

PROYEKSI CADANGAN BAHAN BAKAR MINYAK DI WILAYAH DISTRIBUSI NIAGA III DAN IV MELALUI PENDEKATAN EKONOMETRIK

SKRIPSI

CICILIA 0806456423

FAKULTAS TEKNIK PROGRAM STUDI TEKNIK KIMIA DEPOK JUNI 2012

PROYEKSI CADANGAN BAHAN BAKAR MINYAK DI WILAYAH DISTRIBUSI NIAGA III DAN IV MELALUI PENDEKATAN EKONOMETRIK

SKRIPSI

Diajukan sebagai salah satu syarat untuk memperoleh gelar sarjana

CICILIA 0806456423

FAKULTAS TEKNIK PROGRAM STUDI TEKNIK KIMIA DEPOK JUNI 2012

HALAMAN PERNYATAAN ORISINALITAS

Makalah skripsi ini adalah hasil karya saya sendiri, dan semua sumber baik yang dikutip maupun dirujuk telah saya nyatakan dengan benar.

Nama : Cicilia

NPM : 0806456423

Tanda Tangan :

Tanggal : 22 Juni 2012

HALAMAN PENGESAHAN

Skripsi ini diajukan oleh

Nama

: Cicilia

NPM

: 0806456423

Program Studi

Teknik Kimia

Judul Skripsi

: Proyeksi Cadangan Bahan Bakar Minyak Di

Wilayah Distribusi Niaga III dan IV Melalui

Pendekatan Ekonometrik

Telah berhasil dipertahankan di hadapan Dewan Penguji dan diterima sebagai bagian persyaratan yang diperinkan untuk memperoleh gelar Sarjana Teknik pada Program Studi Teknik Kimia, Fakultas Teknik, Universitas Indonesia

DEWAN PENGUJI

Pembimbing 1: Dr. Ir, Andy Noorsaman Sommeng, DEA

Pembimbing 2: Prof. Dr. Ir. Anondho Wijanarko, M. Eng.

Penguji

: Dr. Ir. Asep H. Saputra, M. Eng.

Penguji

: Kamarza Mulia, PhD.

Penguii

: Dr. Donni Adinata, ST.

Ditetapkan di : Depok

Tanggal

: 28 Juni 2012

iii

KATA PENGANTAR

Puji syukur saya panjatkan ke hadirat Tuhan Yang Maha Esa, karena atas rahmat dan penyertaan-Nya, skripsi yang berjudul "Proyeksi Cadangan Bahan Bakar Minyak di Wilayah Distribusi Niaga III dan IV Melalui Pendekatan Ekonometrik" ini dapat selesai. Penulisan skripsi ini dilakukan dalam rangka memenuhi salah satu syarat untuk mencapai gelar Sarjana Teknik Program Studi Teknik Kimia pada Fakultas Teknik Universitas Indonesia. Dalam pembuatan skripsi ini, saya tidak berjuang sendiri, melainkan banyak orang yang telah mendukung dan membantu sehingga akhirnya skripsi ini dapat selesai dibuat. Oleh karena itu, saya ingin mengucapkan terima kasih kepada:

- Dr. Ir. Andy Noorsaman Sommeng, DEA, selaku dosen pembimbing 1 yang telah menyediakan waktu, tenaga, dan pikiran untuk mengarahkan saya dalam penyusunan skripsi ini;
- Prof. Dr. Ir. Anondho Wijanarko, M. Eng, selaku dosen pembimbing 2 yang telah menyediakan waktu, tenaga, dan pikiran untuk mengarahkan saya dalam penyusunan skripsi ini;
- Seluruh dosen Departemen Teknik Kimia UI yang telah mengajar dan memberi saya wawasan sebagai mahasiswa teknik kimia;
- Bapak Luluk Pryambudi M.T dan Bapak Agustinus, S.T dari BPH Migas yang telah membantu saya dalam memberikan data, pengetahuan dan wawasan di bidang hilir migas;
- Mbak Grace, Mbak Ellya, dan Mbak Esti dari BPH Migas yang telah mengatur jadwal pertemuan dengan Bapak Andy;
- Bapak Dr. Hanung Budya, Ibu Silvia, Bapak Yudi, Ibu Yuni, Ibu Lia, Bapak Alfian, Ibu Windi, Bapak Irfan, Bapak Sukses, Ibu Jelita Irmawati, Ibu Fitrasani dari PT. Pertamina Persero yang telah membantu dalam memberikan data yang saya perlukan;
- Ibu, Tante, dan Adik yang telah memberikan semangat serta bantuan dukungan material dan moral;

iv

- Rekan-rekan saya yaitu Ignatius Hany Himawan, Gregorius Stefanus, Mohammad Firdaus S. dan Ario Wicaksono Santosa yang telah memberikan semangat dan dukungan;
- serta kepada semua pihak yang tidak dapat disebutkan satu per satu.

Akhir kata, saya berharap Tuhan Yang Maha Esa berkenan membalas segala kebaikan semua pihak yang telah membantu saya menyelesaikan skripsi ini. Saya menyadari bahwa makalah ini masih belum sempurna, kritik dan saran yang membangun selalu saya harapkan agar dapat menyempurnakan tulisan ini. Semoga tulisan ini dapat bermanfaat bagi dunia pendidikan dan ilmu pengetahuan.

Depok, 22 Juni 2012

Penulis

HALAMAN PERNYATAAN PERSETUJUAN PUBLIKASI TUGAS AKHIR UNTUK KEPENTINGAN AKADEMIS

Sebagai sivitas akademik Universitas Indonesia, saya yang bertanda tangan di bawah ini:

Nama : Cicilia

NPM : 0806456423

Program Studi: Teknik Kimia

Departemen : Teknik Kimia

Fakultas : Fakultas Teknik

Jenis Karya : Skripsi

demi pengembangan ilmu pengetahuan, menyetujui untuk memberikan kepada Universitas Indonesia **Hak Bebas Royalti Noneksklusif** (*Non-exclusive Royalty Free Right*) atas karya ilmiah saya yang berjudul:

"Proyeksi Cadangan Bahan Bakar Minyak di Wilayah Distribusi Niaga III dan IV Melalui Pendekatan Ekonometrik"

beserta perangkat yang ada (jika diperlukan). Dengan Hak Bebas Royalti Noneksklusif ini Universitas Indonesia berhak menyimpan, mengalihmedia/formatkan, mengelola dalam bentuk pangkalan data (*database*), merawat, dan mempublikasikan tugas akhir saya tanpa meminta izin dari saya selama tetap mencantumkan nama saya sebagai penulis/pencipta dan sebagai pemilik Hak Cipta.

Demikian pernyataan ini saya buat dengan sebenarnya.

Dibuat di : Depok

Pada tanggal : 22 Juni 2012

Yang menyatakan

(Cicilia)

vi

ABSTRAK

Nama : Cicilia

Program Studi : Teknik Kimia

Judul : Proyeksi Cadangan Bahan Bakar Minyak di Wilayah Distribusi

Niaga III dan IV Melalui Pendekatan Ekonometrik

Sistem distribusi BBM di Indonesia tidak berjalan dengan baik sehingga menyebabkan kelangkaan di beberapa wilayah Indonesia. Tujuan pekerjaan ini adalah menerapkan model ekonometrik untuk memproyeksikan jumlah kebutuhan BBM setiap wilayah hingga tahun 2025 sehingga cadangan BBM akan terjamin dan kelangkaan BBM dapat dihindari. Penelitian ini dibatasi pada Wilayah Distribusi Niaga III dan IV. Variabel-variabel yang berpengaruh adalah jumlah produksi dan konsumsi BBM serta Produk Domestik Regional Bruto. Ketahanan cadangan BBM ditentukan selama 60 hari. Hasil yang diperoleh yaitu cadangan BBM yang dibutuhkan di WDN III dan IV pada tahun 2013 sebesar 2.67 Juta Kiloliter dan pada tahun 2025 sebesar 6.11 Juta Kiloliter dengan menambah kapasitas kilang/depot BBM dengan volume yaitu sebesar 8.7 Juta Kiloliter/tahun pada tahun 2017 dan sebesar 8.8 Juta Kiloliter/tahun pada tahun 2022 yang disertai dengan melakukan impor BBM sebesar 7.35 Juta Kiloliter pada tahun 2016 dan sebesar 6.76 Juta Kiloliter pada tahun 2021.

Kata kunci: Proyeksi, Cadangan BBM, Ekonometrik

vii

ABSTRACT

Name : Cicilia

Program : Chemical Engineering

Title : Strategic Fuel Reserve Projection In Commercial Distribution

Region III and IV Approached by Econometric

The distribution system fuel reserve in Indonesia is not going well so caused scarcity in some region of Indonesia. The purpose of this work is to apply an econometric model in order to project how much the needs of fuel in each region until 2025 so the fuel stock can be secured and the scarcity can be avoided. This research is limited by the Commercial Distribution District III and IV. The variables that influence to the fuel reserves are the production and consumption of fuel and Growth Domestic Product. The coverage day of fuel in Indonesia is given for 60 days. The result obtained that the needs of fuel stock is 2.67 million Kiloliter in 2013 and 6.11 million Kiloliter in 2025 with added refining capacity of fuel as high as 8.7 million Kiloliter/year in 2017 and 8.8 million Kiloliter/year in 2022 along with import the fuel as high as 7.35 million Kiloliter in 2016 and 6.76 million Kiloliter in 2021.

Key words: Projection, Fuel Reserve, Econometric

viii

DAFTAR ISI

HALAMAN JUDULi
HALAMAN PERNYATAAN ORISINALITAS ii
HALAMAN PENGESAHANiii
KATA PENGANTARiv
HALAMAN PERNYATAAN PERSETUJUAN PUBLIKASI TUGAS
AKHIR UNTUK KEPENTINGAN AKADEMISvi
ABSTRAK vii
ABSTRACTviii
DAFTAR ISIix
DAFTAR GAMBARxi
DAFTAR TABELxiii
DAFTAR LAMPIRANxiv
BAB 1 PENDAHULUAN 1
1.1. Latar Belakang
1.2. Rumusan Masalah
1.3. Tujuan Penelitian
1.4. Batasan Masalah
1.5. Sistematika Penulisan 3
BAB 2 TINJAUAN PUSTAKA
2.1. Produksi BBM 5
2.2. Konsumsi BBM 5
2.3. Impor BBM 6
2.4. Cadangan Strategis
2.5. Pola Penyaluran BBM9
2.6. Infrastruktur Penyedian dan Pendistribusian BBM9
2.7. Kapasitas Kilang BBM
2.8. Konsep Supply Demand
2.9 Peramalan 17

ix

BAB 3 METODE PENELITIAN	25
3.1. Pengumpulan Data	25
3.2. Validasi dan Verifikasi Model	27
3.3. Skenario	27
BAB 4 HASIL DAN PEMBAHASAN	29
4.1. Proyeksi Konsumsi BBM di Provinsi NTB	30
4.2. Cadangan BBM	42
4.3. Suplai Kilang BBM	45
4.4. Tambahan Suplai BBM	48
4.5. Skenario Kebijakan BBM	50
BAB 5 KESIMPULAN DAN SARAN	55
DAFTAR PUSTAKA	57
LAMPIRAN	58

DAFTAR GAMBAR

Gambar 2.1. Pola Penyaluran Bahan Bakar Minyak Premium (Wibowo 2008)
Gambar 2.2. Lokasi Fasilitas dan Kapasitas Kilang (Ditjen Migas 2012)
Gambar 2.3. Pendistribusian Bahan Bakar Minyak di Wilayah Daerah
Niaga IIIa (BPH Migas 2012)13
Gambar 2.4. Pendistribusian Bahan Bakar Minyak di Wilayah Daerah Niaga IIIb (BPH Migas 2012)
Gambar 2.5. Pendistribusian Bahan Bakar Minyak di Wilayah Daerah
Niaga IV (BPH Migas 2012)
Gambar 2.6. Pola Horisontal (elista.akprind.ac.id 2012)
Gambar 2.7. Pola Musiman (elista.akprind.ac.id 2012)23
Gambar 2.8. Pola Siklis (elista.akprind.ac.id 2012)
Gambar 2.9. Pola Trend (elista,akprind.ac.id 2012)24
Gambar 3.1. Diagram Alir Penelitian (Somantri 2006)
Gambar 4.1. Proyeksi Konsumsi BBM di Provinsi NTB Tahun 2006-
202531
Gambar 4.2. Proyeksi Konsumsi BBM di Setiap Provinsi pada WDN III
dan IV
Gambar 4.3. Realisiasi Konsumsi BBM Rata-Rata pada Tahun 2006-
201233
Gambar 4.4. PDRB Rata-Rata pada Tahun 2006-2012
Gambar 4.5. Proyeksi Total Konsumsi BBM pada Setiap Tahun
Gambar 4.6. Komposisi Konsumsi BBM Setiap Provinsi Tahun 2006 38
Gambar 4.7. Komposisi Konsumsi BBM Setiap Provinsi Tahun 2015 39
Gambar 4.8. Komposisi Konsumsi BBM Setiap Provinsi Tahun 2025 40
Gambar 4.9. Elastisitas pada Setiap Provinsi di WDN III dan IV
Gambar 4.10. Volume Cadangan BBM Selama 60 Hari di WDN III 44
Gambar 4.11. Volume Cadangan BBM Selama 60 Hari di WDN IV 45

хi

DAFTAR TABEL

Tabel 2.1. Produksi BBM (BPS 2010)
Tabel 2.2. Konsumsi Energi Indonesia pada Sektor Transportasi (ESDM
2010)
Tabel 2.3. Import Produk Minyak Murni di Indonesia dalam Satuan Kilo
Liter (ESDM 2010)
Tabel 2.4 Cadangan BBM pada Beberapa Negara di Dunia (International
Energy Agency 2012) 8
Tabel 4.1. Elastisitas Pertumbuhan Konsumsi BBM terhadap
Pertumbuhan PDRB di Provinsi NTB
Tabel 4.2. Proyeksi BBM di Propinsi NTB Tahun 2013-2025
Tabel 4.3. Laju Pertumbuhan Konsumsi BBM Setiap Provinsi di WDN III
dan IV36
Tabel 4.4. Komposisi Konsumsi BBM di WDN III dan IV
Tabel 4.5. Volume Cadangan BBM di WDN III
Tabel 4.6. Volume Cadangan BBM di WDN IV
Tabel 4.7. Data Kapasitas Kilang di Indonesia
Tabel 4.8. Volume BBM yang Disuplai pada Setiap Provinsi
Tabel 4.9. Tambahan Suplai BBM pada Provinsi NTB
Tabel 4.10. Tambahan BBM di WDN III dan IV
Tabel 4.11. Jumlah Impor yang Ditambahkan di WDN III dan IV 53
Tabel 4.12. Jumlah Impor yang Ditambahkan pada Tahun 2022 di WDN
III dan IV

xiii

DAFTAR LAMPIRAN

Tabel 1. Perhitungan Elastisitas Provinsi NTB 5	58
Tabel 2. Perhitungan Elastisitas Provinsi NTT 5	58
Tabel 3. Perhitungan Elastisitas Provinsi Sulawesi Selatan 5	58
Tabel 4. Perhitungan Elastisitas Provinsi Sulawesi Tenggara 5	59
Tabel 5. Perhitungan Elastisitas Provinsi Sulawesi Tengah	59
Tabel 6. Perhitungan Elastisitas Provinsi Sulawesi Utara 5	59
Tabel 7. Perhitungan Elastisitas Provinsi Gorontalo	50
Tabel 8. Perhitungan Elastisitas Provinsi Sulawesi Barat 6	50
Tabel 9. Perhitungan Elastisitas Provinsi Kalimantan Timur 6	50
Tabel 10. Perhitungan Elastisitas Provinsi Kalimantan Selatan 6	51
Tabel 11. Perhitungan Elastisitas Provinsi Kalimantan Tengah 6	51
Tabel 12. Perhitungan Elastisitas Provinsi Kalimantan Barat 6	51
Tabel 13. Perhitungan Elastisitas Provinsi Papua	52
Tabel 14. Perhitungan Elastisitas Provinsi Papua Barat	
Tabel 15. Perhitungan Elastisitas Provinsi Maluku	52
Tabel 16. Perhitungan Elastisitas Provinsi Maluku Utara	53
Tabel 17. Hasil Proyeksi Konsumsi BBM di WDN III 2013-2025	53
Tabel 18. Hasil Proyeksi Konsumsi BBM di WDN IV 2013-2025 6	55
Tabel 19. Laju Pertumbuhan Konsumsi Total WDN III dan IV 6	56
Tabel 20. Proporsi Konsumsi BBM Setiap Provinsi Di WDN III dan IV 6	56
Tabel 21. Volume Cadangan BBM Setiap Provinsi selama 60 hari (KL) 6	58
Tabel 22. Tambahan Suplai BBM pada Setiap Provinsi (KL)	70
Tabel 23. Validasi Model Provinsi NTB	13
Tabel 24. Validasi Model Provinsi NTT 7	13
Tabel 25. Validasi Model Provinsi Sulawesi Selatan	73
Tabel 26. Validasi Model Provinsi Sulawesi Tenggara 7	74
Tabel 27. Validasi Model Provinsi Sulawesi Tengah 7	74
Tabel 28. Validasi Model Provinsi Sulawesi Utara 7	14
Tabel 29. Validasi Model Provinsi Gorontalo	75

xiv

Tabel 30. Validasi Model Provinsi Sulawesi Barat	75
Tabel 31. Validasi Model Provinsi Kalimantan Timur	75
Tabel 32. Validasi Model Provinsi Kalimantan Selatan	76
Tabel 33. Validasi Model Provinsi Kalimantan Tengah	76
Tabel 34. Validasi Model Provinsi Kalimantan Barat	76
Tabel 35. Validasi Model Provinsi Papua	77
Tabel 36. Validasi Model Provinsi Papua Barat	77
Tabel 37. Validasi Model Provinsi Maluku	77
Tabel 38. Validasi Model Provinsi Maluku Utara	78
Tabel 39. Laju Pertumbuhan Produk Domestik Regional Bruto Atas	
Dasar Harga Konstan 2000 Menurut Propinsi (BPS 2012)	78
Peraturan Pemerintah Republik Indonesia No. 36 Tahun 2004	79

BAB 1

PENDAHULUAN

1.1 Latar Belakang

Sistem distribusi Bahan Bakar Minyak (BBM) di Indonesia tidak berjalan dengan baik. Hal ini dapat dilihat dari antrean panjang terjadi di Stasiun-Stasiun Pengisian Bahan Bakar untuk Umum (SPBU). Kelangkaan Bahan Bakar Minyak di sejumlah daerah mengakibatkan beberapa SPBU tutup yaitu seperti di Banten, Yogyakarta, Semarang, Bandar Lampung, dan Sulawesi Utara. Kelangkaan terjadi akibat adanya pengurangan pasokan dari Pertamina. Akibat kelangkaan inilah maka perlu dilakukan perkiraan kebutuhan Bahan Bakar Minyak agar dapat mengetahui jumlah cadangan Bahan Bakar Minyak yang sesuai pada provinsi-provinsi di Indonesia.

Peraturan yang mengatur mengenai cadangan strategis minyak bumi dan BBM terdapat dalam Peraturan Pemerintah Republik Indonesia No. 36 Tahun 2004. Dalam pasal 56 ayat 4 dikatakan bahwa jumlah cadangan strategis minyak bumi ditetapkan berdasarkan kebutuhan Bahan Bakar Minyak dan pada pasal 57 dikatakan bahwa penggunaan cadangan strategis minyak bumi ditetapkan oleh Menteri pada saat terganggunya pasokan minyak bumi guna mendukung penyediaan Bahan Bakar Minyak dalam negeri (www.hukumonline.com 2012).

Idealnya, sebuah negara memiliki cadangan minyak untuk tiga bulan konsumsi. Indonesia hanya memiliki cadangan minyak untuk 20 hari. Angka itu jauh lebih kecil apabila dibandingkan dengan Jepang yang memiliki cadangan minyak 107 hari dan Korea Selatan mencapai 3 bulan (sekitar 90 hari). Dengan beberapa negara di kawasan Asia Tenggara saja, Indonesia sudah ketinggalan. Myanmar dan Singapura, misalnya, memiliki cadangan minyak untuk 90 hari. Adapun cadangan minyak Vietnam cukup untuk 67 hari (Indonesian.irib.ir 2012).

Salah satu penyebab sistem distribusi Bahan Bakar Minyak di Indonesia tidak berjalan dengan baik adalah karena Indonesia tidak mampu mencukupi kebutuhan Bahan Bakar Minyak dalam negeri. Kebutuhan konsumsi premium dalam negeri mencapai 22,5 juta kiloliter sedangkan saat ini kapasitas produksi premium dalam negeri hanya 12,22 juta kiloliter, sehingga ada kekurangan 46%

yang harus dipenuhi melalui impor. Impor terpaksa harus dilakukan, mengingat permintaan dalam negeri melonjak drastis (www.kabarbisnis.com 2011).

