

UNIVERSITAS INDONESIA

SINTESIS NANOTUBE KARBON MELALUI REAKSI DEKOMPOSISI KATALITIK METANA DENGAN MENGGUNAKAN KATALIS Fe/Mo/MgO

SKRIPSI

BERNADET VALENTINE 0806332862

FAKULTAS TEKNIK PROGRAM S1 REGULER DEPOK 2012

i

UNIVERSITAS INDONESIA

SINTESIS NANOTUBE KARBON MELALUI REAKSI DEKOMPOSISI KATALITIK METANA DENGAN MENGGUNAKAN KATALIS Fe/Mo/MgO

SKRIPSI

Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana

BERNADET VALENTINE 0806332862

FAKULTAS TEKNIK PROGRAM S1 REGULER DEPOK 2012

ii

HALAMAN PERNYATAAN ORISINALITAS

Skripsi ini adalah hasil karya saya sendiri, dan semua sumber baik yang dikutip maupun dirujuk telah saya nyatakan dengan benar.

	Nama	: Bernadet Valentine
ć	NPM	: 0806332862
	Tanda Tangan	: Burnadet
	Tanggal	:

HALAMAN PENGESAHAN

: Bernadet Valentine

Skripsi ini diajukan oleh : Nama : NPM : Program Studi : Judul Skripsi :

: 0806332862
: Teknik Kimia (S1 Reguler)
: Sintesis Nanotube Karbon Melalui Reaksi Dekomposisi Katalitik Metana dengan Menggunakan Katalis Fe/Mo/MgO

Telah berhasil dipertahankan di hadapan Dewan Penguji dan diterima sebagai bagian persyaratan yang diperlukan untuk memperoleh gelar Sarjana Teknik pada Program Studi Teknik Kimia, Fakultas Teknik, Universitas Indonesia

DEWAN PENGUJI

Pembimbing I	: Dr.Ir. Praswasti PDK Wulan, M.T.
Pembimbing I	I: Prof. Dr. Ir. Widodo W.P., DEA
Penguji I	: Dr. Tania Surya Utami, S.T., M.T.
Penguji II	: Ir. Mahmud Sudibandriyo, M.Sc., Ph.D
Penguji III	: Dr. rer. nat. Ir. Yuswan Muharam, M.T.

Ditetapkan di : Tanggal :

KATA PENGANTAR

Puji syukur saya panjatkan kepada Tuhan Yang Maha Esa karena atas berkat dan rahmat-Nya, saya dapat menyelesaikan skripsi ini. Penulisan skripsi ini dilakukan dalam rangka memenuhi salah satu syarat untuk mencapai gelar Sarjana Teknik Jurusan Teknik Kimia pada Fakultas Teknik Universitas Indonesia. Saya menyadari bahwa, tanpa bantuan dan bimbingan dari berbagai pihak, dari masa perkuliahan sampai pada penyusunan skripsi ini, sangatlah sulit bagi saya untuk menyelesaikan skripsi ini. Oleh karena itu, saya mengucapkan terima kasih kepada:

- Dr. Ir. Praswasti PDK Wulan, M.T. dan Prof. Dr. Ir. Widodo Wahyu Purwanto, DEA selaku dosen pembimbing yang telah menyediakan waktu, tenaga, dan pikiran untuk mengarahkan saya dalam penyusunan skripsi ini;
- orang tua dan kakak saya yang telah memberikan bantuan dukungan material dan moral;
- Novri yeni, rekan penelitian yang senantiasa menemani dalam suka dan duka, setia mendengarkan curhatan saya saat sedih juga bahagia;
- Kang Jajat, Mas Eko, dan Mank Ijal yang selalu membantu mengerjakan penelitian, menyediakan peralatan dan bahan dari Lab DPK, serta membimbing kami dalam menggunakan peralatan di RPKA maupun bengkel;
- Anak-anak bimbingan Bu Wulan dan Pak Widodo yang selalu menemani serta mendukung satu sama lain (Kak Najma, Kak Mia, Ramaniya, Kanya, Marco, Arifin, Gina, Sigit, Ade, Rainer);
- 6) Yosmarina, Lolyta, Tania, Catur, Pauline, Santoso, *Plastic boys* (Eldo, Kak Ervan, Kak Adit), Kak Dian, Kak Indri, Resiana, Harsono, Ario, Wisnu, Dessy, Sisca, Chandra, Kenny, Gita, David, Maria, Fuyuki, Juhe, Illyin, Mada, Ivan Mery, Ray, Tias, Nandy, Habib, rekan penelitian juga sahabat yang telah banyak membantu, memberikan semangat serta dorongan dalam menyelesaikan skripsi ini;

- Sisca, Ase, Togar, Dityo, Himawan, Sari, Monica, Nirwanto, Henry, Robbin, Lidya, Gregorius, rekan-rekan yang sudah lebih dulu lulus tetapi selalu memberikan semangat dan dukungan;
- 8) Teman-teman Tekkim 2008 dan Bioproses 2008, serta anak-anak gazeb yang selalu memberikan penghiburan di kala sulit dan cemasnya penelitian, teman-teman yang tidak akan pernah bisa saya lupakan walaupun umur terus bertambah, *I love you all*;
- 9) Sahabat-sahabat yang telah banyak membantu saya menyelesaikan skripsi ini yang namanya tidak bisa saya sebutkan satu persatu.

Akhir kata, saya berharap Tuhan Yang Maha Esa berkenan membalas segala kebaikansemua pihak yang telah membantu. Semoga skripsi ini membawa manfaat bagipengembangan ilmu.

HALAMAN PERNYATAAN PERSETUJUAN PUBLIKASI TUGAS AKHIR UNTUK KEPENTINGAN AKADEMIS

Sebagai sivitas akademik Universitas Indonesia, saya yang bertanda tangan di bawahini:

Nama : Bernadet Valentine

NPM : 0806332862

Program Studi : Teknik Kimia

Departemen : Teknik Kimia

Fakultas : Teknik

Jenis karya : Skripsi

demi pengembangan ilmu pengetahuan, menyetujui untuk memberikan kepada Universitas Indonesia **Hak Bebas Royalti Noneksklusif** (*Non-exclusive Royalty-Free Right*) atas karya ilmiah saya yang berjudul :

"Sintesis Nanotube Karbon Melalui Reaksi Dekomposisi Katalitik Metana Menggunakan Katalis Fe/Mo/MgO"

beserta perangkat yang ada (jika diperlukan). Dengan Hak Bebas Royalti Noneksklusif ini Universitas Indonesia berhak menyimpan, mengalihmedia/formatkan, mengelola dalam bentuk pangkalan data (*database*), merawat, dan memublikasikan tugas akhir saya selama tetap mencantumkan nama saya sebagai penulis/pencipta dan sebagai pemilik Hak Cipta. Demikian pernyataan ini saya buat dengan sebenarnya.

> Dibuat di : Depok Pada tanggal : 1 Juli 2012 yang menyatakan

Bunadet

(Bernadet Valentine)

ABSTRAK

Nama : Bernadet Valentine

Program Studi : Teknik Kimia

Judul: Sintesis Nanotube Karbon Melalui Reaksi DekomposisiKatalitik Metana dengan Menggunakan Katalis Fe/Mo/MgO

Produksi nanotube karbon jenis Single Walled Nanotube Carbon (SWNT) dan Few Walled Nanotube Carbon (FWNT) masih sulit untuk dilakukan. Salah satu penyebab utama adalah pemilihan katalis yang kurang tepat. Penelitian ini menggunakan katalis Fe/Mo/MgO untuk menghasilkan SWNT atau FWNT (diameter luar nanotube karbon kurang dari 10 nm). Katalis Fe/Mo/MgO dipreparasi dengan metode sol gel/spray coating. Nanokarbon akan dihasilkan melalui reaksi dekomposisi katalitik metana pada suhu 850°C dengan katalis Fe/Mo/MgO. Hasil penelitian menunjukkan konversi metana tertinggi mencapai 97,64% dan yield karbon sebesar 1,48 gc/gkat. Nanokarbon kemudian dikarakterisasi dengan Transmission Electron Microscope (TEM). Nanokarbon yang dihasilkan pada penelitian ini terdiri atas nanotube karbon jenis FWNT (range diameter luar 4,5 nm – 10 nm). Selain itu, MWNT (Multi Walled Nanotube Carbon, range diameter luar 10 nm – 89,5 nm), carbon nanofiber, coil nanotube, dan bamboo-shaped carbon juga telah dihasilkan. Jenis nanokarbon yang dihasilkan bukan hanya jenis nanotube karbon disebabkan oleh waktu reaksi yang terlalu panjang serta diameter partikel katalis 20 nm hingga 100 nm yang terdeteksi dari hasil X-Ray Diffraction (XRD) dan Field Emmision Scanning Electron Microscope (FE SEM). Untuk memperbaiki hasil ini, running pada penelitian ini dilakukan sekali lagi dengan waktu reaksi 30 menit dengan waktu reduksi 30 menit di suhu 850°C dan suhu kalsinasi 550°C di udara. Hasil nanokarbon yang diperoleh memiliki range diameter luar yang lebih kecil dan berkisar antara 8,5 nm hingga 66,85 nm yang terukur pada FE SEM. Namun, jenis nanokarbon belum diketahui berupa FWNT atau MWNT atau nanokarbon lainnya.

Kata kunci: FWNT; katalis Fe/Mo/MgO; MWNT; sol gel/*spray coating*; SWNT; reaksi dekomposisi katalitik metana

ABSTRACT

Name : Bernadet Valentine

Study Program : Chemical Engineering

Title: Synthesis of Nanotubes Carbon through MethaneDecomposition Catalytic Reaction with Fe/Mo/MgO Catalyst

Production of Single Walled Nanotubes Carbon (SWNT) dan Few Walled Nanotubes Carbon (FWNT) is really hard to do recently. It occured due to inappropriate catalyst selection. Fe/Mo/MgO catalyst, used in literature, was used to make nanotubes carbon. Fe/Mo/MgO catalyst was prepared by sol gel/spray coating method and it would be reacted with methane in 850°C (methane decomposition catalytic reaction). The research result shows that the highest methane conversion reached 97,64% and carbon yield is 1,48 gc/gkat. Transmission Electron Microscope (TEM) indicated that the synthesized product was FWNT (carbon nanotubes with outer diameter between 4,5 nm - 10 nm), MWNT (Multi Walled Nanotubes Carbon, outer diameter between 10 nm - 89.5 nm), coil nanotube, carbon nanofiber, dan bamboo-shaped carbon. It is happened due to longer time reaction and catalyst diameters have range between 20 nm -100 nm which detected by XRD and SEM characterization. Then, methane decomposition catalytic reaction to get nanotube carbon was done once again in shorter times (30 minutes), longer time of reduction (40 minutes), and lower calcination temperature (550°C) in air. FE SEM indicated that range of outer diameter nanocarbon between 8,5 nm - 66,85 nm but its types can not be determined by FE SEM.

