

UNIVERSITAS INDONESIA

ANALISA PENGARUH KONTROL AKTIF ALIRAN TERHADAP PENGURANGAN KONSUMSI BAHAN BAKAR VAN MODEL

TESIS Diajukan sebagai salah satu syarat untuk memperoleh gelar Magister Teknik

SABAR PANGIHUTAN SIMANUNGKALIT 1006788542

FAKULTAS TEKNIK DEPARTEMEN TEKNIK MESIN PROGRAM STUDI KONVERSI ENERGI DEPOK JULI 2012

Analisa pengaruh..., Sabar Pangijutan Simanungkalit, FT UI, 2012.

HALAMAN PERNYATAAN ORISINALITAS

Tesis ini adalah hasil karya saya sendiri, dan semua sumber baik yang dikutip maupun dirujuk telah saya nyatakan dengan benar.

Nama	: Sabar Pangihutan Simanungkalit
NPM	: 1006788542
Tanda Tangan	
	2
Tanggal	: 03 Juli 2012
Q	

HALAMAN PENGESAHAN

Tesis ini diajukan oleh	:				
Nama	:	Sabar Pangihutan Simanungkalit			
NPM	:	1006788542			
Program Studi	:	Teknik Mesin/Konversi Energi			
Judul Tesis	:	Pengaruh Kontrol Aktif Aliran Terhadap			
		Pengurangan Konsumsi Bahan Bakar Van Model			

Telah berhasil dipertahankan di hadapan Dewan Penguji dan diterima sebagai bagian persyaratan yang diperlukan untuk memperoleh gelar Magister Teknik pada Program Studi Teknik Mesin, Fakultas Teknik, Universitas Indonesia.

DEWAN PENGUJI

Pembimbing : Prof. Dr. Ir. Harinaldi, M.Eng.

Penguji

: Dr. Ir. Warjito, M.Eng.

Penguji

: Dr. Ir.Engkos A. Kosasih,MT.

)

Penguji

: Dr. Agus S. Pamitran, ST, M.Eng.

Ditetapkan di : Depok Tanggal : 03 Juli 2012

iii

KATA PENGANTAR

Puji dan syukur kehadirat Tuhan Yang Maha Esa atas berkat dan anugrah-Nya sehingga penulis dapat menyelesaikan penulisan tesis ini dengan baik dan tepat waktu. Penulisan tesis ini dilakukan untuk memenuhi salah satu syarat untuk mendapatkan gelar Magister Teknik dari Departemen Teknik Mesin (Fakultas Teknik – Universitas Indonesia). Penulisan tesis ini dapat berlangsung dengan bantuan dan bimbingan dari berbagai pihak, oleh karena itu penulis mengucapkan terima kasih kepada :

- Prof. Dr. Ir. Harinaldi, M.Eng selaku dosen pembimbing, yang telah menyediakan waktu, tenaga dan pikiran dalam membimbing penulis selama penelitian dan menyelesaikan tesis.
- Prof. Dr. Ir. Budiarso, M.Eng., Dr. Ir. Warjito, M.Eng., Dr. Ir.Engkos A. Kosasih, MT., dan Dr. Agus S. Pamitran, ST, M.Eng. selaku dosen penguji yang telah banyak memberikan masukan kepada penulis dalam penulisan tesis.
- Kementerian Riset dan Teknologi Republik Indonesia, selaku sponsor yang telah memberi beasiswa penuh bagi penulis selama menjalani studi di program Magister Teknik - Departemen Teknik Mesin FT-UI.
- 4. Dipl.-Ing. Haznan Abimanyu,Ph.D selaku co-promotor, yang telah banyak memberikan masukan kepada penulis selama menjalani studi dan penelitian.
- 5. Rustan Tarakka, ST. MT selaku ketua tim dalam penelitian, yang telah banyak membantu dan memberi masukan dalam penyelesaian tesis.
- I Gusti Made Fredi Lay, Andre Grivanzy, Ahmad Tri Ageng Sutrisno dan Nanda Setiadji, selaku rekan dalam penelitian, yang telah banyak membantu dalam penelitian.
- 7. Teman-teman mahasiswa S2 Departemen Teknik Mesin FT-UI angkatan 2010 (Pak Maswan, Irvan, Chandra, Arnas).
- 8. Bapak dan Mama yang selalu mendoakan penulis.

iv

9. Istriku Ruth "Oe-U" serta anak-anakku Theodore dan Tobie yang telah menjadi sumber inspirasi.

Akhir kata, penulis berharap tesis ini dapat bermanfaat bagi penelitian selanjutnya dan bagi perkembangan IPTEK di Indonesia tercinta.

Depok, 03 Juli 2012

HALAMAN PERNYATAAN PERSETUJUAN PUBLIKASI TUGAS AKHIR UNTUK KEPENTINGAN AKADEMIS

Sebagai sivitas Akademik Universitas Indonesia, saya yang bertanda tangan dibawah ini :

Nama : Sabar Pangihutan Simanungkalit

NPM : 1006788542

Program Studi : Konversi Energi

Departemen : Teknik Mesin

Fakultas : Teknik

Jenis Karya : Tesis

demi pengembangan ilmu pengetahuan, menyetujui untuk memberikan kepada Universitas Indonesia **Hak Bebas Royalti Noneksklusif** (*Non-exclusive Royalty* – *Free Right*) atas karya ilmiah saya yang berjudul **Analisa Pengaruh Kontrol Aktif Aliran terhadap Pengurangan Konsumsi Bahan Bakar Van Model** beserta perangkat yang ada (jika diperlukan). Dengan Hak Bebas Royalti Noneksklusif ini Universitas Indonesia berhak menyimpan, mengalihmedia/formatkan, mengelola dalam bentuk pangkalan data (*database*), merawat, dan memublikasikan tugas akhir saya selama tetap mencantumkan nama saya sebagai penulis/pencipta dan sebagai pemilik Hak Cipta.

Demikian pernyataan ini saya buat dengan sebenarnya.

Dibuat di : Depok Pada tanggal : 03 Juli 2012

Yang menyatakan

(Sabar Pangihutan Simanungkalit)

ABSTRAK

Nama: Sabar Pangihutan SimanungkalitProgram Studi: Teknik Mesin / Konversi EnergiJudul: Analisa Pengaruh Kontrol Aktif Aliran Terhadap
Pengurangan Konsumsi Bahan Bakar Van Model

Kombinasi kontrol aktif tiupan dan hisapan yang diterapkan pada bagian belakang model mobil dapat meningkatkan tekanan statis hingga 50% dan mengurangi drag sampai 10% (Gerrop, D. & Odhental, H.J., 2000). Penerapan kontrol aktif tiupan pada model mobil (*Ahmed body*) menghasilkan penurunan drag hingga 6%, konsumsi bahan bakar menurun hingga 0.4 liter per-100 kilometer saat kecepatan mobil 130 km/jam, dan menurut siklus NEDC, emisi berkurang hingga 2.3 gram per-kilometer untuk *median vehicle* seperti Renault Megane (Kourta, A. & Gillieron, P., 2009).

Pada penelitian ini, kontrol aktif aliran berupa hisapan dan tiupan telah diaplikasikan pada bagian belakang van model (reversed Ahmed body) sebagai pendekatan bentuk mobil penumpang jenis Multi Purpose Vehicle (MPV). Penelitian dilakukan dengan pendekatan komputasi dan pendekatan eksperimental. Pada pendekatan komputasi digunakan software CFD Fluent 6.3 untuk mengetahui karakteristik medan aliran dan pengurangan drag aerodinamika pada model uji. Pada pendekatan eksperimen digunakan Particles Image Velocimetry dan load cell untuk memvalidasi hasil yang diperoleh melalui pendekatan komputasi.

Hasil yang didapatkan dalam penelitian, penempatan kontrol aktif aliran dapat mengurangi gaya *drag* aerodinamika pada model uji. Pengurangan *drag* aerodinamika terbaik adalah sebesar 21.91% yang terjadi dengan penerapan kontrol aktif hisapan saat perbandingan kecepatan *upstream* dengan kecepatan kontrol aktif aliran $(U_{SC}/U_0) = 0.03$. Untuk kendaraan keluarga seperti Suzuki APV konsumsi bahan bakar menurun hingga 2 liter dan emisi berkurang hingga 15 gram per-kilometer (*Euro-IV*) saat mobil melaju selama 10 jam dengan kecepatan rata-rata 60 km/jam.

Kata kunci : Kontrol aktif, *drag* aerodinamika, *van model* dan konsumsi bahan bakar.

ABSTRACT

Name Study Program Title Sabar Pangihutan Simanungkalit
Mechanical Engineering / Energy Conversion
Influence Analysis of Flow Active Controls to Reduction of Van Model Fuel Consumption.

The combination of active control by blowing and suction is applied to the rear side of the car model can increase the static pressure of up to 50% and reduce the drag till 10% (Gerrop & Odhental, 2000). Application of active control by blowing on the car model (Ahmed body) yield drag reduction up to 6%, fuel consumption dropped to 0.4 liters per 100 kilometers while car speed is 130 km/hour, and according to the NEDC cycle, the emission was reduced to 2.3 grams per kilometer for the median vehicle like Renault Megane (Kourta, A. & Gillieron, P., 2009).

In this study, flow active controls by suction and blowing was applied to the rear side of van model (reversed Ahmed body) as an approaches shape of MPV type of passenger car. The study conducted with computational and experimental approach. In the computational, CFD software Fluent 6.3 is used to discover the flow field characteristics and the aerodynamic drag reduction on the van model. In the experimental, Particles Image Velocimetry and load cells are used to validate the results obtained through computational approaches.

The results obtained that the placement of active flow control can reduce the aerodynamic drag force of test model and the best drag reduction obtained is of about 21.91% corresponding to the suction velocity $U_{SC}/U_0 = 0.03$. For a passenger car like Suzuki APV, the fuel consumption decreases then by 2 liters and the emissions are reduced by 15 grams per kilometer (Euro-IV) as the car drove for 10 hours with an average speed of 60 km/h.

Keywords: Active control, aerodynamic drag, van model, and fuel consumption

DAFTAR ISI

HA	LAN	IAN JUDUL	i
HA	LAN	IAN PERNYATAAN ORISINALITAS	ii
HA	LAN	IAN PENGESAHAN	iii
AE	STR.	AK	.vii
DA	FTA	R ISI	ix
DA	FTA	R GAMBAR	xi
DA	FTA	R TABEL	xiii
DA	FTA	R NOTASI	xiv
DA	FTA	R LAMPIRAN	XV
1.	PEN	DAHULUAN	
	1.1.	Latar Belakang	1
	1.2.	Perumusan Masalah	. 2
	1.3.	Tuiuan Penelitian	3
	1.4	Batasan Masalah	3
	1.5.	Sistematika Penulisan	4
2.	TIN	JAUAN PUSTAKA	
	2.1.	Aerodinamika Kendaraan	6
	2.2.	Dinamika Aliran di sekitar Kendaraan	8
		2.2.1 Lapisan Batas (Boundary Layer)	9
		2.2.2. Separasi Aliran	10
		2.2.3 Intensitas Turbulensi	11
	23	Model Kendaraan Ahmed Body	12
	2.4	Modus Kontrol Aliran	14
	2	2.4.1 Kontrol Pasif Aliran	15
		2.4.2. Kontrol Aktif Aliran	17
	2.5	Efisiensi Energi Kontrol Aktif Aliran	19
	2.6.	Hubungan Efisiensi Bahan Bakar dengan Pengurangan Da	rag
		Aerodinamika	20
3.	MET	FODOLOGI PENELITIAN	22
	3.1.	Model Uii (Van Model)	24
	3.2.	Pendekatan Komputasi	25
	3.3	Pendekatan Eksperimen	27
	0.01	3.3.1 Validasi Gava Drag Aerodinamika nada Bagian Belakang V	 Ian
		Model	28
		3.3.2 Pengukuran dengan Particles Image Velocimetry (PIV)	31
	3.4.	Terowongan Angin Sub – Sonik (<i>Sub-Sonic Wind Tunnel</i>)	33
	0111		00
4.	HAS	SIL DAN PEMBAHASAN	.37
	4.1.	Distribusi Tekanan	38
		4.1.1. Tanpa Kontrol Aktif Aliran	38
		4.1.2. Pengaruh Kontrol Aktif Aliran Hisanan (Suction)	39
		4.1.3. Pengaruh Kontrol Aktif Aliran Tiunan (<i>Blowing</i>)	42

	4.2.	Intensitas Turbulensi	45
		4.2.1. Tanpa Kontrol Aktif Aliran	45
		4.2.2. Pengaruh Kontrol Aktif Aliran Hisapan (Suction)	45
		4.2.3. Pengaruh Kontrol Aktif Aliran Tiupan (Blowing)	
	4.3.	Visualisasi Dinamika Medan Aliran pada Bagian Belakang	Van Model
		Menggunakan Particles Image Velocimetry (PIV)	
	4.4.	Gaya Drag Aerodinamika	58
		4.4.1. Pendekatan Komputasi (CFD)	
		4.4.2. Pendekatan Eksperimen (Load cells)	59
	4.5.	Efisiensi Energi Kontrol Aktif	
	4.6.	Peluang Efisiensi Bahan Bakar dan Pengurangan Emisi	64
5.	PEN	UTUP	
	5.1.	Kesimpulan	
	5.2.	Saran	67
DA	FTA	R PUSTAKA	

DAFTAR GAMBAR

Gambar 2.1	Perubahan bentuk kendaraan untuk mengurangi gaya aerodinamikanya dan meningkatkan efisiensi konsumsi bahan
Combon 2.2	Dakar
Gambar 2.2	Pola aliran udara disekitar kendaraan
Gambar 2.3	Lapisan batas yang terbentuk disepanjang pelat datar10
Gambar 2.4	Separasi aliran yang terjadi pada silinder
Gambar 2.5	Model kendaraan Ahmed Body
Gambar 2.6	Separasi aliran pada geometri <i>Ahmed body</i> 13
Gambar 2.7	Karakterisasi aliran Ahmed body13
Gambar 2.8	Vortex Generator pada Logan Garcia16
Gambar 2.9	Model Ahmed body dengan pelat splitter vertikal16
Gambar 2.10	Model Ahmed body dengan pelat splitter longitudinal 17
Gambar 2.11	Konsep dasar kontrol aktif separasi aliran18
Gambar 2.12	Hubungan antara energi traksi dengan konsumsi bahan bakar21
Gambar 3.1	Diagram alir penelitian
Gambar 3.2	Dimensi Model Uji Van Model (Reversed Ahmed Body)24
Gambar 3.3	Domain aliran dalam CFD26
Gambar 3.4	Tipe meshing tet/hydrid jenis hex core pada van model
Gambar 3.5	Lokasi pengambilan data distribusi tekanan dan intensitas
	turbulensi
Gambar 3.6	Penempatan model uji (van model) pada seksi uji wind tunnel 28
Gambar 3.7	Experimental set-up pengambilan data gaya drag aerodinamika
	pada <i>van model</i>
Gambar 3.8	Konfigurasi 4 gage aktif untuk pengukuran bending
Gambar 3.9	Excellent Scale Digital Weighing Indicator XK3190-A12(E)30
Gambar 3.10	Sketsa penempatan model uji pada load cell dan kalibrasi
Gambar 3.11	Sistem PIV dalam <i>wind tunnel</i>
Gambar 3.12	Experimental set-up visualisasi medan aliran pada bagian belakang
	van model
Gambar 3.13	Kalibrasi model uji
Gambar 3.14	Sub sonic wind tunnel Armfield C2-00
Gambar 3.15	Pengukuran kecepatan sepanjang garis tengah seksi uji
Gambar 3.16	Pengukuran kecepatan aliran dalam seksi uji
Gambar 3.17	Motor DC dan unit kontrol penggerak blower axial
Gambar 4.1	Distribusi C _P tanpa kontrol aktif aliran (U ₀ = 16.7 m/s) 38
Gambar 4.2	Distribusi C _P dengan kontrol aktif <i>suction</i> (U _{SC} /U ₀ = 0.03) 39
Gambar 4.3	Distribusi C_P dengan kontrol aktif suction (U _{SC} /U ₀ = 0.06) 40
Gambar 4.4	Distribusi C_P dengan kontrol aktif suction (U _{SC} /U ₀ = 0.09) 41
Gambar 4.5	Distribusi $C_{\rm P}$ dengan kontrol aktif <i>blowing</i> (U _{PI} /U ₀ = 0.03) 42.
Gambar 4.6	Distribusi $C_{\rm p}$ dengan kontrol aktif <i>blowing</i> (U _{PI} /U ₀ = 0.06) 43
Gambar 4 7	Distribusi $C_{\rm P}$ dengan kontrol aktif <i>blowing</i> (U _{PI} /U ₀ = 0.09) 44
Gambar 4.8	Intensitas Turbulensi Tanpa Kontrol Aktif Aliran
	$(U_0 = 16.7 \text{ m/s})$

Gambar 4.9	Intensitas $(U_{ac}/U_{b} = 0)$	Turbulensi	dengan	kontrol	aktif	suction
Gambar 4.10	Intensitas $(U - U) = 0$	Turbulensi	dengan	kontrol	aktif	suction
Gambar 4.11	$(U_{SC}/U_0 = 0.$ Intensitas	Turbulensi	dengan	kontrol	aktif	suction
Gambar 4.12	$(U_{SC}/U_0 = 0)$. Intensitas	Turbulensi	dengan	kontrol	aktif	blowing
Gambar 4.13	$(U_{BL}/U_0 - 0)$ Intensitas	Turbulensi	dengan	kontrol	aktif	blowing
Gambar 4.14	$(U_{BL}/U_0 = 0)$ Intensitas	Turbulensi	dengan	kontrol	aktif	blowing
Gambar 4.15	$(O_{BL})O_0 = 0.$ Streamline	rata-rata 16.7 m/s	tanpa	kontrol	aktif	aliran
Gambar 4.16	$(z = 0, 0_0 = Streamline)$	rata-rata de 16.7 m/s	ngan kon	trol aktif	aliran	suction
Gambar 4.17	$(z = 0, 0_0 = Streamline)$	rata-rata der	ngan kon	trol aktif	aliran	blowing
Gambar 4.18	$(2 = 0, 0_0 = 0)$ Penurunan	C_D dengan	kontrol a	ktif <i>suctio</i>	on dan	blowing
Gambar 4.19	Gaya drag a	aerodinamika u $(U_0 = 16.7 \text{ m/s})$	van model	dengan kor	ntrol akti	f suction
Gambar 4.20	Penurunan	C_D dengan	kontrol a	ktif <i>suctio</i>	on dan	blowing
Gambar 4.21	Efisiensi ene	rgi penggunaa	n kontrol al	ktif <i>suction</i>	pada van	02 model
Gambar 4.22	Efisiensi ene	ergi penggunaa	n kontrol al	ktif <i>blowing</i>	pada va	n model
Gambar 4.23	Kendaraan k	eluarga Suzuk	i APV			63
		\mathcal{A}				

DAFTAR TABEL

Tabel 3.1	Nilai intensi	tas turbulensi s	epanjang g	aris tengah	pada sek	si uji 35
Tabel 4.1	Koefisien te	kanan minimur	n tanpa kor	ntrol aktif a	liran	39
Tabel 4.2	Koefisien te	kanan minimur	n dengan <i>si</i>	uction (U _{SC}	$V/U_0 = 0.0$	3) 40
Tabel 4.3	Koefisien te	kanan minimur	n dengan <i>si</i>	uction (U _{SC}	$V/U_0 = 0.0$	6) 41
Tabel 4.4	Koefisien te	kanan minimur	n dengan <i>si</i>	uction (U _{SC}	$V/U_0 = 0.0$	9) 42
Tabel 4.5	Koefisien te	kanan minimur	n dengan <i>b</i>	lowing (U _B	$_{\rm L}/{\rm U}_0=0.$	03)43
Tabel 4.6	Koefisien te	kanan minimur	n dengan <i>b</i>	lowing (U _B	$U_{\rm L}/U_0 = 0.$	06)43
Tabel 4.7	Koefisien te	kanan minimur	n dengan <i>b</i>	lowing (U _B	$_{\rm L}/{\rm U}_0=0.$	09)44
Tabel 4.8	Intensitas	Turbulensi	Tanpa	Kontrol	Aktif	Aliran
	$(U_0 = 16.7 \text{ n})$	n/s)				46
Tabel 4.9	Intensitas	Turbulensi	dengan	kontrol	aktif	suction
	$(U_{SC}/U_0 = 0)$.03)				
Tabel 4.10	Intensitas	Turbulensi	dengan	kontrol	aktif	suction
	$(U_{SC}/U_0 = 0)$.06)				
Tabel 4.11	Intensitas	Turbulensi	dengan	kontrol	aktif	suction
	$(\mathbf{U}_{\mathrm{SC}}/\mathbf{U}_0=0)$.09)				
Tabel 4.12	Intensitas	Turbulensi	dengan	kontrol	aktif	blowing
	$(U_{BL}/U_0 = 0)$.03)				50
Tabel 4.13	Intensitas	Turbulensi	dengan	kontrol	aktif	blowing
	$(\mathrm{U}_{\mathrm{BL}}/\mathrm{U}_0=0$.06)				51
Tabel 4.14	Intensitas	Turbulensi	dengan	kontrol	aktif	blowing
	$(U_{BL}/U_0 = 0)$.09)				
Tabel 4.15	Posisi titik j	ousat aliran bal	lik dan <i>sad</i>	<i>ldle point</i> t	anpa kon	trol aktif
	aliran					53
Tabel 4.16	Posisi titik p	usat aliran bali	k dan <i>saddi</i>	le point der	ıgan kont	rol aktif
	aliran <i>suctio</i>	<i>n</i>				55
Tabel 4.17	Posisi titik p	usat aliran bali	k dan <i>saddi</i>	<i>le point</i> der	ıgan kont	rol aktif
	aliran blowi	ng				57
Tabel 4.18	Koefisien	drag kontr	ol aktif	suction	dan	blowing
	$(U_0 = 16.7 \text{ n})$	n/s) hasil pende	katan kom	putasi		58
Tabel 4.19	Koefisien	drag kontr	ol aktif	suction	dan	blowing
	$(U_0 = 16.7 \text{ n})$	n/s)hasil pendel	katan ekspe	rimen		61

DAFTAR NOTASI

1	= panjang model uji (m)
W	= lebar model uii (m)
h	= tinggi model uji (m)
U_0	= kecepatan $upstream$ (m/s)
Usc	= kecepatan control aktif aliran <i>suction</i> (m/s)
UBL	= kecepatan control aktif aliran <i>blowing</i> (m/s)
D	= gava <i>drag</i> aerodinamika (N)
CD	= koefisien <i>drag</i>
A^{-}	= luas penampang daerah yang mengalami geseran (m^2)
Р	= tekanan pada permukaan model uji (Pa)
P_{∞}	= tekanan streamline atau garis arus (Pa)
ρ	= massa jenis fluida (kg/m ³)
U_{∞}	= kecepatan rata-rata di dalam wind tunnel (m/s)
CP	= koefisien tekanan
τ	= tegangan geser
μ	= viskositas fluida
du/dy	= laju perubahan kecepatan
IT	= intensitas turbulensi (%)
u'	= akar rata-rata dari fluktuasi kecepatan (m/s)
u _{avg}	= kecepatan rata-rata (m/s)
ζ	= efisiensi energi kontrol aktif aliran
Pec	= energi yang dihemat melalui pengurangan drag
Pc	= energi yang dibutuhkan untuk menggerakkan kontrol aktif
S_{AC}	= luas penampang kontrol aktif (m ²)
ΔF_x	= pengurangan <i>drag</i>
Κ	= total rugi-rugi tekanan
K _{slot}	= rugi-rugi tekanan pada <i>slot</i> kontrol aktif
K _{sys}	= rugi-rugi tekanan pada aktuator kontrol aktif
U _{AC}	= kecepatan kontrol aktif (m/s)
R _{RL}	= gaya traksi (N)
f _r	= rolling resistance coefficient
W	= berat kendaraan (kg)
V	= kecepatan kendaraan (m/s)
HP_{RRL}	= daya traksi (HP)

DAFTAR LAMPIRAN

- Lampiran A Lampiran B Lampiran C Lampiran D Lampiran E
- : Publikasi karya ilmiah
- : Data komputasi distribusi tekanan
- : Data komputasi intensitas turbulensi
- : Data eksperimen *load cells*
- : Data pengukuran PIV

BAB 1 PENDAHULUAN

1.1. Latar Belakang

Data Badan Pusat Statistik (BPS) Indonesia menyatakan jumlah mobil penumpang di Indonesia terus meningkat dari tahun ke tahun. Jumlah mobil penumpang pada tahun 2000 adalah 3.038.913 unit sedangkan pada tahun 2009 jumlah mobil penumpang di Indonesia meningkat hingga mencapai 10.364.125 unit (Badan Pusat Statistik, 2009). Peningkatan ini timbul karena kebutuhan masyarakat terhadap mobil penumpang semakin besar seiring dengan perubahan gaya hidup masyarakat yang semakin konsumtif. Hal ini membuat para produsen mobil penumpang (seperti : Toyota, Daihatsu, Suzuki, Nissan dan lain-lain) berkompetisi dalam melakukan inovasi terhadap produk mereka untuk menarik hati para konsumen.