Model ekonometrik pernah diterapkan dalam memperkirakan kebutuhan BBM di Kota Medan. BBM ini hanya dibatasi pada sektor transportasi jenis premium dan solar. Hasil yang diperoleh yaitu konsumsi premium sebesar 3,837,917 L pada tahun 2025 dan konsumsi solar sebesar 3,837,917 L pada tahun 2025 (Martino 2008).

Pada penelitian ini, perkiraan cadangan Bahan Bakar Minyak ini akan dianalisis dengan pendekatan ekonometrik. Model ekonometrik diperoleh dengan menggunakan variable realisiasi konsumsi Bahan Bakar Minyak dan Pendapatan Domestik Regional Bruto (PDRB) maka akan diperoleh laju konsumsi BBM yang digunakan untuk memproyeksikan jumlah konsumsi BBM yang dibutuhkan hingga tahun 2025.

Penelitian ini akan menghasilkan suatu perkiraan konsumsi BBM agar dapat diketahui berapa jumlah cadangan Bahan Bakar minyak dalam beberapa tahun ke depan sehingga pemerintah dapat mengatasi masalah kelangkaan BBM dengan cara mengevaluasi konsumsi kebutuhan BBM.

1.2 Rumusan Masalah

Masalah yang hendak diselesaikan pada penelitian ini adalah menerapkan pendekatan ekonometrik untuk memperkirakan cadangan BBM di Indonesia.

1.3 Tujuan Penelitian

Tujuan yang ingin dicapai adalah menerapkan model ekonometrik agar dapat diketahui berapa jumlah kebutuhan BBM setiap provinsi dalam beberapa tahun ke depan. Dengan diketahuinya jumlah kebutuhan BBM suatu wilayah maka cadangan BBM akan terjamin sehingga kelangkaan BBM dapat dihindari.

1.4 Batasan Masalah

Penelitian ini dibatasi dengan:

1. Jumlah produksi kilang di Indonesia dan import per tahun mulai dari tahun 2006 sampai 2025.

- 2. Jumlah konsumsi BBM Indonesia dalam negeri per tahun mulai dari tahun 2006 sampai 2025.
- 3. Untuk menghitung proyeksi kebutuhan digunakan variabel Produk Domestik Regional Bruto (PDRB).
- 4. Ketahanan Cadangan BBM selama 60 hari.
- 5. Model yang digunakan adalah model ekonometrik yang disimulasikan dengan perangkat lunak Microsof Excel.
- 6. Daerah dibatasi pada Wilayah Distribusi Niaga III dan IV (Kalimantan, Sulawesi, Maluku, NTT, NTB, dan Irian Jaya).
- 7. Penelitian ini hanya sebatas menghitung berapa volume BBM yang harus ditambahkan pada suplai yang berasal dari kilang/depot, tanpa mengidentifikasi lebih lanjut kilang/depot eksisting manakah yang harus ditambahkan atau lokasi dimana harus dibangun kilang/depot baru.
- 8. Jenis BBM terdiri dari BBM subsidi (Premium, Kerosene, Solar) dan non subsidi (Avtur, Drum Aviation, Kerosene, Minyak Bakar, Minyak Diesel, MFO 180, Pertamax, Premium, dan Solar).

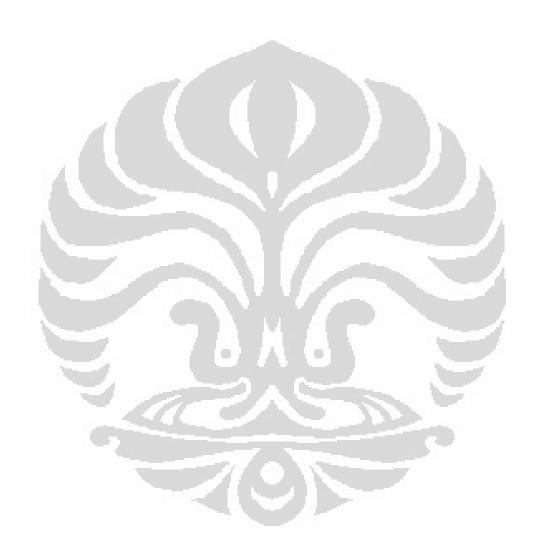
1.5 Sistematika Penulisan

Sistematika penulisan dilakukan dengan membagi tulisan menjadi tiga bab, yaitu:

BAB I: PENDAHULUAN

Bab ini berisi latar belakang, perumusan masalah yang dibahas, tujuan dilakukannya penelitian, batasan masalah, serta sistematika penulisan.

BAB II: TINJAUAN PUSTAKA


Bab ini berisi tinjauan pustaka yang dijadikan dasar penelitian yang meliputi produksi, konsumsi, dan impor, cadangan strategi, pola penyaluran BBM, infrastrukur penyedian dan pendistribusian BBM, kapasitas kilang BBM, konsep *Supply Demand*, metode dan jenis-jenis peramalan.

BAB III: METODE PENELITIAN

Bab ini berisi tentang penumpulan data, diagram alir penelitian, validasi dan verifikasi model, serta skenario yang digunakan.

BAB IV: HASIL DAN PEMBAHASAN

Bab ini berisi tentang proyeksi konsumsi BBM di provinsi NTB, cadangan BBM, supply kilang BBM, tambahan suplai BBM, dan skenario kebijakan BBM BAB V: KESIMPULAN DAN SARAN DAFTAR PUSTAKA

BAB 2 TINJAUAN PUSTAKA

2.1 Produksi BBM

Produksi Bahan Bakar Minyak (BBM) subsidi dan nonsubsidi di Indonesia semakin tahun semakin meningkat. Misalnya pada tahun 2000, produksi minyak premium mencapai 69,243,864 barrel (11,008,895 Kilo Liter). Produksi ini semakin meningkat tiap tahun hingga mencapai 72,799,000 barrel (11,574,116 Kilo Liter) pada tahun 2009. Hal ini dapat dilihat pada Tabel 2.1 di bawah ini yang merupakan tabel produksi BBM.

Tahun Premium **Pertamax** Pertamax **ADO** IDO Kerosin Dasar (barel) (barel) Plus (barel) (barel) (barel) Pelumas (barel) (barel) 2000 69,243,864 91,154,347 9,163,395 55,117,974 4,535,000 2001 66,533,951 89,656,135 9,450,504 55,044,848 2,762,000 68,975,134 8,730,022 2002 89,282,621 53,428,406 2,252,000 64,367,803 2,282,000 617,000 89,816,867 7,978,581 63,029,372 2003 3,151,000 2004 70,260,076 3,010,000 300,000 98,034,122 9,917,836 56,911,747 2,823,000 2005 71,013,010 1,699,754 431,836 94,632,874 8,558,763 53,720,587 2,403,802 2006 1,631,764 88,892,000 3,867,000 54,424,000 71,822,000 414,563 2,734,000 2007 2,754,000 951,000 82,120,000 2,267,000 51,934,000 71,337,000 2,814,000 1,523,000 387,000 92,812,000 2,036,000 53,040,000 2008 72,404,000 2,836,000 2009 72,799,000 2,050,000 647,000 107,353,000 1,110,000 32,163,000 3,041,000

Tabel 2.1 Produksi BBM (BPS 2010)

2.2 Konsumsi BBM

Konsumsi Bahan Bakar Minyak (BBM) subsidi dan nonsubsidi di Indonesia semakin tahun semakin meningkat. Misalnya pada tahun 2000, konsumsi minyak premium untuk keperluan transportasi mencapai 12,059,026 Kilo Liter (KL). Konsumsi ini semakin meningkat tiap tahun hingga mencapai 21,519,468 KL pada tahun 2009 (ESDM 2010). Hal ini dapat dilihat pada Tabel 2.2 berikut ini yang merupakan tabel konsumsi energi Indonesia pada sektor transportasi.

Tabel 2.2 Konsumsi Energi Indonesia pada Sektor Transportasi (ESDM 2010)

Tahun	Gas	Fuel						
		Avgas	Avtur	Premium	Bio	Pertamax	Bio	Pertamax
					Premium		Pertamax	Plus
	MMSCF				Kilo Lite	r		
2000	968	3,550	1,202,717	12,059,026	0	0	0	0
2001	773	3,430	1,437,503	12,705,861	0	0	0	0
2002	654	3,488	1,597,291	13,323,304	0	0	0	0
2003	599	3,556	1,929,351	13,746,726	0	371,238	0	107,441
2004	471	3,416	2,437,923	15,337,655	0	487,562	0	121,866
2005	238	3,070	2,322,634	16,621,765	0	248,875	0	99,326
2006	233	3,390	2,428,078	15,941,837	1,624	505,730	16	128,289
2007	273	2,163	2,520,040	16,962,198	55,970	472,284	9,956	158,070
2008	691	2,003	2,635,670	18,653,344	44,016	297,982	16,200	114,789
2009	314	1,687	2,760,678	21,519,468	105,816	576,536	20,232	142,312

2.3 Impor BBM

Cadangan minyak bumi Indonesia saat ini semakin menipis. Oleh karena itu untuk mencukupi kebutuhan rakyat, pemerintah harus mengimpor dari negara lain. Pada tahun 2004, Indonesia mengimpor 772 KL. Jumlah ini semakin meningkat tiap tahun, hingga mencapai 10,263 KL pada tahun 2009 (ESDM 2010). Hal ini dapat dilihat pada Tabel 2.3 di bawah ini yang merupakan tabel import produk minyak bumi di Indonesia. Oleh karena itu perlu dilakukan perkiraan konsumsi BBM agar dapat diketahui berapa jumlah cadangan minyak dalam beberapa tahun ke depan sehingga pemerintah dapat mengatasi masalah kelangkaan BBM di Indonesia.

Tabel 2.3 Import Produk Minyak Murni di Indonesia dalam Satuan Kilo Liter (ESDM 2010)

Tahun	Avtur	Premiu	Perta	Perta	DPK	HOMC	ADO	Fuel	IDO	Total
		m	max Plus	max				Oil		Fuel
2000	0	0	0	0	2,966	1,984	7,194	2,326	0	14,470
2001	0	0	0	0	2,718	2,410	7,879	1,166	0	14,174
2002	0	0	0	0	2,916	3,154	9,637	1,232	0	18,940
2003	0	0	0	0	2,516	3,076	9,955	1,512	0	17,058
2004	679	772	0	0	2,907	5,804	12,339	1,896	0	24,398
2005	654	6,202	0	3	2,604	1,076	14,470	1,493	0	26,502
2006	796	5,841	0	69	861	1,088	10,846	1,682	0	21,184
2007	1,176	7,069	27	35	1,080	108	12,367	2,163	8	24,032
2008	769	8,572	17	40	333	0	12,284	2,573	28	24,615
2009	171	10,263	32	120	0	1,148	8,505	1,909	0	22,157

2.4. Cadangan Strategis

Cadangan strategis (strategic reserves) adalah sebuah istilah yang digunakan untuk menggambarkan cadangan komoditas atau barang yang biasanya diatur dan dijalankan oleh pemerintah dan organisasi yang sedang melakukan strategi tertentu sebagai antisipasi dari suatu kejadian yang tak terduga di masa depan maupun masa kini (US Doe 2012).

Dalam dunia minyak dan gas, dikenal 2 (dua) jenis cadangan strategis, 2 (dua) jenis cadangan strategis tersebut adalah sebagai berikut:

2.4.1 Cadangan Strategis Bahan Bakar

Cadangan strategis bahan bakar (strategic fuel reserves/ SFR) adalah cadangan bahan bakar yang merupakan komoditas dalam suatu negara yang nantinya diproses, dipilah, dan dikelola sebagai simpanan untuk masa depan agar terhindar dari krisis bahan bakar dalam negara tersebut. Pada SFR, jenis bahan bakar yang menjadi cadangan strategis adalah bahan bakar yang siap pakai dan bukan merupakan minyak mentah (petroleum).

2.4.2 Cadangan Strategis Petroleum

Cadangan strategis petroleum (strategic petroleum reserves/ SPR) adalah cadangan penyimpanan bahan bakar berupa minyak mentah yang biasanya dalam suatu negara diatur oleh Departemen Energi (Amerika Serikat). Dan untuk saat ini, cadangan strategis petroleum terbesar berada di negara Amerika Serikat dengan kapasitas hingga 115,600,000 m³ (US Doe 2012). Sedangkan di Indonesia, strategic petroleum reserve atau SPR minimal tiga bulan. Kisaran jangka waktu (bulan) tersebut dinilai cukup normal untuk negara dengan jumlah penduduk seperti Indonesia dengan distribusi yang sangat rumit, ada yang lewat pipa, laut, dan darat. (www. gatra.com 2012).

Dan untuk Indonesia sendiri, saat ini jumlah cadangan strategis yang didata oleh Pertamina mampu bertahan dan memenuhi kebutuhan selama 22-23 hari, yang merupakan gabungan dari cadangan strategis BBM maupun minyak mentah. Dalam keadaan darurat, Indonesia gelap gulita dan transportasi lumpuh pada hari ke-24. Idealnya, sebuah negara punya stok minyak untuk tiga bulan

konsumsi (www.gatra.com 2012). Berikut ini merupakan tabel cadangan BBM di beberapa negara di dunia.

Tabel 2.4 Cadangan BBM pada Beberapa Negara di Dunia (International Energy Agency 2012)

Negara	Cadangan (KL)	Hari		
China	108,801,000	90		
India	5,950,000	14		
Jepang	92,700,000	107		
Korea Selatan	22,400,000	90		
Taiwan	2,100,000	30		
Pakistan		20		
Republik Czech	3,230,000	100		
Denmark		81		
Perancis	10,300,000	55		
Jerman	40,000,000	90		
Hungary	1,889,000	90		
Ireland		100		
Poland		70		
Israel		270		
Jordan	992,000	60		
Amerika Serikat	3,100,000	36		
Myanmar		90		
Singapura		90		
Vietnam		67		
Thailand	/ 1 14	60-70		

Indonesia memilki kesamaan karakteristik dengan beberapa Negara ASEAN seperti negara Vietnam dan Thailand. Oleh karena itu dalam penelitian ini, ketahanan stok BBM ditentukan selama 60 hari.

TANKER / LIGHTER ODMESTO REFINERY SPBU RAL TANK WARDSH PAKA TANKER / LIGHTER TONGKANG PSPD / SPBU

2.5 Pola Penyaluran Bahan Bakar Minyak

Gambar 2.1 Pola Penyaluran Bahan Bakar Minyak Premium (Wibowo 2008)

Gambar 2.1 merupakan pola penyaluran Bahan Bakar Minyak premium. Minyak mentah baik berasal dari kilang di Indonesia maupun dari impor masuk ke unit-unit pengolahan minyak di Indonesia untuk diolah dan menghasilkan Bahan Bakar Minyak. BBM dari kilang dan impor ini kemudian disalurkan ke terminal transit/instalasi/depot dengan menggunakan pipa maupun tanker. Dari terminal transit/instalasi/depot yang terdapat di beberapa daerah di Indonesia kemudian disalurkan dengan menggunakan pipa, RTW (*Rail Tank Wagon*), tanker, mobil tangki, maupun tonkang ke depot-depot akhir sebelum disalurkan ke konsumen. Penyaluran BBM dari kilang dan terminal impor ini biasa disebut dengan sistem penyediaan BBM sedangkan dari transit/instalasi/depot hingga konsumen disebut dengan sistem distribusi BBM.

2.6 Infrastrukur Penyedian dan Pendistribusian BBM

Infrastruktur yang terlibat dalam kegiatan penyediaan dan pendistribusian meliputi:

- 1. Infrastruktur pengolahan : kilang minyak
- 2. Infrastruktur penyimpanan BBM : terminal transit/instalasi/depot

3. Infrastruktur pendistribusian BBM : pipa, RTW (*Rail Tank Wagon*), tanker, mobil tangki, tongkang, dll.

2.6.1 Infrastruktur Pengolahan BBM

Infrastruktur pengolahan merupakan fasilitas industri yang mengolah minyak bumi menjadi Bahan Bakar Minyak maupun produk-produk lain bagi kebutuhan industri, rumah tangga, transportasi maupun komersial.

2.6.2 Infrastruktur Penyimpanan BBM

Infrastruktur penyimpanan BBM merupakan fasilitas penyimpanan yang memiliki fungsi menerima, menyimpan dan menyalurkan BBM dan non BBM kepada konsumen. Infrastruktur penyimpanan BBM terdiri dari:

a. Terminal Transit

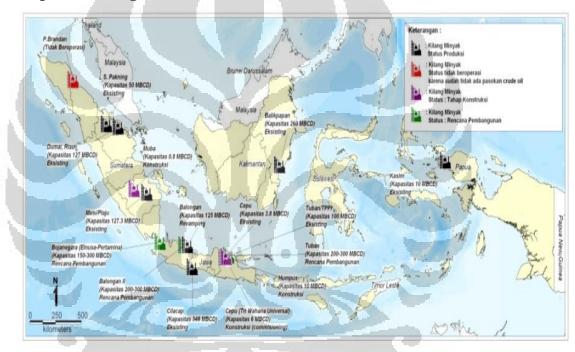
Tempat penerimaan, penyimpanan dan penyaluran BBM yang dilakukan dengan menggunakan angkutan tanker atau pipa yang berasal dari kilang/impor dan menyalurkan ke konsumen atau depot lain.

b. Instalasi

Tempat penerimaan, penyimpanan dan penyaluran BBM yang berlokasi di tepi pantai sehingga dilakukan dengan menggunakan angkutan laut atau pipa yang berasal dari kilang/impor dan menyalurkan kepada konsumen atau depot lain.

c. Seafed Depot

Tempat penerimaan, penyimpanan dan penyaluran BBM yang berlokasi di tepi pantai sehingga dilakukan dengan menggunakan angkutan laut atau pipa yang berasal dari kilang/impor dan menyalurkan kepada konsumen atau depot lain. Namun instalasi memiliki tempat penyimpanan jenis produk yang lebih lengkap dari Seafed Depot.


d. Inland Depot

Tempat penerimaan, penyimpanan dan penyaluran BBM yang dilakukan dengan menggunakan angkutan darat seperti RTW (*Rail Tank Wagon*) atau mobil tangki dan meyalurkan kepada konsumen.

2.6.3 Infrastruktur Pendistribusian BBM

Infrastruktur pendistribusian BBM merupakan fasilitas pendistribusian BBM mulai dari sumber ke tempat penyimpanan atau sampai ke konsumen. Infrastruktur pendistribusian BBM terdiri dari dua jalur, yaitu jalur darat dan laut. Jalur darat menggunakan pipa, RTW (*Rail Tank Wagon*) dan mobil tangki sedangkan jalur laut menggunakan tanker dan tongkang. Penggunaan infrastuktur ini bergantung pada sumber pasokan dan lokasi tujuan pengiriman.