Key words: Fe/Mo/MgO catalyst; FWNT; methane decomposition catalytic reaction; sol gel/spray coating; SWNT.

-

DAFTAR ISI

HALAMAN JUDUL	ii
HALAMAN PERNYATAAN ORISINALITAS	iii
HALAMAN PENGESAHAN	iv
KATA PENGANTAR	v
HALAMAN PERNYATAAN PERSETUJUAN PUBLIKASI	vii
ABSTRAK	viii
ABSTRACT	ix
DAFTAR ISI	x
DAFTAR GAMBAR	xii
DAFTAR TABEL	xiii
DAFTAR SINGKATAN	xiv
BAB 1 PENDAHULUAN	1
1.1 Latar Belakang Masalah	1
1.2 Rumusan Masalah	4
1.3 Tujuan Penelitian	4
1.4 Batasan Masalah	4
1.5 Sistematika Penulisan	4
BAB 2 TINJAUAN PUSTAKA	6
2.1 Reaksi Dekomposisi Katalitik Metana	6
2.2 Nanotube Karbon	7
2.2.1 Jenis Nanotube Karbon	7
2.2.2 Metode Sintesis Nanotube Karbon (CNT)	8
2.3 Reaktor untuk Sintesis Nanotube Karbon	8
2.4 Mekanisme Pertumbuhan CNT Secara Umum	10
2.5 Katalis untuk Reaksi Dekomposisi Katalitik Metana	12
2.5.2 Preparasi Katalis dengan Metode Sol Gel	24
2.5.3 Pelapisan Katalis pada Substrat dengan Metode Dip Coating	27
2.5.3 Pelapisan Katalis pada Substrat dengan Metode Spray Coating	28
2.6 Hasil Karakterisasi Nanotube yang Terbentuk	28
2.6.1 Hasil Karakterisasi XRD	28
2.6.2 Hasil Karakterisasi Transmission Electron Microscope (TEM) dan	
Scanning Electrone Microscope (SEM)	29
BAB III METODOLOGI PENELITIAN	32
3.1 Diagram Alir Penelitian	32
3.2 Alat dan Bahan Penelitian	34
3.3 Prosedur Penelitian dan Pengambilan Data	34
3.3.1 Pembentukan Konfigurasi Wiremesh	34
3.3.2 Preparasi Katalis	35
3.3.3 Pelapisan Katalis	36

3.3.4 Karakterisasi katalis	. 37
3.3.5 Set-Up Reaktor dan Kalibrasi Alat	. 38
3.3.6 Sintesis CNT dan Pengambilan data	. 38
3.3.7 Karakterisasi Nanokarbon yang dihasilkan	. 39
3.3.8 Perhitungan konversi dan yield karbon yang dihasilkan	. 39
BAB IV HASIL DAN PEMBAHASAN	. 41
4.1 Katalis Fe/Mo/MgO yang dihasilkan dari metode sol gel	. 41
4.2 Hasil Karakterisasi Katalis Fe/Mo/MgO	. 43
4.2.1 Karakterisasi XRD	. 43
4.2.2 Karakterisasi FE SEM	. 45
4.3 Pelapisan Katalis dengan Metode Dip Coating / Spray Coating pada Kaw	vat
Wiremesh SS 316	. 49
4.5 Karakterisasi Nanotube Karbon	. 51
4.6 Uji Kinerja Reaktor	. 57
4.7 Evaluasi terhadap Hasil Running 1	. 59
4.8 Hasil Running 2 Berdasarkan Evaluasi terhadap Running 1	. 59
BAB V KESIMPULAN DAN SARAN	. 63
5.1 Kesimpulan	. 63
5.2 Saran	. 63
DAFTAR PUSTAKA	. 64
LAMPIRAN A	. 68
LAMPIRAN B	. 70
LAMPIRAN C	. 75
LAMPIRAN D	. 77
LAMPIRAN E	. 75

DAFTAR GAMBAR

Gambar 2. 1 Konversi kesetimbangan metana pada tekanan 1 atm dan umpan	
100% metana	6
Gambar 2. 2 Rancangan reaktor katalitik terstruktur	9
Gambar 2. 3 Mekanisme pertumbuhan nanotube karbon	11
Gambar 2. 4 Mekanisme pertumbuhan nukleus pada pertumbuhan	12
Gambar 2. 5 Kurva volcano yang menyatakan hubungan antara orbital d kosong	5
dengan aktivitas katalis pada reaksi dehidrogenasi etilen	13
Gambar 2. 6 Mekanisme pertumbuhan nanotube karbon oleh katalis Fe/Mo/Mg	0
	17
Gambar 2. 7 Mekanisme pertumbuhan nanotube karbon pada katalis Fe	18
Gambar 2. 9 Hasil karakterisasi XRD katalis Fe/Mo/MgO yang telah direduksi	
pada T=850C	21
Gambar 2. 9 Hubungan antara diameter CNT dengan diameter nanopartikel	
katalis	22
Gambar 2. 10 Hubungan antara rasio I_D/I_G dengan temperatur reaksi	22
Gambar 2. 11 Hubungan yield karbon pada katalis Fe/Mo/MgO dengan	
temperatur reaksi dalam 1 jam reaksi	23
Gambar 2. 12 Hubungan konversi metana terhadap waktu	24
Gambar 2. 13 Hasil XRD katalis Fe/Mo/MgO setelah reduksi	29
Gambar 3. 1 Rancangan katalis terstruktur	35
Gambar 3, 2 Skema rangkaian penelitian	38
Gambar 4. 1 Proses pembuatan katalis Fe/Mo/MgO	41
Gambar 4, 2 Bubuk katalis (a) kalsinasi 550°C (b) kalsinasi 850°C (c) reduksi	
- 850°C	42
Gambar 4, 3 Hasil karakterisasi XRD katalis Fe/Mo/MgO	43
Gambar 4. 4 Hasil karakterisasi SEM (a) katalis sebelum reduksi $T=850^{\circ}C$ (b)	
katalis setelah reduksi $T=850^{\circ}C$	46
Gambar 4, 5 Pergerakan partikel Fe pada suhu (A) 500 K (B) 800 K (C) 1200 H	ζ.
(D) 1400K (E) 1460 K (Ding <i>et al.</i> 2004)	47
Gambar 4. 6 Hasil <i>manning</i> katalis Fe/Mo/MgO	48
Gambar 4. 7 Hasil karakterisasi SEM pelapisan bubuk katalis Fe/Mo/MgO deng	van
metode <i>spray coating</i> (a) tampak atas 1 substrat (b)tampak atas 2	
substrat (c) tampak samping kawat	50
Gambar 4. 8 Pelapisan katalis pada wiremesh (a) sebelum dilapisi (b) sesudah	20
dilanisi	50
Gambar 4 9 Hasil XRD katalis yang telah ditumbuhi nanotube karbon	51
Gambar 4. 10 Hasil TEM nanokarbon pada skala 50 nm	52
Gambar 4, 11 Hasil TEM nanokarbon (skala 200 nm)	53
Gambar 4 12 Hasil FE SEM pertumbuhan nanotube karbon pada katalis	56
Gambar 4, 13 Hasil FE SEM pertumbuhan nanotube karbon pada katalis	56
Gambar 4, 14 Konversi gas metana nada menit tertentu	57
Gambar 4 15 Gauze yang telah ditumbuhi nanotuhe karbon (baris paling bawat	י <i>י</i> ו
hingga ke atas menunjukkan gauze dari hagian denan hingga belakan	σ
reaktor)	58
Gambar 4 16 Hasil FE SEM Running 2. (a) s/d (f)	62
	02

DAFTAR TABEL

Tabel 1. 1 Faktor penyebab pembentukan nanotube karbon jenis MWNT	di DTK
UI	2
Tabel 2. 1 Tabel Perbandingan Katalis untuk Sintesis CNT	16
Tabel 4. 1 Ukuran kristal katalis Fe/Mo/MgO	
Tabel 4. 2 Banyak penyemprotan pada pelapisan spray coating	
Tabel 4. 3 Katalis yang digunakan pada reaktor katalitik terstruktur	

DAFTAR SINGKATAN

CNF	:	Carbon Nanofiber
CNT	:	Carbon Nanotube
CVD	:	Chemical Vapour Deposition
EDS	:	Electron Diffraction Spectrophotometer
FE SEM	:	Field Emission Scanning Electron Microscopy
GC	:	Gas Chromatography
MDR	:	Methane Decomposition Reaction
MWNT	:/	Multi Walled Carbon Nanotube
SEM	:	Scanning Electron Microscopy
SWNT	:	Single Walled Carbon Nanotube
TEM	:	Transmission Electron Microscopy
XRD	÷	X-Ray Diffraction

BAB 1 PENDAHULUAN

1.1 Latar Belakang Masalah

Nanotube karbon merupakan salah satu material nano yang sangat aplikatif. Aplikasi nanotube karbon di berbagai bidang seperti listrik dan elektronik, material komposit maupun polimer, kesehatan, serta energi terbarukan seperti penyimpanan gas hidrogen telah menarik banyak perhatian industri global untuk memproduksi nanotube karbon pada skala industri.

Berdasarkan prediksi yang dilakukan oleh Freedonia (2009), total permintaan nanotube karbon jenis *Single-walled* nanotubes (SWNT) maupun *Multi-walled* nanotubes (MWNT) akan terus meningkat hingga tahun 2014 dan total keduanya dapat mencapai US\$ 1.070 juta. Riset yang dilakukan *Lux Research Inc* (2010) juga menyatakan bahwa kapasitas produksi nanotube karbon dunia di tahun 2010 sekitar 2.344 ton dan diprediksikan akan mencapai lebih dari 10.000 ton. Menurut *Global Industry Analyst* (2007), produk nanotube karbon yang paling mendominasi permintaan industri merupakan nanotube karbon dengan diameter yang kecil (<10 nm) seperti *Single-walled Carbon* Nanotubes (SWNT) maupun *Few-walled Carbon* Nanotubes (FWNT). Oleh karena itu, produksi SWNT maupun FWNT untuk produksi skala pilot sangat menjanjikan untuk dikembangkan.

Di Indonesia sendiri, produksi skala pilot untuk nanotube karbon berada dalam tahap pengembangan. Salah satu penelitian mengenai produksi nanotube karbon skala pilot melalui reaksi dekomposisi katalitik metana telah dikembangkan oleh Departemen Teknik Kimia Universitas Indonesia (DTK UI) sejak tahun 2009. Namun, beberapa penelitian yang telah dilakukan belum berhasil menghasilkan nanotube karbon jenis SWNT atau FWNT (berdiameter kurang dari 10 nm).

