot in preference index experiments………….……………… 64 

Figure 4.11 Interaction Plot between Cr* and Number of Vehicle………….…………… 65 

Figure 4.12 Graphical results for case 1………….………….………….………………. 66 

Figure 4.13 Graphical results for case 2………….………….………….………………. 67 

Figure 4.14 Graphical results for case 3………….………….………….………………. 68 

Figure 4.15 Graphical results for case 4………….………….………….………………. 69 

Figure 4.16 Graphical results for case 5………….………….………….………………. 70 

Figure B1 Pseudo-codes of Fuzzy-SA………..………..………..………..…………….. 81 

Figure B2 ANOVA result for Fuzzy-SA parameter tuning experiment. ..……………… 82 

Figure B3 Main Effect plot for Fuzzy-SA parameter tuning experiment. ..…………….. 82 

Figure B4 Interaction Effect plot for Fuzzy-SA parameter tuning experiment. ..………. 82 

Figure C1 Distribution of customer arrival time when dod = 1………..………..………. 85 

Figure C2 Distribution of customer arrival time when dod = 0.75………..………..…… 85 

Figure C3 Distribution of customer arrival time when dod = 0.5………..………..……. 86 

Figure C4 Distribution of customer arrival time when dod = 0.25………..……………. 86 

  

Aplikasi ant..., Budhi Sholeh Wibowo, FT UI, 2012



ix 

 

List of Tables 

Table 4.1 Experiment design for ACS parameter tuning………………………………… 51 

Table 4.2 Problem setting for ACS parameter tuning…………………………………… 52 

Table 4.3 Insertion method comparison result…………………………………………… 55 

Table 4.4 Problem setting for Fuzzy ACS comparison……………………………….…. 56 

Table 4.5 Solution comparison in dynamic instances…….. ………………………….… 57 

Table 4.6 Problem setting for time slices experiments…………………………………... 58 

Table 4.7 Summary of computational result in time slices experiments………………… 58 

Table 4.8 Problem setting for dod effect experiments……………………………………. 59 

Table 4.9 Summary of computational result in dod effect experiments…………………. 60 

Table 4.10 Problem setting for Cr* experiments…………………………………………. 62 

Table 4.11 Summary of computational result in Cr* experiments……………….……… 62 

Table 4.12 Best solution for case 1 (dod = 0)…………………………………………….. 65 

Table 4.13 Best solution for case 2 (dod = 0.25)…………………………………………. 66 

Table 4.14 Best solution for case 3 (dod = 0.5)………………………………………….. 67 

Table 4.15 Best solution for case 4 (dod = 0.75)………………………………………… 68 

Table A1 Basic data description………………………………………………………….. 79 

Table A2 Customer location, arrival time, and service duration…………………………. 80 

Table B1 Experiment design for SA parameter tuning………………………………….. 81 

Table C1 Customer location, arrival time, and service duration…………………………. 84 

Aplikasi ant..., Budhi Sholeh Wibowo, FT UI, 2012



1 

 

Chapter 1  

Introduction 

1.1 Background 

Vehicle Routing Problem (VRP) is a well-known classic NP-hard problem and one of the 

most challenging combinatorial optimization tasks introduced by Dantzig and Wright in 

1954 (Dantzig et al., 1954). In VRP, a fleet of vehicles with limited capacity have to be 

routed in order to serve a set of geographically dispersed customers at minimum cost. VRP 

plays important role in logistics, especially in the design and management of distribution 

system, since it has high effect on efficiency in resource management, service level, and 

client satisfaction (Brito et al., 2009). 

The interest in VRP is motivated by its practical application and complexity. During five 

decades since it first introduced, many applications and variants have been considered. 

Each of them usually has its own objective and problem constraints. Some examples of 

VRP variants are VRP with time window (Solomon, 1987), VRP with backhaul (Toth and 

Vigo, 1999) and VRP with pick-up and delivery (Nanry and Barnes, 2000).  

Nevertheless, most of the previous studies of VRP were modeled in static and deterministic 

case where all the information was known a priori. In real world applications, many 

scheduling problems are actually dynamic and changing in nature. New orders may appear 

over time and must be incorporated into an evolving schedule (Kilby et al., 1998). 

Therefore, the dispatcher is faced with a dynamic decision making for continuously 

scheduling the vehicle route based on the latest information. 

In last decade, an increasing interest had been paid attention to dynamic vehicle routing 

problem (DVRP). The recent development in DVRP is motivated by the current advances 

in communication and information technologies which allow real-time processing of 
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customer orders and vehicles control (Fleischmann et al., 2004). On the other hand, current 

customers increasingly expect quicker and more flexible fulfillment of their transportation 

request. Practical applications of the DVRP can be found in taxi-cab services, express mail 

delivery, emergency services and also repairman services (Larsen, 2001; Gendrau et al., 

2006). 

In such dynamic environment, an advanced mobile communication system between 

dispatcher and driver is certainly required. Information technology such as Global 

Positioning System (GPS) and Geographical Information System (GIS) play essential roles 

for data acquisition purpose. By utilizing those technologies, the dispatcher knows the 

position of the vehicle and customer at any given point in time. Afterward, the dispatcher 

can tell the driver which customer to be served next based on the latest information. 

Information technology can also help reduce information uncertainty in the problem. The 

dispatcher can obtain information regarding customer location and demand through an 

online communication. Therefore he/she will have certain information while planning the 

route schedule. The DVRP system architecture is illustrated in Figure 1.1. 

 

Figure 1.1 DVRP system architecture. 
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However, in case of on-site service (e.g. maintenance operation); it is often difficult to 

obtain a certain information regarding service time even through an online communication. 

Because even the customers itself often did not know how much time needed to serve their 

needs. Thus, the information regarding the service time will remain uncertain in the route 

planning. The dispatcher then should make estimation to handle the uncertain variable 

since the full information of it only can be known after the vehicle has finished the on-site 

operation. 

There are numerous researches which proposed methods for handling uncertain variables 

in VRP. One of the ways is by considering them as random variables (Dror et al., 1989; 

Teodorovic and Pavkovic, 1992). This approach often referred as stochastic VRP. The 

basic input to solve such a problem is a probability density function which represents the 

uncertain variable distribution. Thus, in this kind of method, one needs to record numerous 

data of the specified variables in order to analyze and verify the distribution. 

In case of dynamic problem, it is often difficult to know the distribution of the specified 

variables since new customers may arise over the time. Therefore, the dispatcher should 

make an approximation based on best available information to estimate the values of the 

uncertain variables from the new customer. Since approximation process often involves 

subjectivity and vagueness, one can apply fuzzy theory to deal with it. Fuzzy theory has 

been effectively implemented for dealing with uncertainty in VRP by Teodorovic and 

Pavkovic (1996), Zheng and Liu (2006), and Erbao and Mingyong (2009). 

In 1992, Dorigo introduced a novel optimization method called Ant Colony Optimization 

(ACO) (Dorigo, 1992). ACO is a metaheuristic method which mimics the foraging 

behavior of real ant to solve optimization problem. ACO had been used widely to solve 

many difficult optimization problems with satisfactory result e.g. traveling salesman 

problem (Dorigo and Gambardella, 1996), vehicle routing problem (Rizolli et al., 2004), 

quadratic assignment problem (Gambardella et al., 1999), and job-scheduling (Colorni et 

al., 1994). Because of its flexibility, ACO is easily combined with other method such as 
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fuzzy theory. Such realization can be seen in Kuo et al. (2003) and Teodorovic and Lucic 

(2007). They integrated ACO with fuzzy set theory to solve VRP with uncertain demand. 

Since ACO is a class of heuristic methods, its computational result cannot be guaranteed to 

be optimal. However, they still produce high quality solution in very reasonable time. 

Thus, in many complex practical instances which require fast computation like real-time 

processing, heuristic methods is often more being preferred than exact method. In recent 

years, several heuristic methods have been proposed for DVRP, e.g. tabu search (Gendrau 

et al., 1998), ant colony systems (Montemanni et al., 2005), and genetic algorithm 

(Pankratz, 2005; Hanshar and Ombuki-Berman, 2007). 

In previous study of DVRP, most of the researchers assumed that there are unlimited 

vehicles available to serve the entire requests in the day. In fact, this assumption does not 

always apply in general. In most real cases, the dispatcher only has a limited number of 

vehicles to be dispatched (Lau et al., 2003). Thus, he/she can only rely on the available 

capacity to serve all the customer requests. When there are a lot of requests coming in a 

day, the dispatcher should have filter mechanism to accept or reject the incoming request 

in order to optimize the available resources based on the latest information. 

Thus, this study concerns about VRP in service field where the dispatcher is faced with 

dynamic requests and uncertainty in service time. The effort is made to present a more 

realistic problem by considering limited number of vehicles. Application of fuzzy theory 

and Ant Colony System (Fuzzy-ACS) is proposed to solve the developed problem. Even 

though, the hybrid of fuzzy theory and Ant Colony Optimization has been considered in 

previous researches, but its implementation in dynamic environment with limited resources 

has not been examined well. This reason has become the motivation to develop an 

application of fuzzy-ACS to solve DVRP with limited vehicles and uncertainty in service 

time.  
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1.2 Research Objectives 

The objectives of this research are as follows:  

(1) Develop VRP variant in service sector which has dynamic request, service time 

uncertainty, and limited number of vehicles. 

(2) Develop fuzzy approximation method which is able to deal with limited resources and 

uncertainty in the problem. 

(3) Design a hybrid implementation of ant colony system and fuzzy approximation to solve 

the specified problem with high quality solution. 

 

1.3 Scope and Assumptions 

The scope of the research is limited to the development of the hybrid intelligent algorithm 

of fuzzy sets theory and Ant Colony System for dynamic VRP with uncertainty in service 

time. In this problem, the assumptions are as follows: 

(1) Customer location and travel time between customers can be known in certain 

(deterministic).  

(2) The customers do not have specific time window. They would like to wait for the 

service until the end of the working time. 

 

1.4 Research framework 

The research is performed in a series of steps. The first step is to present the research 

background, objectives, and scope of the problem. The next step is to review and analyze 

the existing literatures related to the research e.g. DVRP, ant colony optimization, and 

fuzzy sets theory. Third step deals with model formulation of the problem and algorithm. 

The next step is to analyze the performance of the designed algorithm through 

computational experiment. The objective is to examine the behavior of the model in 

Aplikasi ant..., Budhi Sholeh Wibowo, FT UI, 2012



6 

 

different environment. Finally, the result of the research is summarized and potential 

further research is discussed. 

 

INTRODUCTION

Research background
Objective determination

Scope and Assumption determination

LITERATURE STUDY

Studying dynamic VRP
Studying Ant Colony Optimization

Studying Fuzzy theory

MODEL FORMULATION

DVRP model development
Multi-objective design

Fuzzy theory development
Fuzzy-ACS integration

COMPUTATIONAL EXPERIMENTS

ACS parameter tuning
Problem parameter experiment

Model comparison

CONCLUSIONS AND FUTURE RESEARCH

 

Figure 1.2 Research flowchart. 
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 Chapter 2  

Literature Review 

2.1 Vehicle Routing Problem 

Vehicle routing problem (VRP) plays a central role in logistics management. It consists of 

designing an optimal routes used by a fleet of vehicles stationed at a depot to serve a set of 

customers with known demands (Toth and Vigo, 2002). The work of Dantzig and Ramser 

(1959) is widely considered as the first scientific treatment of vehicle routing. It dealt with 

the routing of a fleet of gasoline delivery trucks between a bulk terminal and a large 

number of service stations supplied from the terminal.  

VRP can be defined as directed graph G = (V, A) where V = {v0, v1,….,vl } is a vertex set, 

and A = {(vi, vj): i = j]} is an arc set. Vertex v0 denotes a depot at which m identical 

vehicles are based, and the remaining vertices of V represent cities. The value of m is either 

fixed at some constant, or bounded above by In. With every arc (vi, vj) is associated a non-

negative distance cij (Gendrau et al., 1994). The objective of VRP is to set least cost routes 

of vehicles in such a way that: 

a) every route starts and ends at the depot; 

b) every customer is visited exactly once by exactly one vehicle; 

c) the total demand of any vehicle route may not exceed the vehicle capacity; 

d) the total length of any route (travel plus service times) may not exceed a preset 

bound; 

The mathematical model of capacitated VRP is stated as follows (Toth and Vigo, 2002): 

Minimize:  

 min ij ij

i V j V

c x
 

  [2.1] 
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Subject to:  

 2 \ 0hi ij

h i j i

x x i V
 

       [2.2] 

\{0}

2oj

j V

x K


   [2.3] 

 2 ( ) \ 0 ,hi ij
h i j ii S i S

h S j S

x x r S S V S 
  

 

       [2.4] 

 0,1 , \{0},ijx i j V i j      [2.5] 

 0 0,1,2 \{0}jx j V     [2.6] 

where cij is the travel cost incurred on customer i to customer j, K is the number of 

vehicles, C denotes the loading capacity of vehicle, and di represents the demand at 

customer i. S is the customer set and r(S) denotes the minimum number of vehicles needed 

to serve set S. 

