

UNIVERSITAS INDONESIA

PREPARASI ORGANOCLAY DARI BENTONIT MERANGIN - JAMBI DAN SURFAKTAN NONIONIK SERTA APLIKASINYA SEBAGAI ADSORBEN p-KLOROFENOL DALAM AIR

TESIS Diajukan sebagai salah satu syarat untuk memperoleh gelar Magister Sains

> MUHAMAD SALIM 1006787022

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI ILMU KIMIA DEPOK JULI 2012

Preparasi organoclay..., Muhamad Salim, FMIPA UI, 2012

HALAMAN PERNYATAAN ORISINALITAS

Tesis ini adalah hasil karya saya sendiri, dan semua sumber baik yang dikutip maupun dirujuk telah saya nyatakan dengan benar.

Nama

: Muhamad Salim

NPM

Tanda Tangan

Tanggal

: 1006787022

Deenger :

: 2 Juli 2012

HALAMAN PENGESAHAN

: Muhamad Salim

:

Tesis ini diajukan oleh Nama NPM Program Studi Judul Tesis

7

: 1006787022 : Ilmu Kimia : Preparasi Organoclay dari Bentonit Merangin-Jambi dan Surfaktan Nonionik serta Aplikasinya Sebagai Adsorben p-Klorofenol dalam Air

3

Telah berhasil dipertahankan di hadapan Dewan Penguji dan diterima sebagai bagian persyaratan yang diperlukan untuk memperoleh gelar Magister Sains pada Program Studi Ilmu Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia

	DEWAN PENGUJI
Pembimbing	: Dr. Yuni K. Krisnandi (Shruffa)
Pembimbing	: Dr. Riwandi Sihombing Ruman)
Penguji	: Dr. Jarnuzi Gun Lazuardi (
Penguji	: Dr. Yoki Yulizar
Penguji	: Dr. Widayanti Wibowo (Decenfort -)
Penguji	: Dr. Helmiyati ()

Ditetapkan di : Depok Tanggal : 2 Juli 2012

KATA PENGANTAR

Bismillaahirrohmaanirrohim, puji syukur saya panjatkan kehadirat Allah SWT yang senantiasa memberikan berbagai nikmat kepada kita semua. Semoga kita terus dapat berada dalam rahmat dan ridho-Nya. Shalawat dan salam senantiasa kita sampaikan kepada Rasulullah SAW. Tesis dengan judul "Preparasi Organoclay dari Bentonit Merangin-Jambi serta Aplikasinya Sebagai Adsorben p-Klorofenol dalam Air" disusun sebagai salah satu syarat untuk mencapai gelar Magister Sains pada program studi Ilmu Kimia Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia.

Saya menyadari bahwa, tanpa bantuan dan bimbingan dari berbagai pihak, dari masa perkuliahan sampai pada penyusunan tesis ini, sangat sulit bagi saya untuk menyelesaikannya. Begitu banyak bimbingan, dukungan dan doa dari berbagai fihak sehingga penyusunan tesis ini selesai tepat pada waktunya. Oleh karena itu saya mengucapkan terima kasih kepada :

- Dr. Yuni Krisyuningsih Krisnandi dan Dr. Riwandi Sihombing, selaku dosen Pembimbing Penelitian yang telah menyediakan waktu, tenaga, dan pikiran untuk mengarahkan saya dalam penyusunan tesis ini.
- (2) Dr. Ridla Bakri, M. Phil, selaku Ketua Departemen Kimia, Dr. Endang saefudin selaku ketua Program Studi Magister Ilmu Kimia, dan Pembimbing Akademis, Dr. Asep Saefumillah, serta dosen pengajar di Departemen Kimia yang telah banyak membagi ilmu dan senantiasa membimbing mahasiswa untuk tetap terus belajar dan berkarya.
- (3) Pemerintah Propinsi Jambi melalui Dinas Pendidikan dan Kebudayaan Provinsi Jambi yang telah memfasilitasi biaya dan kebutuhan perkuliahan selama masa pendidikan
- (4) Drs. Sunardi M.Si, dan seluruh staf di Lab. Afiliaasi deprtemen kimia FMIPA UI yang telah banyak membantu saya dalam melakukan penelitian ini.
- (5) Bagian adminstrasi, staf tata usaha, perpustakaan, laboratorium dan seluruh karyawan di lingkungan Departemen Kimia FMIPA-UI yang telah banyak membantu saya demi terselesaikannya penelitian ini.
- (6) Rekan rekan seangakatan 2010 yang telah banyak membantu dan memotivasi

dalam penyelesaian tesis ini

(7) Segenap keluarga tercinta, Fat, Fadli, Fahmi, Salma, dan Salsa, yang senantiasa memberikan motivasi dan doa untuk keberhasilan saya.

Perjuangan panjang ini adalah nikmat tiada tara bagi saya, oleh karenanya saya berharap, kiranya Allah SWT berkenan membalas segala kebaikan semua pihak yang telah membantu dengan balasan yang setimpal. Aamin!

HALAMAN PERNYATAAN PERSETUJUAN PUBLIKASI TUGAS AKHIR UNTUK KEPENTINGAN AKADEMIS

Sebagai sivitas akademik Universitas Indonesia, saya yang bertanda tangan di bawah ini:

Nama	: Muhamad Salim
NPM	: 1006787022
Program Studi	: S2
Departemen	: Kimia
Fakultas	: Matematika dan Ilmu Pengetahuan Alam
Jenis karya	: Tesis

demi pengembangan ilmu pengetahuan, menyetujui untuk memberikan kepada Universitas Indonesia Hak Bebas Royalti Noneksklusif (*Non-exclusive Royalty Free Right*) atas karya ilmiah saya yang berjudul :

Preparasi Organoclay dari Bentonit Merangin-Jambi dan Surfaktan Nonionik serta Aplikasinya Sebagai Adsorben p-Klorofenol dalam Air

beserta perangkat yang ada (jika diperlukan). Dengan Hak Bebas Royalti Noneksklusif ini Universitas Indonesia berhak menyimpan, mengalihmedia/format-kan, mengelola dalam bentuk pangkalan data (database), merawat, dan memublikasikan tugas akhir saya selama tetap mencantumkan nama saya sebagai penulis/pencipta dan sebagai pemilik Hak Cipta.

Demikian pernyataan ini saya buat dengan sebenarnya.

Dibuat di : Depok Pada tanggal : 2 Juli 2012 Yang menyatakan

(Muhamad Salim)

ABSTRAK

Nama	: Muhamad	Salim					
Program Studi	: Kimia						
Judul	:Preparasi	Organoclay	dari	Bentonite	Merangin-J	ambi	dan
	Surfaktan	Nonionik	serta	Aplikasiny	a Sebagai	Adso	rben
	p-Klorofe	nol dalam Ai	r				

Bentonit asal Merangin -Jambi telah dimodifikasi menjadi organoclay dengan menggunakan surfaktan nonionik triton X-100 sebagai agen penginterkalasi. Kemudian produk hasil modifikasi dikarakterisasi dengan XRD, FTIR, dan EDX. Sebelum modifikasi, dilakukan fraksinasi bentonit sehingga diperoleh Fraksi 1 yang kaya montmorillonite (MMT) yang kemudian diseragamkan kation bebasnya dengan Na⁺ (menjadi Na-MMT). Selanjutnya dengan menggunakan metode tembaga amin, nilai KTK Na-MMT diperoleh sebesar 71 mek/100gram Na-MMT. Variasi konsentrasi triton X-100 yang digunakan untuk preparasi organoclay adalah 1070, 4280, 6848, 8560, dan 10272 mg/L. Pengaruh konsentrasi triton X-100 yang ditambahkan terhadap jarak basal spacing organoclay, diamati dengan XRD, dan hasilnya menunjukkan bahwa terjadi peningkatan basal spacing dari 15,74 Å untuk Na-MMT menjadi 20,08 Å, 19,51Å, 18,57A° dan 17,43Å untuk OC 8560, OC 6848, OC 4280 dan OC 10272. Kesetabilan organoclay dalam air telah diuji dan hasilnya menunjukkan bahwa semakin besar kandungan surfaktan dalam organoclay semakin rendah kesetabilannya. Jarak basal spacing organoclay mengalami penurunan dari 20,08A° menjadi 17,62 A° untuk OC-8560, dari 19,51A° menjadi 17,28 A° untuk OC-6848, dan dari 18,57 A° menjadi 17,20 A° untuk OC-4280. Hal ini mengindikasikan bahwa surfaktan banyak mengalami pelepasan dari interlayer organoclay ketika jumlah surfaktan yang tersisipkan lebih dari 25,8 mg/g (OC-4280). Kemampuan OC-8560, dan OC-4280 sebagai adsorben p-klorofenol dibandingkan dengan Na-MMT. Data yang diperoleh pada kurva isotherm adsorpsi menunjukkan bahwa kemampuan organoclay dua kali lebih efektif dibanding NaMMT dalam menyerap p-klorofenol. Proses penyerapan p-klorofenol oleh Na-MMT dan OC-4280 mengikuti kurva isotherm adsorpsi Langmuir. Sedangkan OC-8560 cenderung mengikuti kurva isoterm adsorpsi Freundlich.

Kata Kunci

: *clay*, *organoclay*, *basal spacing*, surfaktan nonionik, adsorben, isotherm adsorpsi.

xiv+60 halaman : 27 gambar; 13 tabel Daftar Pustaka : 45 (1979-2011)

ABSTRACT

Name	: Muhamad Salim
Program Study	: Chemistry
title	: Preparations of Organoclay Using Nonionic Surfactants and
	Bentonite from Merangin-Jambi and Its Application as
	p-Chlorophenol Adsorbent in water

Bentonite from Merangin Jambi has been modified into organoclay using nonionic surfactant Triton X-100 as intercalating agent. Then the products were characterized by XRD, FTIR, and EDX. Prior to modification, bentonite fractionation was performed in order to get Fraction 1 which is rich with montmorillonite (MMT) phase, and then is cation-exchanged with Na⁺ (called Na-MMT). Furthermore, using a copper amine methode, its cation exchange capacity (CEC) value was determined as 71 mek/100gram Na-MMT. Variation of Triton X-100 concentration used for the preparation of organoclay is 1,070; 4,280; 6,848; 8,560; and 10,272 mg/L. The effect of the addition of Triton X-100 to Na-MMT's basal spacing, observed by XRD, shows an increase in basal spacing of initially 15.74Å for Na-MMT to 20.08 Å, 19.51Å, 18.57Ű and 17.43Å for OC 8560, OC 6848, OC 4280 dan OC 10272, respectively. The stability of organoclay in water has been investigated and the result shown that organoclay containing the largest amount of surfactant is more unstable. The basal spacing of organoclays decrease from 20.08°A to 17.62°A for OC-8560, from 19.51°A to 17.28°A for OC-6848 and from 18.57°A to 17.20 for OC-4280. This indicates that more surfactant are removed from the interlayer of organoclay when the amount of surfactant introduced is more than 25.88 mg/g (OC-4280). Organoclay adsorption capacity was observed by using it as adsorbent for p-Chlorophenol and compared with the capacity of Na-MMT. Data obtained on the adsorption isotherm curve shows that the organoclay is twice more effective in adsorbing p-chlorphenols. The adsorption process p-chlorofenol by OC-4280 and Na-MMT follows Langmuir adsorption isotherm curve. While OC-8560 tends to follow Freundlich adsorption isotherm curve.

Key Words	:	clay, organoclay, nonionic surfactants, basal spacing,
		adsorbents, isotherm adsorption.
xiv+ 60 page	:	27 pictures; 13 tables
Bibliography	:	45 (1979-2011)

DAFTAR ISI

	-
HALAMAN PERNYATAAN ORISINALITAS	ii
LEMBAR PENGESAHAN	iii
KATA PENGANTAR	iv
LEMBAR PERSETUJUAN PUBLIKASI KARYA ILMIAH	vi
ABSTRAK	vii
ABSTRACT.	viii
DAFTAR ISI	ix
DAFTAR TABEL	xi
DAFTAR GAMBAR	xii
DAFTAR LAMPIRAN	xiii
1. PENDAHULUAN	.1
1.1 Latar Belakang	.1
1.2 Perumusan Masalah	.3
1.3 Tujuan Penelitian	.3
1.4 Hipotesa Penelitian	.4
1.5 Manfaat Penelitian	.4
2. TINJAUAN PUSTAKA	5
2.1 Mineral Lempung (Clay)	5
2.1.1 Lempung 1:17	
2.1.2 Lempung 2 :1	8
2.2 Bentonit	
2.2.1 Natrium bentonit	
2.3.2 Kalsium Bentonit	10
2.3 Montmorillonite	10
2.4 Surfaktan	11
	11
2.4.1 Klasifikasi surfaktan	11
2.4.1 Klasifikasi surfaktan 2.4.2 Surfaktan Triton-x100	11 12 13
 2.4.1 Klasifikasi surfaktan 2.4.2 Surfaktan Triton-x100 2.5 Organoclay 	11 12 13 13
 2.4.1 Klasifikasi surfaktan 2.4.2 Surfaktan Triton-x100 2.5 Organoclay 2.6 p-Klorofenol 	11 12 13 13 14
 2.4.1 Klasifikasi surfaktan	11 12 13 13 14 15
 2.4.1 Klasifikasi surfaktan	11 12 13 13 14 15 15
 2.4.1 Klasifikasi surfaktan	11 12 13 13 14 15 15 16
 2.4.1 Klasifikasi surfaktan	11 12 13 13 14 15 15 15 16 17
 2.4.1 Klasifikasi surfaktan	11 12 13 13 14 15 15 16 17 3
 2.4.1 Klasifikasi surfaktan	11 12 13 13 14 15 15 16 17 3 19
 2.4.1 Klasifikasi surfaktan	11 12 13 13 14 15 15 16 17 3 19
 2.4.1 Klasifikasi surfaktan	11 12 13 13 14 15 15 16 17 8 19 23
 2.4.1 Klasifikasi surfaktan	11 12 13 13 14 15 15 16 17 8 19 23 23
 2.4.1 Klasifikasi surfaktan	11 12 13 13 13 14 15 16 17 3 19 23 23 23
 2.4.1 Klasifikasi surfaktan	11 12 13 13 13 14 15 16 17 3 19 23 23 23 23 23 23 23
 2.4.1 Klasifikasi surfaktan	11 12 13 13 13 14 15 16 17 3 19 23 23
 2.4.1 Klasifikasi surfaktan	11 12 13 13 13 14 15 16 17 3 19 23

	5.4	Prosedur Kerja	24
		3.4.1 Preparasi Bentonit.	24
		3.4.2 Fraksinasi Sedimentasi Bentonit	24
		3.4.3 Sintesis Na-Montmorillonite	25
		3.4.4 Penentuan Kapasitas Tukar Kation	25
		3.4.5 Sintesis Organoclay	26
		3.4.6 Aplikasi sebagai Adsorben klorofenol	26
	3.5	Bagan Kerja	27
		3.5.1 Preparasi Bentonit	27
		3.5.2 Sintesis Na-Montmorillonite	28
		3.5.3 Kapasitas Tukar Kation	28
		3.5.4 Sintesis Organoclay	29
		3.5.5 Penentuan kapasitas bentonit, Na-MMT dan organoclay sebagai Adsorben Fenol	29
4.	PE	MBAHASAN	30
	4.1	Preparasi dan Fraksinasi Bentonit	30
÷	4.2	Sintesis Na-MMT	35
	4.3	Penentuan Kapasitas Tukar Kation	40
- 6	4.4	Sintesis Organoclay	40
	4.5	Desorpsi Surfakktan dari Organoclay	47
	4.6	Aplikasi Organoclay sebagai Adsorben p-klorofenol	49
5.1	KES	SIMPULAN DAN SARAN	57
5.1	KE S 5.1	SIMPULAN DAN SARAN	57 57
5.1	KES 5.1 5.2	SIMPULAN DAN SARAN	57 57 58
5.1	KES 5.1 5.2	SIMPULAN DAN SARAN	57 57 58
5. 1 DA	KES 5.1 5.2 FT	SIMPULAN DAN SARAN	57 57 58 59
5. 1 DA	KES 5.1 5.2	SIMPULAN DAN SARAN	57 57 58 59
5. 1 DA	KES 5.1 5.2 AFT	SIMPULAN DAN SARAN	57 57 58 59
5. 1 DA	KES 5.1 5.2 (FT	SIMPULAN DAN SARAN	57 57 58 59
5. I DA	KES 5.1 5.2	SIMPULAN DAN SARAN	57 57 58 59
5. 1 DA	KES 5.1 5.2 (FT	SIMPULAN DAN SARAN	57 57 58 59
5. 1 DA	KES 5.1 5.2	SIMPULAN DAN SARAN	57 57 58 59
5. I	KES 5.1 5.2	SIMPULAN DAN SARAN	57 57 58 59

DAFTAR TABEL

31
32
33
34
35
35
38
40
43
47
48
50
54

DAFTAR GAMBAR

Gambar 2.1	Kerangka dasar pembangun lempung	5
Gambar 2.2	Lapisan tetrahedral dan lapisan oktahedral	6
Gambar 2.3	Trioktahedral dan dioktahedral	7
Gambar 2.4	Lempung 1:1	8
Gambar 2.5	Lempung 2:1	9
Gambar 2.6	Ca-bentonit dan Na-bentonit	10
Gambar 2.7	Kristal montmorillonite	11
Gambar 2.8	Struktur molekul Triton X -100	13
Gambar 2.9	Sistem Optik FTIR	16
Gambar 2.10	Difraksi sinar-X	17
Gambar 4.1	Difraktogram Bentonit alam dan hasil fraksinasinya	32
Gambar 4.2	Na-bentonit	36
Gambar 4.3	Dispersi bentonit fraksi 1 dan dispersi Na-MMT	37
Gambar 4.4	Pola XRD F1, Na-MMMT dan Na-MMT asam	38
Gambar 4.5	Spektra IR bentonit alam, F1 dan Na-MMT	39
Gambar 4.6	Mekanisme adsorpsi dan orientasi surfaktan	42
Gambar 4.7	Difraktogram Organoclay	43
Gambar 4.8	Kapasitas adsorpsi Na-MMT dan jarak basal spacing organoclay	
Sec.	yang dengan konsentrasi surfaktan yang berbeda	44
Gambar 4.9	Grafik adsorpsi isotermal Langmuir dan Freundlich	45
Gambar 4.10	Spektra IR Na-MMT dan Organoclay yang diperoleh	46
Gambar 4.11	Grafik efisiensi adsorpsi dan kapasitas adsorpsi adsorben	50
Gambar 4.12	Proses adsorpsi p-klorofenol oleh bentonit dan organoclay	52
Gambar 4.13	Mekanisme adsorpsi p-klorofenol pada gugus silanol	52
Gambar 4.14	Kurva adsorpsi isotermal Langmuir	53
Gambar 4.15	Kurva adsorpsi isotermal Freundlicht	53
Gambar 4.16	Spektra IR Na-MMT setelah mengadsorpsi p-klorofenol	55
Gambar 4.17	Spektra IR Na organoclay setelah mengadsorpsi p-klorofenol	56

DAFTAR LAMPIRAN

Lampiran 1 Data XRD Bentonit Alam Lampiran 2 Data XRD Fraksi 1 Lampiran 3 Data XRD Fraksi 2 Lampiran 4 Data XRD Fraksi 3 Lampiran 5 Data XRD Fraksi 4 Lampiran 6 Data XRD NaMMT Lampiran 7 Data XRD NaMMT asam Lampiran 8 Data XRD OC 1070 Lampiran 9 Data XRD OC 4280 Lampiran 10 Data XRD OC 6848 Lampiran 11 Data XRD OC 8560 Lampiran 12 Data XRD OC 10272 Lampiran 13 Data XRD OC 4280 dalam air Lampiran 14 Data XRD OC 4280 dalam p-klorofenol Lampiran 15 Data XRD OC 8560 dalam p-klorofenol Lampiran 16 Data EDX Bentonit Alam Lampiran 17 Data EDX Fraksi 1 Lampiran 18 Data EDX Fraksi 2 Lampiran 19 Data EDX Fraksi 3 Lampiran 20 Data EDX Fraksi 4 Lampiran 21 Data EDX NaMMT Lampiran 22 Data EDX OC 1070 Lampiran 23 Data EDX OC 4280 Lampiran 24 Data EDXD OC 6848 Lampiran 25 Data XRD OC 8560 Lampiran 26 Data XRD OC 10272 Lampiran 27 Metode Biscave Lampiran 28 Data perhitungan komposisi relatif organoclay Lampiran 29 Kurva absorbansi standar larutan Cu(en)₂²⁺ dan perhitngan KTK Lampiran 30 Perhitungan jumlah surfaktan yang teradsorpsi Lampiran 31 Data adsorpsi isotermal Langmuir dan Freundlich clay terhadap TX-100 Lampiran 32 Spektrum UV/VIS dan Absorbansi standar p-klorofenol Lampiran 33 Spektrum UV/VIS adsorpsi p-klorofenol oleh Na-MMT Lampiran 34 Data adsorpsi isotermal Langmuir dan Freundlich Na-MMT terhadap p-klorofenol Lampiran 35 Spektrum UV/VIS adsorpsi p-klorofenol oleh OC 4280 Lampiran 36 Data adsorpsi isotermal Langmuir dan Freundlich OC 4280 terhadap p-klorofenol Lampiran 37 Spektrum UV/VIS adsorpsi p-klorofenol oleh OC 8560 Lampiran 38 Data adsorpsi isotermal Langmuir dan Freundlich OC 8560 terhadap p-klorofenol Lampiran 39 Spektra IR bentonit alam dan F1 Lampiran 40 Spektra IR Na-MMT dan OC 1070 Lampiran 41 Spektra IR OC₄₂₈₀ dan OC₆₈₄₈

Lampiran 42 Spektra IR OC₈₅₆₀ dan OC₁₀₂₇₂

UNIVERSITAS INDONESIA

PREPARASI ORGANOCLAY DARI BENTONIT MERANGIN - JAMBI DAN SURFAKTAN NONIONIK SERTA APLIKASINYA SEBAGAI ADSORBEN p-KLOROFENOL DALAM AIR

TESIS

MUHAMAD SALIM 1006787022

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI ILMU KIMIA DEPOK JULI 2012

Preparasi organoclay..., Muhamad Salim, FMIPA UI, 2012

BAB I

PENDAHULUAN

1.1 Latar Belakang.

Indonesia memiliki potensi sumber daya mineral yang sangat melimpah. Salah satu jenis mineral yang tersebar diberbagai wilayah seperti Sumatera, Jawa, Kalimantan dan pulau pulau lain di Indonesia, adalah bentonit. Mineral bentonit merupakan adsorben yang antara lain bisa dimanfaatkan dalam proses pengolahan limbah cair. Penelitian penelitian tentang bentonit di Indonesia masih terbatas pada bentonit yang berasal dari daerah tertentu seperti Jawa, padahal masih banyak bentonit dari berbagai daerah di Indonesia yang belum disintesis dan dikarakterisasi untuk mengetahui karakter fisik dan kimianya, dan untuk keperluan aplikasi lebih lanjut. Disisi lain tingkat pemanfaatan dan nilai jual bentonit di Indonesia masih rendah, oleh karenanya penelitian mengenai modifikasi bentonit harus terus dilakukan untuk meningkatkan pemanfaatan dan nilai jual bentonit.