Beberapa faktor yang perlu diperhatikan untuk menghasilkan nanotube karbon berdiameter kurang dari sepuluh nanometer (SWNT atau FWNT) adalah pemilihan dan preparasi katalis yang tepat untuk menghasilkan diameter katalis yang kecil serta kondisi operasi seperti, temperatur reaksi, waktu reaksi, laju alir umpan, serta jenis reaktor yang digunakan (Sivakumar *et al*, 2010). Namun, faktor yang sangat menentukan diameter nanotube karbon yang dihasilkan adalah ukuran nanopartikel katalis dimana nanotube karbon tumbuh. Ukuran nanopartikel katalis hampir sama dengan ukuran nanopartikel katalis (Lamouroux *et al*, 2007). Tetapi, fenomena tersebut tidak sesuai dengan fenomena yang terjadi pada penelitian DTK UI.

Peneliti	Diameter katalis (nm)	Diameter CNT (nm)	Katalis (Kom posisi)	Faktor penyebab
Francy (2009); Riyandi (2010)	20 s/d 30	50 s/d 100 (MWNT)	NiCu/Al ₂ O ₃ (2:1:1)	Rekonstruksi komposisi katalis saat bereaksi dengan reaktan metana. Komposisi berubah menjadi 3:1:1 sehingga katalis bekerja kurang optimal (Li <i>et al</i> , 2009)
Manggiasih (2011)	20 s/d 30 (setelah kalsinasi)	50 s/d 100 (MWNT)	Fe/MgO (1:12)	Reduksi hidrogen membuat katalis Fe beraglomerasi sehingga diameter katalis yang dihasilkan besar sehingga diameter yang dihasilkan juga jauh melebihi ukuran katalis yang terbentuk (Ago <i>et al</i> , 2006)

Tahel 1	1 Faktor	nenvehah	nemhentukan	nanotube	karhon	ienis	MWNT	di D'	ГК	TIT
Taper 1.	т гакцог	penyebab	решренцикан	nanotube	Karbon	Jems	TAT AA TA T	u ν.	11	υı

Berdasarkan Tabel 1.1 dapat disimpulkan bahwa katalis yang digunakan pada penelitian di DTK UI merupakan katalis yang kurang cocok untuk menghasilkan nanotube karbon jenis SWNT atau FWNT. Maka dari itu, dilakukan review jurnal terhadap pemilihan katalis yang sesuai untuk menghasilkan nanotube karbon jenis SWNT atau FWNT. *Review* ditunjukkan pada Tabel 2.1 pada Bab II Tinjauan Pustaka.

Berdasarkan Tabel 1.2, katalis Fe/Mo/MgO merupakan katalis yang sangat baik dalam mensintesis nanotube karbon jenis SWNT atau FWNT. Salah satu penelitian yang berhasil membentuk nanotube karbon seperti SWNT dengan diameter di bawah 3 nm adalah penelitian Qian *et al* (2008). Hal ini disebabkan dispersi Fe nanopartikel (NPs) di dalam katalis sangat merata akibat penambahan logam Mo sehingga mencegah partikel Fe mengalami aglomerasi di suhu tinggi (Qian *et al*, 2008; Ni *et al*, 2009). Selain itu, kombinasi katalis FeMo dapat membentuk diameter partikel katalis kurang dari 5 nm sehingga pembentukan MWNT dapat dihindari (Qian *et al*, 2008). Penggunaan Mo juga membantu memudahkan aromatisasi karbon dalam membentuk nanotube karbon sehingga

secara tidak langsung meningkatkan keaktifan katalis pada pembentukan nanotube karbon dengan membentuk membentuk prekursor intermediet (Ni *et al*, 2009). Maka, katalis Fe/Mo/MgO digunakan pada penelitian ini.

Selain katalis, hal yang menjadi pokok permasalahan dalam menghasilkan nanotube karbon pada reaktor katalitik terstruktur adalah metode persiapan katalis dan pelapisan katalis pada substrat. Metode persiapan katalis yang dilakukan menggunakan metode sol gel untuk katalis Fe/Mo/MgO dengan komposisi molar 1/0,1/13 (Fang *et al*, 2006). Pada pelapisan katalis, Manggiasih (2011) menghasilkan pelapisan katalis yang sangat baik pada substrat. Oleh karena itu, metode *dip coating* dapat digunakan sebagai metode pelapisan katalis pada substrat. Namun, metode pelapisan *spray coating* lebih dipilih sebagai metode pelapisan katalis karena metode ini dapat mendeposisikan bubuk katalis dengan sangat baik pada permukaan substrat *wiremesh* sehingga kehilangan katalis pada substrat hanya sedikit pada kalsinasi (Fang, 2003).

Selain pemilihan katalis, preparasi katalis meliputi temperatur kalsinasi, perilaku reduksi, serta temperatur reaksi juga memengaruhi diameter katalis yang terbentuk. Temperatur reaksi yang digunakan adalah 850°C. Hal ini disebabkan temperatur ini merupakan temperatur yang sangat baik untuk katalis Fe/Mo/MgO dapat menghasilkan SWNT melalui reaksi dekomposisi katalitik metana (Ni *et al*, 2009). Sedangkan, temperatur kalsinasi yang digunakan adalah 850°C atau sama dengan temperatur reaksi (Richardson, 1988). Perilaku reduksi dilakukan untuk menghasilkan partikel Fe np sebagai inti aktif untuk menghasilkan nanotube karbon (Li *et al*, 2006).

Melalui kondisi operasi reaksi dekomposisi katalitik metana dan pemilihan serta metode preparasi katalis yang telah ditentukan, penelitian ini diharapkan akan menghasilkan nanotube karbon sejenis FWNT atau SWNT. Karakterisasi katalis dilakukan dengan metode X-ray Diffraction (XRD) untuk mengkarakterisasi ukuran kristal partikel katalis serta mengetahui oksida logam apa saja yang terbentuk, dan Scanning Electron Microscopy (SEM) untuk mengetahui ukuran partikel katalis dan ketebalan katalis. Kemudian, untuk karakterisasi nanotube karbon dilakukan dengan metode XRD untuk memastikan jenis karbon yang terbentuk dan Transmission Electron Microscope (TEM) untuk

mengetahui jenis nanokarbon yang terbentuk dan diameter nanotube karbon yang dihasilkan.

1.2 Rumusan Masalah

Dalam rangka menghasilkan nanotube karbon sejenis FWNT atau SWNT atau diameter nanotube karbon di bawah 10 nm, penelitian ini menggunakan katalis Fe/Mo/MgO dengan komposisi 1:0,1:13 yang dipreparasi dengan metode sol gel/*spray coating* serta melakukan pengaturan terhadap kondisi operasi yang optimal untuk reaksi dekomposisi katalitik metana pada reaktor katalitik terstruktur.

1.3 Tujuan Penelitian

Tujuan penelitian ini yaitu menghasilkan diameter nanotube karbon yang lebih kecil (<10nm) melalui penggunaan katalis Fe/Mo/ MgO untuk sintesis nanotube karbon melalui dekomposisi katalitik metana.

1.4 Batasan Masalah

Batasan pada penelitian ini adalah sebagai berikut.

Uji kinerja terhadap reaktor skala pilot yang dilakukan dengan menggunakan katalis terstruktur *gauze* yang terbuat dari bahan SS 316 dengan diameter wiremesh 0.33 mm.

1.5 Sistematika Penulisan

BAB 1 Pendahuluan

Berisi latar belakang, rumusan masalah, tujuan penulisan, batasan masalah, dan sistematika penulisan.

BAB 2 Tinjauan Pustaka

Berisi tinjauan literatur mengenai reaksi dekomposisi metana, mekanisme pertumbuhan nanokarbon dan nanotube karbon, jenis reaktor yang digunakan untuk reaksi dekomposisi metana, pemilihan dan preparasi katalis Fe/Mo/MgO serta pengaruh kondisi operasi yang baik terhadap pembentukan nanotube karbon.

BAB 3 Metodologi Penelitian

Berisi penjelasan mengenai prosedur penelitian secara umum, termasuk perhitungan konfigurasi *gauze* untuk bagian internal reaktor, preparasi dan pelapisan katalis, *set-up* rangkaian peralatan, uji kinerja reaktor, dan karakterisasi katalis dan nanotube karbon yang dihasilkan.

BAB 4 Hasil dan Pembahasan

Berisi analisa dan uraian mengenai hasil uji kinerja katalis terstruktur terhadap konversi metana, kemurnian hidrogen, *yield* karbon serta karakterisasi produk.

BAB 5 Kesimpulan dan Saran

Berisi kesimpulan dari hasil penelitian serta saran untuk penelitian selanjutnya

BAB 2

TINJAUAN PUSTAKA

2.1 Reaksi Dekomposisi Katalitik Metana

Dekomposisi merupakan reaksi kimia yang menguraikan atau memutuskan ikatan suatu senyawa menjadi unsur-unsur atau senyawa yang lebih sederhana. Reaksi dekomposisi yang dikenal luas, yaitu reaksi dekomposisi metana dengan mekanisme reaksi sebagai berikut.

$$CH_{4(q)} \leftrightarrow C_{(s)} + 2H_{2(q)}\Delta H = 75.6 \ kJ/mol$$

Reaksi dekomposi metana dibagi menjadi dua, yaitu.

- a. Dekomposisi metana secara termal (*thermal cracking*) yang menghasilkan hidrogen dan karbon hitam.
- b. Dekomposisi katalitik metana dengan menggunakan katalis logam transisi (Fe, Co, Ni) atau golongan lantanida yang menghasilkan material karbon dengan ukuran partikel nanometer yang biasa disebut nanotube karbon.

Konversi kesetimbangan dari reaksi dekomposisi metana untuk membentuk karbon dan gas hidrogen pada kondisi reaksi 1 atm dan 100% umpan metana ditunjukkan pada gambar berikut ini.

Gambar 2. 1 Konversi kesetimbangan metana pada tekanan 1 atm dan umpan 100% metana (Ogihara *et al*, 2006)

Gambar 2.1 menunjukkan bahwa reaksi mulai terjadi pada suhu di atas 500 K dan konversi metana berbanding lurus dengan kenaikan suhu. Keaktifan katalis pada reaksi dekomposisi katalitik metana dapat ditunjukkan melalui konversi metana yang dihasilkan. Semakin tinggi konversi metana yang diperoleh, semakin aktif pula katalis yang digunakan terhadap reaksi dekomposisi katalitik metana.

2.2 Nanotube Karbon

Nanotube karbon ditemukan pertama kali oleh Sumio Iijima pada tahun 1991. Nanotube karbon merupakan salah satu alotrop karbon yang memiliki ikatan kimia sp² yang menyerupai grafit. Berikut beberapa kelebihan sifat nanotube karbon (Daenen, 2003). Pertama, reaktivitas kimia nanotube karbon yang dapat diatur sesuai dengan sudut kelengkungan antara tutup dengan dinding nanotube karbon. Kedua, sifat vektor kiral yang membuat nanotube karbon memiliki sifat konduktivitas listrik yang unggul. Ketiga, sifat optis nanotube karbon yang sangat baik sehingga banyak diaplikasikan pada alat elektrik optik. Keempat, nilai modulusitas Young hingga mencapai 1,5 GPa sehingga banyak yang diaplikasikan untuk material nanokomposit. Sifat-sifat ini juga mendukung nanotube karbon untuk menyimpan hidrogen, *nanoscale* transistor, superkapasitor, *nanoprobes*, sensor, dan katalis (Zhang, 2003).