Equation [2.1] determines the objective function of the problem. Equation [2.2] and [2.3] 

impose that exactly two edges are incident into each vertex associated with a customer and 

that 2K edges are incident into the depot vertex, respectively. Equation [2.4] represents the 

capacity-cut constraint of the problem which imposes both the connectivity of the solution 

and the vehicle capacity requirements by forcing that a sufficient number of edges enter 

each subset of vertices. 

VRP may have additional constraints that will lead to different variants. Those variants are 

basically constructed by modification in one or more of VRP’s elements. There are four 

elements which construct the model variants: the road network, the vehicles, the 

customers, and the uncertainties in the model (Rizolli et al., 2007).  These elements can be 

set in different ways. For example, people may consider asymmetric road network, a 

heterogeneous vehicles, time windows and different type of customer request (pick-up or 
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delivery). Besides, some uncertainties also can be considered into the model i.e. 

uncertainty in the demand, and travel times. Some examples of VRP variants are VRP with 

time windows (Solomon, 1987), VRP with backhaul (Toth and Vigo, 1999), VRP with 

pick-up and delivery (Nanry and Barnes, 2000), and stochastic VRP (Dror et al., 1989). 

 

2.2 Dynamic Vehicle Routing Problem 

Dynamic Vehicle Routing Problem (DVRP) is one of VRP variants which consider a 

dynamic decision process. It is inspired by the dynamic environment of real distribution 

system where the orders arrive randomly in time and the dispatching of vehicle is a 

continuous process of forming tours and collecting demands (Bertsimas and Ryzin, 1990). 

The development of DVRP is highly motivated by recent advances in communication and 

information technologies which allow people to do real time processing of customer orders 

and vehicle dispatching (Gendrau et al., 1999; Fleischmann et al., 2004). Some practical 

applications of DVRP can be found in taxi-cab services, express mail delivery, emergency 

services and also repairman services. 

Psaraftis (1988) and Hanshar et al. (2003) give clear differences between static VRP and 

dynamic VRP. According to these researchers, static VRP is a class of problem where all 

the routing information is known in advance before the optimization process begun. Hence, 

no new information relevant to routing is obtained during the optimization. On the other 

hand, in the DVRP some information may exist to the planner before the optimization 

begins and some others information may revealed over time during the optimization 

process. Powel et al. (1995) classified a problem as dynamic if one or more of its 

parameters are a function of time and if the model is solved repeatedly as new information 

is received. 
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Figure 2.1 Graphical Representation of DVRP. 

 

As a result, in DVRP, the dispatcher should continuously plan a route for vehicle to serve 

both static and dynamic requests. Ideally, new customers should be inserted without 

changing the order of planned route. However, in practice the insertion of new customer 

will usually be a much more complicated task (Larsen et al., 2002). This is because some 

constraints in the scheduling process, like the capacity and position of vehicles and 

customer time windows.  

Due to the immediate request over time, the dispatcher is faced with a dynamic decision 

process. The decision may result in committing some orders while rejecting the others at a 

time. The rejected customers are usually followed by an offer to serve the customer in the 

following day or to be served by other companies (Meissel, 2011).  

The objectives of DVRP can be different from one to another. It depends on the interest 

and problem type. A decision maker may prefer in maximizing his benefits i.e. the ratio of 

the demand served per time while others may prefer in service quality i.e. minimizing the 

total waiting time of customers (Bertsimas and Ryzin, 1990; Larsenet al., 2002; Meissel, 

2011).  

During the last two decades there are a growing number of papers addressing the dynamic 

version of VRP. Psaraftis (1988) elaborated a survey on DVRP which give a basic 
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characteristic to the problem. Bertsimas and Ryzin (1990) introduced several policies to 

tackle the dynamic traveling repairman problem (DTRP). Kilby et al. (1998) proposed a 

way to split dynamic problem into several static sub-problems. Gendrau et al. (1999) 

studied about dynamic courier mail service problem with soft time windows. Larsen et al. 

(2001) investigated various problem of DVRP with different level of dynamism. 

Montemanni et al. (2005), Hanshar and Ombuki-Berman (2007), and Garrido and Riff 

(2010) introduced several metaheuristic applications to obtain fast and good quality 

solutions to specific problems. 

2.2.1 Technical requirement 

Larsen (2001) pointed out some required technologies when dealing with real-life 

applications of dynamic VRP. They are:  

a) mobile communication system;  

b) Global Positioning System (GPS); 

c) Geographical Information System (GIS). 

In a dynamic environment, a mobile communication system between dispatch center and 

driver is certainly required. It will help the dispatcher communicate with the driver about 

the updated schedule. Information technology such as Global Positioning System (GPS) 

and Geographical Information System (GIS) will also play an essential role for data 

acquisition purpose. GPS will help the dispatcher maintain information about vehicle status 

and position while GIS will provide the position of the customers and the path to reach 

them. However, the utilization of GPS and GIS may prove to be infeasible due to the 

operational cost of this method. Alternatively, the driver could send a message to update 

about his current status and position to the dispatch center each time he finishes the service 

for a customer (Larsen, 2001). 
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2.2.2 Degree of dynamism 

The main sources of dynamism in the vehicle routing are the online arrival of customer 

during the operation. Dynamism will give more complexity to the problem. Lund et al. 

(1996) introduced a ratio to measure the dynamism of the problem called degree of 

dynamism (dod). This ratio measures the number of dynamic requests relative to the total 

number of request. 

 
number of dynamic request

Total number of request
dod   [2.7] 

According to the formula, the problem is more dynamic if the above proportion is much 

closer to 1. If dod = 0, then the problem is static and if dod = 1, the problem is fully 

dynamic. This measure does not take into account the arrival times of dynamic request.  

Larsen et al. (2002) proposed a new method to measure the dynamism called effective 

degree of dynamism (edod) which consider the disclosure time of request. Let us consider a 

problem where the planning horizon starts at time 0 and ends at time T. The advance 

requests are received before the beginning of the planning horizon or at time 0 at the latest. 

The time the i’th immediate request received is denoted ti, where 0 <ti≤ T .The number of 

immediate requests received during the planning horizon is denoted nimm and the number of 

advance requests is denoted nadv. The total number of requests, ntot is therefore nadv+nimm. 

We now define the following measure as the effective degree of dynamism, (dod): 

 1

immN

i

i

total

t

T
edod

N



 
 
 


 [2.8] 

Equation [2.8] represents the average of how late the immediate requests are received 

compared to the latest possible time these requests could be received. If edod = 0, then the 

problem is in a pure dynamic system and if edod = 1, the problem is in a pure static 

system. 
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2.3 DVRP Applications 

DVRP has a lot of variants. Most of them are motivated by the real world application 

where route construction and new information are processed during the operation day. 

Pillac (2011) divide the DVRP variant into three categories: transport of good, service and 

transport of person. 

2.3.1 Transport of Good 

Transport of good is the most well known application in VRP especially in logistics. In this 

category a fleet of vehicles is routed to pick or deliver some goods from customers into 

specified locations. Each vehicle has a specific capacity. They cannot carry goods more 

than their capacity.  

The dynamic application of this category can be found in courier mail service (Gendrau et 

al., 1999) which offers to pick-up mail and/or packages at one location and deliver the 

goods safely at another location within a certain time limit. Montemanni et al. (2003) also 

gave a simulation of realistic DVRP case in Switzerland where the vehicle should pick 

some packages in widely scattered locations and bring it back to the depot. 

2.3.2 Services 

Common applications in dynamic routing of service vehicle can be found mainly in 

maintenance operations. In this category, vehicle routes will fulfill the service requests 

made by customers without any capacity constraint. This problem is often referred as 

Dynamic Traveling Repairmen Problem (DTRP) which has been studied intensively by 

Bertsimas and Ryzin (1991) and Larsen et al. (2002).   

In DTRP, a repairman should create a route to serve a set of service request which arrive 

dynamically over time. Every demand i requires an amount of service times with specific 

duration, si. The system time, Ti, of demand i is defined as an elapsed time between the 

arrival of the demand i and the time the repairman completes the service of the demand. 
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The waiting time, Wi, of demand i is defined as an elapsed time from the demand arrive 

until the service start.  

 i i iT W s   [2.9] 

In case of service, the customer’s waiting time is often more important than the travel cost. 

Hence, in DTRP the objective function is to design a route which minimizes the average 

system time 𝑇  .  

 1
i

n

i

T

T
n




 [2.10] 

The other application of this category also can be found in emergency service like police, 

fireman and ambulance. In those situations, the strategy is to assign the best vehicle (for 

instance the nearest) to the new request. Therefore the location analysis for deciding where 

to locate the vehicles and crews become a main issue for the dispatching problem (Larsen, 

2001).  

2.3.3 Transport of Person 

Taxi cab and dial-a-ride service are the most common applications in this category. For the 

taxi cab service, the dynamic request is very high. The taxi should pick customers in 

specified location and deliver them to a certain place. This kind of service is also provided 

by the dial-a-ride service, especially to serve the elderly and handicapped people. The 

dynamic version of dial a ride problem had been studied by Psaraftis (1983) where each of 

customers has a specific time window and the objective is to minimize the time needed to 

serve all customers.  
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2.4 DVRP Solution Methods 

VRP can be solved by exact methods or heuristic approaches. The use of exact methods 

can obtain the optimal solutions. However, since VRP is a NP hard problem, the 

computational effort required to solve this problem increases exponentially with the 

problem size. Therefore, nowadays heuristics approaches are mostly preferred for tackling 

a real-life instance. It is used to find good solution, but not necessarily guaranteed optimal 

using a reasonable amount of computational time. In this section, we will focus on some 

reviews about DVRP solution methods.  

2.4.1 Exact solution methods 

The first known application to the optimization of dynamic routing was the work of 

Psaraftis (1983). He developed a dynamic programming approach for dial-a-ride problem 

(DARP). Bertsimas and Ryzin (1990) used queuing model to test several policies on 

dynamic traveling repairman problem (DTRP). The recent exact solution method was 

proposed by Yang et al. (2004). They used mixed integer programming approach 

combined with simple local rule to solve real-time multi-vehicle truckload pickup and 

delivery. 

Pillac et al. (2011) gave valuable comment to exact solution method. According to the 

researchers, in such a dynamic environment, critical information is revealed over time, 

meaning that a complete instance is only known in the end of horizon time. As a 

consequence, an optimal solution can only be found a-posteriori and exact method only 

provide an optimal solution for the current state, lacking of any guarantee that the solution 

will be optimal once new data become available. 

2.4.2 Heuristics methods 

Because the optimal solution only can be found a-posteriori, most of real life problems rely 

on heuristics approaches to give a good solution in reasonable time. The basic strategy in 

heuristics methods is to decompose the dynamic problem into a series of static problems 
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(Bianchi, 2000). By doing so, the optimization process is expected to run unhindered for a 

given time and results in a good and feasible solution. 

Kilby et al. (1998) introduced the concept of time-step and cutoff time in dynamic problem. 

Time-step is a way to decompose a dynamic problem into a sequence of static problems. It 

divides the time horizon into several periods. In each period, a static problem is created 

and solved respectively. In other side, cutoff time is a way to change the level of dynamism 

in the problem. It is expressed as a fraction of the working day. Any request with an arrival 

time before the cutoff times is treated as if they arrived yesterday. These concepts had been 

followed by Montemanni et al. (2005), Hanshar and Ombuki-Berman (2007), and Garrido 

and Riff (2010). By adopting those concepts, many constructive and improvement 

heuristics methods that works on static VRP will also work in DVRP. 

Here we list some heuristics methods which have been applied to the DVRP: 

a) Insert and Improve Algorithm 

Kilbyet al. (1998) used an insert and improve algorithm which combine cheapest 

insertion method with 2-opt, 3-opt, and Or-opt. The cheapest insertion method is a 

cost-based function heuristics which able to construct an initial solution in VRP. It 

expands a current routeRc by sequentially insert an unrouted customer k within an edge 

a-b, that minimize the total cost of route.  

  arg min *( , *, )k r ak bk abC a k b c c c    [2.11] 

The researchers tested their algorithm to some new benchmark data sets which were 

created by modifying the standard VRP data sets of Christofides et al. (1979), Taillard 

(1994) and Fisher et al. (1996). It was done by adding three new data types to the basic 

VRP data sets i.e. available time of customers, duration of each visit, and the working 

day periods. Unfortunately, the researchers did not show the optimization results of the 

data sets. They only showed the impact of varying the degree of dynamism and the 

length of commit horizon to the total travel cost.  
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b) Tabu Search 

Gendrau et al. (1999) applied tabu search heuristics to solve DVRP with time windows. 