Inovasi pada mobil penumpang erat kaitannya dengan kenyamanan, bentuk (*body*) mobil, efisiensi bahan bakar dan ketahanan (umur pakai) mobil itu sendiri. Sementara itu, harga bahan bakar fosil yang terus meningkat dan jumlahnya yang semakin menipis membuat inovasi dalam efisiensi bahan bakar mobil penumpang penting untuk dilakukan. Sebuah produk mobil penumpang dengan efisiensi bahan bakar yang tinggi sangat menjanjikan untuk menarik minat para pembeli dan meningkatkan penjualan. Dalam konteks ini para pembeli dapat menekan biaya operasional mobil tersebut dan secara tidak langsung telah mendukung program ketahanan energi yang telah dicanangkan oleh pemerintah.

Jenis mobil penumpang yang beredar di masyarakat sangat bervariasi, baik model, kapasitas mesin maupun pabrikannya. Namun jenis yang paling banyak diminati para konsumen adalah jenis mobil keluarga (*family van*) atau sering disebut *Multi Purpose Vehicle* (MPV). Mobil jenis ini mampu memuat 5 - 7orang penumpang dan memiliki mesin yang berkapasitas besar dengan bentuk (*body*) yang kurang memperhatikan aspek aerodinamika. Oleh karena itu konsumsi energi atau bahan bakar mobil ini menjadi lebih besar dibandingkan dengan jenis mobil yang lebih kecil dan ramping. Aspek aerodinamika sebuah mobil berkaitan dengan timbulnya gaya *drag* pada mobil tersebut. Dimana besarnya gaya *drag* yang dialami sebanding dengan jumlah konsumsi bahan bakar. Sebagian besar gaya *drag* muncul akibat adanya tekanan rendah dan separasi aliran di bagian belakang mobil. Dari tinjauan dinamika fluida, metode untuk mengurangi hambatan aerodinamika dapat dilakukan dengan memodifikasi aliran secara lokal, memindahkan atau menunda posisi separasi (*separated swirling structures*) serta mengurangi berkembangnya zona resirkulasi di bagian belakang mobil. Metode-metode tersebut dapat dilakukan dengan mengontrol aliran di dekat dinding (*wall*) dengan menggunakan sistem kontrol pasif atau aktif.

Penggunaan sistem kontrol pasif akan efektif jika zona resirkulasi tepat berada di bagian belakang mobil (rear window), sehingga dengan menggunakan perangkat seperti spoiler atau fin dapat mengubah geometri aliran secara local (Gad-El-Hak, M., 1996). Meskipun relatif lebih mudah dan murah, strategi kontrol pasif ini memiliki efek yang minimal dalam memodifikasi aliran disekeliling body mobil yang bersifat turbulen. Sementara itu, kombinasi kontrol aktif tiupan dan hisapan yang diterapkan pada bagian belakang model mobil dapat meningkatkan tekanan statis hingga 50% dan mengurangi drag sampai 10% (Gerop, D. & Odhenthal, H.J., 2000). Penerapan kontrol aktif tiupan pada model mobil (Ahmed body) menghasilkan penurunan drag hingga 6%, konsumsi bahan bakar menurun hingga 0.4 liter per-100 kilometer pada kecepatan mobil 130 km/jam, dan menurut siklus NEDC emisi berkurang hingga 2.3 gram per-kilometer untuk median vehicle seperti Renault Megane (Kourta, A. & Gillieron, P., 2009). Dalam konteks di atas, teknik kontrol aktif aliran dengan sistem aktuator fluida seperti tiupan (blowing) dan hisapan (suction) sangat penting untuk dikembangkan sebagai pengganti sistem kontrol pasif yang sudah ada dengan tujuan memaksimalkan efisiensi bahan bakar mobil penumpang.

1.2. Perumusan Masalah

Riset-riset terkini dalam bidang otomotif (mobil) erat kaitannya dengan efisiensi bahan bakar. Oleh karena itu sebuah produk mobil dengan efisiensi bahan bakar yang tinggi sangat menjanjikan untuk menarik minat para pembeli dan meningkatkan penjualan. Salah satu cara untuk meningkatkan efisiensi bahan bakar sebuah mobil adalah dengan mereduksi besarnya gaya *drag* aerodinamika yang terjadi pada mobil saat melaju.

Menurut tinjauan dinamika fluida, untuk mengurangi hambatan aerodinamika sebuah objek, metode yang dapat dilakukan adalah dengan memodifikasi aliran secara lokal, memindahkan atau menunda posisi separasi atau mengurangi berkembangnya zona resirkulasi di bagian belakang dari struktur pusaran yang terseparasi (*separated swirling structures*). Metode-metode tersebut dapat dilakukan dengan teknik kontrol aktif aliran, seperti hisapan (*suction*) dan tiupan (*blowing*). Oleh karena itu kajian tentang pengaruh penerapan kontrol aktif aliran terhadap fenomena fisik yang berhubungan dengan timbulnya gaya *drag* aerodinamika penting untuk dilakukan.

1.3. Tujuan Penelitian

Penelitian ini bertujuan untuk mengetahui pengaruh penerapan kontrol aktif aliran berupa *suction* dan *blowing* terhadap distribusi tekanan, medan aliran, intensitas turbulensi dan koefisien *drag* pada *van model*. Hasil pengurangan *drag* aerodinamika yang didapat akan dikaitkan dengan efisiensi energi sistem kontrol aktif itu sendiri dan dikaitkan juga dengan peluang pengurangan emisi dan konsumsi bahan bakar pada kendaraan keluarga sesungguhnya (Suzuki APV).

1.4. Batasan Masalah

Dalam penelitian ini diambil batasan masalah berdasarkan kondisi sebagai berikut :

- a. Fluida yang digunakan adalah udara dengan kerapatan 1.225 kg/m³ dan viskositas 1.7894x10⁻⁵ kg/m-s dengan model turbulensi *k-epsilon standard*.
- b. Udara dianggap fluida tak mampu mampat dan mengalir secara seragam (*incompresible flow*).
- c. Model mobil keluarga yang digunakan dalam komputasi dan eksperimen adalah Van Model (Reversed Ahmed Body) yang memiliki rasio dimensi 1 : ¹/₄ dengan Ahmed Body versi orisinal. Dengan

geometri panjang (l) = 0,261 m, lebar (w) = 0.09725 m dan tinggi (h) = 0.072 m. Kemiringan sudut pada bagian depan (*slant angle*) terhadap sumbu horizontal adalah 35° .

d. Penelitian dilakukan pada kecepatan *upstream* $(U_0) = 16.7$ m/s atau 60 km/jam. Kontrol aktif aliran yang digunakan adalah hisapan (*suction*) dan tiupan (*blowing*) dengan variasi perbandingan kecepatan masing-masing kontrol aktif (U_{SC} dan U_{BL}) dengan kecepatan *upstream* (U₀) adalah 0.03, 0.06, dan 0.09.

1.5. Sistematika Penulisan

Urutan dalam penulisan laporan ini adalah sebagai berikut :

BAB 1: PENDAHULUAN

Pada bab ini dipaparkan tentang inovasi dalam bidang aerodinamika yang sedang berkembang dalam industri otomotif, khususnya mobil atau kendaraan keluarga yang berkaitan dengan peningkatan efisiensi bahan bakar dan pengurangan emisi.

BAB 2 : TINJAUAN PUSTAKA

Pada bab ini diuraikan tentang studi literatur (jurnal, prosiding, buku, dan lain-lain) dari beberapa referensi yang berkaitan dengan penerapan kontrol pasif dan kontrol aktif aliran sebagai metode untuk pengurangan gaya *drag* aerodinamika dalam aplikasi otomotif.

BAB 3 : METODOLOGI PENELITIAN

Pada bab ini dijelaskan mengenai langkah-langkah pelaksanaan penelitian yang dilakukan dengan pendekatan komputasi dan eksperimen. Pendekatan komputasi menggunakan *software* CFD FLUENT 6.3.26, sedangkan pendekatan eksperimen memanfaatkan unit *load cells* dan *particles image velocimetry*. Model yang diuji adalah model kendaraan keluarga yang disebut juga dengan *van model* atau *reversed Ahmed body*. Prosedur pengambilan data difokuskan pada bagian belakang model uji, sedangkan parameter yang diamati adalah koefisien tekanan, intensitas turbulensi, dinamika medan aliran, gaya *drag* aerodinamika serta hubungannya dengan efisiensi energi dan peluang peningkatan efisiensi bahan bakar dan pengurangan emisi pada kendaraan keluarga sesungguhnya.

BAB 4 : HASIL DAN PEMBAHASAN

Bab ini berisi data-data hasil penelitian dan analisanya, kemudian dibandingkan dengan hasil dari studi literatur.

BAB 5 : PENUTUP

Bab ini berisikan kesimpulan akhir berdasarkan hasil dan pembahasan dari keseluruhan penelitian.

BAB 2 TINJAUAN PUSTAKA

Peningkatan jumlah kendaraan bermotor yang sangat signifikan merupakan salah satu penyebab menipisnya ketersediaan bahan bakar fosil sedangkan harga bahan bakar tersebut cenderung naik. Dalam menyikapi hal ini para produsen mobil keluarga (seperti : Toyota, Daihatsu, Suzuki, Nissan dan lain-lain) berkompetisi dalam melakukan inovasi pada efisiensi bahan bakar mobil keluarga yang diproduksi. Sebuah produk mobil keluarga dengan efisiensi bahan bakar yang tinggi sangat menjanjikan untuk menarik minat para pembeli dan meningkatkan penjualan. Berbagai terobosan telah dan sedang dilakukan, misalnya dengan mengurangi berat kendaraan, mengurangi gaya gesek roda (*rolling friction*) dan mengurangi *drag* aerodinamika.

2.1. Aerodinamika Kendaraan

Aspek aerodinamika sebuah kendaraan menjadi salah satu parameter yang sangat penting dalam desain otomotif, karena berkaitan dengan timbulnya gaya *drag* pada kendaraan tersebut dimana besaran gaya *drag* yang dialami akan mempengaruhi jumlah konsumsi bahan bakar dan stabilitas *handling* kendaraan saat melaju. Gaya *drag* (D), dirumuskan sebagai hasil kali koefisien *drag*, tekanan dinamis aliran bebas dan luas karakteristik yang dapat dituliskan dalam bentuk persamaan sebagai berikut:

$$D = 0.5 * (C_D. \ \rho. U_0^2.A)$$
(2.1)

Dimana :

 $C_D = \text{koefisien } drag$ $0.5 * \rho. U_0^2 = \text{tekanan dinamis arus bebas}$ A = luas karakteristik (luas daerah yang mengalami geseran)

Drag adalah besarnya gaya yang bergerak diatas sebuah objek yang memiliki posisi sejajar dengan aliran bebas. Gaya *drag* pada suatu benda yang bergerak melalui suatu fluida diakibatkan oleh tekanan dan tegangan geser permukaan benda tersebut. *Drag* gesekan (*friction drag*), disebabkan oleh tegangan geser permukaan benda yang bersentuhan dengan fluida. Sedangkan *drag* tekanan (*pressure drag*), disebabkan oleh tekanan yang bekerja pada sebuah benda yang bergerak melalui sebuah fluida. *Pressure drag* besarannya sangat tergantung pada bentuk dari benda itu sendiri sehingga *drag* tekanan sering disebut dengan *from drag*.

Drag tekanan (*pressure drag*) adalah bentuk paling umum yang digunakan untuk mendefinisikan *drag* pada benda yang disebabkan oleh resistansi fluida untuk mengubah aliran untuk mengisi ruang di belakang benda, sehingga menimbulkan perbedaan tekanan antara aliran *upstream* dan *downstream*. Ini menyebabkan tekanan total pada bagian belakang lebih rendah dari bagian depan, sehingga memunculkan tarikan ke arah belakang. Untuk menyatakan nilai *drag* tekanan, parameter tidak berdimensi C_P secara umum digunakan yaitu :

$$C_P = \frac{(P - P_{\infty})}{(0.5 * \rho U_{\infty}^2)}$$

(2.2)

Dimana :

P= tekanan pada permukaan model uji (Pa) P_{∞} = tekanan streamline atau garis arus (Pa) ρ = massa jenis fluida (kg/m³) U_{∞} = kecepatan rata-rata di dalam wind tunnel (m/s)

Pada aplikasi kendaraan, penyebab utama *drag* aerodinamika adalah distribusi tekanan, terutama pada jendela belakang dan permukaan kendaraan. Kedua lokasi tersebut berkontribusi sebesar 90% dari total *drag* aerodinamika dan 80%-nya terjadi di bagian belakang mobil (Kourta, A. & Gillieron, P., 2009).

Penelitian tentang *drag* aerodinamika pada kendaraan terus dilakukan dari tahun ke tahun untuk lebih memahami fenomena fisik aliran disekitar kendaraan. Hasil yang didapat akan digunakan untuk mengkaji solusi dan melakukan inovasi dalam pengurangan *drag* aerodinamika kendaraan, dimana hal ini dapat meningkatkan efisiensi bahan bakar kendaraan itu sendiri. Salah satu inovasi yang dilakukan adalah pada desain bentuk kendaraan yang terus mengalami perubahan hingga saat ini. Gb. 2.1 menunjukkan penurunan nilai koefisien *drag* untuk mobil

7

seiring dengan kemajuan penerapan teknologi aerodinamika pada desain bentuk kendaraan.

Gambar 2.1 Perubahan bentuk kendaraan untuk mengurangi gaya aerodinamikanya dan meningkatkan efisiensi konsumsi bahan bakar

(Munson, B., 2002)

2.2. Dinamika Aliran di sekitar Bodi Kendaraan

Gb. 2.2 menunjukkan dinamika aliran (*stream line*) disekitar kendaraan yang merupakan aliran yang kompleks, karena interaksi yang nonlinear antara aliran udara dengan permukaan kendaraan. Aliran disekitar kendaraan juga sangat tergantung pada bilangan *Reynolds* dan bentuk (*body*) kendaraan itu sendiri. Dimana besarnya bilangan *Reynolds* sebuah kendaraan ditentukan oleh panjang, kinematik viskositas dan kecepatan kendaraan tersebut.

Ketika kendaraan melaju pada suatu kecepatan, viskositas fluida menyebabkan udara cenderung menempel pada permukaan kendaraan dan membentuk lapisan batas (*boundary layer*). Sedangkan aliran yang ada di luar lapisan batas disebut dengan *invicid flow*, atau aliran fluida yang tidak mengalami gesekan, konduktifitas panas, atau diffusi massa (Anderson, J.D., 2001). Aliran udara disekitar kendaraan menyebabkan tekanan ke dalam lapisan batas. Ketika aliran udara mencapai bagian belakang kendaraan, aliran mengalami separasi. Hal ini menyebabkan terjadinya daerah turbulen yang besar dengan tekanan yang rendah di bagian belakang kendaraan dan disebut sengan olakan (*wake*). Olakan ini menyebabkan terjadinya *pressure drag* yang dapat mengganggu performa kendaraan saat melaju.

Gambar 2.2 Pola aliran udara disekitar kendaraan (www.carbodydesign.com)

Aliran pada dinding kendaraan yang kompleks ini dimodelkan dalam bentuk persamaan matematika untuk meningkatkan pemahaman tentang visualisasi aliran pada bagian belakang kendaraan (Gillieron, P. & Chometon, F., 1999). Hasilnya kemudian digunakan untuk mengidentifikasi solusi dalam mengurangi separasi aliran dan beda tekanan yang menyebabkan gaya *drag* aerodinamika. Gaya *drag* pada aplikasi otomotif penting untuk diminimalisir karena dapat menghambat laju kendaraan di jalan raya. Gaya yang menghambat saat melaju biasanya disebut dengan "*Road Load*" atau beban (gaya traksi).

2.2.1. Lapisan Batas (Boundary Layer)

Konsep lapisan batas dikembangkan oleh seorang ilmuwan dari Universitas Gottingen, yakni Ludwig Prandtl (1874-1953). Lapisan batas muncul pada permukaan benda karena sifat viskositas dari fluida yang cenderung menempel pada permukaan. Lapisan tepat di atas permukaan yang bersifat stasioner menyebabkan aliran fluida di atasnya melambat karena interaksi berupa tumbukan antar molekul. Kecepatan pada daerah lapisan batas meningkat secara perlahan hingga mencapai kecepatan aliran bebas (*freestream*). Di luar daerah lapisan batas, fluida dengan kecepatan aliran bebas dapat dimodelkan sebagai fluida *inviscid*.

Gb. 2.3 menunjukkan lapisan batas yang terbentuk pada sebuah pelat datar akibat aliran fluida. Aliran seragam fluida tak mampu mampat mendekati permukaan sebuah benda dengan kecepatan arus bebas, U_{∞} , maka ketika fluida

telah mencapai tepi sebelah depan, tegangan geser yang besar terbentuk dekat permukaan benda karena partikel-partikel fluida yang datang terpaksa berhenti dan partikel-partikel yang cukup dekat dan normal terhadap benda dihambat oleh gesekan viskos. Daerah tempat aliran mengalami hambatan ini disebut lapisan batas dan ketebalannya dinyatakan dengan tebal lapisan batas, δ . Lapisan batas menebal dengan arah yang sama dengan arah aliran, akibatnya perubahan kecepatan dari nol di permukaan pelat hingga *free stream*, pada jarak semakin jauh menjadi semakin besar.

Laju perubahan kecepatan tadi menentukan gradient kecepatan di permukaan pelat dan juga tegangan gesernya. Tegangan geser untuk lapisan batas laminar dinyatakan dalam pers. 2.3.

$$\tau = \mu \, (\frac{du}{dy})_{(y=0)} \tag{2.3}$$

Dimana harga ini bervariasi terhadap jarak disepanjang permukaan karena profil kecepatan juga bervariasi terhadap jarak. Saat lapisan batas laminar mulai menebal, akan terjadi ketidakmantapan sehingga akan terbentuk lapisan turbulen. Peralihan dari lapisan batas laminar ke lapisan batas turbulen tergantung pada kekasaran permukaan dan tingkat turbulensi aliran bebas.

Gambar 2.3 Lapisan batas yang terbentuk disepanjang pelat datar (www.cortana.com)

2.2.2. Separasi Aliran

Separasi aliran adalah sebuah kondisi dimana aliran udara yang mengalir di sepanjang permukaan benda tidak mampu lagi menempel pada permukaan

Analisa pengaruh..., Sabar Pangijutan Simanungkalit, FT UI, 2012.

tersebut dan mengakibatkan terbentuknya aliran balik di sekitar benda. Aliran yang sedang bergerak maju secara teratur akan terpecah saat terjadinya separasi dan mengakibatkan penurunan distribusi tekanan dan menimbulkan gaya *drag* (Anderson, J.D., 2001). Pada aplikasi kendaraan, daerah bertekanan rendah ini menyebabkan perbedaan tekanan antara bagian depan dan bagian belakang model kendaraan, yang merupakan kontributor utama dari keseluruhan *drag*.

Secara teoritis separasi aliran merupakan bentuk efek viskos dari fluida. Seperti yang ditunjukkan dalam Gb. 2.4, efek viskos menyebabkan fluida pada titik 'k' di permukaan silinder kehilangan energi kinetik, sehingga tidak memilki momentum yang cukup untuk mengalir dalam lapisan batas menuju titik 'n'. Titik 'l' adalah titik dimana separasi aliran terjadi, sedangkan diluar titik 'l' (dari 1 menuju n) terjadi aliran balik karena perbedaan kecepatan yang tinggi antara daerah olakan dengan lapisan batas (Munson, B., 2002).

Gambar 2.4 Separasi aliran yang terjadi pada silinder (Munson, B., 2002)

Pada aplikasi kendaraan, separasi aliran yang terjadi sangat kompleks. Separasi aliran pada gril radiator, bagian bawah *body*, sekitar roda yang berputar, dinding bagian samping, tepi atas dan samping kaca belakang, memberikan pengaruh yang signifikan terhadap kompleksitas aliran tersebut. Oleh karena itu, pengembangan desain kendaraaan yang mampu meminimalisir separasi aliran yang terjadi sangat diperlukan.

2.2.3. Intensitas Turbulensi

Turbulensi dapat disebut sebagai aliran fluida yang berfluktuasi dan merupakan sifat fluida yang sangat penting, khususnya yang berkaitan dengan aliran yang terjadi pada kendaraan. Turbulensi juga dapat dinyatakan dengan intensitas turbulensi (IT) yang didefenisikan sebagai perbandingan antara akar rata-rata dari fluktuasi kecepatan, u' terhadap kecepatan rata-rata, u_{avg} dan dinyatakan dalam pers. 2.4.

$$IT = \frac{u'}{u_{avg}}$$
(2.4)

2.3. Model Kendaraan Ahmed body

Penggunaan model geometris merupakan cara yang efisien dalam menggambarkan fenomena fisik aliran yang kompleks disekitar kendaraan. Salah satu model geometris kendaraan yang sering digunakan adalah model *Ahmed body* (Gb. 2.5). Dengan menggunakan model ini, sangat memungkinkan untuk mengetahui fenomena fisik aliran turbulen disekitar kendaraan. Model *Ahmed body* paling umum digunakan untuk kendaraan jenis *bluff body*, yaitu model kendaraan yang memilki bidang *frontal* di bagian depan dan tidak ada permukaan miring yang cukup untuk mentransfer energi tekanan menjadi energi kinetik. Contoh kendaraan dengan model *bluff* adalah bus, kereta api, kendaraan angkut barang, dan juga mobil keluarga.