2.2.1 Jenis Nanotube Karbon

Nanotube karbon terbagi atas tiga jenis, yaitu.

- a. SWNT (*Single Walled Carbon* Nanotubes) merupakan jenis nanotube karbon berdiameter 0.4 – 2,5 nm dengan panjang beberapa mikro atau milimeter
- b. FWNT (*Few Walled Carbon* Nanotubes) merupakan jenis nanotube karbon berdiameter 2,5 10 nm dengan panjang beberapa mikro atau milimeter
- c. MWNT (*Multi Walled Carbon* Nanotubes), yaitu nanotube yang tersusun acara aksial kosentrik dengan jarak nanotube yang satu dengan yang lainnya sekitar 0.36 nm dengan diameter luar lebih dari 2,5 nm.

Namun, tipe SWCNT memiliki sifat yang jauh lebih unggul dibandingkan dengan MWCNT (Daenen, 2003). Oleh karena itu, permintaan nanotube karbon

dengan kualitas setingkat SWNT atau FWNT sangat tinggi. Untuk itulah, sintesis nanotube karbon dengan kualitas tinggi diarahkan pada penelitian ini.

2.2.2 Metode Sintesis Nanotube Karbon (CNT)

Catalytic Chemical Vapor Deposition (CCVD) merupakan salah satu metode sintesis nanotube karbon yang dilakukan dengan menggunakan katalis logam transisi, seperti logam Fe, Co, Ni, lantanida pada reaksi dekomposisi katalitik senyawa hidrokarbon untuk merengkah senyawa hidrokarbon sehingga menghasilkan karbon dan gas hidrogen. Tujuan penggunaan katalis adalah untuk menurunkan suhu reaksi dekomposisi senyawa sehingga mengurangi pemakaian energi.

Sintesis dengan metode ini jauh lebih baik dibandingkan metode *laser ablation* atau *arc-discharge*. Karena, metode CVD merupakan metode ini memiliki kemudahannya dalam *scale up*, mengurangi konsumsi energi karena penggunaan katalis untuk menurunkan energi katalis, lebih mudah mengontrol jenis, selektivitas, kualitas, kuantitas, dan ukuran karbon yang dihasilkan karena dapat ditentukan dengan pemilihan jenis, modifikasi katalis, atau metode preparasi katalis (Li *et al*, 2011).

Sintesis nanotube karbon dengan menggunakan CVD dan berbahan baku metana dikenal dengan reaksi dekomposisi katalitik metana. Pada metode ini, material yang digunakan sebagai bahan baku harganya tidak terlalu tinggi dan proses pemurnian produknya cukup sederhana karena hanya memisahkan nanotube karbon yang terbentuk dari logam katalis tempat nanotube menempel (Daenen, 2003). Selain itu, berdasarkan penelitian Li *et al* (2004) sumber karbon yang terbaik untuk menghasilkan nanotube karbon berasal dari gas metana karena ketahanannya terhadap suhu tinggi dan memiliki struktur karbon yang paling sederhana sehingga lebih mudah membentuk nanotube karbon. Maka, pada penelitian ini, digunakan reaksi dekomposisi katalitik metana guna menghasilkan nanotube karbon.

2.3 Reaktor untuk Sintesis Nanotube Karbon

Sintesis nanotube karbon biasa dilakukan pada *fluidizied bed* dan *fixed bed reactor*. Namun, setiap reaktor memiliki kelebihan dan kelemahan yang harus

dipertimbangkan terutama dalam produksi skala pilot. Menurut Li *et al* (2011), kedua reaktor ini memiliki karakteristik sebagai berikut.

- a. Reaktor jenis *fluidizied bed* terbukti menghasilkan konversi metana yang sangat baik terutama karena frekuensi kontak antara reaktan dan katalis yang sangat baik. Namun, dari segi sisi hidrodinamika reaktor sangat sulit untuk diamati.
- b. Reaktor *fixed bed* cenderung menghasilkan *pressure drop* yang tinggi apalagi jika waktu reaksi panjang.

Oleh karena itu, reaktor katalitik terstruktur *gauze* didesain oleh Purwanto *et al* (2007) untuk mengatasi hal tersebut. Bentuk *wiremesh* di dalam reaktor yang dirancang untuk mengurangi *pressure drop* serta memudahkan untuk mengabaikan sisi hidrodinamika yang sulit diamati (Yulianti *et al*, 2009).

Reaktor katalitik ini merupakan reaktor sejenis *Chemical Vapor Deposition* dengan menggunakan katalitik terstruktur menggunakan *wiremesh*. Reaktor yang terdapat pada Gambar 2.2 ini telah dikembangkan menjadi skala pilot dengan ukuran diameter reaktor 6 cm dan panjang reaktor 32 cm (Purwanto *et al*, 2009). Dengan menggunakan ukuran diameter *wiremesh* 0,65 mm SS304, perbandingan Ni:Cu:Al 2:1:1, laju alir metana murni 80 L/h dan suhu operasi 700°C maka diperoleh kapasitas produksi nanotube karbon 393,19 g/hari, konversi metana yang tertinggi adalah 76,1%.

Gambar 2. 2 Rancangan reaktor katalitik terstruktur (Francy, 2009)

Desain reaktor katalitik terstruktur juga lebih murah dibandingkan dengan kedua jenis reaktor lainnya. Maka, peng-*scale up*-an produksi nanotube ke

depannya akan menjadi lebih ekonomis. Reaktor katalitik ini yang selanjutnya digunakan pada penelitian ini.

2.4 Mekanisme Pertumbuhan CNT Secara Umum

Mekanisme pertumbuhan CNT menurut Chen *et al* (2004) seperti yang tersaji pada Gambar 2.3 dibagi atas 3 jenis, yaitu.

a. Tips Growth Model

Tips Growth Model terjadi apabila atom karbon yang terdeposisi pada permukaan logam melarut dalam logam dan berdifusi melalui partikel logam. Karbon yang berdifusi mengendap sebagai lapisan grafitik pada *interface* antara partikel logam dan *support*. Pembentukan lapisan ini melepaskan partikel metal dari *support*. Pembentukan karbon secara terus menerus ini menunjukkan pertumbuhan nanotube karbon dengan partikel logam yang terangkat ke ujung (tips) nanotube karbon.

b. Base Growth Model

Base Growth Model hampir sama dengan model pertumbuhan Tips Growth Model. Namun, pertumbuhan nanotube karbon terjadi pada partikel logam yang tetap menempel pada *support*. Model ini dipercaya terjadi karena partikel logam memiliki interaksi yang kuat dengan *support* sehingga tidak bisa dipisahkan oleh lapisan grafitik yang terbentuk pada *interface* logam dan *support*.

c. Base-tips Growth Model

Model ini merupakan kombinasi dua model sebelumnya. Karbon pada permukaan logam akan berdifusi ke dalam partikel logam. Pada suhu tersebut, partikel logam berada dalam keadaan *liquid*. Konsentrasi karbon pada logam meningkat hingga keadaan yang sangat jenuh. Keadaan ini mendorong atom karbon untuk terakumulasi di permukaan logam sehingga mengawali pertumbuhan lapisan grafitik. Adanya kekuatan rentang memperpanjang partikel logam sehingga memotong partikel logam menjadi dua bagian. Bagian bawah logam memiliki adhesi yang kuat dengan *support* dan berkontribusi terhadap pertumbuhan nanotube karbon. Partikel logam yang berada pada bagian ujung nanotube karbon inaktif selama reaksi karena terbungkus penuh oleh lapisan grafitik. Terminasi

(a) Root growth Critical Hollow ore Critical Critica

pertumbuhan nanotube karbon terjadi saat permukaan aktif logam sudah terkonsumsi sebelumnya.

Gambar 2. 3 Mekanisme pertumbuhan nanotube karbon (a)base growth (b) tip growth (c) combined base-tip growth (Chen et al, 2004)

Selain itu, mekanisme pertumbuhan *nanofiber*, SWCNT dan MWCNT yang tersaji pada Gambar 2.4 dapat dijelaskan sebagai berikut (Kuznetsov, 2001).

a. Nanofiber

Permukaan partikel logam kurang jenuh karbon, nukleus yang dihasilkan berukuran relatif besar dan tumbuh berkesinambungan menghasilkan pembentukan lembaran grafit yang menutupi sebagian besar permukaan partikel logam. Karena, permukaan logam kurang jenuh karbon, nukleus berikutnya tumbuh di bawah nukleus sebelumnya tanpa berikatan dengan permukaan partikel logam di permukaan. Hal ini berlangsung terus menerus sehingga diperoleh tumpukan lembaran grafit menuju sudut tertentu atau sejajar aksial dan fiber.

b. MWNT dan FWNT

Permukaan partikel logam kurang jenuh karbon (lebih jenuh dari *nanofiber*), nukleus yang dihasilkan berukuran relatif besar dan tumbuh berkesinambungan menghasilkan pembentukan lembaran grafit yang menutupi sebagaian besar permukaan partikel logam.

Karena, permukaan logam kurang jenuh karbon, nukleus berikutnya tumbuh di bawah nukleus sebelumnya dan akan selalu berikatan dengan permukaan partikel berikutnya. Sebelum terbentuk nukleus yang baru, terjadi difusi atom karbon membentuk nanotube, begitu seterusnya sehingga didapatkan dinding nanotube yang berlapis-lapis.

c. SWNT

Berbeda dengan MWNT, beberapa nukleus karbon pada mekanisme SWNT mengendap pada permukaan partikel logam yang sama. Hal ini dapat terjadi jika permukaan partikel logam sangat jenuh karbon.

Mekanisme pertumbuhan nanotube karbon ditunjukkan pada gambar berikut.

2.5 Katalis untuk Reaksi Dekomposisi Katalitik Metana

Reaksi dekomposisi katalitik metana merupakan reaksi yang sangat endotermis sehingga diperlukan suhu yang sangat tinggi agar mencapai konversi maksimum. Suhu yang tinggi ini tidak disukai pada aplikasi industri karena mengakibatkan tambahan biaya untuk kebutuhan energi dan biaya perawatan. Penambahan katalis dalam reaksi dekomposisi metana memungkinkan tercapainya konversi yang maksimum pada suhu yang lebih rendah. Beberapa komponen katalis terdiri dari:

a. Inti Aktif katalis

Inti aktif katalis merupakan unsur utama penentu aktivitas katalis dalam reaksi. Pada reaksi dekomposisi katalitik metana, katalis yang digunakan untuk jenis reaksi ini merupakan katalis yang aktif terhadap reaksi hidrogenasi maupun dehidrogenasi. Hal ini disebabkan adanya sub orbital d yang kosong sehingga logam katalis dapat berikatan dengan reaktan dan melepaskan produknya ke fasa gas (Li *et al*, 2009). Kemampuan reaktan untuk menghasilkan produk tergantung dari keaktifan logam yang digunakan sebagai inti aktif. Keaktifan ini dapat dilihat dari kurva vulkano katalis pada Gambar 2.5 untuk reaksi dehidrogenasi.