They modified the tabu search so it can adapt to the dynamic case. The strategy is to re-

optimize the route every time a new customer revealed. As a consequence, they 

allowed the diversion of vehicle from its current destination to adapt the new planned 

route. However, the researchers noted that this strategy did not apply in general. It must 

be carefully addressed in what case the diversion should be allowed. 

c) Ant Colony System 

Montemanni et al. (2005) developed an ant colony system (ACS) heuristics with 

pheromone trace to transfer characteristics of good solution into the next time step. The 

researcher also introduced the concept of event manager in dynamic problem. Event 

manager is an interface between the architecture and the external world. This module 

helps the dispatcher to handle dynamic orders from customers and transform it into a 

sequence of static problem. The researchers used Kilby data sets to test their algorithm 

and compare the result to Greedy Randomized Adaptive Search Procedure (GRASP) 

(Resende and Ribeiro, 2003). The computational results showed that the ACS 

heuristics is able to give a good solution and outperform some of the GRASP result. 

d) Genetic Algorithm 

Hanshar and Ombuki-Berman (2007) used genetic algorithm (GA) to solve DVRP. 

They created a new chromosome representation to deal with the dynamicity. It 

consisted of two types of nodes: positive node representing a single customer (who has 

yet to be assigned to a vehicle) and a negative node representing a group of clustered 

customers that have been already committed to a given vehicle. In the experiment, they 

compared their algorithm to the Ant Colony System (Montemanni et al., 2003). 

Numerical result showed that GA outperformed almost all of the ACS result in Kilby 

data sets. 
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e) Hyperheuristics 

Garrido and Riff (2010) implemented evolutionary hyper-heuristics method to DVRP. 

Hyper-heuristics is a high level heuristics which manages a set of low level heuristics 

in a common framework. The researchers set genetic algorithm as the high level 

heuristics. Each gene in the chromosome represented a set of constructive and 

improvement heuristics for a specified number of customers. They selected four 

heuristics for the initial solution, i.e. saving method, sequential insertion method, 

cluster-first route-second, and dynamic insertion method. For the improvement 

heuristics, they selected five different methods, namely 3-opt, Or-opt, string cross, 

string relocate and string exchange. The result show that evolutionary hyper-heuristics 

was able to compete with the previous algorithm such as GRASP, ACS, Tabu Search, 

and GA. Some of the results even gave new best known solutions to the benchmark 

problems. 

 

2.5 Ant Colony Optimization 

Ant Colony Optimization (ACO) is a metaheuristic method which mimics the foraging 

behavior of real ant for solving computational problem through graph. ACO was first 

initially introduced by Dorigo (1992) and has been successfully applied to solve many of 

optimization problems, e.g. traveling salesman problem (Dorigo et al., 1996) quadratic 

assignment (Gambardella et al., 1999),  and job-shop scheduling (Colorniet al., 1994). 

In ACO, an artificial ant constructs a solution by visiting a series of nodes on a graph. 

They select the next node according to two parameters: trails and attractiveness. The 

attractiveness 𝜂𝑖𝑗 of a move from node i to j is computed according to a heuristic which 

expresses the a priori desirability of the move. In a shortest path problem, the attractiveness 

can be expressed as the inverse of the distance. The trail level 𝜏𝑖𝑗  of a move depends on the 

pheromone level, and it represents a dynamic indication a posteriori of its goodness. In 

other words, the trail will show the promising direction to explore. When the constructive 
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procedure has finished, the pheromone information is updated according to the following 

equation: 

 (1 ).ij ij ij       [2.12] 

where denotes the evaporation rate of the posterior pheromone and Δ𝜏𝑖𝑗  denotes the 

amount of pheromone deposited to the edge i-j. The evaporation rate  will avoid the ant to 

be trapped into local optima due to the strength of the pheromone level in the trail. 

Based on those two parameters, an ant selects the next node to be visited by a probabilistic 

random proportional rule. It is formulated by: 

    

α β

α β

h Ω

, if Ω

0,

ij ij

ij ih ih

j
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otherwise

 
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 



 


 [2.13] 

where pij is the probability of moving to jf romi, and is the set of nodes which are feasible 

to be visited from i. The parameters α and β are the weights of trails and visibility which 

determine the relative importance of the parameters. Ants construct their solutions in 

parallel. At the end of each constructive phase (iteration) the entire set of computed 

solutions is used to update the pheromone trail by following equations: 

 
1

m
k

ij ij

k

 


    [2.14] 

Gambarella and Dorigo (1997) proposed a modified version of ACO called Ant Colony 

System (ACS) to enhance the optimization process. They introduce the concept of global 

update, local update, and pseudo-random rule. 

In those concepts, pheromone update is performed much more frequently. Every time an 

ant finished constructing a solution, local update is performed to exploit the solution 

candidate. At the end of iteration, only the best solution is used to update the global 

pheromone and transferred into the next iteration. Let denotes global pheromone matrix as 
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ij and 
*
 is the best solution found in the colony. Then the global pheromone update can 

be formulated as follow: 

 * * *

* * * * * *(1 ).  and  i j i j i j i j         [2.15] 

 

Initialize pheromone values; 

While (stopping criterion is not met) 

For each ant k 

S = {1, 2, 3,…n}; 

While (S≠∅) 

Choose next node j based on equation [2.16]; 

 S = S\{j}; 

 Update local pheromone based on equation [2.11]; 

 i = j; 

End While 

End For 

Calculate Fitness Function; 

Return the best solution in population *
; 

Update global pheromone based on equation [2.15]; 

End While 

Return the best solution; 

 

Figure 2.2 Ant Colony System pseudo-code. 

 

In ACS, an ant used a pseudo-random rule instead of random-proportional rule for 

selecting the next node. In this rule, an ant in node i select the best state as the next node j 

with probability q0, and select with a proportional rule with probability 1-q0. It is 

formulated as follow: 
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 0

α β

arg max , if 

eq.[2.14],

ij ij q q
j

otherwise

     


   



 [2.16] 

 

In each of the iteration, the algorithm will keep the best solution in the colony. If the new 

best solution found, the previous best solution will be replaced. When the terminating 

condition is reached, the algorithm will return to the best solution as the result of the 

optimization. 

 

2.6 Fuzzy Sets Theory 

Fuzzy set is a set without a crisp or clearly defined boundary. Fuzzy set was first 

introduced by Zadeh (1965) to deal with a class of object that does not have precisely 

defined criteria of membership. In optimization problem, fuzzy sets theory help to deal 

with a class of problem where the constraints or the objective function cannot be valued in 

precise way (Brito et al., 2009). Therefore, besides the stochastic approach, fuzzy logic 

often becomes a preferred method to handle uncertainty in a problem. 

A fuzzy set admits the possibility of partial membership. Each elements of fuzzy set have a 

membership degree from 0 to 1 which indicates the certainty that the element belongs to a 

set. If an element has membership degree equal to 0 then it means that the element is 

definitely not a member of the set. If the membership degree is greater than 0 and less than 

1, then it falls on fuzzy boundary of the set.  

2.6.1 Membership Function 

To define a membership degree in a fuzzy set, a membership function is often used. 

Membership function (MF) is a curve that defines how each point in the input space is 

mapped to a membership degree between 0 and 1.  
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Figure 2.3 Triangular membership function. 

 

There is several ways to state a membership function for a fuzzy set. The simplest way is 

by using a triangular membership function. Triangular MF is specified by 3 parameters {𝑎, 

𝑏, 𝑐} where a denotes the lower bound, b denotes the most likely to happen, and c denote 

the upper bound. The membership degree, µ(x), in triangular MF is defined by the 

following equation: 
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 
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 [2.17] 

 

2.6.2 Logical Operations 

Zadeh (1965) defined the logical operations of fuzzy sets as follows: 

a) Two fuzzy sets A and B is equal if and only if fA(x) = fB(x) for all ax in X. 

b) The complement of fuzzy set A is denoted by A’ and is defined by: 

    ' 1A Af x f x   [2.18] 
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c) The union of two fuzzy sets A and B is fuzzy set C, written as C = A ⋃ B whose 

membership function is related to those of A and B by: 

      max ,C A Bf x f x f x x X     [2.19] 

d) The intersection of two fuzzy sets A and B is fuzzy set C, written as C = A ⋂ B 

whose membership function is related to those of A and B by: 

      min ,C A Bf x f x f x x X     [2.20] 

2.6.3 If-Then Rules 

One of the benefits of fuzzy theory is its approximate reasoning capability using a simple 

linguistic statement of if-then rules. These rules are used to formulate the conditional 

statements which contain a fuzzy logic. A single fuzzy if-then rule assumes the form: 

if x is A then y is B 

where A and B are linguistic values defined by the fuzzy sets. The if-part of the rule "x is 

A" is called the premise, while the then-part of the rule "y is B" is called the conclusion. In 

order to apply a fuzzy logic, one should transform the premise statement into a 

membership degree between 0 and 1. Therefore the degree can be used to shape the output 

or the conclusion of the fuzzy. 

2.6.4 Credibility Measure Theory 

Credibility measure theory was first proposed by Liu (2004) which used to measure a 

fuzzy event. The credibility of a fuzzy event is defined as the average of its possibility and 

necessity. In the fuzzy theory, it is obvious that a fuzzy event may fail even though its 

possibility achieves 1, and hold even though its necessity is 0. However, the fuzzy event 

must hold if its credibility is 1, and fail if its credibility is 0. Thus, the credibility measure 

plays a role like a probability measure.  
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For a triangular fuzzy set, A = {r1, r2, r3}, the credibility Cr is defined as follow: 
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 [2.21] 

 

2.7 Fuzzy Optimization in VRP 

In a real world VRP, the decision making process is often faced with a high degree of 

uncertainty. The required information is not always available at the beginning of the 

problem. Therefore, many researchers treated the uncertain variable as a random variable 

(Teodorovic and Lucic, 2007). These problems are known in the literature as stochastic 

VRP. The basic input data to solve such a problem are the probability density functions of 

the random variables. 

Teodorovic and Pavkovic (1996) stated two main weaknesses in the stochastic approach. 

First, the need of huge amount of data to verified the probability density functions as the 

input data. Second, stochastic approach cannot deal with a new variable which does not 

have a historical data. In other words, the information is often not precise enough. In this 

case, one should use approximates value based on the best available information could be 

use. The approximate value can be expressed in fuzzy numbers which able to deal with 

imprecise data. Therefore, a fuzzy approach is also an appropriate way to handle the 

uncertainty. There are a growing number of researches which had been applied fuzzy sets 

theory in VRP. Most of them fall into these categories: (1) fuzzy demands, and (2) fuzzy 

times.  
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2.7.1 Fuzzy Demands 

In this case, the dispatcher is faced with imprecise information or uncertainty regarding the 

amount of demand at some nodes. The idea is to treat the uncertain demand as a fuzzy 

numbers (Teodorovic and Pavkovic, 1996; Kuo et al. (2004); Teodorovic and Lucic, 2007) 

Let us denote the vehicle capacity by C and the fuzzy numbers representing demand at i-th 

node by D. After serving k nodes, the available capacity Ak equal: 

 
1

k

k i

i

A C D


   [2.22] 

If the demand Di is represented by a triangular fuzzy numbers (d1i, d2i, d3i) then the 

available capacity, Ak is also a triangular fuzzy numbers. 

 3 2 1

1 1 1

, ,
k k k

k i i i

i i i

A C d C d C d
  

 
    
 

    [2.23] 

The strength of preference, pk for the vehicle to serve the next node after it has served k 

nodes depends on available capacity Ak. Hence, the approximate reasoning algorithm 

could be stated as follows: 

Rule 1:  

IF  the available capacity is small 

THEN  the preference strength is low. 

Rule 2:  

IF  the available capacity is medium 

THEN  the preference strength is medium. 

Rule 3:  

IF  the available capacity is large 

THEN  the preference strength is high. 
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Zheng and Liu (2006) and Erbao and Mingyong (2009) develop a fuzzy chance constraint 

model with a credibility measure to solve the fuzzy VRP problem. They used subjective 

parameter Cr* which indicate the behavior of decision maker toward the risk. Lower value 

of parameter Cr* indicates the dispatcher desire to use vehicle remaining capacity as best 

as it can while a higher value indicates the risk aversion behavior of the dispatcher. 

2.7.2 Fuzzy Travel Times 

In many practical problems, a travel time between two locations in routing problems is 

often imprecise in advance because of the road conditions or traffic congestion. Therefore 

it also can be considered as fuzzy numbers. This kind of problem had been studied by 

Hong and Xu (2008) and Brito et al. (2010).  