Mineral bentonit terdiri dari berbagai macam mineral phyllosilicate yang mengandung silica, aluminium oksida dan hidroksida yang dapat mengikat air. Bentonit diklasifikasikan dalam dua kelompok, yaitu natrium bentonit dan kalsium bentonit. Natrium bentonit mengandung relatif lebih banyak ion Na⁺ dibandingkan ion Ca²⁺ dan Mg²⁺. Bentonit ini dapat mengembang hingga 8-15 kali apabila dicelupkan ke dalam air dan tetap terdispersi beberapa waktu di dalam air. Sementara kalsium bentonit mengandung lebih banyak ion Ca²⁺ dan Mg²⁺. Bentonit kalsium kurang menyerap air, akan tetapi secara alamiah, mempunyai sifat mengadsorpsi yang baik dan tetap terdispersi dalam air.

Kandungan utama bentonit adalah mineral monmorilonit (80%) dengan rumus kimia $M_x(Al_{4-x}Mg_x)Si_8O_{20}(OH)_{4.n}H_2O$. Kandungan lain dalam bentonit merupakan pengotor dari beberapa jenis mineral seperti kwarsa, ilit, kalsit, mika dan klorit. Struktur monmorilonit terdiri dari 3 layer (lapisan T-O-T) yang terdiri dari 1 lapisan alumina (AlO₆) berbentuk oktahedral pada bagian tengah diapit oleh 2 buah lapisan silika (SiO₄) berbentuk tetrahedral. Diantara lapisan T-O-T atau lapisan interlayer terdapat kation monovalent maupun bivalent, seperti Na⁺, Ca^{2+} dan Mg²⁺ dan memiliki jarak (d-spacing) sekitar 1,2 – 1,5 nm. Lapisanlapisan dalam bentonit ini teraglomerasi (menggumpal) karena adanya gaya tarik menarik antar partikel. Dengan teknik tertentu seperti *surface treatment* gaya tersebut dapat dikurangi sehingga jarak antar layer dalam struktur monmorilonite (d- spacing) akan bertambah besar (> 1.5 nm). (Syuhada dkk. 2009)

Bentonit banyak dimanfaatkan sebagai penukar kation logam, namun masih kurang efektif dalam mengadsorpsi molekul organik dalam suatu larutan (Lizhong, Yimin, & Jianying, 1997). Oleh karena itu, banyak penelitian telah dilakukan untuk memodifikasi bentonit sehingga memiliki kemampuan untuk dapat mengadsorpsi molekul organik dan diaplikasikan sebagai adsorben polutan organik yang terkandung di dalam air.

Modifikasi bentonit dapat dilakukan dengan penambahan surfaktan seperti garam amonium kuartener, polietilen glikol eter dan sebagainya, dimana bentonit yang semula bersifat hidrofilik berubah menjadi organofilik. Bentonit hasil modifikasi disebut organoclay. Perubahan sifat bentonit merupakan hasil interkalasi surfaktan ke dalam antar lapisan bentonit. Interkalasi surfaktan dengan bentonit dapat terjadi karena penggantian kation anorganik pada bentonit dengan kation organik surfaktan atau karena interaksi hidrofilik antara bagian polar bentonit dengan gugus polar dari surfaktan. Dengan masuknya surfaktan ke dalam bentonit, d-spacing pada bentonitpun bertambah besar, dan sifat organofiliknya menyebabkan organoclay dapat mengadsorpsi molekul organik, sehingga *organoclay* dapat digunakan dalam aplikasi lingkungan. *Organoclay* sangat efektif dalam menghilangkan kontaminasi molekul organik yang terdapat pada air dan disarankan untuk digunakan dalam *treatment* polutan organik di dalam air (Lizhong, Yimin, & Jianying, 1997).

Dalam studi pendahuluan, pada penelitian ini akan dipelajari sifat dan karakteristik *organoclay* dengan surfaktan nonionik triton X-100 sebagai agen penginterkalasi. Pada studi awal yang telah dilakukan sebelumnya (Irwansyah, 2007) diketahui bahwa perbedaan orientasi surfaktan yang tercermin dari perbedaan jarak *basal spacing* antara bentonit alam dan bentonit komersial disebabkan oleh interaksi *clay* dengan surfaktan. Selanjutnya studi yang dilakukan

oleh Haryani (2010) diketahui bahwa ODTMA-bentonit memiliki basal spacing yang lebih besar dibandingkan pada Heksadesil Trimetilamonium Bromidabentonit (HDTMA-bentonit). Pada studi tersebut, dipelajari kemampuan organoclay ODTMA-bentonit dan HDTMA-bentonit dalam mengadsorpsi fenol, katekol, dan benzaldehid. Untuk mengetahui isotherm adsorpsinya, Oktaviani (2011) melakukan penelitian dengan mempelajari kemampuan organoclay dalam menyerap fenol pada berbagai konsentrasi. Penentuan waktu optimum pengadukan dilanjutkan oleh Rahman (2011), dimana pada rentang waktu 12 -18 jam, fenol paling banyak teradsorpsi setelah dilakuakn pengadukan selama 12 jam. Namun demikian keempat penelitian yang disebutkan terakhir yang berasal dari satu daerah di Tapanuli dan menggunakan bentonit lokal surfaktan yang digunakan adalah jenis surfaktan kationik, oleh karena itu penelitian ini bertujuan mensintesis dan mempelajari sifat dan karakter dari bentonit yang berasal dari daerah Merangin-Jambi, mempelajari sifat dan karakter dari organoclay dari bentonit yang diinterkalasi dengan surfaktan nonionik triton x-100. Kemudian akan dipelajari model isotherm adsorpsi, dan kemampuan organoclay dalam menyerap p-klorofenol sebagai limbah beracun yang sering dijumpai pada industri pembuatan insektisida, antiseptik, dan desinfektan.

1.2 Perumusan Masalah

- 1. Bagaimana karakter fisik dan kimia bentonit yang berasal dari daerah Merangin Provinsi Jambi?
- 2. Bagaimana karakter *organoclay* hasil sintesis dengan surfaktan Triton X-100 yang dianalisis dengan beberapa alat uji, untuk selanjutnya dapat diaplikasikan sesuai sifat dan karakter tersebut?

1.3 Tujuan Penelitian

Penelitian ini dilakukan dengan tujuan sebagai berikut:

 Memfraksinasi dan mengkarakterisasi bentonit lokal yang berasal dari daerah Merangin Provinsi Jambi, sehingga diperoleh fraksi yang kaya montmorillonit

- 2. Mensintesis Natrium montmorillonit dari fraksi bentonit yang mengandung montmorilloniit paling tinggi
- 3. Membuat *organoclay* dari bentonit alam Merangin –Jambi dengan menggunakan surfaktan nonionik triton x-100, serta mempelajari karakter *organoclay* hasil sintesis dengan XRD, FTIR, dan EDX untuk selanjutnya dapat diaplikasikan sesuai sifat dan karakter tersebut.
- Mengetahui kemampuan adsorpsi *organoclay* terhadap molekul organik p-klorofenol dengan variasi konsentrasi.

1.4 Hipotesa Penelitian

Interkalasi surfaktan nonionik pada bentonit akan meningkatkan daya adsorpsi organoclay terhadap p-klorofenol dalam air.

1.5 Manfaat Penelitian

Dari penelitian ini diharapkan dapat :

- Mengetahui karakter bentonit yang berasal dari daerah Merangin -Jambi.
- 2. Mengetahui seberapa besar potensi organoclay yang diinterkalasi dengan surfaktan nonionik triton x -100 dalam mengadsorpsi molekul p-klorofenol, sehingga pemanfaatan organoclay sebagai adsorben semakin diminati dan dapat meningkatkan nilai ekonomis serta meningkatkan potensi organoclay dalam mengurangi perusakan lingkungan.

BAB II

TINJAUAN PUSTAKA

2.1. Mineral Lempung (Clay)

Tanah lempung merupakan hasil pelapukan batu-batuan, sangat mudah ditemukan di berbagai tempat. Dalam kosa kata ilmiah, lempung dikenal sebagai *silica* atau *silicate clay* karena sebagian besar kandungannya adalah silika. Lempung merupakan bagian dari kelas mineral silikat pilosilikat. Lempung juga disebut sebagai aluminosilikat dan mempunyai struktur kristal tertentu. Lempung tersusun dari dua kerangka dasar pembangun, yaitu :

- 1. Tetrahedral Silika dan
- 2 Oktahedral Aluminium.

Kedua kerangka ini tersusun sedemikian rupa sehingga membentuk suatu lapisan tetrahedral dan oktahedral seperti terlihat pada Gambar 2.1.

Gambar 2.1 Kerangka Dasar Pembangun Lempung Sumber: <u>http://www.tulane.edu/~sanelson/eens211/index.html</u>

Lapisan tetrahedral disusun oleh tetrahedral yang bergabung melalui tiga dari empat atom oksigen sebagai jembatan, sehingga tersusun sebagai bentuk heksagonal (Gambar 2.2a). Sisa satu atom oksigen akan mengarah ke atas atau ke bawah, sehingga disebut apikal oksigen (Gambar 2.2b). Sedangkan pada lapisan oktahedral, tersusun oleh oktahedral yang membagi ujung-ujung oksigen dan hidroksil dengan Al^{3+} , Mg^{2+} , Fe^{2+} , Fe^{3+} yang disebut sebagai kation terkoordinasi. Oktahedral ini juga tersusun heksagonal sehingga disebut lapisan Gibsite (Gibsite sheet) (Gambar 2.2c). Lapisan oktahedral dapat disusun oleh (Fe,Mg)O₆ atau AlO₆. Ada dua jenis lapisan oktahedral, yaitu dioktahedral dan trioktahedral. Pada lapisan dioktahedral, ujung ujung oksigen dan hidroksil dikelilingi oleh dua kation trivalen, sedangkan pada lapisan trioktahedral ujung ujung oksigen dan hidroksil dikelilingi oleh tiga kation bivalen (Gambar 2.3).

Gambar 2.2. Lapisan Tetrahedral dan Lapisan Oktahedral Sumber : <u>http://www.clay.org.au</u>.

Gambar 2.3. Trioktahedral dan Dioktahedral Sumber : http://www.clay.org.au.

Berdasarkan perbandingan lapisan tetrahedral dan lapisan oktahedral penyusunnya, lempung dikelompokkan sebagai : Lempung 1:1 dan Lempung 2:1

2.1.1 Lempung 1:1

Lempung 1:1 disebut juga *kandite*. Kandite merupakan clay dengan struktur T-O (1:1) dan layer oktahedral mirip struktur *gibbsite*. Karena layer tidak bermuatan (netral) maka ikatan antar *layer* merupakan gaya Van der Waals. *Kaolinite* merupakan contoh umum kelompok kandite dengan formula $Al_2Si_2O_5(OH)_4$. Anggota *kandite yang* lain adalah Anauxite, Dickite, dan Nacrite.

Kaolinite dibentuk melalui pelapukan atau alterasi hidrotermal mineral aluminasilikat. Oleh karena itu batuan yang kaya Feldspar umumnya mengalami pelapukan menjadi *kaolinite*. Pada proses pelapukan tersebut ion-ion Na,Ca, K, Mg dan Fe harus dilepaskan (*leaching*). Proses *leaching* lebih disukai pada kondisi asam (pH rendah). Batuan granit, banyak mengandung feldspar dan merupakan sumber utama kaolin.

Gambar 2.4 : lempung 1:1 Sumber : http://www.tulane.edu/~sanelson/eens/211

2.1.2 Lempung 2:1

Lempung jenis ini terdiri dari dua lembaran tetrahedral dan satu lembaran oktahedral. Kedua lembaran tetrahedral mengapit lembaran octahedral (T-O-T), sehingga terlihat seperti "sandwich". Beberapa lempung yang termasuk ke dalam kelompok ini adalah Smectite, Vermiculite dan Bentonit. Istilah "smectite" digunakan untuk menjelaskan kelompok pilosilikat 2:1 yang mampu mengembang dan mempunyai muatan *layer* permanen akibat adanya substitusi isomorfis pada lapisan oktahedral Al (terutama oleh spesi bermuatan rendah seperti Mg²⁺, Fe²⁺, atau Mn²⁺) maupun pada lapisan tetrahedral Si (terutama oleh spesi Al³⁺ atau Fe³⁺). Substitusi ini mengakibatkan total muatan negatif pada struktur lempung, sehingga membutuhkan kation penyeimbang. Lapisan *interlayer* lempung terhidrasi, akibatnya kation dapat bergerak bebas masuk atau keluar struktur. Karena *interlayer* tersebut. Adanya kation pada daerah *interlayer* merupakan bagian dari kapasitas tukar kation. Pada Vermiculite, muatan negatif umumnya diakibatkan karena substitusi Si oleh Al³⁺.

2.2 Bentonit

Bentonit adalah istilah pada lempung yang mengandung montmorilonit sebagai kandungan utama dan termasuk kelompok dioktahedral. Nama bentonit pertama kali digunakan tahun 1896 oleh Knight untuk menamai suatu jenis lempung yang sangat plastis yang terdapat pada formasi benton, Rock, Creek, di negara bagian Wyoming, Amerika Serikat.

Bentonit terbentuk dari hasil pelapukan dan reaksi hidrotermal batuan vulkanik. Mineral pengotor utama yang sering terdapat dalam bentonit adalah kwarsa, illite, kristobalit, feldspar, kalsit, gypsum, kaolinite, dan plagioclas. Berdasarkan penyusunnya bentonit dibagi menjadi Na-Bentonit (natrium bentonit) dan Ca-Bentonit (kalsium bentonit).

2.2.1 Natrium Bentonit (Na-Bentonit)

Natrium bentonit merupakan bentonit yang jika didispersikan dalam air akan mengembang hingga delapan kali volume awal dan akan terdispersikan cukup lama sehingga susah untuk disedimentasikan, karena itu natrium bentonit disebut juga *swelling* bentonit. Natrium bentonit lebih banyak mengandung Na⁺ pada kation *interlayernya*.

2.2.2 Kalsium bentonit (Ca-Bentonit)

Kalsium bentonit memiliki daya mengembang yang lebih rendah dibandingkan Na-Bentonit. Posisi pertukaran kation lebih banyak ditempati Ca²⁺. Ca-Bentonit kurang mengembang dibandingkan Na-bentonit karena ion Ca²⁺ akan menarik lebih kuat kedua lapisan TOT sementara pada Na-bentonit ion Na⁺ kurang menarik kedua lapisan TOT akibat muatan yang rendah (lihat Gambar 2.6). karena sifatnya yang kurang mengembang, kalsium bentonit disebut juga *non-swelling* bentonit. Grim (1953) menyebutkan bahwa ada tiga faktor yang mengontrol ekspansi *layer* montmorilonite yaitu sifat kation *interlayer*, rapat muatan permukaan pada sisi *interlayer* (surface charge density) dan kekuatan solvasi.

Gambar 2.6 kalsium bentonit dan natrium bentonit [Sumber: <u>www.ceg.fsv.cvut.CzENeeg_uvod03_bentonit.htm</u>]

2.3 Montmorillonit

Montmorillonit merupakan anggota kelompok mineral lempung. Pada umumnya montmorillonit membentuk kristal mikroskopik atau setidaknya kristal *micaceous* berlapis sangat kecil. Kandungan air dalam montmorillonit sangat bervariasi dan ketika mengadsorpsi air, montmorillonit cenderung mengembang sampai beberapa kali volume awal. Sifat ini membuat montmorillonit menjadi mineral yang bermanfaat untuk berbagai tujuan, seperti : pembersih dan penjernih larutan gula, penyerap ion-ion logam dan penjernih air minum. Sebagai spesi mineral, montmorillonit tidak mendapat banyak perhatian karena sampel montmorillonit murni bersifat *massive*, pucat dan sangat tidak menarik. Kation-kation yang dipertukarkan dalam struktur kristal montmorillonit kebanyakan adalah Na⁺ dan Ca²⁺, namun terdapat kation lain sebagai pengotor seperti K⁺, Mg²⁺, Li⁺, Rb⁺, dan Cs⁺.

Secara alami struktur montmorillonit mengalami proses substitusi isomorfis, dimana posisi Al³⁺ digantikan oleh Mg²⁺ dan Fe²⁺ sedangkan Si⁴⁺ digantikan Al³⁺ dan Fe³⁺. Sebagai konsekuensinya terdapat netto muatan negatif pada permukaan dan harus dinetralkan oleh kation-kation seperti seperti Na⁺, K⁺, Ca⁺ dan lain-lain yang terserap di permukaan lembaran montmorillonit, kation ini disebut kation *interlayer (exchangeable cations)*.

Gambar 2.7 Struktur Montmorillonit
[Sumber: http://www.fysast.uu.se/molcond/content/bentonite-and-kaolinite]

2.4 Surfaktan

Surfaktan adalah suatu zat apabila terlarut dalam air akan mempunyai sifat adsorpsi pada permukaan/antarmuka pada sistem dan dapat merubah nilai energi bebas permukaan/antarmuka dari sistem tersebut. Oleh karena itu, surfaktan berfungsi menurunkan energi bebas antarmuka.