Gambar 2.5 Model kendaraan Ahmed body

Gb. 2.6 menunjukkan separasi aliran yang terjadi di ujung atap hingga di bagian bawah jendela belakang geometri *Ahmed body*. Aliran yang terpisah terdiri dari dua buah aliran berputar yang berlawanan dan konvergen atau menuju dua pusat separasi (Ahmed S.R., G. Ramm & G. Faltin ,1984). Aliran ini dihasilkan

dari interaksi antara dua pusat separasi dengan aliran masuk serta aliran pada permukaan kendaraan. Aliran pada bagian samping geometri terpisah disisi jendela belakang dan menimbulkan dua struktur pusaran longitudinal yang berlawanan arah putarannya. Pada permukaan bagian belakang, aliran terpisah pada pinggir bawah bagian belakang kendaraan dan menyebabkan terjadinya struktur pusaran yang berinteraksi dengan aliran yang terpisah di jendela belakang (Gb. 2.7).

Gambar 2.7. Karakterisasi Aliran *Ahmed body* (Gillieron, P. & Chometon, F., 1999)

Salah satu penelitian secara eksperimental tentang olakan pada *Ahmed body*, menggunakan model dengan perbandingan 3/20 dari Ahmed model orisinal dengan panjang 156.6 mm (Uruba, V. & Hladik, O., 2009). Kecepatan aliran dan

bilangan Reynolds masing-masing 6.5 m/s dan 54,000. Ahmed body yang dianalisis mempunyai sudut kemiringan 25° dan 35° pada bagian belakang terhadap bidang horizontal. Model uji ditempatkan pada seksi uji terbuka (*open test section*) dengan ukuran (250 x 250) mm². Pengukuran dilakukan dengan menggunakan metode PIV (*particles image velocimetry*). Hasil yang diperoleh menunjukkan bahwa pada kasus 25°, *down-flow* terlihat sangat kuat di sekitar bidang simetri sehingga pasangan *contra-rotating vortex* lemah, sedangkan pada kasus 35° terlihat *vortex* sangat kuat.

Sementara itu penelitian secara eksperimental tentang aerodinamika kendaraan jenis *bluff body* dilakukan dengan mengkombinasikan PIV dan *oil visualization* untuk memahami secara mendalam perilaku aliran di sekitar *Ahmed body* dan menginterpretasi secara fisik evolusi dari koefisien *drag* (Conan, B., Anthoine, J., & Planquart, P., 2011). Model *Ahmed body* yang digunakan pada pengujian ini diberikan variasi sudut kemiringan pada bagian belakang. Adapun sudut kemiringan yang digunakan adalah 10°, 20 °, 25 °, 30 ° dan 40 °. Hasil koefisien *drag* yang diperoleh jika dibandingkan dengan hasil dari Ahmed model orisinal menunjukkan bahwa untuk sudut 10° s/d 20°, koefisien *drag* tidak mengalami perubahan yang banyak, hampir konstan. Untuk 20° s/d 30°, ada perbedaan sekitar 50% dimana koefisien *drag* yang diperoleh dari 0.27 ke 0.40 yang terjadi pada sudut 30°. Dan setelah sudut 30°, koefisien *drag* yang diperoleh hampir konstan.

2.4. Modus Kontrol Aliran

Pengembangan kendaraan saat ini membutuhkan latar belakang aerodinamika yang kuat untuk meningkatkan kontrol aliran baik dengan alat kontrol pasif maupun aktif. Secara umum, teknik kontrol aliran yang telah dikembangkan dapat dibedakan menjadi 4 berdasarkan konfigurasi dan tujuannya (Aider, J. L., Beaudoin, F. F. & Wesfreid, J. E., 2009), yaitu :

a. Melakukan kontrol terhadap lapisan geser (*shear layer*) pada titik separasi. Ini akan lebih mudah jika lokasi dari titik separasi terdefinisi dengan jelas, seperti pada kasus aliran *backward-facing step* atau *Ahmed body*.

- Melakukan kontrol terhadap lapisan batas pada *upstream* dari titik separasi, sehingga dapat dimodifikasi lokasi dari titik separasi dan sifat dari lapisan geser.
- c. Melakukan kontrol aliran dengan aktuasi sepanjang dinding downstream dimana separasi terjadi, seperti dengan tiupan, hisapan, atau synthetic jet. Teknik ini bisa menjadi strategi kontrol yang efisien, tetapi harus disesuaikan dengan aliran upstream.
- d. Melakukan kontrol aliran dengan aktuasi pada *region downstream* dimana separasi terjadi. Sebagai contoh, hal ini telah dibuktikan baik secara teoritis dan eksperimental bahwa aliran pada *near wake* silinder dengan diameter 'd' dapat dimodifikasi dengan menggunakan silinder dengan diameter yang lebih kecil.

Strategi kontrol aliran untuk mengurangi hambatan aerodinamika sebuah kendaraan adalah upaya memodifikasi timbulnya separasi aliran di lapisan batas dari permukaan kendaraan yang berakibat pada terbentuknya aliran balik di sekitar kendaraan. Oleh karena itu, pada banyak aplikasi aerodinamika sangat diperlukan pengendalian terhadap aliran pada lapisan batas untuk mencegah atau menunda terjadinya separasi sejauh mungkin.

2.4.1. Kontrol Pasif Aliran

Sistem kontrol pasif dilakukan dengan menambahkan hambatan geometri di sekitar permukaan, biasanya di sekitar atap kendaraan. Salah satu contohnya adalah *Generator Vortex* (VG) yang merupakan hambatan berbentuk segitiga atau persegi dan diposisikan tepat sebelum baris separasi. Pengurangan *drag* sekitar 43% diperoleh pada profil sayap (Khalighi et al., 2001). Untuk kendaraan bermotor, teknik ini telah diuji oleh produsen otomotif seperti Renault. Renault telah menerapkan teknik ini pada produk mereka *Logan Darcia* (Gb. 2.8), dan diperoleh pengurangan *drag* sampai dengan 8% (Kourta, A. & Gillieron, P., 2009).

Gambar 2.8 Vortex Generator pada Logan Garcia (Kourta, A. & Gillieron, P., 2009)

Penelitian secara eksperimental didalam *wind tunnel* menggunakan model *Ahmed body* dengan pelat splitter vertikal yang dipasang dibagian depan atau belakang model, menghasilkan pengurangan *drag* yang signifikan (Kourta, A. & Gillieron, P., 2009). Olakan yang timbul dapat dikurangi dan didapatkan pengurangan gaya *drag* sebesar 11.6%. Gb. 2.9 merupakan model *Ahmed body* yang digunakan dan pelat datar ditempatkan 0.7H dari bagian depan model, sedangkan luas penampang dari pelat *splitter* adalah 0.9H*0.85L. Dimana H merepresentasikan tinggi model dan L adalah lebar model.

Gambar 2.9 Model *Ahmed body* dengan pelat *splitter* vertical (Kourta, A. & Gillieron, P., 2009)

Sementara itu, penurunan yang signifikan dapat juga diperoleh dengan menggunakan longitudinal pelat *splitter* yang ditempatkan sebagai perpanjangan dari dasar *body model* (Gb. 2.10). Tujuannya adalah menciptakan kecepatan aliran

yang rendah pada *cavity* (rongga) untuk meningkatkan tekanan statis pada permukaan model. Dalam hal ini, diperoleh pengurangan *drag* hingga 22% pada bagian belakang *Ahmed body* (Kourta, A. & Gillieron, P., 2009). Sementara itu dengan metode yang sama diperoleh pengurangan *drag* hingga 20% (Uruba, V. & Hladik, O., 2009).

Namun tanpa adanya pemberian energi tambahan, didapati banyak keterbatasan dalam mengendalikan separasi aliran tersebut untuk mencapai tingkat pengurangan *drag* yang lebih besar. Melihat karakter kontrol pasif sebagai suatu strategi kontrol aliran, beberapa peneliti cenderung mengatakan strategi ini sebagai manajemen aliran (Fieldler, H. E. & Fernholz, H. H., 1990).

Gambar 2.10 Model Ahmed body dengan pelat splitter longitudinal (Khalighi et al., 2001)

2.4.2. Kontrol Aktif Aliran

Strategi kontrol aktif melibatkan penambahan energi untuk mengontrol separasi aliran. Kontrol aktif berfungi dengan menggunakan aktuator yang membutuhkan daya dan umumnya diambil dari generator pada kendaraan. Bagian luar sistem ini meliputi permukaan yang bergerak, lubang atau *slot* yang ditempatkan pada permukaan kendaraan dimana aliran harus dikontrol. Penggunaannya membutuhkan mekanik, elektromagnetik, listrik, atau sistem akustik piezoelektrik yang ditempatkan di bagian berongga pada kendaraan. Bobot dan dimensinya harus minimal untuk menghindari pemakaian luasan yang berlebihan. Beberapa solusi kontrol telah diidentifikasi, diuji dan dianalisis untuk aeronautika.

Ketika aliran fluida melewati permukaan yang memiliki kelengkungan konveks, akan terjadi perubahan distribusi tekanan yang mendorong terjadinya separasi aliran di bagian hilir setelah melalui permukaan ini akibat tekanan balik (*adverse pressure gradient*). Secara konseptual, lapisan batas yang mengalami retardasi ini mungkin diberikan energi tambahan atau dihilangkan dan digantikan dengan fluida berenergi tinggi sehingga memungkinkan aliran terus bergerak melawan gradien tekanan balik tanpa mengalami separasi. Konsep pemberian energi dapat dilakukan dengan tiga mekanisme yaitu : (1) tiupan (*blowing*), (2) hisapan (*suction*), dan (3) *jet synthetic (net zero mass flux intermittent blowing and suction*). Konsep dasar tersebut diilustrasikan pada Gb. 2.11.

Gambar 2.11 Konsep dasar kontrol aktif separasi aliran

Mekanisme kontrol dengan tiupan (*blowing*) secara praktis dapat direalisasikan dengan mudah melalui penggunaan perangkat hembus (*blowing devices*) seperti *blower* atau kompresor, sementara mekanisme hisapan (*suction*) dapat dilakukan dengan menggunakan perangkat hisap (*vacuum devices*) seperti pompa vakum. Secara teoritis modus tiupan atau hisapan dapat dilakukan secara kontinu maupun pulsatif/periodik yang akan memodifikasi lapisan batas dengan karakteristiknya masing-masing.

Salah satu penelitian kontrol aktif dengan hisapan digunakan untuk mengendalikan pemisahan aliran pada bagian belakang *Ahmed body* dengan kemiringan 25° . Hasil yang diperoleh adalah pengurangan *drag* hingga 18% untuk kecepatan hisapan Vs = 0.6 kali *free stream velocity* (Rouméas M., Gilliéron P., & Kourta A., 2005; 2008). Sementara itu, penggunaan hisapan juga dapat

mengurangi *drag* aerodinamika yang disebabkan oleh pusaran *longitudinal vortices* yang muncul di sisi kiri dan kanan kaca depan. Dalam kasus ini diperoleh pengurangan *drag* mendekati 8% dengan metode numerik dan eksperimental pada geometri kendaraan (Lehugeur, B. & Gilliéron, P., 2006).

Pengurangan *drag* juga dapat diperoleh dengan menggunakan teknik tiupan secara kontinyu. Dalam hal ini, tiupan digunakan untuk menggeser atau mengeliminasi pusaran longitudinal *vortice* di bagian belakang dengan tujuan menaikkan tekanan statik yang kemudian dapat mengurangi gaya *drag* aerodinamika. Penerapan kontrol aktif tiupan pada model kendaraan *Ahmed body* menghasilkan penurunan *drag* hingga 6%. Jika hal ini disimulasikan pada median *vehicle* seperti Renault Megane, konsumsi bahan bakar menurun hingga 0.4 liter per-100 kilometer dengan kecepatan mobil 130 km/jam, dan menurut siklus NEDC, emisi berkurang hingga 2.3 gram per-kilometer (Kourta, A. & Gillieron, P., 2009).

2.5. Efisiensi Energi Kontrol Aktif Aliran

Aplikasi kontrol aktif aliran memanfaatkan sumber energi eksternal, sehingga perlu diperhitungkan efisiensi sistem kontrol aktif itu sendiri. Sistem akan efisien jika energi yang dibutuhkan untuk menggerakkan kontrol aktif lebih kecil dibandingkan dengan energi yang dihemat (*saving*) melalui pengurangan *drag* aerodinamika. Besaran efisiensi sistem kontrol aktif (ζ) dinyatakan pada pers. (2.5) (Roumeas, M., Gillieron, P. & Kourta, A., 2009).

$$\zeta = P_{ec}/P_c \tag{2.5}$$

Dimana :

$$P_{ec} = \Delta F_x. U_0 \tag{2.6}$$

$$P_c = K * 0.5 * (\rho . U_{AC}^3 . S_{AC})$$
(2.7)

 P_{ec} dan P_c adalah energi yang dihemat melalui pengurangan *drag* dan energi yang dibutuhkan untuk menggerakkan kontrol aktif. S_{AC} adalah luas penampang kontrol aktif dan ΔF_x adalah pengurangan *drag* yang dihasilkan. U₀ adalah kecepatan *upstream* dan U_{AC} adalah kecepatan kontrol aktif. Sedangkan K adalah total rugi-rugi tekanan, yang merupakan penjumlahan dari rugi-rugi tekanan pada slot kontrol aktif (K_{slot}) dengan rugi-rugi tekanan pada bagian hulu (sumber penggerak) kontrol aktif (K_{sys}). Untuk aliran yang kontinyu $K_{slot} = 1.5$ dan untuk $K_{sys} = 3.5$, sehingga total rugi-rugi tekanan sistem = 5 (Roumeas, M., Gillieron, P. & Kourta, A., 2009).

2.6. Hubungan Efisiensi Bahan Bakar dengan Pengurangan *Drag* Aerodinamika

Besarnya gaya yang menghambat sebuah kendaraan saat melaju di jalan raya disebut sebagai *road loads* atau gaya traksi. Komponen utama dari gaya traksi adalah *rolling resistance* dan gaya aerodinamika, yang dinyatakan dalam pers. (2.8) dan besarnya daya traksi (*horse* power) dinyatakan dalam pers. (2.9) (Gillespie, 1992).

 $R_{RL} = f_r W + \frac{1}{2} \rho V^2 C_D A$

(2.8)

Dimana :

 $f_r = rolling \ resistance \ coefficient \ (untuk kendaraan keluarga f_r = 0.15)$

W = berat kendaraan (kg)

V =kecepatan kendaraan (m/s)

 C_D = koefisien *drag*

A = luas penampang (m^2)

 $HP_{RRL} = R_{RL} (V/550)$

(2.9)

Gb.2.12 menyatakan grafik hubungan yang linear antara energi traksi dengan konsumsi bahan bakar berdasarkan beberapa pengujian *driving cycle*. Meskipun dalam uji *driving cycle* terdiri dari beberapa proses dengan medan dan kecepatan yang berbeda, namun grafik tersebut dapat menegaskan relevansi dari asumsi yang dibuat dan memvalidasi evaluasi energi traksi terhadap konsumsi bahan bakar (*Oak Ridge National Laboratory*, 2011).

Gambar 2.12 Hubungan antara energi traksi dengan konsumsi bahan bakar

(Oak Ridge National Laboratory, 2011)

BAB 3 METODOLOGI PENELITIAN

Penelitian ini adalah sebuah studi komprehensif tentang pengaruh kontrol aktif aliran berupa hisapan (*suction*) dan tiupan (*blowing*) terhadap pengurangan gaya *drag* aerodinamika sebuah model mobil keluarga (*van model*). Penelitian dilakukan di Laboratorium Mekanika Fluida - Departemen Teknik Mesin, Fakultas Teknik Universitas Indonesia dengan pendekatan komputasi dan eksperimen. Kedua pendekatan tersebut dilakukan dengan kondisi dan dimensi model uji yang sama, dan tahapan-tahapannya ditunjukkan dalam Gb. 3.1.

Gambar 3.1 Diagram Alir Penelitian

Pengurangan gaya *drag* didapatkan dari selisih antara gaya *drag* yang didapatkan dari *van model* tanpa kontrol aktif aliran dengan gaya *drag* yang

Universitas Indonesia

didapatkan dari *van model* yang dilengkapi dengan kontrol aktif aliran. Selanjutnya pengurangan gaya *drag* aerodinamika pada model uji tersebut akan dikaitkan dengan perbandingan antara energi yang dihemat dengan energi yang digunakan untuk menggerakkan kontrol aktif tersebut (efisiensi energi). Kemudian akan dilihat juga peluang efisiensi konsumsi bahan bakar dan pengurangan emisi jika pengurangan gaya *drag* aerodinamika tersebut diaplikasikan pada mobil Suzuki APV sebagai salah satu kendaraan keluarga yang banyak digunakan di Indonesia.

Pendekatan komputasi menggunakan perangkat lunak berbasis metoda volume hingga (*Finite Volume Method*), yakni FLUENT 6.3.26 yang berfungsi sebagai *solver* dan *postprocessing*. Sedangkan untuk *Grid Generation* digunakan perangkat lunak GAMBIT 2.4.6. Untuk mendapatkan hasil-hasil yang *valid* dan *reliable* dalam pendekatan komputasi, maka digunakan teknik simulasi aliran tiga dimensi (3-D) yang memiliki tingkat kepresisian yang tinggi dengan jumlah *cells* mencapai 1,7 juta. Sementara itu, validasi hasil pendekatan komputasi dilakukan dengan pendekatan eksperimen, yang dilaksanakan dengan kondisi dan dimensi uji yang sama. Pendekatan eksperimen dilakukan dengan memanfaatkan fasilitas terowongan angin sub-sonik (*sub-sonic wind tunnel*) *armfield C-200* yang dilengkapi dengan perangkat penunjang seperti :

- 1. *Load cells*, berfungsi untuk mengukur besarnya gaya *drag* yang dialami oleh *van model*,
- 2. *Particle image velocimetry* (PIV), berfungsi untuk visualisasi pola aliran dibagian belakang *van model*

Penelitian dilakukan pada kecepatan *upstream* $(U_0) = 16.7$ m/s atau 60 km/jam, dimana kecepatan tersebut merupakan batas minimum kecepatan kendaraan di jalan tol (Pasal 21 UU No. 22, 2009). Kontrol aktif aliran yang digunakan adalah hisapan (*suction*) dan tiupan (*blowing*) dengan variasi perbandingan kecepatan masing-masing kontrol aktif (U_{SC} dan U_{BL}) dengan kecepatan upstream (U₀) adalah 0.03, 0.06, dan 0.09. Penelitian difokuskan kepada beberapa parameter yang mempengaruhi performa aerodinamika pada sebuah kendaraan, yakni distribusi tekanan, intensitas turbulensi, medan aliran

Universitas Indonesia

dan gaya *drag* aerodinamika. Dengan penambahan kontrol aktif berupa hisapan (*suction*) dan tiupan (*blowing*) diharapkan dapat mengurangi gaya *drag* aerodinamika yang terjadi pada *van model*.

3.1. Model Uji (Van Model)

Gb. 3.2 menunjukkan model uji yang digunakan dalam penelitian ini. Model uji tersebut merupakan model sebuah mobil keluarga (*Van model*) yang dinamakan juga sebagai *reversed Ahmed body*, karena model ini merupakan modifikasi dari model *Ahmed body* (Gb. 2.5). Modifikasi dilakukan agar model yang digunakan dapat mencerminkan bentuk kendaraan keluarga yang sesungguhnya. Pada penelitian ini akan diuji *van model* tanpa kontrol aktif aliran yang kemudian akan dibandingkan dengan *van model* yang dilengkapi dengan kontrol aktif aliran.

Gambar 3.2. Dimensi Model Uji Van Model (Reversed Ahmed Body)

Bagian depan model uji mempunyai sudut kemiringan atau *slant angle* (α) = 35°. Bagian belakang model ini memiliki jari-jari kelengkungan pada tepi atas dan bawah, sehingga jika dilihat dari samping model memiliki keserupaan dalam arah sumbu-z. *Van model* ini memiliki rasio 0.25 terhadap model *Ahmed body* yang orisinal, dengan dimensi panjang (1) = 0.261 m, lebar (w) = 0.09725 m, dan tinggi (h) = 0.072 m. Pada bagian belakang model uji ditempatkan kontrol aktif aliran dimana luasan area esksitasi aliran tersebut dapat dihitung dengan :

Luasan eksitasi =
$$2\left[\left(\frac{\gamma}{360^{\circ}}\right)2\pi rz\right]$$

= 0.1371 x 10⁻² m²

Dimana,

- γ = Sudut yang dibentuk oleh juring eksitasi (78.52[°])
- r = Radius kelengkungan tepi atas model (0.025 m)
- z = lebar slot eksitasi (0.02288 m)

3.2. Pendekatan Komputasi

Pada pendekatan komputasi digunakan *software* CFD Fluent 6.3 untuk mengetahui pengaruh penambahan kontrol aktif aliran terhadap karakteristik medan aliran, intensitas turbulensi dan pengurangan *drag* aerodinamika pada model uji. Secara umum proses simulasi menggunakan CFD FLUENT melalui 3 tahap, yaitu :

- 1. Pre-processor
 - Mendefinisikan geometri dalam bentuk domain komputasi
 - Komputasi kedalam bentuk grid(mesh)
 - Penentuan fenomena fisika dan kimia yang berhubungan dengan model
 - Mendefinisikan sifat aliran fluida
 - Menetapkan *boundary condition* (kondisi batas) dari model.
- 2. Procesing atau Solver

Proses penghitungan data-data input model geometri dengan persamaan yang terlibat secara iteratif. Penghitungan dilakukan hingga mencapai eror terkecil atau mencapai nilai konvergen.

3. Post Processor

Pada tahap ini akan ditampilkan hasil-hasil penghitungan berupa nilainilai numerik (angka-angka) setiap variabel, seperti kecepatan, distribusi tekanan dan intensitas turbulensi.

Gb. 3.3 merupakan domain aliran yang digunakan dalam pendekatan komputasi. Domain aliran tersebut berbentuk balok dengan dimensi panjang = 8 L, lebar = 2 L, dan tinggi = 2 L, dimana L = panjang model dalam sumbu x. Nilai dimensi domain aliran ini perlu ditetapkan agar efek-efek viskos yang berhubungan dengan *wall* tidak berpengaruh pada aliran di sekitar model.

Gb. 3.4 menunjukkan tipe *meshing* yang digunakan pada *van model* adalah *tet/hydrid* jenis *hex core*, dimana jumlah *cells* yang dihasilkan adalah 1.713.304.
Pemilihan tipe *meshing* tersebut dilakukan untuk mendapatkan hasil yang akurat.

Gambar 3.4 Tipe meshing tet/hydrid jenis hex core pada van model

Kondisi-kondisi batas (*boundary condition*) yang diterapkan dalam pendekatan komputasi adalah :

- 1. Fluida yang digunakan adalah udara dengan kerapatan = 1.225 kg/m^3 dan viskositas = $1.7894 \times 10^{-5} \text{ kg/m-s}$ dengan model turbulensi *k-epsilon standard*.
- 2. Kecepatan *upstream* $(U_0) = 16.7$ m/s atau 60 km/jam.
- 3. Medan aliran diasumsikan sebagai aliran tak mampu mampat (*incompresible flow*).