Unlike the fuzzy demands which only deal with a fuzzy constraint problem, the fuzzy 

times is often also be faced with a fuzzy objective function (Brito et al., 2009). In that case, 

obviously, the objective value is also become a fuzzy number.  Brito et al. (2009) proposed 

to follow Harrera and Vardegay (1995) method to use Third Yager’s index to solve the 

problem. The Third Yager’s index is a linear ranking function that, applied to a triangular 

number 𝑡 = 𝑇𝑟(𝑡1 , 𝑡2 , 𝑡3) is given by: 

 
1 2 3( ) ( 2 )g t t t t    [2.24] 

Then, if each fuzzy travel time𝑡 𝑖𝑗
𝑘 is a triangular fuzzy number 𝑇𝑟(𝑡𝑖𝑗

1𝑘 , 𝑡𝑖𝑗
2𝑘 , 𝑡𝑖𝑗

3𝑘)and 𝑢𝑖
𝑘 is a 

crisp number equivalent to a triangular fuzzy number𝑇𝑟(𝑢𝑖
𝑘 , 𝑢𝑖

𝑘 , 𝑢𝑖
𝑘), the objective function 

can be replaced by the following crisp function: 

 

  1 2 3

1 0 0 1 0 0

min 2 4
m n n m n n

k k k k k k k k

ij ij ij ij ij ij i ij

k i j k i j

t x t x t x u x
     

 
   

 
   [2.25] 
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Chapter 3 

Model Formulation 

3.1 Problem Description 

Consider a dynamic VRP where a specified number of vehicles are dispatched from a 

depot to serve static and dynamic requests from customers. The dispatcher should manage 

a “tentative route schedule” which incorporates all requests currently known. When the 

new request arrived, then the schedule should be adjusted according to the new 

information. The dispatcher may also improve the schedule as long as it does not interfere 

with decisions that have been already committed to. The vehicles are operated within a 

given working time period, originating and terminating at the depot such that: 

a) Each vehicle service one route; 

b) Each customer is visited exactly once 

c) The start time of each vehicle route is greater than or equal to 0; 

d) The end time of each vehicle route is less than or equal to working time period. 

In this problem, we consider fleet of vehicle which provides on-site service to the 

customers. Each customer requires a unique service time whose duration cannot be known 

precisely until the server has finished the operation. For simplicity, we assume that the 

travel time between customers is deterministic and can be known in certain.  We also 

assume that the customers do not have a specific time windows. After they sent a request, 

they will wait for the service until the end of the day. 

Since the service time is uncertain, the dispatcher should make estimation about the total 

time needed to accomplish the planned schedule. The estimated total time is consisted of 

total travel time between customer and total estimated service time at the customer. It 

should not exceed the working time period.  
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In dynamic environment, service requests may appear randomly over time. Hence, the 

dispatcher is faced by decision, whether to accept those requests and serve them in the day 

or reject them due to capacity limit.  

This model considers two objectives. The first objective is to maximize the number of 

customers served. The more customers served in one day, the more benefits are the 

company received. The second objective aims to minimize the average waiting time of the 

customers. The customer waiting time is defined as the elapsed time from the request 

arrives until the service start. The shorter the waiting time, the more satisfaction the 

customer has. Therefore, the dispatcher should plan a schedule which compromises both 

objectives. 

 

3.2 Mathematical Model 

According to the problem description, the mathematical model for the problem can be 

formulated as follow: 

Definitions: 

T  = length of working period 

V’ = set of the known pending orders (non-visited customers) 

n  = number of the customers in V’ 

m = number of vehicles 

eij = travel time from customer i to customer j. 

𝑢 𝑗  = estimated service time at customer j  

𝑎 𝑗
𝑘  =estimated time of vehicle k arrived at customer j  

rj = request arrival time of customer j 

𝑤 𝑗  = estimated waiting time of customer j 

 k

j j jw a r    [3.1] 
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Decision Variables: 

 
1 if customer  is visited by vehicle 

0

k

j

j k
y

otherwise


 


 [3.2] 

 
1 if vehicle  move from  to 

0

k

ij

k i j
x

otherwise


 


 [3.3] 

 

Objective Functions: 

 
1

1 0

max
m n

k

j

k j

F y
 

  [3.4] 

 1
2min

n

i

i

w

F
n


 

  [3.5] 

Constraints: 

  
0 0

, 1,..., ;
n n

k

ij j ij

i j

e u x T k m
 

      [3.6] 
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    [3.7] 

 
0 0
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n n
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i j
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      [3.8] 
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1

, 1,..., ;
n

k

j

j

x m k m


    [3.9] 

 
0

0,1..., ;   1,.., ., ;
n

k k

ij j

j

x y j n k m


     [3.10] 
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Equation [3.4] is the first objective function which seeks to maximize the number of 

customers served during the day. Equation [3.5] is the second objective function which 

intends to minimize the average of customer waiting time. Equation [3.6] ensures that the 

total time to finish the schedule does not exceed the working time period. Equation [3.7] 

and [3.8] guarantee that each customer is only visited once.  Equation [3.9] makes sure that 

all of the vehicles is used during the tour. Equation [3.10] expresses the relationship 

between two decision variables. 

 

3.3 System Architecture 

Recent advance in information technology has motivated and allowed people to do real-

time processing. By this technology, customers may order a service at any time during the 

working day. The dispatcher then should plan a schedule for the vehicles to serve the order 

from the customer. Due to the dynamic environment, the scheduling process should 

consider recent status and position of the vehicles before assigning them to the next 

schedule. This information can be acquired through mobile communication between 

dispatcher and the drivers. 

Scheduling dynamic requests is a complex task. Thus, one needs to apply a strategy to 

handle the dynamicity of the problem. In this model, we incorporate an event scheduler. 

Event scheduler is a module which helps the dispatcher manage dynamic request from 

customer by transforming it into a sequence of static problems. This can be done by 

aggregating customer requests for a specified period and treats them as a static problem in 

the scheduling process.  

One can specify the length of the period by dividing the working day T into a several time 

slices ts. The length of time slice ts is formulated by following equation: 

 
s

ts

T
t

n
  [3.11] 
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Number of time slices nts is a parameter which is defined by the user. Montemanni et al. 

(2003) showed that large nts will make the system more responsive to the request but does 

not lead to satisfactory result because the optimization is restarted too often. On the other 

hand, small value of nts will make the system cannot take the advantage of new 

information. Therefore, the tuning parameter of nts should be carefully taken. 

 

Figure 3.1 The concepts of time slice. 

 

Figure 3.1 illustrates the concept of time slice. It divides the working day into several 

periods called time slices. In each of time slice, the problem will be similar to a static VRP 

but with different vehicle location and starting time. This static instance will be the basic 

input for the optimization process. The optimization will be run at the end of each time 

step for a limited computational time. Since the problem is highly constrained by the time, 

the system then should make estimation whether the remaining available time will be 

enough to serve all of the non-visited requests in the day. If it is, then the dispatcher will 

make a promise to the customer. Otherwise, the dispatcher will reject some of requests. In 

the real applications, the decision to reject customers is usually followed by an offer to 

serve them in the following day or to be served by other company. 

This filter mechanism was not considered in the previous researches of DVRP, e.g. 

Montemanni et et al. (2003), Hanshar and Ombuki-Berman (2007), and Garrido and Riff 

(2010). It is because their researches were highly concerned to determine the best 

optimization method in DVRP instead of real-world application. This study proposes a 

model which combines the solution-driven algorithm by considering real-world application. 
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Figure 3.2 DVRP system flowchart 

 

The dispatcher will assign the vehicle to serve the customer based on the planned schedule. 

It is assumed that once a vehicle is assigned to a dedicated customer, it cannot be diverted 

to another location. In every time slice, the drivers will report their status and condition to 

the dispatcher. This information will be used as consideration in planning the next 

schedule. Sometimes, the vehicle has already finished the entire schedule while there is 

still available time left before the working time end. In this case, we assume that the 

dispatcher will tell the driver to wait in the customer location until the next schedule exists 

or the working time has end. At the end of the working time, all of the vehicles should 

return to the depot. If there is any promised customer who has not been visited until the 

end of the working period, then it will be considered as a fail order. This failure indicates 
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that the dispatcher has a bad estimation in the scheduling process. It is better to reject a 

customer than to promise them while in fact we cannot serve their requests. 

Procedure Event Scheduler; 

Set Time = 0; 

Set all vehicles position at the depot; 

PendingOrders = orders left from previous day; 

While(Time ≤ T) 

StaticProblem = PendingOrders; 

Execute Fuzzy-ACS for StaticProblem; 

RejectedOrders = orders with estimated processing time >T; 

NewOrders = orders with arrival time between Time and (Time + TimeSlice); 

Time = Time + TimeSlice; 

CommitOrders = orders with actual processing time ≤Time; 

PendingOrders = PendingOrders \ CommitOrders + NewOrders; 

Update vehicle’s starting position; 

End While 

Return all the vehicles to the depot; 

 
Figure 3.3 Pseudo-code for event scheduler. 

 

3.4 Single Aggregate Objective Function 

From the problem description, it is known that the dispatcher is faced with a multi-

objective problem. The first objective F1 is to maximize the number of customers served 

while the second objective F2 is to minimize the average customer waiting time. This study 

treats this multi-objective function by aggregating the multiple objectives into a single 

objective function: 

  1

2

1

2

max
F

F
F





 
 




     [3.12] 
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where 1 and 2 denote the relative importance of two objectives, respectively. These 

parameters are subjective based on the preference of the decision maker. If the first 

objective is more important than the second objective, then one can set the 1 higher than 

2 and vice versa. Because the weight values are subjective, this study assumes that the 

weights have equal values, 1 =2 = 1. 

 

3.5 Fuzzy Approximation 

The actual service time is only known after the vehicle finished the service operation at a 

customer. Therefore, the dispatcher should make approximation for the planning purpose. 

The proposed method treats the service time as fuzzy number before the actual value is 

known in certain. It is assumed that each service time in customer i can be represented as 

triangular fuzzy numbers, 𝑈 𝑖 =  𝑢1𝑖 , 𝑢2𝑖 , 𝑢3𝑖 , where u1i is the left boundary of service time 

and u3i is the right boundary of service time. These boundaries will give subjective 

approximation range to the dispatcher such that the next service time will not be less than 

u1i or greater than u3i. The value of u2i  corresponds to a grade of membership 1, which also 

can be determined by subjective estimation. 

3.5.1 Adaptive Fuzzy Sets 

In the static VRP, the membership of the fuzzy set is fixed and used for all the 

approximation process (Zheng and Liu, 2006; Teodorovic and Lucic, 2007; Cao and Lai, 

2010). However, in dynamic problem, we can receive feedback after particular realization. 

Therefore we may update the fuzzy set based on our new knowledge. This adaptive 

procedure will adjust the approximation range value of service time for the next customer.  

Figure 3.4 illustrates the procedure for updating the fuzzy set. In this procedure, the 

triangular fuzzy set is designed based on the available data. Every time the new data 

regarding the actual service time is known, it will be recorded in database and used as the 

basic input for designing the fuzzy sets.  
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Figure 3.4 Procedure for updating fuzzy set. 

 

Since the range of actual service time is uncertain, there is a possibility that it will go far 

away beyond the approximation range. This kind of extreme data will make the 

approximation range unstable. Therefore, in order to create a robust approximation range, 

we design the triangular fuzzy set based on quartile method. Quartile is a statistical 

method for summarizing data which give more robust measure in the presence of extreme 

value instead of range and standard deviation. The rules for designing the triangular fuzzy 

set are described as follows: 

a) Left boundary u1i is determined by the first quartile Q1 of the database minus half 

of the inter-quartile range. 

1 1 3 10.5( )iu Q Q Q    
[3.13] 

b) The value of u2i is determined by the second quartile Q2 (median) of the database. 

 
2 2iu Q  [3.14] 

c) Right boundary u3i is determined by the third quartile Q3 plus half of the inter-

quartile range. 

 
3 3 3 10.5( )iu Q Q Q    [3.15] 
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3.5.2 Fuzzy Logic 

In the approximation process, it is clear that increasing the number of customer served 

along the route will decrease the available remaining time. After serving n customer, the 

available remaining time, 𝐴 𝑛
𝑘 , of vehicle k is defined as follows: 

  
0 0

n n
k

n ij j

i j

A T e u
 

     [3.16] 

Since the service time is represented by triangular fuzzy numbers then the available 

remaining time is also a triangular fuzzy numbers 𝐴 𝑛 = {𝑎1𝑛 , 𝑎2𝑛 , 𝑎3𝑛}  which are 

determined by: 

      3 2 1

0 0 0 0 0 0

, ,
n n n n n n

k

n ij j ij j ij j

i j i j i j

A T e u T e u T e u
     

 
        
 

    [3.17] 

Therefore, we can state the fuzzy logic as follows: 

IF  the remaining available time is large and service time at the next node is short  

THEN  the chance to serve the next customer is big.  

IF  the remaining available time is small and service time at the next node is long  

THEN  the chance to serve the next customer is small.  

From the statements above, we can conclude that the greater the difference between the 

available remaining time and the service time at the next customer, the greater is the 

chance to send the vehicle to serve the next customer.  