Dalam satu molekul surfaktan, terdiri dari bagian kepala yang memiliki gugus hidrofilik serta gugus hidrofobik sebagai ekornya, sehingga molekul surfaktan ini dikenal sebagai struktur ampifilik. Gugus hidrofobik pada umumnya berupa hidrokarbon yang terdiri dari 8 sampai dengan 22 atom karbon, sedangkan gugus hidrofiliknya terdiri atas gugus karboksilat, sulfonat, sulfat, garam amonium kuartener dan polioksietilen. Surfaktan pada permukaan polar akan berorientasi dengan gugus hidrofilik menghadap adsorben. Sebaliknya pada permukaan non polar gugus hidrofobik yang menghadap adsorben. (Myers, 1999)

2.4.1 Klasifikasi surfaktan

Berdasarkan gugus hidrofiliknya, surfaktan diklasifikasikan menjadi : (Myers, 1999)

1. Surfaktan anionik, yaitu surfaktan dengan bagian permukaan aktifnya membawa muatan negatif. Surfaktan yang termasuk golongan ini contohnya adalah: *Sodium Dodesyl Sulfate* (SDS) CH₃(CH₂)₁₁OSO₃⁻Na⁺, dan Natrium Stearat CH₃(CH₂)₁₆COO⁻Na⁺

2. Surfaktan amfoter (zwitter ion), yaitu surfaktan yang mengandung muatan positif maupun negatif pada bagian permukaannya, bergantung pada pH larutan. Pada pH di bawah titik isoelektriknya, surfaktan ini bersifat kationik, sedangkan pada pH di atas titik isoelektriknya, surfaktan ini bersifat anionik. Surfaktan yang termasuk golongan ini, contohnya adalah Dodesil Betain, $CH_3(CH_2)_{11}NHCH_2CH_2COOH$

3. Surfaktan nonionik, yaitu surfaktan dengan bagian permukaan aktifnya tidak membawa muatan (tidak terionisasi di dalam larutan). Surfaktan yang termasuk golongan ini contohnya adalah:

Tergitol, $C_9H_{19}C_6H_4O(CH_2-CH_2O)_{40}H$,

Poliostilen laurel eter, $C_{12}H_{25}O(C_2H_4O)_8H$

Triton X-100, $C_8H_{17}C_6H_4 O(CH_2CH_2O)_{10}H$

4. Surfaktan kationik, yaitu surfaktan dengan bagian permukaan aktifnya membawa muatan positif. Surfaktan kationik biasanya memiliki gugus fungsi amina, ammonium, heterosiklik. Surfaktan yang termasuk golongan ini adalah:

Dodesilamin Hidroklorida, [CH₃(CH₂)₁₁NH₃]⁺Cl^{-,}

Dodesiltrimetil Amonium Bromida [CH₃(CH₂)₁₅N(CH₃)₃]⁺Br⁻

Heksadesil Trimetilamonium Bromida (HDTMA-Br) [C₁₆H₃₃N(CH₃)₃]⁺Br⁻

Oktadesil Trimetilamonium Bromida (ODTMA-Br) [C₁₈H₃₇N(CH₃)₃]⁺Br⁻

2.4.2 Surfaktan Triton X-100

Pada penelitian ini digunakan surfaktan nonionik Triton X-100 yang merupakan surfaktan sangat stabil yang akan digunakan sebagai agen penginterkalasi untuk bentonit. Triton X-100 merupakan surfaktan nonionik dengan nama polietilen glikol P-1,1,3,3-tetrametilbutil fenil eter. Secara fisik surfaktan ini merupakan cairan kental dan bening dengan berat molekul rata rata :625 gram/mol, massa jenis: 1,07 g/ml, pH 5% larutan: 6 -8, *Critical micelle concentration* (CMC): 0.22 - 0.24 mM, larut dalam air dan dalam senyawa organik seperti benzena, alkohol dan sebagainya. Rumus struktur Triton X-100 adalah sebagai berikut:

Gambar 2.8 Struktur molekul Triton X-100

2.5 Organoclay

Organoclay dibuat dengan memodifikasi bentonit dengan surfaktan baik surfaktan kationik maupun nonionik. Pada interkalasi bentonit dengan surfaktan kationik seperti amina kuarterner, nitrogen pada amina kuarterner tersebut bersifat hidrofilik dengan muatan positif, sehingga kation natrium ataupun kalsium yang ada dalam bentonit tertukar dengan muatan positif surfaktan.

Pada penelitian ini digunakan surfaktan nonionik triton X-100. Gugus alkohol etoksilat (AE) pada triton X-100 yang bersifat polar diharapkan dapat masuk ke lapisan interlayer dari montmorillonit dan berinteraksi secara hidrofilik dengan gugus gugus polar seperti silanol pada bentonit, hal ini memungkinkan terjadinya peningkatan jarak basal spacing pada organobentonit yang terbentuk.

Menurut penelitian yang dilakukan oleh Yun-Hwei Shen (2001), kapasitas adsorpsi bentonit terhadap surfaktan nonioik lebih besar dibanding terhadap surfaktan kationik, hal ini memungkinkan terbentuknya jarak basal spacing dan kandungan karbon organik yang lebih besar pada organobentonit yang dihasilkan. Jumlah molekul surfaktan nonionik seperti polietilenoksida yang teradsorpsi pada bentonit bergantung pada panjang rantai etilen oksidanya, semakin panjang rantai etilen oksida semakin sedikit jumlah molekul surfaktan yang teradsorpsi, hal ini disebabkan karena kuatnya ikatan hidrogen yang terbentuk antara gugus alkohol etoksilat dari surfaktan dengan gugus silanol pada bentonit tersebar secara merata hingga menutupi sisi aktif bentonit.

2.6 p-Klorofenol

p-klorofenol merupakan senyawa aromatik yang memiliki rumus molekul C_6H_5ClO , dengan massa molekul relatif rata rata 128,56 gram/mol, berbentuk kristal, mempunyai nilai pKa=9,38 lebih asam dari fenol (pKa=10) karena memiliki gugus penarik elektron (Cl). p-klorofenol biasanya digunakan sebagai salah satu senyawa dalam pembuatan insektisida, antiseptik, dan desinfektan, dapat masuk ke sistem perairan dalam penggunaan sebagai pestisida.

Senyawa p-klorofenol memiliki titik didih sebesar 220°C dan titik leleh 43°C, kelarutannya dalam air 2,7 gram/100 ml pada suhu 20°C dengan *toksisitas* sebagai berikut;

- Toksisitas akut melelui inhalasi tergolong kategori 4
- Toksisitas akut melelui dermal tergolong kategori 4
- Toksisitas akut melelui oral tergolong kategori 4
- Toksisitas kronis di lingkungan *aquatik* tergolong kategori 2
 Sedangkan data ekologi dari p-klorofenol adalah sebagai berikut:
- Toksisitas pada ikan, 3,2 mg/L selama 96 jam dapat menyebabkan kematian.
- LC₅₀ pada ikan jenis Lepomis macrohirus 3,1 4,8 mg/L selama 96 jam
- Toksisitas pada species *daphnia* dan invertebrata yang lain pada sistem *aquatik* 0,2 mg/L selama 8 hari dapat menyebabkan kematian.

2.7 Karakterisasi

2.7.1 Spektroskopi Inframerah (FT-IR)

Spektroskopi inframerah adalah suatu alat yang sangat besar andilnya dalam mengidentifikasi tipe-tipe ikatan kimia yang menyusun suatu molekul tertentu dengan memproduksi spektrum absorpsi inframerah yang biasanya hasil pengukuran alat ini disebut sebagai sidik jari molekul "finger-print". FT-IR banyak digunakan untuk mengidentifikasi bahan kimia baik yang organik maupun anorganik. Serapan cahaya inframerah oleh molekul bergantung pada vibrasi ikatan molekular dan tipe ikatan molekul. Setiap jenis vibrasi pada molekul, mempunyai frekuensi spesifik, dan molekul molekul akan menyerap sinar inframerah pada frekuensi tertentu jika di dalam molekul ada transisi energi ($\Delta E=h\nu$). Transisi yang terjadi di dalam serapan inframerah berkaitan dengan perubahan vibrasi di dalam molekul.

Instrumen FTIR menggunakan sumber radiasi dalam kisaran inframerah (bilangan gelombang = 4000-400 cm⁻¹). Radiasi dalam kisaran energi ini sesuai dengan kisaran frekuensi vibrasi rentangan (*stretching*) dan vibrasi bengkokan (*bending*) ikatan kovalen dalam kebanyakan molekul. Tiap molekul memiliki ikatan yang berbeda-beda sehingga energi vibrasinya juga beragam. Informasi penting dari karakterisasi menggunakan FTIR ini adalah untuk menentukan keberadaan suatu molekul, dalam penelitian ini bertujuan untuk melihat keberadaan molekul surfaktan triton X-100 pada bentonit yang sudah dimodifikasi menjadi organoclay, dan melihat keberadaan molekul p-klorofenol pada organoclay yang telah mengadsorpsi p-klorofenol.

Gambar 2.9 Komponen FTIR

[Sumber: http://www.nuance.northwestern.edu/KeckII/Instruments/FT-IR/index.html

2.7.2 Difraksi Sinar-X (XRD)

Sinar X dapat digunakan untuk menghasilkan pola difraksi tertentu yang dapat digunakan dalam analisis kualitatif dan kuantitatif material. Apabila suatu material dikenai sinar X, maka intensitas sinar yang ditransmisikan lebih rendah dari intensitas sinar datang. Hal ini disebabkan adanya penyerapan oleh material dan juga penghamburan oleh atom-atom dalam material tersebut. Berkas sinar X yang dihamburkan tersebut ada yang saling menghilangkan karena fasanya berbeda dan ada juga yang saling menguatkan karena fasanya sama. Berkas sinar X yang saling menguatkan itulah yang disebut sebagai berkas difraksi. Hukum Bragg merupakan persamaan matematika tentang persyaratan yang harus dipenuhi agar berkas sinar X yang dihamburkan tersebut merupakan berkas difraksi.

Kegunaan pengukuran XRD yakni mengidentifikasi kristal dengan mempelajari pola difraksinya. Secara spesifik dapat digunakan untuk mengidentifikasi dan menganalisis struktur mineral *clay*, keramik, dll. Bahkan dapat juga mendeterminasi jumlah kuantitas beberapa fasa yang diuji dengan mengalkulasikan rasio puncak, determinasi bentuk kristal dengan mempelajari kesimetrian puncak.

Untuk menentukan jarak antar bidang pada *organoclay* pada penelitian ini juga dikarakterisasi menggunakan XRD. Pola difraktogram yang tampil merupakan sidik jari yang dapat dikenali sehingga untuk data yang diinginkan

dapat dilihat dari pola difraktometer, serta untuk mendapatkan nilai d-*spacing* dapat digunakan data sudut 2 theta (2θ) melalui hukum Bragg :

 $n\lambda = 2d \sin \theta$ n=1, 2, 3, ...

Gambar 2.10 Difraksi sinar X [Sumber: <u>http://www.abdn.ac.uk/~che241/cdiff/indexx.htm</u>]

2.7.3 Spektrofotometer UV/ Visibel

Serapan cahaya oleh molekul dalam daerah spektrum ultraviolet dan sinar tampak tergantung pada struktur elektronik dari molekul. Spektra ultraviolet dan sinar tampak dari senyawa senyawa organik berkaitan erat dengan transisi transisi diantara tingkatan tingkatan energi elektronik. Transisi elektronik yang mungkin terjadi adalah, elektron ikatan jenuh, elektron pasangan bebas, dan elektron ikatan tak jenuh ke orbital anti ikatan

Daerah spektrum UV-VIS yang digunakan di atas 200 nm diperkirakan energinya mencapai 143 kkal/mol. energi tersebut cukup untuk mengeksitasikan elektron molekul ke tingkat yang lebih tinggi. Fenomena ini sering disebut sebagai spektroskopi elektronik. Promosi elektron yang terjadi biasanya dari orbital yang penuh elektron (HOMO) ke orbital yang kurang elektron (LUMO). Ketika molekul sampel disinari cahaya yang memiliki energi yang sesuai, terjadi kemungkinan transisi elektronik antara molekul. Beberapa sinarnya akan terabsorb dan ada yang diteruskan. Sinar yang tidak diserap akan terdeteksi pada alat dan menghasilkan spektrum dengan absorbansi spesifik pada setiap panjang gelombang tertentu. Spektrum UV-Vis mengukur intensitas cahaya setelah melewaati sampel (I) dan membandingkannya dengan intensitas cahaya sebelum melewati sampel (I_o). Perbandingan I dengan I_o (I/I_o) disebut transmitan (T) biasanya ditulis dalam persen (%T), dan logaritme dari 1/T disebut sebagai absorbansi (A) yang dapat dihitung dengan persamaan Lambert – Beer :

$$A = \epsilon.b.c,$$

dimana;

A= absorbansi

 ϵ = Absorpsivitas molar (liter mol⁻¹. cm⁻¹)

b= Ketebalan sel /kuvet (cm)

c= Konsentrasi larutan (mol/Liter)

2.7.4 Energy Dispersive X-Ray (EDX)

Teknik analisis EDX digunakan setelah analisis dengan SEM. SEM-EDX berguna untuk karakterisasi secara kimia suatu specimen dalam konteks mikroanalisis. Alat ini dapat menghasilkan data analisis kualitatif dan semi kuantitatif. SEM-EDX memungkinkan kita mengidentifikasi fasa dan kimiawi pada material yang tidak diketahui. Determinasi intra dan interfasa distribusi elemen dengan pemetaan sinar-X dapat mendeterminasi kristal yang cacat atau rusak, propagasi arah kerusakan kristal serta mengetahui kontaminan. (rtiintl.com 2010)

Dengan EDX (Energy Dispersive X- ray Spectroscopy) dapat mendeteksi unsur-unsur dalam material. Pada pengambilan data dengan alat SEM-EDX, sampel bubuk yang telah diletakkan di atas specimen holder dimasukkan kedalam specimen chamber dengan tingkat kevakuman yang tinggi yaitu sekitar 2 x 10⁻⁶ torr, kemudian dimasukkan dalam alat SEM-EDX. Dalam pengukuran SEM-EDX untuk setiap sampel dianalisa dengan menggunakan analisis area. Sinar elektron yang di hasilkan dari area gun dialirkan hingga mengenai sampel. Aliran sinar elektron ini selanjutnya di fokuskan menggunakan elektron optik columb sebelum sinar elektron tersebut membentuk atau mengenai sampel. Setelah sinar elektron mengenai sampel, akan terjadi beberapa interaksi pada sampel yang disinari. Interaksi – interaksi yang terjadi tersebut selanjutnya akan dideteksi dan di ubah ke dalam sebuah gambar oleh analisis SEM dan juga dalam bentuk grafik oleh analisis EDX.

2.8 Isoterm Adsorpsi

Isoterm adsorpsi merupakan adsorpsi yang terjadi pada suhu konstan, adsorpsi yang terjadi harus dalam keadaaan kesetimbangan dimana adsorpsi dan desorpsi berlangsung dalam laju yang relatif sama. Kesetimbangan adsorpsi biasanya digambarkan dengan persamaan isoterm dimana para meter parameternya menunjukkan sifat permukaan dan afinitas dari adsorben pada kondisi suhu dan pH yang tetap. Beberapa penelitian telah dilakukan untuk menyelidiki isoterm adsorpsi ion logam berat pada pH, jumlah adsorben, konsentrasi ion, waktu kontak dan suhu optimum sebagai variabel tetap serta konsentrasi adsorbat (mg/L) sebagai variabel bebas (Gupta *et al.* 2008). Terdapat beberapa jenis persamaan isoterm adsorpsi, yang sering digunakan adalah :

1. Isoterm Langmuir

Persamaan adsorpsi isoterm Langmuir didasarkan pada 2 anggapan (Sukardjo, 1997), yaitu:

a. Lapisan molekul adsorbat pada adsorben hanya 1 molekul

Laju kondensasi ∞ (1- θ) Ce

 b. Pada proses adsorpsi terjadi dua peristiwa yang bersamaan yaitu proses adsorpsi/kondensasi (penyerapan adsorbat) dan proses desorpsi (pelepasan adsorbat).

 $= k_1 \quad (1-\theta) \quad Ce,$(1)
sedangkan
Laju desorpsi $\infty \theta$ $= k_2 \theta \quad(2)$

dimana

- θ = Bagian permukaan adsorben yang tertutupi molekul adsorbat
- $(1-\theta)$ = Bagian permukaan adsorben yang kosong
- Ce = Konsentrasi kesetimbangan adsorbat dalam larutan

Pada keadaan setimbang laju adsorpsi sama dengan laju desorpsi sehingga berlaku persamaan :

Jumlah adsorbat yang terserap persatuan massa adsorben (qe) berbanding lurus dengan bagian permukaan adsorben yang tertutup oleh molekul adsorbat. Secara matematis dapat ditulis sebagai berikut ;

$$qe \propto \theta$$

$$qe = k_3 \theta \quad \text{karena} \quad \theta = (b.Ce)/(1+b.Ce), \text{ maka}$$

$$qe = k_3 (b.Ce)/(1+b.Ce)$$

$$qe + qe.bCe = k_3.b.Ce$$

$$qe(1+b.Ce) = k_3.b.Ce$$

$$Ce/qe = (1+b.Ce)/k_3.b$$

$$Ce/qe = (1/k_3.b) + (1/k_3) \quad Ce$$

dimana k₃ merupakan konstanta yang mecerminkan nilai kapasitas adsorpsi maksimum (qm) adsorben terhadap adsorbat, sehingga persamaan 4 dapat disubstitusi menjadi

 C_e / q_e = 1 /(bq_m) + ((1/ q_m) C_e (5)

dimana

 C_e = Konsentrasi adsorbat pada kesetimbangan fasa cair (mg/L)

 $q_e = Konsentrasi adsorbat pada fasa padat (mg/g adsorben)$

 $1/q_m$ = Kemiringan /slope

 $q_m = Kapasitas adsorpsi optimum (mg/g)$

 $1/(bq_m)$ = Intercep

b = Tetapan yang mencerminkan nilai energi adsorpsi

b.qm = Tetapan yang mencerminkan nilai konstanta kesetimbangann adsorpsi

Gambar persamaan linear Langmuir diperoleh dengan memplot C_e/q_e vs C_e , dengan persamaan tersebut dapat dicari kapasitas adsorpsi optimum adsorben terhadap adsorbat. Persamaan Langmuir biasanya banyak digunakan untuk membahas adsorpsi monolayer. Persamaan Langmuir juga digunakan untuk memperoleh nilai R, yang menggambarkan dimensi parameter kesetimbangan atau faktor pemisahan dengan persamaan (Ho, 2003)

 $R = 1 / (1+b.C_e)$ (6)

Berdasarkan nilai R, bentuk isotherm dapat ditafsirkan sebagai berikut :

- R > 1, menggambarkan adsorpsi yang kurang baik
- R = 1, menggambarkan adsorpsi linear
- 0 < R < 1, menggambarkan adsorpsi yang bagus, dan

- $\mathbf{R} = \mathbf{0}$, menggambarkan adsorpsi irreversible

2. Isoterm Freundlich :

 $\mathbf{q}_{\mathbf{e}} = \mathbf{K}_{\mathbf{f}} (\mathbf{C}\mathbf{e})^{1/n}$

(7)

dimana

 C_e = Konsentrasi adsorbat pada kesetimbangan fasa cair (mg/L)

 $q_e = Konsentrasi adsorbat pada fasa padat (mg/g adsorben)$

K_f = Tetapan yang mencerminkan nilai kapasitas adsorpsi pada lapisan pertama

.....

n = Tetapan yang mencerminkan nilai konstanta kesetimbangan adsorpsi
Untuk membuat persamaan garis lurus berdasarkan persamaan adsorpsi isoterm Freundlich, maka persamaan 7 diatas dapat diubah dalam bentuk logaritma menjadi;

 $Log qe = log kf + 1/n log Ce \qquad (8)$

Kurva persamaan linear dari Freundlich diperoleh dengan memplot $\log q_e$ vs $\log C_e$ dengan persamaan isoterm tersebut dapat dicari kapasitas adsorpsi optimum adsorben terhadap adsorbat. Persamaan Freundlich biasanya digunakan untuk adsorpsi yang bersifat bilayer.

BAB III

METODOLOGI PENELITIAN

3.1 Lokasi dan Waktu Penelitian

Penelitian dilakukan di Laboratorium Penelitian Departemen Kimia Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia yang dimulai dari bulan September 2011 sampai dengan Mei 2012.

3.2 Alat dan Bahan

3.2.1 Alat-alat yang digunakan

Peralatan yang digunakan dalam penelitian ini antara lain: labu ukur, gelas ukur, pipet volumetri, pipet tetes, gelas beker, batang pengaduk, botol semprot, bulb, tabung reaksi, mortar, neraca analitik, oven, sentrifugator, ayakan mesh, magnetic stirrer.

3.2.2 Alat Uji

Alat uji yang digunakan untuk karakterisasi organoclay ialah spektrofotometer UV-Vis, spekrofotometer FT-IR, Difraksi sinar-X (XRD), dan EDX

3.2.3 Bahan-bahan yang digunakan

- Bentonit Alam desa biyuku Tanjung Kabupaten Mmerangin Jambi

- Akuades
- NaCl
- HCl
- AgNO₃

- Etilendiamin (EDA)
- Tembaga (II) sulfat pentahidrat (CuSO $_4.5H_2O$)
- Triton x-100 ($C_8H_{17}C_6H_4(OCH_2CH_2)_{10}OH$

3.3 Alur Penelitian

3.4.1 Preparasi Bentonit

Memanaskan serbuk bentonit pada suhu 105 ^oC selama 2 jam. Kemudian bentonit yang sudah dikeringkan dikarakterisasi.

3.4.2 Fraksinasi Sedimentasi Bentonit

Sebanyak 80 gram bentonit dimasukkan ke *beaker glass* kemudian ditambahkan 1600 ml aquades. Campuran yang terbentuk diaduk selama 30 menit, kemudian didiamkan selama 5 menit. Endapan (sedimen) yang terbentuk dipisahkan dengan menuangkan cairan diatasnya ke wadah lain. Endapan disebut fraksi satu (F1). Suspensi hasil pemisahan F1 didiamkan selama 30 menit,

endapan (F2) dipisahkan dari suspensi diatasnya. Suspensi ini kemudian didiamkan lagi selama 2 jam untuk memperoleh endapan F3. Proses dilanjutkan hingga fraksi 4/fraksi sisa (lebih dari 24 jam). Endapan tiap fraksi dikeringkan dalam oven 105^oC sampai kering. Tiap fraksi dianalisa dengan XRD dan dihitung kelimpahan realtif masing-masing *clay* dengan metode biscaye. Fraksi kaya *montmorillonite* dianalisa dengan EDX

3.4.3 Sintesis Natrium-Montmorilonit (Na-MMT)

Sebanyak 20 gram bentonit fraksi kaya montmorilloit (fraksi satu) disuspensikan ke dalam 600 mL larutan NaCl 1 M. Suspensi diaduk dengan stirrer selama 6 jam. Dekantasi campuran dan diambil endapannya. Endapan tersebut didispersikan kembali dengan 600 mL NaCl 1 M. dan dilakukan pengadukan kembali dengan stirrer selama 6 jam, lalu endapan didekantasi. Endapan dicuci dengan akuades beberapa kali. Filtrat diuji dengan menambahkan AgNO₃ 1 M beberapa mL sampai yakin tidak terbentuk endapan putih AgCl. Setelah dilakukan pencucian, endapan dipisahkan dari filtrat dengan sentrifugasi selama 10 menit, kemudian dibiarkan pada suhu kamar hingga terbentuk retakan, lalu dikeringkan dalam oven pada suhu 105 ^oC. Endapan digerus dan diayak hingga berukuran 200 mesh. Na-bentonit yang diperoleh di karakterisasi dengan XRD, FT-IR, dan EDX.