2.7 Kapasitas Kilang BBM

Gambar 2.2 Lokasi Fasilitas dan Kapasitas Kilang (Ditjen Migas, 2012)

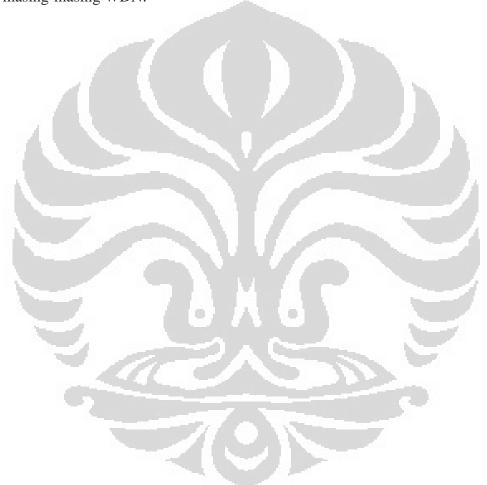
Gambar 2.2 menggambarkan lokasi fasilitas dan kapasitas kilang di Indonesia. Berikut di bawah ini merupakan kapasitas kilang di Indonesia:

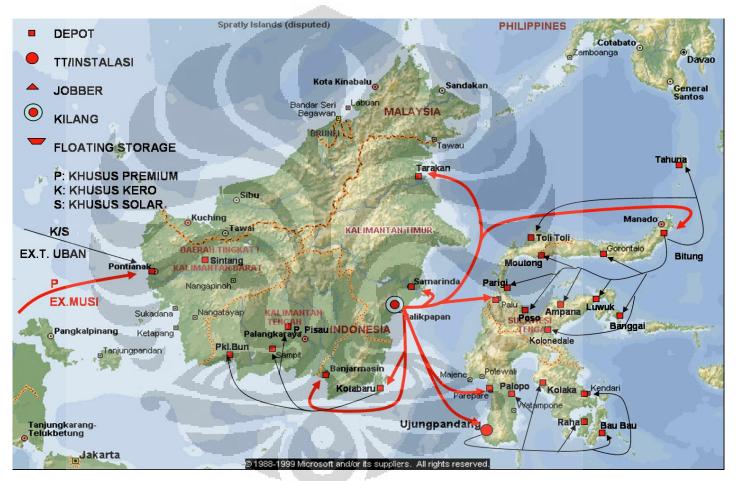
Kilang Dumai dan S.pakning : 177 MBSD

Kilang Musi : 127.3 MBSD

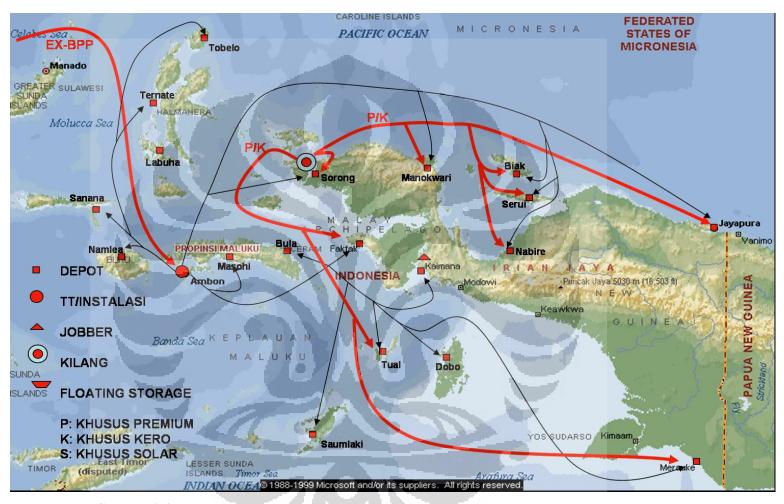
Kilang Cilacap : 348 MBSD

Kilang Balikpapan : 260 MBSD

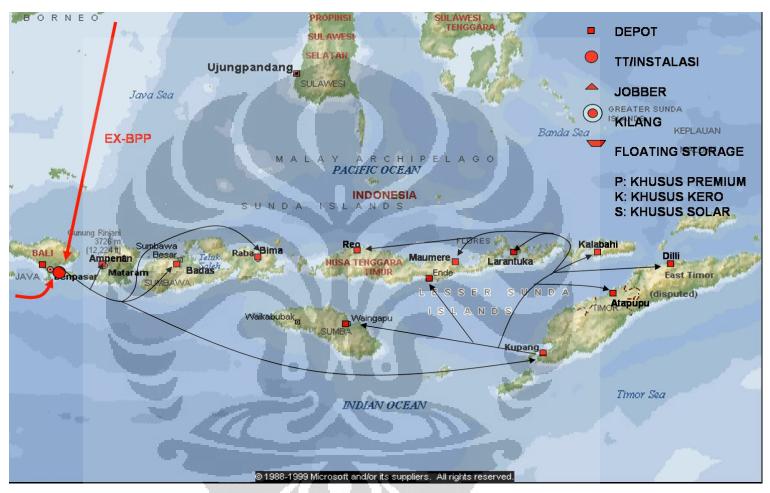

Kilang Balongan : 125 MBSD


Kilang Kasim : 10 MBSD

Kilang Support Cepu: 3.8 MBSDKilang Tuban (2010): 100 MBSDKilang Tri Wahana Universal (2010): 6 MBSDKilang Musi Banyuasin (2010): 0.8 MBSD


Kapasitas Terpasang : 1157.9 MBSD

Berikut ini adalah gambar yang menerangkan pendistribusian BBM untuk masing-masing WDN:



Gambar 2.3 Pendistribusian Bahan Bakar Minyak di Wilayah Daerah Niaga IIIa (BPH Migas 2012)

Gambar 2.4 Pendistribusian Bahan Bakar Minyak di Wilayah Daerah Niaga IIIb (BPH Migas 2012)

Gambar 2.5 Pendistribusian Bahan Bakar Minyak di Wilayah Daerah Niaga IV (BPH Migas 2012)

2.8 Konsep Supply Demand

Pengertian penawaran (*Supply*) adalah sejumlah barang yang dijual atau ditawarkan pada suatu harga dan waktu tertentu. Sedangkan permintaan (*Demand*) adalah sejumlah barang yang dibeli atau diminta pada suatu harga dan waktu tertentu. Jika harga semakin murah maka permintaan atau pembeli akan semakin banyak dan sebaliknya. Jika harga semakin rendah/murah maka penawaran akan semakin sedikit dan sebaliknya. Semua terjadi karena semua ingin mencari kepuasan (keuntungan) sebesar-besarnya dari harga yang ada. Apabila harga terlalu tinggi maka pembeli mungkin akan membeli sedikit karena uang yang dimiliki terbatas, namun bagi penjual dengan tingginya harga ia akan mencoba memperbanyak barang yang dijual atau diproduksi agar keuntungan yang didapat semakin besar. Harga yang tinggi juga bisa menyebabkan konsumen/pembeli akan mencari produk lain sebagai pengganti barang yang harganya mahal.

2.8.1 Faktor-Faktor Yang Mempengaruhi Tingkat Permintaan (Demand)

- 1. Perilaku konsumen / selera konsumen.
- 2. Ketersediaan dan harga barang sejenis pengganti dan pelengkap
- 3. Pendapatan/penghasilan konsumen
- 4. Perkiraan harga di masa depan
 Barang yang harganya diperkirakan akan naik, maka orang akan
 menimbun atau membeli ketika harganya masih rendah misalnya
 seperti bbm/bensin.
- 5. Banyaknya/intensitas kebutuhan konsumen

2.8.2 Faktor-Faktor Yang Mempengaruhi Tingkat Penawaran (Supply)

1. Biaya produksi dan teknologi yang digunakan.

Jika biaya pembuatan/produksi suatu produk sangat tinggi maka produsen akan membuat produk lebih sedikit dengan harga jual yang mahal karena takut tidak mampu bersaing dengan produk sejenis dan produk tidak laku terjual. Dengan adanya teknologi canggih bisa menyebabkan pemangkasan biaya produksi sehingga memicu penurunan harga.

2. Tujuan Perusahaan

Perusahaan yang bertujuan mencari keuntungan sebesar-besarnya (profit oriented) akan menjual produknya dengan marjin keuntungan yang besar sehingga harga jual jadi tinggi. Jika perusahaan ingin produknya laris dan menguasai pasar maka perusahaan menetapkan harga yang rendah dengan tingkat keuntungan yang rendah sehingga harga jual akan rendah untuk menarik minat konsumen.

3. Pajak

Pajak yang naik akan menyebabkan harga jual jadi lebih tinggi sehingga perusahan menawarkan lebih sedikit produk akibat permintaan konsumen yang turun.

- 4. Ketersediaan dan harga barang pengganti/pelengkap Jika ada produk pesaing sejenis di pasar dengan harga yang murah maka konsumen akan ada yang beralih ke produk yang lebih murah sehingga terjadi penurunan permintaan, akhirnya penawaran pun dikurangi.
- 5. Prediksi / perkiraan harga di masa depan Ketika harga jual akan naik di masa mendatang perusahaan akan mempersiapkan diri dengan memperbanyak output produksi dengan harapan bisa menawarkan/menjual lebih banyak ketika harga naik akibat berbagai faktor.

2.9 Peramalan

Peramalan adalah kegiatan memperkirakan apa yang akan terjadi pada masa yang datang. Kegunaan dari peramalan terlihat pada saat pengambilan keputusan. Keputusan yang baik adalah keputusan yang didasarkan atas pertimbangan apa yang akan terjadi pada waktu keputusan itu dilaksanakan. Ramalan diperlukan untuk memberikan informasi sebagai dasar untuk membuat

suatu keputusan dalam berbagai kegiatan, seperti : penerbangan, peternakan, perkebunan dan sebagainya.

2.9.1 Jenis – Jenis Peramalan

Berdasarkan sifatnya peramalan dibedakan atas dua macam yaitu Peramalan Kualitatif dan Peramalan Kuantitatif.

2.9.1.1 Peramalan Kualitatif

Peramalan kualitatif adalah peramalan yang didasarkan atas data kualitatif pada masa lalu. Hal ini penting karena hasil peramalan tersebut ditentukan berdasarkan pemikiran yang bersifat intuisi, pendapat dan pengetahuan serta pengalaman penyusunnya.

2.9.2.2 Peramalan Kuantitatif

Peramalan kuantitatif adalah peramalan yang didasarkan atas data kuantitatif pada masa lalu. Hasil peramalan yang dibuat sangat tergantung pada metode yang dipergunakan dalam peramalan tersebut. Baik tidaknya metode yang digunakan ditentukan oleh perbedaan antara penyimpangan hasil ramalan dengan kenyataan yang terjadi. Peramalan kuantitatif hanya dapat digunakan apabila terdapat tiga kondisi sebagai berikut:

- 1. Adanya informasi masa lalu yang dapat dipergunakan.
- 2. Informasi tersebut dapat dikuantitatifkan dalam bentuk data.
- 3. Dapat diasumsikan bahwa pola yang lalu akan berkelanjutan pada masa yang akan datang.

Peramalan yang baik adalah peramalan yang dilakukan dengan mengikuti langkah-langkah atau prosedur penyusunan yang baik. Pada dasarnya ada tiga langkah peramalan yang penting, yaitu:

- 1. Menganalisa data masa lalu.
- 2. Menentukan metode yang dipergunakan.
- Memproyeksikan data yang lalu dengan menggunakan metode yang dipergunakan dan mempertimbangkan adanya beberapa faktor perubahan.

2.9.2 Metode Peramalan

Metode peramalan adalah cara memperkirakan secara kuantitatif apa yang akan terjadi pada masa depan berdasarkan data yang relevan pada masa lalu. Metode peramalan sangat berguna untuk membantu dalam mengadakan pendekatan analisis terhadap pola dari data yang lalu, sehingga dapat memberikan cara pemikiran, pekerjaan dan pemecahan yang sistematis, serta memberikan tingkat keyakinan yang lebih atas ketepatan hasil ramalan yang dibuat.

2.9.2.1 Jenis-Jenis Metode Peramalan Kuantitatif

1. Metode deret waktu (*Times series*)

Metode peramalan yang didasarkan atas penggunaan analisis pola hubungan antara variabel yang diperkirakan dengan variabel waktu yang merupakan deret berkala (time series). Metode peramalan yang termasuk data jenis ini adalah:

a. Metode pemulusan

Merupakan jenis peramalan jangka pendek seperti perencanaan persediaan, perencanaan keuangan. Tujuan penggunaan metode ini adalah untuk mengurangi ketidakteraturan data masa lampau seperti musiman.

b. Metode Box – Jenkins

Merupakan deret waktu dengan menggunakan model matematis dan digunakan untuk peramalan jangka pendek.

c. Metode proyeksi trend dengan regresi

Merupakan metode yang digunakan baik untuk jangka pendek maupun jangka panjang. Metode ini merupakan garis trend untuk persamaan matematis.

2. Metode Sebab Akibat (*Casual*)

Metode peramalan yang didasarkan atas pengunaan analisa pola hubungan antara variabel yang akan diperkirakan dengan variabel yang mempengaruhinya, yang bukan waktu. Metode ini akan digunakan pada penelitian ini. Beberapa jenis model kasual antara lain:

a. Metode regresi dan korelasi

Merupakan metode yang digunakan baik untuk jangka panjang maupun jangka pendek dan didasarkan kepada persamaan dengan teknik *least squares* yang dianalisis secara statis.

Langkah-langkah pelaksanaannya:

1. Menentukan variabel yang mempengaruhi variabel terikat. Dalam memperkirakan kebutuhan premium, variabel yang digunakan adalah jumlah kendaraan dan PDRB.

Konsumsi = f (jumlah kendaraan, PDRB)

2. Menentukan model

Model yang digunakan adalah multilinear dimana bentuk persamaan yang digunakan adalah:

$$C = C_1 + C_2P + C_3PDRB (2.1)$$

Dimana:

C = konsumsi premium

P = jumlah kendaraan pengguna premium

PDRB = Produk Domestik Regional Bruto

- 3. Melakukan analisis regresi linear dengan metode *least* square untuk memperoleh C_1 , C_2 , dan C_3 .
- 4. Menganalisa variabel dengan melakukan uji nilai R².

b. Metode ekonometri

Metode ini berdasarkan pada persamaan regresi yang didekati secara simultan. Metode ini biasanya digunakan untuk perencanaan ekonomi nasional jangka pendek dan jangka panjang. Komponen utama dari analisis dengan model ekonometri adalah pada data masukkan atau variable yang bersifat ekonomi yang kemudian dihubungkan dengan tingkat kebutuhan energy. Kelebihan dari model ini adalah tidak terlalu banyaknya data yang harus digunakan sebagai variable input.

Berikut di bawah ini merupakan persamaan dengan metode ekonometrik berdasarkan teori Cobb-Douglas:

$$E = \alpha Y^{\alpha} P^{\beta} \tag{2.2}$$

Dimana:

E = permintaan energi

Y = pendapatan (PDRB)

P = harga energi

a = koefisien

 α = elastisitas permintaan energi relatif terhadap pendapatan

$$\alpha = \frac{\Delta E/E}{\Delta Y/Y}$$

$$\alpha = \frac{\% \ perubahan \ E}{\% \ perubahan \ Y}$$
(2.3)

 β = elastisitas permintaan energi relatif terhadap harga

$$\beta = \frac{\Delta E/E}{\Delta P/P}$$

$$\beta = \frac{\% \ perubahan \ E}{\% \ perubahan \ P}$$
(2.4)

Dari persamaan 2.2 menunjukkan adanya factor elastisitas harga energy dan pendapatan. Hal ini mengindikasikan bahwa perubahan tingkat kebutuhan energy sebagai hasil dari perubahan pendapatan dan harga energy dalam pendekatan menggunakan ekonometri.

Pada negara-negara berkembang dimana harga energi masih ditetapkan oleh pemerintah dan sebagiannya masih disubsidi, memiliki nilai elastisitas permintaan terhadap harga yang masih rendah. Oleh karena itu permintaan energi lebih banyak dipengaruhi oleh pendapatan (PDRB) (Martino 2007).

Permintaan energi ke depan merupakan fungsi dari permintaan energi masa lalu, laju pertumbuhan PDRB, dan elastisitas permintaan BBM relatif terhadap PDRB.

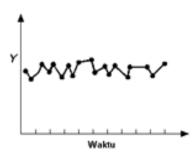
$$E_{i+1} = E_i(1 + \alpha. \%PDRB)$$
 (2.5)

2.9.3 Pemilihan Teknik dan Metode Peramalan

Semua tipe organisasi telah menunjukkan keinginan yang meningkat untuk mendapatkan ramalan dan menggunakan sumber daya peramalan secara lebih baik. Dengan adanya sejumlah besar metode peramalan tersedia, maka masalah yang timbul bagi para praktisi adalah dalam memahami bagaimana karakteristik suatu metode peramalan akan cocok bagi situasi pengambilan keputusan tertentu.

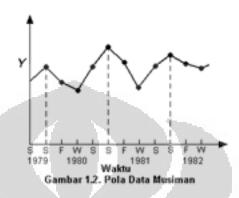
Adapun enam faktor utama yang dapat diidentifikasikan sebagai teknik dan metode peramalan, yaitu :

1. Horison waktu

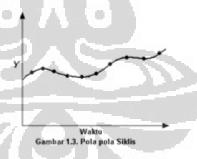

Merupakan pemilihan yang didasarkan atas jangka waktu peramalan yaitu:

- a. Peramalan yang segera dilakukan dengan waktu yang kurang dari satu bulan.
- b. Peramalan jangka pendek dengan waktu antara satu sampai tiga bulan.
- c. Peramalan jangka menengah dengan waktu antara tiga bulan sampai dua tahun.
- d. Peramalan jangka panjang dengan waktu dua tahun keatas.

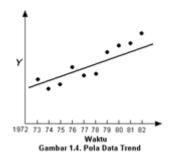
2. Pola data


Salah satu dasar pemilihan metode peramalan adalah dengan memperhatikan pola data. Ada empat jenis pola data mendasar yang terdapat dalam suatu deretan data yaitu :

a. Pola Horisontal (H) terjadi bilamana data berfruktuasi disekitar nilai rata – rata yang konstan (Deret seperti ini adalah "stasioner" terhadap nilai rata – ratanya). Pola khas dari data horizontal atau stasioner dapat dilihat dalam Gambar 2.6.


Gambar 2.6 Pola Horisontal (elista.akprind.ac.id 2012)

b. Pola Musiman (M) terjadi bilamana suatu deret dipengaruhi oleh faktor musiman (misalnya kuartal tahun tertentu, bulanan, atau hari-hari pada minggu tertentu). Pola khas dari data musiman dapat dilihat dalam Gambar 2.7.


Gambar 2.7 Pola Musiman (elista.akprind.ac.id 2012)

c. Pola Siklis (C) terjadi bilamana data dipengaruhi oleh fluktuasi jangka panjang dan lebih lama dari pola musiman, lamanya berbeda dari satu siklus ke siklus yang lain. Pola khas dari data siklis dapat dilihat dalam Gambar 2.8.

Gambar 2.8 Pola Siklis (elista.akprind.ac.id 2012)

d. Pola Trend (T) terjadi bilamana terdapat kenaikan atau penurunan jangka panjang dalam data. Pola khas dari data trend dapat dilihat dalam Gambar 2.9.

Gambar 2.9 Pola Trend (elista.akprind.ac.id 2012)

3. Jenis dari model

Untuk mengklasifikasikan metode peramalan kuantitatif perlu diperhatikan model yang didasarinya. Model sangat penting diperhatikan, karena masing-masing model mempunyai fungsi yang berbeda.

4. Biaya yang dibutuhkan

Biaya yang sangat diperlukan dalam meneliti suatu objek. Yang termasuk biaya dalam penggunaan metode peramalan antara lain, biaya penyimpanan data, biaya-biaya perhitungan, biaya untuk menganalisis dan biaya – biaya pengembangan.

5. Ketepatan metode peramalan

Tingkat ketepatan yang dibutuhkan sangat erat hubungannya dengan tingkat perincian yang dibutuhkan dalam suatu peramalan. Dalam mengambil keputusan, variasi atau penyimpangan atas peramalan yang dilakukan antara 10 % sampai 15 % bagi maksud — maksud yang diharapkan, sedangkan untuk hal atau kasus lain mungkin menganggap bahwa adanya variasi atau penyimpangan atas ramalan sebesar 5 % adalah cukup berbahaya.

6. Kemudahan dalam penerapan

Metode peramalan yang digunakan adalah metode yang mudah dimengerti dan mudah diterapkan dalam pengambilan keputusan dan analisisnya.

BAB 3

METODOLOGI PENELITIAN

Pada bab ini akan diuraikan metodologi penelitian yang digunakan. Pertamatama adalah proses pengumpulan data. Pengumpulan data dilakukan rnelalui data sekunder. Data sekunder diperoleh melalui Biro Pusat Statistik (BPS), PT. Pertamina Persero, BPH Migas dan Kementrian ESDM. Penelitian ini dimulai dengan identifikasi masalah yang meliputi analisis kebutuhan dan formulasi permasalahan. Dalam analisis kebutuhan, komponen-kompoenen yang terlibat dalam permodelan adalah PDRB dan realisasi konsumsi BBM. Tahapan selanjutnya adalah perancangan model menggunakan pendekatan ekonometrik dan dilanjutkan dengan simulasi model. Validasi model dilakukan untuk membandingkan perilaku data proyeksi dari model dengan data nyata. Selanjutnya dilakukan implementasi model.

1. Pengumpulan Data

Tujuan pengumpulan data yaitu untuk memperoleh gambaran kondisi penyediaan dan konsumsi BBM yang ada di WDN III dan IV sehingga dapat memperkirakan jumlah cadangan BBM di WDN III dan IV. Data yang dibutuhkan adalah:

- a. Produksi BBM (*Supply*) di Indonesia baik dari kilang maupun impor yang dimulai pada tahun 2006 hingga tahun 2012
- b. Konsumsi BBM (*Demand*) di WDN III dan IV dimulai pada tahun 2006 hingga tahun 2012
- c. Produk Domestik Regional Bruto (PDRB) di di WDN III dan IV

26

Mulai Analisis Kebutuhan Formulasi Permasalahan Indentifikasi Sistem Permodelan Sistem 1. Persamaan Matematika Validasi Model Tidak Ya? Ya Implementasikan Perubahan dalam Kebijakan dan Struktur Selesai

Berikut ini merupakan Gambar 3.1 yaitu diagram alir penelitian ini.

Gambar 3.1 Diagram Alir Penelitian* (Somantri 2006)

*Diagram alir penelitian ini telah dimodifikasi yaitu dengan menghilangkan tahapan setelah implementasi perubahan dalam kebijakan dan struktur yaitu tahapan evaluasi periodik model dan system operasional.

2. Validasi dan Verifikasi Model

Validasi merupakan tahap terakhir dalam pengembangan model untuk memeriksa model dengan meninjau apakah keluaran model sesuai dengan sistem nyata, dengan melihat konsistensi internal, korespondensi, dan representasi. Validasi dalam permodelan dapat dilakukan dengan beberapa cara meliputi uji stuktur secara langsung (direct stucture test) tanpa meruuning model, uji struktur tingkah laku model (stucture-oriented behaviour test) dengan merunning model, dan pembandingan tingkah laku model dengan sistem nyata (quantitative behaviour pattern comparison).