3.5.3 Credibility Measure 

The credibility theory developed by Liu (2004) is applied to measure the chance to serve 

the next customer. Denote the credibility of the fuzzy event by Cr, where Cr [0, 1]. When 

Cr = 0, the vehicle should terminate the tour and return to the depot. On the other hand, 

when Cr = 1, it can be completely sure that the vehicle is capable to serve the next 
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customer within the working time period. The credibility that the travel time to next 

customer and its service time do not exceed the available remaining time is measured by 

following equations: 

 , 1 1j j jjCr Cr e u A      

  , 1 1, 1 3, , 1 2, 1 2, , 1 3, 1 1,,  ,  0j j j j j j j n j j j jCr e u a e u a e u a     
                   
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 [3.18] 

where ej,,j+1 represents the travel time between current location and the next location, 𝑢 𝑗 +1 

denotes the triangular fuzzy service time in next location and 𝐴 𝑗  represents the available 

remaining time at the current location. 

3.5.4 Fuzzy Chance Constrained Programming 

For the decision making purpose, we model the problem using fuzzy chance constrained 

programming. Let us denote the dispatcher preference index as Cr* which indicates the 

decision maker behavior toward the risk. The decision maker will choose lower value of 

Cr* when he/she is a risk taker. This indicates the preference to use the remaining time as 

much as possible, even though there is a chance where the vehicle fails to serve the 

promised customer. When the decision maker chooses the higher value of Cr*, it indicates 

that he/she likes to play safe and prefer to avoid risk even there is a chance to utilize the 

available remaining time. 

Therefore the dispatcher can make the decision to serve the next customer based on the 

credibility and the preference index. If Cr ≥ Cr* holds then the vehicle is sent to the next 
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customer, otherwise the vehicle is returned to the depot due to the working time limit. By 

using this approach, we can substitute the problem constraint in equation [3.5] by the 

following equation: 

   *

0 0

1,2..,
n n

k k k

ij j ij

i j

Cr e u x T r mC k
 

 
   








   [3.19] 

 

3.6 Hybrid Fuzzy-Ant Colony System 

According the problem constructed in the above subsection, this study proposes the hybrid 

of fuzzy set theory and Ant Colony System (ACS) algorithm to solve the problem. The 

characteristic of ACS which sequentially constructs a solution is naturally suitable for 

fuzzy logic implementation. In this ACS, a group of artificial ants will construct the 

solution by visiting node in the graph one by one. Every time an ant visits a node, it will 

compute the chance to serve the next node by using fuzzy approximation. The value of the 

chance will be used to make a decision whether to commit a request or even reject it to 

satisfy the problem constraints. The implementation of Fuzzy-ACS is described in details 

in the following subsection. 

3.6.1 Initial Trail 

Initial trail plays important role to enhance the performance of ACS. In this model, the 

initial trail is created heuristically by sequential insertion method. This study proposes 

modification to the cheapest insertion heuristics by combining it with clustering method. 

Consider m number of empty routes. The algorithm will construct the route by sequentially 

inserting non-routed customer to the closest route in random sequence. The closest route is 

determined by the Euclidian distance between non-routed customer and centroid of the 

routes. The centroid of routes, ctdk, is defined as the average of all customer locations in 

the route k.  It is formulated as follows: 
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where xi and yi denote the location coordinates of customer i, and nk  represents number of 

customers in route k. Once the centroid is known, one can compute the Euclidian distance 

dtik between new customer i and the centroid in route k by using following equation: 

    
2 2

k k

ik i ctd i ctddt x x y y     [3.21] 

The customer is inserted to the closest route and positioned within an edge in the route 

which minimizes the total cost of the route as formulated in equation [2.11]. The insertion 

process is done by considering capacity constraint in each route. Thus, the customer will 

not be inserted to the route which has reached its capacity limit. Afterwards, the whole 

process is repeated until all the known customer is scheduled in the route. 

This heuristic solution is used as the initial trail for guiding the ant at its first tour. It is 

done by depositing an amount of pheromone to every linked edge in the initial solution. 

Hence the ant will use it as consideration for constructing the next solution in the 

optimization process. Figure 3.6 illustrates the insertion process of new customer using 

clustered insertion method. 

 

Figure 3.5 Inserting new customer to the closest route. 
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Procedure Clustered Insertion; 

Set number of route = m; 

Random shuffle PendingOrders; 

For each PendingOrders i =1,2… n; 

STEP 1: Approximate route feasibility to receive new customer 

For each route k = 1, 2 … m 

Calculate Crk  with Equation[3.17]; 

If(Crk  ≥ Cr*) 

route k = feasible; 

End  

End  

If (FeasibleRoute = ∅) 

Continue; 

End 

STEP 2: Calculate the distance between customer i and centroid of FeasibleRoute g 

For each FeasibleRoute g = 1, 2 … h 

Ctdg = equation [3.20]; 

dtig = equation [3.21]; 

End 

 

STEP 3: Define route with the shortest distance to customer i 

STEP 4: Define the cheapest position in the route using equation [2.11]; 

STEP 5: Insert the customer to the cheapest position; 

End 

 
Figure 3.6 Pseudo-codes for clustered-insertion method. 

3.6.2 Solution Construction 

In the basic ACS, one ant will create one solution and divide the tour by capacity 

constraint. In this problem, the solution should have a certain number of routes since we 
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only operate a specified number of vehicles in the day (see equation [3.8]) Therefore, the 

basic approach in the ACS which terminates the route after it reaches the capacity limit 

will not suitable for this problem because the generated solutions may have different 

number of routes. Besides, in dynamic problem, each route contains specified information 

about vehicle last position and starting time. Therefore, we need to adjust the basic ACS so 

it can deal with the characteristic of the problem. 

In the proposed approach, a solution will be constructed by a group of ants instead of one 

(see figure 3.7). Each ant in the group will represent a vehicle and sequentially construct 

the solution by selecting the next node in turn. If an ant has selects a node to be visited in 

its route, the other ant cannot choose it for its route. Hence an ant only can choose the 

unselected node to construct its route. This process is repeated until no available node left 

or the route reaches its capacity limit.  

 

 

Figure 3.7 Solution representation. 

By using this approach, we can assign the customer requests such that every vehicle has 

roughly equal work load for each of time slice. This consideration is important in DVRP 

since the problem is highly time constrained. Thus, unbalanced workload will make the 

capacity unutilized and create inefficiency in the schedule. Besides, this approach also 

allows us to keep the last information in the current step and pass it into the next step. 

Therefore, in each of time slice, the algorithm will optimize the schedule based on the 

passed information.  
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In order to simplify the algorithm, the pseudo random rule in equation [2.17] is modified as 

the following equation: 

 0

α β

arg max , if 

random ( ),

ij ij q q
j

j otherwise

     








 



 [3.22] 

where 𝜏𝑖𝑗 denotes the pheromone level and 𝜂𝑖𝑗 denotes the attractiveness. This rule will 

choose the best considered node as the next customer with a probability q0and will select a 

node randomly with a probability (1 – q0). By a pure random selection, it is intended to 

give bigger chance for the ants to explore the space solution in the iteration process. 

3.6.3 Pheromone Update 

Pheromone update is one of the main features in ant colony optimization. By updating the 

pheromone, we can pass the information from the previous solution to the next. This 

procedure will intensify the search process in the potential solution.  

This model follows Ant System concept (Gambrella and Dorigo, 1996) which incorporates 

global and local updates. Local update is executed every time an ant completes a solution, 

while global update is performed only after all ants complete the tour. In global update, 

only the best solution in the colony is used for the updating process. Therefore in the next 

iteration, the first group of ants will only use the information from the previous best 

solution.  

The initial pheromone is set with a constant Q. After that, the pheromone matrix,𝜏𝑖𝑗 , is 

updated by using the following rule: 

  1 ρ .ij ij Q     [3.23] 

where  denotes the evaporation rate of the pheromone. The bigger the rate, the bigger 

chance is the ants to forget the previous trail. This rate will maintain the ants so they will 

not get trapped into local optima so fast. 

Aplikasi ant..., Budhi Sholeh Wibowo, FT UI, 2012



43 

 

3.6.4 Local Search 

For speeding up the exploitation of search space, we apply random swap local search every 

time the ants complete a solution. This local search will randomly select two points in a 

route, i and j with i ≠ j and then swap the node’s position. If the new position of nodes 

results in better solution, they will replace the old solution. This process is repeated until 

the local search cannot improve the solution for a number of iteration.   

 

Procedure Random Swap; 

Foreach route k = 1,2, .. m 

Set NonImprove = 0; 

While (NonImprove ≤ MaxNumber) 

Select two points i and j in the route randomly, where i ≠ j; 

Swap the position; 

Compute NewFitnessValue; 

If (NewFitnessValue < OldFitnessValue) 

Replace OldSolution with NewSolution; 

Else 

NonImprove = NonImprove + 1; 

End While 

End For 

 
Figure 3.8Random swap pseudo-codes 

 

 

Figure 3.9 Random swap local search. 
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3.6.5 Fitness Value 

In ACS, the best solution is found by comparing the fitness value of the solution in each of 

iteration. Because the fitness value is in fuzzy numbers, we need to transform it first into a 

crisp value so it can be used for comparison. This study follows Brito et al. (2009) to use 

the Third Yager’s index to convert the fuzzy number into a crisp value (see equation 

[2.25]). If each fuzzy waiting time 𝑤 𝑖
𝑘  is a triangular fuzzy number 𝑇𝑟(𝑤𝑖

1𝑘 , 𝑤𝑖
2𝑘 , 𝑤𝑖

3𝑘), 

then we can replace the fuzzy objective function in equation [3.2] with the following 

equation: 

 

1 2 3

1
2

( 2 )

min
4

n
k k k

i i i

i

w w w

F
n



 




 [3.24] 

Thus, for comparison purpose, the fuzzy aggregate objective function in equation [3.11] 

can also be transformed into a crisp value: 

 
 

 

1

2

1

2

max
F

F
F




  [3.25] 

3.6.6 Fuzzy-ACS Procedure 

This section will describe the complete Fuzzy-ACS procedure in pseudo-code form as 

shown in Figure 3.11. 

Procedure Fuzzy-ACS; 

Set up Fuzzy-ACS parameter {q0, , , }; 

Get static case S = {1,2,3.. n} from event scheduler; 

Set pheromone 𝜏𝑖𝑗  = Q, where i and j S; 

Create initial solution X0 using clustered-insertion method; 

Update pheromone 𝜏𝑖𝑗  using equation [3.23], where: i and j X0; 

Set Xbest= X0; F(Xbest) = F(X); 

Set CPU time = 0; 
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While (CPU Time≤maxTime) 

 For each group of ants 

  List of available nodes, S = {1,2,3 … n}; 

  While ((S≠∅) ∪(a≤fleet size)) 

   set a = 0; 

   For each ant 

Starting node = i; 

Select next node j (j  S) based on equation [3.22]; 

Compute the credibility of each ant k to visit node j; 

If (Crk ≥ Cr*)  

next node = j; 

S = S\{j}; 

Update starting node, i = j; 

Else 

a = a + 1; 

continue; 

   End For  

   Update local pheromone based on equation [3.23]; 

   Apply random swap local search; 

   Calculate fitness value F(X); 

   If (F(X)≤ F(Xbest)) 

F(Xbest) = F(X) ; 

Xbest= X ; 

   End If 

   Update global pheromone based on equation [3.23]; 

  End While 

 End For 

 Update CPU Time; 

End While 

Return the best solution; 

 

Figure 3.10 Pseudo-codes of Fuzzy-ACS. 
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Execute Fuzzy- ACS

New 
customer

1. Define non-visited customer
2. Create static case

Time slice

Create Initial Trail:

1. Construct initial solution using Clustered Insertion Method
2. Initialize pheromone level based on the initial solution

Employ Ants:

Construct Solution

a. Define latest position and the available remaining time
b. Determine next node candidate based on the transition rule

Fuzzy Approximation

Update local pheromone

Compute credibility 
to serve next node

Credibility > Cr*

Include next node in 
the tour

Skip next node and 
terminate the tourNo

Yes

Evaluate fitness value

Return best solution and update global pheromone

Update routing schedule

 

 

Figure 3.11 Flowchart of the proposed method. 
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 Chapter 4 

Computational Experiences 

This chapter will perform computational experiment for DVRP model which has been 

presented in the previous chapter. The purpose of the experiment is to examine the 

empirical behavior of certain parameters and solution method. The model was coded in 

C++ language using CodeBlocks 10.05 on a PC with Intel Core i5 processor and 2 GB 

RAM. The detailed experimental results will be described in the following sections. 

 

4.1 Data and Parameters 

The data in this thesis is generated by modifying the datasets from Montemanni et al. 

(2003). Their datasets are originally from the classic CVRP benchmark instances of 

Christofides et al. (1979), Taillard (1994) and Fisher et al. (1996). These instances have 

typical data types which consist of:  

1) number of the customers, 

2) depot and customer location, 

3) customer demand, 

4) vehicle capacity, and 

5) maximal number of vehicles used. 

In order to generate the dynamicity in the problem, Kilby et al. (1998) and Montemanni et 

al. (2003) add three new data types to the benchmark data sets:  

1) arrival time of customers,  

2) duration of each visit, and 

3) working day period. 
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These characteristics of datasets are basically different with our problem. It is necessary to 

modify the data so it can represent the model as described in Chapter 3. The proposed 

DVRP model employs vehicles to provide on-site service for the customers instead of 

delivering goods. Thus, customer demand and vehicle capacity in the datasets can be 

ignored. However, since the actual service time for each customer is unique, it is necessary 

to modify the visit duration data in the instance. This is done by replacing the visit duration 

data by customer demand data. Therefore, each customer will have different actual service 

time. 