3.4.4 Penentuan Kapasitas Tukar Kation (KTK)

Larutan 0.05 M $Cu(EDA)_2^{2+}$ dibuat dengan mencampurkan larutan CuSO₄.5H₂O 1M dan larutan etilendiamin 1 M dengan perbandingan stoikiometri (1:2). Sebanyak 0.1 gram bentonit disuspensikan dengan 5 mL larutan kompleks Cu(EDA)₂²⁺ dan akuades 20 mL. Kemudian suspensi diaduk dengan stirrer. Absorbansi larutan Cu(EDA)₂²⁺ sebelum dan setelah dicampur diukur dengan spektrofotometer UV/Vis pada λ maks 536 nm. Dibuat larutan standar yang mendekati absorbansi filtrat larutan kompleks setelah diaduk.

3.4.5 Sintesis Organoclay Dengan Surfaktan tritonX-100 Sebagai Penginterkalasi

Sebanyak 0,5 gram Na-MMT didispersikan kedalam aquades lalu diaduk dengan menggunakan stirer sambil ditetesi larutan surfaktan triton x-100 dengan konsentrasi yang bervariasi sehingga diperoleh 50 ml campuran suspensi Na-MMT dan surfaktan dengan variasi konsentrasi sebesar 10272; 8560; 6848; 4280 dan 1070 mg/L. Kemudian dilakukan pengadukan dengan stirrer selama 24 jam. Campuran disentrifugasi lalu didekantasi, endapan yang diperoleh lalu oven dengan suhu 60^{0} C hingga kering. Organoclay yang dihasilkan diuji dengan XRD, dan FT-IR. Diantara organoclay yang dihasilkan (OC₁₀₂₇₂; OC₈₅₆₀; OC₆₈₄₈; OC₄₂₈₀ dan OC₁₀₇₀), Organoclay dengan d-spacing terbesar akan digunakan untuk keperluan aplikasi lebih lanjut.

3.4.6 Aplikasi Bentonit, Na-MMT, dan Organoclay Sebagai Adsorben p-klorofenol

Sebanyak 0,3 gram adsorben ditambahkan dengan 30 mL larutan pklorofenol dengan variasi konsentrasi 20, 40, 60, dan 100 ppm. Campuran diaduk selama 15 menit lalu didiamkan selama 12 jam. Untuk memisahkan endapan dari filtrat dilakukan dengan cara sentrifugasi. Supernatan dianalisis dengan spektrometri UV/Vis. Endapan dikarakterisasi dengan XRD dan FTIR. Untuk mengetahui konsentrasi larutan yang diuji, dibuatkan larutan standar fenol 100, 80, 60, 40, 20, dan 10 ppm. Dari data konsentrasi adsorbat yang teradsorpsi pada adsorben dan konsentrasi yang tersisa dalam larutan dapat ditentukan efisiensi adsorpsi, kapasitas adsorpsi, dan model isoterm adsorpsi (Langmuir dan Freundlich)

3.5 Bagan Kerja

3.5.1 Preparasi Bentonit

3.5.2 Sintesis Na-Montmorillonit

3.5.4 Sintesis Organoclay

3.5.5 Penentuan kapasitas bentonit, Na-MMT dan Organoclay sebagai adsorben p-klorofenol

sejumlah 0,3 gram adsorben masing masing ditambahkan dengan 30 mL larutan p- klorofenol sesuai dengan variasi konsentrasi (20-100 ppm).

Campuran distirer selama 15 menit pada suhu ruang lalu didiamkan selama 12 jam

Supernatan diambil dengan cara disentrifugasi.

Supernatan dianalisis dengan spektrometri UV/Vis.

Endapan dikarakterisasi dengan FTIR

BAB IV HASIL DAN PEMBAHASAN

4.1 Preparasi dan Fraksinasi Bentonit

Tahap awal dalam sintesis dan karakterisasi bentonit adalah preparasi. Preparasi bentonit alam yang berasal dari Merangin Provinsi Jambi diawali dengan penggerusan agar ukuran partikel menjadi lebih kecil, sehingga luas permukaannya menjadi lebih besar. Serbuk bentonit yang dihasilkan kemudian dikeringkan di dalam oven pada suhu 105°C untuk menghilangkan kadar air yang berlebihan, lalu didispersikan ke dalam aquades, sehingga dihasilkan suspensi bentonit dalam aquades

Sebelum dilakukan sedimentasi, suspensi bentonit dalam aquades diaduk dengan menggunakan stirer selama 30 menit dengan tujuan agar dispersi partikel terdistribusi sempurna. Selanjutnya suspensi bentonit didiamkan dan difraksinasi berdasarkan endapan yang terbentuk dalam rentang waktu tertentu, yang dalam penelitian ini adalah 5 menit (fraksi 1), 30 menit (fraksi 2), 120 menit (fraksi 3) dan lebih dari 24 jam (fraksi 4). Pemilihan rentang waktu tersebut berdasarkan pada kecepatan penambahan ketebalan sedimen. Proses fraksinasi dilakukan dengan memisahkan endapan (sedimen) dengan cara dekantasi. Suspensi dari hasil pengendapan pertama kemudian diendapkan lagi (30 menit) sehingga diperoleh fraksi 2. Proses pengendapan dilanjutkan sehingga diperoleh 4 fraksi bentonit. Sedimen yang diperoleh dari setiap fraksi dikeringkan dalam oven pada suhu 105^oC.

Proses fraksinasi berdasarkan laju pengendapan ini, perlu dilakukan karena selain montmorillonit sebagai mineral utama, di dalam bentonit seringkali ditemukan mineral-mineral lain seperti kuarsa, pirolisit, kristobalit, dan kaolinit. Dengan proses farksinasi berdasarkan laju pengendapan diharapkan akan diperoleh fraksi bentonit dengan kandungan montmorillonit yang lebih tinggi. Pengotor-pengotor yang memiliki massa jenis lebih besar akan mengendap lebih awal, atau sebaliknya jika terdapat pengotor pengotor yang memiliki massa jenis lebih kecil akan tetap stabil sebagai suspensi, sehingga pengotor tersebut terpisah dari montmorillonit.

Fraksi fraksi bentonit yang dihasilkan dari proses fraksinasi sedimentasi 80 gram bentonit alam Merangin Jambi disajikan dalam Tabel 4.1 sebagai berikut:

Fraksi	Massa (gram)	% Massa
Fraksi 1/F1 (5 menit)	47,65	59,81
Fraksi 2/F2 (30 menit)	19,41	24,27
Fraksi 3/F3 (120 menit)	6,22	7,77
Fraksi 4/F4 (fraksi sisa)	4,10	5,07
Total	77.38	96,92

Tabel 4.1. Persen massa tiap fraksi

Dari Tabel 4.1 terlihat bahwa jumlah total semua fraksi kurang dari 100 %, (sekitar 97%) hal ini disebabkan karena setelah didiamkan selama 3 hari, masih terdapat suspensi yang belum mengendap (koloid yang stabil) yang diduga masih mengandung bentonit (Na-Bentonit) dan pengotor yang mempunyai massa jenis lebih rendah.

Selanjutnya bentonit alam dan fraksi bentonit yang diperoleh dari proses fraksinasi sedimentasi dikarakterisasi dengan XRD untuk memastikan adanya montmorillonit dengan melihat puncak puncak khas bentonit yang muncul pada posisi 20. Disamping itu data intensitas spektrum XRD yang muncul pada posisi 20 tersebut digunakan untuk menentukan komposisi relatif montmorillonit dari setiap fraksi bentonit. Karakterisasi XRD dilakukan pada kondisi pengukuran sebagai berikut: atom target Cu, panjang gelombang (λ) 1,5406 °A, voltase 40 kV, dan kuat arus 30 mA. Proses karakterisasi dilakukan pada rentang sudut 20 sebesar 2- 50. Difraktogram bentonit alam dan hasil fraksinasinya ditampilkan pada Gambar 4.1 (difraktogram dan data XRD lengkap terlampir pada Lampiran 1-5).

Gambar 4.1 Difaktogram bentonit alam dan hasil fraksinasi pada 20 2° - 50°

Berdasarkan spektrum XRD (Gambar 4.1 dan Lampiran 1-5), dihasilkan puncak puncak pada berbagai posisi 20, menunjukan bahwa setiap fraksi bentonit yang diperoleh mengandung monmorillonit dan pengotor silika non lempung seperti kuarsa. Intensitas dari puncak puncak utama montmorillonit untuk setiap fraksi ditampilkan pada Tabel 4.2.

	1. 4.4	Intensitas pada beberapa puncak							
Jenis	d- spacing	d- spacing Peak		c 1 Peak 2		eak 2 Pe			
Bentonit	$(\mathbf{A}^{\mathbf{o}})$	20	Intensi	20	Intensi	20	Intensi		
		10	tas		tas		tas		
Alam	15,93	5,54	501	19,82	325	35,88	168		
Fraksi 1	15,39	5,74	485	19,90	355	35,88	174		
Fraksi 2	14,91	5,92	235	19,88	343	35,66	176		
Fraksi 3	14,21	6,22	158	19,88	328	35,78	171		
Fraksi 4	14,40	6,13	200	19,90	346	35,94	168		

 Tabel 4.2 Intensitas puncak puncak utama montmorillonit

Dari Tabel 4.2 di atas terlihat adanya perbedaan intensitas relatif pada puncak puncak utama montmorillonit dari setiap fraksi. Fraksi 1 memiliki intensitas relatif yang lebih besar dibanding tiga fraksi lainnya. Hal ini menunjukkan bahwa fraksi bentonit dengan kandungan montmorillonit paling tinggi adalah fraksi 1

Penentuan fraksi yang kaya *smectite/montmorillonite* juga dapat dilakukan dengan metode Biscaye (Irwansyah, 2007) yang digunakan pada fraksinasi bentonit alam yang berasal dari Tapanuli Sumatera Utara. Pada metode tersebut komposisi relatif *clay* berbanding lurus dengan luas area puncak (atau nilai Integrated intensity) dikalikan faktor berat biscaye. Komposisi *clay* yang dianalisa dengan metode biscaye adalah *Smectite/ montmorillonite* (S), *Illite* (I), *Chlorite* (C), *Kaolinite* (K). Hasil perhitungan lengkap dengan metode Biscaye dapat dilihat pada Lampiran 27 dan 28. Komposisi relatif masing-masing *clay* hasil fraksinasi berdasarkan metode Biscaye ditampilkan pada tabel 4.3

Bentonit	Smectite (%)	Illite (%)	Chlorite(+Kaolinite) (%)
Alam	76,26	14,93	8,81
Fraksi 1	80,29	10,55	9,16
Fraksi 2	76,06	6,07	17,87
Fraksi 3	60,25	22,40	17,35
Fraksi 4	67,07	17,55	15,38

Tabel 4.3. Komposisi Relatif clay dari bentonit alam dansetiap fraksi yang diperoleh.

Tabel 4.3 memperlihatkan bahwa proses fraksinasi merubah komposisi *smectite, illite, dan chlorite.* Komposisi *smectite* bentonit alam dan bentonit hasil fraksinasi memperlihatkan komposisi *clay* yang bervariasi. Bentonit alam Merangin Jambi mengandung *smectite* sebesar 76,26%, dan yang tertinggi terdapat pada fraksi 1 yaitu sebesar 80,29% dan yang terendah terdapat pada fraksi 3 (60,25%). Kandungan *Chlorite(+Kaolinite)* tertinggi terdapat pada fraksi 2 (17,87%) dan yang terendah terdapat pada fraksi 1 (9,16%). Komposisi relatif masing-masing *clay* dengan kandungan *smectite /montmorillonite* yang cenderung menurun dari fraksi 1 sampai fraksi 4, lebih banyak disebabkan oleh interaksi *clay* dengan molekul air, dan tipe agregat. Interaksi *clay* dengan

molekul air dipengaruhi oleh jenis kation interlayer pada *smectite/ montmorillonite*. Ketika montmorillonit berada dalam air, karakter negatif pada permukaan lembaran (T-O-T) akan memberikan gaya tarik terhadap adsorbsi molekul air. Kation monovalen seperti Na⁺ yang berada di permukaan bentonit akan berasosiasi dengan daerah yang mengalami defesiensi muatan positif pada salah satu lembaran saja, akibatnya diantara lembaran akan terpisah cukup jauh dan memungkinkan interaksi dengan air (hidrasi) lebih banyak dan meningkatkan kestabilan. Sedangkan kation bivalen seperti Mg^{2+} tidak bisa secara efektif berasosiasi dengan dua pusat negatif pada salah satu lembaran sehingga harus berasosiasi dengan dua lembaran sekaligus. Akibatnya interaksi dengan molekul air lebih sedikit dan cenderung mudah mengendap.(Irwansyah 2007).

Berdasarkan uraian di atas dapat difahami mengapa fraksi yang kaya montmorillonit adalah fraksi 1 (fraksi yang lebih dahulu tersedimentasi), karena bentonit alam yang berasal dari Merangin Jambi lebih banyak mengandung kation kation bivalen seperti Mg²⁺ dibanding kation monovalen seperti Na⁺ pada lapisan interlayernya. Kesimpulan ini didukung oleh data EDX dari Bentonit alam dan bentonit hasil fraksinasi yang terlampir pada Lampiran 16-20 dan hasilnya ditampilkan pada Tabel 4.4

		Kadar unsur pada									
Unsur	Bentonit alam		Fraksi 1		Fraksi 2		Fraksi 3		Fraksi 4		
	%	%	%	%	%	%	%	%	%	%	
	berat	mol	berat	mol	berat	mol	berat	mol	berat	mol	
Magnesium	0,53	0,43	0,37	0,31	0,27	0,22	0,18	0,14	0,23	0,19	
Kalsium	0,20	0,10	0,12	0,06	0,11	0,05	0,07	0,04	0,11	0,05	
Kalium	0,19	0,10	0,06	0,03	0,05	0,03	0,05	0,03	0,05	0,03	
Natrium	0,01	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	

Tabel 4.4 Kadar kation logam penyeimbang

Rasio Si/Al pada bentonit alam Jambi dan hasil fraksinasinya yang relatif sama dengan nilai rasio sekitar 2, menunjukkan bahwa setiap fraksi tersebut mengandung montmorillonit sesuai dengan strukturnya yang terdiri dari satu lapisan oktahedral dari aluminium oksida dan dua lapisan terahedral dari silikon oksida, seperti terlihat pada Tabel 4.5 berikut:

Bentonit	Si (% berat)	Al (% berat)	Rasio Si/Al
Raw Bentonit alam	26,34	9,62	2,74
Fraksi 1	26,18	9,47	2,76
Fraksi 2	27,60	9,44	2,92
Fraksi 3	24,22	9,07	2,67
Fraksi 4	24,39	9,99	2,44

Tabel 4.5. Rasio Si/Al

Puncak puncak utama kuarsa atau pengotor lain pada bentonit alam Merangin Jambi dan hasil fraksinasinya terdeteksi pada posisi 2 theta di sekitar 21 dan 26 yang terlihat pada Tabel 4.6.

	Intensitas pada 2 peak					
Jenis bentonit	Pe	eak 1	Peak 2			
	20	Intensitas	20	Intensitas		
Alam	21,80	404	26,59	67		
Fraksi 1	21,78	426	26,64	77		
Fraksi 2	21,76	426	26,63	73		
Fraksi 3	21,33	437	26,63	76		
Fraksi 4	21,88	450	- 26,65	63		

Tabel 4.6 Intensitas puncak kuarsa

4.2 Sintesis Na- MMT

Sebelum dimodifikasi menjadi *organoclay*, Fraksi bentonit yang kaya montmorillonit (fraksi 1) dilakukan penyeragaman kation interlayer dengan ion Na⁺. Substitusi ini bertujuan untuk menyeragamkan kation yang ada di antara interlayer, sehingga penentuan nilai KTK dapat lebih akurat karena berdasarkan

mayoritas jumlah kation Na⁺. Hasil dari penyeragaman kation pada fraksi satu ini disebut Na-MMT (Natrium- Montmorillonit)

Keberadaan kation Na⁺ di interlayer akan memperbesar daya *swelling* (kemampuan mengembang) bentonit tersebut, sehingga akan mempermudah surfaktan masuk ke dalam lapisan di antara interlayer dalam proses interkalasi seperti diilustrasikan oleh Gambar 4.2. Na-bentonit bersifat lebih mengembang dibandingkan bila dalam interlayer terdapat ion divalen seperti Ca²⁺ dan Mg²⁺, karena ion Na⁺ didalam interlayer akan berasosiasi dengan daerah yang mengalami defisiensi muatan positif pada salah satu lembar saja, sehingga di antara lembaran akan terpisah cukup jauh dan memungkinkan interaksi dengan air lebih banyak dan meningkatkan kestabilan (Oktaviani, 2011).

Gambar 4.2 Gambar Na-bentonit [Sumber: <u>www.tulane.edu/~sanelson/eens/211 19 Januari 201</u>2]

Proses sintesis Na-MMT sangat dipengaruhi oleh kekuatan ikatan antara lapisan T-O-T dengan jenis kation interlayer. Kuatnya ikatan antara lapisan T-O-T dengan kation interlayer yang didominasi oleh kation bivalen seperti tercermin pada tabel 4.4 di atas menyebabkan proses penyeragaman kation interlayer dengan ion Na⁺ menjadi kurang sempurna, hal ini ditunjukkan dengan sedikitnya peningkatan kadar Natrium dari 0,00 % (tidak terdeteksi) pada bentonit fraksi 1 menjadi 0,44% berat atau 0,38 % jumlah atom pada Na-MMT (Lampiran 17 dan 21). Namun demikian secara fisik, kesetabilan dan kemampuan mengembang dispersi Na-MMT dalam air terlihat lebih baik dibanding bentonit

fraksi 1 seperti terlihat pada Gambar 4.3, dimana pada dispersi bentonit fraksi satu terbentuk endapan setelah dibiarkan beberapa menit, sedangkan dispersi Na-MMT tetap setabil sebagai suspensi yang berarti Na-MMT yang dihasilkan mengalami *sweling* dan berinteraksi dengan air lebih banyak.

Gambar 4.3. Dispersi Bentonit fraksi satu dan dispersi Na-MMT

Penyeragaman kation interlayer pada bentonit dilanjutkan dengan metode pengasaman. Dimana sebelum distirer dengan larutan NaCl, bentonit fraksi satu didispersikan kedalam larutan HCl 0,1 M lalu distirer selama 3 jam. Hal ini dilakukan dengan asumsi bahwa ion H⁺ akan lebih mudah memutus ikatan antara kation interlayer dengan lapisan T-O-T dan menggantikan kation kation interlayer, kemudian ion Na⁺ dari NaCl akan menggantikan ion H⁺ pada interlayer. Tetapi hasil yang diperoleh justru sebaliknya. Dari data XRD yang terdapat pada Lampiran 7 menunjukkan bahwa jarak *basal spacing* dan intensitas montmorillonit pada Na-MMT yang disintesis dengan pengasaman mengalami penurunan. Hal ini memperkuat laporan Irwansyah (2007) yang menyatakan bahwa purifikasi secara kimia pada bentonit akan menurunkan intensitas *smectite* karena perlakuan kimia akan merubah struktur montmorillonit, walaupun pada penelitian sebelumnya, Hayashi (1964) dalam laporan Mikutta (2005) menemukan bahwa tidak ada indikasi kerusakan struktur pada clay setelah bereaksi dengan H₂O₂ 30% pada temperatur 80-90⁰C selama beberapa hari. Fakta ini memperkuat kesimpulan yang dibuat oleh Gordon (1980) yang menyatakan bahwa perlakuan kimia pada *clay* dipengaruhi sifat asli *(nature) clay* itu sendiri. Berdasarkan data tersebut dapat disimpulkan bahwa bentonit alam Merangin Jambi tidak tahan terhadap perlakuan kimia (asam). Pola XRD dari fraksi 1, Na-MMT dan Na-MMT dengan perlakuan asam ditampilkan pada Gambar 4.4 berikut:

Gambar 4.4 Pola XRD F1, Na-MMT, dan Na-MMT asam

Gambar 4.4 memperlihatkan penurunan intensitas yang tajam dari montmorillonit pada Na-MMT yang disintesis dengan perlakuan asam. Berdasarkan data XRD pada Lampiran 2, Lampiran 6, dan Lampiran 7 dapat ditampilkan jarak basal spacing dan intensitas montmorillonit pada bentonit fraksi 1, Na-MMT, dan Na-MMT asam, seperti tampak pada Tabel 4.7 berikut:

Tabel 4.7. Jarak basal spasing dan intensitas puncak montmorillonit pada F1, Na-MMT, dan Na-MMT asam

Clay	2 theta (deg)	d-spasing(°A)	Intensitas (Counts)
Fraksi 1	5,7392	15,39	485
Na-MMT	5,6105	15,74	231
Na-MMT asam	7,3326	12,05	101

Hasil karakterisasi F1 dan Na-MMT dengan FTIR menunjukkan adanya pita serapan pada bilangan gelombang 1631cm⁻¹ pada F1 dan pada Na-MMT yang merupakan pita tekuk H-O-H yang terdeformasi. Pada bilangan gelombang sekitar 500-1000 cm⁻¹ muncul vibrasi Si-O dan Al-O. Sedangkan puncak OH struktural pada kerangka silikat bentonit muncal pada bilangan gelombang 3624 cm⁻¹ pada F1 dan 3622 cm⁻¹.pada Na-MMT. Spektra IR dari bentonit alam ,F1 dan Na-MMT ditampilkan pada Gambar 4.5 berikut:

Gambar 4.5 Spektra IR bentonit alam, F1, dan Na-MMT

4.3 Penentuan Kapasitas Tukar Kation

Kapasitas tukar kation Na-MMT fraksi 1 ditentukan dengan menggunakan metode kompleks $Cu(en)_2^{2+}$. Menurut Bergaya (1997), pertukaran kation dengan logam berat bersifat irreversible dan tidak bergantung pH. Kelebihan metode ini dalam menentukan kapasitas tukar kation adalah terjadinya reaksi tunggal yang lebih cepat dan komplit dalam pertukaran kationnya. Selain itu, logam berat pun ikut tergantikan dan kapasitas tukar kation yang dihasilkan lebih reprodusibel dengan akurasi sekitar 10% untuk CEC < 20 meq/100 gram *clay*.