Gambar 2. 5 Kurva volcano yang menyatakan hubungan antara orbital d kosong dengan aktivitas katalis pada reaksi dehidrogenasi etilen (Manggiasih, 2011)

Berdasarkan kurva vulcano 2.5, katalis Ni memang paling aktif terhadap reaksi dehidrogenasi karena memiliki satu orbital d kosong.Dari sisi katalis, penelitian yang dilakukan Francy (2009) di DTK UI dengan menggunakan katalis NiCu/Al₂O₃ (dengan perbandingan komposisi katalis 2/1/1, suhu 700°C) menghasilkan nanotube karbon jenis *Multiwalled Carbon* Nanotubes (MWNT) dengan diameter nanotube karbon sekitar 50 nm hingga 100 nm. Diameter yang dihasilkan jauh lebih besar dari ukuran partikel katalis sebelum reaksi sekitar 20 nm hingga 30 nm. Fenomena ini bertentangan dengan *review* jurnal Lamouroux *et al* (2007) yang menyatakan bahwa diameter nanotube karbon dapat ditentukan dari diameter katalis, yaitu memiliki diameter yang hampir sama dengan katalis yang membentuknya. Oleh karena itu, pemilihan, preparasi, dan karakterisasi katalis untuk menghasilkan diameter katalis yang kecil merupakan aspek penting perlu sangat diperhatikan untuk menghasilkan diameter nanotube karbon yang diinginkan.

Penyimpangan pada penelitian Francy (2009) juga terjadi pada penelitian Li *et al* (2009) dengan menggunakan katalis yang sama. Diameter nanotube ini diakibatkan katalis NiCu/Al₂O₃yang mengalami rekonstruksi komposisi katalis akibat bereaksi dengan reaktan metana pada temperatur reaksi lebih dari 500°C (Li *et al*, 2009). Komposisi katalis Ni/Cu/Al setelah kalsinasi yang memiliki komposisi 2/1/1 berubah menjadi 3/1/1 setelah bereaksi dengan metana pada suhu sekitar 700°C. Menurut Li *et al* (2009), perubahan komposisi ini menyebabkan katalis bekerja kurang optimal sehingga diameter nanotube karbon yang dihasilkan jauh lebih besar dibandingkan dengan diameter katalis sebelum reaksi. Maka, dapat disimpulkan bahwa katalis Ni/Cu/Al₂O₃ bukan merupakan katalis yang baik untuk menghasilkan nanotube karbon berdiameter seperti SWNT.

Dalam rangka memperbaiki diameter nanotube karbon yang terbentuk, Manggiasih (2011) mengusulkan penggunaan katalis Fe/MgOuntuk menghasilkan nanotube karbon dengan diameter seperti SWNT. Berdasarkan Gambar 2.5, katalis Fe juga aktif terhadap reaksi dehidrogenasi karena memiliki sub orbital d kosong tetapi keaktifannya kurang dari katalis Ni. Katalis Fe/MgO dapat menghasilkan SWNT karena dapat membentuk dispersi katalis yang sangat baik akibat *Metal Strong Interaction* yang kuat antar partikel katalis dan penyangga (Ning *et al*, 2006). Namun, penelitian Manggiasih (2011) hanya menghasilkan nanotube karbon MWNT karena perilaku reduksi katalis oleh hidrogen yang menyebabkan katalis teraglomerasi sehingga nanotube karbon yang dihasilkan berdiameter besar (Ning *et al*, 2006). Maka, dengan adanya permasalahan diameter nanotube karbon yang besar, penelitian mengenai sintesis nanotube karbon berdiameter kecil seperti SWNT atau FWNT perlu dilakukan.

b. Penyangga (*support*)

Penyangga berfungsi untuk menjaga kekuatan mekanis dari katalis yang lemah serta menambah luas permukaan sentuh komponen aktif. Selain itu, penyangga juga membantu menstabilisasi struktur aktif katalis agar partikel terhindar dari *sintering* (penggabungan partikel katalis sehingga diameter partikel katalis menjadi bertambah). Penyangga yang biasa digunakan seperti Alumina (Al₂O₃), Silika (SiO₂), Magnesia (MgO), zeolit, dan silika mesopori. Berdasarkan penelitian Yang *et al* (2005), Ince (2010), dan Qian (2007), penyangga MgO lebih sering digunakan pada katalis Fe, Co, atau Ni karena kemudahannya pada purifikasi nanotube karbon yang diperoleh, yaitu dengan hanya menggunakan *mild acidic treatment*. Penyangga juga dapat memfasilitasi dispersi katalis yang lebih tinggi sehingga katalis dapat tercegah dari *sintering* yang dapat mengakibatkan diameter partikel nanotube yang terbentuk membesar. Kelebihan inilah yang membuat MgO banyak digunakan terutama untuk produksi skala pilot.

c. Promoter

Promoter merupakan zat yang ditambahkan dalam preparasi katalis dalam jumlah kecil untuk memberikan aktivitas, selektivitas, dan stabilitas yang lebih baik dari katalis. Promoter terbagi atas dua jenis, yaitu:

1. Promoter Struktural

Promoter struktural memengaruhi sifat kimia dari katalis.Hal ini disebabkan promoter struktural mengubah komposisi kimia katalis tersebut.Promoter struktural yang sering kali digunakan adalah logam Cu dan Mo. Penggunaan promoter tergantung dari jenis inti aktif yang digunakan.

2. Promoter Tekstural

Promoter tekstural lebih bersifat sebagai penstabil (stablilizer) yang merupakan bahan inert yang mencegah terjadinya sintering pada partikel katalis yang berbentuk mikrokristal. Promoter ini dapat membentuk larutan padat dengan inti aktif katalis. Sifat promoter ini ditemukan pada senyawa oksida logam Hard to *Reduced Oxide* (HRO), seperti: Al₂O₃, SiO₂, ZrO₂, Cr₂O₃, CeO₂, MgO, dan TiO₂.

Berikut tabel perbandingan katalis yang tersaji pada Tabel 2.1 digunakan untuk menghasilkan CNT melalui reaksi dekomposisi katalitik metana (*carbon* nanotubes).

Katalis	Karakteristik katalis	diameter CNT	I_G/I_D	Distribusi diameter	Jurnal
		(nm)			
NiCu/Al ₂ O ₃	Rekonstruksi komposisi katalis saat bereaksi dengan reaktan metana	30 - 100	n/a	merata	Li et al (2009)
Fe/MgO	Interaksi penyangga dengan logam katalis tinggi, dispersi katalis sangat baik (tidak direduksi)	< 2 (SWNT)	5-6	Kurang merata	Ago <i>et al</i> (2006)
Co/MgO	Interaksi penyangga dengan logam katalis tinggi	< 5 (FWNT)	3-4	Kurang merata	Ni <i>et al</i> (2006)
Ni/MgO	Inti aktif Ni mudah mengalami sintering	>10 MWNT	n/a	n/a	Ni <i>et al</i> (2006)
Fe/Mo/MgO	Pembentukan Fe np, adanya promoter Mo untuk menahan sintering Fe	< 2 (SWNT)	>13	merata	Fang <i>et al</i> (2006)
Co/Mo/MgO	Adanya promoter Mo untuk menahan sintering Co, dispersi katalis sangat baik	1 - 5 (SWNT/ FWNT)	6-8	Merata	Yang <i>et al</i> (2005)
Ni/Mo/MgO	Adanya promoter Mo sehingga menahan Ni sintering	10-14	n/a	merata	Zhan <i>et al</i> (2006)

 Tabel 2. 1 Tabel Perbandingan Katalis untuk Sintesis CNT

Keterangan:

 I_G/I_D = Perbandingan antara intensitas G-*band* dan D-*band* pada spekstroskopi Raman dimana G-*band* menunjukkan keberadaan kristal SWNT sedangkan D*band* menunjukkan keberadaan karbon amorf dan impuritas karbon. Semakin besar perbandingan I_G/I_D , semakin besar pula keberadaan kristal SWNT di dalam nanotube karbon yang dihasilkan.

Berdasarkan Tabel 2.1, katalis Fe/Mo/MgO merupakan katalis yang paling baik untuk menghasilkan CNT yang memiliki diameter kurang dari 2 nm, distribusi diameter nanotube yang merata, serta nilai I_G/I_D terbesar. Hal ini disebabkan keberadaan Fe nanopartikel dan keberadaan Mo untuk menahan sintering Fe pada suhu tinggi. Namun, faktor lain yang memengaruhi pembentukan nanotube karbon berdiameter seperti FWNT atau SWNT,

yaitukomposisi inti aktif pada katalis, metode preparasi katalis, perilaku reduksi, kalsinasi, temperatur reaksi, serta reaktan yang digunakan.

Mekanisme pertumbuhan nanotube karbon dengan keberadaan Mo pada katalis Fe berdasarkan jurnal Niu *et al* (2006) ditunjukkan pada Gambar 2.6.

Gambar 2. 6 Mekanisme pertumbuhan nanotube karbon oleh katalis Fe/Mo/MgO (Fang et al, 2004)

Berdasarkan Gambar 2.6, Mo berfungsi menahan sintering partikel Fe pada temperatur reaksi yang tinggi. Selain itu, pada saat karbon metana bertumbukan dengan inti aktif Fe untuk merengkah metana menjadi karbon dan gas hidrogen, Mo akan menjenuhkan partikel Fe-C. Setelah itu, beberapa nukleus SWCNT akan terbentuk di atas gundukan partikel Fe-C-Mo.

Molybdenum juga berfungsi dalam reaksi pembentukan aromatisasi metana (Niu *et al*, 2006). Oleh karena itu, penambahan Mo juga membuat katalis Fe menjadi lebih aktif dan dapat menghasilkan *yield* karbon lebih banyak daripada katalis tanpa Mo.

Mekanisme pertumbuhan nanotube karbon menurut Raty *et al* (2005) ditunjukkan pada Gambar 2.7 di bawah ini. Gambar 2.7 (i) menunjukkan difusi satu atom karbon pada permukaan katalis. Gambar 2.7 (ii) menunjukkan pembentukan lembaran grafit di atas permukaan katalis dengan salah satu atom karbon yang berada pada pinggir terikat secara kovalen pada logam. Gambar 2.7 (iii) menunjukkan bahwa ada atom karbon baru yang terdifusi pada bagian permukaan logam katalis yang masih aktif dan pertumbuhan atom C pada bagian

yang bagian telah ditunjukkan pada Gambar 2.7 (ii) dapat terus berlanjut dengan mekanisme *base growth*.