The other characteristic is that our problem implies limited vehicle number instead of 

unlimited one. Data type regarding number of vehicles then needs to be added to the 

instance. Besides, historical data for service time should also be added for the 

approximation process. Ten data was picked randomly from the actual service time to be 

assumed as historical service time data. This historical data is used as foundation for 

designing approximation range for customer service time.  

Thus, based on those modifications, the instances now have the following data types: 

1) number of the customers, 

2) arrival time of customers,  

3) depot and customer location, 

4) service time duration, 

5) working day period, and  

6) historical service time. 

C50 instance from Montemanni et al. (2003) dynamic datasets is treated as the raw data. 

The instance has 50 customers which uniformly distributed in a square location. The 

arrival time of customers are randomly distributed during the working day period (12 

hours). Figure 4.1-4.3 illustrates the main characteristics of the problem. Based on that 

dataset, one can generate many different cases by varying the degree of dynamism in the 

problem (Larsen et al., 2002). Besides, the predetermined decision in number of vehicles, 
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time limit for optimization, and dispatcher preference index Cr* will also make the 

problem setting different. The details of the data can be seen in Appendix A. 

 

 

Figure 4.1 Distribution of customer locations in Cartesian diagram. 

 

 

Figure 4.2 Distribution of customer arrival time in full dynamic scenario. 
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Figure 4.3 Distribution of actual customer service time. 

 

4.2 ACS Parameter Tuning 

Each metaheuristic has a set of predetermined parameters which has to be initialized before 

execution. These parameters will control the balance between exploitation and exploration 

process in the search space. An appropriate parameter setting will give significant impact 

on the quality of solution. Unfortunately, there are no universal initial parameters setting to 

solve all optimization problems (Dobslaw, 2010). Thus, one needs to tune the parameter 

values for each different type of problems.   

In ACS, there are four parameters which need to be tuned:  

1) number of ant groups m,  

2) pheromone evaporation rate ,  

3) selection pressure q0, and 

4) relative importance between  and .  

This study applies factorial experimental design to tune the parameter values of ACS. 

Factorial design is an experiment whose design consists of several factors, each with two 

or more levels. The design will take all possible combinations of those levels across all 

factors as its experiment unit.  
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The objective of this experiment is to discover the effects of the multiple parameters on the 

solution quality. By knowing the effects, the appropriate combination of the parameter 

values for the algorithm can be determined. The critical values of the parameters can be 

obtained from the previous researches which used the same method (Adenso-Diaz and 

Laguna, 2006). The experiment design can be seen in Table 4.1. There are three factors 

with two levels and one factor with three levels. Hence, 2
3 × 3

1
 = 24 experiments are 

required. For every set of experiment, 30 independent replications were performed. 

Table 4.1Experiment design for ACS parameter tuning. 

Factor Level References 

m 
3 Montemanniet al. (2003) 

10 Dorigo and Gambardella (1997), Gambardella et al. (1999) 

 
0.1 Dorigo and Gambardella (1997), Gambardella et al. (1999) 

0.3 
 

q0 
0.7 

 
0.9 Gambardella et al. (1999) 

( - β) 
-1 Dorigo and Gambardella (1997) 

0 Montemanniet al. (2003), Gambardella et al. (1999) 

 
1 

 

 

Since the objective of the experiment is to find the best parameter setting for the algorithm, 

it is necessary to minimize the existence of any other factors which potentially affect the 

model response. For this reason, static case (dod = 0) was preferred for the experiment to 

avoid the dynamicity effect. Besides, large number of vehicles is applied in order to make 

sure that the approximation capability will not affect the model response.  

However, the algorithm is originally intended to handle the dynamic problem. Thus, it is 

assumed if the algorithm can produce good quality solution in a static problem, then it can 

also produce good quality solution in the dynamic problem. The reason is that it can be 

considered as a sequence of static cases. The setting of the problem for this experiment is 

described in Table 4.2. 
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Table 4.2 Problem setting for ACS parameter tuning. 

Problem Setting Value 

Cr* 0.6 

Number of Vehicles 10 

Degree of dynamism 0 

Number of time slices 12 

Computational time limit 10 seconds 

 

The factorial design assumes linear relationship between the parameters. The effect model 

of the experiment is formulated in the following equation: 
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 [4.1] 

In order to find out the significance of the change in parameter value, a statistical test was 

performed. The testing hypothesis for the experiment is formulated as follows: 

0

1

: 0
1,2,3...

:  at least one 0;

i

i

H Y
i n

H Y





 [4.2] 

where Y represents the factors considered in the experiment and n represents the number of 

combination unit in the experiment design. Analysis of variance (ANOVA) is employed to 

evaluate the hypothesis. All of the statistical computation was accomplished using 

MINITAB 14 software.  

Figure 4.4 illustrates the ANOVA result. It shows that all of the main parameters in ACS 

have significant effect on the solution quality (p = 0.000). The interaction plot in Figure 4.5 

also shows that combination of high value in m, , and  parameters will give better 

solution to the model. Therefore, from these results, the best combination of parameter 
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values for ACS is as follows: m = 10,  = 0.3, q0= 0.9,  = 1, and  = 2. The rest of 

experiments will apply this setting for the ACS parameters. 

 

 

Analysis of Variance for Wait_Time, using Adjusted SS for Tests 

 

Source           DF   Seq SS   Adj SS   Adj MS        F      P 

m                 1   458.29   458.29   458.29   110.81  0.000 

rho               1    19.18    19.18    19.18     4.64  0.032 

q0                1  5557.22  5557.22  5557.22  1343.66  0.000 

(A-B)             2    32.56    32.56    16.28     3.94  0.020 

m*rho             1     0.94     0.94     0.94     0.23  0.634 

m*q0              1     2.46     2.46     2.46     0.59  0.441 

m*(A-B)           2    23.69    23.69    11.84     2.86  0.058 

rho*q0            1    33.71    33.71    33.71     8.15  0.004 

rho*(A-B)         2    38.59    38.59    19.29     4.66  0.010 

q0*(A-B)          2    13.85    13.85     6.93     1.67  0.188 

m*rho*q0          1     7.65     7.65     7.65     1.85  0.174 

m*rho*(A-B)       2    31.49    31.49    15.75     3.81  0.023 

m*q0*(A-B)        2     3.50     3.50     1.75     0.42  0.656 

rho*q0*(A-B)      2    23.82    23.82    11.91     2.88  0.057 

m*rho*q0*(A-B)    2    10.33    10.33     5.17     1.25  0.287 

Error           696  2878.58  2878.58     4.14 

Total           719  9135.86 

 

 

S = 2.03369   R-Sq = 68.49%   R-Sq(adj) = 67.45% 

Figure 4.4 ANOVA result for the experiment. 

 

 

Figure 4.5 Parameters interaction plot. 
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4.3 Model Performance 

4.3.1 Clustered-Insertion Method 

Insertion heuristic is a common preferred method for constructing initial solution in 

DVRP. The reason is because the insertion heuristic is naturally suitable for dynamic 

environment. It sequentially inserts unrouted customer at the position which generates 

smallest cost in the tour (see equation [2.11]). Insertion method has been used in Kilby et 

al. (1998), Gendrau et al. (1999), Montemanni et al. (2003), and Garrido and Riff (2010) to 

solve DVRP.  

In the previous chapter, a modification for insertion heuristics called clustered-insertion 

method has been proposed. It combines insertion method with clustering technique. In 

order to examine the performance, the proposed method is tested against some instances 

from Christofides et al. (1979). Since the effectiveness of insertion heuristics is largely 

influenced by the order of insertion (Kilby et al., 1998), the condition for the experiment is 

set in two different settings: fixed order and random order. In the fixed order, the requests 

are inserted sequentially from the farthest to the nearest position of the depot, while in 

random order, the customers are simply inserted in random sequence. The computational 

results are shown in Table 4.3.  

Table 4.3 Insertion method comparison result. 

Instance 
Best Known 

Solution 

Clustered Insertion Method Deviation 

(%) 
Order Average Best 

c50 
524.61 Fixed 573.65 573.65 8.55% 

524.61 Random 697.32 595.7 11.93% 

c75 
835.26 Fixed 995.832 995.83 16.12% 

835.26 Random 1166.98 1066.58 21.69% 

c100 
826.14 Fixed 942.29 942.29 12.33% 

826.14 Random 1111.81 1018.08 18.85% 

c150 
1028.42 Fixed 1298.6 1298.6 20.81% 

1028.42 Random 1633.24 1500.22 31.45% 

c200 
1291.29 Fixed 1650.75 1650.75 21.78% 

1291.29 Random 2085.78 1885.36 31.51% 
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The computational results in table 4.13 indicate that the proposed clustered-insertion 

method is able to give good initial solution. The best results of the proposed method gives 

an average deviation 15.92% to the benchmark’s best known results. The results also show 

that the proposed method performs better in a fixed order where the customer is inserted 

from the farthest to the nearest position of the depot.  

4.3.2 Fuzzy-ACS 

In this section, Fuzzy-ACS is tested against dataset in section 4.1. The basic setting for 

simulation is shown in table 4.4.  We compared two implementation of Fuzzy ACS with 

different constructive heuristics to create the initial trail. The first one used clustered-

insertion method while the second one used Kilby et al.’s insertion method without post-

optimization procedure.  

Table 4.4 Problem setting for Fuzzy ACS experiments. 

Problem Setting Value 

Cr* 0.6 

Number of Vehicles 5 

Number of time slices 12 

Computational time limit 10 seconds 

 

Two types of experiments were also created to examine the algorithm performance. The 

first experiment was executed in static environment (dod=0) with 50 customers. It 

observed the algorithm performance in each of the time step where a static case is created. 

Since the computational time in DVRP is highly restricted, a specified time was considered 

as the stopping criterion for the algorithm. In this experiment, each of algorithms were run 

for 10 seconds and replicated for 30 times. The best results were used to draw the 

evolution of the solution obtained in optimization process as shown in figure 4.6.  
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Figure 4.6 shows that Fuzzy ACS with clustered insertion method was able to give better 

result than Kilby et al.’s method. Since the algorithms were run in limited computational 

time, initial solution will play important role in the optimization process. 

 

Figure 4.6 Algorithm performances in static instance. 

 

The second experiment is aimed to examine the algorithm performance in different degree 

of dynamism (dod). We run each of the algorithms in five different dod setting. Every 

experiment unit was run for 30 replications. The result summary can be seen in table 4.5. It 

shows that the combination of Fuzzy-ACS and clustered insertion method in dynamic 

instances is also superior to the combination of Kilby et al.’s method. This result gives 

evidence that clustered insertion method can give good initial trail for ACS either in static 

or dynamic instances. 

 

 

11.5

12

12.5

13

13.5

14

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5

Fi
tn

es
s 

V
al

u
e

CPU time (seconds)

Aplikasi ant..., Budhi Sholeh Wibowo, FT UI, 2012



57 

 

Table 4.5 Solution comparison in dynamic instances 

dod Result 

Clustered Insertion method + Fuzzy ACS Kilby et al.’s method + Fuzzy-ACS 

Customers 

Served 

(F1) 

Avg. 

Waiting 

Time (F2) 

Failed 

Orders 

 𝐹1 
1

 𝐹2 
1
 

Customers 

Served  

(F1) 

Avg. 

Waiting 

Time (F2) 

Failed 

Orders 

 𝐹1 
1

 𝐹2 
1
 

0 
Average 50 4.01 0 12.47 50 4.04 0 12.38 

Best 50 3.83 0 13.48 50 3.88 0 12.89 

0.25 
Average 50 3.97 0 12.59 50 3.92 0 12.76 

Best 50 3.81 0 13.12 50 3.83 0 13.04 

0.5 
Average 50 2.89 0 17.32 50 2.89 0 17.3 

Best 50 2.81 0 17.78 50 2.82 0 17.73 

0.75 
Average 48.3 2.26 0 21.48 48.8 2.31 0 21.23 

Best 50 2.1 0 23.81 49 2.1 0 23.36 

1 
Average 37.53 1.52 2 24.67 35.3 1.55 2 22.83 

Best 38 1.44 2 26.31 36 1.47 2 24.45 

 

 

4.4 Sensitivity Analysis 

This section provides sensitivity analysis of the parameter in the problem. It includes 

number of time slices, degree of dynamism, and credibility preference index. The purpose 

is to examine the behavior of the model under different parameter setting. 

4.4.1 Number of Time Slices 

Number of time slice will determine how frequent the optimization is executed during the 

working day. In this experiment, different numbers of time slices are simulated in order to 

examine its effects on the performance. The basic setting of the problem for the experiment 

is listed in Table 4.6. Each experiment was run for 30 replications. The experiment results 

are summarized in Table 4.7. 
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Table 4.6 Problem setting for time slices experiments. 