Validasi pada permodelan ini dilakukan dengan membandingkan tingkah laku model dengan sistem nyata (*quantitative behaviour pattern comparison*) yaitu dengan uji MAPE (*Mean Absolute Pattern Error*) (Daalen 2001). MAPE atau nilai tengah kesalahan presentase absolut adalah salah satu ukuran relatif yang menyangkut kesalahan presentase. Uji ini dapat digunakan untuk mengetahui kesesuaian data hasil perkiraan dengan data aktual.

$$MAPE = \frac{1}{n} \left| \sum \frac{X_m - X_d}{X_d} \right| \times 100\%$$
 (3.1)

Keterangan:

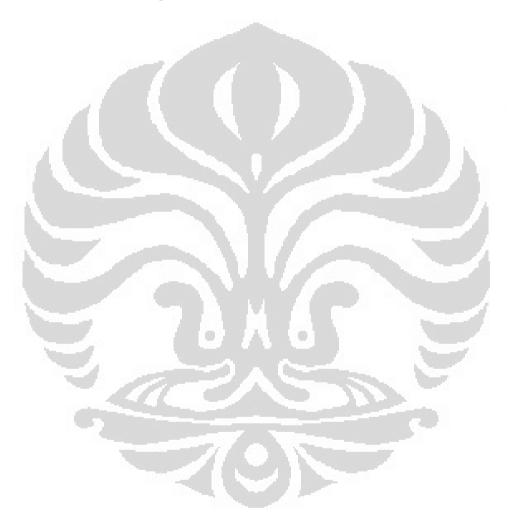
 $X_m = data hasil simulasi$

 $X_d = data \ actual$

n = periode/banyaknya data

Verifikasi dari model yang dirancang akan sangat tepat menggambarkan kondisi sesungguhnya bila nilai MAPE lebih kecil dari 5 %. Untuk selang MAPE antara 5 sampai dengan 10 %, model menunjukkan cukup tepat dalam menggambarkan kondisi sesungguhya, sedangkan bila MAPE lebih besar dari 10 %, maka model kurang tepat dalam menggambarkan kondisi sesungguhnya.

3. Skenario


Berikut ini beberapa skenario yang akan digunakan dalarn penelitian ini antara lain :

a. Tanpa penambahan kilang

Dalam skenario ini, suplai BBM hanya berasal dari impor saja tanpa ada penambahan kapasitas kilang

b. Dengan penambahan kilang

Dalam skenario ini, dilakukan penambahan kilang dalam arti pembangunan kilang baru ataupun menambah kapasitas kilang eksisting.

BAB 4

HASIL DAN PEMBAHASAN

Proyeksi dilakukan dengan model ekonometrik. Model ini dapat dilihat pada persamaan 2.2. Data realisasi konsumsi BBM yang ada akan dibandingkan dengan data pertumbuhan Pendapatan Daerah Regional Bruto (PDRB) masing-masing provinsi dalam rentang waktu yang sama. Dimana data PDRB ini merupakan faktor penting yang mempengaruhi tingkat konsumsi BBM suatu provinsi. Dengan meningkatnya laju pertumbuhan ekonomi suatu daerah maka konsumsi BBM pun akan semakin meningkat.

Data PDRB yang digunakan adalah PDRB berdasarkan harga konstan, agar tidak perlu lagi memperhitungkan faktor inflasi yang terus berubah setiap tahun jika dibandingkan dengan menggunakan PDRB berdasarkan harga berlaku. Kemudian akan dicari elastisitas dari kedua data ini untuk mengetahui besarnya pertumbuhan konsumsi BBM sampai tahun 2025. Data PDRB dapat dilihat pada Tabel 39 di Lampiran.

Persamaan elastisitas yang digunakan (η) dapat dilihat pada persamaan 4.1 yang merupakan rasio antara perbadingan selisih konsumsi BBM dengan kebutuhan BBM tahun sebelumnya terhadap perbandingan selisih PDRB dengan PDRB tahun sebelumnya.

$$\eta = \frac{d BBM/BBM}{d PDRB/PDRB} \tag{4.1}$$

Untuk hasil perhitungan elastisitas dari tahun 2006 sampai 2012 dapat dilihat pada Tabel 4.1, kemudian dari hasil elestisitas yang diperoleh, harus ditentukan nilai elastisitas yang bisa dijadikan acuan untuk menghitung pertumbuhan konsumsi BBM. Angka elastisitas yang menjadi acuan adalah elastisitas rata-rata. Berikut ini merupakan contoh perhitungan proyeksi pada salah satu propinsi di antara WDN III dan IV, yaitu provinsi NTB.

4.1. Proyeksi Konsumsi BBM di Provinsi NTB

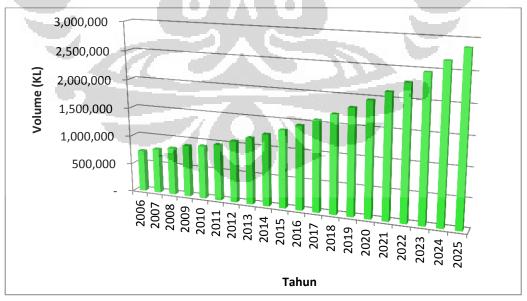
Tabel 4.1 Elastisitas Pertumbuhan Konsumsi BBM terhadap Pertumbuhan PDRB di Provinsi NTB

	Realisasi BBM	PDRB			
Tahun	(KL)	(Juta Rp.)	Dp/p	Dpdrb/pdrb	Elastisitas
2006	724,355	15,603,775			
2007	782,699	16,369,220	0.081	0.049	1.642
2008	830,117	16,831,601	0.061	0.028	2.145
2009	904,554	18,869,076	0.090	0.121	0.741
2010	927,457	20,056,796	0.025	0.063	0.402
2011	981,687	21,366,996	0.058	0.065	0.895
2012	1,072,062	22,762,785	0.092	0.065	1.409

Data laju pertumbuhan PDRB terbatas sampai pada tahun 2010. Maka laju pertumbuhan PDRB dari tahun 2011-2025, diperoleh dengan menghitung rata-rata laju pertumbuhan PDRB dari tahun 2006 hingga 2010 dan diasumsikan konstan, yaitu 0.065. Kemudian laju pertumbuhan PDRB ini setiap tahunnya dikalikan dengan elastisitas yang telah ditetapkan (rata-rata dari elastisitas setiap tahun) yaitu sebesar 1.206, maka akan diperoleh laju pertumbuhan konsumsi BBM sesuai persamaan 4.2.

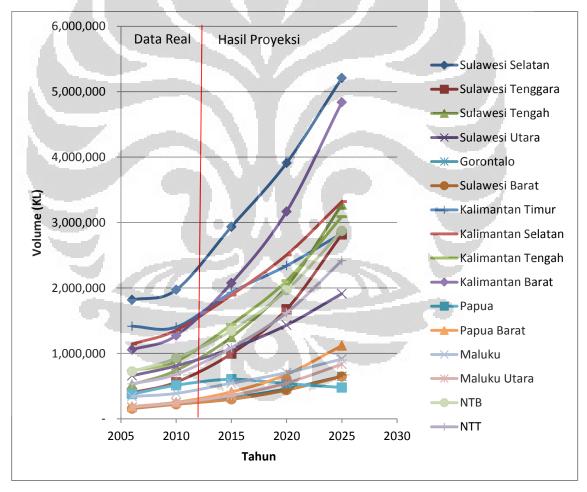
Laju konsumsi BBM = *Laju pertumbuhan PDRB*
$$\times$$
 elastisitas (4.2)

Nilai laju konsumsi BBM yang dihasilkan akan dikalikan dengan BBM pada tahun sebelumnya sehingga diperoleh jumlah kenaikan BBM yang akan ditambah pada tahun berikutnya sesuai dengan persamaan 4.3.


Konsumsi BBM ke-
$$n = (Konsumsi BBM ke (n-1) \times laju konsumsi BBM tahun ke- $n + konsumsi BBM tahun ke (n-1)$ (4.3)$$

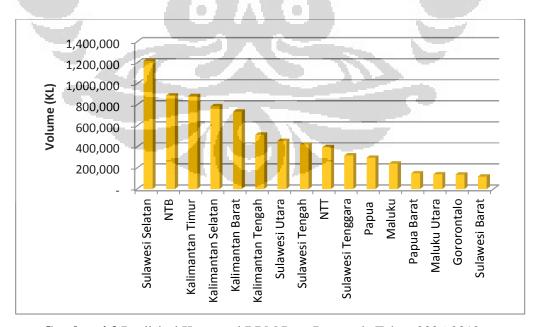
Berikut ini merupakan hasil perhitungan proyeksi konsumsi BBM di propinsi NTB.

Tabel 4.2 Proyeksi BBM di Propinsi NTB Tahun 2013-2025

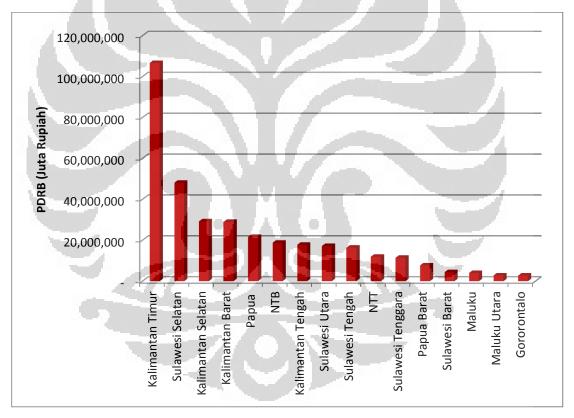

	Laju Pertumbuhan		Laju Konsumsi	Proyeksi Konsumsi
Tahun	PDRB	Elastisitas	BBM	BBM (KL)
2013	0.065	1.206	0.079	1,156,499
2014	0.065	1.206	0.079	1,247,586
2015	0.065	1.206	0.079	1,345,847
2016	0.065	1.206	0.079	1,451,847
2017	0.065	1.206	0.079	1,566,196
2018	0.065	1.206	0.079	1,689,551
2019	0.065	1.206	0.079	1,822,622
2020	0.065	1.206	0.079	1,966,173
2021	0.065	1.206	0.079	2,121,031
2022	0.065	1.206	0.079	2,288,086
2023	0.065	1.206	0.079	2,468,297
2024	0.065	1.206	0.079	2,662,702
2025	0.065	1.206	0.079	2,872,419

Gambar 4.1 di bawah ini merupakan hasil proyeksi konsumsi BBM di provinsi NTB.

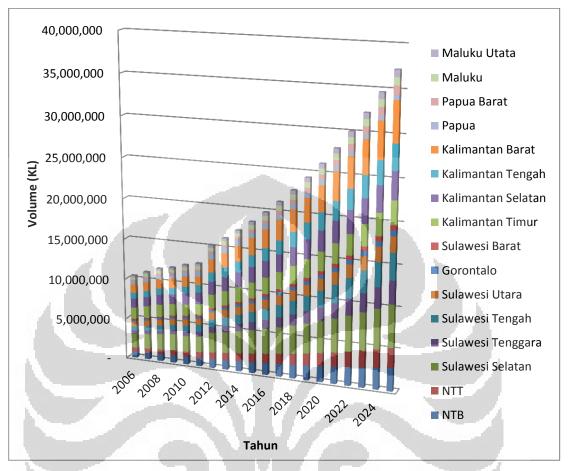
Gambar 4.1 Proyeksi Konsumsi BBM di Provinsi NTB Tahun 2006-2025


Dari Gambar 4.1 dapat dilihat bahwa konsumsi BBM untuk provinsi NTB akan mencapai 2,872,419 KL pada tahun 2025. Hal ini menunjukkan pertumbuhan tingkat konsumsi BBM di provinsi NTB yaitu sebesar 7.9 % setiap tahunnya. Besarnya laju konsumsi BBM dipengaruhi oleh laju pertumbuhan Pendapatan Daerah Regional Bruto (PDRB) setiap tahunnya. Berdasarkan data historis, PDRB di provinsi NTB setiap tahun meningkat dengan laju PDRB rata-rata sebesar 6.5 %. Meningkatnya laju PDRB ini akan mempengaruhi peningkatan konsumsi BBM. Dengan cara perhitungan yang sama maka akan diperoleh proyeksi konsumsi BBM di provinsi lainnya. Hasilnya dapat dilihat pada Gambar 4.2 berikut ini.

Gambar 4.2 Proyeksi Konsumsi BBM di Setiap Provinsi pada WDN III dan IV


Berdasarkan Gambar 4.2 dapat diketahui bahwa konsumsi BBM terus meningkat setiap tahunnya. Konsumsi BBM terbesar yaitu pada provinsi Sulawesi Selatan, kemudian diikuti oleh Kalimantan Barat, Kalimantan Selatan, Kalimantan Timur, Kalimantan Tengah, Sulawesi Tengah, NTB, Sulawesi Tenggara, NTT, Sulawesi Utara, dan provinsi lainnya.

Untuk konsumsi BBM setiap provinsi menunjukkan bahwa permintaan BBM yang tertinggi terjadi di provinsi Sulawesi Selatan. Pada tahun 2025 tingkat permintaan BBM akan mencapai 5,210,708 KL sehingga terjadi peningkatan bila dibandingkan dengan tahun 2006 yang berada pada 1,816,878 KL. Konsumsi BBM terbesar terdapat pada provinsi Sulawesi Selatan karena berdasarkan data realisasi konsumsi BBM tahun 2006-2012, provinsi Sulawesi Selatan memiliki rata-rata realisasi konsumsi terbesar di antara provinsi lainnya. Rata-rata realisasi konsumsi dapat dilihat pada Gambar 4.3. Selain itu, faktor lain yang berpengaruh terhadap tingginya konsumsi BBM di WDN III dan IV adalah tingkat ekonomi masyarakatnya yang cukup baik. Hal ini ditunjukkan oleh data PDRB provinsi Sulawesi Selatan dimana tingkat PDRB Sulawesi Selatan cukup tinggi yaitu menempati posisi kedua setelah Kalimantan Timur. Tingkat PDRB dapat dilihat pada Gambar 4.4.


Gambar 4.3 Realisiasi Konsumsi BBM Rata-Rata pada Tahun 2006-2012

Gambar 4.3. menunjukan realisasi konsumsi BBM rata-rata setiap provinsi yang diurutkan mulai dari yang terbesar hingga terkecil. Sebagian besar realisiasi konsumsi didominasi oleh provinsi Kalimantan, kemudian Sulawesi, NTT, NTB, Maluku dan Papua. Konsumsi BBM tidak lepas dari pengaruh pertumbuhan ekonomi suatu provinsi. Tingkat konsumsi berbanding lurus dengan tingkat pendapatan atau tingkat ekonomi. Hubungan ini diperkuat dengan mengacu pada konsep ekonometri yang ditunjukkan oleh persamaan 2.2. Pertumbuhan ekonomi ini dapat dilihat dari besarnya PDRB provinsi tersebut. PDRB setiap provinsi dapat dilihat pada Gambar 4.4 berikut ini.

Gambar 4.4 PDRB Rata-Rata pada Tahun 2006-2012

Dari Gambar 4.4 dapat diketahui bahwa pertumbuhan ekonomi terbesar didominasi oleh Kalimantan Timur yang diikuti oleh Sulawesi Selatan, Kalimantan Selatan, Kalimantan Barat, dan provinsi lainnya.

Gambar 4.5 Proyeksi Total Konsumsi BBM pada Setiap Tahun

Konsumsi total BBM mengalami peningkatan setiap tahunnya. Konsumsi total BBM di WDN III dan IV pada tahun 2006 sekitar 10,000,000 KL dan jumlahnya terus mengalami peningkatan hingga tahun 2025 yaitu mencapai sekitar 37,000,000 KL.

Berdasarkan Gambar 4.2 dan 4.5, dapat diketahui bahwa konsumsi BBM terbesar terdapat pada provinsi Sulawesi Selatan. Namun untuk tingkat pertumbuhan paling tinggi terjadi di provinsi Sulawesi Tenggara dengan rata-rata 11 % per tahun. Kemudian disusul provinsi Papua Barat dengan 10.5 %, provinsi Sulawesi Tengah 10.1 %, provinsi Kalimantan Barat dan Maluku Utara dengan 8.8 %, provinsi NTT dengan 8.3 %, provinsi Sulawesi Barat dengan 8.1 %, provinsi Kalimantan Tengah dan NTB dengan 7.9 %, provinsi Gorontalo dengan 7.2 %, provinsi Sulawesi Utara

dengan 6 %, provinsi Sulawesi Selatan dengan 5.9 %, provinsi Kalimantan Selatan dengan 5.8 %, provinsi Maluku dengan 5.3 %, provinsi Kalimantan Timur dengan 3.9 %, dan provinsi Papua dengan -2.3 %.

Laju pertumbuhan provinsi Papua bernilai negatif karena PDRB provinsi Papua mengalami penurunan pada tahun 2008 dan 2010 sehingga mengakibatkan elastisitas dan laju konsumsi BBM bernilai negative. Akibatnya provinsi Papua akan mengalami penurunan konsumsi BBM setiap tahunnya. Penurunanan konsumsi BBM ini dapat dilihat pada Gambar 4.2.

Berikut ini merupakan table laju pertumbuhan konsumsi BBM setiap provinsi di WDN III dan IV.

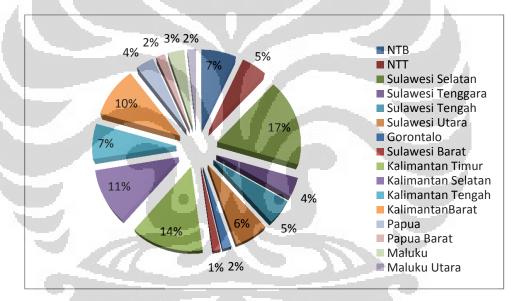
Tabel 4.3 Laju Pertumbuhan Konsumsi BBM Setiap Provinsi di WDN III dan IV

Provinsi	Laju Konsumsi BBM
NTB	0.079
NTT	0.083
Sulawesi Selatan	0.059
Sulawesi Tenggara	0.11
Sulawesi Tengah	0.101
Sulawesi Utara	0.06
Gorontalo	0.072
Sulawesi Barat	0.081
Kalimantan Timur	0.039
Kalimantan Selatan	0.058
Kalimantan Tengah	0.079
Kalimantan Barat	0.088
Papua	-0.023
Papua Barat	0.105
Maluku	0.053
Maluku Utara	0.088

Komposisi/proporsi konsumsi BBM di WDN III dan IV ditunjukkan oleh Tabel 4.4 berikut ini.

Tabel 4.4 Komposisi Konsumsi BBM di WDN III dan IV

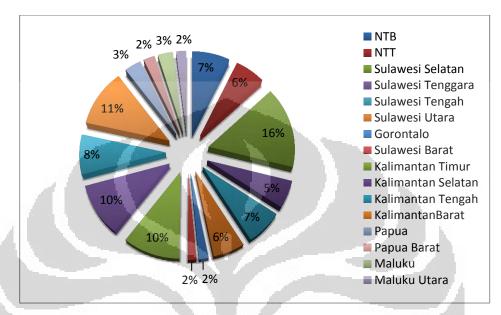
Provinsi	Proporsi (%)		
Provinsi	2006	2015	2025
NTB	6.95	7.25	7.72
NTT	5.12	5.86	6.49
Sulawesi Selatan	17.44	15.81	14.00
Sulawesi Tenggara	3.83	5.36	7.57
Sulawesi Tengah	5.02	6.73	8.79
Sulawesi Utara	6.32	5.77	5.14
Gorontalo	1.68	1.74	1.75
Sulawesi Barat	1.49	1.60	1.74
Kalimantan Timur	13.58	10.41	7.62
Kalimantan Selatan	10.96	10.19	8.92
Kalimantan Tengah	7.07	7.76	8.30
Kalimantan Barat	10.13	11.18	13.00
Papua	3.62	3.26	1.29
Papua Barat	1.81	2.21	3.01
Maluku	3.27	2.93	2.45
Maluku Utara	1.72	1.93	2.24
Total	100	100	100


Komposisi konsumsi BBM pada tahun 2025 didominasi oleh provinsi Sulawesi Selatan dengan angka 14 %. Namun proporsi tersebut terus mengalami penurunan setiap tahunnya. Walaupun begitu, komposisi konsumsi BBM selalu didominasi oleh Sulawesi Selatan. Provinsi yang mendominasi setelah Sulawesi Selatan adalah provinsi Kalimantan Barat dengan 13 %.