Pada penelitian ini, komplek $Cu(en)_2^{2+}$ dilakukan pengukuran dengan menggunakan spektrofotometer visible pada $\lambda =536$ nm. Dengan menghitung kompleks tembaga amin yang tersisa, maka jumlah kompleks tembaga amin yang terserap dapat diketahui. Perhitungan dilakukan dengan membuat kurva antara konsentrasi dan absorbansi (Lampiran 29). Berdasarkan kurva dan data absorbansi larutan tembaga amin yang tersisa dapat dihitung dan diperoleh nilai KTK Na-MMT sebesar 71 mek/100 gram seperti terlihat pada Tabel 4.8 berikut:

Konsentrasi	Konsentrasi	Konsentrasi yang	Nilai KTK
awal	ahir	diserap	(mek/100
(mmol/ml)	(mmol/ml)	(mmol/ml)	gram clay)
0,00235	0,00093	0,00144	71

Tabel 4.8 Tabel konsentrasi larutan [Cu(en)₂]2⁺ dalam penentuan KTK

 $\lambda = 536$ nm; volume = 25 ml; massa Na-MMT = 0,1 gram

4.4 Sintesis Organoclay

Pada penelitian ini, modifikasi dilakukan dengan menggunakan Na-MMT fraksi 1 yang diinterkalasi dengan surfaktan nonionik triton X-100. Sebanyak 0,5 gram Na-MMT fraksi 1 didispersikan ke dalam sejumlah tertentu aquades, sambil distirer, suspensi bentonit ditetesi dengan larutan surfaktan hingga volume suspensi menjadi 50 ml. Untuk mengetahui pengaruh konsentrasi larutan surfaktan terhadap jumlah surfaktan yang teradsorpsi dan terhadap peningkatan jarak basal spasing, maka konsentrasi larutan surfaktan yang digunakan dibuat bervariasi yaitu sebesar 1070; 4280; 6848; 8560; dan 10272 mg/L, sehingga

diperoleh organoclay dengan label OC_{1070} , OC_{4280} , OC_{6848} , OC_{8560} , dan OC_{10272} . Gugus alkohol etoksilat (AE) pada triton X-100 yang bersifat polar diharapkan dapat masuk ke lapisan interlayer dari montmorillonit dan berinteraksi secara hidrofilik dengan gugus polar seperti silanol pada bentonit, hal ini memungkinkan terjadinya peningkatan jarak basal spasing pada organobentonit yang terbentuk.

Yunfei Xi (2005) dan Hongping He (2005), melaporkan bahwa, terdapat tiga kemungkinan cara molekular surfaktan masuk ke dalam bentonit, yaitu :

- 1. Kation surfaktan yang menginterkalasi *clay* melalui pertukaran kation dan terikat pada permukaan *clay* akibat interaksi elektrostatik.
- 2. Molekul surfaktan yang teradsorpsi di dalam *interlayer clay* dengan interaksi hidrofilik antar gugus polar pada surfaktan dengan clay.
- 3. Surfaktan (kation atau molekul) yang teradsorpsi secara fisika pada permukaan eksternal *clay* (*external surface*).

Menurut Somasundaran *et al*, (1991), dan Xu *et al.*,(1991), semakin panjang cabang etilen oksida pada surfaktan semakin rendah jumlah surfaktan yang teradsorpsi, karena etilen oksida dari surfaktan akan teradsorpsi dan terikat langsung dengan ikatan hidrogen pada permukaan silika dengan konfigurasi yang merata. Menurut Yun Hwei Shen (2001), formasi surfaktan polietilen oksida yang terinterkalasi pada bentonit terbentuk secara bilayer, dimana cabang etilen oksida berinteraksi dengan permukaan/lapisan silanol melalui ikatan hidrogen dan antar cabang hidrokarbon (alkil) dari molekul surfaktan berinteraksi secara hidrofobik. Pada penelitian yang sama juga dilaporkan bahwa kapasitas adsorpsi bentonit terhadap surfaktan nonionik lebih besar dibanding terhadap surfaktan kationik, hal ini memungkinkan terbentuknya jarak basal spacing dan kandungan karbon organik yang lebih besar pada organobentonit yang dihasilkan. Jumlah molekul surfaktan nonionik seperti polietilen oksida yang teradsorpsi pada bentonit bergantung pada panjang rantai etilen oksidanya, semakin panjang rantai etilen oksida semakin sedikit jumlah molekul surfaktan yang teradsorpsi.

Menurut Paul F. Luckham dan Sylvia Rossi (2001), adsorpsi nonionik surfaktan seperti poli etilen oksida oleh montmorillonit mengikuti mekanisme dan arah orientasi seperti Gambar 4.6. Tahap awal adsorpsi diilustrasikan pada Gambar 4.6.(I), kemudian pembentukan monolayer dengan orientasi horizontal seperti pada Gambar 4.6.(II), sedangkan Gambar 4.6.(III) menunjukkan antar gugus hidrofobik dari molekul surfaktan mulai saling berinteraksi. Tahapan selanjutnya molekul surfaktan akan membentuk formasi setengah misell seperti terlihat pada Gambar 4.6.(IV. i) atau membentuk monolayer dengan orientasi vertikal seperti pada Ganbar 4.6.(IV.ii). Ketika molekul surfaktan yang masuk ke dalam interlayer sudah cukup banyak, maka molekul surfaktan akan membentuk formasi misell seperti pada Gambar 4.6 (V. i) atau membentuk lapisan bilayer dengan orientasi vertikal seperti terlihat pada Gambar 4.6.(V.ii)

Gambar 4.6. Mekanisme adsorpsi dan orientasi surfaktan

Data XRD pada Lampiran 8 - 12 memperlihatkan peningkatan *jarak basal spacing* dari berbagai organoclay yang disintesis dari Na-MMT yang terinterkalasi triton X-100 dengan konsentrasi yang bervariasi. Difraktogram kelima organoclay ditampilkan pada Gambar 4.7 berikut:

Gambar 4.7 Difraktogram organoclay

Kandungan karbon dan jumlah surfaktan yang teradsorpsi pada setiap gram organoclay diperoleh dari hasil uji EDX yang terlampir pada Lampiran 22 – 26. Kemudian dianalisa dan dilakukan perhitungan seperti terlampir pada Lampiran 30. Kandungan atom karbon pada setiap organoclay yang dihasilkan pada uji EDX menyatakan karbon yang berasal dari surfaktan, karena atom karbon pada Na-MMT tidak ada (tidak terdeteksi) keberadaannya. Jarak *basal spacing*, kandungan karbon, dan jumlah surfaktan yang teradsorpsi pada setiap organoclay yang disintesis tercermin pada Tabel 4.9 berikut:

Clay/Organoclay	Kadar C (% berat)	Jumlah surfaktan (mg/gram OC)	d-spacing (A°)
Na-MMT	Tidak terdeteksi		15,74
OC ₁₀₇₀	0,16	2,53	15,70
OC ₄₂₈₀	1,64	_25,88	18,57
OC ₆₈₄₈	3,68	58,08	19,51
OC ₈₅₆₀	3,85	60,76	20,08
OC ₁₀₂₇₂	1,42	22,41	17,43

Dari Tabel 4.9 di atas dapat disimpulkan bahwa dari 0 - 8560 mg/L, semakin besar konsentrasi surfaktan yang digunakan semakin besar jumlah surfaktan yang teradsorpsi, dengan kata lain adsorpsi maksimum terjadi pada konsentrasi surfaktan sebesar 8560 mg/L dengan kapasitas adsorpsi sebesar 60,76 mg/ gram. Jumlah tersebut masih jauh dari kapasitas adsorpsi yang diperoleh oleh Yaxin Zhang (2011), yang melaporkan kapasitas adsorpsi bentonit dari provinsi Shandong China terhadap triton x-100 mencapai 115 mg/g.

Sejalan dengan kecenderungan kenaikan jumlah surfaktan yang teradsorpsi akibat kenaikan konsentrasi yang digunakan, pola difraksi dari organoclay juga menunjukkan pola yang sama, dimana pada rentang konsentrasi surfaktan 0-8560 mg/L, jarak *basal spacing* dari organoclay mengalami peningkatan sesuai dengan kenaikan konsentrasi surfaktan yang digunakan.

Secara grafik, pengaruh konsentrasi surfaktan yang digunakan terhadap jumlah surfaktan yang teradsorpsi, dan jarak *basal spacing* organoclay yang dihasilkan dapat gambarkan dengan kurva seperti pada Gambar 4.8 sebagai berikut:

Gambar 4.8. Kapasits adsorpsi Na-MMT terhadap triton X-100 (A) dan jarak *basal spacing* organoclay dengan konsentrasi surfaktan berbeda (B)

Pada konsentrasi yang lebih tinggi (10272 mg/L), dari Tabel 4.9 terlihat terjadi penurunan baik jarak *basal spacing* maupun jumlah surfaktan yang teradsorpsi, hal ini mungkin disebabkan karena pada konsentrasi yang lebih dari

8560 mg/L, surfktan akan membentuk agregat yang lebih besar sehingga lebih sukar masuk ke dalam interlayer Na-MMT.

Data percobaan adsorpsi isotermal surfaktan triton X-100 oleh Na-MMT dapat dianalisa dengan menggunakan 2 model persamaan isotermal, yaitu model Langmuir dan model Freundlich. Grafik adsorpsi isotermal berdasarkan perhitungan pada Lampiran 31, ditampilkan pada gambar 4.9

Gambar 4.9 Grafik adsorpsi isotermal Langmuir (A) dan freundlich (B)

Berdasarkan grafik pada gambar 4.9 dan perhitungan pada Lampiran 31 dapat dikatakan bahwa adsorpsi isotermal surfaktan triton X-100 oleh Na-MMT cenderung mengikuti persamaan Freundlich karena nilai koefisien determinasi (\mathbb{R}^2) pada persamaan Freundlich (0,9899) lebih besar dibanding pada persamaan Langmuir (0,7699). Hal ini menunjukkan bahwa adsorpsi surfaktan triton X-100 oleh Na-MMT bersifat bilayer dan heterogen, artinya interaksi antara surfaktan dengan *clay* tidak hanya terjadi antara sisi aktif *clay* dengan surfaktan pada interlayer clay, tetapi terjadi juga pada permukaan *clay* dan bisa terjadi antara molekul surfaktan dalam lapisan *clay*.

Untuk memperkuat bahwa surfaktan telah masuk ke dalam *interlayer* bentonit, Gambar 4.10 memperlihatkan pola spektra FTIR Organoclay yang disintesis. Adanya pita-pita serapan khas surfaktan pada bilangan gelombang sekitar 2900 cm⁻¹ dan 2800 cm⁻¹menunjukkan adanya vibrasi uluran antisimetri dan simetri CH₂. Pada bilangan gelombang sekitar 1460 terdapat pita serapan dari vibrasi gunting CH₂ dan pita serapan pada bilangan gelombang sekitar 1355 menunjukkan adanya gugus metil. Pada bilangan gelombang sekitar 1500 tterdapat pita serapan yang menunjukan adanya gugus aromatik. Pita pita serapan

pada bilangan gelombang tersebut tidak dijumpai pada spektra bentonit alam maupun Na-MMT.

Gambar 4.10 Spektra IR Na-MMT dan Organoclay

Secara kuantitatif, data Spektra FTIR memperkuat data hasil pengukuran EDX dan XRD masing masing organoclay, dimana intensitas serapan pada bilangan gelombang tersebut cenderung mengalami kenaikan seiring dengan kenaikan jumlah surkatan yang teradsorpsi dan kenaikan jarak basal spasing organoclay. Tabel 4.10 dibawah ini memperlihatkan bilangan gelombang dan jenis spektra yang ada pada setiap organoclay.

	Bilangan gelombang pada organoclay (cm ⁻¹)				
Jenis spektra	OC ₁₀₇₀	OC ₄₂₈₀	OC ₆₈₄₈	OC ₈₅₆₀	OC ₁₀₂₇₂
[Fe ²⁺] ₃ -O-H uluran	3622	3620	3630	3622	3643
H-O-H hydrogen bonded water	3442	3442	3442	3442	3442
H-O-H deformasi	1656	1656	1656	1656	1651
Si-O uluran	1051	1053	1053	1057	1057
Al-Al-O-H deformasi	918	920	920	920	920
Fe ³⁺ -Mg-O-H deformasi	792	792	792	792	792
Si-O bending	530	528	524	522	530
Vibrasi anti simetrik dari C-H pada metilen (-CH ₂)	2951	2951	2951	2951	2949
Vibrasi simetrik dari C- H pada metilen (-CH ₂)	2877	2875	2875	-2875	2875
Vibrasi bending C–H dari –CH ₂	1462	1462	1462	1462	1460
Vibrasi bending C-H dari CH ₃	1352	1352	1352	1352	1352

Tabel 4.10 Bilangan gelombang dan jenis spektra pada organoclay

4.5 Desorpsi Surfaktan dari Organoclay

Pada uraian terdahulu dijelaskan bahwa interaksi antara clay dengan surfaktan nonionik dapat terjadi dengan dua kemungkinan interaksi yaitu

1) Interaksi hidrofilik di dalam *interlayer clay* antar gugus polar pada surfaktan dengan gugus polar clay, dan 2) molekul surfaktan teradsorpsi secara fisika dengan gaya dispersi atau gaya london pada permukaan eksternal *clay* (*external surface*).

Kedua jens interaksi tersebut lebih lemah dibanding interaksi elektrostatik yang terjadi pada surfaktan kationik, sehingga surfaktan nonionik seperti triton X-100 mudah terlepas (mengalami desorpsi) dari clay. Terlepasnya surfaktan dari clay ditandai dengan berkurangnya jarak *basal spasing* dari *organoclay* setelah didispersikan ke dalam air dan dilakukan pengadukan selama 15 menit. Pola difraksi dari masing masing organoclay dapat dilihat pada Lampiran 13-15. Kemungkinan lain, penurunan jarak *basal spacing* organoclay juga disebabkan oleh perubahan formasi surfaktan dari posisi vertikal menjadi horizontal atau miring, serta berubah dari bilayer menjadi moolayer. Besarnya penurunan jarak *basal spacing* dari masing masing organoclay dapat dilihat pada Tabel 4.11

Organoclay	<i>d-spacing</i> awal(A ^o)	<i>d- spacing</i> ahir (A ^o)	$\frac{\Delta(d\text{-spacing})}{(\mathbf{A}^{0})}$
OC 4280	18,57	17,20	- 1,37
OC 6848	19,51	17,28	- 2,23
OC 8560	20,08	17,62	- 2,46

Tabel 4.11 Perubahan jarak basal spacing organoclay

Dari Tabel 4.11 terlihat semakin tinggi kandungan surfaktan, semakin besar penurunan jarak *basal spacing* organoclay, ini berarti kesetabilan organoclay dipengaruhi oleh jumlah surfaktan yang dikandungnya, semakin tinggi kandungan surfaktan, kesetabilan organoclay semakin rendah. Perbedaan besarnya penurunan jarak *basal spacing* dari masing masing organoclay dan stabil pada nilai d-spacing sekitar 17 A^o, mungkin disebabkan karena pada jarak basal spacing tersebut, kapasitas adsorpsi clay terhadap surfaktan triton X-100 untuk membentuk organoclay yang stabil, sudah mencapai keadaan optimum, sehingga penggunaan surfaktan triton X-100 dengan konsentrasi yang lebih tinggi dari 4280 mg/L menyebabkan berkurangnya kesetabilan organoclay yang terbentuk. Faktor lain yang mungkin mempengaruhi kesetabilan organoclay adalah kepolaran medium, pH dan sebagainya.

4.6 Aplikasi Organoclay sebagai adsorben p-klorofenol.

Pada tahun 2007 Qin Zhou dkk. melakukan penelitian penyerapan *p*-nitrofenol dengan organoclay HDTMAB. Berdasarkan penelitian tersebut, terdapat tiga proses mekanisme penyerapan p-nitrofenol, yaitu

- 1. *p*-Nitrofenol terserap melalui ikatan hidrogen dengan molekul air yang terhidrasi oleh kation
- 2. *p*-Nitrofenol mengganti air yang masih ada pada organoclay
- 3. *p*-Nitrofenol berinteraksi dengan mengganti beberapa molekul surfaktan yang terinterkalasi

Menurut Guangyao Sheng pada tahun 1996, penyerapan molekul aromatik pada organoclay dengan cara berinteraksi hidrofobik antara rantai alkil yang panjang dengan cincin benzena.

Pada penelitian ini digunakan Na-MMT dari bentonit alam Jambi dan organoclay (OC $_{8560}$ dan OC $_{4280}$) sebagai adsorben, dan p-klorofenol sebagai molekul model dari senyawa organik yang biasa dijumpai pada limbah industri pembuatan insektisisda dan desinfektan. OC $_{8560}$ dipilih sebagai adsorben pada penelitian ini didasarkan pada asumsi awal bahwa organoclay dengan jarak *basal spacing* yang lebih besar memiliki daya adsorpsi yang lebih besar, dan sebagai pembanding digunakan OC₄₂₈₀. Pada penelitian lanjutan disarankan menggunakan organoclay yang bervariasi, untuk memperoleh organoclay yang paling efektif mengadsorpsi limbah organik.

Untuk mengetahui daya adsorpsi dari Na-MMT dan organoclay terhadap molekul limbah organik, dilakukan uji aplikasi. Sebanyak 0,3 gram masing masing adsorben didispersikan kedalam 30 ml larutan p-klorofenol dengan konsentrasi yang bervariasi yaitu 20, 40, 60, dan 100 ppm. Kemudian diaduk selama 15 menit dan dibiarkan selama 12 jam. Untuk memisahkan endapan dan filtrat dilakukan sentrifugasi selama 10 menit. Konsentrasi p-klorofenol yang tersisa dalam filtrat diukur dengan menggunakan spektofotometer UV-Vis pada panjang gelombang 270 - 290 nm. Penentuan Jumlah adsorbat terserap, persen efisiensi adsorpsi, dan kapasitas adsorpsi dapat dilihat pada Lampiran 32-38. Dari data tersebut diperoleh persen efisiensi adsorpsi dan kapasitas adsorpsi masing masing adsorben seperti terlihat pada Tabel 4.12 berikut:

	si Adsor	ben				
Co	NaM	NaMMT		OC- 8560		4280
(ppm)	EA	KA	EA	KA	EA	KA
	(%)	(mg/g)	(%)	(mg/g)	(%)	(mg/g)
20	41,36	0,83	60,00	1,20	72,73	1,46
40	38,64	1,55	63,86	2,55	67,05	2,68
60	36,52	2,19	60,76	3,65	69,09	4,15
100	24,64	2,46	47,76	4,76	53,64	5,36
Ket: E	A= Efisisen	si adsorpsi	(%); KA=	-Kapasitas	Adsorpsi	(mg/g)

Tabel 4.12 Persen efisiensi adsorpsi dan kapasitas adsorpsi adsorben

Secara grafik, efisiensi adsorpsi dan kapasitas adsorpsi dari masing masing adsorben terhadap p-klorofenol ditampilkan pada Gambar 4.11

Gambar 4.11 Grafik % Efisiensi adsorpsi (A) dan kapasitas adsorpsi (B) tiga adsorben terhadap konsentrasi awal p-klorofenol

Dari Gambar 4.11 (A) terlihat bahwa, semakin besar konsentrasi awal adsorbat, maka efisiensi adsorpsi semakin kecil, karena jumlah (massa) adsorben tetap, sedangkan konsentrasi adsorbat terus bertambah, akibatnya ketersediaan sisi aktif adsorben tidak sesuai dengan pertambahan konsentrasi adsorbat. Tetapi pada Gambar 4.11 (B), kapasitas adsorpsi ketiga adsorben cenderung meningkat dengan bertambahnya konsentrasi adsorbat. Fenomena berbanding terbaliknya kurva persen efisiensi dengan kurva kapasitas adsorpsi disebabkan karena perbedaan penggunaan pembanding, persen efisiensi adsorpsi menggunakan konsentrasi awal yang selalu bertambah, sedangkan kapasitas adsorpsi menggunakan bobot adsorben yang relatif tetap sebagai pembandingnya.