Problem Setting Value 

Cr* 0.6 

Number of Vehicles 5 

Degree of dynamism 0.5 

Computational time limit 10 seconds 

 

 

Table 4.7 Summary of computational results for time slices experiments. 

Number of time slices 6 12 24 48 

Number of customers served 50 50 50 50 

Averagewaiting Time (hr.) 2.96 2.88 2.85 2.84 

Standard deviation (hr.) 0.06 0.04 0.04 0.05 

 

ANOVA was performed to examine the experiment results. The testing hypothesis is as 

follows: 

0 1 2 3 4

1

: 0

:  at least one 0 1,2,3,4i

H y y y y

H y i

   

 
  [4.3] 

The ANOVA result in Figure 4.7 indicates that there is a significant difference between the 

responses in the experiment (p = 0.000). From this result, we can conclude that the 

decision in number of time slices will affect the solution quality. Therefore, it needs to be 

tuned carefully. This result also confirms the previous research conclusion in Montemanni 

et al. (2003). The researchers stated that the careful tuning of time slice number can lead to 

better result. If the number of time slices is too small, then the optimization process cannot 

take the advantage of new information. Therefore, the rest of experiments will use nts= 12 

as the basic setting. This setting will make the optimization process run every 1 hour in the 

actual time. During this period, the system will aggregate all the received information and 

create a static instance for the scheduling purpose. 
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One-way ANOVA: Wait_Time versus Nts  
 
Source   DF      SS     MS      F      P 

Nts       3  216.59  72.20  38.49  0.000 

Error   116  217.58   1.88 

Total   119  434.17 

 

Figure 4.7 ANOVA result for number of time slices experiments. 

 

4.4.2 Degree of Dynamism 

Degree of dynamism (dod) is a criterion to measure dynamicity in a problem. It is defined 

as a fraction of dynamic request to the total of request in a day (see equation [2.8]). The 

more dynamic the requests, the more complex is the problem to be solved. Thus, this 

section will analyze the effect of dod on the solution quality.  

The current experiment sets the problem into five different scenarios of dod. Each scenario 

has the same workload but with different customer distribution (see Appendix B for 

details). In static scenario (dod = 0), all orders are known in the beginning of the day. In 

partially, dynamic scenario (e.g. dod = 0.25, 0.5, 0.75), some of the orders are known from 

the beginning of the day, while some others are coming randomly during a fraction of 

working day. The basic setting for the experiment is shown in Table 4.8. Each experiment 

was run for 30 replications. The experimental result is summarized in Table 4.9. 

Table 4.8 Problem setting for dod effect experiments. 

Problem Setting Value 

Cr* 0.6 

Number of Vehicles 5 

Number of time slices 12 

Computational time limit 10 seconds 
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Table 4.9 reveals that the more dynamic the problem, the worse is the performance in 

terms of average travel time and number of customer served. The algorithm performs worst 

at of full dynamic case. In that case, only a fraction of total requests can be served. 

Besides, some promised customers also fail to be served. These results confirm the 

previous research conclusion in Kilby et al. (1998) and Larsen et al. (2002), which stated 

that increasing the level of dynamicity resulted in a linear increase in route cost. In addition, 

the experimental result also illustrates that the average waiting time decreases as the 

dynamicity of the problem increases. The reason is because, in dynamic environment, the 

dispatcher can take the advantage of late customer arrival to shorten the average waiting 

time of the customers. From this result, it can be concluded that our proposed method is 

suitable for the dynamic problem since it can properly take the advantage of the new 

information in a dynamic problem. 

Table 4.9 Summary of computational result in dod effect experiments. 

dod Result 
Customers  

Served 

Fail 

Orders 

Avg. Waiting  

Time (Hr.) 

Avg. Travel 

Time (Hr.) 

0 
Average 50 0 4.01 0.328 

Best 50 0 3.83 0.334 

0.25 
Average 50 0 3.97 0.343 

Best 50 0 3.81 0.334 

0.50 
Average 50 0 2.88 0.391 

Best 50 0 2.81 0.392 

0.75 
Average 48.3 0 2.25 0.550 

Best 50 0 2.09 0.562 

1 
Average 37.53 2 1.52 0.592 

Best 38 2 1.44 0.568 
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Figure 4.8 Performance behaviors for different degrees of dynamism. 

 

Since higher dynamicity will worsen the system performance, the dispatcher could also 

consider for applying cut-off time strategy like in Montemanni et al. (2003). This strategy 

will give a limit to the system such that it will not accept any other requests after a certain 

time of period. Therefore, the dispatcher will not have to take a risky decision in the 

critical time. The other strategy is the dispatcher could also use higher preference index in 

the scheduling process. It will make the system more likely to avoid the risk. Therefore, 

any request which has a higher risk of failure will be rejected from the schedule. 

4.4.3 Credibility Preference Index 

Credibility preference index Cr* is a subjective parameter value between 0 and 1 which 

indicates the dispatcher behavior toward the risk. As stated in the previous chapter, low 

value of Cr* means that dispatcher is a risk taker which prefers to utilizing the remaining 

time as much as possible even though there is a chance of failure. High value of Cr* means 

that the dispatcher prefers to avoiding the risk even though there is still an available time to 

be utilized.  
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Intuitively, the dispatcher will have low Cr* value when they believe that their capacity is 

more than enough to handle all of the requests in the day. On the other hand, the dispatcher 

will have high Cr* when they think that their capacity is not large enough to handle all the 

dynamic requests. From here, we can see a correlation between dispatcher preference index 

and capacity.  

To examine the correlation between the preference index and capacity, an experiment 

which involves both of factors is conducted. The capacity in the problem is determined by 

the number of vehicles. The more vehicles used in the day, the more capacity is the 

company has. Table 4.10 illustrates the experimental design. Each experiment was run 30 

replications. Table 4.11 presents the summarized result, while ANOVA results are shown 

in Figure 4.9.  

Table 4.10 Design for Cr* experiments. 

Factors 
Level 

1 2 3 4 

Number of Vehicles 3 4 5 6 

Cr* 0.3 0.6 0.9 - 

 

Table 4.11 Summary of computational result in Cr* experiments. 

Number 

of Vehicles 

Credibility Preference Index 

0.3 0.6 0.9 

   
Customers 

Served 

(F1) 

Avg. 

Waiting 

Time (F2) 

 𝐹1 
1

 𝐹2 
1 

Customers 

Served 

(F1) 

Avg. 

Waiting 

Time(F2) 

 𝐹1 
1

 𝐹2 
1 

Customers 

Served 

(F1) 

Avg. 

Waiting 

Time(F2) 

 𝐹1 
1

 𝐹2 
1 

3 37.83 3.89 9.73 33.80 3.20 10.57 30.00 2.66 11.28 

4 49.40 3.80 13.00 45.07 3.33 13.54 40.53 2.87 14.11 

5 50.00 2.88 17.38 50.00 2.88 17.37 48.97 2.77 17.67 

6 50.00 2.25 22.26 50.00 2.26 22.12 50.00 2.25 22.27 
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From the ANOVA result in Figure 4.9, we can see that number of vehicles greatly affects 

the quality of the solution (p =0.000). The more vehicles, the better are the solution quality. 

The reason is because when the dispatcher has a larger capacity; he/she can serve more 

customer requests in the day and hence increase the solution quality. 

 

 

Analysis of Variance for Y, using Adjusted SS for Tests 

 

Source            DF   Seq SS   Adj SS   Adj MS        F      P 

Num_Vehicle        2  25415.3  25415.3  12707.7  6289.17  0.000 

Cr*                2    519.3    519.3    259.7   128.51  0.000 

Num_Vehicle*Cr*    4    149.3    149.3     37.3    18.47  0.000 

Error            261    527.4    527.4      2.0 

Total            269  26611.3 

 

S = 1.42147   R-Sq = 98.02%   R-Sq(adj) = 97.96% 

Figure 4.9 ANOVA result for preference index experiments. 

 

The main effects plots illustrated in Figure 4.10 shows that the solution quality has positive 

correlation with the preference index. It increases linearly along the Cr* value. However, 

higher Cr* value will actually make the system more sensitive to the risk. It tends to reject 

any request which potentially violate the capacity constraint. Consequently, the dispatcher 

will serve less number of requests during the day. This should worsen the solution quality. 

However, since fewer requests mean fewer queues, it also decreases the average waiting 

time of the customers which means the solution quality is increased. 

From those arguments, we can see that there is a tradeoff between the objectives in the 

problem. The relative weights in the aggregate objective function (ω1 and ω2) will play 

important role to evaluate whether the solution is better or worse under a specified 

preference index. Since the relative weights are subjective parameters, it is not easy to 

determine the values. It will depend on the decision maker preference – how much increase 

in waiting time is worth to be sacrificed for gaining one more request served in the day 
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Figure 4.10 Main Effects plot in preference index experiments. 

 

.The aggregate objective function in this study was designed in simple non-linear form 

with equal degree of importance (see equation [3.11]). The experiment result shows that 

this function gives better solution when the value of Cr* is higher. Therefore, in this case, 

we can conclude that higher Cr* will give better solution quality. 

The ANOVA result also shows that there is a significance interaction between Cr* value 

and preference index. The interaction plot as shown in Figure 4.11 reveals as the capacity 

increases, the difference in preference index will be less significance. Thus, the preference 

in Cr* value is only significant when the capacity is relatively tight. This result has not 

been examined in the previous researches since in most VRPs the researchers assumed that 

the dispatcher can always afford the required capacity. However, there are some cases 

where the dispatcher only can provide a certain capacity like what we consider in this 

thesis. Here, in dynamic case, the full information regarding total request in a day is not 

available at the beginning of the period. Therefore, the dispatcher only can rely on the 

available capacity he/she had. That makes the preliminary decision in number of vehicles 

and preference index be significant in determining the overall result. 
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Figure 4.11 Interaction Plot between Cr* and Number of Vehicle. 

 

 

4.5 Graphical Representation of Optimization Results 

This section will show the graphical result of the tour built by Fuzzy-ACS in the end of the 

working day. The graphic will represent the best solution for five different cases which 

have been shown in Table 4.9. 

4.5.1 Case 1 (dod = 0) 

Table 4.12 Best solution for case 1 (dod = 0). 

Result Value 

Customer Served 50 

Avg. Waiting Time 3.83Hr 

Route schedule 0- 46- 12- 5- 49- 10- 30- 39- 33- 45- 15- 40- 0  

0- 27- 1- 22- 31- 28- 3- 20- 35- 36- 43- 0  

0- 47- 4- 17- 37- 44- 42- 19- 41- 13- 18- 0  

0- 32- 11- 38- 9- 50- 34- 21- 29- 2- 16- 0  

0- 6- 48- 8- 26- 7- 23- 24- 14- 25- 0 
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Figure 4.12 Graphical result for case 1. 

 

4.5.2 Case 2 (dod = 0.25) 

 

Table 4.13 Best solution for case 2 (dod = 0.25). 

Result Value 

Customer Served 50 

Avg. Waiting Time 3.81Hr 

Route schedule 0- 12- 17- 37- 15- 45- 44- 42- 19- 41- 13- 40- 0  

0- 27- 32- 2- 29- 21- 50- 34- 30- 10- 39- 33- 0  

0- 6- 24- 23- 7- 48- 14- 25- 18- 43- 0  

0- 11- 16- 9- 38- 49- 5- 46- 47- 4- 0  

0- 1- 22- 8- 26- 31- 28- 3- 20- 35- 36- 0 
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Figure 4.13 Graphical result for case 2. 

 

4.5.3 Case 3 (dod = 0. 5) 

 

Table 4.14 Best solution for case 3 (dod = 0.5). 

Result Value 

Customer Served 50 

Avg. Waiting Time 2.81 Hr. 

Route schedule 0- 11- 16- 2- 29- 21- 38- 37- 44- 42- 41- 40- 0  

0- 12- 5- 9- 34- 30- 10- 39- 33- 45- 49- 0  

0- 1- 22- 8- 26- 31- 28- 3- 20- 35- 36- 50- 0  

0- 6- 14- 25- 24- 23- 7- 48- 27- 43- 0  

0- 4- 17- 15- 19- 13- 18- 47- 46- 32- 0 
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Figure 4.14 Graphical result for case 3. 

 

4.5.4 Case 4 (dod = 0. 75) 

 

Table 4.15 Best solution for case 4 (dod = 0.75). 

Result Value 

Customer Served 50 

Avg. Waiting Time 2.10 Hr. 

Route schedule 0- 12- 17- 15- 19- 13- 4- 33- 45- 44- 42- 40- 0 

0- 6- 14- 18- 25- 27- 32- 46- 37- 47- 41- 0 

0- 5- 10- 9- 21- 22- 28- 35- 36- 38- 50- 0 

0-  1- 11- 16- 2- 20- 3- 29- 34- 30- 39- 49- 0 

0- 18- 7- 23- 24- 26- 31- 43- 48- 0 
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Figure 4.15 Graphical result for case 4. 