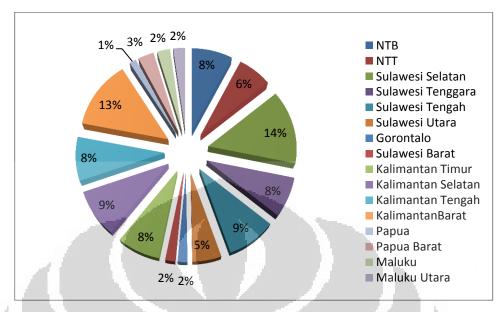
Provinsi dengan proporsi sedang/menengah yaitu provinsi Kalimantan Selatan dengan 8.92 %, provinsi Sulawesi Tengah dengan 8.79 %, provinsi Kalimantan Tengah dengan 8.3 %, provinsi NTB dengan 7.72 %, provinsi Kalimantan Timur dengan 7.62 %, Sulawesi Tenggara dengan 7.57 %, provinsi NTT dengan 6.49 %, provinsi Sulawesi Utara dengan 5.14 % dari total konsumsi BBM di WDN III dan IV.

Provinsi dengan proporsi rendah adalah provinsi Papua Barat dengan 3.01 %, provinsi Maluku dengan 2.45 %, provinsi Maluku Utara dengan 2.24 %, provinsi

Gorontalo dengan 1.75 %, provinsi Sulawesi Barat dengan 1.74 %, dan provinsi Papua dengan 1.29 %.


Secara umum komposisi konsumsi BBM WDN III dan IV tidak merata di tiap provinsi. Hal ini ditunjukkan dengan proporsi konsumsi yang beragam, yaitu proporsi dominan/besar dengan nilai di atas 10 %, proporsi sedang/menengah dengan nilai di antara 4 % dan 10 % dan proporsi rendah dengan nilai di bawah 4 %. Ketidakmerataan ini terjadi karena setiap provinsi memilki tingkat pertumbuhan ekonomi yang berbeda-beda. Provinsi dengan tingkat ekonomi yang tinggi memiliki proporsi yang lebih besar dibandingkan dengan provinsi dengan tingkat ekonomi yang rendah.

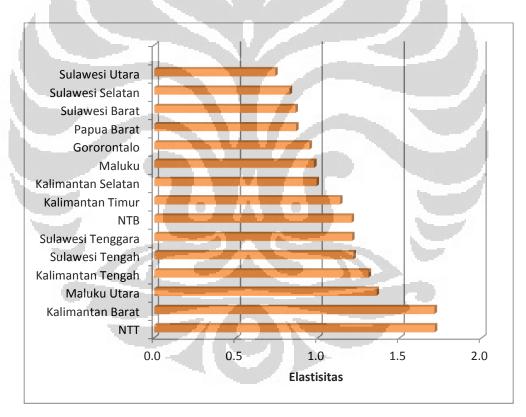
Gambar 4.6 Komposisi Konsumsi BBM Setiap Provinsi Tahun 2006


Komposisi kebutuhan BBM pada tahun 2006 terdiri dari 7 % provinsi NTB, 5 % provinsi NTT, 17 % provinsi Sulawesi Selatan, 4 % provinsi Sulawesi Tenggara, 5 % provinsi Sulawesi Tengah, 6 % provinsi Sulawesi Utara, 2 % provinsi Gorontalo, 1 % provinsi Sulawesi Barat, 14 % provinsi Kalimantan Timur, 11 % provinsi Kalimantan Selatan, 7 % provinsi Kalimantan Tengah, 10 % provinsi Kalimantan Barat, 4 % provinsi Papua, 2 % provinsi Papua Barat, 3 % provinsi Maluku, dan 2 %

provinsi Maluku Utara. Komposisi kebutuhan BBM pada tahun 2006 didominasi oleh provinsi Sulawesi Selatan.

Gambar 4.7 Komposisi Konsumsi BBM Setiap Provinsi Tahun 2015

Untuk tahun 2015 juga masih didominasi oleh provinsi Sulawesi Selatan dengan 16 %. Angka ini turun 1 % dari tahun 2006. Demikian juga pada provinsi Kalimantan Timur turun menjadi 10 % dan Kalimantan Selatan menjadi 10 %. Peningkatan terjadi pada provinsi lain, yaitu NTT menjadi 6 %, Sulawesi Tenggara menjadi 5 %, Sulawesi Tengah menjadi 7 %, Sulawesi Barat menjadi 2 %, Kalimantan Tengah menjadi 8 %, Kalimantan Barat menjadi 11 %, dan Papua menjadi 4 %. Pada tahun 2006 ke 2015 tidak terjadi perubahan komposisi konsumsi BBM yang sangat signifikan.


Gambar 4.8 Komposisi Konsumsi BBM Setiap Provinsi Tahun 2025

Begitu juga untuk tahun 2025, konsumsi BBM masih didominasi oleh provinsi Sulawesi Selatan dengan 14 %. Namun angka ini turun 3 % dari tahun 2006. Demikian juga pada pada provinsi Sulawesi Utara turun menjadi 5 %, Kalimantan Timur menjadi 8 %, Kalimantan Selatan menjadi 9 %, Papua menjadi 1 %, dan Maluku menjadi 2 %. Peningkatan terjadi pada provinsi lain, yaitu NTB menjadi 8 %, NTT menjadi 6 %, Sulawesi Tenggara menjadi 8 %, Sulawesi Tengah menjadi 9 %, Sulawesi Barat menjadi 1 %, Kalimantan Tengah menjadi 8 %, Kalimantan Barat menjadi 13 %, dan Papua Barat menjadi 3 %. Pada tahun 2006 ke 2025 terjadi perubahan komposisi konsumsi BBM yang cukup signifikan yaitu pada provinsi Kalimantan Timur yang mengalami penurunan komposisi sebesar 5.96 %.

Perubahan komposisi konsumsi BBM ini bergantung pada laju pertumbuhan konsumsi masing-masing provinsi yang diperoleh dari rata-rata laju pertumbuhan konsumsi BBM pada tahun 2006-2012 yang diasumsikan konstan dalam memproyeksikan konsumsi BBM pada tahun berikutnya. Laju pertumbuhan konsumsi BBM provinsi yang bernilai lebih kecil dibandingkan dengan laju konsumsi BBM provinsi lain akan mengalami penurunan proporsi konsumsi BBM. Hal ini terjadi karena pada laju yang kecil maka penambahan jumlah konsumsi BBM

wilayah tersebut tidak akan sebesar penambahan jumlah konsumsi pada wilayah yang memilki laju lebih besar. Misalnya pada provinsi Kalimantan Timur yang memiliki laju pertumbuhan konsumsi sebesar 0.039 dan pada provinsi Papua yang memiliki laju konsumsi sebesar -0.023. Kedua provinsi ini mengalami penurunan proporsi konsumsi BBM setiap tahunnya.

Realisasi Konsumsi BBM dan perhitungan elastisitas untuk WDN III dan IV ditunjukkan oleh Tabel 1 sampai Tabel 16 pada Lampiran. Elastisitas dihitung berdasarkan persamaan 4.1. Elastisitas didefinisikan sebagai perbandingan antara pertumbuhan konsumsi energi dengan pertumbuhan ekonomi. PDRB mengacu pada harga konstan tahun 2000 yang dapat dilihat pada Tabel 39 di Lampiran.

Gambar 4.9 Elastisitas pada Setiap Provinsi di WDN III dan IV

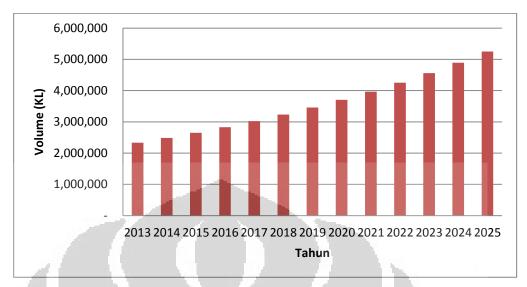
Suatu provinsi dikatakan memiliki tingkat efisiensi yang bagus apabila angka elastisitasnya jauh di bawah elastisitas energi secara nasional yang mencapai pada angka 1. Suatu provinsi dapat dikatakan mendekati elastisitas di negara maju apabila

elastisitasnya bernilai 0.5. namun data elastisitas ini perlu dibandingkan juga dengan perhitungan konsumsi energi yang melibatkan sektor energi lain seperti gas, BBM, dan sumber energi lainnya dalam bidang yang bermacam-macam pula seperti transportasi dan pembangkitan (Suhono 2010).

Pertumbuhan konsumsi BBM provinsi NTB rata-rata berada pada angka 6.8%, sedangkan angka pertumbuhan ekonominya (berdasarkan harga berlaku) rata-rata adalah 6.5%. Perbandingan dari dua parameter tersebut menghasilkan nilai elastisitas energi sebesar 1.2. Provinsi NTB dapat dikatakan sebagai wilayah yang memiliki elastisitas yang tidak efisien. Angka ini di atas angka 1 dan mempunyai karakteristik yang sama dengan elastisitas energy nasional, yaitu bersifat boros atau tidak efisien. Namun data ini perlu dikaji dan dibandingkan dengan perhitungan elastisitas energi yang melibatkan berbagai sektor energi.

Secara keseluruhan, elastisitas setiap provinsi di WDN III dan IV melebihi angka 1. Provinsi yang memilki elastisitas di bawah 1 adalah Sulawesi Utara dengan elastisitas sebesar 0.739, Sulawesi Selatan dengan elastisitas sebesar 0.828, Sulawesi Barat dengan elastisitas sebesar 0.863, dan Papua Barat dengan elastisitas sebesar 0.867. Oleh karena itu dapat dikatakan bahwa sebagian besar WDN III dan IV tidak memilki elastisitas yang efisien atau bersifat boros.

4.2 Cadangan BBM

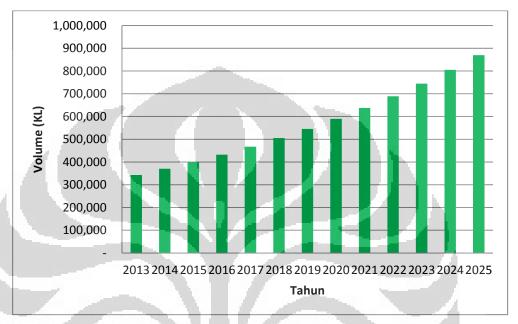

Setelah dilakukan proyeksi untuk mengetahui perkiraan konsumsi BBM di provinsi III dan IV, maka setelah itu dapat memperkirakan cadangan BBM dilakukan. Hal ini dilakukan agar tidak terjadi kelangkaan BBM di setiap provinsi.

Volume cadangan BBM yang diperlukan dapat diperoleh dengan mengalikan konsumsi per hari dengan waktu ketahanan stok yang diinginkan. Ketahanan stok BBM ditentukan yaitu selama 60 hari. Ketahanan stok ini ditinjau dari ketahan stok Negara lain yang memiliki karakteristik yang mirip dengan Negara Indonesia yang merupakan Negara kepulauan. Ketahanan stok BBM pada Negara lain dapat dilihat pada Tabel 2.4.

Tabel 4.5 Volume Cadangan BBM di WDN III

			Volume
	Konsumsi BBM	Konsumsi BBM	Cadangan BBM
Tahun	per tahun (KL)	per hari (KL)	60 hari (KL)
2013	14,176,472	38,840	2,330,379
2014	15,115,858	41,413	2,484,799
2015	16,128,818	44,189	2,651,313
2016	17,221,393	47,182	2,830,914
2017	18,400,152	50,411	3,024,683
2018	19,672,245	53,897	3,233,794
2019	21,045,451	57,659	3,459,526
2020	22,528,240	61,721	3,703,272
2021	24,129,835	66,109	3,966,548
2022	25,860,282	70,850	4,251,005
2023	27,730,527	75,974	4,558,443
2024	29,752,498	81,514	4,890,822
2025	31,939,201	87,505	5,250,280

Dari Table 4.5 di atas kita dapat melihat bahwa dengan meningkatnya konsumsi BBM tiap tahun maka volume cadangan yang diperlukan agar tidak terjadi kelangkaan juga semakin meningkat. Gambar 4.10 berikut ini merupakan total volume cadangan BBM yang bertahan selama 60 hari penggunaan di WDN III yang disajikan dalam bentuk grafik sedangkan volume cadangan BBM untuk masingmasing provinsi dapat dilihat pada Tabel 21 di Lampiran.


Gambar 4.10 Volume Cadangan BBM Selama 60 Hari di WDN III

Tabel 4.6 Volume Cadangan BBM di WDN IV

Tahun	Konsumsi BBM per tahun (KL)	Konsumsi BBM per hari (KL)	Volume Cadangan BBM 60 hari (KL)
2013	2,083,678	5,709	342,522
2014	2,251,855	6,170	370,168
2015	2,433,615	6,667	400,046
2016	2,630,058	7,206	432,338
2017	2,842,368	7,787	467,239
2018	3,071,830	8,415	504,958
2019	3,319,830	9,095	545,725
2020	3,587,866	9,830	589,786
2021	3,877,558	10,623	637,407
2022	4,190,659	11,481	688,875
2023	4,529,059	12,408	744,503
2024	4,894,806	13,410	804,626
2025	5,290,110	14,493	869,607

Dari Table 4.6 di atas kita dapat melihat bahwa dengan meningkatnya konsumsi BBM tiap tahun maka volume cadangan yang diperlukan agar tidak terjadi kelangkaan juga semakin meningkat. Gambar 4.11 berikut ini merupakan total

volume cadangan BBM yang bertahan selama 60 hari penggunaan di WDN IV yang disajikan dalam bentuk grafik sedangkan volume cadangan BBM untuk masingmasing provinsi dapat dilihat pada Tabel 21 di Lampiran.

Gambar 4.11 Volume Cadangan BBM Selama 60 Hari di WDN IV

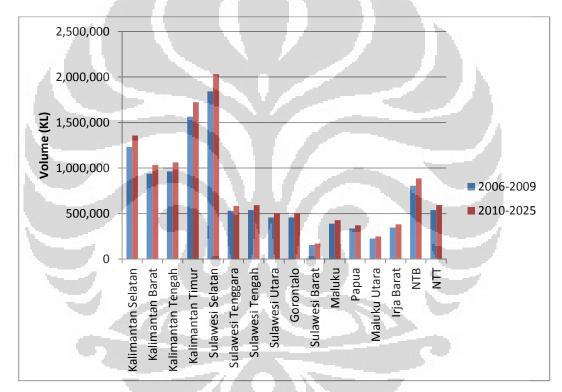
Setelah diketahui perkiraan konsumsi BBM per tahun dan cadangan BBM yang dibutuhkan selama 60 hari, selanjutnya adalah memperkirakan berapa jumlah suplai BBM yang harus ditambahkan untuk memenuhi kebutuhan BBM di WDN III dan IV. Hal ini disebabkan karena kapasitas kilang yang ada saat ini, belum dapat mencukupi kebutuhan BBM yang semakin meningkat.

4.3 Supply Kilang BBM

BBM di Indonesia diperoleh dari kilang kemudian didistribusikan pada masing-masing depot di provinsi-provinsi Indonesia. Maka untuk mencari supply BBM pada masing-masing provinsi, kita perlu mengetahui perbandingan kuota BBM masing-masing provinsi terhadap kuota si seluruh Indonesia (fraksi) yang kemudian dikalikan dengan total BBM yang disuplai.

Tabel 4.7 Data Kapasitas Kilang di Indonesia

Kilang	MBSD	Kiloliter/hari	Kiloliter/tahun
Dumai dan S. Pakning	177.00	28,141	10,271,375
Musi	127.30	20,239	7,387,265
Cilacap	348.00	55,328	20,194,567
Balikpapan	260.00	41,337	15,087,895
Balongan	125.00	19,873	7,253,796
Kasim	10.00	1,590	580,304
Cepu	3.80	604	220,516
Tuban (2010)	100.00	15,899	5,803,036
Tri Wahana Universal (2010)	6.00	954	348,182
Musi Banyuasin (2010)	0.80	127	46,424
Total Kilang Tidak Termasuk			
Tuban, TWU dan Musi.B	1,051.10	167,112	60,995,716
Total Kilang	1,157.90	184,091	67,193,359


Pada tahun 2010 terdapat penambahan kilang di Indonesia sehingga volume kilang BBM di Indonesia pada tahun 2010 meningkat yaitu sekitar 106.8 MBSD atau 6,197,643 Kiloliter/tahun.

Tabel 4.8 Volume BBM yang Disuplai pada Setiap Provinsi

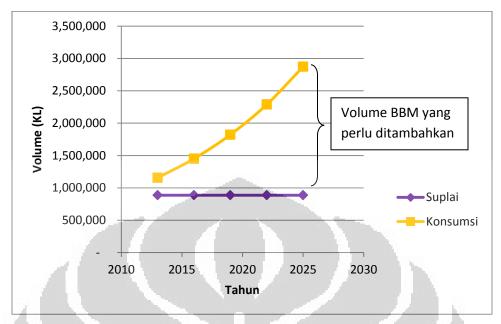
Provinsi	Fraksi Kuota	Suplai BBM (2006-2009) (KL)	Suplai BBM (2010-2025) (KL)
WDN III	0.163544	9,975,500	10,989,089
Kalimantan Selatan	0.020191	1,231,551	1,356,686
Kalimantan Barat	0.015382	938,264	1,033,599
Kalimantan Tengah	0.015801	963,809	1,061,740
Kalimantan Timur	0.02564	1,563,917	1,722,823
Sulawesi Selatan	0.030206	1,842,459	2,029,667
Sulawesi Tenggara	0.008682	529,589	583,400
Sulawesi Tengah	0.008816	537,733	592,371
Sulawesi Utara	0.007503	457,681	504,185
Gorontalo	0.007513	458,254	504,817
Sulawesi Barat	0.00255	155,524	171,326
Maluku	0.006368	388,421	427,888
Papua	0.005518	336,604	370,806

 Tabel 4.8 Volume BBM yang Disuplai pada Setiap Provinsi (Lanjutan)

Provinsi	Fraksi Kuota	Suplai BBM (2006-2009) (KL)	Suplai BBM (2010-2025) (KL)
Maluku Utara	0.003687	224,916	247,769
Irja Barat	0.005685	346,767	382,001
WDN IV	0.022457	1,369,770	1,508,949
NTB	0.013191	804,615	886,370
NTT	0.008821	538,019	592,686
Total WDN III dan IV	0.186001	11,345,270	12,498,038

Gambar 4.12 Suplai BBM dari Kilang ke Setiap Provinsi

Dengan penambahan suplai ini diharapkan dapat mencukupi kebutuhan BBM di seluruh provinsi Indonesia. Namun pada kenyataannya tingkat konsumsi BBM lebih besar dibandingkan produksi dan semakin meningkat tiap tahunnya. Oleh karena itu Indonesia masih perlu menambah produksi BBM, baik dengan penambahan kilang atau impor. Oleh karena itu kita perlu mengetahui jumlah BBM


yang perlu ditambahkan untuk mencukupi kebutuhan BBM pada setiap provinsi/wilayah.

4.4 Tambahan Suplai BBM

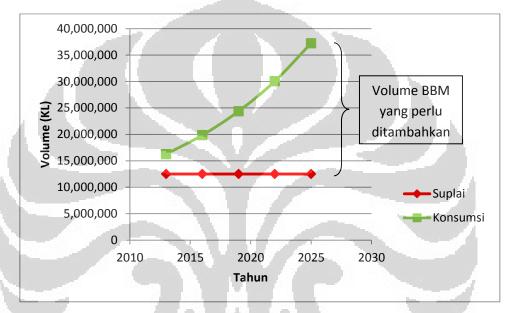
Tambahan BBM yang diperlukan dapat diperoleh dengan menghitung selisih antara volume suplai BBM dari kilang dengan jumlah konsumsi BBM pada suatu provinsi. Hal ini perlu dilakukan untuk mencukupi kebutuhan BBM di setiap provinsi. Berikut ini merupakan salah satu contoh penambahan BBM yang diperlukan pada suatu wilayah, yaitu provinsi NTB.

Tabel 4.9 Tambahan Suplai BBM pada Provinsi NTB

		4000	
		Konsumsi	Tambahan Sunlai DDM
			Suplai BBM
Tahun	Kilang (KL)	(KL)	(KL)
2012	886,370	1,072,062	185,692
2013	886,370	1,156,499	270,129
2014	886,370	1,247,586	361,216
2015	886,370	1,345,847	459,477
2016	886,370	1,451,847	565,477
2017	886,370	1,566,196	679,826
2018	886,370	1,689,551	803,181
2019	886,370	1,822,622	936,252
2020	886,370	1,966,173	1,079,803
2021	886,370	2,121,031	1,234,661
2022	886,370	2,288,085	1,401,715
2023	886,370	2,468,297	1,581,927
2024	886,370	2,662,702	1,776,332
2025	886,370	2,872,419	1,986,049

Gambar 4. 13 Volume BBM yang Perlu Ditambahkan pada Provinsi NTB

Pada Gambar 4.13, dapat dilihat bahwa konsumsi BBM semakin meningkat tiap tahunnya namun supplai BBM dari kilang tetap. Oleh karena itu, kelak supplai BBM perlu ditambah di provinsi NTB untuk memenuhi kebutuhan BBM di NTB. Hal ini dapat dilakukan baik melalui impor atau dengan penambahan kapasitas kilang/depot.