Tabel 4.12 dan Gambar 4.11 memperlihatkan bahwa pada *range* konsentrasi awal adsorbat 20 – 100 mg/L, efisiensi adsorpsi yang diperoleh berkisar 41% - 24 % untuk Na-MMT, 72% – 53% untuk OC ₄₂₈₀ dan 60% -47% untuk OC₈₅₆₀. Sedangkan kapasitas adsorpsi masing masing adsorben adalah berkisar 0,83 – 2,45 mg/g untuk Na-MMT, 1,46 – 5,36 mg/g untuk OC₄₂₈₀ dan 1,2 – 4,76 mg/g untuk OC₈₅₆₀. Pada *range* konsentrasi tersebut, organoclay (OC₄₂₈₀ dan OC₈₅₆₀) sebagai adsorben menunjukan daya adsorpsi yang lebih besar dibanding Na-MMT, sesuai dengan hipotesa pada penelitian ini. Pada konsentrasi awal 100 ppm jumlah p-klorofenol yang teradsorpi sebesar 5,36 mg/g untuk OC₄₂₈₀ dan 4,76 mg/g untuk OC₈₅₆₀. Sedangkan kapasitas adsorpsi Na-MMT pada konsentrasi awal 100 ppm hanya mencapai 2,45 mg/g.

Perbedaan daya adsorpsi antara OC_{4280} dengan OC_{8560} mungkin disebabkan oleh kesetabilan OC_{4280} yang lebih besar dibanding OC_{8560} yang lebih banyak mengalami desorpsi surfaktan ketika dilakukan pengadukan dalam medium air, sehingga OC_{4280} mempunyai daya adsorpsi yang lebih besar. Sedangkan perbedaan daya adsorpsi organoclay dengan Na-MMT terhadap p-klorofenol disebabkan karena jenis interaksi yang terjadi antara adsorben dengan adsorbat. Interaksi yang mungkin terjadi antara organoclay dengan molekul organik adalah; 1) *Hidrofobik* antara gugus nonpolar molekul organik dengan rantai alkil surfaktan. 2) *Hidrofobik* antara gugus nonpolar molekul organik (cincin benzen) dengan gugus nonpolar pada permukaan organoclay (gugus siloksan Si-O-Si). 3) *Hidrofilik* atau ikatan hidrogen antara gugus polar molekul organik dengan permukaan organoclay (gugus silanol bebas Si-OH) dan 4) *Hidrofilik* atau ikatan hidrogen antara gugus polar molekul organik dengan gugus polar pada surfaktan. Sedangkan interaksi yang mungkin terjadi antara bentonit (Na-MMT) dengan p-klorofenol adalah; 1) *Hidrofobik* antara gugus nonpolar molekul organik dengan gugus nonpolar pada permukaan bentonit (gugus siloksan Si-O-Si) dan 2) *Hidrofilik* atau ikatan hidrogen antara gugus polar molekul organik dengan permukaan bentonit (gugus siloksan Si-O-Si) dan 2) *Hidrofilik* atau ikatan hidrogen antara gugus polar molekul organik dengan permukaan bentonit (gugus silanol bebas Si-OH) seperti diilustrasikan pada Gambar 4.12 dan 4.13 berikut

Gambar 4.12 Proses adsorbsi senyawa organik pada interlayer bentonit
(a) Orientasi sutfaktan pada interlayer bentonit, (b) gugus non polar p-klorofenol teradsorpsi ke sekitar rantai alkil surfaktan yang hidrofobik
[Sumber: Heinz H, dalam laporan oktaviani 2011 dan telah diolah kembali]

Gambar 4.13 Mekanisme adsorbsi p-klorofenol pada permukaan bentonit dengan gugus OH dari p-klorofenol berinteraksi dengan gugus silanol dari bentonit. [Sumber: Arellano *et al*, 2005 dan telah diolah kembali] Lampiran 32-38 memperlihatkan data percobaan adsorpsi isotermal p-klorofenol oleh Na-MMT, OC_{4280} dan OC_{8560} yang dianalisis dengan menggunakan 2 model persamaan pendekatan yaitu persamaan Langmuir dan persamaan Freundlich. Persamaan ini digunakan untuk mencari kapasitas adsorpsi optimum dari ketiga adsorben. Kurva adsorpsi isotermal Langmuir dan Freundlich dari ketiga adsorben ditampilkan pada Gambar 4.14 dan 4.15 berikut :

Gambar 4.14 Kurva adsorpsi isotermal Langmuir Na-MMT, OC 4280 dan OC₈₅₆₀

Gambar 4.15 Kurva adsorpsi isotermal Freundlich Na-MMT, OC 4280 dan OC 8560

Berdasarkan kurva adsorpsi pada Gambar 4.12 dan 4.13 serta analisis data percobaan pada Lampiran 32-38 diperoleh beberapa parameter adsorpsi isotermal Langmuir dan Freundlich, meliputi; q_m yang menyatakan kapasitas adsorpsi maksimum p-klorofenol pada clay/organoclay (mg/g); b menyatakan energi adsorpsi (L/mg); dan bq_m menyatakan konstanta kesetimbangan adsorpsi isoterm Langmuir. *Kf* menyatakan kapasitas adsorpsi pada lapisan monolayer (L/g); dan n menyatakan konstanta kesetimbangan adsorpsi isoterm Freundlich. Nilai dari masing masing parameter tersebut ditampilkan pada Tabel 4.13 berikut:

Clay/ Organoclay	Model Langmuir				Model Freundlich		
	b (L/mg)	q _m (mg/g)	\mathbf{K}_{ad}	R ²	Kf (L/g)	n	\mathbf{R}^2
Na-MMT	0,028	3,759	0,105	0,949	0,171	1,664	0,916
OC ₄₂₈₀	0,077	8,403	0,648	0,952	0,545	1,663	0,938
OC 8560	0,029	7,519	0,218	0,854	0,323	1,397	0,905

Tabel 4.13 Parameter adsorpsi isotermal

Dari Tabel 4.13 terlihat bahwa adsorpsi Na-MMT dan OC_{4280} terhadap p-klorofenol cenderung mengikuti persamaan Langmuir dengan nilai koefisien determinasi (R^2) masing masing sebesar 0,949 dan 0,952. Nilai ini lebih besar dibanding Nilai R^2 pada persamaan Freundlich untuk Na-MMT dan OC ₄₂₈₀ yaitu masing masing sebesar 0,916 dan 0,938. Sedangkan OC₈₅₆₀ cenderung mengikuti persamaan Freundlich, karena nilai R^2 pada persamaan Freundlich (0,905) lebih besar dari R^2 pada persamaan Langmuir (0,854). Hal ini berarti adsorpsi Na-MMT dan OC₄₂₈₀ terhadap p-klorofenol bersifat monolayer dan homogen, sedangkan adsorpsi OC₈₅₆₀ terhadap p-klorofenol bersifat bilayer dan tidak teratur (heterogen).

Proses adsorpsi pada dasarnya merupakan proses kesetimbangan, tetapi data yang diperoleh pada penelitian ini belum mencapai keadaan setimbang, oleh karena itu nilai konstanta kesetimbangan adsorpsi (K_{ad} dan n) pada Tabel 4.12 belum mencerminkan nilai tetapan kesetimbangan adsorpsi yang sebenarnya. Kesimpulan sementara yang bisa diperoleh berdasarkan nilai K_{ad} dan n pada penelitian ini adalah bahwa organoclay mempunyai daya adsorpsi terhadap p-klorofenol yang lebih besar dibanding Na-MMT, karena organoclay

mempunyai nilai tetapan kesetimbangan adsorpsi yang lebih besar. Ditinjau dari faktor pemisahan (R_L), pada Lampiran 32-38, OC₄₂₈₀ mempunyai nilai R_L yang lebih kecil (0,219) dibanding nilai R_L dari OC ₈₅₆₀ (0,226) dan Na-MMT (0,322). Hal ini menunjukkan bahwa sifat adsorpsi OC₄₂₈₀ terhadap p-klorofenol lebih bersifat irreversibel, p-klorofenol lebih kuat teradsorpsi dan lebih sulit terdesorpsi dari sisi aktif OC₄₂₈₀

Untuk memperkuat data bahwa p-klorofenol telah teradsorpsi oleh adsorben, spektra IR pada Gambar 4.16 dan 4.17 menunjukkan kenaikan intensitas serapan pada bilangan gelombang 1475 - 1600 cm⁻¹ yang khas bagi gugus aromatik (C=C stretching) pada p-klorofenol, pada bilangan gelombang 2800 – 2950 cm⁻¹ yang khas bagi gugus C—H stretching dari alkil, dan pada bilangan gelombang sekitar 3600 cm⁻¹ yang khas bagi stretching O-H.

Gambar 4.16 Spektra IR Na-MMT dan Na-MMT+4-CP

Gambar 4.17 Spektra IR OC $_{\rm 4280},$ OC $_{\rm 420+4CP}$ dan OC $_{\rm 8560+4CP}$

BAB V

KESIMPULAN DAN SARAN

5.1. Kesimpulan

Kesimpulan yang diperoleh pada penelitian ini adalah :

- 1. Komposisi relatif *smectite* pada bentonit alam Merangin Jambi lebih besar dibandingkan komposisi mineral *clay* lain (*Illite, Kaolinite dan Chlorite*).
- Fraksinasi berdasarkan laju pengendapan bentonit alam Merangin Jambi, diperoleh fraksi yang mengandung montmorillonite paling tinggi, yaitu fraksi 1 (5 menit pengendapan)
- 3. Perlakuan asam terhadap bentonit fraksi 1 mengakibatkan penurunan kadar smectite/montmorillonite.
- 4. Bentonit alam Merangin Jambi dapat dimodifikasi menjadi Organoclay dengan menggunakan surfaktan nonionik triton x-100 sebagai zat interkalan.
- Pada rentang 0 8560 mg/L, semakin tinggi konsentrasi awal surfaktan yang digunakan, semakin banyak surfaktan yang teradsorpsi dan semakin besar jarak *basal spasing* organoclay yang diperoleh.
- 6. Interkalasi/adsorpsi surfaktan triton X- 100 oleh Na-MMT mengikuti kurva isoterm adsorpsi Freundlich.
- 7. Semakin tinggi kandungan surfaktan dalam organoclay, semakin mudah surfaktan tersebut mengalami desorpsi (kesetabilan organoclay semakin rendah)
- 8. Na-MMMT, dan Organoclay dapat menurunkan konsentrasi *p*-klorofenol dalam air, semakin tinggi konsentrasi awal p-klorofenol, semakin banyak senyawa polutan organik tersebut yang terserap.
- 9. Semakin tinggi kesetabilan organoclay, semakin besar daya adsorpsinya terhadap senyawa polutan organik.

5.2 Saran

Untuk penelitian selanjutnya disarankan :

- Mempelajari isoterm adsorpsi bentonit alam Merangin Jambi terhadap surfaktan nonionik triton X-100 dengan range konsentrasi (titik titik konsentrasi) yang lebih banyak
- 2. Mempelajari kesetabilan organoclay dari bentonit alam Merangin Jambi dan triton X-100 dalam berbagai kondisi (pH, jenis pelarut, konsentrasi surfaktan)
- 3. Menentukan konsentrasi optimum senyawa organik dan waktu kontak optimum untuk memperoleh parameter kinetika.
- 4. Melakukan aplikasi terhadap senyawa turunan fenol yang lain, terutama senyawa turunan fenol pengarah orto, meta, para dan senyawa-senyawa turunan organofosfat.
- 5. Melakukan uji aplikasi organoclay dengan variasi surfaktan terhadap penyerapan senyawa organik.
- 6. Melakukan uji regenerasi organoclay untuk mengetahui kesetabilannya sebagai adsorben

DAFTAR PUSTAKA

- Ahmad MB. dkk. (2009). *Modification of montmorillonie by new surfactants*. Journal of Enginering and Applied Sciences. 4: 184-188
- Bergaya, F. Vayer M.s (1997). CEC of clays: Measurement by adsorption of a copper ethylenediamine complex. Applied Clay Science 12 (1997) 275-280. Perancis.
- Brewster, Gordon Ross. (1980). Effect of Chemical Pretreatment On X-ray Powder Diffraction Characteristics of Clays Minerals Derived From Volcanic Ash. Clay and Clay Mineral, Vol. 28, No. 4, 303-310,
- Cameron D.A.(2003). *Introduction to Soil Mechanics*. Division of Information Technology, Engineering and The Environment.
- Chen D. dkk . (2011). Characterization of anion cation surfactants modified montmorillonite and its application for the removal of methyl orange. Chemical Engineering Journal. 171:1150-1158
- Frost, Ray and Xi, Yunfei and He, Hongping. (2007) . Modification of the surfaces of Wyoming montmorillonite by the cationic surfactants alkyl trimethyl, dialkyl dimethyl and trialkyl methyl ammonium bromides. Journal of Colloid and Interface Science 305(1): pp: 150-158.
- Gupta SS, Bhattacharayya GK. (2008). Immobilization of Pb(II), Cd(II), Ni(II) ions on kaolinite and montmorillonite surfaces from aqueous medium. Journal of Environmental Management 87: 46-58
- Handoyo, Kristian S. (2001). *Dasar dasar kimia anorganik nonlogam* Universitas Negeri Yogyakarta. hal;8.18-8.19.
- Haryani, Diana Nur. (2010). Sintesis dan Karakterisasi Organoclay Terinterkelasi Surfaktan Kationik HDTMABr dan ODTMABr Serta Aplikasinya Sebagai Adsorben Molekul Organik. Skripsi Departemen Kimia. FMIPA Universitas Indonesia.

- Heinz, H. Vaia, R. A. Krishnamoorti, R. and Farmer, B. L. (2006). Self-Assembly of Alkylammonium Chains on Montmorillonite: Effect of Chain Length, Head Group Structure, and Cation Exchange Capacity. J. Phys. Chem. B 2005, 109, 13301-13306 Ohio. Wright State UniVersity, Ohio and UniVersity of Houston, Texas.
- Heath, G. Ross dkk.(1979). A Method for The Quantitative Estimation of Clay Minerals In North Pasific Deep-Sea Sediments. Clays and Clays Minerals, Vol.27, No. 3, pp. 175-184.
- He, Hongping. dkk.(2010). Organoclay Prepared from Montmorillonites with Different Cation Excange Capacity and Surfactant Configuration. J. Applied Clay Science 48. 67-72.
- Ho Y.S, (2003). *Removal of Copper ion from aqueous solution by tree fren*. Water Research 34, 2323-2330
- http://www.fysast.uu.se/molcond/content/bentonite-and-kaolinite 29 November 2011].

http://www.nuance.northwestern.edu/KeckII/Instruments/FT-IR/index.html

http://www.abdn.ac.uk/~che241/cdiff/indexx.html

http://www.tulane.edu/~sanelson/eens/211 19 Januari 2012

http://rtiintl.com/sem-edx.html. Jumat, 18 Mei 2012.

http://www.inchem.org/documents/icsc/eics1850.htm

http://www.sigmaaldrich.com

http://www.clay.org.au.

Irwansyah. (2007). Modifikasi Bentonit Menjadi Organoclay Dengan Surfaktan Heksadesiltrimetilamonium Bromida Melalui Interkalasi Metode Ultrasonik. Skripsi Departemen kimia. FMIPA Universitas Indonesia.

- Jaffe, R., Gardinali, P.R., Cai, Y., Sudburry, A., Fernandez, A., and Hay, B.J.(2003). Organic compounds and trace metals of anthropogenic origin in sediments from Montego Bay, Jamaica: assessment of sources and distribution pathways. Environ. Pollut. 123, 291-299
- Jaycock, M. J and G. D. Parfitt. (1981). *Chemistry of Interfaces*. Ellis Horwood Limited
- Kurniawan, Danar. (2008). Modifikasi Bentonit Menjadi Organoclay dengan Metode Ultrasonik sebagai Adsorben p-Klorofenol dan Hidroquinon. Skripsi Departemen kimia. FMIPA Universitas Indonesia.
- Lizhong Zu, Yimin Li, & Jianying Zhang. (1997). Jurnal Sorption Of Organobentonites To Some Organic Pollutants In Water. Depatement of Environtmental Science, Hangzhou University Hangzhou, Zheijang, China
- Martini KS, Ashadi, Saputro S. (2009). Pengembangan Metode Regenerasi dan Kestabilan Sistem Adsorben Surfaktan Kationik Berpenyangga Montmorilonit Lokal untuk Menanggulangi Polutan Organik dan Logam Berat. Artikel Ilmiah . Hasil Penelitian Fundamental. Universitas Sebelas Maret Surakarta.
- Marz, Rahman Arif. (2012). Studi Daya Adsorpsi Organoclay Terhadap Fenol dalam Air dan Air Limbah Demulsifikasi Minyak Bumi. Skripsi Departemen Kimia. FMIPA Universitas Indonesia.
- Mikutta, R. dkk. (2005). Review : Organic Matter Removal from Soils Using Hydrogen Peroxide, Sodium Hypochlorite, and Disodium Peroxodisulfate. Soil Sci. Soc. Am. J. Vol. 69.
- Meyrs, Drew. (1999). Surfaces, interfaces and colloids: Principles and applications, Second edition. John Willey & Sons, Inc, New York.
- N. Jovic-Jovicic, et.al.(2010). Synthesis, Characterization and Adsorptive Properties of Organobentonites. Acta Physica Polonica.117, 5

- Paul F. Luckham., Sylvia Rossi. (1999). The colloidal and rheological properties of bentonite suspensions. Advances in Colloid and Interface Science 82. 43-92.
- Rossi, Sylvia., P.F. Luckham, Th.F. Tadros. (2002). Influence of non-ionic polymers on the rheologicalbehaviour of Na+-montmorillonite clay suspensions—I Nonylphenol-polypropylene oxide-polyethylene oxide copolymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects 201. 85–100.
- Shin, Mari. (2004). Surfactant/Ligand Systems for the Simultaneous Remediation of Soils Contaminated with Heavy Metals and Polychlorinated Biphenyls.Dissertation. Department of Bioresource Engineering, Macdonald Campus ofMcGill University, Ste-Anne-de-Bellevue, Quebec, Canada
- Sheng, Guangyao dkk. (1996). Mechanism(s) Controlling Sorption of Neutral Organic Contaminants by Surfactant-Derived and Natural Organic Matter. Environ. Sci. Technol. Vol 30, p. 1553-1557,
- Shen, Y.H. (2001). *Preparation of organobentonite using nonionic surfactants*. Chemosphere 44. 989-995.
- Shen, Y.H. (2004). Phenol sorption by organoclays having different charge characteristics. Colloids and Surfaces A: Physicochem. Eng. Aspects 232:143-149
- Somasundaran, P., Snell, ED.,Xu, Q., (1991). Adsorption behavior of alkylarylethoxylated alcohols on silica. J. Colloid Interface Sci. 144, 165-173

Sukardjo. (1997). Kimia Fisika. PT. Rineka Cipta. Jakarta.

Syuhada, Wijaya R, Jayatin, dan Rohman S. (2009). Modifikasi bentonit (clay) menjadi organoclay dengan penambahan surfactan. Jurnal nanosains dan nanoteknologi. Vol. 2 Sentra teknologi polimer. BPPT.

- Tuin, B. J. W., and Tels, M. (1990). Removing heavy metals from contaminated clay soils by extraction with hydrochloric acid, EDTA or hypochlorite solutions. Environ. Technol. 11, 1039-1052.
- Underwood, M.B. dkk. (2003). Data Report : Normalization Factors for Semiquantitative X-ray Diffraction Analysis, with Aplication to DSPS Site 297, Shikoku Basin. Proceeding of The Ocean Drilling Program, Scientific Result Volume 190/196.
- Underwood, M.B. dkk. (2004). Data Report : Composition of Clay Minerals From Hemipelagic Sediments at Hydrate Ridge, Cascadia Subduction Zone. Preceding of The Ocean Drilling Program, Scientific Results.
- Zhang, Y. dkk. (2011). Adsorption of Mixed Cationic-nonionic Surfactant and its effect on bentonite structure. School of environment, beijing normal university.
- Zhau, Qin dkk. (2007). Adsorbed Paranitrophenol on HDTMAB Organoclay A TEM and Infared spectroscopic study. Journal of colloid and Interface Science, Vol 307 pp. 357-363.