 

4.5.5 Case 5 (dod = 1) 

 

Table 4.16 Best solution for case 5 (dod = 1). 

Result Value 

Customer Served 38 

Avg. Waiting Time 1.44 Hr. 

Route schedule 0- 6- 7- 8- 14- 23- 24- 27- 35- 0  

0- 1- 3- 11- 20- 22- 26- 31- 28- 36- 0  

0- 5- 10- 15- 19- 25- 32- 0  

0- 4- 12- 17- 13- 18- 33- 0  

0- 2- 9- 16- 21- 29- 30- 34- 0 
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Figure 4.16 Graphical result for case 5. 
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Chapter 5 

Conclusions and Future Study 

5.1 Conclusions 

This study presents an application of Fuzzy-ACS algorithm to solve dynamic VRP with 

limited number of vehicles and uncertainty in service time. The results of the study can be 

summarized as follows: 

(1) Fuzzy chance constrained programming (CCP) with credibility measurement can be 

used as approximation method for dealing with uncertainty. 

(2) The computational results showed that the hybridization of Fuzzy-CCP and Ant 

Colony System (ACS) can produce efficient algorithm which is able to provide high 

quality solution for dynamic optimization problem with uncertainty. 

(3) The proposed clustered-insertion method can provide better initial trail for Fuzzy-

ACS than Kilby et al.’s insertion method. 

(4) In a multi-objectives problem, the design of the objective function will play 

important role to evaluate the solution objectively. 

(5) Number of time slices has significant effect on the solution quality. Therefore, it 

needs to be tuned carefully.  

(6) Degree of dynamicity (dod) significantly affects the model performance. The more 

dynamic the problem, the worse is the performance. 

(7) In order to improve the performance in full-dynamic case, one can adopt time cut-off 

strategy to limit the dynamicity in critical period.  

(8) Number of vehicles has a strongly positive relationship to the quality solution. 

(9) Credibility preference index only has significant effect when the available capacity is 

relatively low. 
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5.2 Contributions 

The contributions of this research can be summarized as follows: 

(1) This study proposes a new variant of DVRP which provide on-site service with 

limited number of vehicles and uncertainty in service time  

(2) An adaptive fuzzy approximation method has been designed to optimize the 

available resources and deal with the uncertainty. 

(3) A proposed algorithm called Fuzzy-ACS has been developed to solve the specified 

problem. 

 

5.3 Further Research 

The results have shown that the proposed Fuzzy-ACS algorithm can effectively solve 

dynamic VRP with uncertainty. However, the current model still can be improved or 

extended in a number of ways: 

(1) One can verify the performance of the proposed algorithm by using real case data. 

(2) The current model assumes that the customer would wait until the end of the day to 

be served. One can extends this model into more realistic by considering time 

windows or adding another uncertainty variable (e.g. travel time) into the model. 

(3) In this study, we use single aggregate objective function for handling the multi-

objective problem. This method is basically subjective and needs predetermined 

relative weight to evaluate the result. Thus, one can improve the method by applying 

more advance multi-objective programming technique e.g. pareto optimal solution or 

Multi-Objective ACS to achieve more objective result. 

(4) One can also develop the designing process of the adaptive fuzzy set in order to 

improve the approximation performance. 
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Appendix A  

Basic Dataset 

In this study, we generate a new dataset by modifying c50 dynamic instance from 

Montemanni et al. (2003).The modified instance has following data types: 

1) number of the customers 

2) arrival time of customers,  

3) depot and customer location, 

4) service time duration, 

5) working day period 

6) service time historical data. 

 

Table A1 Basic data description. 

Data Detail 

Distance type Euclidian 

Number of Depots 1 

Depot Location (x,y) (30, 40) 

Number of Customers 50 

Working day period 12 hours 

Historical data of service time 
{0.58, 0.24, 0.79, 0.79, 0.51, 0.62, 

0.51, 0.48, 0.55, 0.27} 
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Table A2 Customer location, arrival time, and service duration. 

Customer 

Location 

Coordinate 

(x,y) 

Arrival 

Time 

(00:00+) 

Service 

Duration (hr)  
Customer 

Location 

Coordinate 

(x,y) 

Arrival 

Time 

(00:00+) 

Service 

Duration 

(hr) 

1 (37, 52) 0.03 0.24 
 

26 (27, 68) 6.97 0.24 

2 (49, 49) 0.14 1.03 
 

27 (30, 48) 7.42 0.51 

3 (52, 64) 0.31 0.55 
 

28 (43, 67) 7.66 0.48 

4 (20, 26) 0.41 0.31 
 

29 (58, 48) 7.66 0.21 

5 (40, 30) 0.41 0.72 
 

30 (58, 27) 7.73 0.65 

6 (21, 47) 0.55 0.51 
 

31 (37, 69) 7.93 0.38 

7 (17, 63) 0.72 0.65 
 

32 (38, 46) 8.24 0.41 

8 (31, 62) 1.16 0.79 
 

33 (46, 10) 8.27 0.79 

9 (52, 33) 1.44 0.38 
 

34 (61, 33) 8.38 0.89 

10 (51, 21) 1.50 0.17 
 

35 (62, 63) 8.58 0.58 

11 (42, 41) 1.74 0.65 
 

36 (63, 69) 8.72 0.21 

12 (31, 32) 1.98 0.99 
 

37 (32, 22) 9.64 0.31 

13 (5, 25) 2.15 0.79 
 

38 (45, 35) 9.68 0.51 

14 (12, 42) 2.70 0.72 
 

39 (59, 15) 9.88 0.48 

15 (36, 16) 2.74 0.34 
 

40 (5, 6) 9.91 0.24 

16 (52, 41) 2.74 0.51 
 

41 (10, 17) 10.05 0.92 

17 (27, 23) 2.94 0.10 
 

42 (21, 10) 10.05 0.44 

18 (17, 33) 3.42 1.40 
 

43 (5, 64) 10.12 0.38 

19 (13, 13) 3.56 0.31 
 

44 (30, 15) 10.19 0.55 

20 (57, 58) 3.97 0.96 
 

45 (39, 10) 10.32 0.34 

21 (62, 42) 4.38 0.27 
 

46 (32, 39) 10.43 0.17 

22 (42, 57) 4.72 0.27 
 

47 (25, 32) 10.67 0.85 

23 (16, 57) 5.37 0.55 
 

48 (25, 55) 10.74 0.58 

24 (8, 52) 6.29 0.34 
 

49 (48, 28) 11.62 0.62 

25 (7, 38) 6.46 0.96 
 

50 (56, 37) 11.79 0.34 
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Appendix B 

Fuzzy-Simulated Annealing 

B.1 Pseudo-code 

ProcedureFuzzy-SA; 

Set up Fuzzy-SA parameter {T0, maxIter}; 

Get static case S = {1,2,3.. n} from event scheduler; 

Create initial solution X0using clustered-insertion method; 

Set Xbest= X0;F(Xbest) = F(X); 

Set CPU time = 0; 

While (CPU Time ≤ maxTime) 

 𝑇 =
𝑇0

𝑚𝑎𝑥𝑇𝑖𝑚𝑒
×  𝑚𝑎𝑥𝑇𝑖𝑚𝑒 − 𝐶𝑃𝑈 𝑡𝑖𝑚𝑒  

  

Iter = 0; 

 While(iter ≤ maxIter) 

  While(non_feasible ≤ max_trial) 

   Generate new solution Y from X by random insertion operation; 

  Compute credibility of each route; 

If (Crk ≥ Cr*)  

Continue; 

   End If 

  End While 

 End While 

If(∆ = F(Y) – F(X)≤ 0) 

Let X = Y; 

 Else 

  Generate r = random(0,1); 
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If(r<exp⁡〖(−∆/𝑇)〗)   

Let X = Y; 

End If 

 End If 

Iter = Iter + 1; 

If (F(X)≤ F(Xbest)) 

F(Xbest) = F(X) ; 

Xbest= X ; 

End If 

Apply random swap local search procedure; 

 Update CPU Time; 

End While 

Return the best solution; 

 

Figure B1 Pseudo-codes of Fuzzy-SA. 

 

B.2 Parameter Tuning 

Simulated Annealing has two parameters that need to be tuned, that is: initial temperature 

(T0) and number of iteration (maxIter). In order to figure out the appropriate parameter 

value, we perform statistical experiment. The experiment design can be seen in table C1. 

We take 30 replications for each of combination of parameters. Afterwards, we use 

ANOVA to analyze the experiment result. 

Table B1 Experiment design for SA parameter tuning. 

Parameter Low High 

Initial Tempearture(T0) 500 1000 

Number of Iteration (maxIter) 100 200 
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Analysis of Variance for WaitTime, using Adjusted SS for Tests 

 

Source       DF   Seq SS   Adj SS  Adj MS     F      P 

Blocks       29   297.29   297.29   10.25  0.54  0.968 

To            1   149.99   149.99  149.99  7.94  0.006 

maxIter       1     2.78     2.78    2.78  0.15  0.702 

To*maxIter    1   109.98   109.98  109.98  5.82  0.018 

Error        87  1643.85  1643.85   18.89 

Total       119  2203.88 

 

Figure B2 ANOVA result for Fuzzy-SA parameter tuning experiment. 

 

 

Figure B3 Main Effect plot for Fuzzy-SA parameter tuning experiment. 

 

 

Figure B4 Interaction Effect plot for Fuzzy-SA parameter tuning experiment. 
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From ANOVA results we can see that initial temperature T0 has significant effect to the 

model response. We also can see that there is significant interaction between initial 

temperature and iteration number. Thus, for the comparison purpose in chapter 4, we will 

set SA parameter as follow: T0= 500, maxIter = 200. 
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Appendix C  

Problem Variants 

This appendix shows the arrival time distribution of four different instances based on its 

degree of dynamism (dod). The distributions are differentiated by simply cutting the 

horizon time into a fraction based on the dod specification. 

Table C1 Customer location, arrival time, and service duration. 

Customer 

Arrival Time (00:00+) 
 

Customer 

Arrival Time (00:00+) 

dod = 1 dod = 0.75 dod = 0.5 dod = 0.25 
 

dod = 1 dod = 0.75 dod = 0.5 dod = 0.25 

1 0.03 0.00 0.00 0.00 
 

26 6.97 3.97 0.97 0.00 

2 0.14 0.00 0.00 0.00 
 

27 7.42 4.42 1.42 0.00 

3 0.31 0.00 0.00 0.00 
 

28 7.66 4.66 1.66 0.00 

4 0.41 0.00 0.00 0.00 
 

29 7.66 4.66 1.66 0.00 

5 0.41 0.00 0.00 0.00 
 

30 7.73 4.73 1.73 0.00 

6 0.55 0.00 0.00 0.00 
 

31 7.93 4.93 1.93 0.00 

7 0.72 0.00 0.00 0.00 
 

32 8.24 5.24 2.24 0.00 

8 1.16 0.00 0.00 0.00 
 

33 8.27 5.27 2.27 0.00 

9 1.44 0.00 0.00 0.00 
 

34 8.38 5.38 2.38 0.00 

10 1.50 0.00 0.00 0.00 
 

35 8.58 5.58 2.58 0.00 

11 1.74 0.00 0.00 0.00 
 

36 8.72 5.72 2.72 0.00 

12 1.98 0.00 0.00 0.00 
 

37 9.64 6.64 3.64 0.64 

13 2.15 0.00 0.00 0.00 
 

38 9.68 6.68 3.68 0.68 

14 2.70 0.00 0.00 0.00 
 

39 9.88 6.88 3.88 0.88 

15 2.74 0.00 0.00 0.00 
 

40 9.91 6.91 3.91 0.91 

16 2.74 0.00 0.00 0.00 
 

41 10.05 7.05 4.05 1.05 

17 2.94 0.00 0.00 0.00 
 

42 10.05 7.05 4.05 1.05 

18 3.42 0.42 0.00 0.00 
 

43 10.12 7.12 4.12 1.12 

19 3.56 0.56 0.00 0.00 
 

44 10.19 7.19 4.19 1.19 

20 3.97 0.97 0.00 0.00 
 

45 10.32 7.32 4.32 1.32 

21 4.38 1.38 0.00 0.00 
 

46 10.43 7.43 4.43 1.43 

22 4.72 1.72 0.00 0.00 
 

47 10.67 7.67 4.67 1.67 

23 5.37 2.37 0.00 0.00 
 

48 10.74 7.74 4.74 1.74 

24 6.29 3.29 0.29 0.00 
 

49 11.62 8.62 5.62 2.62 

25 6.46 3.46 0.46 0.00 
 

50 11.79 8.79 5.79 2.79 
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Figure C1 Distribution of customer arrival time when dod = 1. 

 

 

 

 

Figure C2 Distribution of customer arrival time when dod = 0.75. 
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Figure C3 Distribution of customer arrival time when dod = 0.5. 

 

 

 

Figure C4 Distribution of customer arrival time when dod = 0.25. 
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