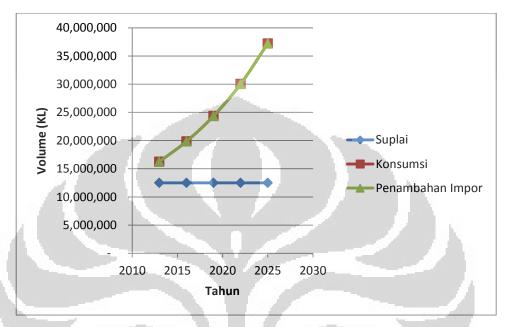

Berikut ini merupakan table dan grafik mengenai jumlah BBM yang harus ditambahkan untuk memenuhi kebutuhan BBM di WDN III dan IV.

Tahun	Kilang (KL)	Konsumsi (KL)	Tambahan BBM (KL)
2012	12,498,038	15,251,736	2,753,698
2013	12,498,038	16,260,150	3,762,112
2014	12,498,038	17,367,713	4,869,674
2015	12,498,038	18,562,433	6,064,395
2016	12,498,038	19,851,450	7,353,412
2017	12,498,038	21,242,520	8,744,482
2018	12,498,038	22,744,075	10,246,037
2019	12,498,038	24,365,280	11,867,242
2020	12,498,038	26,116,106	13,618,067

Tabel 4.10 Tambahan BBM di WDN III dan IV

Tahun Kilang (KL) Konsumsi (KL) Tambahan BBM (KL) 2021 12,498,038 28,007,393 15,509,355 2022 12,498,038 30,050,940 17,552,902 2023 12,498,038 32,259,586 19,761,547 2024 12,498,038 34,647,304 22,149,266 2025 12,498,038 37,229,311 24,731,273

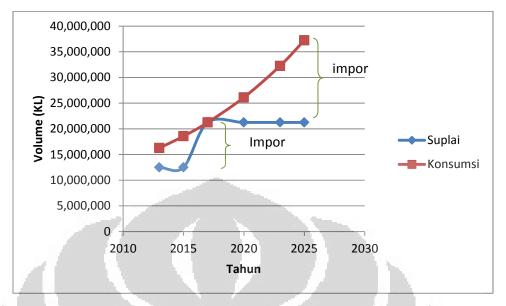
Tabel 4.10 Tambahan BBM di WDN III dan IV (Lanjutan)


Gambar 4.14 Volume BBM yang Perlu Ditambahkan di WDN III dan IV

Dengan mengetahui jumlah volume BBM yang perlu ditambahkan pada seluruh provinsi maka pemerintah dapat mengambil kebijakan yang harus diambil untuk mencukupi kebutuhan BBM di WDN III dan IV. Tambahan suplai BBM pada setiap provinsi dapat dilihat pada Tabel 22 di Lampiran dengan tanda dalam kurung.

4.5 Skenario Kebijakan BBM

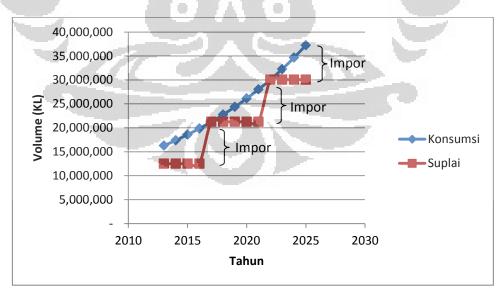
Dalam memenuhi kebutuhan BBM di setiap provinsi, kebijakan yang dapat diambil terdiri dari dua scenario. Skenario pertama adalah dengan hanya melakukan impor BBM tanpa menambah kapasitas kilang dan scenario kedua adalah dengan pembangunan kilang baru maupun modifikasi kilang existing. Gambar 4.15 berikut di


bawah ini merupakan scenario apabila pemerintah mengambil kebijakan yaitu dengan hanya melakukan impor BBM.

Gambar 4.15 Skenario Kebijakan 1 (Hanya Impor)

Berdasarkan scenario pertama, uintuk mensuplai kebutuhan BBM di WDN III dan IV dapat dilakukan yaitu dengan menambah produksi kilang yang ada saat ini dengan impor BBM tanpa adanya penambahan kapasitas kilang di tahun yang akan datang. Maka impor merupakan sebesar selisih konsumsi kebutuhan BBM dengan kapasitas kilang BBM di WDN III dan IV. Selisih ini dapat dilihat pada Tabel 4.10.

Skenario kedua dalam mengambil kebijakan BBM yaitu dengan pembangunan kilang baru maupun modifikasi kilang existing. Skenario ini dapat dilihat pada Gambar 4.16 di berikut ini.


Gambar 4.16 Skenario Kebijakan 2 (Penambahan Kapasitas Kilang pada Tahun 2017)

Asumsi apabila pembangunan kilang baru atau modifikasi kilang eksisting dilakukan pada tahun 2017 dengan jumlah sebesar impor BBM pada tahun 2017 untuk WDN III dan IV yaitu 8,744,482 Kiloliter per tahun. Sementara itu, impor BBM tetap dilakukan untuk memenuhi kebutuhan selama kapasitas kilang belum ditambahkan. Setelah kapasitas kilang ditambahkan pada tahun 2017, maka akan mengurangi jumlah impor BBM pada tahun berikutnya karena telah terdapatnya penambahan kapasitas kilang BBM pada tahun 2017. Berikut ini merupakan Tabel hasil perhitungan penambahan impor yang harus dilakukan di WDN III dan IV.

Tabel 4.11 Jumlah Impor yang Ditambahkan di WDN III dan IV

Tahun	Kilang (KL/tahun)	Konsumsi (KL/tahun)	Penambahan Kapasitas Kilang (KL/tahun)	Impor (KL/tahun)
2013	12,498,038	16,260,150		3,762,112
2014	12,498,038	17,367,713		4,869,674
2015	12,498,038	18,562,433		6,064,395
2016	12,498,038	19,851,450		7,353,412
2017	12,498,038	21,242,520	8,744,482	-
2018	12,498,038	22,744,075	8,744,482	1,501,555
2019	12,498,038	24,365,280	8,744,482	3,122,760
2020	12,498,038	26,116,106	8,744,482	4,873,585
2021	12,498,038	28,007,393	8,744,482	6,764,873
2022	12,498,038	30,050,940	8,744,482	8,808,420
2023	12,498,038	32,259,586	8,744,482	11,017,065
2024	12,498,038	34,647,304	8,744,482	13,404,784
2025	12,498,038	37,229,311	8,744,482	15,986,791

Skenario 2 dapat dikembangkan lebih lanjut dengan asumsi penambahan kilang dilakukan pada tahun yang berbeda yaitu 2022. Maka hasil yang diperoleh dapat dilihat pada Gambar 4.17 berikut ini.

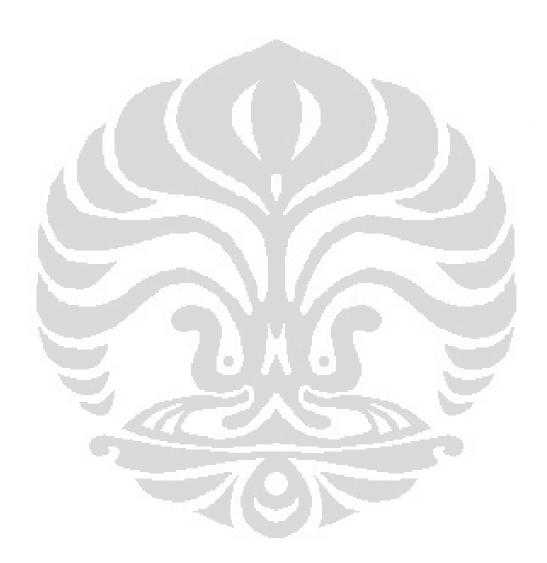
Gambar 4.17 Kebijakan Skenario 2 (Penambahan Kapasitas Kilang pada Tahun 2017 dan 2022)

 ${\bf Tabel~4.12}$ Jumlah Impor yang Ditambahkan pada Tahun 2022 di WDN III dan IV

Tahun	Impor	Tambahan kilang tahun 2022	Impor
2022	8,808,420	8,808,420	-
2023	11,017,065	8,808,420	2,208,645
2024	13,404,784	8,808,420	4,596,364
2025	15,986,791	8,808,420	7,178,371

BAB 5

KESIMPULAN DAN SARAN


5.1 Kesimpulan

- 1. Konsumsi BBM WDN III dan IV dari tahun 2006 hingga 2025 akan mengalami peningkatan dari 10.41 Juta KL menjadi 37.22 Juta KL. Rata-rata pertumbuhan selama periode tersebut adalah 7 %. Komposisi pada tahun 2025 terdiri dari provinsi Sulawesi Selatan dengan 14 %, provinsi Sulawesi Utara dengan 5 %, Kalimantan Timur dengan 8 %, Kalimantan Selatan dengan 9 %, Papua dengan 1 %, dan Maluku dengan 2 %, NTB dengan 8 %, NTT dengan 6 %, Sulawesi Tengarra dengan 8 %, Sulawesi Tengah dengan 9 %, Sulawesi Barat dengan 1%, Kalimantan Tengah dengan 8 %, Kalimantan Barat dengan 13 %, dan Papua Barat dengan 3 %.
- Cadangan BBM selama 60 hari pada WDN III dan IV yang harus dipenuhi untuk menghindari terjadinya kelangkaan dari tahun 2013 sebesar 2.33 Juta KL dan cadangan BBM ini terus mengalami peningkatan hingga tahun 2025 yaitu sebesar 5,25 Juta KL.
- 3. Kapasitas kilang saat ini belum dapat memenuhi kebutuhan cadangan BBM maka perlu menambah supply BBM yaitu dengan menambah kapasitas kilang BBM ataupun membangun kilang baru yaitu sebesar 8.74 Juta KL/tahun pada tahun 2017 dan sebesar 8.80 Juta KL/tahun pada tahun 2022 yang disertai dengan melakukan impor BBM sebesar 3.76 Juta pada tahun 2013 dan sebesar 2.20 Juta pada tahun 2023.

5.2 Saran

Lambatnya realisasi pembangunan kilang minyak antara lain disebabkan besarnya investasi yang diperlukan dan rendahnya margin. Untuk itu dalam rangka mendukung terealisasikannya pembangunan kilang minyak agar cadangan BBM dapat mencukupi kebutuhan disarankan aga setiap Badan Usaha dibebaskan atau

ditanggung pemerintah atas bea masuknya dan Pajak Dalam Rangka Impor (PDRI)-nya.

Universitas Indonesia

DAFTAR PUSTAKA

- BPS. (2012). Badan Pusat Statistik.
- Daalen, V., Thissen, W.A.H. (2001). Dynamics Systems Modelling Continuous Models. <u>Faculteit Techniek</u>, <u>Bestuur en Management (TBM)</u>, Technsche Universiteit Delft.
- Elista.akprind.ac.id. 2012. Modul 2 (Forecasting).
- ESDM, K. (2010). Handbook of Energy Statistics of Indonesia.
- Indonesian.irib.ir. 2012. Stok BBM Indonesia Hanya Cukup Untuk Memenuhi Kebutuhan Selama 23 Hari.
- International Energy Agency. 2012. Fact Sheet on IEA Oil Stocks and Emergency Response Potential.
- Martino, A. H. (2008). Kajian Sistem Dinamik Penataan SPBU Di Wilayah Medan. <u>Teknik Kimia</u>. Depok, Universitas Indonesia.
- Somantri, A. S. dan Machfud. (2006). Analisis Sistem Dinamik Untuk Kebijakan Penyediaan Ubi Kayu. Teknologi Pertanian, Institut Pertanian Bogor. 15 April 2011.
- Suhono. (2010). Kajian Perencanaan Permintaan dan Penyediaan Energi Listrik

 Di Wilayah Kabupaten Sleman Menggunakan Perangkat Lunak Leap.

 <u>Teknik Fisika</u>.Jogjakarta, Universitas Gajah Mada.
- US Department of Energy. 2012. DOE Fossil Energy: Quick Facts about the Strategic Petroleum Reserve.
- www.gatra.com. 2012. Stok BBM Menipis: Indonesia Bisa Lumpuh di Hari ke-24 www.hukumonline.com. 2012. Peraturan Pemerintah Republik Indonesia No. 36 Tahun 2004.
- www.kabarbisnis.com. 2011. Pertamina Impor Premium dan Pertamax.

LAMPIRAN

Tabel 1. Perhitungan Elastisitas Provinsi NTB

	Realisasi BBM	PDRB			
Tahun	(KL)	(Juta Rp.)	Dp/p	Dpdrb/pdrb	Elastisitas
2006	724,355	15,603,775			
2007	782,699	16,369,220	0.081	0.049	1.642
2008	830,117	16,831,601	0.061	0.028	2.145
2009	904,554	18,869,076	0.090	0.121	0.741
2010	927,457	20,056,796	0.025	0.063	0.402
2011	981,687	21,366,996	0.058	0.065	0.895
2012	1,072,062	22,762,785	0.092	0.065	1.409
Rata-					
rata	888,990	18837178	0.068	0.065	1.206

Tabel 2. Perhitungan Elastisitas Provinsi NTT

1 4	Realisasi BBM	PDRB			
Tahun	(KL)	(Juta Rp.)	Dp/p	Dpdrb/pdrb	Elastisitas
2006	533,054	10,368,505			4
2007	557,305	10,902,404	0.045	0.051	0.884
2008	592,734	11,429,773	0.064	0.048	1.314
2009	637,377	11,920,602	0.075	0.043	1.754
2010	680,709	12,531,630	0.068	0.051	1.326
2011	765,982	13,139,618	0.125	0.049	2.582
2012	856,007	13,777,105	0.118	0.049	2.422
Rata-		_^ . A			
rata	660,452	12,009,948	0.083	0.049	1.714

Tabel 3. Perhitungan Elastisitas Provinsi Sulawesi Selatan

	Realisasi BBM	PDRB		7	
Tahun	(KL)	(Juta Rp.)	Dp/p	Dpdrb/pdrb	Elastisitas
2006	1,816,878	38,867,679			
2007	1,884,841	41,332,426	0.037	0.063	0.590
2008	1,993,883	44,549,825	0.058	0.078	0.743
2009	2,080,340	47,326,078	0.043	0.062	0.696
2010	1,971,348	51,197,035	-0.052	0.082	-0.641
2011	1,956,298	54,849,521	-0.008	0.071	-0.107
2012	2,470,874	58,762,583	0.263	0.071	3.687
Rata-					
rata	2,024,923	48,126,450	0.057	0.071	0.828

Tabel 4. Perhitungan Elastisitas Provinsi Sulawesi Tenggara

	Realisasi BBM	PDRB			
Tahun	(KL)	(Juta Rp.)	Dp/p	Dpdrb/pdrb	Elastisitas
2006	399,040	8,643,330			
2007	430,633	9,331,720	0.079	0.080	0.994
2008	463,078	10,506,375	0.075	0.126	0.599
2009	514,230	11,301,220	0.110	0.076	1.460
2010	560,486	12,226,377	0.090	0.082	1.099
2011	615,009	13,336,039	0.097	0.091	1.072
2012	728,238	14,546,414	0.184	0.091	2.029
Rata-			-		
rata	530,102	11,413,068	0.106	0.091	1.209

Tabel 5. Perhitungan Elastisitas Provinsi Sulawesi Tengah

	Realisasi BBM	PDRB			
Tahun	(KL)	(Juta Rp.)	Dp/p	Dpdrb/pdrb	Elastisitas
2006	522,810	12,671,549			
2007	560,892	13,683,882	0.073	0.080	0.912
2008	605,825	15,047,429	0.080	0.100	0.804
2009	651,427	16,177,335	0.075	0.075	1.002
2010	739,804	17,437,129	0.136	0.078	1.742
2011	907,294	19,019,718	0.226	0.091	2.494
2012	935,530	20,745,941	0.031	0.091	0.343
Rata-	5			and the same	4
rata	703,369	16,397,569	0.104	0.083	1.216

Tabel 6. Perhitungan Elastisitas Provinsi Sulawesi Utara

- 1	Realisasi BBM	PDRB			
Tahun	(KL)	(Juta Rp.)	Dp/p	Dpdrb/pdrb	Elastisitas
2006	658,648	13,473,114			
2007	713,172	14,344,302	0.083	0.065	1.280
2008	746,202	15,902,073	0.046	0.109	0.426
2009	758,555	17,149,624	0.017	0.078	0.211
2010	809,875	18,371,201	0.068	0.071	0.950
2011	751,553	19,854,411	-0.072	0.081	-0.892
2012	900,578	21,457,369	0.198	0.081	2.456
Rata-					
rata	762,655	17,221,728	0.057	0.081	0.739

Tabel 7. Perhitungan Elastisitas Provinsi Gorontalo

	Realisasi BBM	PDRB			
Tahun	(KL)	(Juta Rp.)	Dp/p	Dpdrb/pdrb	Elastisitas
2006	174,548	2,175,815			
2007	199,868	2,339,218	0.145	0.075	1.932
2008	215,225	2,520,673	0.077	0.078	0.991
2009	228,098	2,710,737	0.060	0.075	0.793
2010	248,156	2,917,413	0.088	0.076	1.153
2011	273,984	3,139,366	0.104	0.076	1.368
2012	262,644	3,378,206	-0.041	0.076	-0.544
Rata-	0.000				
rata	228,932	2,740,204	0.072	0.076	0.949

Tabel 8. Perhitungan Elastisitas Provinsi Sulawesi Barat

	Realisasi BBM	PDRB			
Tahun	(KL)	(Juta Rp.)	Dp/p	Dpdrb/pdrb	Elastisitas
2006	155,517	3,321,147			
2007	159,470	3,567,816	0.025	0.074	0.342
2008	171,483	3,998,502	0.075	0.121	0.624
2009	197,290	4,239,461	0.150	0.060	2.497
2010	221,596	4,744,309	0.123	0.119	1.035
2011	235,691	5,188,296	0.064	0.094	0.680
2012	235,707	5,673,832	0.000	0.094	0.001
Rata-	2			and the same of	l d
rata	196679	4,390,481	0.073	0.094	0.863

Tabel 9. Perhitungan Elastisitas Provinsi Kalimantan Timur

	Realisasi BBM	PDRB			
Tahun	(KL)	(Juta Rp.)	Dp/p	Dpdrb/pdrb	Elastisitas
2006	1,414,459	96,612,842			
2007	1,465,746	98,386,382	0.036	0.018	1.975
2008	1,531,552	103,206,871	0.045	0.049	0.916
2009	1,449,685	10,5368,811	-0.053	0.021	-2.552
2010	1,402,186	110,579,888	-0.033	0.049	-0.663
2011	1,319,633	114,388,147	-0.059	0.034	-1.710
2012	1,721,764	118,327,558	0.305	0.034	8.848
Rata-					
rata	1,472,146	106,695,785	0.040	0.034	1.136

Tabel 10. Perhitungan Elastisitas Provinsi Kalimantan Selatan

	Realisasi BBM	PDRB			
Tahun	(KL)	(Juta Rp.)	Dp/p	Dpdrb/pdrb	Elastisitas
2006	1,142,447	24,452,265			
2007	1,155,586	25,922,288	0.012	0.060	0.191
2008	1,242,366	27,593,093	0.075	0.064	1.165
2009	1,210,790	29,051,631	-0.025	0.053	-0.481
2010	1,352,565	30,674,124	0.117	0.056	2.097
2011	1,449,625	32,463,038	0.072	0.058	1.230
2012	1,597,763	34,356,281	0.102	0.058	1.752
Rata-					
rata	1,307,306.016	29,216,103	0.059	0.058	0.992

Tabel 11. Perhitungan Elastisitas Provinsi Kalimantan Tengah

	Realisasi BBM	PDRB			
Tahun	(KL)	(Juta Rp.)	Dp/p	Dpdrb/pdrb	Elastisitas
2006	736,252	14,853,726			
2007	781,078	15,754,509	0.061	0.061	1.004
2008	777,897	16,726,459	-0.004	0.062	-0.066
2009	787,958	17,647,321	0.013	0.055	0.235
2010	874,757	18,788,978	0.110	0.065	1.703
2011	904,151	19,926,106	0.034	0.061	0.555
2012	1,146,369	21,132,055	0.268	0.061	4.426
Rata-	5			and the same	4
rata	858,352	17,832,737	0.080	0.061	1.310

Tabel 12. Perhitungan Elastisitas Provinsi Kalimantan Barat

- 1	Realisasi BBM	PDRB			
Tahun	(KL)	(Juta Rp.)	Dp/p	Dpdrb/pdrb	Elastisitas
2006	1,055,868	24,768,375			
2007	1,124,640	26,260,648	0.065	0.060	1.081
2008	1,185,346	27,438,791	0.054	0.045	1.203
2009	1,230,531	28,754,360	0.038	0.048	0.795
2010	1,272,427	30,292,393	0.034	0.053	0.637
2011	1,080,551	31,856,593	-0.151	0.052	-2.920
2012	1,609,109	33,501,563	0.489	0.052	9.473
Rata-					
rata	1,222,639	28,981,818	0.088	0.052	1.711