- 4. *Van model* diasumsikan dalam keadaan tunak (*steady state condition*) yang mengalir secara seragam.
- 5. Bilangan *Reynolds* yang bersesuaian berdasarkan panjang model uji dan kecepatan *upstream* adalah 2.98×10^{-5} dengan tekanan keluar -20 Pa.
- 6. Kecepatan suction diset pada 0.5 m/s, 1 m/s dan 1.5 m/s.
- 7. Kecepatan *blowing* diset pada 0.5 m/s, 1 m/s dan 1.5 m/s.

Lokasi pengambilan data karakteristik distribusi tekanan dan intensitas turbulensi di bagian belakang *van model* dalam pendekatan komputasi, difokuskan pada 5 lokasi yang berbeda, yaitu $z/w = -\frac{1}{2}$, $-\frac{1}{4}$, 0, $\frac{1}{2}$ dan $\frac{1}{4}$ (Gb. 3.5). Untuk *van model* tanpa kontrol aktif aliran, pada setiap lokasi z/w data diambil sebanyak 15 titik disepanjang sumbu vertikal (y/h). Sementara itu, untuk *van model* dengan kontrol aktif aliran, pada setiap lokasi z/w data diambil sebanyak 10 titik. y/h adalah perbandingan antara tinggi grid dengan tinggi model sedangkan z/w adalah perbandingan antara lebar grid dengan lebar model.

Gambar 3.5. Lokasi Pengambilan Data Distribusi Tekanan dan Intensitas Turbulensi

3.3. Pendekatan Eksperimen

Seperti yang dijelaskan sebelumnya, pendekatan eksperimen dilakukan untuk memvalidasi hasil-hasil yang telah diperoleh melalui pendekatan komputasi. Pengujian dilakukan dengan kondisi dan dimensi model uji (*van*

27

model) yang sama dengan pendekatan komputasi. Pengujian dilakukan dengan memanfaatkan fasilitas terowongan angin sub-sonik (*sub-sonic wind tunnel*). Model uji ditempatkan pada seksi uji *wind tunnel* (Gb. 3.6) yang dilengkapi dengan perangkat penunjang seperti unit *load cells* untuk memvalidasi data *drag* aerodinamika serta unit *particle image velocimetry* (PIV) untuk visualisasi pola aliran dibagian belakang *van model*.

Model yang diuji adalah *van model* tanpa kontrol aktif aliran dan *van model* yang dilengkapi dengan sistem kontrol aktif aliran berupa hisapan (*suction*) dan tiupan (*blowing*). Sebagai aktuator untuk kontrol aktif hisapan digunakan *vaccum pump* sedangkan aktuator untuk kontrol aktif tiupan (*blowing*) digunakan *air compressor*. Peralatan kontrol aktif ini ditempatkan pada bagian belakang *body van model* (Gb. 3.2). Lokasi penempatan kontrol aktif tersebut dianggap sebagai daerah separasi aliran yang sangat potensial menimbulkan hambatan *drag* berdasarkan hasil kajian komputasional yang telah diperoleh sebelumnya.

Gambar 3.6 Penempatan model uji (van model) pada seksi uji wind tunnel

3.3.1. Validasi Gaya Drag Aerodinamika pada Bagian Belakang Van Model

Gb. 3.7 merupakan *experimental set up* yang diterapkan pada pendekatan eksperimen untuk memvalidasi data komputasi gaya *drag* aerodinamika yang dialami oleh *van model*. Model uji ditempatkan pada seksi uji *wind tunnel* yang dilengkapi dengan perangkat penunjang yaitu *load cells*. *Load cells* merupakan *transducer* yang mengubah besaran gaya menjadi sinyal listrik yang terukur. Dalam aplikasinya *load cells* menggunakan berbagai macam jenis sensor, namun sensor yang paling umum digunakan adalah *strain gage*.

Strain gage merupakan sensor dengan reisistansinya yang dapat berubahubah sesuai dengan besaran gaya yang diberikan. Pada penelitian ini gaya *drag* aerodinamika diambil dengan menggunakan *strain gage* yang ditempatkan pada sebuah plat dengan membentuk konfigurasi sistem 4 *gage* aktif. *Strain gage* yang berjumlah 4 buah yang kemudian dirangkai menjadi sebuah jembatan *wheatstone* penuh, seperti yang tampak pada Gb. 3.8.

Gambar 3.7 Experimental set-up pengambilan data gaya drag aerodinamika pada

Gambar 3.8 Konfigurasi 4 gage aktif untuk pengukuran bending

Strain gage yang digunakan pada penelitian ini adalah jenis foil strain gage produk dari SHOWA Measuring Instruments Co., Ltd yang memiliki spesifikasi sebagai berikut :

Туре	: N11-FA-5-350-11
Gauge length (mm)	: 5
Temp. Comp.	: steel / 11 ppm/ ^{0}C
<i>Thermal output</i> ($\mu\epsilon$ / ⁰ C)	:±2

Untuk membaca tegangan keluaran dari *strain gage* digunakan alat pengkondisian sinyal sekaligus sebagai monitor (Gb. 3.9). Monitor indikator ini merupakan produk dari *Excellent scale* dengan spesifikasi sebagai berikut :

Model	: XK3190-A12
Accuracy	: Grade III, n3000
Sample rate	: 10 times / second
Load cell sensitivity	: 1.5-3mV /V
Scale interval	: 1/2/5/10/20/50 for option
Operating temperature/humidity	: 0-40 ⁰ C; ≤90% RH

Alat ukur ini pada prinsipnya berfungsi sebagai penkondisian sinyal sekaligus berfungsi sebagai *trigger* dan *recorder*. Proses pengkondisian sinyal yang dilakukan meliputi *filtering*, isolasi, amplifikasi, dan konversi tegangan yang dikeluarkan oleh sistem 4 *gage* aktif.

Gambar 3.9 Excellent Scale Digital Weighing Indicator XK3190-A12(E)

Kalibrasi dari *load cell* dilakukan dengan menempatkan beban yang telah diketahui massanya pada ujung dari *load cell*. Nilai beban ini pertama dimasukkan sebagai data awal yang direkam oleh monitor, kemudian beban massa sesungguhnya diletakkan pada *load cell* dan monitor akan menyimpan informasi *setting* ini sebagai nilai konversi untuk proses pengukuran selanjutnya. Kalibrasi *load cells* pada penelitian ini dilakukan dengan memanfaatkan timbangan *digital*. Timbangan tersebut diposisikan berdiri dan tepat berada di samping model *reversed Ahmed body* yang telah dipasangi *load cell*. Selanjutnya timbangan akan didorong dan menyentuh model sehingga besar gaya dorong tersebut akan

ditampilkan dalam *display* timbangan. Besar gaya yang terbaca pada *display* timbangan kemudian dimasukkan ke dalam *input load* pada monitor. Sketsa penempatan model uji pada *load cell* dan ilustrasi proses kalibrasinya ditunjukkan pada Gb. 3.10.

Gambar 3.10. Sketsa penempatan model uji pada load cell dan kalibrasi

3.3.2. Pengukuran dengan Particles Image Velocimetry (PIV)

PIV (*particles image velocimetry*) adalah metode optik untuk mendapatkan informasi vektor kecepatan aliran dengan menggunakan prinsip perpindahan *seeding particle* terhadap waktu yang sebelumnya sengaja ditambahkan pada aliran. Aliran yang telah ditambahkan *seeding particle* akan disinari dengan laser untuk mendapatkan efek *freezing* (berhenti sesaat). Pada saat yang sama kamera akan menangkap posisi sesaat partikel pada aliran tersebut. Dengan menggunakan perhitungan perpindahan partikel terhadap waktu pengambilan antara gambar satu dengan yang lain (antar *frame* jika menggunakan *cross correlation*) maka didapatkan informasi kecepatan. Sistem PIV dalam *wind tunnel* diperlihatkan dalam Gb. 3.11.

Gb. 3.12 merupakan *experimental set up* yang diterapkan pada pendekatan eksperimen untuk visualisasi aliran dan intensitas turbulensi pada bagian belakang *van model*. Pengukuran dilakukan menggunakan unit PIV Dantec yang terdiri :

- a. 1 (satu) unit dual-head Nd:YAG (Neodymium-doped Ytrium aluminium garnet, Nd:Y₃Al₅O₁₂) laser
- b. 1 (satu) unit CCD kamera dengan resolusi tinggi
- c. 1 (satu) unit synchonizer dan optik.

Gambar 3.11. Sistem PIV dalam wind tunnel (Raffel, M., Willert, C., Wereley, S.

Gambar 3.12. *Experimental set-up* visualisasi medan aliran pada bagian belakang *van model*

The Nd: YAG laser dan CCD kamera disinkronisasi menggunakan *Prosesor Dantec Dynamic Studio v3.20.* Bidang pengukuran diterangi oleh selembar laser yang dihasilkan dari *Nd: YAG laser system.* Interval waktu antara pulsa adalah 100 µs. Ketebalan lembar laser adalah sekitar 2 mm. Pada penelitian ini, jumlah *image* (N) yang ditangkap CCD kamera adalah 200 gambar.

Gb. 3.13 merupakan proses kalibrasi gambar yang dilakukan sebelum pengambilan data gambar dengan PIV. Tujuan dari kalibrasi adalah untuk

mendapatkan faktor skala perbandingan antara satuan milimeter pada model uji terhadap satuan *pixel* gambar yang ditangkap oleh kamera. Kalibrasi dilakukan dengan mengambil gambar model uji dengan tambahan sebuah batang yang sebagian dilapisi warna yang kontras dengan warna batang (jika batang berwarna putih, maka dilapis hitam), panjang dari warna kontras tersebut adalah 50 mm yang merupakan input untuk *absolute distance* pada fitur kalibrasi di dalam *software* PIV, sehingga didapatkan faktor skala milimeter terhadap pixel.

Gambar 3.13 Kalibrasi model uji

3.4. Terowongan angin sub-sonik (sub-sonic wind tunnel)

Pengujian dilakukan dalam terowongan angin berkecepatan rendah (*sub sonic wind tunnel*) tipe C2-00 yang diproduksi oleh *Armfield* (Gb. 3.14). Terowongan angin ini mempunyai geometri panjang 260 cm dan diameter mulut 55 cm. Aliran dalam terowongan angin digerakkan *blower axial* dengan penggerak motor DC yang memiliki putaran 2800 rpm dan daya 1.5 kW. Terowongan angin memiliki satu sesi *diffuser* yang berfungsi untuk menyeragamkan arah aliran. Kecepatan aliran udara maksimum yang mampu dibangkitkan dalam seksi uji adalah 70 km/jam atau 19.44 m/s.

Sebelum melakukan pengujian di dalam *wind tunnel*, aliran pada *wind tunnel* perlu dipastikan berada dalam keadaan *steady* pada *free stream*. Untuk itu maka dilakukanlah pengukuran nilai intensitas turbulensi aliran pada seksi uji dengan cara mengukur kecepatan sepanjang garis tengah seksi uji dengan interval jarak 1 cm (Gambar 3.15). Data pengukuran kecepatan diambil sebanyak 50 buah untuk setiap titik ukur pada garis tengah. Nilai intensitas turbulensi pada seksi uji untuk kecepatan aliran bebas 16.7 m/s diperoleh rata-rata 0.55% (Tabel 3.1). Hal

ini menunjukkan bahwa terowongan angin memiliki aliran yang *steady* pada keadaan *free stream*.

Gambar 3.14 Sub sonic wind tunnel Armfield C2-00

Gambar 3.15. Pengukuran kecepatan sepanjang garis tengah seksi uji

Gb. 3.16 menunjukkan proses kalibrasi kecepatan aliran pada seksi uji *wind tunnel* menggunakan instrumen *hot wire* kemudian disesuaikan dengan putaran *blower axial* (Gb. 3.17) yang dikendalikan dalam suatu unit *control panel*.

Gambar 3.16 Pengukuran kecepatan aliran dalam seksi uji

No	Posisi dari dasar (cm)	Intensitas Turbulensi (%)
1	14.5	0.28
2	13.5	0.53
3	12.5	0.39
4	11.5	1.12
5	10.5	0.43
6	9.5	0.32
7	8.5	0.28
8	7.5	1.07
9	6.5	0.4
10	5.5	0.48
11	4.5	0.63
12	3.5	0.35
13	2.5	0.37
14	1.5	0.59
15	0.5	0.97

Tabel 3.1. Nilai intensitas turbulensi sepanjang garis tengah pada seksi uji

Gambar 3.17 Motor DC dan unit kontrol penggerak blower axial

Prinsip pengukuran kecepatan aliran fluida pada *hot wire* berdasarkan prinsip bahwa perpindahan panas pada suatu bahan bergantung pada kecepatan aliran fluida yang mengalir di sekitar benda. *Hot wire* yang digunakan adalah produk dari Lutron dengan jenis *constant temperature anemometry* (CTA), dimana bidang sensor tegak lurus dengan sumbu batang probe. Spesifikasi dari *hot wire* yang digunakan adalah sebagai berikut.

Model	: AM-4204
Range pengukuran (m/s)	: 0.2-20 m/s

Sensor structure / air velocity Sensor structure / temperature Sampling time (s) Operating temperature (⁰C) Operating humidity (% RH) Power supply

- : tinny glass bead thermistor
- : precision thermistor
- : 0.8
- : 0-50
- :≤80
- : 1.5 V AAA x 6PCs

BAB 4 HASIL DAN PEMBAHASAN

Seperti yang dijelaskan sebelumnya, penelitian dilakukan dengan pendekatan komputasi dan pendekatan eksperimen. Pengujian dilakukan dengan kondisi dan dimensi model uji (*van model*) yang sama. Pada penelitian ini telah diuji *van model* tanpa kontrol aktif aliran yang kemudian hasilnya dibandingkan dengan *van model* yang dilengkapi dengan kontrol aktif aliran. Penambahan kontrol aktif berupa hisapan (*suction*) dan tiupan (*blowing*) dapat mengurangi gaya *drag* aerodinamika yang terjadi di bagian belakang *van model*.

Untuk menganalisa pola dan struktur aliran, serta melihat pengaruh dari adanya modus kontrol aktif aliran terhadap gaya *drag* aerodinamika pada model uji, pembahasan dalam penelitian ini difokuskan pada distribusi tekanan, intensitas turbulensi, dan medan aliran pada sisi belakang model uji. Pengurangan gaya *drag* yang didapat akan digunakan untuk :

- 1. Menghitung perbandingan antara energi yang dihemat dengan energi yang digunakan untuk menggerakkan kontrol aktif tersebut (efisiensi energi kontrol aktif).
- Peluang efisiensi konsumsi bahan bakar dan pengurangan emisi jika pengurangan gaya *drag* aerodinamika tersebut diaplikasikan pada mobil Suzuki APV sebagai salah satu kendaraan keluarga yang banyak digunakan di Indonesia.

4.1. Distribusi Tekanan

Distribusi tekanan yang ditampilkan adalah distribusi tekanan yang terjadi pada bagian belakang *van model (reversed Ahmed Body*) hasil pendekatan komputasi menggunakan CFD FLUENT 6.3.26. Nilai dari tekanan statik pada tiap *grid* dinyatakan dengan koefisien tekanan statik (C_P). Untuk menyatakan secara kuantitatif besaran nilai ini, pola ditampilkan dalam bentuk grafik y/h terhadap C_P . y/h adalah perbandingan antara tinggi *grid* dengan tinggi model sedangkan C_P adalah koefisien tekanan. Dalam grafik juga ditampilkan garis pola distribusi koefisien tekanan dalam arah z/w, dimana z/w adalah perbandingan antara lebar

grid dengan lebar model. Lokasi pengambilan data difokuskan disepanjang sumbu vertikal bagian belakang *van model* (y/h) pada 5 lokasi yang berbeda, yaitu z/w = $-\frac{1}{2}$, $-\frac{1}{4}$, 0, $\frac{1}{2}$ dan $\frac{1}{4}$ (Gb. 3.6). Konfigurasi ini digunakan juga dalam menampilkan pola intensitas turbulensi di bagian belakang model uji (*van model*) yang dibahas pada sub-bab berikutnya.

4.1.1. Tanpa Kontrol Aktif Aliran

Gb.4.1 menunjukkan distribusi koefisien tekanan (C_P) pada bagian belakang *van model (reversed Ahmed Body*) tanpa kontrol aktif aliran, dan Tabel 4.1 menyatakan nilai minimum koefisien tekanan pada setiap lokasi z/w. Dari data tersebut terlihat bahwa nilai koefisien tekanan yang minimum berada pada bagian tepi atas bagian belakang *van model*. Hal ini disebabkan karena pada posisi inilah mulai terjadi separasi aliran, dimana aliran udara yang mengalir di sepanjang permukaan model uji tidak mampu lagi menempel pada permukaan saat mencapai bagian belakang. Hal ini mengakibatkan terbentuknya aliran balik di bagian belakang *van model* sehingga mengakibatkan penurunan distribusi tekanan dan menimbulkan gaya *drag* (Anderson, J.D., 2001).

Fenomena diatas menjadi alasan utama terhadap penentuan posisi kontrol yang di tempatkan pada model uji (*van model*), yakni pada sisi kanan dan sisi kiri di tepi atas bagian belakang *van model*. Penempatan kontrol aktif aliran pada posisi tersebut diharapkan dapat menunda dan bahkan mencegah terjadinya separasi aliran.

Gambar 4.1 Distribusi C_P tanpa kontrol aktif aliran (U₀ = 16.7 m/s)

Universitas Indonesia

	$C_P Min$	Posisi y/h
$Z/W = -\frac{1}{2}$	-1.1713	1
$Z/W = -\frac{1}{4}$	-1.3292	0.93
z/w=0	-1.3556	1
$Z/W = \frac{1}{4}$	-1.145	0.93
Z/W=1/2	-0.9081	1

Tabel 4.1 Koefisien tekanan minimum tanpa kontrol aktif aliran

4.1.2. Pengaruh Kontrol Aktif Aliran Hisapan (Suction)

Gb.4.2 menyatakan distribusi koefisien tekanan (C_P) pada bagian belakang *van model (reversed Ahmed Body*) dengan kontrol aktif aliran berupa hisapan (*suction*) dengan $U_{SC}/U_0 = 0.03$. Dari gambar tersebut dapat dilihat besaran nilai minimum koefisien tekanan pada setiap lokasi z/w, seperti yang ditunjukkan dalam Tabel 4.2.

Gambar 4.2 Distribusi C_P dengan kontrol aktif suction ($U_{SC}/U_0 = 0.03$)

Jika dibandingkan dengan distribusi tekanan pada *van model* tanpa kontrol aktif aliran, secara umum dapat dilihat bahwa dengan penambahan kontrol aktif aliran *suction* ($U_{SC}/U_0 = 0.03$) menyebabkan naiknya nilai koefisien tekanan minimum dibelakang model uji. Pada lokasi $z/w = -\frac{1}{2}$ dan $\frac{1}{2}$, lokasi C_P minimum berpindah dari y/h = 1 ke y/h = 0.25. Hal ini terjadi karena posisi y/h = 1 s/d 0.83 merupakan lokasi penempatan kontrol aktif. Sementara itu lokasi y/h = 0.25 menjadi posisi dengan C_P minimum, karena adanya separasi aliran yang terjadi di bagian belakang model uji sebagai akibat aliran udara yang mengalir di bawah kendaraan. Perubahan yang signifikan dapat dilihat terjadi pada lokasi z/w = 0

(y/h = 1), dimana terjadi peningkatan koefisien tekanan minimum sebesar 40%. Sedangkan pada lokasi disekitar kontrol aktif, yakni $z/w = -\frac{1}{4} \text{ dan } \frac{1}{4} (y/h = 1)$ koefisien tekanan minimum naik hingga 26% dan 16%.

 $C_P Min$ Posisi y/h $z/w = -\frac{1}{2}$ -0.4141 0.25 $z/w = -\frac{1}{4} -0.9836$ 1 z/w=0-0.8024 1 $Z/W = \frac{1}{4}$ -0.9577 1 $Z/W = \frac{1}{2}$ -0.3623 0.25

Tabel 4.2 Koefisien tekanan minimum dengan suction ($U_{SC}/U_0 = 0.03$)

Gb.4.3 menyatakan distribusi koefisien tekanan (C_P) pada bagian belakang *van model (reversed Ahmed Body*) dengan kontrol aktif aliran berupa hisapan (*suction*) dengan U_{SC}/U₀ = 0.06. Dari gambar tersebut dapat dilihat besaran nilai minimum koefisien tekanan pada setiap lokasi z/w, seperti yang ditunjukkan dalam Tabel 4.3.

Gambar 4.3 Distribusi C_P dengan kontrol aktif suction ($U_{SC}/U_0 = 0.06$)

Jika dibandingkan dengan distribusi tekanan pada *van model* tanpa kontrol aktif aliran, secara umum dapat dilihat bahwa dengan penambahan kontrol aktif aliran *suction* ($U_{SC}/U_0 = 0.06$) menyebabkan naiknya nilai koefisien tekanan minimum dibelakang model uji. Perubahan yang signifikan dapat dilihat terjadi pada lokasi z/w = 0 (y/h = 1), dimana terjadi peningkatan koefisien tekanan

minimum sebesar 38%. Sedangkan pada lokasi disekitar kontrol aktif, yakni $z/w = -\frac{1}{4} \text{ dan } \frac{1}{4} (y/h = 1)$ koefisien tekanan minimum naik hingga 24% dan 14%.

	$C_P Min$	Posisi y/h
$Z/W = -\frac{1}{2}$	-0.3886	0.25
$Z/W = -\frac{1}{4}$	-1.0097	1
z/w=0	-0.8285	1
$Z/W = \frac{1}{4}$	-0.9838	1
z/w=1/2	-0.3627	0.25
and a second sec		

Tabel 4.3 Koefisien tekanan minimum dengan *suction* ($U_{SC}/U_0 = 0.06$)

Gb.4.4 menyatakan distribusi koefisien tekanan (C_P) pada bagian belakang *van model (reversed Ahmed Body*) dengan kontrol aktif aliran berupa hisapan (*suction*) dengan U_{SC}/U₀ = 0.09. Dari gambar tersebut dapat dilihat besaran nilai minimum koefisien tekanan pada setiap lokasi z/w, seperti yang ditunjukkan dalam Tabel 4.4.

Gambar 4.4 Distribusi C_P dengan kontrol aktif *suction* ($U_{SC}/U_0 = 0.09$)

Jika dibandingkan dengan distribusi tekanan pada *van model* tanpa kontrol aktif aliran, secara umum dapat dilihat bahwa dengan penambahan kontrol aktif aliran *suction* ($U_{SC}/U_0 = 0.09$) menyebabkan naiknya nilai koefisien tekanan minimum dibelakang model uji. Perubahan yang signifikan dapat dilihat terjadi pada lokasi z/w = 0 (y/h = 1), dimana terjadi peningkatan koefisien tekanan minimum sebesar 42%. Sedangkan pada lokasi disekitar kontrol aktif, yakni $z/w = -\frac{1}{4}$ dan $\frac{1}{4}$ (y/h = 1) koefisien tekanan minimum naik hingga 25% dan 18%.

	$C_P Min$	Posisi y/h
$Z/W = -\frac{1}{2}$	-0.3630	0.25
$Z/W = -\frac{1}{4}$	-0.9840	1
z/w=0	-0.7770	1
$Z/W = \frac{1}{4}$	-0.9322	1
Z/W=1/2	-0.3372	0.25

Tabel 4.4 Koefisien tekanan minimum dengan *suction* ($U_{SC}/U_0 = 0.09$)

4.1.3. Pengaruh Kontrol Aktif Aliran Tiupan (Blowing)

Gb.4.5 menyatakan distribusi koefisien tekanan (C_P) pada bagian belakang *van model (reversed Ahmed Body*) dengan kontrol aktif aliran berupa tiupan (*blowing*) dengan U_{BL}/U₀ = 0.03. Dari gambar tersebut dapat dilihat besaran nilai minimum koefisien tekanan pada setiap lokasi z/w, seperti yang ditunjukkan dalam Tabel 4.5.