Gambar 2. 7 Mekanisme pertumbuhan nanotube karbon pada katalis Fe (Raty et al, 2005)

Berikut faktor yang memengaruhi pembentukan nanotube berdiameter kecil.

1. Metode preparasi katalis

Pengaruh komposisi molar Fe/Mo/MgO terhadap distribusi diameter nanotube karbon yang terbentuk diselidiki pada penelitian Fang *et al* (2004). Komposisi Fe/Mo/MgO yang terbaik adalah 1:0,1:13. Menurut Chang *et al* (2000), hal ini terjadi diakibatkan adanya keterkaitan antara keasamaan dan kebasaan pada permukaan katalis. Komposisi Fe/Mo/MgO merupakan komposisi kesetimbangan pada sifat asam dari Fe dan Mo serta sifat basa MgO sehingga partikel Fe dan Mo tidak mudah mengalami pergerakan molekul yang dapat menyebabkan Fe dan Mo mengalami sintering membentuk partikel katalis yang lebih besar.

Metode preparasi katalis untuk preparasi katalis Fe/Mo/MgO menggunakan asam sitrat ($C_6H_8O_7.H_2O$) sebagai *chelating agent*. Prekursor Fe(NO₃)₃.9H₂O, (NH₄)₆Mo₇O₂₄.4H₂O, Mg(NO₃)₂.6H₂O, dan asam sitrat diaduk secara homogen dalam air dengan perbandingan massa 2,2:0,1:18,02:9,17 dalam 10 ml air sesuai dengan jurnal Fang *et al* (2004) dengan perbandingan komposisi molar Fe/Mo/MgO 1:0,1:13 yang telah dipilih.

Metode preparasi katalis yang dipilih adalah metode sol gel. Pembuatan katalis Fe/Mo/MgO dilakukan dengan metode sol gel karena dengan adanya pembentukan gel di tahap proses akan membuat katalis yang diperoleh lebih homogen terutama untuk pembentukan oksida logam multikomponen (Zhang, 2004). Proses pembuatan katalis Fe/Mo/MgO ini dilakukan dengan metode sitrat gel karena menggunakan *chelating agent* asam sitrat. Ligan C=O dalam asam sitrat digunakan untuk mengikat atom logam pada saat pembentukan gel (Pechini, 1967).

Katalis dibentuk dari prekursor $Fe(NO_3)_3.9H_2O$ untuk menghasilkan inti aktif Fe yang dapat merengkah metana. Garam amonium molybdat, $(NH_4)_6Mo_7O_{24}.4H_2O$ digunakan untuk menghasilkan logam Mo yang digunakan sebagai promoter pada katalis. Kemudian, prekursor Mg(NO_3)_2.9H_2O digunakan untuk menghasilkan penyangga MgO pada katalis. Ketiga prekursor tersebut dicampur dengan asam sitrat dengan perbandingan molar 1:0,1:13:8,98 sesuai dengan komposisi terbaik untuk menghasilkan karbon nanotube dengan diameter kecil (Fang *et al*, 2004).

2. Perilaku kalsinasi

Kalsinasi berfungsi untuk meningkatkan kekuatan katalis dengan menyebabkan terjadinya sintering. Namun sintering yang berlebihan dapat menurunkan aktivitas katalis akibat pengecilan luas permukaan, dan juga menyebabkan keterbatasan difusi akibat pengecilan ukuran pori. Selain itu, kalsinasi juga dapat memperbesar ukuran partikel dari katalis.

Penelitian Daniel (2006) menyelidiki pengaruh kalsinasi bertahap pada suhu 250°C, 500°C, dan 750°C masing-masing 1 jam. Kalsinasi ini menghasilkan kristalinitas katalis yang lebih baik. Kalsinasi bubuk katalis dilakukan pada suhu 550°C kemudian dilanjutkan di suhu 850°C (sesuai temperatur reaksi).

3. Perilaku reduksi katalis oleh gas hidrogen

Jika logam katalis berada pada bentuk oksida, katalis bisa diaktivasi dengan menggunakan agen pereduksi. Reduksi ini bisa dilakukan sebelum ataupun pada saat bahan baku karbon dialirkan ke dalam reaktor. Tetapi, reduksi sebelum reaksi dekomposisi lebih dipilih agar hidrogen yang dihasilkan dari reaksi dekomposisi metana lebih murni dan pada saat reaksi dekomposisi pun inti aktif dari katalis sudah terbentuk dan sudah tidak dalam bentuk oksida lagi (Manggiasih, 2011). Waktu reduksi dan temperatur berbanding terbalik. Pada temperatur tinggi, katalis tereduksi dalam waktu singkat. Tetapi jika waktu reduksi juga terlalu lama atau temperatur terlalu tinggi bisa menyebabkan logam katalis teraglomerasi menjadi partikel besar yang bisa menyebabkan terbentuknya MWNT pada saat produksi nanotube (Yang *et al*, 2005).

Pada katalis Fe/Mo/MgO, oksida logam yang mungkin terbentuk adalah Fe₂O₃, Fe₃O₄, FeO, MoO₃, MoO₂, FeMoO₄, MgMoO₄, MgFe₂O₄, dsb. Oksida FeMoO₄ merupakan oksida yang sangat stabil dibandingkan dengan oksida MgFe₂O₄ sehingga pembentukan dan sintering Fe NP saat reduksi dengan CH₄ (reaksi dekomposisi katalitik metana) terjadi lebih lambat daripada fasa MgFe₂O₄. Hal ini akan mendorong pembentukan nanotube karbon yang berdiameter sangat kecil seperti SWNT atau FWNT (Qian *et al*, 2008). Penambahan Mo membuat fasa MgFe₂O₄ lebih sedikit keberadaannya dibandingkan fasa FeMoO₄.

Gambar 2.8 menggambarkan hasil XRD untuk katalis Fe/Mo/MgO setelah mengalami kalsinasi (Qian *et al*, 2008) dan reduksi pada suhu 850°C (Niu *et al*, 2006). Gambar 2.8 (a) (1) menunjukkan hasil XRD katalis Fe/Mo/MgO setelah mengalami kalsinasi 550°C yang hanya memiliki *peak* MgO pada 2 theta = 38° , 42° , 62° , $72,4^{\circ}$, dan 79° . Gambar 2.8 (a) (2) menunjukkan hasil XRD katalis Fe/MgO setelah mengalami kalsinasi 850°C yang memiliki *peak* MgFe₂O₄ pada 2 theta = 30° , 34° , 54° , dan 57° dan *peak* MgO pada 2 theta = 42° , 62° . Sedangkan, Gambar 2.8 (a) (3) menunjukkan hasil XRD katalis Fe/MgO yang memiliki *peak* FeMoO₄ pada 2 theta = 28° , 31° , 35° , 47° , 49° .

Gambar 2. 8 Hasil karakterisasi XRD katalis Fe/Mo/MgO yang telah direduksi pada T=850C (Niu et al, 2006)

Berdasarkan Gambar 2.8 (b), oksida yang akan tereduksi oleh gas hidrogen adalah oksida Fe dan Mo. *Peak* Fe ditunjukkan pada 2 theta = 37° dan 44°. *Peak* Mo ditunjukkan pada 2 theta = 41°. Oksida Fe akan membentuk Fe nanopartikel. Oleh karena partikel Fe memiliki diameter yang sangat kecil ini, diameter nanotube karbon yang dihasilkan juga akan kecil. Berikut hubungan diameter nanopartikel dengan diameter karbon nanotube yang dihasilkan disajikan pada Gambar 2.9 (Lamouroux *et al*, 2007).

Gambar 2. 9 Hubungan antara diameter CNT dengan diameter nanopartikel katalis (Lamouroux *et al*, 2007)

Berdasarkan Gambar 2.9, diameter CNT yang dihasilkan baik berupa SWCNT (*Single Walled Carbon* Nanotubes), DWCNT (*Double Walled Carbon* Nanotubes), atau MWCNT (*Multi Walled Carbon* Nanotubes), diameter CNT berbanding lurus dengan ukuran nanopartikel katalis yang digunakan. Namun, untuk jenis SWCNT atau DWCNT, diameter CNT bisa sedikit lebih kecil daripada diameter nanopartikel katalisnya. Sedangkan, untuk jenis MWCNT, diameter nanopartikel justru lebih kecil dari pada diameter CNT yang dihasilkan.

4. Temperatur reaksi

Temperatur reaksi memengaruhi *yield karbon* dan kemurnian nanotube karbon yang dihasilkan. Berikut pengaruh keduanya.

a. Kemurnian nanotube karbon yang dihasilkan

Berdasarkan penelitian Yu et al (2009),temperatur untuk menghasilkan karbon nanotube dengan katalis Fe/Mo/MgO adalah 750-950[°]C. Berdasarkan Gambar 2.10, temperatur yang paling optimum untuk menghasilkan CNT yang

Gambar 2. 10 Hubungan antara rasio ID/IG dengan temperatur reaksi (Yu *et al*, 2009)
sangat murni adalah 900°C karena persentasi karbon amorf yang terbentuk sangat kecil (dapat dilihat pada perbandingan I_D/I_G pada grafik di samping. Sedangkan, pada suhu kurang dari 750°C nanotube karbon sangat sedikit yang terbentuk. Kemudian, pada suhu lebih dari 950°C, lebih banyak karbon amorf yang terbentuk karena metana cenderung mengalami dekomposisi termal.

b. Yield karbon

Konversi metana yang dapat dicapai dengan katalis Fe/Mo/MgO dengan perbandingan 0,05:0,025:0,925 adalah sebagai berikut (Ni *et al*, 2009). Pada grafik di bawah ini terlihat bahwa *yield* karbon meningkat seiring dengan peningkatan suhu.

Gambar 2. 11 Hubungan yield karbon pada katalis Fe/Mo/MgO dengan temperatur reaksi dalam 1 jam reaksi () M00.025Ni0.05Mg0.925O M00.025C00.05Mg0.925O, (M00.025Fe0.05Mg0.925O, () M00.05Mg0.95O.

Pada Gambar 2.11 terlihat bahwa jika suhu reaksi dinaikkan dari 900 K ke 1200 K, *yield* karbon juga akan meningkat untuk keempat jenis katalis. Namun, katalis $Fe_{0,05}Mo_{0,025}Mg_{0,925}O$ memiliki peningkatan *yield* karbon yang paling tinggi dibandingkan dengan jenis katalis yang lain.

5. *Space time* (W/F)

Nilai W pada W/F adalah berat dari inti aktif Fe dan F merupakan laju alir metana yang masuk sebagai reaktan. Berikut pengaruh W/F terhadap nilai konversi metana yang dihasilkan.

Gambar 2. 12 Hubungan konversi metana terhadap waktu (Phinila et al, 2011)

Keterangan: Satuan W/F = $g_c h/L$

Pada Gambar 2.12, nilai W/F yang semakin tinggi, konversi metana cenderung lebih konstan dibandingkan dengan W/F yang kecil. Hal ini menunjukkan nilai W/F yang tepat dapat meningkatkan *lifetime* katalis. W/F yang dipilih untuk reaksi dekomposisi katalitik metana adalah W/F =0,1 g_ch/L.