Tabel 13. Perhitungan Elastisitas Provinsi Papua

	Realisasi BBM	PDRB			
Tahun	(KL)	(Juta Rp.)	Dp/p	Dpdrb/pdrb	Elastisitas
2006	376,881	18,402,197			
2007	421,520	19,200,297	0.118	0.043	2.731
2008	460,667	18,931,842	0.093	-0.014	-6.642
2009	475,276	23,237,115	0.032	0.227	0.139
2010	512,820	22,620,296	0.079	-0.027	-2.976
2011	566,312	23,922,391	0.104	0.058	1.812
2012	648,638	25,299,439	0.145	0.058	2.525
Rata-					
rata	494,588	21,659,082	0.095	0.058	-0.402

Tabel 14. Perhitungan Elastisitas Provinsi Papua Barat

	Realisasi BBM	PDRB			
Tahun	(KL)	(Juta Rp.)	Dp/p	Dpdrb/pdrb	Elastisitas
2006	188,410	5,548,901			
2007	216,507	5,934,316	0.149	0.069	2.147
2008	243,139	6,399,528	0.123	0.078	1.569
2009	236,223	6,848,556	-0.028	0.070	-0.405
2010	251,415	8,685,648	0.064	0.268	0.240
2011	283,420	9,741,524	0.127	0.122	1.047
2012	304,237	10,925,759	0.073	0.122	0.604
Rata-	5			The same	ž.
rata	246,193	7,726,319	0.085	0.122	0.867

Tabel 15. Perhitungan Elastisitas Provinsi Maluku

	Realisasi BBM	PDRB		and the same of	
Tahun	(KL)	(Juta Rp.)	Dp/p	Dpdrb/pdrb	Elastisitas
2006	340,578	3,440,114			
2007	394,788	3,633,475	0.159	0.056	2.832
2008	379,566	3,787,271	-0.039	0.042	-0.911
2009	370,311	3,993,139	-0.024	0.054	-0.449
2010	388,444	4,251,356	0.049	0.065	0.757
2011	460,761	4,482,586	0.186	0.054	3.423
2012	465,878	4,726,392	0.011	0.054	0.204
Rata-					
rata	400,047	4,044,905	0.057	0.054	0.976

Tabel 16. Perhitungan Elastisitas Provinsi Maluku Utara

	Realisasi BBM	PDRB			
Tahun	(KL)	(Juta Rp.)	Dp/p	Dpdrb/pdrb	Elastisitas
2006	179,322	2,359,483			
2007	186,817	2,501,175	0.042	0.060	0.696
2008	209,380	2,651,108	0.121	0.060	2.015
2009	223,965	2,811,446	0.070	0.060	1.152
2010	243,536	3,035,125	0.087	0.080	1.098
2011	277,776	3,232,436	0.141	0.065	2.163
2012	296,339	3,442,574	0.067	0.065	1.028
Rata-	0.000				
rata	231,019	2,861,907	0.088	0.065	1.359

Tabel 17. Hasil Proyeksi Konsumsi BBM di WDN III 2013-2025 (KL)

	Sulawesi	Sulawesi	Sulawesi	Sulawesi	
Tahun	Selatan	Tenggara	Tengah	Utara	Gorontalo
2006	1,816,878	399,040	522,810	658,648	174,548
2007	1,884,841	430,633	560,892	713,172	199,868
2008	1,993,883	463,078	605,825	746,202	215,225
2009	2,080,340	514,230	651,427	758,555	228,098
2010	1,971,348	560,486	739,804	809,875	248,156
2011	1,956,299	615,009	907,294	751,553	273,984
2012	2,470,874	728,238	935,530	900,578	262,644
2013	2,616,841	808,123	1,030,115	954,280	281,603
2014	2,771,430	896,771	1,134,262	1,011,185	301,930
2015	2,935,152	995,144	1,248,939	1,071,483	323,724
2016	3,108,545	1,104,307	1,375,211	1,135,377	347,091
2017	3,292,182	1,225,446	1,514,249	1,203,080	372,145
2018	3,486,666	1,359,872	1,667,343	1,274,821	399,007
2019	3,692,640	1,509,046	1,835,917	1,350,840	427,809
2020	3,910,782	1,674,582	2,021,533	1,431,392	458,689
2021	4,141,811	1,858,278	2,225,916	1,516,748	491,799
2022	4,386,487	2,062,124	2,450,963	1,607,193	527,298
2023	4,645,618	2,288,332	2,698,762	1,703,032	565,360
2024	4,920,057	2,539,353	2,971,615	1,804,586	606,169
2025	5,210,708	2,817,911	3,272,054	1,912,195	649,924

Tabel 17. Hasil Proyeksi Konsumsi BBM di WDN III 2013-2025 (KL) (Lanjutan)

	Sulawesi	Kalimantan	Kalimantan	Kalimantan	Kalimantan
Tahun	Barat	Timur	Selatan	Tengah	Barat
2006	155,517	1,414,459	1,142,447	736,252	1,055,868
2007	159,470	1,465,746	1,155,586	781,078	1,124,640
2008	171,483	1,531,552	1,242,366	777,897	1,185,346
2009	197,290	1,449,685	1,210,790	787,958	1,230,531
2010	221,596	1,402,186	1,352,566	874,757	1,272,427
2011	235,691	1,319,633	1,449,625	904,151	1,080,551
2012	235,707	1,721,764	1,597,763	1,146,369	1,609,109
2013	254,745	1,789,125	1,690,244	1,237,225	1,751,310
2014	275,321	1,859,121	1,788,078	1,335,283	1,906,077
2015	297,559	1,931,855	1,891,575	1,441,111	2,074,521
2016	321,593	2,007,436	2,001,062	1,555,328	2,257,851
2017	347,569	2,085,973	2,116,887	1,678,597	2,457,382
2018	375,643	2,167,583	2,239,415	1,811,635	2,674,547
2019	405,984	2,252,385	2,369,036	1,955,218	2,910,903
2020	438,775	2,340,506	2,506,160	2,110,180	3,168,146
2021	474,216	2,432,074	2,651,220	2,277,424	3,448,122
2022	512,519	2,527,224	2,804,677	2,457,923	3,752,840
2023	553,915	2,626,097	2,967,016	2,652,728	4,084,487
2024	598,656	2,728,838	3,138,751	2,862,972	4,445,442
2025	647,010	2,835,599	3,320,427	3,089,879	4,838,296

Tabel 17. Hasil Proyeksi Konsumsi BBM di WDN III 2013-2015 (KL) (Lanjutan)

		Papua		Maluku	Total WDN
Tahun	Papua	Barat	Maluku	Utara	III
2006	376,881	188,410	340,578	179,322	9,161,657
2007	421,520	216,507	394,788	186,817	9,695,558
2008	460,667	243,139	379,566	209,380	10,225,608
2009	475,276	236,223	370,311	223,965	10,414,677
2010	512,820	251,415	388,444	243,536	10,849,412
2011	566,312	283,420	460,761	277,776	11,082,059
2012	648,638	304,237	465,878	296,339	13,323,667
2013	633,640	336,301	490,612	302,310	14,176,472
2014	618,988	371,745	516,659	329,010	15,115,858
2015	604,675	410,925	544,088	358,068	16,128,818
2016	590,692	454,233	572,974	389,693	17,221,393
2017	577,034	502,106	603,393	424,111	18,400,152
2018	563,691	555,025	635,428	461,568	19,672,245

Tabel 17. Hasil Proyeksi Konsumsi BBM di WDN III 2013-2015 (KL) (Lanjutan)

Tahun	Papua	Papua Barat	Maluku	Maluku Utara	Total WDN III
2019	550,656	613,521	669,163	502,334	21,045,451
		<i>´</i>	,	,	, ,
2020	537,923	678,182	704,689	546,700	22,528,240
2021	525,484	749,658	742,101	594,985	24,129,835
2022	513,333	828,666	781,500	647,534	25,860,282
2023	501,463	916,002	822,990	704,725	27,730,527
2024	489,868	1,012,543	866,683	766,966	29,752,498
2025	478,540	1,119,258	912,695	834,705	31,939,201

Tabel 18. Hasil Proyeksi Konsumsi BBM di WDN IV 2013-2025

			Total
Tahun	NTB	NTT	WDN IV
2006	724,355	533,054	1,257,409
2007	782,699	557,305	1,340,003
2008	830,117	592,734	1,422,851
2009	904,555	637,377	1,541,931
2010	927,457	680,709	1,608,165
2011	981,687	765,982	1,747,670
2012	1,072,062	856,007	1,928,069
2013	1,156,499	927,179	2,083,678
2014	1,247,586	1,004,269	2,251,855
2015	1,345,847	1,087,7689	2,433,616
2016	1,451,847	1,178,211	2,630,058
2017	1,566,196	1,276,172	2,842,368
2018	1,689,551	1,382,279	3,071,830
2019	1,822,622	1,497,208	3,319,830
2020	1,966,173	1,621,693	3,587,866
2021	2,121,031	1,756,528	3,877,558
2022	2,288,085	1,902,574	4,190,659
2023	2,468,297	2,060,762	4,529,059
2024	2,662,702	2,232,103	4,894,806
2025	2,872,419	2,417,691	5,290,110

Tabel 19. Laju Pertumbuhan Konsumsi BBM Total WDN III dan IV

	Total Konsumsi BBM WDN III	Total Konsumsi BBM WDN IV (KL)	Total Konsumsi BBM WDN III dan IV	Laju
Tahun	(KL)	` ′	(KL)	Pertumbuhan
2006	9,161,657	1,257,409	10,419,065	
2007	9,695,558	1,340,003	11,035,561	0.059
2008	10,225,608	1,422,851	11,648,458	0.056
2009	10,414,677	1,541,931	11,956,608	0.026
2010	10,849,412	1,608,165	12,457,577	0.042
2011	11,082,059	1,747,670	12,829,728	0.030
2012	13,323,667	1,928,069	15,251,736	0.189
2013	14,176,472	2,083,678	16,260,150	0.066
2014	15,115,858	2,251,855	17,367,713	0.068
2015	16,128,818	2,433,615	18,562,433	0.069
2016	17,221,393	2,630,058	19,851,450	0.069
2017	18,400,152	2,842,368	21,242,520	0.070
2018	19,672,245	3,071,830	22,744,075	0.071
2019	21,045,451	3,319,830	24,365,280	0.071
2020	22,528,240	3,587,866	26,116,106	0.072
2021	24,129,835	3,877,558	28,007,393	0.072
2022	25,860,282	4,190,659	30,050,940	0.073
2023	27,730,527	4,529,059	32,259,586	0.073
2024	29,752,499	4,894,806	34,647,304	0.074
2025	31,939,201	5,290,110	37,229,311	0.075
	Rata	-rata		0.070

Tabel 20. Proporsi Konsumsi BBM Setiap Provinsi Di WDN III dan IV (%)

Provinsi	2013	2014	2015	2016	2017	2018	2019
NTB	7.11	7.18	7.25	7.31	7.37	7.43	7.48
NTT	5.70	5.78	5.86	5.94	6.01	6.08	6.14
Sulawesi							
Selatan	16.09	15.96	15.81	15.66	15.50	15.33	15.16
Sulawesi							
Tenggara	4.97	5.16	5.36	5.56	5.77	5.98	6.19
Sulawesi							
Tengah	6.34	6.53	6.73	6.93	7.13	7.33	7.53
Sulawesi Utara	5.87	5.82	5.77	5.72	5.66	5.61	5.54
Gorontalo	1.73	1.74	1.74	1.75	1.75	1.75	1.76
Sulawesi Barat	1.57	1.59	1.60	1.62	1.64	1.65	1.67

Tabel 20. Proporsi Konsumsi BBM Setiap Provinsi Di WDN III dan IV (%) (Lanjutan)

Provinsi	2013	2014	2015	2016	2017	2018	2019
Kalimantan							
Timur	11.00	10.70	10.41	10.11	9.82	9.53	9.24
Kalimantan							
Selatan	10.40	10.30	10.19	10.08	9.97	9.85	9.72
Kalimantan							
Tengah	7.61	7.69	7.76	7.83	7.90	7.97	8.02
KalinantanBarat	10.77	10.97	11.18	11.37	11.57	11.76	11.95
Papua	3.90	3.56	3.26	2.98	2.72	2.48	2.26
Papua Barat	2.07	2.14	2.21	2.29	2.36	2.44	2.52
Maluku	3.02	2.97	2.93	2.89	2.84	2.79	2.75
Maluku Utara	1.86	1.89	1.93	1.96	2.00	2.03	2.06
Total	100	100	100	100	100	100	100

Tabel 20. Proporsi Konsumsi BBM Setiap Provinsi Di WDN III dan IV (%) (Lanjutan)

Provinsi	2020	2021	2022	2023	2024	2025
NTB	7.53	7.57	7.61	7.65	7.69	7.72
NTT	6.21	6.27	6.33	6.39	6.44	6.49
Sulawesi						
Selatan	14.97	14.79	14.60	14.40	14.20	14.00
Sulawesi						
Tenggara	6.41	6.63	6.86	7.09	7.33	7.57
Sulawesi						
Tengah	7.74	7.95	8.16	8.37	8.58	8.79
Sulawesi Utara	5.48	5.42	5.35	5.28	5.21	5.14
Gorontalo	1.76	1.76	1.75	1.75	1.75	1.75
Sulawesi Barat	1.68	1.69	1.71	1.72	1.73	1.74
Kalimantan						
Timur	8.96	8.68	8.41	8.14	7.88	7.62
Kalimantan						
Selatan	9.60	9.47	9.33	9.20	9.06	8.92
Kalimantan						
Tengah	8.08	8.13	8.18	8.22	8.26	8.30
KalinantanBarat	12.13	12.31	12.49	12.66	12.83	13.00
Papua	2.06	1.88	1.71	1.55	1.41	1.29
Papua Barat	2.60	2.68	2.76	2.84	2.92	3.01
Maluku	2.70	2.65	2.60	2.55	2.50	2.45
Maluku Utara	2.09	2.12	2.15	2.18	2.21	2.24
Total	100	100	100	100	100	100

Tabel 20. Proporsi Konsumsi BBM Setiap Provinsi Di WDN III dan IV (Lanjutan)

Provinsi	2006	2007	2008	2009	2010	2011	2012
NTB	6.95	7.09	7.13	7.57	7.44	7.65	7.03
NTT	5.12	5.05	5.09	5.33	5.46	5.97	5.61
Sulawesi Selatan	17.44	17.08	17.12	17.40	15.82	15.25	16.20
Sulawesi							
Tenggara	3.83	3.90	3.98	4.30	4.50	4.79	4.77
Sulawesi Tengah	5.02	5.08	5.20	5.45	5.94	7.07	6.13
Sulawesi Utara	6.32	6.46	6.41	6.34	6.50	5.86	5.90
Gorontalo	1.68	1.81	1.85	1.91	1.99	2.14	1.72
Sulawesi Barat	1.49	1.45	1.47	1.65	1.78	1.84	1.55
Kalimantan							
Timur	13.58	13.28	13.15	12.12	11.26	10.29	11.29
Kalimantan							
Selatan	10.96	10.47	10.67	10.13	10.86	11.30	10.48
Kalimantan							
Tengah	7.07	7.08	6.68	6.59	7.02	7.05	7.52
KalinantanBarat	10.13	10.19	10.18	10.29	10.21	8.42	10.55
Papua	3.62	3.82	3.95	3.98	4.12	4.41	4.25
Papua Barat	1.81	1.96	2.09	1.98	2.02	2.21	1.99
Maluku	3.27	3.58	3.26	3.10	3.12	3.59	3.05
Maluku Utara	1.72	1.69	1.80	1.87	1.95	2.17	1.94
Total	100	100	100	100	100	100	100

Tabel 21. Volume Cadangan BBM Setiap Provinsi selama 60 hari (KL)

	Kalimantan	Kalimantan	Kalimantan	Kalimantan	Sulawesi
Tahun	Selatan	Barat	Tengah	Timur	Selatan
2006	187,800	173,567	121,028	232,514	298,665
2007	189,959	184,872	128,396	240,945	309,837
2008	204,225	194,851	127,873	251,762	327,762
2009	199,034	202,279	129,527	238,304	341,974
2010	222,340	209,166	143,796	230,496	324,057
2011	238,295	177,625	148,628	216,926	321,583
2012	262,646	264,511	188,444	283,030	406,171
2013	277,848	287,887	203,380	294,103	430,166
2014	293,931	313,328	219,499	305,609	455,577
2015	310,944	341,017	236,895	317,565	482,491
2016	328,942	371,154	255,670	329,989	510,994
2017	347,981	403,953	275,934	342,900	541,181
2018	368,123	439,652	297,803	356,315	573,151
2019	389,431	478,505	321,406	370,255	607,009
2020	411,971	520,791	346,879	384,741	642,868

Tabel 21. Volume Cadangan BBM Setiap Provinsi selama 60 hari (KL) (Lanjutan)

	Kalimantan	Kalimantan	Kalimantan	Kalimantan	Sulawesi
Tahun	Selatan	Barat	Tengah	Timur	Selatan
2021	435,817	566,815	374,371	399,793	680,846
2022	461,043	616,905	404,042	415,434	721,066
2023	487,729	671,423	436,065	431,687	763,663
2024	515,959	730,758	470,626	448,576	808,777
2025	545,824	795,336	507,925	466,126	856,555

Tabel 21. Volume Cadangan BBM Setiap Provinsi selama 60 hari (KL) (Lanjutan)

	Sulawesi	Sulawesi	Sulawesi		Sulawesi
Tahun	Tenggara	Tengah	Utara	Gorontalo	Barat
2006	65,596	85,941	108,271	28,693	25,564
2007	70,789	92,201	117,234	32,855	26,214
2008	76,122	99,588	122,663	35,380	28,189
2009	84,531	107,084	124,694	37,496	32,431
2010	92,135	121,612	133,130	40,793	36,427
2011	101,097	149,144	123,543	45,038	38,744
2012	119,710	153,786	148,040	43,174	38,746
2013	132,842	169,334	156,868	46,291	41,876
2014	147,414	186,454	166,222	49,632	45,258
2015	163,585	205,305	176,134	53,215	48,914
2016	181,530	226,062	186,637	57,056	52,865
2017	201,443	248,918	197,767	61,175	57,135
2018	223,541	274,084	209,560	65,590	61,749
2019	248,062	301,795	222,056	70,325	66,737
2020	275,274	332,307	235,297	75,401	72,127
2021	305,470	365,904	249,328	80,844	77,953
2022	338,979	402,898	264,196	86,679	84,250
2023	376,164	443,632	279,951	92,936	91,055
2024	417,428	488,485	296,644	99,644	98,409
2025	463,218	537,872	314,334	106,837	106,358

Tabel 21. Volume Cadangan BBM Setiap Provinsi selama 60 hari (KL) (Lanjutan)

Tahun	Maluku	Papua	Maluku Utara	Irja Barat	NTB	NTT
2006	55,985	61,953	29,478	30,972	119,072	87,625
2007	64,897	69,291	30,710	35,590	128,663	91,612
2008	62,394	75,726	34,419	39,968	136,458	97,436
2009	60,873	78,128	36,816	38,831	148,694	104,774
2010	63,854	84,299	40,033	41,328	152,459	111,897
2011	75,742	93,092	45,662	46,590	161,373	125,915
2012	76,583	106,625	48,713	50,012	176,229	140,713
2013	80,649	104,160	49,695	55,282	190,109	152,413
2014	84,930	101,751	54,084	61,109	205,083	165,085
2015	89,439	99,399	58,860	67,549	221,235	178,811
2016	94,188	97,100	64,059	74,668	238,660	193,678
2017	99,188	94,855	69,717	82,538	257,457	209,782
2018	104,454	92,661	75,874	91,237	277,734	227,224
2019	109,999	90,519	82,575	100,853	299,609	246,116
2020	115,839	88,426	89,869	111,482	323,207	266,580
2021	121,989	86,381	97,806	123,231	348,663	288,744
2022	128,466	84,384	106,444	136,219	376,124	312,752
2023	135,286	82,432	115,845	150,576	405,747	338,755
2024	142,468	80,526	126,077	166,445	437,704	366,921
2025	150,032	78,664	137,212	183,988	472,178	397,429

Tabel 22. Tambahan Suplai BBM pada Setiap Provinsi (KL)

Tahun	Kalimantan Selatan	Kalimantan Barat	Kalimantan Tengah	Kalimantan Timur	Sulawesi Selatan
2006	89,104	(117,604)	227,557	149,458	25,581
2007	75,965	(186,376)	182,732	98,171	(42,382)
2008	(10,815)	(247,082)	185,912	32,365	(151,424)
2009	20,761	(292,267)	175,851	114,232	(237,881)
2010	4,121	(238,828)	186,983	320,637	58,319
2011	(92,939)	(46,952)	157,588	403,190	73,368
2012	(241,077)	(575,510)	(84,629)	1,059	(441,207)
2013	(333,558)	(717,710)	(175,486)	(66,302)	(587,174)
2014	(431,392)	(872,478)	(273,543)	(136,298)	(741,763)
2015	(534,889)	(1,040,922)	(379,372)	(209,033)	(905,485)