Gambar 4.5 Distribusi C_P dengan kontrol aktif *blowing* ($U_{BL}/U_0 = 0.03$)

Jika dibandingkan dengan distribusi tekanan pada *van model* tanpa kontrol aktif aliran, secara umum dapat dilihat bahwa dengan penambahan kontrol aktif aliran *blowing* ($U_{BL}/U_0 = 0.03$) menyebabkan naiknya nilai koefisien tekanan minimum dibelakang model uji. Pada lokasi $z/w = -\frac{1}{2} \text{ dan } \frac{1}{2}$, lokasi C_P minimum berpindah dari y/h = 1 ke y/h = 0.25. Hal ini terjadi karena posisi y/h = 1 s/d 0.83 merupakan lokasi penempatan kontrol aktif. Sementara itu lokasi y/h = 0.25 menjadi posisi dengan C_P minimum, karena adanya separasi aliran yang terjadi di bagian belakang model uji sebagai akibat aliran udara yang mengalir di bawah kendaraan. Perubahan yang signifikan dapat dilihat terjadi pada lokasi z/w = 0

(y/h = 1), dimana terjadi peningkatan koefisien tekanan minimum sebesar 44%. Sedangkan pada lokasi disekitar kontrol aktif, yakni $z/w = -\frac{1}{4} \text{ dan } \frac{1}{4} (y/h = 1)$ koefisien tekanan minimum naik hingga 29% dan 23%.

Tabel 4.5 Koefisien tekanan minimum dengan *blowing* ($U_{BL}/U_0 = 0.03$)

	$C_P Min$	Posisi y/h
$Z/W = -\frac{1}{2}$	-0.4396	0.25
$Z/W = -\frac{1}{4}$	-0.9315	1
z/w=0	-0.7503	1
$Z/W = \frac{1}{4}$	-0.8797	1
Z/W=1/2	-0.3878	0.25

Gb.4.6 menyatakan distribusi koefisien tekanan (C_P) pada bagian belakang *van model (reversed Ahmed Body*) dengan kontrol aktif aliran berupa tiupan (*blowing*) dengan U_{BL}/U₀ = 0.06. Dari gambar tersebut dapat dilihat besaran nilai minimum koefisien tekanan pada setiap lokasi z/w, seperti yang ditunjukkan dalam Tabel 4.6.

Gambar 4.6 Distribusi C_P dengan kontrol aktif *blowing* ($U_{BL}/U_0 = 0.06$)

Tabel 4.6 Koefisien tekanan minimum dengan *blowing* ($U_{BL}/U_0 = 0.06$)

	$C_P Min$	Posisi y/h
Z/W = -1/2	-0.4403	0.25
$Z/W = -\frac{1}{4}$	-0.8546	1
z/w=0	-0.6992	1
$Z/W = \frac{1}{4}$	-0.8287	1
$Z/W = \frac{1}{2}$	-0.3626	0.25

Jika dibandingkan dengan distribusi tekanan pada *van model* tanpa kontrol aktif aliran, secara umum dapat dilihat bahwa dengan penambahan kontrol aktif aliran *blowing* (U_{BL}/U₀ = 0.06) menyebabkan naiknya nilai koefisien tekanan minimum dibelakang model uji. Perubahan yang signifikan dapat dilihat terjadi pada lokasi z/w = 0 (y/h = 1), dimana terjadi peningkatan koefisien tekanan minimum sebesar 48%. Sedangkan pada lokasi disekitar kontrol aktif, yakni $z/w = -\frac{1}{4}$ dan $\frac{1}{4}$ (y/h = 1) koefisien tekanan minimum naik hingga 35% dan 27%.

Gb.4.7 menyatakan distribusi koefisien tekanan (C_P) pada bagian belakang *van model (reversed Ahmed Body*) dengan kontrol aktif aliran berupa tiupan (*blowing*) dengan $U_{BL}/U_0 = 0.09$. Dari gambar tersebut dapat dilihat besaran nilai minimum koefisien tekanan pada setiap lokasi z/w, seperti yang ditunjukkan dalam Tabel 4.7.

Gambar 4.7 Distribusi C_P dengan kontrol aktif *blowing* ($U_{BL}/U_0 = 0.09$)

	$C_P Min$	Posisi y/h
$Z/W = -\frac{1}{2}$	-0.4645	0.25
$Z/W = -\frac{1}{4}$	-0.8528	1
z/w=0	-0.6975	1
$Z/W = \frac{1}{4}$	-0.8269	1
Z/W = 1/2	-0.3868	0.25

Tabel 4.7 Koefisien tekanan minimum dengan *blowing* ($U_{BL}/U_0 = 0.09$)

Jika dibandingkan dengan distribusi tekanan pada *van model* tanpa kontrol aktif aliran, secara umum dapat dilihat bahwa dengan penambahan kontrol aktif aliran *blowing* ($U_{BL}/U_0 = 0.09$) menyebabkan naiknya nilai koefisien tekanan

minimum dibelakang model uji. Perubahan yang signifikan dapat dilihat terjadi pada lokasi z/w = 0 (y/h = 1), dimana terjadi peningkatan koefisien tekanan minimum sebesar 48%. Sedangkan pada lokasi disekitar kontrol aktif, yakni $z/w = -\frac{1}{4} \text{ dan } \frac{1}{4} (y/h = 1)$ koefisien tekanan minimum naik hingga 35% dan 27%.

4.2. Intensitas Turbulensi

Intensitas turbulensi yang ditampilkan adalah intensitas turbulensi yang terjadi pada bagian belakang *van model* (*reversed Ahmed Body*) hasil pendekatan komputasi menggunakan CFD FLUENT 6.3.26. Nilai dari intensitas turbulensi (IT) pada tiap *grid* dinyatakan dalam bentuk '%'. Sementara itu, data-data intensitas turbulensi ditampilkan dengan konfigurasi yang sama dengan data-data distribusi tekanan yang sudah ditampilkan sebelumnya.

4.2.1. Tanpa Kontrol Aktif Aliran

Gb.4.8 menunjukkan intensitas turbulensi (IT) pada bagian belakang *van* model (reversed Ahmed Body) tanpa kontrol aktif aliran, Dari gambar tersebut dapat dilihat besaran nilai rata-rata dan nilai maksimum intensitas turbulensi pada setiap lokasi z/w, seperti yang ditunjukkan dalam Tabel 4.8. Dari data-data tersebut terlihat bahwa nilai maksimum intensitas turbulensi pada lokasi z/w = 0 berada pada tepi atas bagian belakang *van model* (y/h = 1;0.93;0.87). Sementara posisi nilai maksimum intensitas turbulensi pada 4 posisi z/w lainnya terlihat bervariasi disepanjang lokasi *pressure tap* (y/h), namun secara umum berada di sekitar tepi atas bagian belakang model uji. Hal ini disebabkan karena lokasi z/w = $-\frac{1}{2}$; $\frac{1}{4}$; $\frac{1}{4}$, $\frac{1}{2}$; adalah lokasi yang dekat dengan sisi samping model uji, dimana intensitas turbulensi di lokasi tersebut ikut dipengaruhi oleh aliran udara dari bagian samping model uji.

4.2.2. Pengaruh Kontrol Aktif Aliran Hisapan (suction)

Gb.4.9 menunjukkan intensitas turbulensi (IT) pada bagian belakang *van* model (reversed Ahmed Body) kontrol aktif aliran berupa hisapan (suction) dengan $U_{SC}/U_0 = 0.03$. Dari gambar tersebut dapat dilihat besaran nilai rata-rata dan nilai maksimum intensitas turbulensi pada setiap lokasi z/w, seperti yang ditunjukkan dalam Tabel 4.9.

Gambar 4.8 Intensitas Turbulensi Tanpa Kontrol Aktif Aliran ($U_0 = 16.7 \text{ m/s}$)

Tabel 4.8 Intensitas Turbulensi Tanpa Kontrol Aktif Aliran ($U_0 = 16.7 \text{ m/s}$)

	IT Rata-rata (%)	IT Max (%)	Posisi y/h
$Z/W = -\frac{1}{2}$	1.304	1.987	0.73
$Z/W = -\frac{1}{4}$	1.116	1.424	0.8
z/w=0	1.056	1.349	1;0.93;0.87
$Z/W = \frac{1}{4}$	1.043	1.424	0.67
z/w=1/2	0.966	1.574	0.8

Jika dibandingkan dengan distribusi tekanan pada *van model* tanpa kontrol aktif aliran, secara umum dapat dilihat bahwa dengan penambahan kontrol aktif aliran *suction* (U_{SC}/U₀ = 0.03) menyebabkan turunnya nilai intensitas turbulensi maksimum dibelakang model uji. Perubahan yang signifikan dapat dilihat terjadi pada lokasi $z/w = -\frac{1}{2}$ dan $\frac{1}{2}$ atau tempat beradanya kontrol aktif. Penambahan kontrol aktif aliran *suction* menyebabkan intensitas turbulensi yang tadinya berada di sekitar tepi atas bagian belakang model uji (y/h = 0.8;0.73) sekarang berpindah ke tepi bawah bagian belakang model uji (y/h = 0.42;0.33). Sementara itu, penambahan kontrol aktif *suction* ini juga menurunkan nilai rata-rata intensitas turbulensi di setiap z/w sebesar 21%, 3%, 15%, 10% dan 36% untuk z/w = -\frac{1}{2}; -\frac{1}{4}; 0; \frac{1}{4} dan $\frac{1}{2}$.

Gambar 4.9 Intensitas Turbulensi dengan kontrol aktif suction ($U_{SC}/U_0 = 0.03$)

	IT Rata-rata (%)	IT Max (%)	Posisi y/h
$Z/W = -\frac{1}{2}$	1.032	1.182	0.42;0.33
$z/w = -\frac{1}{4}$	1.262	1.690	0.92
z /W= 0	1.109	1.291	0.92;0.83
$Z/W = \frac{1}{4}$	1.178	1.618	1
z/w=1/2	0.835	0.928	0.33

Tabel 4.9 Intensitas Turbulensi dengan kontrol aktif suction ($U_{SC}/U_0 = 0.03$)

Gb.4.10 menunjukkan intensitas turbulensi (IT) pada bagian belakang van model (reversed Ahmed Body) kontrol aktif aliran berupa hisapan (suction) dengan $U_{SC}/U_0 = 0.06$. Dari gambar tersebut dapat dilihat besaran nilai rata-rata dan nilai maksimum intensitas turbulensi pada setiap lokasi z/w, seperti yang ditunjukkan dalam Tabel 4.10.

Jika dibandingkan dengan distribusi tekanan pada *van model* tanpa kontrol aktif aliran, secara umum dapat dilihat bahwa dengan penambahan kontrol aktif aliran *suction* ($U_{SC}/U_0 = 0.06$) menyebabkan turunnya nilai intensitas turbulensi maksimum dibelakang model uji. Perubahan yang signifikan dapat dilihat terjadi pada lokasi $z/w = -\frac{1}{2}$ dan $\frac{1}{2}$ atau tempat beradanya kontrol aktif. Penambahan kontrol aktif aliran *suction* menyebabkan intensitas turbulensi yang tadinya berada di sekitar tepi atas bagian belakang model uji (y/h = 0.8; 0.73) sekarang berpindah ke tepi bawah bagian belakang model uji (y/h = 0.42; 0.33). Sementara itu, penambahan kontrol aktif *suction* ini juga menurunkan nilai rata-rata intensitas

turbulensi di setiap z/w sebesar 23%, 4%, 15%, 8% dan 37% untuk z/w = - $\frac{1}{2}$; - $\frac{1}{4}$; 0; $\frac{1}{4}$ dan $\frac{1}{2}$.

Gambar 4.10 Intensitas Turbulensi dengan kontrol aktif suction ($U_{SC}/U_0 = 0.06$)

Tabel 4.10 Intensitas Turbulensi dengan kontrol aktif suction ($U_{SC}/U_0 = 0.06$)

	IT Rata-rata (%)	IT Max (%)	Posisi y/h
$z/w = -\frac{1}{2}$	1.003	1.081	0.42;0.33
$z/w = -\frac{1}{4}$	1.210	1.705	1
z/w=0	1.045	1.301	1;0.92
$Z/W = \frac{1}{4}$	1.159	1.67	0.75
z/w=1/2	0.825	0.935	0.33

Gb.4.11 menunjukkan intensitas turbulensi (IT) pada bagian belakang van model (reversed Ahmed Body) kontrol aktif aliran berupa hisapan (suction) dengan $U_{SC}/U_0 = 0.09$. Dari gambar tersebut dapat dilihat besaran nilai rata-rata dan nilai maksimum intensitas turbulensi pada setiap lokasi z/w, seperti yang ditunjukkan dalam Tabel 4.11.

Jika dibandingkan dengan distribusi tekanan pada *van model* tanpa kontrol aktif aliran, secara umum dapat dilihat bahwa dengan penambahan kontrol aktif aliran *suction* ($U_{SC}/U_0 = 0.09$) menyebabkan turunnya nilai intensitas turbulensi maksimum dibelakang model uji. Perubahan yang signifikan dapat dilihat terjadi pada lokasi $z/w = -\frac{1}{2}$ dan $\frac{1}{2}$ atau tempat beradanya kontrol aktif. Penambahan kontrol aktif aliran *suction* menyebabkan intensitas turbulensi yang tadinya berada di sekitar tepi atas bagian belakang model uji (y/h = 0.8; 0.73) sekarang berpindah ke tepi bawah bagian belakang model uji (y/h = 0.42; 0.33). Sementara itu,

penambahan kontrol aktif *suction* ini juga menurunkan nilai rata-rata intensitas turbulensi di setiap z/w sebesar 23%, 7%, 20%, 11% dan 37% untuk z/w = $-\frac{1}{2}$; $-\frac{1}{4}$; 0; $\frac{1}{4}$ dan $\frac{1}{2}$.

Gambar 4.11 Intensitas Turbulensi dengan kontrol aktif suction ($U_{SC}/U_0 = 0.09$)

	IT Rata-rata (%)	IT Max (%)	Posisi y/h
$Z/W = -\frac{1}{2}$	1.003	1.082	0.42;0.33
z/w = -1/4	1.210	1.705	1
z/w=0	1.045	1.302	1;0.92
$z/w = \frac{1}{4}$	1.159	1.668	0.75
z/w=1/2	0.825	0.935	0.33

Tabel 4.11 Intensitas Turbulensi dengan kontrol aktif suction ($U_{SC}/U_0 = 0.09$)

4.2.3. Pengaruh Kontrol Aktif Aliran Tiupan (blowing)

Gb.4.12 menunjukkan intensitas turbulensi (IT) pada bagian belakang *van* model (reversed Ahmed Body) kontrol aktif aliran berupa tiupan (blowing) dengan $U_{BL}/U_0 = 0.03$. Dari gambar tersebut dapat dilihat besaran nilai rata-rata dan nilai maksimum intensitas turbulensi pada setiap lokasi z/w, seperti yang ditunjukkan dalam Tabel 4.12.

Jika dibandingkan dengan distribusi tekanan pada *van model* tanpa kontrol aktif aliran, secara umum dapat dilihat bahwa dengan penambahan kontrol aktif aliran *blowing* ($U_{BL}/U_0 = 0.03$) menyebabkan turunnya nilai intensitas turbulensi maksimum dibelakang model uji. Perubahan yang signifikan dapat dilihat terjadi pada lokasi $z/w = -\frac{1}{2}$ dan $\frac{1}{2}$ atau tempat beradanya kontrol aktif. Penambahan kontrol aktif aliran *suction* menyebabkan intensitas turbulensi yang tadinya berada

di sekitar tepi atas bagian belakang model uji (y/h = 0.8;0.73) sekarang berpindah ke tepi bawah bagian belakang model uji (y/h = 0.33). Sementara itu, penambahan kontrol aktif *blowing* ini juga menurunkan nilai rata-rata intensitas turbulensi di setiap z/w sebesar 20%, 10%, 16%, 11% dan 34% untuk z/w = $-\frac{1}{2}$; $-\frac{1}{4}$; 0; $\frac{1}{4}$ dan $\frac{1}{2}$.

Gambar 4.12 Intensitas Turbulensi dengan kontrol aktif *blowing* ($U_{BL}/U_0 = 0.03$)

	IT Rata-rata (%)	IT Max (%)	Posisi y/h
Z/W = -1/2	1.042	1.250	0.33
$z/w = -\frac{1}{4}$	1.177	1.665	0.92
z/w=0	1.098	1.284	0.83
$z/w = \frac{1}{4}$	1.157	1.630	1
Z/W=1/2	0.855	0.973	0.33

Tabel 4.12 Intensitas Turbulensi dengan kontrol aktif blowing ($U_{BL}/U_0 = 0.03$)

Gb.4.13 menunjukkan intensitas turbulensi (IT) pada bagian belakang *van* model (reversed Ahmed Body) kontrol aktif aliran berupa tiupan (blowing) dengan $U_{BL}/U_0 = 0.06$. Dari gambar tersebut dapat dilihat besaran nilai rata-rata dan nilai maksimum intensitas turbulensi pada setiap lokasi z/w, seperti yang ditunjukkan dalam Tabel 4.13.

Jika dibandingkan dengan distribusi tekanan pada *van model* tanpa kontrol aktif aliran, secara umum dapat dilihat bahwa dengan penambahan kontrol aktif aliran *blowing* ($U_{BL}/U_0 = 0.03$) menyebabkan turunnya nilai intensitas turbulensi maksimum dibelakang model uji. Perubahan yang signifikan dapat dilihat terjadi pada lokasi $z/w = -\frac{1}{2}$ dan $\frac{1}{2}$ atau tempat beradanya kontrol aktif. Penambahan

kontrol aktif aliran *suction* menyebabkan intensitas turbulensi yang tadinya berada di sekitar tepi atas bagian belakang model uji (y/h = 0.8;0.73) sekarang berpindah ke tepi bawah bagian belakang model uji (y/h = 0.33). Sementara itu, penambahan kontrol aktif *blowing* ini juga menurunkan nilai rata-rata intensitas turbulensi di setiap z/w sebesar 19%, 13%, 14%, 11% dan 34% untuk z/w = $-\frac{1}{2}$; $-\frac{1}{4}$; 0; $\frac{1}{4}$ dan $\frac{1}{2}$.

Gambar 4.13 Intensitas Turbulensi dengan kontrol aktif *blowing* ($U_{BL}/U_0 = 0.06$)

	IT Rata-rata (%)	IT Max (%)	Posisi y/h
z/w = -1/2	1.052	1.284	0.33
$Z/W = -\frac{1}{4}$	1.128	1.630	0.92
z/w=0	1.118	1.284	0.83
$Z/W = \frac{1}{4}$	1.163	1.630	1
z/w=1/2	0.864	0.973	0.33

Tabel 4.13 Intensitas Turbulensi dengan kontrol aktif *blowing* ($U_{BL}/U_0 = 0.06$)

Gb.4.14 menunjukkan intensitas turbulensi (IT) pada bagian belakang *van* model (reversed Ahmed Body) kontrol aktif aliran berupa tiupan (blowing) dengan $U_{BL}/U_0 = 0.09$. Dari gambar tersebut dapat dilihat besaran nilai rata-rata dan nilai maksimum intensitas turbulensi pada setiap lokasi z/w, seperti yang ditunjukkan dalam Tabel 4.14.

Jika dibandingkan dengan distribusi tekanan pada *van model* tanpa kontrol aktif aliran, secara umum dapat dilihat bahwa dengan penambahan kontrol aktif aliran *blowing* ($U_{BL}/U_0 = 0.09$) menyebabkan turunnya nilai intensitas turbulensi maksimum dibelakang model uji. Perubahan yang signifikan dapat dilihat terjadi

pada lokasi $z/w = -\frac{1}{2}$ dan $\frac{1}{2}$ atau tempat beradanya kontrol aktif. Penambahan kontrol aktif aliran *suction* membuat intensitas turbulensi yang tadinya berada di sekitar tepi atas bagian belakang model uji (y/h = 0.8;0.73) sekarang berpindah ke tepi bawah bagian belakang model uji (y/h = 0.33). Penambahan kontrol aktif *blowing* ini juga menurunkan nilai rata-rata intensitas turbulensi di setiap z/w sebesar 19%, 15%, 16%, 11% dan 33% untuk z/w = -\frac{1}{2}; -\frac{1}{4}; 0; \frac{1}{4} dan \frac{1}{2}.

Gambar 4.14 Intensitas Turbulensi dengan kontrol aktif *blowing* ($U_{BL}/U_0 = 0.09$)

	IT Rata-rata (%)	IT Max (%)	Posisi y/h
Z/W = -1/2	1.058	1.319	0.33
$Z/W = -\frac{1}{4}$	1.102	1.631	0.92
z/w=0	1.091	1.285	0.83
$Z/W = \frac{1}{4}$	1.160	1.631	1
$Z/W = \frac{1}{2}$	0.870	0.974	0.33

Tabel 4.14 Intensitas Turbulensi dengan kontrol aktif *blowing* ($U_{BL}/U_0 = 0.09$)

4.3. Visualisasi Dinamika Medan Aliran pada Bagian Belakang Van Model Menggunakan Particles Image Velocimetry (PIV)

Medan aliran merupakan karakteristik aliran pada daerah atau luasan tertentu yang biasanya dinyatakan dengan *pathline* aliran dan gambar kontur penuh dari besaran besaran kecepatan. Pada bagian ini akan dibahas pengaruh kontrol aktif aliran *suction* dan *blowing* terhadap karakteristik aliran di belakang model uji (*van model*) menggunakan *Particles Image Velocimetry* (PIV). Medan aliran yang diamati adalah medan aliran pada sisi vertikal bagian belakang model uji pada posisi z = 0. Jumlah data (*image*) yang diambil adalah sebanyak 200

buah untuk setiap 3 variasi perbandingan kecepatan *suction* dan *blowing* dengan kecepatan *upstream*. Hasil pengolahan *image streamline* yang diperoleh ditampilkan dalam bentuk rata-rata.

Streamline rata-rata di bagian belakang model uji (van model) tanpa kontrol aktif aliran pada bidang simetrik vertikal z = 0 saat kecepatan upstream 16.7 m/s dinyatakan dalam Gb.4.15. Posisi titik pusat aliran balik F1 dan F2 serta saddle point (S) dinyatakan pada Tabel 4.15.

Gambar 4.15 Streamline rata-rata tanpa kontrol aktif aliran $(z = 0; U_0 = 16.7 \text{ m/s})$

Tabel 4.15 Posisi titik pusat aliran balik dan saddle point tanpa kontrol aktif aliran

Titik	Posisi		Panjang daerah regirkulasi	
TIUK	x/h	y/h	Tanjang daeran resirkula	
F1	0.35	0.89	0.66H	
F2	0.34	0.40	0.79H	
S	0.80	0.83	-	

Gb.4.16 menunjukkan *streamline* rata-rata di bagian belakang model uji (*van model*) yang mengalami perubahan akibat penambahan kontrol aktif aliran *suction* dalam tiga variasi kecepatan. Data diambil pada bidang simetrik vertikal z = 0 saat kecepatan *upstream* 16.7 m/s. Dimana posisi titik pusat aliran balik F1 dan F2 serta *saddle point* (S) dinyatakan pada Tabel 4.16.