2.5.2 Preparasi Katalis dengan Metode Sol Gel

Saat ini teknik preparasi katalis telah berkembang demikian pesat seiring dengan perkembangan tuntutan karakterisasi dari suatu katalis, karena salah satu faktor penentu sifat dari katalis adalah metode preparasi yang digunakannya. Teknik preparasi katalis akan sangat menentukan transformasi yang dialami dari semula larutan prekursor sampai menjadi katalis.

Sol merupakan partikel halus yang terdispersi dalam suatu fasa cair membentuk koloid, sedangkan gel adalah suatu padatan yang tersusun dari fasa cair dan padat dimana kedua fasa tersebut akan saling terdispersi dan memiliki jaringan internal. Proses sol-gel didefinisikan sebagai sintesis jaringan anorganik melalui reaksi kimia dalam larutan dengan suhu yang rendah. Dalam proses

Universitas Indonesia

tersebut terjadi perubahan fasa dari suspensi koloidal (sol) membentuk fasa cair kontinyu (gel).

Aplikasi proses sol-gel ini telah digunakan secara luas. Sebagian besar produk *sol-gel* adalah bahan keramik dan gelas dalam berbagai bentuk seperti: lapisan film tipis, serat keramik, membran anorganik berpori, keramik monolitik, dan aerogel.

Tahapan dalam proses *sol gel* terdiri atas tujuh tahap yang meliputi *mixing*, *casting*, *gelation*, *aging*, *drying*, *dehydration* atau *chemical stabilization*, dan *densification*, yang dapat diuraikan sebagai berikut :

1. Pencampuran (*mixing*)

Proses pencampuran dilakukan antara prekursor dan dengan penambahan pelarutsehingga akan terbentuk sol. Pada proses ini terjadi reaksi polimerisasi pada kondisi yang harus dijaga jangan sampai terjadi presipitasi. Tahapan reaksi polimerisasi tersebut meliputi hidrolisis, kondensasi, dan poli kondensasi, dimana molekul akan bergabung membentuk rantai polimerisasi dan pada akhirnya akan terbentuk suatu jaringan dengan berat molekul yang besar dengan pelarut dan air tetap berada pada pori jaringan tersebut.

Banyak faktor yang mempengaruhi kinetika dari proses hidrolisis dan kondensasi ini karena kedua proses tersebut berjalan secara simultan. Variabel yang paling penting dan harus diperhatikan adalah temperatur, jenis dan konsentrasi elektrolit, jenis solven yang dipilih, dan tipe dari prekursor yang digunakan. Tekanan juga akan berpengaruh terhadap proses gelasi selanjutnya.

2. *Casting*

Karena sol yang terbentuk masih berupa liquid dengan viskositas rendah maka harus diproses hingga menjadi sol yang *viscous*. Proses ini dapat dilakukan dengan pemanasan dan pengadukan larutan prekursor.

3. Gelation

Selama tahap pemanasan dan pengadukan, partikel koloid yang telah berkondensasi akan bergabung membentuk jaringan tiga dimensi. Karakteristik fisik jaringan gel ini adalah sangat tergantung pada ukuran partikel dan derajat *cross-link* pada proses *gelation*. Pada tahap ini viskositas akan meningkat dengan pesat dan menghasilkan solid objek dalam bentuk *mold*.

4. Pematangan (aging)

Proses ini melibatkan perubahan kontinu yang terjadi pada struktur dan properti gel, dan membentuk jaringan gel yang lebih kaku dan kuat serta menyusut dalam larutannya. Proses ini berguna untuk menambah kekuatan gel sehingga tidak akan mengalami cracking pada saat pengeringan (*drying*).

5. Pengeringan (drying)

Untuk memproses gel lebih lanjut dan menghasilkan *dried gel*, dapat dilakukan dengan pengeringan pada kondisi superkritis maupun pada tekanan ambien. Pada kondisi superkritis akan terbentuk aerogel yang berpori (bersifat sebagai porous material) dan memiliki densitas rendah. Aerogel dapat memiliki volume pori sampai dengan 98% dan densitas hingga 80 kg/m³. Sedangkan pada pengeringan dengan tekanan ambien akan terbentuk xerogel. Pengeringan pada proses pembuatan gel kering ini terjadi ketika solven yang terabsorb secara fisik pada meterial telah sepenuhnya menguap dan biasanya terjadi pada temperatur 100-180°C.

6. Chemical Stabilization

Gel yang telah kering masih mengandung pelarut yang teradsorpsi secara kimiawi pada permukaan pori. Karena itu dibutuhkan perlakuan panas pada temperatur berkisar 500-900°C untuk mengeluarkan pelarut sekaligus menghilangkan pengotor sehingga menghasilkan gel yang lebih stabil.

7. Densification

Perlakuan panas yang dilakukan terhadap gel pada temperatur tinggi secara substansial akan mengurangi jumlah pori dan pemutusan jaringan akibat terjadinya sintering. Ini disebut sebagai densifikasi karena akan mengakibatkan densitas dari material meningkat sementara fraksi volume dari porositas akan menurun selama sintering. Gel yang semula berpori akan bertransformasi menjadi material densitas besar ketika semua porinya

Universitas Indonesia

hilang. Densifikasi ini berlangsung pada temperatur sekurangnya 1000°C dan temperatur densifikasi akan menurun jika radius porinya menurun.

2.5.3 Pelapisan Katalis pada Substrat dengan Metode Dip Coating

Ada beberapa teknik yang dapat digunakan untuk pelapisan katalis untuk membentuk lapisan tipis (*thin film*) yang disebut dengan teknik pelapisan (*coating*)antara lain: pencelupan (*dip-coating*), *spin coating*, dan *spraying*. Coating ini diterapkan pada material yang disebut sebagai substrat. Pada penelitian ini digunakan metode pelapisan dengan cara pencelupan atau *dip coating*.

Teknik *dip-coating* merupakan teknik pelapisan sol-gel yang paling sederhana. Teknik *dip-coating* adalah proses dimana substrat yang akan dilapisi dicelup ke dalam larutan sol dan diangkat dengan kecepatan tertentu pada suhu dan kondisi atmosfer yang terkontrol. Metode ini telah luas digunakan terutama untuk mendapatkan lapisan yang seragam dengan ketebalan kurang lebih 100 nm. Pelapisan katalis film pada membran dilakukan dengan metode ini karena katalis yang dihasilkan relatif tipis.

Katalis yang terdeposisi pada kawat diusahakan setipis mungkin agar *pressure drop* dalam reaktor dapat dihindari. Ketebalan lapisan yang dihasilkan dari metode *dip-coating* merupakan fungsi dari beberapa variabel, yaitu: viskositas, kecepatan pengangkatan, tegangan permukaan cairan-udara, dan gravitasi. Cara yang paling mudah untuk mendapatkan variasi ketebalan adalah dengan mengatur kecepatan pengangkatan. Korelasi antara variabel tersebut dapat dilihat pada persamaan berikut:

$$h = 0.94 \times \frac{(\eta \times \nu)^{2/3}}{\gamma^{1/6} (\rho \times g)^{1/2}}$$
(2.1)

dimana:

h = ketebalan lapisan

 η = viskositas

- v = kecepatan pengangkatan
- γ = tegangan permukaan
- ρ = densitas
- g = percepatan gravitasi

Prosedur *dip-coating* secara umum dibagi menjadi tiga tahap, yaitu:

- pencelupan material yang akan dilapisi ke dalam sol,
- pengangkatan material dari larutan sol, dan
- pengeringan sol, air, dan alkohol berlebih.

Prosedur tersebut dapat diulang beberapa kali untuk mendapatkan ketebalan lapisan yang diinginkan.

2.5.3 Pelapisan Katalis pada Substrat dengan Metode Spray Coating

Prinsip dari metode *spray coating* adalah atomisasi cairan yang membawa partikel bubuk pelapis (berukuran beberapa mikrometer) menjadi kabut, yang kemudian diarahkan kepada substrat. Atomisasi dilakukan dengan bantuan udara bertekanan atau solven volatil bertekanan. Cairan diubah menjadi aliran bebas ketika terkontak dengan jet udara tekan kecepatan tinggi. Dalam penyemprotan atomisasi udara, hanya sebagian kecil udara yang digunakan untuk atomisasi, sisanya berfungsi untuk mendorong material pelapis atau mengendalikan pola dan ukuran tetesan. Tekanan udara yang sangat tinggi dapat menyebabkan ukuran tetesan menjadi lebih besar dan memberikan pelapisan yang kasar dan menumpuk. Metode pelapisan yang digunakan adalah metode *spray coating* Fang (2003).

2.6 Hasil Karakterisasi Nanotube yang Terbentuk

Untuk mengetahui nanotube karbon yang terbentuk pada hasil reaksi, karakterisasi XRD dan TEM dilakukan. Berikut beberapa hasil karakterisasi nanotube karbon yang ditunjukkan pada jurnal.

2.6.1 Hasil Karakterisasi XRD

Gambar 2.13 menunjukkan hasil XRD katalis Fe/Mo/MgO setelah mengalami reaksi dekomposisi katalitik metana pada suhu 1000°C (Xuet al, 2011).

Gambar 2. 13 Hasil XRD katalis Fe/Mo/MgO setelah reaksi dekomposisi katalitik metana (Xu *et al*, 2011)

Berdasarkan gambar 2.13, keberadaan Mo₂C menandakan adanya keterlibatan Mo dalam aromatisasi metana dan senyawa Fe-C membuktikan adanya perengkahan metana untuk membentuk karbon oleh inti aktif Fe. Sedangkan, adanya *peak* Fe_3O_4 menunjukkan masih adanya inti aktif katalis Fe dalam bentuk oksida. *Peak* C (0 0 2) pada 2 theta = 26° menunjukkan adanya keberadaan *peak* nanotube karbon.

2.6.2 Hasil Karakterisasi Transmission Electron Microscope (TEM) dan Scanning Electrone Microscope (SEM)

Gambar 2.14 menunjukkan mekanisme pertumbuhan nanotube karbon pada katalis Fe dengan *base growth mechanism*. Nanotube karbon tumbuh di atas partikel Fe karena *Metal Strong Interaction* antara partikel katalis Fe dengan karbon yang terdeposisi di atas katalis. Adanya ikatan Fe dengan karbon menunjukkan adanya *close cap* pada nanotube karbon dengan inti aktif Fe.

Gambar 2. 14 Base growth mechanism pada pertumbuhan nanotube karbon pada katalis Fe (Chen et al, 2004) Gambar 2.15 menunjukkan nanotube karbon yang dihasilkan katalis Fe/Mo/MgO dengan berbagai komposisi molar yang dilakukan pada jurnal Fang et al (2004). Diameter nanotube karbon memiliki range di bawah 3 nm untuk ketiga komposisi yang dibuat. Pengukuran diameter nanotube karbon dilakukan dengan perbandingan panjang pada skala gambar dan nanotube karbon.