Tabel 22. Tambahan Suplai BBM pada Setiap Provinsi (KL) (Lanjutan)

Tahun	Kalimantan Selatan	Kalimantan Barat	Kalimantan Tengah	Kalimantan Timur	Sulawesi Selatan
2016	(644,376)	(1,224,252)	(493,588)	(284,613)	(1,078,878)
2017	(760,201)	(1,423,783)	(616,857)	(363,150)	(1,262,515)
2018	(882,729)	(1,640,948)	(749,895)	(444,760)	(1,456,999)
2019	(1,012,350)	(1,877,303)	(893,478)	(529,563)	(1,662,973)
2020	(1,149,474)	(2,134,546)	(1,048,440)	(617,683)	(1,881,115)
2021	(1,294,534)	(2,414,523)	(1,215,684)	(709,251)	(2,112,144)
2022	(1,447,991)	(2,719,241)	(1,396,183)	(804,401)	(2,356,820)
2023	(1,610,330)	(3,050,888)	(1,590,988)	(903,274)	(2,615,951)
2024	(1,782,065)	(3,411,843)	(1,801,232)	(1,006,015)	(2,890,390)
2025	(1,963,741)	(3,804,697)	(2,028,139)	(1,112,776)	(3,181,041)

Tabel 22. Tambahan Suplai BBM pada Setiap Provinsi (KL) (Lanjutan)

Tahun	Sulawesi Tenggara	Sulawesi Tengah	Sulawesi Utara	Gorontalo	Sulawesi Barat
2006	130,549	14,923	(200,967)	283,706	7
2007	98,956	(23,159)	(255,492)	258,387	(3,946)
2008	66,511	(68,092)	(288,521)	243,029	(15,959)
2009	15,359	(113,695)	(300,874)	230,157	(41,767)
2010	22,913	(147,118)	(305,690)	256,661	(50,270)
2011	(31,609)	(314,607)	(247,368)	230,833	(64,365)
2012	(144,838)	(342,843)	(396,393)	242,172	(64,381)
2013	(224,723)	(437,428)	(450,095)	223,214	(83,419)
2014	(313,371)	(541,576)	(507,000)	202,887	(103,995)
2015	(411,744)	(656,253)	(567,298)	181,093	(126,233)
2016	(520,908)	(782,524)	(631,192)	157,726	(150,267)
2017	(642,046)	(921,562)	(698,896)	132,672	(176,243)
2018	(776,473)	(1,074,657)	(770,637)	105,809	(204,317)
2019	(925,646)	(1,243,230)	(846,656)	77,008	(234,658)
2020	(1,091,183)	(1,428,847)	(927,208)	46,127	(267,449)

Tabel 22. Tambahan Suplai BBM pada Setiap Provinsi (KL) (Lanjutan)

Tahun	Sulawesi Tenggara	Sulawesi Tengah	Sulawesi Utara	Gorontalo	Sulawesi Barat
2021	(1,274,878)	(1,633,230)	(1,012,563)	13,018	(302,890)
2022	(1,478,725)	(1,858,276)	(1,103,009)	(22,481)	(341,193)
2023	(1,704,932)	(2,106,076)	(1,198,848)	(60,543)	(382,589)
2024	(1,955,954)	(2,378,928)	(1,300,401)	(101,353)	(427,330)
2025	(2,234,511)	(2,679,367)	(1,408,011)	(145,108)	(475,684)

Tabel 22. Tambahan Suplai BBM pada Setiap Provinsi (KL) (Lanjutan)

Tahun	Maluku Utara	Irja Barat	NTB	NTT
2006	45,593	158,356	80,260	4,966
2007	38,099	130,259	21,916	(19,285)
2008	15,536	103,627	(25,502)	(54,714)
2009	950	110,544	(99,940)	(99,357)
2010	4,233	130,586	(41,087)	(88,022)
2011	(30,008)	98,581	(95,317)	(173,296)
2012	(48,570)	77,764	(185,692)	(263,320)
2013	(54,541)	45,700	(270,129)	(334,493)
2014	(81,241)	10,256	(361,216)	(411,583)
2015	(110,299)	(28,924)	(459,477)	(495,082)
2016	(141,924)	(72,232)	(565,477)	(585,524)
2017	(176,342)	(120,106)	(679,826)	(683,486)
2018	(213,799)	(173,024)	(803,181)	(789,593)
2019	(254,565)	(231,520)	(936,252)	(904,522)
2020	(298,932)	(296,181)	(1,079,803)	(1,029,006)
2021	(347,216)	(367,657)	(1,234,661)	(1,163,841)
2022	(399,766)	(446,666)	(1,401,715)	(1,309,887)
2023	(456,956)	(534,002)	(1,581,927)	(1,468,076)
2024	(519,198)	(630,542)	(1,776,332)	(1,639,417)
2025	(586,936)	(737,257)	(1,986,049)	(1,825,004)

Tabel 23. Validasi Model Provinsi NTB

Tahun	Real (KL)	Proyeksi (KL)	%error
2007	782,699	781,406	0.17
2008	830,117	844,345	1.71
2009	904,554	895,498	1.00
2010	927,457	975,798	5.21
2011	981,687	1,000,504	1.92
2012	1,072,062	1,059,006	1.22
	1.87		

Tabel 24. Validasi Model Provinsi NTT

Tahun	Real (KL)	Proyeksi (KL)	%error
2007	557,305	577,374	3.60
2008	592,734	603,642	1.84
2009	637,377	642,016	0.73
2010	680,709	690,371	1.42
2011	765,982	737,306	3.74
2012	856,007	829,670	3.08
Rata-rata % error			2.40

Tabel 25. Validasi Model Provinsi Sulawesi Selatan

Tahun	Real (KL)	Proyeksi (KL)	%error
2007	1,884,841	1,924,209	2.09
2008	1,993,883	1,996,188	0.12
2009	2,080,340	2,111,671	1.51
2010	1,971,348	2,203,235	11.76
2011	1,956,298	2,087,804	6.72
2012	2,470,874	2,071,866	16.15
Rata-rata % error			6.39

Tabel 26. Validasi Model Provinsi Sulawesi Tenggara

Tahun	Real (KL)	Proyeksi (KL)	%error
2007	430,633	442,813	2.83
2008	463,078	477,872	3.19
2009	514,230	513,876	0.07
2010	560,486	570,639	1.81
2011	615,009	621,969	1.13
2012	728,238	682,473	6.28
Rata-rata % error			2.55

Tabel 27. Validasi Model Provinsi Sulawesi Tengah

Tahun	Real (KL)	Proyeksi (KL)	%error
2007	560,892	575,667	2.63
2008	605,825	617,600	1.94
2009	651,427	667,076	2.40
2010	739,804	717,289	3.04
2011	907,294	814,600	10.22
2012	935,530	999,024	6.79
Rata-rata % error			4.50

Tabel 28. Validasi Model Provinsi Sulawesi Utara

Tahun	Real (KL)	Proyeksi (KL)	%error
2007	713,172	697,924	2.14
2008	746,202	755,700	1.27
2009	758,555	790,698	4.24
2010	809,874	803,788	0.75
2011	751,553	858,168	14.19
2012	900,578	796,369	11.57
Rata-rata % error			5.69

Tabel 29. Validasi Model Provinsi Gorontalo

Tahun	Real (KL)	Proyeksi (KL)	%error
2007	199,868	187,147	6.80
2008	215,225	214,295	0.43
2009	228,098	230,761	1.15
2010	248,156	244,562	1.47
2011	273,984	266,068	2.98
2012	262,644	293,761	10.59
Rata-rata % error			3.90

Tabel 30. Validasi Model Provinsi Sulawesi Barat

Tahun	Real (KL)	Proyeksi (KL)	%error
2007	159,470	168,078	5.40
2008	171,483	172,351	0.51
2009	197,290	185,334	6.06
2010	221,596	213,226	3.78
2011	235,691	239,494	1.61
2012	235,707	254,728	8.07
Rata-rata % error			4.24

Tabel 31. Validasi Model Provinsi Kalimantan Timur

Tahun	Real (KL)	Proyeksi (KL)	%error
2007	1,465,746	1,469,797	0.28
2008	1,531,552	1,523,090	0.55
2009	1,449,685	1,591,471	9.78
2010	1,402,186	1,506,401	7.43
2011	1,319,633	1,457,043	10.41
2012	1,721,764	1,371,261	20.36
Rata-rata % error			9.71

Tabel 32. Validasi Model Provinsi Kalimantan Selatan

Tahun	Real (KL)	Proyeksi (KL)	%error
2007	1,155,586	1,208,573	4.59
2008	1,242,366	1,222,473	1.60
2009	1,210,790	1,314,276	8.55
2010	1,352,565	1,280,872	5.30
2011	1,449,625	1,430,854	1.29
2012	1,597,763	1,533,532	4.02
Rata-rata % error			4.15

Tabel 33. Validasi Model Provinsi Kalimantan Tengah

Tahun	Real (KL)	Proyeksi (KL)	%error
2007	781,077	794,604	1.73
2008	777,897	842,982	8.37
2009	787,958	839,549	6.55
2010	874,757	850,408	2.78
2011	904,151	944,086	4.42
2012	1,146,369	975,810	14.88
Rata-rata % error			6.45

Tabel 34. Validasi Model Provinsi Kalimantan Barat

Tahun	Real (KL)	Proyeksi (KL)	%error
2007	1,124,640	1,149,177	2.18
2008	1,185,346	1,224,027	3.26
2009	1,230,531	1,290,098	4.84
2010	1,272,427	1,339,276	5.25
2011	1,080,551	1,384,874	28.16
2012	1,609,109	1,176,042	26.91
Rata-rata % error			11.77

Tabel 35. Validasi Model Provinsi Papua

Tahun	Real (KL)	Proyeksi (KL)	%error
2007	421,520	368,166	12.66
2008	460,667	411,773	10.61
2009	475,276	450,015	5.31
2010	512,820	464,286	9.46
2011	566,312	500,962	11.54
2012	648,638	553,217	14.71
Rata-rata % error			10.72

Tabel 36. Validasi Model Provinsi Papua Barat

Tahun	Real (KL)	Proyeksi (KL)	%error
2007	216,507	208,267	3.81
2008	243,139	239,326	1.57
2009	236,223	268,764	13.78
2010	251,415	261,119	3.86
2011	283,420	277,912	1.94
2012	304,237	313,290	2.98
	4.65		

Tabel 37. Validasi Model Provinsi Maluku

Tahun	Real (KL)	Proyeksi (KL)	%error
2007	394,788	358,659	9.15
2008	379,566	415,748	9.53
2009	370,311	399,717	7.94
2010	388,444	389,971	0.39
2011	460,761	409,066	11.22
2012	465,878	485,223	4.15
	7.06		

Tabel 38. Validasi Model Provinsi Maluku Utara

Tahun	Real (KL)	Proyeksi (KL)	%error
2007	186,817	195,160	4.47
2008	209,380	203,316	2.90
2009	223,965	227,872	1.74
2010	243,536	243,746	0.09
2011	277,776	265,045	4.58
2012	296,339	302,310	2.01
	2.63		

Tabel 39. Laju Pertumbuhan Produk Domestik Regional Bruto Atas Dasar Harga Konstan 2000 Menurut Propinsi (BPS 2012)

	Provinsi	2006	2007	2008	2009*)	2010**)
		00.050.000.00	05.000.000.70	04 007 000 47		00.074.400.00
1.	Aceh	36,853,868.66	35,983,090.79	34,097,992.47	32,220,883.29	33,071,136.66
2.	Sumatera Utara	93,347,404.39	99,792,273.27	106,172,360.10	111,559,224.81	118,640,902.74
3.	Sumatera Barat	30,949,945.10	32,912,968.59	35,176,632.43	36,683,238.69	38,860,187.68
4.	Riau	83,370,867.26	86,213,259.46	91,085,381.75	93,786,236.58	97,701,683.19
5.	Jambi	13,363,620.73	14,275,161.35	15,297,770.57	16,272,907.71	17,465,253.43
6.	Sumatera Selatan	52,214,848.00	55,262,114.00	58,065,455.00	60,452,944.00	63,735,999.00
7.	Bengkulu	6,610,628.57	7,037,404.03	7,444,485.08	7,923,129.60	8,330,345.23
8.	Lampung	30,861,360.40	32,694,889.62	34,443,151.77	36,221,138.80	38,305,277.00
9.	Kepulauan Bangka Belitung	9,053,553.48	9,464,539.15	9,899,925.78	10,266,450.99	10,866,810.93
10.	Kepulauan Riau	32,441,003.07	34,713,813.64	37,014,735.92	38,318,828.63	41,083,258.84
	Sumatera	389,067,099.65	408,349,513.89	428,697,890.87	443,704,983.10	468,060,854.69
11.	DKI Jakarta	312,826,712.76	332,971,254.83	353,723,390.53	371,469,499.10	395,664,497.61
12.	Jawa Barat	257,499,445.75	274,180,307.83	291,205,836.70	303,405,250.51	321,875,841.47
13.	Jawa Tengah	150,682,654.74	159,110,253.76	168,034,483.29	176,673,456.57	186,995,480.65
14.	DI. Yogyakarta	17,535,749.31	18,291,511.71	19,212,481.03	20,064,256.65	21,042,267.31
15.	Jawa Timur	271,249,317.01	287,814,183.91	305,538,686.62	320,861,168.91	342,280,765.51
16.	Banten	61,341,658.64	65,046,775.77	79,699,684.03	83,440,214.37	88,393,769.65
	Jawa	1,071,135,538.21	1,137,414,287.81	1,217,414,562.20	1,275,913,846.11	1,356,252,622.19
17.	Bali	22,184,679.28	23,497,047.07	25,910,325.54	27,290,945.61	28,880,686.20
	Jawa & Bali	1,093,320,217.49	1,160,911,334.88	1,243,324,887.74	1,303,204,791.72	1,385,133,308.39
18.	Kalimantan Barat	24,768,374.85	26,260,647.97	27,438,791.32	28,754,359.80	30,292,393.42
19.	Kalimantan Tengah	14,853,726.14	15,754,508.67	16,726,459.03	17,647,321.23	18,788,977.84
20.	Kalimantan Selatan	24,452,264.79	25,922,287.52	27,593,092.50	29,051,630.55	30,674,123.86
21.	Kalimantan Timur	96,612,841.61	98,386,381.51	103,206,871.34	105,368,810.57	110,579,888.26

Tabel 39. Laju Pertumbuhan Produk Domestik Regional Bruto Atas Dasar Harga Konstan 2000 Menurut Propinsi (BPS 2012) (Lanjutan)

	Provinsi	2006	2007	2008	2009*)	2010**)
	Kalimantan	160,687,207.39	166,323,825.68	174,965,214.18	180,822,122.15	190,335,383.37
22.	Sulawesi Utara	13,473,114.27	14,344,302.07	15,902,073.26	17,149,624.49	18,371,201.12
23.	Sulawesi Tengah	12,671,548.91	13,683,882.46	15,047,428.54	16,177,335.03	17,437,129.13
24.	Sulawesi Selatan	38,867,679.22	41,332,426.29	44,549,824.55	47,326,078.38	51,197,034.67
25.	Sulawesi Tenggara	8,643,330.06	9,331,719.95	10,506,374.97	11,301,220.06	12,226,376.73
26.	Gorontalo	2,175,815.19	2,339,217.51	2,520,672.95	2,710,737.05	2,917,412.57
27.	Sulawesi Barat	3,321,147.32	3,567,816.12	3,998,502.00	4,239,460.87	4,744,309.49
	Sulawesi	79,152,634.96	84,599,364.40	92,524,876.29	98,904,455.90	106,893,463.73
28.	Nusa Tenggara Barat	15,603,774.90	16,369,220.45	16,831,600.88	18,869,075.88	20,056,796.12
29.	Nusa Tenggara Timur	10,368,504.89	10,902,404.44	11,429,772.58	11,920,601.87	12,531,629.66
30.	Maluku	3,440,114.10	3,633,475.12	3,787,271.11	3,993,139.25	4,251,356.30
31.	Maluku Utara	2,359,483.02	2,501,175.13	2,651,107.75	2,811,445.78	3,035,124.59
32.	Papua Barat	5,548,900.50	5,934,315.82	6,399,528.24	6,848,555.91	8,685,647.99
33.	Papua	18,402,197.42	19,200,297.42	18,931,841.59	23,237,114.94	22,620,295.88
	Nusa Tenggara, Maluku & Papua	55,722,974.83	58,540,888.39	60,031,122.15	67,679,933.63	71,180,850.55
	Jumlah 33 Provinsi	1,777,950,134.32	1,878,724,927.24	1,999,543,991.22	2,094,316,286.50	2,221,603,860.72

Catatan:

^{*)} Angka Sementara

^{**)} Angka Sangat Sementara

PERATURAN PEMERINTAH REPUBLIK INDONESIA NO.36 TAHUN 2004

TENTANG KEGIATAN USAHA HILIR MINYAK DAN GAS BUMI

BAB VIII

CADANGAN STRATEGIS MINYAK BUMI

Pasal 56

- (1) Cadangan Strategis Minyak Bumi disediakan oleh Pemerintah yang dapat diperoleh dari produksi dalam negeri dan/atau impor.
- (2) Pemerintah dapat menugaskan Badan Usaha untuk menyediakan Cadangan Strategis Minyak Bumi sebagaimana dimaksud dalam ayat (1).
- (3) Menteri mengatur dan menetapkan Cadangan Strategis Minyak Bumi yang berkaitan dengan jumlah, jenis, dan lokasi penyimpanan serta penggunaan Cadangan Strategis Minyak Bumi.
- (4) Jumlah Cadangan Strategis Minyak Bumi ditetapkan berdasarkan kebutuhan Bahan Bakar Minyak dan jenisnya disesuaikan dengan konfigurasi fasilitas Pengolahan dalam negeri yang akan menggunakan Cadangan Strategis Minyak Bumi.

Pasal 57

Penggunaan Cadangan Strategis Minyak Bumi ditetapkan oleh Menteri pada saat terganggunya pasokan Minyak Bumi guna mendukung penyediaan Bahan Bakar Minyak dalam negeri.

Pasal 58

Pengaturan, pelaksanaan, dan pengawasan atas Cadangan Strategis Minyak Bumi diatur lebih lanjut oleh Menteri.

BAB IX

CADANGAN BAHAN BAKAR MINYAK NASIONAL

Pasal 59

- (1) Menteri menetapkan kebijakan mengenai jumlah dan jenis Cadangan Bahan Bakar Minyak Nasional.
- (2) Jenis Cadangan Bahan Bakar Minyak Nasional sebagaimana dimaksud dalam ayat (1) wajib memenuhi standar dan mutu yang ditetapkan Menteri.
- (3) Menteri dapat menunjuk Badan Usaha pemegang Izin Usaha Pengolahan, Badan Usaha pemegang Izin Usaha Penyimpanan dan Badan Usaha pemegang Izin Usaha Niaga yang menghasilkan dan/atau mengusahakan jenis Bahan Bakar Minyak sebagaimana dimaksud dalam ayat (2) untuk menyediakan Cadangan Bahan Bakar Minyak Nasional.
- (4) Cadangan Bahan Bakar Minyak Nasional dari masing-masing Badan Usaha sebagaimana dimaksud dalam ayat (3) diatur dan ditetapkan oleh Badan Pengatur.
- (5) Pengawasan penyediaan Cadangan Bahan Bakar Minyak Nasional sebagaimana dimaksud dalam ayat dilakukan oleh Badan Pengatur.

Pasal 60

- (1) Cadangan Bahan Bakar Minyak Nasional sebagaimana dimaksud dalam Pasal 59 ayat (1) hanya dipergunakan pada saat terjadinya Kelangkaan Bahan Bakar Minyak yang pengaturan dan penetapannya dilaksanakan oleh Badan Pengatur.
- (2) Dalam hal Kelangkaan Bahan Bakar Minyak telah dapat diatasi, Cadangan Bahan Bakar Minyak Nasional dikembalikan pada keadaan semula.

Pasal 61

(1) Badan Usaha yang ditunjuk sebagaimana dimaksud dalam Pasal 59 ayat (3) wajib melaporkan mengenai kondisi Bahan Bakar Minyak sebagai bagian dari Cadangan Bahan Bakar Minyak Nasional meliputi lokasi, jumlah dan jenisnya kepada Badan Pengatur dengan tembusan kepada Menteri setiap bulan.

(2) Dalam hal Badan Usaha tidak menyediakan Cadangan Bahan Bakar Minyak Nasional pada saat diperlukan sebagaimana dimaksud dalam Pasal 59 ayat (3) Menteri dapat mengenakan sanksi administratif dan/atau denda kepada Badan Usaha sesuai dengan rekomendasi Badan Pengatur.