(c) $U_{SC}/U_0 = 0.09$

Gambar 4.16 Streamline rata-rata dengan kontrol aktif aliran suction $(z=0;\,U_0=16.7~m/s)$

U _{SC} /U ₀	Titik	Posisi		Daniang daarah ragirkulagi
		x/h	y/h	Tanjang uaeran resirkulasi
	F1	0.36	0.77	0.79H
0.03	F2	0.35	0.27	0.94H
	S	0.80	0.70	-
0.06	F1	0.36	0.79	0.78H
	F2	0.35	0.28	0.91H
	S	0.80	0.70	-
0.09	F1	0.38	0.80	0.75H
	F2	0.35	0.27	0.88H
	S	0.78	0.70	

Tabel 4.16 Posisi titik pusat aliran balik dan *saddle point* dengan kontrol aktif aliran *suction*

Dari hasil yang didapatkan, penambahan kontrol aktif *suction* terhadap *streamline* rata-rata dibagian belakang model uji menyebabkan titik pusat aliran balik F1 dan F2 bergeser ke arah kanan di sepanjang sumbu-x (menjauhi permukaan bagian belakang *van model*). Pergeseran paling jauh ke arah sumbu-x positif, dialami oleh F1 saat $U_{SC}/U_0 = 0.09$ yang bergeser hingga 9% dari titik awal. Namun pada sumbu-y titik F1 dan F2 bergeser ke arah bawah mendekati permukaan bawah seksi uji. Pergeseran paling jauh ke arah sumbu-y negatif, dialami oleh F2 saat $U_{SC}/U_0 = 0.03$ dan 0.09 yang bergeser hingga 33% dari titik awal. Penambahan kontrol aktif *suction* juga menyebabkan peningkatan panjang daerah resirkulasi di bagian belakang model uji. Peningkatan panjang daerah resirkulasi di bagian belakang model uji. Peningkatan panjang daerah resirkulasi saddle *point* (S), hanya terjadi di sepanjang sumbu-y. Dimana posisi S bergeser ke arah sumbu-y negatif sebesar 16% dari titik awal untuk ketiga variasi kecepatan kontrol aktif aliran *suction*.

Sementara itu Gb.4.17 menunjukkan *streamline* rata-rata di bagian belakang model uji (*van model*) yang mengalami perubahan akibat penambahan kontrol aktif aliran *blowing* dalam tiga variasi kecepatan. Data diambil pada bidang simetrik vertikal z = 0 saat kecepatan *upstream* 16.7 m/s. Dimana posisi titik pusat aliran balik F1 dan F2 serta *saddle point* (S) dinyatakan pada Tabel 4.17.

(c) $U_{BL}/U_0 = 0.09$

Gambar 4.17 S*treamline* medan aliran rata-rata dengan kontrol aktif aliran blowing (z = 0; U₀ = 16.7 m/s)

Analisa pengaruh..., Sabar Pangijutan Simanungkalit, FT UI, 2012.

U _{BL} /U ₀	Titik	Posisi		Daniang daarah rasirkulasi
		x/h	y/h	Tanjang uaeran resirkulasi
	F1	0.34	0.81	0.75H
0.03	F2	0.34	0.30	0.90H
	S	0.79	0.72	-
0.06	F1	0.35	0.81	0.78H
	F2	0.35	0.31	0.91H
	S	0.78	0.72	-
0.09	F1	0.36	0.80	0.80H
	F2	0.37	0.31	0.91H
	S	0.82	0.66	

Tabel 4.17 Posisi titik pusat aliran balik dan *saddle point* dengan kontrol aktif aliran *blowing*

Berbeda halnya dengan kontrol aktif aliran suction, pengaruh penambahan kontrol aktif *blowing* terhadap *streamline* rata-rata dibagian belakang model uji cukup bervariasi. Secara umum titik pusat aliran balik F1 dan F2 bergeser ke arah kanan di sepanjang sumbu-x (menjauhi permukaan bagian belakang van model). Pergeseran paling jauh ke arah sumbu-x positif, dialami oleh F2 saat $U_{BL}/U_0 =$ 0.09 yang bergeser hingga 9% dari titik awal. Namun posisi F1 saat $U_{BL}/U_0 = 0.03$ bergeser ke arah kiri sebesar 3% di sepanjang sumbu-x (mendekati permukaan bagian belakang van model). Sementara itu pada sumbu-y titik F1 dan F2 bergeser ke arah bawah mendekati permukaan bawah seksi uji. Pergeseran paling jauh ke arah sumbu-y negatif, dialami oleh F2 saat $U_{BL}/U_0 = 0.03$ yang bergeser hingga 25% dari titik awal. Penambahan kontrol aktif blowing juga menyebabkan peningkatan panjang daerah resirkulasi di bagian belakang model uji. Peningkatan panjang daerah resirkulasi terbesar dialami oleh F1 saat $U_{BL}/U_0 = 0.09$, yang bertambah hingga 21% dari panjang awal. Sementara itu, pengaruh penambahan kontrol aktif blowing terhadap posisi saddle point (S), hanya terjadi di sepanjang sumbu-y. Dimana posisi S bergeser ke arah sumbu-y negatif sebesar 13% dari titik awal untuk $U_{BL}/U_0 = 0.03$ dan 0.06, sedangkan untuk $U_{BL}/U_0 = 0.09$ bergeser 20% dari titik awal.
4.4. Gaya Drag Aerodinamika

Seperti penjelasan dalam sub-bab sebelumnya, penempatan kontrol aktif aliran dibagian belakang *van model* diharapkan dapat mengurangi gaya *drag* aerodinamika yang dialami oleh model uji. Oleh karena itu untuk melihat sejauh mana pengaruh kontrol aktif ini maka digunakanlah parameter C_D sesuai dengan pers.(2.1). Parameter C_D dihitung dengan kerapatan udara = 1.225 kg/m³ yang dianggap konstan pada temperatur ruangan T = 25°C dan luas karakteristik atau luas proyeksi bagian depan model A = 0.003906534 m².

4.4.1. Pendekatan Komputasi (CFD)

Tabel 4.18 menunjukkan pengaruh penempatan kontrol aktif aliran berupa *suction* dan *blowing* terhadap nilai koefisien *drag* (C_D) *van model* pada kecepatan *up stream* (U_0) 16.7 m/s. Dapat dilihat bahwa penempatan kontrol aktif *suction* dapat menurunkan koefisien *drag* pada model uji dan penurunan C_D paling besar terjadi pada $U_{SC}/U_0 = 0.09$. Sementara itu pengaruh penempatan kontrol aktif aliran berupa tiupan (*blowing*) memberikan efek yang sama seperti kontrol aktif *suction*. Namun untuk kontrol aktif blowing penurunan C_D terbesar terjadi pada $U_{BL}/U_0 = 0.03$.

Tabel 4.18 Koefisien *drag* dengan kontrol aktif *suction* dan *blowing* $(U_0 = 16.7 \text{ m/s})$ hasil pendekatan komputasi.

No	Kontrol Aktif Aliron	U _{AC}	(m/s)	Drag	Coefficient Drag (C.)
INU	Konuol Akui Alitali	$U_{SC}\!/U_0$	$U_{BL}\!/U_0$	Force (N)	Coefficient Drug (CD)
1	Tidak ada	-	-	1.172	1.756
2	Suction	0.03	-	0.999	1.497
3	Suction	0.06	-	0.999	1.498
4	Suction	0.09	-	0.998	1.495
5	Blowing	-	0.03	0.998	1.495
6	Blowing	-	0.06	1.003	1.503
7	Blowing	-	0.09	0.999	1.497

Dari hasil yang didapatkan melalui pendekatan komputasi, kedua kontrol aktif aliran ini (*suction* dan *blowing*) menyebabkan terjadinya penurunan C_D pada *van model* sekitar 14%. Hasil yang didapatkan memiliki *trend* yang hampir sama

dan cenderung tidak ada perubahan (konstan) pada setiap variasi kecepatan. Hal ini membuat variasi kecepatan saat $U_{AC}/U_0 < 0.03$ menjadi penting untuk diinvestigasi juga sehingga dapat dilihat perubahan besaran C_D yang terjadi sebelumnya. Perubahan C_D saat $U_{AC}/U_0 < 0.03$ akan dijadikan acuan dan sangat mempengaruhi perubahan C_D untuk variasi kecepatan berikutnya yang kemudian juga akan mempengaruhi *trend* dari grafik efisiensi energi kontrol aktif tersebut. Besarnya penurunan koefisien *drag* pada model uji untuk setiap variasi kecepatan kontrol aktif *suction* dan *blowing* ditunjukkan pada Gb.4.18.

Gambar 4.18 Penurunan C_D dengan kontrol aktif *suction* dan *blowing* (U₀ =16.7 m/s) hasil pendekatan komputasi

4.4.2. Pendekatan Eksperimen (*Load Cells*)

Validasi hasil pendekatan komputasi untuk data *drag* aerodinamika menggunakan *load cells* yang sudah terintegrasi dengan seksi uji *wind tunnel*. Eksperimen dilakukan dengan kondisi batas dan model uji yang sama dengan pendekatan komputasi. Pengambilan data dilakukan pada *van model* tanpa kontrol aktif aliran dan pada *van model* yang sudah dilengkapi kontrol aktif aliran berupa *suction* dan *blowing*.

Pengambilan data gaya *drag* aerodinamika sebanyak 1 data/detik dan dilakukan selama 120 detik. Dari hasil eksperimen diperoleh data yang berfluktuasi, dan dinyatakan dalam Gb.4.19 untuk kontrol aktif aliran *suction* dan blowing. Rata-rata dari gaya *drag* yang didapat menjadi besaran nilai gaya *drag* aerodinamika setiap variasi kecepatan kontrol aktif dan digunakan untuk menghitung koefisien *drag* aerodinamika (C_D), seperti yang dinyatakan dalam Tabel 4.19.

(a). Kontrol aktif aliran Suction

(b). Kontrol aktif aliran *Blowing*

Gambar 4.19 Gaya *drag* aerodinamika *van model* dengan kontrol aktif *suction* dan *blowing* ($U_0 = 16.7 \text{ m/s}$) hasil pendekatan eksperimen.

No	Kontrol Aktif Aliran	U _{AC}	(m/s)	Drag	Coefficient Dreag (C-)
INU	Kontrol Aktil Allan	U _{SC} /U ₀	$U_{BL}\!/U_0$	Force (N)	Coefficient Drug (CD)
1	Tidak ada	-	-	0.830	1.244
2	Suction	0.03	-	0.648	0.972
3	Suction	0.06	-	0.674	1.011
4	Suction	0.09	-	0.661	0.991
5	Blowing	-	0.03	0.830	1.244
6	Blowing	-	0.06	0.729	1.093
7	Blowing		0.09	0.677	1.015

Tabel 4.19 Koefisien *drag* dengan kontrol aktif *suction* dan *blowing* $(U_0 = 16.7 \text{ m/s})$ hasil pendekatan eksperimen.

Validasi hasil yang dilakukan melalui pendekatan eksperimen memperlihatkan bahwa penambahan kedua kontrol aktif aliran ini (*suction* dan *blowing*) menyebabkan terjadinya penurunan C_D pada *van model*. Besaran nilai penurunan C_D antara kontrol aktif *suction* dan *blowing* memiliki *trend* yang berbeda dan bervariasi, serta belum menunjukkan perubahan yang signifikan. Pengurangan C_D akibat penambahan kontrol aktif *suction* mencapai 21.91% saat $U_{SC}/U_0 = 0.03$ dan lebih besar dibandingkan dengan pengurangan C_D akibat penambahan kontrol aktif *blowing*. Besarnya penurunan koefisien *drag* pada model uji untuk setiap variasi kecepatan kontrol aktif *suction* dan *blowing* ditunjukkan pada Gb.4.20.

(a). Kontrol aktif aliran suction

⁽b). Kontrol aktif aliran *blowing*

Gambar 4.20 Penurunan C_D dengan kontrol aktif *suction* dan *blowing* (U₀ =16.7 m/s) hasil pendekatan eksperimen

4.5. Efisiensi Energi Kontrol Aktif

Aplikasi kontrol aktif aliran pada dasarnya memanfaatkan sumber energi eksternal, oleh karena itu perlu diperhitungkan efisiensi energi dari penambahan kontrol aktif tersebut. Efisiensi kontrol aktif aliran (ζ) merupakan jumlah energi yang telah dihemat melalui pengurangan gaya *drag* aerodinamika (P_{ec}) dibandingkan dengan konsumsi energi aktuator kontrol aktif aliran itu sendiri (P_c), seperti yang dinyatakan dalam dinyatakan pada pers.(2.5).

Gb.4.21 menunjukkan efisiensi energi penggunaan kontrol aktif *suction* pada *van model* dari hasil pendekatan komputasi dan eksperimen. Pada gambar tersebut terlihat bahwa hasil yang diperoleh melalui pendekatan komputasi mendekati hasil dari pendekatan eksperimen untuk semua variasi kecepatan kontrol aktif *suction*. Sementara itu efisiensi energi penggunaan kontrol aktif *blowing* pada *van model* dari hasil pendekatan komputasi dan eksperimen ditunjukkan pada Gb.4.22. Dari data tersebut terlihat bahwa hasil yang diperoleh melalui pendekatan komputasi mendekati hasil dari pendekatan komputasi dan eksperimen untuk U_{BL}/U₀ = 0.06 dan 0.09. Berbeda halnya saat U_{BL}/U₀ = 0.03, efisiensi hasil komputasi memiliki selisih yang cukup besar dengan efisiensi hasil eksperimen.

Pada Gb.4.21 dan Gb.4.22 terlihat perubahan efisiensi energi yang sangat signifikan antara keadaan tanpa kontrol aktif aliran (*suction* dan *blowing*) dengan saat diaplikasikannya kontrol aktif ($U_{AC}/U_0 = 0.03$). Sedangkan untuk variasi kecepatan berikutnya ($U_{AC}/U_0 = 0.06$ dan 0.09) tidak mengalami perubahan yang sangat signifikan seperti variasi kecepatan yang sebelumnya. Hal ini membuat variasi kecepatan saat $U_{AC}/U_0 < 0.03$ menjadi penting untuk diinvestigasi juga sehingga didapatkan perubahan tersebut akan dijadikan acuan dan sangat mempengaruhi besaran efisiensi energi kontrol aktif untuk variasi kecepatan berikutnya.

Gambar 4.21 Efisiensi energi penggunaan kontrol aktif *suction* pada *van model* dari hasil pendekatan komputasi dan eksperimen

Gambar 4.22 Efisiensi energi penggunaan kontrol aktif *blowing* pada *van model* dari hasil pendekatan komputasi dan eksperimen

Analisa pengaruh..., Sabar Pangijutan Simanungkalit, FT UI, 2012.

Pada gambar efisiensi energi kontrol aktif aliran *suction* dan *blowing*, terlihat bahwa efisiensi akan menurun seiring dengan meningkatnya kecepatan kontrol aktif, karena semakin tinggi kecepatan kontrol aktif maka akan semakin besar energi yang dibutuhkan oleh aktuatornya. Hasil yang didapatkan diperkuat oleh hasil yang sudah dilakukan pada penelitian sebelumnya (Roumeas, M., Gillieron, P. *and* Kourta, A., 2008). Penelitian tersebut menggunakan model *Ahmed body* orisinal dengan variasi kecepatan kontrol aktif *suction* $U_{SC}/U_0 =$ 0.375, 0.6, 1 dan 1.5. Mereka mendapatkan efisiensi tertinggi = 41 pada kondisi $U_{SC}/U_0 = 0.375$.

4.6. Peluang Efisiensi Bahan Bakar dan Pengurangan Emisi

Dari hasil penelitian ini, terlihat bahwa penempatan kontrol aktif aliran *suction* pada kondisi $U_{SC}/U_0 = 0.03$ menyebabkan terjadinya pengurangan *drag* yang paling besar pada model uji yakni 21.91%. Data pengurangan *drag* tersebut akan diaplikasikan untuk menghitung peluang peningkatan efisiensi bahan bakar pada kendaraan keluarga yang sesungguhnya, dan kendaraan keluarga yang digunakan adalah Suzuki APV (Gb.4.23). Suzuki APV merupakan salah satu jenis kendaraan keluarga yang populer di Indonesia dan dianggap dapat mewakili bentuk model uji (*van model*) yang digunakan dalam penelitian ini dengan mengabaikan perbedaan besaran C_D yang ada. Suzuki APV termasuk kendaraan jenis *van* yang memiliki C_D = 0.33 s/d 0.35 (Gillespie, 1992), dengan berat = 1950 kg dan luas penampang *frontal* = 1.5m² (*www.road –tests.com*, 2010).

Gambar 4.23 Kendaraan keluarga Suzuki APV (www.road -tests.com, 2010)

Sesuai dengan pers. (2.8) dan (2.9) maka besarnya energi traksi Suzuki APV saat melaju selama 10 jam dengan kecepatan rata-rata 16.7 m/s adalah 311.5 MJoule dan berdasarkan grafik pada Gb.2.12 konsumsi bahan bakar adalah sebesar 24.5 liter. Jika diasumsikan dengan penempatan kontrol aktif aliran *suction* $(U_{SC}/U_0 = 0.03)$ menyebabkan terjadinya pengurangan *drag* sebesar 21.91% pada kendaraan ini, maka konsumsi bahan bakarnya akan berkurang menjadi 22.5 liter atau turun sekitar 8%. Karena jumlah konsumsi bahan bakar sebanding dengan kadar emisi pada kendaraan, maka dapat diasumsikan bahwa dengan penambahan kontrol aktif aliran *suction* $(U_{SC}/U_0 = 0.03)$ menyebabkan terjadi 175 gr/km.

BAB 5 PENUTUP

5.1. Kesimpulan

Berdasarkan hasil yang didapatkan dalam penelitian ini baik secara komputasi dan eksperimen, maka penulis dapat menyimpulkan bahwa :

- 1. Penempatan kontrol aktif aliran berupa *suction* dan *blowing* pada *van model* menyebabkan :
 - a. Terjadinya peningkatan nilai koefisien tekanan (C_P) di bagian belakang *van model*, terutama di sekitar lokasi ditempatkannya kontrol aktif tersebut. Nilai koefisien tekanan naik maksimum di z = 0 (y/h = 1).
 - b. Turunnya nilai intensitas turbulensi (IT) di bagian belakang van model, terutama di sekitar lokasi ditempatkannya kontrol aktif tersebut ($z/w = \frac{1}{2} dan -\frac{1}{2}$).
 - c. Bergesernya posisi titik pusat aliran balik F1 dan F2 ke arah kanan di sepanjang sumbu-x (menjauhi permukaan bagian belakang van model) dan ke arah bawah di sepanjang sumbu-y (mendekati permukaan bawah seksi uji). Sementara itu panjang daerah resirkulasi di bagian belakang model uji megalami peningkatan, dan posisi saddle point (S) bergeser ke arah sumbu-y negatif.
 - d. Turunnya besaran nilai koefisien *drag* pada model uji, yang pada akhirnya mengurangi gaya *drag* aerodinamika yang dialami model uji.
- 2. Efisiensi energi kontrol aktif aliran pada setiap variasi kecepatan dalam penelitian ini (U_{SC} dan $U_{BL} = 0.03$, 0.06, 0.09) sangat tinggi dan efisiensi energi kontrol aktif aliran akan menurun seiring dengan meningkatnya kecepatan kontrol aktif itu sendiri.
- Penerapan kontrol aktif aliran berpeluang besar untuk mengurangi gaya drag aerodinamika pada kendaraan keluarga dan pada akhirnya bisa meningkatkan efisiensi bahan bakar serta mengurangi emisi.

5.2. Saran

Penulis berharap penelitian ini dapat dilanjutkan dan disempurnakan lagi oleh mahasiswa Departemen Teknik Mesin FT-UI dengan saran-saran sebagai berikut :

- 1. Meningkatkan akurasi dalam pendekatan simulasi CFD.
- 2. Memperbanyak variasi kecepatan kontrol aktif aliran dengan kecepatan *upstream*, terutama saat $U_{AC}/U_0 < 0.03$, serta melihat pengaruhnya.
- 3. Mengembangkan teknologi kontrol aktif aliran hingga ke tahap aplikasi dalam dunia otomotif.

DAFTAR PUSTAKA

- Ahmed S.R., G. Ramm & G. Faltin (1984). Some salient features of the timeaveraged ground vehicle wake, SAE technical paper series, no. 840300, Detroit.
- Aider, J. L., Beaudoin, F. F. & Wesfreid, J. E., (2009). Drag and lift reduction of a 3D bluff-body using active vortex generator. Journal of Experimental Fluids. 9 (2009) 365-379.
- Anderson, J.D. (2001). Fundamental of Aerodynamics (3rd ed.). Singapore:McGraw-Hill.
- Badan Pusat Statistik (Februari 08,2012). Perkembangan Jumlah Kendaraan Bermotor Menurut Jenis tahun 1987- 2009. Mei 13,2012. <u>http://www.bps.go.id/tab_sub/view.php?tabel=1&daftar=1&id_subyek=17¬ab=12</u>.
- Car body design (May 14, 2009). Volkswagen New Polo. Mei 20, 2012. http://www.carbodydesign.com/gallery/2009/05/14-volkswagen-polo/22/
- Conan B., Anthoine J., & Planquart P., 2011, Experimental aerodynamic study of a car-type bluff body, Experimental in Fluids, 50, pp. 1273–1284.
- Cortana Corporation. Description of Drag. Mei 20, 2012.

http://www.cortana.com/Drag_Description.htm

- Fieldler, H. E., & Fernholz, H. H., 1990, "On Management and Control of Turbulent Shear Flows", Prog. Aerospace Sci. 27, pp. 305-387.
- Gad-El-Hak, M., (1996) Modern developments in flow control. Appeared in Applied Mechanics Reviews, vol.49, pp. 365–379.
- Gerop, D. & Odhenthal, H.J., (2000) Drag reduction of motor vehicles by active flow control using the Coanda effect. Springer-Verlag, Experiments in Fluids, 28, pp. 74-85.
- Gillespie, T.D., (1992).Fundamentals of Vehicle Dynamics. Society of Automotive Engineer.Inc.
- Gillieron, P. & Chometon, F., (1999) Modelling of stationary three-dimensional detached airflows around an Ahmed Reference Body, International Workshop on Vortex, 3, ESAIM, Proceedings 7, pp.173-182.