Lampiran 1

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	# Stronge	st 3 neaks		- Y	77		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Peak	2Theta	d	I/I1	FWHM	Intensity	Integrated Int
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	no.	(deg)	(A)		(deg)	(Counts)	(Counts)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2	5.5445	15.92647	100	0.78560	501	22146
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	14	21,8000	4.07360	81	0.82400	404	23935
# Peak Data List Intensity Integrated Integrated Integrated Integrated Int no. (deg) (A) FWHM Intensity Integrated Int no. (deg) (A) (deg) (Counts) (Counts) 1 4.0565 21.76465 3 0.18300 16 199 2 5.5445 15.92647 100 0.78560 501 22146 3 6.5600 13.46313 6 0.30660 28 1059 4 8.6000 10.27358 3 0.08000 31 1084 6 10.8200 8.17016 7 0.88000 37 1589 7 11.5600 7.64877 6 0.56000 30 734 8 12.2200 7.23710 8 0.42000 4 435 10 16.9750 5.21906 8 0.49000 40 1347 11 17.7200 5.00128 4 0.28000 22 474 <tr< td=""><td>12</td><td>19.8200</td><td>4.47586</td><td>65</td><td>0.35000</td><td>325</td><td>12735</td></tr<>	12	19.8200	4.47586	65	0.35000	325	12735
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	# Peak Da	ata List			0.000	020	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Peak	2Theta	d	I/I1	FWHM	Intensity	Integrated Int
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	no.	(deg)	(A)		(deg)	(Counts)	(Counts)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	4.0565	21.76465	3	0.18300	16	199
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	5.5445	15.92647	100	0.78560	501	22146
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	6.5600	13.46313	6	0.30660	28	1059
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	8.6000	10.27358	3	0.08000	15	181
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	9.4875	9.31445	6	0.49500	31	1084
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	10.8200	8.17016	7	0.88000	37	1589
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	11.5600	7.64877	6	0.56000	30	734
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	12.2200	7.23710	8	0.62000	38	1279
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	13.2550	6.67424	5	0.27000	24	435
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	16.9750	5.21906	8	0.49000	40	1347
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	17.7200	5.00128	4	0.28000	22	474
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	19.8200	4,47586	65	0.35000	325	12735
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	20.6400	4,29985	44	0.00000	222	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	21.8000	4.07360	81	0.82400	404	23935
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15	23.0400	3.85709	18	1.26400	92	7436
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	24.1600	3.68076	5	0.00000	27	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17	24.8000	3.58721	7	0.49340	33	998
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	25.2200	3.52841	5	0.56800	27	796
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	26.0600	3.41655	6	0.26000	29	518
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	26.5925	3.34933	13	0.25500	67	1059
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	27.5200	3.23852	7	0.48000	34	818
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	28.4600	3.13366	14	1.25340	71	2400
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	28.8400	3.09323	12	0.93340	62	2209
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24	31.3766	2.84870	4	0.09330	19	198
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	32.5365	2.74975	3	0.18300	16	226
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	34.9600	2.56448	28	0.54860	138	4395
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27	35.8800	2.50080	34	0.82000	168	7688
2937.64002.3878260.52000319243038.26752.3500980.37500388113139.32212.2894640.17570202443240.50002.2255530.12000162713343.09062.0975630.20530152553443.72102.0687640.2980021463	28	36.9600	2.43017	10	0.50000	50	1716
3038.26752.3500980.37500388113139.32212.2894640.17570202443240.50002.2255530.12000162713343.09062.0975630.20530152553443.72102.0687640.2980021463	29	37.6400	2.38782	6	0.52000	31	924
3139.32212.2894640.17570202443240.50002.2255530.12000162713343.09062.0975630.20530152553443.72102.0687640.2980021463	30	38.2675	2.35009	8	0.37500	38	811
3240.50002.2255530.12000162713343.09062.0975630.20530152553443.72102.0687640.2980021463	31	39.3221	2.28946	4	0.17570	20	244
33 43.0906 2.09756 3 0.20530 15 255 34 43.7210 2.06876 4 0.29800 21 463	32	40.5000	2.22555	3	0.12000	16	271
34 43.7210 2.06876 4 0.29800 21 463	33	43.0906	2.09756	3	0.20530	15	255
	34	43.7210	2.06876	4	0.29800	21	463

*** Basic Data Process ***

# Stronge	est 3 peaks				8 B	
peak	2Theta	d	I/I1	FWHM	Intensity	Integrated Int
no.	(deg)	(A)		(deg)	(Counts)	(Counts)
2	5.7392	15.38660	100	0.90000	485	24454
12	21.7800	4.07730	88	1.05600	426	27987
10	19.9000	4.45805	73	0.43380	355	14336
# Peak D	ata List					1.1
peak	2Theta	d	I/I1	FWHM	Intensity	Integrated Int
no.	(deg)	(A)		(deg)	(Counts)	(Counts)
1	4.5200	19.53380	9	0.32000	43	1445
2	5.7392	15.38660	100	0.90000	485	24454
3	9.3033	9.49845	5	0.47330	26	803
4	10.2600	8.61481	5	0.66000	26	769
5	10.9600	8.06611	7	1.11000	33	1219
6	12.1400	7.28461	7	0.96000	32	1395
7	12.9900	6.80979	4	0.34000	17	403
8	16.9740	5.21936	6	0.61200	27	960
9	17.5400	5.05220	- 4	0.48000	19	527
10	19.9000	4.45805	73	0.43380	355	14336
11	20.6800	4.29163	51	0.00000	248	0
12	21.7800	4.07730	88	1.05600	426	27987
13	23.2200	3.82760	22	1.12000	106	7808
14	23.9800	3.70798	13	0.00000	62	0
15	24.7400	3.59577	13	2.56000	63	5566
16	26.6400	3.34347	16	0.44000	77	1552
17	27.3600	3.25710	8	0.70000	38	1976
18	28.0200	3.18186	12	0.00000	56	0
19	28.5000	3.12935	17	1.84000	82	4796
20	29.8800	2.98789	6	0.68000	30	1080
21	30.6000	2.91921	4	0.35000	17	333
22	31.3516	2.85092	4	0.63670	17	757
23	35.1000	2.55457	33	0.80800	161	10042
24	35.8800	2.50080	36	0.00000	174	0
25	36.5200	2.45843	19	0.00000	90	0
26	37.0400	2.42511	12	0.00000	60	0
27	37.5800	2.39149	11	0.00000	53	0
28	38.4800	2.33760	8	0.61340	38	2512
29	39.4600	2.28177	5	0.42280	23	612
30	40.4475	2.22832	5	0.78500	22	1141
31	42.6950	2.11607	4	0.43000	18	781
32	44.5850	2.03066	4	0.21000	17	343

*** Basic Data Process ***

١.

*** Basic Data Process ***

14

Data : 1	F2					
# Stron	gest 3 peaks					
peak	2Theta	d	I/I1	FWHM	Intensity	Integrated Int
no.	(deg)	(A)		(deg)	(Counts)	(Counts)
10	21.7600	4.08100	100	0.96000	426	24608
8	19.8800	4.46249	81	0.38280	343	14160
9	20.7000	4.28753	55	0.00000	235	0
# Peak	Data List					
peak	2Theta	d	I/I1	FWHM	Intensity	Integrated Int
no.	(deg)	(A)		(deg)	(Counts)	(Counts)
1	5.9209	14.91482	55	1.09530	235	13794
2	9.7430	9.07075	4	0.14600	17	275
3	12.2430	7.22356	8	0.50600	36	1620
4	13.0833	6.76144	3	0.27330	14	239
5	13.9233	6.35535	3	0.11330	13	85
6	17.0750	5.18872	5	0.69000	22	845
7	18.0700	4.90519	4	0.14000	15	220
8	19.8800	4.46249	81	0.38280	343	14160
9	20.7000	4.28753	55	0.00000	235	0
10	21.7600	4.08100	100	0.96000	426	24608
11	22.9800	3.86703	24	1.40000	101	10082
12	24.8600	3.57868	12	0.00000	52	0
13	25.4800	3.49299	6	0.80800	26	1995
14	26.6292	3.34480	17	0.27350	73	1138
15	27.5400	3.23622	8	0.50000	35	1049
16	28.7473	3.10299	14	1.35870	58	3800
17	30.0600	2.97041	3	0.14000	14	150
18	31.4515	2.84209	4	0.08700	15	133
19	35.2400	2.54474	34	1.10000	146	5566
20	35.6600	2.51573	41	1.57000	176	10440
21	37.5400	2.39395	9	0.00000	37	0
22	38.5000	2.33643	8	0.61720	33	2260
23	39.4246	2.28374	5	0.17730	23	388
24	40.6175	2.21938	4	0.34500	18	706
25	43.6200	2.07332	4	0.12000	17	148
26	43.7200	2.06881	4	0.54660	19	537
27	44.7600	2.02312	6	0.28000	24	462
28	45.3166	1.99956	3	0.44670	14	457

٩.,

al.

		*** Basic	Data	Process ***		
Data : F3	3					
# Stronge	est 3 peaks					
peak	2Theta	d	I/I1	FWHM	Intensity	
Integrate	ed Int		1. 10			
no.	(deg)	(A)		(deg)	(Counts)	(Counts)
11	21.3293	4.16243	100	1.88140	437	31255
10	19.8800	4.46249	75	0.39580	328	7041
21	35.7800	2.50756	39	1.48800	- 171	9161
# Peak D	ata List				10000000	
peak	2Theta	d	I/I1	FWHM	Intensity	
Integrate	ed Int					
no.	(deg)	(A)		(deg)	(Counts)	(Counts)
1	6.2155	14.20854	36	1.19900	158	10081
2	8.4283	10.48248	3	0.17000	14	134
3	9.1400	9.66778	4	0.64000	17	568
4	9.9633	8.87067	7	0.51330	32	937
5	11.1600	7.92200	6	0.82000	27	1451
6	12.1600	7.27268	8	0.56000	34	956
7	12.7900	6.91583	5	0.38000	20	667
8	14.9380	5.92585	4	0.16400	16	328
9	17.2900	5.12468	3	0.19600	14	151
10	19.8800	4.46249	75	0.39580	328	7041
11	21.3293	4.16243	100	1.88140	437	31255
12	22.8200	3.89378	27	1.36000	118	9440
13	23.9000	3.72021	11	0.00000	47	0
14	25.0225	3.55581	12	1.11500	- 51	4371
15	26.6300	3.34470	17	0.30000	76	1972
16	27.3800	3.25476	4	0.00000	19	0
17	28.7020	3.10778	-11	1.31600	48	3346
18	29.6800	3.00757	-4	0.56000	19	619
19	31.6550	2.82428	3	0.11660	14	233
20	35.0400	2.55881	34	0.72000	149	4599
21	35.7800	2.50756	39	1.48800	171	9161
22	37.3000	2.40880	12	1.33600	54	3398
23	38.3725	2.34390	8	0.62500	37	1309
24	39.2720	2.29226	4	0.17600	19	306
25	40.4090	2.23035	4	0.20200	19	380
26	42.5550	2.12271	5	0.21000	22	307
27	43.4550	2.08081	4	0.21000	18	273
28	44.1633	2.04907	4	0.23330	19	459
29	45.2150	2.00382	3	0.29000	14	46
30	47.9350	1.89627	3	0.13000	13	116

Preparasi organoclay..., Muhamad Salim, FMIPA UI, 2012

# Strongest 3 peaks peak 2Theta d I/I1 FWHM Intensity Integrat Int no. (deg) (A) (deg) (Counts) (Counts) 10 21.8800 4.05889 100 0.74000 450 26951 9 19.9000 4.45805 77 0.38780 346 12072 2 6.1340 1 4.39714 44 1.38800 200 14417	rated nts)
peak 2Theta d I/I1 FWHM Intensity Integrat Int no. (deg) (A) (deg) (Counts) (Counts) 10 21.8800 4.05889 100 0.74000 450 26951 9 19.9000 4.45805 77 0.38780 346 12072 2 6.1340 1 4.39714 44 1.38800 200 14417	rated nts)
no. (deg) (A) (deg) (Counts) (Counts) 10 21.8800 4.05889 100 0.74000 450 26951 9 19.9000 4.45805 77 0.38780 346 12072 2 6.1340 1 4.39714 44 1.38800 200 14417	nts)
10 21.8800 4.05889 100 0.74000 450 26951 9 19.9000 4.45805 77 0.38780 346 12072 2 6.1340 1 4.39714 44 1.38800 200 14417	[] /
9 19.9000 4.45805 77 0.38780 346 12072 2 6.1340 1 -4.39714 44 1.38800 200 14417	
2 6.1340 1 4.39714 44 1.38800 200 14417	((
HD 1D (T')	t a)
# Peak Data List	t a)
Peak 2Theta d 1/11 FWHM Intensity	t a)
Integrated Int	ta)
no. (deg) (A) (deg) (Counts) (Counts	us)
1 4.4600 19.79645 6 0.42000 25 646	
2 6.1340 14.39714 44 1.38800 200 14417	
3 9.6200 9.18645 5 0.34660 22 943	;
4 10.2200 8.64844 5 0.00000 22 0)
5 11.2000 7.89380 6 0.59420 28 1371	
6 <u>12.1625</u> <u>7.27119</u> <u>9</u> <u>0.94500</u> <u>40</u> <u>1653</u>	
7 13.2675 6.66798 4 0.27500 19 278	
8 13.9150 6.35912 4 0.19000 17 229	
9 19.9000 4.45805 77 0.38780 346 12072	
10 21.8800 4.05889 100 0.74000 450 26951	
11 22.7800 <u>3.90052</u> 29 <u>1.50860</u> 130 9112	2
12 23.6000 3.76682 16 0.00000 70 0)
13 25.0000 3.55896 15 0.96000 69 4949	
14 25.6600 3.46890 10 0.67000 43 1421	
15 26.6500 3.34224 14 0.36660 63 1950	
16 27.4000 3.25243 8 0.00000 36 0)
17 28,4600 3,13366 12 1,44000 55 3947	
18 29.3000 3.04570 8 0.00000 38 0)
19 31.2550 2.85951 4 0.31000 17 491	L
20 35.3600 2.53638 35 1.28000 156 7362	
21 35.9400 2.49677 37 1.29000 168 5850	
22 37.1200 2.42006 13 1.51000 58 3832	
23 38.4033 2.34209 9 0.54670 41 1675	
24 40.4216 2.22968 4 0.25670 17 583	
25 42.4750 2.12652 5 0.31000 21 610	
26 44.3366 2.04146 4 0.20670 19 610	
27 45.7725 1.98070 4 0.17500 18 259	
28 48.6341 1.87063 4 0.24170 20 451	

Lampiran 7 X-Ray Diffraction of NaMMT asam

*** Basic Data Process ***

		and the second	Dusic Dutu	TIOCCOD		
Group :	: 29					
Data : N	a-MMT-Asam					
# Strong	gest 3 peaks	. A 1944 B. 1				
peak	2Theta	đ	I/I1	FWHM	Intensity	Integrated Int
no.	(deg)	(A)		(deg)	(Counts)	(Counts)
9	21.5222	4.12555	100	1.40440	582	33321
8	20.6400	4.29985	48	0.00000	277	0
7	19.8800	4.46249	46	0.41760	268	12642
# Peak I	Data List					
peak	2Theta	d	I/I1	FWHM	Intensity	Integrated Int
no.	(deg)	(A)	1.0. 1	(deg)	(Counts)	(Counts)
1	7.3326	12.04622	17	1.27870	101	6910
2	8.9000	9.92794	5	0.82000	27	1925
3	9.8000	9.01812	4	0.00000	- 26	0
4	10.6800	8.27695	5	1.73340	30	2389
5	12.2825	7.20042	8	0.55500	47	1473
6	13.4300	6.58766	4	0.50000	21	966
7	19.8800	4.46249	46	0.41760	268	12642
8	20.6400	4.29985	48	0.00000	277	0
9	21.5222	4.12555	100	1.40440	582	33321
10	22.6800	3.91750	30	0.83200	172	7221
11	23.6600	3.75740	11	0.91340	62	3286
12	24.9400	3.56739	10	0.88000	59	3087
13	26.6361	3.34395	18	0.24770	105	1523
14	27.4600	3.24546	7	0.70660	43	1320
15	28.2344	3.15818	15	1.06890	86	4361
16	35.1200	2.55316	21	0.80000	125	4483
17	35.8600	2.50215	30	1.12000	172	8931
18	37.1400	2.41881	7	0.00000	43	0
19	37.5000	2.39641	5	0.00000	29	0
20	38.4855	2.33728	7	0.26450	41	127

Lampiran 9

Lampiran 10

	12. Vile-		Dasic Data	Flocess		
Group	: 25		S. 1 P		- A	
Data : (DC-6848					
# Stron	gest 3 peaks					19
peak	2Theta	d	I/I1	FWHM	Intensity	Integrated Int
no.	(deg)	(A)		(deg)	(Counts)	(Counts)
11	21.5946	4.11188	100	1.22930	610	33307
10	20.6400	4.29985	43	0.00000	260	0
1	4.5263	19.50662	33	1.18070	203	12694
# Peak	Data List					
peak	2Theta	d	I/I1	FWHM	Intensity	Integrated Int
no.	(deg)	(A)		(deg)	(Counts)	(Counts)
1	4.5263	19.50662	33	1.18070	203	12694
2	8.6800	10.17907	8	0.99200	51	3342
3	9.4600	9.34146	9	0.00000	52	0
4	10.2400	8.63159	10	0.00000	59	0
5	10.7800	8.20039	8	0.00000	50	0
6	11.9550	7.39692	10	1.31000	63	4139
7	13.0600	6.77345	4	0.74660	- 24	1486
8	16.0900	5.50408	3	0.42000	18	1062
9	19.8600	4.46693	29	0.48400	179	10165
10	20.6400	4.29985	43	0.00000	260	0
11	21.5946	4.11188	100	1.22930	610	33307
12	22.9800	3.86703	21	1.71200	130	13018
13	24.9200	3.57020	17	1.08800	103	6395
14	26.6326	3.34438	16	0.38970	97	2601
15	28.4666	3.13295	4	0.49330	25	1569
16	35.7150	2.51198	24	1.49000	149	11696
17	37.5200	2.39518	6	0.00000	36	0
18	38.3600	2.34464	4	1.16000	27	2487
19	42.4811	2.12623	3	0.42630	19	730
20	43.9975	2.05640	4	0.35500	23	894

Lampiran 11

		D	asic Data	TIUCESS		
Group	: 25					
Data : (OC-8560			(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		
# Stron	gest 3 peaks					
peak	2Theta	d	I/I1	FWHM	Intensity	Integrated Int
no.	(deg)	(A)		(deg)	(Counts)	(Counts)
11	21.5973	4.11138	100	1.21870	634	43039
1	4.3975	20.07767	43	1.07500	272	15419
10	20.6400	4.29985	42	0.00000	268	0
# Peak	Data List					
peak	2Theta	d	I/I1	FWHM	Intensity	Integrated Int
no.	(deg)	(A)		(deg)	(Counts)	(Counts)
1	4.3975	20.07767	43	1.07500	272	15419
2	8.2400	10.72160	7	0.80000	43	2569
3	9.1400	9.66778	7	0.00000	42	0
4	10.0600	8.78562	7	0.00000	43	0
5	10.7000	8.26152	6	0.00000	40	0
6	11.9966	7.37137	9	1.19330	56	3718
7	12.9000	6.85710	4	0.46000	25	670
8	16.5250	5.36016	3	0.39000	22	760
9	19.9200	4.45362	31	0.54000	197	10452
10	20.6400	4.29985	42	0.00000	268	0
11	21.5973	4.11138	100	1.21870	634	43039
12	24.8200	3.58436	15	1.49000	98	11063
13	26.6644	3.34047	13	0.33390	85	1600
14	27.8200	3.20428	4	0.72000	23	1096
15	28.6275	3.11570	5	0.81500	31	1273
16	35.6583	2.51584	25	1.29670	159	11473
17	37.2400	2.41254	4	0.00000	26	0
18	38.4400	2.33994	5	0.36000	31	1771
19	43.9491	2.05855	4	0.41170	24	825

Lampiran 12

			Dasic Data	1100055		
Group	: 25					
Data :	OC-10272					
# Stron	igest 3 peaks					- 61
peak	2Theta	d	I/I1	FWHM	Intensity	Integrated Int
no.	(deg)	(A)		(deg)	(Counts)	(Counts)
8	21.5936	4.11207	100	1.24730	705	41005
7	20.5800	4.31225	42	0.00000	293	0
13	35.8200	2.50486	24	0.92000	172	7726
# Peak	Data List					
peak	2Theta	d	I/I1	FWHM	Intensity	Integrated Int
no.	(deg)	(A)		(deg)	(Counts)	(Counts)
1	5.0650	17.43310	20	1.15000	139	8650
2	8.8200	10.01781	5	0.76000	37	3821
3	9.9400	8.89142	8	0.00000	54	0
4	10.6400	8.30797	7	0.00000	49	0
5	12.3200	7.17858	8	0.69340	58	4871
6	19.8400	4.47139	24	0.38540	169	9999
7	20.5800	4.31225	42	0.00000	293	0
8	21.5936	4.11207	100	1.24730	705	41005
9	23.0400	3.85709	19	1.44000	132	12570
10	24.9000	3.57303	12	1.20000	83	5515
11	26.6373	3.34380	13	0.31960	92	1759
12	35.1600	2.55035	13	0.91000	89	3725
13	35.8200	2.50486	24	0.92000	172	7726
14	37.6600	2.38659	5	0.51000	34	1466
15	38.3600	2.34464	6	0.40000	44	1076
16	39.3683	2.28688	3	0.36330	21	520
17	44.0424	2.05441	3	0.37290	24	889