Universitas Indonesia

- Khalighi B., Zhang, S., Koromilas C., Balkanyi,S.R., Bernal, L.P., Iaccarino, G. & Moin, P., (2001). Experimental and Computational Study of unsteady Wake Flow behind a Bluff Body with a Drag Reduction Device, SAE SP-1600, Detroit, Michigan.
- Kourta, A. & Gillieron, P., (2009) Impact of the automotive aerodynamic control on the economics issues. Journal of Applied Fluid Mechanics, 2, pp. 69-75.
- Lehugeur B. & P. Gilliéron (2006, April). Drag reduction by active control of Apillar vortex breakdown on a simplified car geometry, European Drag Reduction and Flow Control Meeting, Ischia, Italy.
- Munson, B. (2002). Mekanika Fluida (Harinaldi & Budiarso, Penerjemah). Jakarta:Erlangga.
- Oak Ridge Natinal Laboratory, 2011. Large Scale Duty Cycle (LSDC) Project: Tractive Energy Analysis Methodology and Results from Long-Haul Truck Drive Cycle Evaluations. U.S. Department of Energy.
- Pasal 21 Undang-undang Republik Indonesia Nomor 22 Tahun 2009 tentang lalulintas dan Angkutan Jalan.
- Raffel, M., Willert, C., Wereley, S. & Kompenhans, J., (2007). Particle Image Velocimetry A Practical Guide, Second Edition, Springer, New York.
- ROAD-TESTS.com. APV-SUZUKI. Mei 20, 2012.

www.road-tests.com/test_files/pdf/Suzuki_APV.pdf

- Rouméas M., Gilliéron P. & Kourta A., 2008, Separated flows around the rear window of a simplified car geometry, Journal of Fluid Engineering, Feb 2008 (JFE_06_1229).
- Roumeas M., Gillieron P., & Kourta A (2008). Drag reduction by flow separation control on a car after body. Int. J. Numer. Meth. Fluids 2009; 60:1222–1240.
- Roumeas M., Gillieron P., & Kourta A (2009) Analysis and control of the nearwake flow over a square-back geometry. Computers & Fluids 38 (2009) 60–70.

- Rouméas M., Gilliéron P., & Kourta A., (2005, June) Analyze and control of the near-wake flow over simplified car geometry, 4th Conference on Bluff Body Wakes and Vortex-Induced, Vibrations (BBVIV4), Santorin, Greece.
- Uruba V, Hladik O. (2009). On the Ahmed Body Wake. Colloquium FLUID DYNAMICS 2009 Institue of Thermomechanics AS CR, v.v.i.v Prague, October 21-23.

LAMPIRAN A Publikasi Karya Ilmiah

A. International Journal

- Harinaldi, Budiarso, Rustan Tarakka, Sabar P. Simanungkalit, 2011, Computasional Analysis of Active Control to Reduce Aerodynamics Drag on a Van Model, International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS, Juni, Volume 11 Issue 03, pp. 24-30.
- Harinaldi, Budiarso, Warjito, Engkos A Kosasih, Rustan Tarakka, Sabar P. Simanungkalit, 2012, Active Technique by Suction to Control the Flow Structure over a Van Model, Journal of Engineering and Applied Sciences, February, Volume 7, Number 2, pp. 215-222.
- Harinaldi, Budiarso, Rustan Tarakka, Sabar P. Simanungkalit, 2012, *Effect of Active Control by Blowing To Aerodynamic Drag of Bluff Body Van Model*, International Journal of Fluid Mechanics Research, Begell House (dalam proses review).

B. International Conference

 Harinaldi, Budiarso, Warjito, Engkos A Kosasih, Rustan Tarakka, Sabar P. Simanungkalit, 2011, Active Technique by Suction to Control the Flow Structure over a Van Model, Joint Poster Session for Ph.D Student in Invitation Program for East Asian Young Researchers, Tokyo Metropolitan University, Tokyo, Japan, October 6.

C. Jurnal Nasional

 Harinaldi, Budiarso, Warjito, Engkos Achmad Kosasih, Rustan Tarakka, Sabar Pangihutan Simanungkalit, I Gusti Made Fredy Lay Teryanto, 2012, *Modification of Flow Structure over a Van Model by Suction Flow Control to Reduce Aerodynamics Drag*, Jurnal Makara Seri Teknologi, Terakreditasi No. 110/Dikti/Kep/2009, Depok, Volume 16, Nomor 1, April.pp. 15-21.

D. Seminar Nasional

- Harinaldi, Budiarso, Rustan Tarakka, Sabar P. Simanungkalit, 2011, Pengaruh Model Turbulensi pada Analisis Komputasi Kontrol Aktif Aliran terhadap Drag Aerodinamika Reversed Ahmed Body, Seminar Nasional Tahunan Teknik Mesin (SNTTM) ke-10, Malang, 2-3 November.
- Harinaldi, Budiarso, Rustan Tarakka, Sabar P. Simanungkalit, 2012, Analisis Pengaruh Kontrol Aktif Aliran Blowing terhadap Pengurangan Drag Aerodinamika Van Model, Seminar Nasional Teknologi Industri (SNTI) 2012, Jakarta, 28 Juni.

LAMPIRAN B

Data Komputasi (CFD) Static Pressure Rear Window Van Model (φ =35°) U0 = 16.7 m/s

Tan	Tanpa Kontrol Aktif Aliran										
No	Lokasi Pressure Tap	z/W =	-1/2	z/W = ·	-1/4	z /W=	= 0	z/W =	1/4	z/W=1	L/2
NO	(y/H)	P (pa)	Ср	P (pa)	Ср	P (pa)	Ср	P (pa)	Ср	P (pa)	Ср
1	1.00	-219.289	-1.171	-214.811	-1.145	-250.635	-1.356	-196.900	-1.040	-174.510	-0.908
2	0.93	-210.334	-1.119	-246.157	-1.329	-219.289	-1.171	-214 .811	-1.145	-147.643	-0.750
3	0.87	-183.466	-0.961	-192.422	-1.013	-170.032	-0.882	-152.121	-0.777	-125.253	-0.619
4	0.80	-138.687	-0.698	-138.687	-0.698	-116.298	-0.566	-93.908	-0.434	-80.474	-0.355
5	0.73	-93.908	-0.434	-93.908	-0.434	-75.996	-0.329	-58.085	-0.224	-35.695	-0.092
6	0.67	-62.563	-0.250	-62.563	- 0 .250	-44.651	-0.145	-35.695	-0.092	-31.217	-0.066
7	0.60	-62.563	-0.2 50	-49.129	-0.171	-31.217	-0.066	-31.217	-0.066	-26.740	-0.040
8	0.53	-53.607	-0 .198	-31.217	-0.066	-26.740	-0.04 0	-31.217	-0.066	-31.217	-0.066
9	0.47	-44.651	-0.145	-31.217	-0.066	-22.262	-0.013	-31.217	-0.066	-31.217	-0.066
10	0.40	-35.695	-0.092	-22.262	-0.013	-22.262	-0.013	-31.217	-0.066	-35.695	-0.092
11	0.33	-31.217	-0.066	-22.262	-0.013	-17.784	0.013	-26.740	-0.040	-35.695	-0.092
12	0.27	-26.740	-0.040	-17.784	0.013	-22.262	-0.013	-35.695	-0.092	-40.173	-0.119
13	0.20	-26.740	-0.040	-22.262	- 0 .013	-26.740	-0 .040	-49.129	-0.171	-49.129	-0.171
14	0.13	-26.740	-0.040	-26.740	-0.040	-49.129	-0.171	-62.563	-0.250	-53.607	-0.198
15	0.07	-31.217	-0.066	-35.695	-0.092	-62.563	-0.250	-67.041	-0.276	-62.563	-0.250
		min	-1.171	min	-1.329	min	-1.356	min	-1.145	min	-0.908

No	Lokasi Pressure Tap	z/W = ·	-1/2	z/W = ·	-1/4	z /W=	= 0	z/W = 1/4		z/W=1/2	
NO	(y/H)	P (pa)	Ср	P (pa)	Ср	P (pa)	Ср	P (pa)	Ср	P (pa)	Ср
1	1.00			-187.350	-0.984	-156.523	-0.802	-182.946	-0.958		
2	0.92	Suction C	Suction 0.5m/s		-0.906	-143.311	-0.725	-160.927	-0.828	Suction ().5m/s
3	0.83			-99.272	-0.466	-90.465	-0.414	-86.061	-0.388		
4	0.75	-28.810	-0.052	-46.426	-0.155	-50.830	-0.181	-33.214	-0.078	-24.406	-0.026
5	0.67	-28.810	-0.052	-28.810	-0.052	-33.214	-0.078	-28.810	-0.052	-24.406	-0.026
6	0.58	-28.810	-0.052	-24.406	-0.026	-24.406	-0.026	-28.810	-0.052	-24.406	-0.026
7	0.50	-28.810	-0.052	-24.406	-0.026	-24.406	-0.026	-24.406	-0.026	-28.810	-0.052
8	0.42	-55.233	-0.207	-24.406	-0.026	-20.002	0.000	- 2 4.406	-0.026	-37.618	-0.104
9	0.33	-68.445	-0.285	-28.810	-0.052	-20.002	0.000	-24.406	-0.026	-59.637	-0.233
10	0.25	-90.465	-0.414	-50.830	-0.181	-33.214	-0.078	-46.426	-0.155	-81.657	-0.362
		min	-0.414	min	-0.984	min	-0.802	min	-0.958	min	-0.362

Suction 0.5 m/s

Suction 1 m/s z/W = -1/2 z/W = -1/4 z/W = 0

No	Lokasi Pressure Tap	z/W = -	-1/2	z/W = -	-1/4	z /W= 0		z/W =	1/4	z/W=1	1/2
NO	(y/H)	P (pa)	Ср	P (pa)	Ср	P (pa)	Ср	P (pa)	Ср	P (pa)	Ср
1	1.00			-191.781	-1.010	-160.962	-0.829	-187.378	-0.984		
2	0.92	Suction	1m/s	-178.573	-0.932	-147.753	-0.751	-169.767	-0.880	Suction	1m/s
3	0.83			-103.726	-0.492	-94.920	- 0.44 0	-94.920	-0.440		
4	0.75	-28.879	-0.052	-46.490	- 0. 156	-50.892	-0 .182	-37.684	-0.104	-24.476	-0.026
5	0.67	-28.879	-0.052	-28.879	-0.052	-33.281	-0.078	-24.476	-0.026	-24.476	-0.026
6	0.58	-28.879	-0.052	-28.879	-0.052	-24.476	-0.026	-24.476	-0.026	-24.476	-0.026
7	0.50	-28.879	-0.052	-24.476	-0.026	-24.476	-0.026	-24.476	-0.026	-28.879	-0.052
8	0.42	-55.295	-0.207	-20.073	0.000	-20.073	0.000	-24.476	-0.026	-33.281	-0.078
9	0.33	-64.101	-0.259	-28.879	-0.052	-20.073	0.000	-24.476	-0.026	-59.698	-0.233
10	0.25	-86.115	-0.389	-50.892	-0.182	-33.281	-0.078	-46.490	-0.156	-81.712	-0.363
		min	-0.389	min	-1.010	min	-0.829	min	-0.984	min	-0.363

No	Lokasi Pressure Tap z/		-1/2	z/W =	-1/4	z /W= 0		z/W = 1/4		z/W=1/2	
NO	(y/H)	P (pa)	Ср	P (pa)	Ср	P (pa)	Ср	P (pa)	Ср	P (pa)	Ср
1	1.00			-187.422	-0.984	-152.207	-0.777	-178.618	-0.932		
2	0.92	Suction 1	L.5m/s	-108.187	-0.518	-99.383	-0.467	-99.383	-0.467	Suction 1	5m/s
3	0.83			-50.961	-0.182	-50.961	-0.182	-42.158	-0.130		
4	0.75	-33.354	-0.078	-33.354	-0.078	-28.952	-0.053	-28.952	-0.053	-24.550	-0.027
5	0.67	-33.354	-0.078	-28.952	- 0 .053	-24.550	-0.027	-20.148	-0.001	-24.550	-0.027
6	0.58	-28.952	-0.053	-24.550	-0.027	-20.148	-0.001	-20.148	-0.001	-24.550	-0.027
7	0.50	-28.952	-0.053	-20.148	-0.001	-15.746	0.025	-24.550	-0.027	-28.952	-0.053
8	0.42	-46.560	-0.156	-24.550	-0.027	-20.148	-0.001	- 2 4.550	-0.027	-33.354	-0.078
9	0.33	-59.765	-0.234	-46.560	-0.156	-33.354	-0.078	-46.560	-0.156	-55.363	-0.208
10	0.25	-81.775	-0.363	-72.971	-0.311	-72.971	-0.311	-64.167	-0.260	-77.373	-0.337
		-0.363	min	-0.984	min	-0.777	min	-0.932	min	-0.337	

Blov	Blowing 0.5 m/s										
No	Lokasi Pressure Tap	z/W = ·	·1/2	z/W = -1		1/4 z /W		z/W = 1/4		z/W=2	1/2
NO	(y/H)	P (pa)	Ср	P (pa)	Ср	P (pa)	Ср	P (pa)	Ср	P (pa)	Ср
1	1.00			-178.482	-0.931	-147.650	-0.750	-169.672	-0.880		
2	0.92	Blowing ().5m/s	-160.863	-0.828	-134.436	-0.673	-147.650	-0.750	Blowing ().5m/s
3	0.83			-85.985	-0.388	-85.985	-0.388	-77.176	-0.336		
4	0.75	-24.321	-0.025	-37.535	-0.103	-46.344	- 0.15 5	-33.130	-0.077	-24.321	-0.025
5	0.67	-28.726	-0.051	-24.321	- 0 .025	-33.130	-0 .077	-28.726	-0.051	-24.321	-0.025
6	0.58	-28.726	-0.051	-24.321	-0.025	-28.726	-0.051	-28.726	-0.051	-28.726	-0.051
7	0.50	-28.726	-0.051	-24.321	-0.025	-24.321	-0.025	-28.726	-0.051	-33.130	-0.077
8	0.42	-59.558	-0.233	-24.321	-0.025	-19.917	0.000	-24.321	-0.025	-37.535	-0.103
9	0.33	-72.772	-0.310	-33.130	-0.077	-24.321	-0.025	-28.726	-0.051	-59.558	-0.233
10	0.25	-94.795	-0.440	-55.153	-0.207	-37.535	-0.103	-46.344	-0.155	-85.985	-0.388
		min	-0.440	min	-0.931	min	-0.750	min	-0.880	min	-0.388

Blov	ving 1 m/s	1									
No	Lokasi Pressure Tap	z/W = ·	-1/2	z/W = ·	-1/4	z /W= 0		z/W = 1/4		z/W=1/2	
NU	(y/H)	P (pa)	Ср	P (pa)	Ср	P (pa)	Ср	P (pa)	Ср	P (pa)	Ср
1	1.00			-165.396	-0.855	-138.964	-0.699	-160.991	-0.829		
2	0.92	Blowing	1m/s	-147.774	-0.751	-125.747	-0.622	-68.477	-0.285	Blowing	1m/s
3	0.83			-72.883	-0.311	-77.288	-0.337	-28.829	-0.052		
4	0.75	-20.018	0.000	-28.829	-0.052	-42.045	-0.130	-24.423	-0.026	-20.018	0.000
5	0.67	-24.423	-0.026	-20.018	0.000	-28.829	-0.052	-28.829	-0.052	-20.018	0.000
6	0.58	-28.829	-0.052	-20.018	0.000	-24.423	-0.026	-24.423	-0.026	-24.423	-0.026
7	0.50	-28.829	-0.052	-20.018	0.000	-20.018	0.000	-20.018	0.000	-28.829	-0.052
8	0.42	-55.261	-0.207	-20.018	0.000	-20.018	0.000	- 2 0.018	0.000	-33.234	-0.078
9	0.33	-72.883	-0.311	-28.829	-0.052	-20.018	0.000	-24.423	-0.026	-59.666	-0.233
10	0.25	-94.910	-0.440	-55.261	-0.207	-37.639	-0.104	-46.450	-0.155	-81.693	-0.363
	min -0.44			min	-0.855	min -0.699		.699 min -0.829		min	-0.363
-											

Blow	/ing 1.5 m/s										
No	Lokasi Pressure Tap	z/W = -	-1/2	z/W = ·	-1/4	z /W=	= 0	z/W = 1/4		z/W=1/2	
NO	(y/H)	P (pa)	Ср	P (pa)	Ср	P (pa)	Ср	P (pa)	Ср	P (pa)	Ср
1	1.00			-165.094	-0.853	-138.665	-0.697	-160.689	-0.827		
2	0.92	Blowing	L.5m/s	-143.070	-0.723	-125.450	-0.620	-138.665	-0.697	Blowing 1	1.5m/s
3	0.83			-72.592	-0.309	-76.997	-0.3 35	-72.592	-0.309		
4	0.75	-28.544	-0.050	-32.949	- 0. 076	-41.759	-0.128	-32.949	-0.076	-28.544	-0.050
5	0.67	-28.544	-0.050	-24.139	-0.024	-32.949	-0.076	-32.949	-0.076	-28.544	-0.050
6	0.58	-32.949	-0.076	-24.139	-0.024	-28.544	-0.050	-32.949	-0.076	-28.544	-0.050
7	0.50	-32.949	-0.076	-24.139	-0.024	-24.139	-0.024	-28.544	-0.050	-32.949	-0.076
8	0.42	-59.378	-0.231	-28.544	-0.050	-24.139	-0.024	-28.544	-0.050	-37.354	-0.102
9	0.33	-76.997	-0.335	-37.354	-0.102	-28.544	-0.050	-28.544	-0.050	-63.783	-0.257
10	0.25	-99.021	-0.464	-59.378	-0.231	-41.759	-0.128	-50.568	-0.180	-85.807	-0.387
		min	-0.464	min	-0.853	min	-0.697	min	-0.827	min	-0.387

min -0.464 min -0.853 min

-0.827 min

LAMPIRAN C

Data Komputasi (CFD) Turbulence Intensity Rear Window Van Model (φ =35°) U0 = 16.7 m/s

Tan	ipa Kontrol Aktif Aliran											
No	Lokasi Pressure Tap	z/W	= -1/2	z/W	/ = -1/4	z /	W= 0	z/W	/ = 1/4	z/V	V=1/2	
NO	(y/H)	TI (%)	TI	TI (%)	TI	TI (%)	TI	TI (%)	TI	TI (%)	TI	
1	1.00	1.3487	134.8 677	1.2736	127.3566	1.3487	134.8677	1.2 360	123.6010	1.3111	131.11 <mark>21</mark>	
2	0.93	1.4989	149.8899	1.3487	134.8677	1.3487	134.8677	1.3111	131.1121	1.4238	142.3788	
3	0.87	1.6116	161.1565	1.3862	138.6 232	1.3487	134.8677	1.3111	131.1121	1.4238	142.3788	
4	0.80	1.8369	183.6898	1.4238	142.3788	1.3111	131.1121	1.3111	131.1121	1.5740	157.400 <mark>9</mark>	
5	0.73	1.9871	198.7120	1.3862	138.6232	1.3111	131. 1121	1.3111	131.1121	1.3862	138.623 <mark>2</mark>	
6	0.67	1.7618	176.1787	1.3487	134.8677	1.1985	119.8455	1.4238	142.3788	0.7853	78.5344	
7	0.60	1.5740	157.4009	1.3111	1 31.11 2 1	1.0482	104.8233	1.3111	131.1121	0.6351	63.512 2	
8	0.53	1.1609	116.0899	1.1233	112.3344	0.9356	93.5566	1.0107	101.0677	0.6351	63.512 2	
9	0.47	1.0482	104.8233	1.0482	104.8233	0.8605	86.0455	1.0107	101.0677	0.5976	59.756 7	
10	0.40	1.0858	108.5788	0.8980	89.8011	1.0482	104.8233	0.8229	82.2900	0.7478	74.7789	
11	0.33	1.0858	108.5788	0.8980	89.8011	1.0482	104.8233	0.7102	71.0233	0.7102	71.0233	
12	0.27	1.0107	101.0677	0.8605	86.0455	0.8980	89.8011	0.7102	71.0233	0.7478	74.7789	
13	0.20	0.8605	86.0455	0.8980	89.8011	0.7478	74.7789	0.7478	74.7789	0.7853	78.5344	
14	0.13	0.8229	82.2900	0.8229	82.2900	0.7102	71.02 33	0.7102	71.0233	0.8229	82.2900	
15	0.07	0.8605	86.0455	0.7102	71.0233	0.6727	67.2678	0.7102	71.0233	0.8980	89.8011	
		1.9871	max	1.4238	1.4238 max		1.3487 max		1.4238 max		1.5740 max	
		1.3036	ave	1.1158	ave	1.0557	ave	1.0432	ave	0.9656	ave	

Suction	າ 0.5 m	i/s
---------	---------	-----

No	Lokasi Pressure Tap	z/W	′ = -1/2	z/W	/ = -1/4	z /	W= 0	z/W	/ = 1/4	z/V	V=1/2	
NU	(y/H)	TI (%)	TI	TI (%)	TI	TI (%)	TI	TI (%)	TI	TI (%)	TI	
1	1.00			1.3998	139.9797	1.2183	121.8297	1.6176	161.7596			
2	0.92	Suctio	n 0.5m/s	1.6902	169.0196	1.2909	129.0897	1.5813	158.1296	Suctio	n 0.5m/s	
3	0.83			1.5087	150.8696	1.2909	129.0897	1.5813	158.1296			
4	0.75	1.0368	103.6798	1.3998	139.9797	1.2546	125.4 597	1.5813	158.1296	0.7464	74.639 <mark>9</mark>	
5	0.67	0.9642	96.4198	1.5813	158.129 6	1.1457	114.5698	1.0368	103.6798	0.7827	78.269 <mark>9</mark>	
6	0.58	0.8916	89.15 9 8	1.1820	118.1997	1.0731	107.3098	0.8553	85.5298	0.7464	74.639 <mark>9</mark>	
7	0.50	0.9279	92.7898	1.0005	100.0498	0.9279	92.7898	0.8553	85.5298	0.8553	85.529 <mark>8</mark>	
8	0.42	1.1820	118.1997	1.0005	100.0498	0.9279	92.7898	0.9279	92.7898	0.8916	89.159 <mark>8</mark>	
9	0.33	1.1820	118.1997	0.9642	96.4 198	1.1094	110.9398	0.9279	92.7898	0.9279	92.789 <mark>8</mark>	
10	0.25	1.0368	103.6798	0.8916	89.1598	0.8553	85.5298	0.8190	81.8998	0.8916	89.159 <mark>8</mark>	
		1.1820	max	1.6902	max	1.2909	max	1.6176	max	0.9279	max	
		ave	1.2619	ave	1.1094 ave		1.1784 ave		0.8346 ave			
Suct	ion 1 m/s											

Suction 1 m/s

No	Lokasi Pressure Tap	z/W	/ = -1/2	z/W	= -1/4	z /	W= 0	z/W	/ = 1/4	z/V	V=1/2
NO	(y/H)	TI (%)	TI	TI (%)	TI	TI (%)	Ŧ	TI (%)	TI	TI (%)	TI
1	1.00			1.3741	137.4084	1.2275	122.7462	1.6307	163.0672		
2	0.92	Sucti	on 1m/s	1.7040	170.3983	1.2641	126.4118	1.5940	159.4017	Sucti	on 1m/s
3	0.83			1.5207	152.0706	1.3008	130.0773	1.5574	155.7362		
4	0.75	0.9709	97.0874	1.4107	141.0740	1.2641	126.41 18	1.5940	159.4017	0.7143	71.4286
5	0.67	0.9709	97.0874	1.5574	155.7362	1.1542	115.4152	1.2275	122.7462	0.7876	78.759 7
6	0.58	0.8976	89.7563	1.1542	115.415 2	1.0442	104.4185	0.8976	89.7563	0.7143	71.4286
7	0.50	0.8976	89.7563	0.9709	97.0874	0.9342	93.4219	0.8609	86.0908	0.8243	82.425 2
8	0.42	1.1542	115.4152	0.9709	97.0874	0.8976	89.7563	0.9342	93.4219	0.8609	86.09 08
9	0.33	1.1542	115.4152	0.9709	97.0874	1.0808	108.0841	0.8976	89.7563	0.9342	93.421 <mark>9</mark>
10	0.25	1.0075	100.7530	0.8609	86.0908	0.8609	86.0908	0.7876	78.7597	0.8976	89.756 3
		1.1542 max		1.7040 max		1.3008 max		1.6307 max		0.9342	max
		1.0075	ave	1.2495	ave	1.1028	ave	1.1981	ave	0.8190	ave

Suction	1.5	m/	's
---------	-----	----	----

No	Lokasi Pressure Tap	z/W	′ = -1/2	z/W	′ = -1/4	z /	W= 0	z/W	/ = 1/4	z/V	V=1/2
NO	(y/H)	TI (%)	TI	TI (%)	TI	TI (%)	TI	TI (%)	TI	TI (%)	TI
1	1.00			1.7050	170.5023	1.3017	130.1734	1.5950	159.5035		
2	0.92	Suctio	n 1.5m/s	1.5217	152.1710	1.3017	130.1734	1.5584	155.8372	Suctio	n 1.5m/s
3	0.83			1.4117	141.1722	1.2651	126.5072	1.5950	159.5035		
4	0.75	0.9351	93.5109	1.5950	159.5035	1.0818	108.1759	1.6684	166.8360	0.7885	78.845 <mark>9</mark>
5	0.67	1.0084	100.8434	1.2284	1 22.840 9	1.0084	100.8434	0.9351	93.5109	0.8251	82.512 1
6	0.58	0.9718	97.1772	0.9718	97.1772	0.9351	93.5109	0.8984	89.8446	0.7151	71.5134
7	0.50	0.9351	93.5109	0.9351	93.5109	0.9718	97.1772	0.8 984	89.8446	0.7885	78.845 <mark>9</mark>
8	0.42	1.0818	108.1759	1.0818	108.1759	1.0084	100.8434	0.8618	86.1784	0.8618	86.1784
9	0.33	1.0818	108.1759	0.8618	86.1 784	0.8251	82.5121	0.7885	78.8459	0.9351	93.510 <mark>9</mark>
10	0.25	1.0084	100.8434	0.7885	78.8459	0.7518	75.1796	0.7885	78.8459	0.8618	86.1784
		1.0818	max	1.7050	max	1.3017	max	1.6684	max	0.9351	max
		1.0032	ave	1.2101 ave		1.0451 ave		1.1588 ave		0.8251	ave
Blow	/ing 0.5 m/s										

Blowing 0.5 m/s

No	Lokasi Pressure Tap	z/W	/ = -1/2	z/W	= -1/4	z /	′W= 0	z/W	/ = 1/4	z/V	V=1/2
NO	(y/H)	TI (%)	TI	TI (%)	TI	TI (%)	T	TI (%)	TI	TI (%)	TI
1	1.00			1.3537	135.3658	1.2153	121.5338	1.6303	163.0300		
2	0.92	Blowir	ng 0.5m/s	1.6649	166.4880	1.2499	124.9918	1.5611	156.1140	Blowir	ng 0.5m/s
3	0.83			1.5266	152.6559	1.2845	128.4498	1.5957	159.5720		
4	0.75	1.0770	107.7017	1.3191	131.9078	1.2499	124.9 918	1.4920	149.1979	0.7658	76.579 <mark>5</mark>
5	0.67	0.9387	93.8696	1.0424	104.2437	1.1808	118.0757	0.8350	83.4955	0.8004	80.0375
6	0.58	0.8695	86.9536	1.0770	107.7017	1.0770	107.7017	0.8350	83.4955	0.7658	76.579 <mark>5</mark>
7	0.50	0.9041	90.4116	0.9387	93.8696	0.9733	97.3276	0.8350	83.4955	0.8695	86.953 <mark>6</mark>
8	0.42	1.2153	121.5338	1.0079	100.7856	0.9041	90.4116	0.9733	97.3276	0.9041	90.411 <mark>6</mark>
9	0.33	1.2499	124.9918	0.9387	93.8696	1.0079	100.7856	0.9733	97.3276	0.9733	97.3276
10	0.25	1.0424	104.2437	0.9041	90.4116	0.8350	83.4955	0.8350	83.4955	0.9041	90.411 <mark>6</mark>
		1.2499 max		1.6649 max		1.2845 max		1.6303 max		0.9733	max
		1.0424	ave	1.1773	ave	1.0978	ave	1.1566	ave	0.8547	ave

Blowing	1	m	/s
---------	---	---	----

No	Lokasi Pressure Tap	z/W	/ = -1/2	z/W	/ = -1/4	z /	W= 0	z/W	/ = 1/4	z/V	V=1/2
NO	(y/H)	TI (%)	TI	TI (%)	TI	TI (%)	TI	TI (%)	TI	TI (%)	TI
1	1.00			1.3532	135.3185	1.2148	121.4816	1.6299	162.9923		
2	0.92	Blowi	ng 1m/s	1.6299	162.99 23	1.2494	124.9409	1.5607	156.0739	Blow	ing 1m/s
3	0.83			1.5261	152.6146	1.2840	128.4001	1.5953	159.5331		
4	0.75	1.1110	111.1040	1.2840	128.4001	1.2494	124.9 409	1.4570	145.6962	0.7651	76.511 <mark>7</mark>
5	0.67	0.9035	90.3486	0.9381	93.8079	1.1802	118.0224	0.8343	83.4302	0.8343	83.430 <mark>2</mark>
6	0.58	0.8343	83.4302	0.9727	97.2671	1.1802	118.0224	0.8689	86.8894	0.7651	76.511 <mark>7</mark>
7	0.50	0.9035	90.3486	0.8689	86.8894	1.0764	107.6448	0.8343	83.4302	0.8689	86.8894
8	0.42	1.2494	124.9409	0.8689	86.8894	0.9727	97.2671	1.0073	100.7263	0.9381	93.807 <mark>9</mark>
9	0.33	1.2840	128.4001	0.9381	93.80 79	0.9035	90.3486	1.0073	100.7263	0.9727	97.2671
10	0.25	1.0764	107.6448	0.9035	90.3486	0.8689	86.8894	0.8343	83.4302	0.9035	90.3486
		1.2840	max	1.6299	max	1.2840	max	1.6299	max	0.9727	max
		1.0517	ave	1.1283	ave	1.1180	ave	1.1629	ave	0.8640	ave
Blow	/ing 1.5 m/s										

Blowing 1.5 m/s

No	Lokasi Pressure Tap	z/W	/ = -1/2	z/W	= -1/4	z /	W= 0	z/W	/ = 1/4	z/V	V=1/2
NO	(y/H)	TI (%)	TI	TI (%)	TI	TI (%)	Ŧ	TI (%)	TI	TI (%)	TI
1	1.00			1.3540	135.4020	1.2157	121.5706	1.6306	163.0648		
2	0.92	Blowir	ng 1.5m/s	1.6306	163.0648	1.2503	125.0285	1.5615	156.1491	Blowir	ng 1.5m/s
3	0.83			1.5269	152.6913	1.2849	128.4863	1.5961	159.6070		
4	0.75	1.1465	114.6549	1.2849	1 28 .4863	1.2503	125.02 85	1.4232	142.3177	0.8008	80.0765
5	0.67	0.9045	90.4500	0.8353	83.5343	1.1811	118.1128	0.8353	83.5343	0.8353	83.534 3
6	0.58	0.8008	80.0765	0.9045	90.4500	1.0774	107.7393	0.9045	90.4500	0.7662	76.618 <mark>6</mark>
7	0.50	0.9045	90.4500	0.8008	80.0765	0.9737	97.3657	0.8353	83.5343	0.8699	86.992 2
8	0.42	1.2503	125.0285	0.8353	83.5343	0.9737	97.3657	1.0082	100.8236	0.9391	93.907 9
9	0.33	1.3194	131.9442	0.9391	93.9079	0.9045	90.4500	0.9737	97.3657	0.9737	97.365 7
10	0.25	1.0774	107.7393	0.9045	90.4500	0.8008	80.0765	0.8353	83.5343	0.9045	90.450 <mark>0</mark>
		1.3194 max		1.6306 max		1.2849 max		1.6306 max		0.9737	max
		1.0576 ave		1.1016 ave		1.0912 ave		1.1604	ave	0.8699 ave	

LAMPIRAN D

Data Eksperimen *Load Cells* U0 = 16.7 m/s, satuan = gram

					Suc	tion			Blowing					
t (s)	(gram)	D (N)	0.5 (gram)	D (N)	1 (gram)	D (N)	1.5 (gram)	D (N)	0.5 (gram)	D (N)	1 (gram)	D (N)	1.5 (gram)	D (N)
1	84	0.823	65	0.637	79	0.774	67	0.657	70	0.686	65	0.637	69	0.676
2	84	0.823	65	0.637	70	0.686	67	0.657	70	0.686	65	0.637	72	0.706
3	84	0.823	64	0.627	69	0.676	67	0.657	71	0.696	65	0.637	76	0.745
4	84	0.823	64	0.627	64	0.627	67	0.657	70	0.686	64	0.627	68	0.666
5	84	0.823	69	0.676	71	0.696	73	0.715	70	0.686	66	0.647	75	0.735
6	84	0.823	68	0.666	67	0.657	67	0.657	70	0.686	66	0.647	74	0.725
7	85	0.833	66	0.647	71	0.696	68	0.6 6 6	71	0.696	68	0.666	76	0.745
8	85	0.833	67	0.657	69	0.676	69	0.676	72	0.706	65	0.637	71	0.696
9	85	0.833	65	0.637	65	0.637	69	0.676	70	0.686	77	0.755	72	0.706
10	85	0.833	65	0.637	71	0.6 96	66	0.647	70	0.686	65	0.637	71	0.696
11	85	0.833	63	0.617	68	0.666	65	0.637	-72	0.706	65	0.637	70	0.686
12	84	0.823	69	0.676	66	0.647	67	0.657	72	0.706	64	0.627	70	0.686
13	84	0.823	64	0.627	71	0.696	68	0.666	72	0.706	66	0.647	72	0.706
14	84	0.823	64	0.627	77	0.755	63	0.617	72	0.706	67	0.657	77	0.755
15	84	0.823	66	0.647	72	0.706	66	0.647	76	0.745	66	0.647	75	0.735
16	85	0.833	66	0.647	70	0.686	66	0.647	75	0.735	66	0.647	74	0.725
17	85	0.833	66	0.647	67	0.657	64	0.627	76	0.745	66	0.647	75	0.735
18	85	0.833	65	0.637	66	0.647	65	0.637	80	0.784	68	0.666	82	0.804
19	83	0.813	65	0.637	68	0.666	66	0.647	77	0.755	67	0.657	73	0.715
20	83	0.813	65	0.637	72	0.706	66	0.647	82	0.804	66	0.647	73	0.715
21	83	0.813	65	0.637	65	0.637	66	0.647	81	0.794	66	0.647	82	0.804
22	84	0.823	67	0.657	72	0.706	66	0.647	79	0.774	66	0.647	82	0.804
23	84	0.823	65	0.637	75	0.735	72	0.706	81	0.794	66	0.647	70	0.686
24	84	0.823	65	0.637	68	0.666	72	0.706	76	0.745	65	0.637	71	0.696

25	84	0.823	65	0.637	72	0.706	72	0.706	77	0.755	69	0.676	73	0.715
26	84	0.823	65	0.637	64	0.627	72	0.706	72	0.706	65	0.637	81	0.794
27	84	0.823	65	0.637	71	0.696	72	0.706	72	0.706	67	0.657	76	0.745
28	84	0.823	65	0.637	64	0.627	68	0.666	70	0.686	67	0.657	73	0.715
29	84	0.823	63	0.617	68	0.666	72	0.706	77	0.755	66	0.647	79	0.774
30	84	0.823	69	0.676	66	0.647	66	0.647	75	0.735	68	0.666	72	0.706
31	84	0.823	67	0.657	65	0.637	66	0.647	80	0.784	65	0.637	70	0.686
32	84	0.823	67	0.657	73	0.715	66	0.647	76	0.745	67	0.657	72	0.706
33	84	0.823	62	0.608	69	0.676	65	0.637	79	0.774	69	0.676	69	0.676
34	84	0.823	62	0.608	68	0.666	66	0.647	78	0.764	69	0.676	74	0.725
35	83	0.813	66	0.647	66	0.647	65	0.637	78	0.764	72	0.706	79	0.774
36	84	0.823	71	0.696	65	0.637	65	0.637	70	0.686	77	0.755	75	0.735
37	84	0.823	63	0.617	68	0.666	71	0.696	72	0.706	77	0.755	77	0.755
38	84	0.823	69	0.676	64	0.627	66	0.647	70	0.686	66	0.647	74	0.725
39	84	0.823	67	0.657	65	0.637	65	0.637	69	0.676	66	0.647	85	0.833
40	86	0.843	67	0.657	66	0.647	73	0.715	70	0.686	66	0.647	82	0.804
41	86	0.843	66	0.647	67	0.657	66	0.647	71	0.696	69	0.676	81	0.794
42	84	0.823	63	0.617	65	0.637	65	0.637	71	0.696	66	0.647	71	0.696
43	84	0.823	65	0.637	71	0.696	64	0.627	71	0.696	78	0.764	71	0.696
44	84	0.823	64	0.627	79	0.774	67	0.657	70	0.686	78	0.764	69	0.676
45	84	0.823	63	0.617	67	0.657	66	0.647	73	0.715	80	0.784	70	0.686
46	84	0.823	63	0.617	68	0.666	69	0.676	74	0.725	73	0.715	70	0.686
47	85	0.833	73	0.715	69	0.676	68	0.666	71	0.696	68	0.666	70	0.686
48	85	0.833	73	0.715	64	0.627	70	0.686	75	0.735	71	0.696	71	0.696
49	84	0.823	73	0.715	66	0.647	78	0.764	84	0.823	66	0.647	76	0.745
50	85	0.833	64	0.627	66	0.647	74	0.725	80	0.784	67	0.657	70	0.686
51	86	0.843	64	0.627	69	0.676	67	0.657	82	0.804	70	0.686	70	0.686
52	86	0.843	65	0.637	65	0.637	67	0.657	72	0.706	75	0.735	70	0.686
53	86	0.843	62	0.608	69	0.676	66	0.647	74	0.725	75	0.735	70	0.686
54	84	0.823	65	0.637	68	0.666	69	0.676	71	0.696	81	0.794	80	0.784
55	86	0.843	65	0.637	71	0.696	66	0.647	72	0.706	77	0.755	70	0.686
56	86	0.843	67	0.657	65	0.637	65	0.637	72	0.706	74	0.725	78	0.764
57	86	0.843	65	0.637	64	0.627	67	0.657	75	0.735	78	0.764	77	0.755

58	86	0.843	66	0.647	66	0.647	63	0.617	70	0.686	81	0.794	74	0.725
59	84	0.823	64	0.627	64	0.627	63	0.617	71	0.696	81	0.794	72	0.706
60	84	0.823	64	0.627	73	0.715	67	0.657	71	0.696	66	0.647	69	0.676
61	84	0.823	68	0.666	74	0.725	66	0.647	72	0.706	66	0.647	71	0.696
62	84	0.823	65	0.637	77	0.755	68	0.666	71	0.696	69	0.676	71	0.696
63	86	0.843	65	0.637	73	0.715	65	0.637	75	0.735	68	0.666	78	0.764
64	86	0.843	65	0.637	76	0.745	79	0.774	72	0.706	68	0.666	72	0.706
65	86	0.843	65	0.637	68	0.666	76	0.745	76	0.745	75	0.735	70	0.686
66	84	0.823	66	0.647	70	0.686	68	0.666	74	0.725	68	0.666	71	0.696
67	84	0.823	68	0.666	69	0.676	73	0.715	74	0.72 5	75	0.735	68	0.666
68	84	0.823	71	0.696	67	0.657	66	0.647	74	0.725	68	0.666	70	0.686
69	86	0.843	69	0.676	74	0.725	69	0.676	74	0.725	68	0.666	72	0.706
70	86	0.843	62	0.608	77	0.755	72	0.706	75	0.735	72	0.706	76	0.745
71	85	0.833	74	0.725	76	0.745	70	0.686	82	0.804	68	0.666	70	0.686
72	85	0.833	68	0.666	69	0.676	71	0.696	72	0.706	66	0.647	69	0.676
73	85	0.833	75	0.735	64	0.627	65	0.637	75	0.735	66	0.647	69	0.676
74	85	0.833	68	0.666	65	0.637	65	0.637	73	0.715	72	0.706	74	0.725
75	85	0.833	66	0.647	70	0.686	64	0.627	70	0.686	73	0.715	73	0.715
76	85	0.833	65	0.637	69	0.676	66	0.647	76	0.745	69	0.676	78	0.764
77	83	0.813	68	0.666	70	0.686	66	0.647	-74	0.725	65	0.637	76	0.745
78	85	0.833	70	0.686	64	0.627	72	0.706	76	0.745	68	0.666	75	0.735
79	85	0.833	67	0.657	64	0.627	63	0.617	71	0.696	68	0.666	78	0.764
80	85	0.833	68	0.666	69	0.676	65	0.637	74	0.725	77	0.755	72	0.706
81	85	0.833	66	0.647	69	0.676	67	0.657	73	0.715	69	0.676	71	0.696
82	85	0.833	65	0.637	65	0.637	64	0.627	69	0.676	71	0.696	71	0.696
83	85	0.833	71	0.696	70	0.686	66	0.647	70	0.686	68	0.666	69	0.676
84	85	0.833	68	0.666	64	0.627	66	0.647	70	0.686	68	0.666	71	0.696
85	85	0.833	65	0.637	66	0.647	65	0.637	75	0.735	66	0.647	72	0.706
86	85	0.833	64	0.627	74	0.725	66	0.647	83	0.813	67	0.657	72	0.706
87	85	0.833	65	0.637	65	0.637	66	0.647	75	0.735	68	0.666	69	0.676
88	85	0.833	63	0.617	65	0.637	65	0.637	72	0.706	71	0.696	73	0.715
89	85	0.833	64	0.627	74	0.725	64	0.627	77	0.755	68	0.666	71	0.696
90	85	0.833	66	0.647	75	0.735	63	0.617	81	0.794	66	0.647	69	0.676

91	85	0.833	63	0.617	69	0.676	63	0.617	72	0.706	66	0.647	75	0.735
92	85	0.833	67	0.657	69	0.676	65	0.637	72	0.706	67	0.657	70	0.686
93	85	0.833	65	0.637	67	0.657	66	0.647	73	0.715	68	0.666	68	0.666
94	85	0.833	65	0.637	66	0.647	71	0.696	73	0.715	66	0.647	70	0.686
95	85	0.833	65	0.637	67	0.657	67	0.657	72	0.706	67	0.657	70	0.686
96	85	0.833	66	0.647	72	0.706	67	0.657	80	0.784	67	0.657	70	0.686
97	85	0.833	69	0.676	72	0.706	69	0.676	77	0.755	70	0.686	73	0.715
98	85	0.833	69	0.676	69	0.676	67	0.657	86	0.843	71	0.696	73	0.715
99	85	0.833	72	0.706	74	0.725	73	0.715	82	0.804	75	0.735	69	0.676
100	85	0.833	72	0.706	65	0.637	71	0.696	78	0.764	67	0.657	69	0.676
101	86	0.843	72	0.706	66	0.647	76	0.745	82	0.804	70	0.686	70	0.686
102	85	0.833	68	0.66 6	65	0.637	65	0.637	82	0.804	70	0.686	68	0.666
103	86	0.843	64	0.6 27	65	0.637	69	0.676	78	0.764	64	0.627	70	0.686
104	86	0.843	64	0.627	65	0.637	68	0.666	82	0.804	65	0.637	73	0.715
105	86	0.843	64	0.627	68	0.666	65	0.637	74	0.725	66	0.647	71	0.696
106	86	0.843	66	0.647	66	0.647	76	0.745	72	0.706	67	0.657	72	0.706
107	86	0.843	66	0.647	66	0.647	68	0.666	72	0.706	67	0.657	83	0.813
108	86	0.843	66	0.647	69	0.676	68	0.666	74	0.725	66	0.647	74	0.725
109	84	0.823	64	0.627	69	0.676	68	0.666	72	0.706	71	0.696	71	0.696
110	84	0.823	66	0.647	70	0.686	65	0.637	78	0.764	66	0.647	70	0.686
111	84	0.823	66	0.647	67	0.657	64	0.627	71	0.696	67	0.657	72	0.706
112	84	0.823	64	0.627	76	0.745	64	0.627	75	0.735	68	0.666	71	0.696
113	84	0.823	66	0.647	69	0.676	75	0.735	71	0.696	68	0.666	85	0.833
114	86	0.843	66	0.647	73	0.715	67	0.657	72	0.706	74	0.725	78	0.764
115	86	0.843	65	0.637	73	0.715	66	0.647	73	0.715	71	0.696	71	0.696
116	86	0.843	66	0.647	75	0.735	65	0.637	80	0.784	73	0.715	79	0.774
117	86	0.843	66	0.647	65	0.637	65	0.637	78	0.764	75	0.735	72	0.706
118	86	0.843	68	0.666	66	0.647	65	0.637	78	0.764	73	0.715	71	0.696
119	84	0.823	66	0.647	66	0.647	65	0.637	72	0.706	67	0.657	72	0.706
120	84	0.823	64	0.627	75	0.735	65	0.637	72	0.706	67	0.657	70	0.686
	84.733		66.167		68.825		67.483		74.400		69.083		73.008	
	0.830		0.648		0.674		0.661		0.729		0.677		0.715	
	0.00%		21.91%		18.77%		20.36%		12.20%		18.47%		13.84%	

Titik	Kondisi	Posisi				Panjang daerah		
		x/H	Selisih	y/H	Selisih			Selisih
F1	ТКА	0.35		0.89		0.66H	0.66	
	SC 0.5	0.36	3%	0.77	-13%	0.79H	0.79	20%
	SC 1.0	0.36	3%	0.79	-11%	0.78H	0.78	18%
	SC 1.5	0.38	9%	0.8	-10%	0.75H	0.75	14%
	BL 0.5	0.34	-3%	0.81	-9%	0.75H	0.75	14%
	BL 1.0	0.35	0%	0.81	-9%	0.78H	0.78	18%
	BL 1.5	0.36	3%	0.8	-10%	0.80H	0.8	21%
F2	ТКА	0.34		0.4		0.79H	0.79	
	SC 0.5	0.35	3%	0.27	-33%	0.94H	0.94	19%
	SC 1.0	0.35	3%	0.28	-30%	0.91H	0.91	15%
	SC 1.5	0.35	3%	0.27	-33%	0.88H	0.88	11%
	BL 0.5	0.34	0%	0.3	-25%	0.90H	0.9	14%
	BL 1.0	0.35	3%	0.31	-23%	0.91H	0.91	15%
	BL 1.5	0.37	9%	0.31	-23%	0.91H	0.91	15%
S	ТКА	0.8		0.83		· · · · · · · · · · · · · · · · · · ·		
	SC 0.5	0.8	0%	0.7	-16%			
	SC 1.0	0.8	0%	0.7	-16%			
	SC 1.5	0.78	-3%	0.7	-16%	L		
	BL 0.5	0.79	-1%	0.72	-13%			
	BL 1.0	0.78	-3%	0.72	-13%			
	BL 1.5	0.82	2%	0.66	-20%			
					シ			

LAMPIRAN E DATA PENGUKURAN PIV