Lampiran 13

Lampiran 14

		***	Basic Data I	Process ***		
Group	: Uji					
Data : (OC-6848 +Air					
# Stron	gest 3 peaks					S 2
peak	2Theta	d	I/I1	FWHM	Intensity	Integrated Int
no.	(deg)	(A)		(deg)	(Counts)	(Counts)
8	21.6354	4.10422	100	1.29580	533	30404
7	20.7200	4.28343	42	0.00000	224	0
1	5.1100	17.27968	28	1.42000	149	10599
# Peak	Data List					
peak	2Theta	d	I/I1	FWHM	Intensity	Integrated Int
no.	(deg)	(A)		(deg)	(Counts)	(Counts)
1	5.1100	17.27968	28	1.42000	149	10599
2	8.6000	10.27358	9	1.16000	50	5465
3	10.2200	8.64844	12	0.00000	62	0
4	11.3800	7.76934	11	0.00000	56	0
5	12.1675	7.26821	13	1.05500	71	4240
6	19.9800	4.44038	27	0.51200	143	8401
7	20.7200	4.28343	42	0.00000	224	0
8	21.6354	4.10422	100	1.29580	533	30404
9	23.1800	3.83411	21	1.54000	110	10488
10	24.9400	3.56739	17	1.20000	93	5909
11	26.7010	3.33597	20	0.36600	108	2137
12	27.3873	3.25391	5	0.67870	28	886
13	28.5800	3.12077	6	1.36000	32	1359
14	29.1600	3.06001	4	0.60000	20	441
15	29.8000	2.99573	3	0.52000	16	475
16	35.2200	2.54614	14	1.06660	74	3969
17	36.0400	2.49007	26	0.79000	137	3808
18	36.6400	2.45066	10	0.80000	54	1819
19	37.5800	2.39149	6	1.30000	32	2078
20	43.6150	2.07355	3	0.19000	17	207
21	44.2475	2.04536	4	0.34500	20	546

1.1		***	Basic Data	Process ***		1012
Group :	Uji	Deserve and			1999 I	승규는 것이 같이 많이
Data : (DC-8560+Air	and the second			A	
# Stron	gest 3 peaks					
peak	2Theta	d	I/I1	FWHM	Intensity	Integrated Int
no.	(deg)	(A)		(deg)	(Counts)	(Counts)
12	21.6079	4.10938	100	1.20920	494	32889
11	20.8200	4.26308	46	0.00000	227	0
1	5.0116	17.61873	28	1.46330	140	9738
# Peak	Data List	1929 - The State of S				
peak	2Theta	d	I/I1	FWHM	Intensity	Integrated Int
no.	(deg)	(A)		(deg)	(Counts)	(Counts)
1	5.0116	17.61873	28	1.46330	140	9738
2	7.9000	11.18226	4	0.29340	20	305
3	8.6400	10.22611	7	0.84000	34	2132
4	9.5200	9,28272	9	0.00000	45	0
5	10.1800	8.68233	9	0.00000	46	0
6	11.0000	8.03687	8	0.00000	41	0
7	12.2400	7.22532	12	0.52000	57	3101
8	16.7175	5.29886	4	0.39500	21	447
9	17.4075	5.09035	3	0.34500	15	427
10	19.8400	4.47139	26	0.41140	129	9451
11	20.8200	4.26308	46	0.00000	227	0
12	21.6079	4.10938	100	1.20920	494	32889
13	23.3000	3.81464	-15	0.00000	76	0
14	24.9450	3.56668	19	0.97000	94	7527
15	26.6102	3.34715	16	0.35050	79	2044
16	27.3800	3.25476	3	0.00000	16	0
17	27.8000	3.20654	4	0.70000	20	720
18	28.6925	3.10879	5	0.68500	25	1481
19	34.9800	2.56306	12	0.73600	60	2098
20	35.7033	2.51278	26	1.27330	129	6899
21	37.7200	2.38293	5	0.71200	27	1379
22	38.4800	2.33760	4	0.48000	22	831
23	42.5316	2.12382	3	0.68330	18	912

Page 2/2

5/25/2012

5/25/2012

3/8/2012

4/17/2012

Metode Biscaye

Metode Biscaye mengestimasi komposisi relatif mineral dengan mengalikan peak area dengan faktor berat, yaitu : 1x peak area *smectite* (001), 4x peak area *illite* (001), 2x peak area *chlorite* (002) dan 2x peak area *Kaolinite* (001).

Untuk setiap sampel clay, persentase clay mineral dinyatakan dengan rumus :

Illite (contoh) = $\frac{4Ix100}{S + 4I + 2K + 2C}$

Dengan I=Illite, S= smectite, K= Kaolinite, C= Chlorite.

Karena adanya interferensi antara kaolinite (bidang refleksi 001) dengan chlorite (bidang refleksi 002) maka sering dilaporkan dalam bentuk kelimpahan chlorite (+ kaolinite). Rumusnya dinyatakan :

Illite (contoh) =
$$\frac{4Ix100}{S+4I+2C(K)}$$

Berikut ini contoh pola difraksi yang representatif

Data Perhitungan Komposisi Clay

	2 theta	d (Å)	Integrated	Komposisi Relatif
Bentonit Alam		- ()	Int	(%)
Smectite	5,5445	15,92647	22146	76,26
Illite	9,4875	9,31445	1084	14,93
Kaolinite (Chlorite)	12,2200	7,23710	1279	8,81
Fraksi 1				
Clay	2 thata	d (Å)	Integrated	Komposisi Relatif
Clay	2 theta	u (A)	Int	(%)
Smectite	5,7392	15,38660	24454	80,29
Illite	9,3033	9,49845	803	10,55
Kaolinite (Chlorite)	12,1400	7,28461	1395	9,16
			1	
Fraksi 2				
Clar	2 thata		Integrated	Komposisi Relatif
Clay	2 theta	u (A)	Int	(%)
Smectite	5,9209	14,91482	13794	76,06
Illite	9,7430	9,07075	275	6,07
Kaolinite (Chlorite)	12,2430	7,22356	1620	17,87
1 100 10				
Fraksi 3				
Class	2 41 - 4-		Integrated	Komposisi Relatif
Clay	2 theta	u (A)	Int	(%)
Smectite	6,2155	14,20854	10081	60,25
Illite	9,9633	8,87067	937	22,40
Kaolinite (Chlorite)	11,1600	7,92200	1451	17,35
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Section of		11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Fraksi 4				
Clay	2 thata	d (Å)	Integrated	Komposisi Relatif
	2 theta	u (A)	Int	(%)
Smectite	6,1340	14,39714	14417	67,07
Illite	9,6200	9,18645	943	17,55
Kaolinite (Chlorite)	12,1625	7,27119	1653	15,38
Konsentrasi (M)	Absorbansi			
----------------------	------------			
0,001	0,03839			
0,002	0,06483			
0,003	0,09407			
0,004	0,12078			
0,005	0,14140			

Kurva absorbansi larutan Cu(en)₂²⁺ standar dan perhitungan KTK

Kurva diatas mempunyai persamaan garis y = 26,197X + 0,0133 dengan nilai $R^2 = 0,996763$

Larutan $Cu(en)_2^{2+}$	Absorbansi	Konsentrasi
Awal	0,07478	0,00235
Ahir	0,03763	0,00093
Terserap	240	0,00142

KTK = $[Cu(en)_2^{2+}]$ terserap x vol. Larutan x muatan

Massa clay

= (0,00142 mmol/ml) x (25 ml) x (2 meq/mmol)

0,1 gram

= 0,71 meq/ gram

= 71 meq / 100 gram

Perhitungan jumlah surfaktan yang teradsorpsi

Dari data EDX dapat dihitung massa TX-100 dalam 1 gram organoclay sebagai berikut;.

- 1. Pada OC_{1070}
 - Rumus molekul TX-100 = $C_8H_{17}C_6H_5(CH_2CH_2O)_{9,5}OH$
 - Jumlah atom C pada 1 molekul TX-100 = 33
 - Berat molekul TX-100 = 625
 - Kadar C dalam Organoclay =0,16 %

	-	Massa C dalam 1 gram organoclay	=	(0,16/100) x 1000 mg
			=	1,6 mg
	-	Massa TX-100 dalam 1 gram organoclay	'=	(625x1,6) / (33x12)
			=	2,52525 mg
2.	Pac	$la OC_{4280}$		
1	-	Kadar C dalam Organoclay = 1,64 %		
	-	Massa C dalam 1 gram organoclay	=	(1,64 /100) x 1000 mg
			=	16,4 mg
	-	Massa TX-100 dalam 1 gram organoclay	'=	(625x16,4) / (33x12)
			=	25,88384 mg
3.	Pac	la OC ₆₈₄₈		
	-	Kadar C dalam Organoclay = $3,68 \%$		
	-	Massa C dalam 1 gram organoclay	=	(3,68 /100) x 1000 mg
			\exists	36,8 mg
	-	Massa TX-100 dalam 1 gram organoclay	=	(625x36,8) / (33x12)
			=	58,08081 mg
4.	Pac	la OC ₈₅₆₀		
	-	Kadar C dalam Organoclay = 3,85 %		
	-	Massa C dalam 1 gram organoclay	=	(3,85 /100) x 1000 mg
			÷,	38,5 mg
	- 1	Massa TX-100 dalam 1 gram organoclay	=	(625x38,5) / (33x12)
			=	60,76389 mg
5.	Pac	la OC ₁₀₂₇₂		
	-	Kadar C dalam Organoclay = $1,42$ %		
	-	Massa C dalam 1 gram organoclay	=	(1,42/100) x 1000 mg
			=	14,2 mg
	-	Massa TX-100 dalam 1 gram organoclay	=	(625x14,2) / (33x12)
			=	22,41162 mg
				-

Data adsorpsi isotermal Langmuir dan Freundlich Clay terhadap triton X-100

Co (mg/L)	Ce (mg/L)	Qe (mg/g)	Ce/qe	log Ce	Log qe
1070	1044,8	2,52525	413,7412	3,01903	0,40230
4280	4021,2	25,88384	155,3556	3,60436	1,41303
6848	6267,2	58,08081	107,9048	3,79707	1,76403
8560	7952,4	60,76389	130,8738	3,9005	1,78365

Keterangan:

Co = Konsentrasi awal surfaktan (mg/L)

qe = Kapasitas adsorpsi surfaktan (mg/g)

Ce = Konsentrasi sisa (setimbang) surfaktan (mg/L)

= (Co - (qe x massa clay) / volume larutan)

Massa clay =0,5 gram

Volume larutan surfaktan = 50 ml

Persamaan regresi linear isotermal Langmuir

Ce/qe = 1/(bqm) + (1/qm) Ce dan Y = 403,68 - 0,042 X

qm = 1 / (-0.042) = 23.81 mg/g

 $b = 1/(403,68 \ge 23,81) = 0,000104 L/mg$

Konstanta Kesetimbangan = bqm = 0,00477 L/g

Faktor separasi (RL) = 1/(1+bCe) = 1/(1+(0,000104x7952,4) = 0,547

Persamaan regresi linear isotermal Freundlich

Log qe = 1/n Log Ce + Log kf dan Y=1,6384X - 4,525 berarti n= 0,61 Log kf = -4,525 maka Kf ^{ant}Log -4,525 = 2,99 x 10⁻⁵ mg/g

Lampiran 32

C ₀	λ	Abs NS	fk Abs NS	Abs NS sk	Abs NaMMT	fk Abs NaMMT	Abs Nhk	Abs. AS
20	280	0,178	-0,010	0,188	0,096	0,019	0,077	0,111
40	280	0,324	-0,005	0,329	0,096	0,019	0,077	0,252
60	280	0,475	-0,003	0,478	0,096	0,019	0,077	0,401
100	277	0,884	-0,004	0,888	0,096	0,019	0,077	0,811

Keterangan :

C ₀	= Konsentrasi awal sampel (p-klorofenol)
λ	= Panjang gelombang
Abs. NS	= Absorbansi sampel setelah dicampur dan distirer dengan
	NaMMT
fk.AbsNS	= faktor korekasi absorbansi Campuran Sampel +NaMMT
Abs NS sk	= Absorbansi campuran sampel +NaMMT setelah koreksi
Abs NaMMT	= absorbansi filtrat NaMMT
fk Abs NaMM	IT = Faktor koreksi Absorbansi NaMMT
Abs Nhk	= Absorbansi NaMMT hasil koreksi
Abs AS	= Absorbansi ahir sampel (p-klorofenol)

C	0	Ce	Ct	EA	qe	Ce/qe	log Ce	log qe
	20	11,727	8,273	41,364	0,827	14,176	1,069	-0,170
	40	24,545	15,455	38,636	1,545	15,882	1,390	0,102
	60	38,091	21,909	36,515	2,191	17,386	1,581	0,253
1	00	75,364	24,636	24,636	2,464	30,590	1,877	0,304

Data adsorpsi isotermal langmuir dan Freundlich untuk adsorben NaMMT

Keterngan :

 C_0 = Konsentrasi awal adsorbat (mg/L)

Ce = Konsentrasi adsorbat pada kesetimbangan (mg/L)

Ct = Konsentrasi adsorbat yang terserap oleh adsorben (mg/L)

qe = Konsenttrasi adsorbat dalam adsorben pada kondisi

kesetimbangan (mg/g)

EA= Persen Efisiensi Adsorpsi

Persamaan regresi linear isotermal Langmuir :

Ce/qe = (1/qm)Ce + 1/(bqm) dan Y=0,266X + 9,551

1/qm = 0,266, maka qm = 1/0,266 = 3,759 mg/g

b = 1/(9,551 x qm) = 1/(9,551 x 3,759) = 0,028 L/mg

Konstanta Kesetimbangan = $b.qm = 0,028 \times 3,759 = 0,105 L/g$

Faktor Separasi (RL) = $1/(1+bCe) = 1/(1+(0,028 \times 75,364)) = 0,322$

Persamaan regresi linear isotermal Freundlich :

Log qe = $1/n \log \text{Ce} + \text{Log Kf}$ dan Y= 0,601X - 0,766; sehingga n= 1,664 Log Kf = -0,766, maka Kf = $^{\text{ant}}\text{Log -0,766} = 0,171 \text{ L/g}$

Lampiran 35Spektrum UV-VISadsorpsi p-klorofenol oleh OC 4280

C ₀	λ	Abs OS	fk Abs OS	Abs OS sk	Abs OC	fk Abs OC	Abs OChk	Abs. AS
20	276	0,509	0,014	0,495	0,485	0,032	0,453	0,042
40	277	0,589	0,016	0,573	0,478	0,032	0,446	0,127
60	277	0,665	0,033	0,632	0,478	0,032	0,446	0,186
100	278	0,972	0,045	0,927	0,467	0,032	0,435	0,492

Keterangan :

C_0	= Konsentrasi awal sampel (p-klorofenol) dalam mg/L
λ	= Panjang gelombang (nm)
Abs. OS	= Absorbansi sampel setelah dicampur dan distirer dengan
	organoclay (OC_{4280})
fk.AbsOS	= faktor korekasi absorbansi Campuran Sampel +Organoclay 4280
Abs OS sk	= Absorbansi campuran sampel +Organoclay setelah koreksi
Abs OC	= absorbansi filtrat/suspensi organoclay 4280
fk Abs OC	= Faktor koreksi Absorbansi organoclay 4280
Abs OChk	= Absorbansi OC 4280 hasil koreksi
Abs AS	= Absorbansi ahir sampel (p-klorofenol)
	· · · ·

C ₀	Ce	Ct	EA	qe	Ce/qe	log Ce	log qe
20	5,455	14,545	72,727	1,455	3,750	0,737	0,163
40	13,182	26,818	67,045	2,682	4,915	1,120	0,428
60	18,545	41,455	69,091	4,145	4,474	1,268	0,618
100	46,364	53,636	53,636	5,364	8,644	1,666	0,729

Data adsorpsi isotermal langmuir dan Freundlich untuk adsorben OC 4280

Keterngan :

C₀= Konsentrasi awal adsorbat (mg/L)

Ce = Konsentrasi adsorbat pada kesetimbangan (mg/L)

Ct = Konsentrasi adsorbat yang terserap oleh adsorben (mg/L)

qe = Konsenttrasi adsorbat dalam adsorben pada kondisi kesetimbangan atau kapasitas adsorpsi adsorben (mg/g)

EA= Persen Efisiensi Adsorpsi

Persamaan regresi linear isotermal Langmuir :

Ce/qe = (1/qm)Ce + 1/(bqm) dan Y=0,119X + 2,944

1/qm = 0,119, maka qm = 1/0,119 = 8,403 mg/g

b = 1/(2,944 x qm) = 1/(2,944 x 8,403) = 0,077 L/mg

Konstanta Kesetimbangan = $b.qm = 0,077 \times 8,403 = 0,648 L/g$

Faktor Separasi (RL) = $1/(1+bCe) = 1/(1+(0,029 \times 46,364) = 0,219$

Persamaan regresi linear isotermal Freundlich :

Log qe = $1/n \log Ce + Log Kf dan Y = 0,624X - 0,264$; sehingga n= 1,603 Log Kf = -0,264, maka Kf = ^{ant}Log -0,264 = 0,545 L/g

C ₀	λ	Abs OS	fk Abs OS	Abs OS sk	Abs OC	fk Abs OC	Abs OChk	Abs. AS
20	278	0,613	0,015	0,598	0,55	0,022	0,528	0,07
40	276	0,703	0,018	0,685	0,566	0,022	0,544	0,141
60	276	0,799	0,014	0,785	0,566	0,022	0,544	0,241
100	277	1,125	0,028	1,097	0,561	0,022	0,539	0,558

Keterangan :

C ₀	= Konsentrasi awal sampel (p-klorofenol) dalam mg/L
λ	= Panjang gelombang (nm)
Abs. OS	= Absorbansi sampel setelah dicampur dan distirer dengan
	organoclay (OC 8560)
fk.AbsOS	= faktor korekasi absorbansi Campuran Sampel +Organoclay 8560
Abs OS sk	= Absorbansi campuran sampel +Organoclay setelah koreksi
Abs OC	= absorbansi filtrat/suspensi organoclay 8560
fk Abs OC	= Faktor koreksi Absorbansi organoclay 8560
Abs OChk	= Absorbansi organoclay 8560 hasil koreksi
Abs AS	= Absorbansi ahir sampel (p-klorofenol)

C_0	Ce	Ct	EA	qe	Ce/qe	log Ce	log qe
20	8,000	12,000	60,000	1,200	6,667	0,903	0,079
40	14,455	25,545	63,864	2,555	5,658	1,160	0,407
60	23,545	36,455	60,758	3,645	6,459	1,372	0,562
100	52,364	47,636	47,636	4,764	10,992	1,719	0,678

Data adsorpsi isotermal langmuir dan Freundlich untuk adsorben OC 8560

Keterngan :

C₀= Konsentrasi awal adsorbat (mg/L)

Ce = Konsentrasi adsorbat pada kesetimbangan (mg/L)

Ct = Konsentrasi adsorbat yang terserap oleh adsorben (mg/L)

qe = Konsenttrasi adsorbat dalam adsorben pada kondisi kesetimbangan atau kapasitas adsorpsi adsorben (mg/g)

EA= Persen Efisiensi Adsorpsi

Persamaan regresi linear isotermal Langmuir :

Ce/qe = (1/qm)Ce + 1/(bqm) dan Y=0,133X + 4,653

1/qm = 0,133, maka qm = 1/0,133 = 7,519 mg/g

b= 1/(4,653 x qm) = 1/(4,653 x 7,519) = 0,029 L/mg

Konstanta Kesetimbangan = $b.qm = 0,029 \ge 7,519 = 0,218 \text{ L/g}$

Faktor Separasi (RL) = $1/(1+bCe) = 1/(1+(0,029 \times 52,364)) = 0,397$

Persamaan regresi linear isotermal Freundlich :

Log qe = $1/n \log Ce + Log Kf dan Y = 0,716X - 0,491$; sehingga n= 1,397 Log Kf = -0,491, maka Kf = ${}^{ant}Log -0,491 = 0,323 L/g$

Spektra IR Bentonit Alam dan F 1

1. Bentonit Alam

🕀 SHIMADZU

Lampiran 40 Spektra IR Na-MMT dan OC 1070

Lampiran 41 Spektra IR OC 4280 dan OC 6848

Preparasi organoclay..., Muhamad Salim, FMIPA UI, 2012

Lampiran 42 Spektra IR OC 8560 dan OC 10272

1. F1+4CP

[] SHIMADZU

Lampiran 44 Spektra IR OC 4280+4-CP dan OC 8560+4-CP

1. OC 4280 + 4CP

Smooth

3 SHIMADZU

Preparasi organoclay..., Muhamad Salim, FMIPA UI, 2012

No. of Scans; 45 Resolution; 4 [1/cm] LABORATORIUM AFILIASI DEPT.KIMIA UI