Gambar 2. 15 Hasil TEM SWNT yang dihasilkan dari katalis Fe/Mo/MgO dengan komposisi molar (a) 1:0,05:13 (b) 1:0,1:13 (c) 2 : 0,1 :13 (laju alir umpan $CH_4/H_2 = 75/300$ (v/v) (Li *et al*, 2004)

Gambar 2. 16 Hasil SEM nanotube karbon jenis SWNT yang dipreparasi dengan komposisi molar (a) 1:0,05:13 (b) 1:0,1:13 (c) 2 : 0,1 :13 (laju alir umpan $CH_4/H_2 = 75/300$ (v/v) (Li *et al*, 2004)

Gambar 2.16 merupakan gambar nanotube karbon yang terdapat pada Gambar 2.15 jika dilihat dengan karakterisasi SEM.

Universitas Indonesia

BAB 3

METODOLOGI PENELITIAN

3.1 Diagram Alir Penelitian

Berikut diagram alir penelitian untuk preparasi dan karakterisasi katalis Fe/Mo/MgO yang dipreparasi menggunakan metode sol gel/spray coating. Kemudian, katalis ini akan diuji untuk mensintesis nanotube karbon melalui reaksi dekomposisi katalitik metana.

Penelitian yang dijalankan terlihat dalam diagram alir penelitian berikut.

Gambar 3. 1 Diagram alir penelitian

Gambar 3. 2Prosedur penelitian secara lengkap

3.2 Alat dan Bahan Penelitian

Peralatan yang digunakan selama penelitian adalah sebagai berikut:

-	Beaker Glass (500 ml)	-	Furnace
-	Gelas Ukur (100 ml)	-	GC (Gas Chromatography)
-	Spatula	-	TEM (Transmission Electron
-	Botol Aquades		Microscopy)
-	Waterbath plus stirer	-	XRD(X-Ray Diffraction)
-	Timbangan	-	FE SEM EDX (Field Emission Scanning
-	Sonikator		Electron Microscopy Energy Dispersive
-	Pengaduk kaca		X-Ray)
-	Stop watch	-	Cawan keramik
-/	Magnetic stirrer		
-	Pengaduk kaca Stop watch Magnetic stirrer	-	X- <i>Ray</i>) Cawan keramik

Bahan-bahan yang digunakan selama penelitian ini adalah sebagai berikut:

. -	Besi (III) nitrat nonahidrat, Merck	-	Asam nitrat 1 M, Merck
-	Magnesium nitrate nonahydrate,		Asam klorida 1 M, Merck
	Merck	-	Wiremesh SS 316
-	Amonium heptamolybdate	6	Gas metana (CH ₄ -HP)
	tetrahidrat, Merck	H.	Gas nitrogen (N ₂ -HP)
R-	Aseton, Merck	-	Gas hidrogen (H ₂ -HP)

- Deionized water

3.3 Prosedur Penelitian dan Pengambilan Data

3.3.1 Pembentukan Konfigurasi Wiremesh

Pembentukan konfigurasi substrat wiremesh dengan ukuran substrat wiremesh: 4,36 x 0,0508 m²(Manggiasih, 2011). Berikut prosedur konfigurasi wiremesh.

- 1. Membentuk wiremesh yang sudah dipotong dengan struktur seperti pada Gambar 3.3.
- 2. Mengamplas wiremesh yang telah dipotong dengan tujuan untuk menghilangkan lapisan oksida yang ada pada kawat dengan cara mekanis.

34

- 3. Mensonikasi *wiremesh* yang telah diamplas dengan aseton selama 10 menit dengan tujuan untuk menghilangkan pengotor sisa amplas, bubuk sisa pembuatan *wiremesh*, dst.
- 4. Mensonikasi *wiremesh* dengan aquades selama 10 menit untuk menghilangkan aseton.
- 5. Mensonikasi wiremesh dengan asam dengan tujuan memperkasar permukaan wiremesh sehingga lebih mudah untuk dilapisi oleh katalis. Asam yang digunakan, yaitu HCl 1 M dan HNO₃ 1 M dengan perbandingan 1:1 (ditambah HF dengan kurang dari 2% volume).
- Mensonikasi kembali wiremesh dengan aquades selama 10 menit untuk menghilangkan sisa asam dan menimbang substrat wiremesh (W1).

3.3.2 Preparasi Katalis

Katalis yang digunakan dalam penelitian ini adalah katalis Fe-Mo-Mg yang dipreparasi dengan metode sol-gel sebagai berikut (Li *et al*, 2004).

- 1. Mencampurkan 15,12 gram $Fe(NO_3)_3.9H_2O$, 0,7 gram $(NH_4)_6Mo_7O_{24}.4H_2O$, 133,01 gram $Mg(NO_3)_2.6H_2O$, 72,14 gram asam sitrat dalam 120 ml *deionized water*.
- Mensonikasi larutan prekursor katalis selama 40 menit. Sonikasi dilakukan untuk memecahkan ukuran partikel dengan menggunakan gelombang ultrasonik sehingga diperoleh ukuran partikel sangat kecil dan homogen (Manggiasih, 2010).
- 3. Mengaduk larutan dengan stirrer pada suhu 90°C hingga menjadi gel. Pada proses pembentukan gel, proses pengikatan dilakukan selama penguapan larutan prekursor yang mengandung ion logam dan asam sitrat. Selain untuk menghomogenkan larutan, menguapkan larutan, juga untuk mempercepat proses pembentukan gel (Wulan, 2011).

- 4. Mengeringkan gel pada suhu 120°C selama 1 jam untuk menguapkan asam sitrat serta pelarut air sebelum dikalsinasi pada *furnace*. Hal ini dilakukan untuk mencegah terlalu banyak residu karbon sisa asam sitrat pada katalis.
- Mengkalsinasi katalis yang telah menjadi gel selama 1 jam pada temperatur 550°C untuk menguapkan sisa anion dan kation yang tidak stabil serta pengotor dan pelarut pada zat sebelumnya (Manggiasih, 2011) dan pada temperatur 850°C sesuai dengan temperatur reaksi (Richardson *et al*, 1989).
- 6. Menghaluskan bubuk katalis Fe/Mo/MgO yang telah diperoleh dari kalsinasi.

3.3.3 Pelapisan Katalis

- 1. Menyaring bubuk katalis pada saringan 400 *mesh*. Tujuan penyaringan bubuk ini agar dapat mudah melewati lubang botol penyemprot.
- 2. Memanaskan substrat *wiremesh* di suhu 350°C. Pemanasan dilakukan di atas titik didih isopropanol agar pelarut ini dapat langsung menguap. Selain itu, isopropanol juga digunakan sebagai pelarut bubuk katalis karena memiliki tegangan permukaan yang rendah, nilai entalpi evaporasi yang rendah, dan mudah menguap sehingga sangat baik digunakan untuk atomisasi cairan pada metode *spray coating*.
- 3. Melarutkan bubuk katalis Fe/Mo/MgO di dalam isopropanol dengan konsentrasi 0,05 gram/ml.
- Mensonikasi larutan bubuk katalis dalam isopropanol selama 10 menit untuk membuat bubuk katalis terdispersi dengan baik dalam larutan sehingga larutan menjadi homogen.
- 5. Menyemprotkan larutan katalis dalam isopropanol dalam jarak 15 cm ke kertas untuk melakukan tes pola.
- 6. Me-*recovery* kembali bubuk yang tidak terdeposisi pada wiremesh dan menyaringnya kembali pada saringan 400 *mesh*.
- Mengeringkan kembali penyangga yang telah disemprot katalis untuk menguapkan isopropanol pada suhu 350°C.

- 8. Mengulang prosedur nomor 1 s/d 8 beberapa kali agar *loading* katalis yang diinginkan dapat tercapai.
- 9. Menimbang berat akhir substrat (W_t)

3.3.4 Karakterisasi katalis

- 1. Menghaluskan bubuk katalis Fe/Mo/MgO setelah kalsinasi dengan cara menggerusnya pada mortar.
- Menyiapkan 50 mg bubuk katalis Fe/Mo/MgO yang telah dikalsinasi pada suhu 550°C, 850°C, direduksi oleh hidrogen pada suhu 850°C untuk karakterisasi XRD. Hal ini dilakukan untuk mengetahui ukuran kristal katalis. Karakterisasi XRD dilakukan di Laboratorium UIN Terpadu (XRD, Shimadzu 7000, CuKα = 0,1541 nm)
- 3. Memotong sedikit *wiremesh* yang telah terlapisi katalis dan telah dikalsinasi dalam ukuran 2 cm x 2 cm untuk karakterisasi SEM EDX. Hal ini dilakukan untuk mengetahui ketebalan dari lapisan katalis. Selain itu, untuk mengetahui kandungan logam apa saja yang terkandung pada lapisan katalis (dengan bantuan *X-ray Analysis*). Karakterisasi SEM EDX dilakukan di Laboratorium BATAN Serpong.
- Menyiapkan 50 mg bubuk katalis Fe/Mo/MgO untuk karakterisasi SEM mapping untuk mengetahui persebaran logam Fe dan Mo pada penyangga MgO. Karakterisasi katalis ini dilakukan di Laboratorium BATAN Serpong
- 5. Menyiapkan 50 mg bubuk katalis Fe/Mo/MgO yang telah dikalsinasi pada suhu 850°C dan yang telah direduksi di suhu 850°C untuk mengetahui perbedaan ukuran partikel katalis sebelum dan sesudah reduksi. Karakterisasi FE SEM dilakukan dilakukan di Laboratorium Metalurgi UI Depok.

3.3.5 Set-Up Reaktor dan Kalibrasi Alat

Prosedur set-up reaktor dan kalibrasi alat seperti Gambar 3.4.

- Merangkai peralatan yang akan digunakan yang mencakup tabung gas metana, mass flow controller, check valve, needle valve, pressure gauge, reaktor, bubble soap, GCFID dan GC FID, serta fiber glass filter dengan filter holder 47 mm (Pall Corporation) dihubungkan seperti pada gambar 3.2.
- 2. Melakukan kalibrasi GC TCD, GC FID dan *flowmeter*. Kalibrasi GC dilakukan untuk menentukan *retention time* dari gas umpan dan gas produk sedangkan kalibrasi *flow meter* untuk menyesuaikan nilai laju alir yang tertera di *flowmeter* dengan laju alir gas sebenarnya yang diukur dengan *bubble soap*.

Gambar 3. 4 Skema rangkaian penelitian

3.3.6 Sintesis CNT dan Pengambilan data

- 1. Memasukkan katalis terstruktur *gauze* yang telah dipreparasidalam reaktor.
- 2. Mengatur temperatur reaksi dalam *tube furnace* pada $850 \,^{\circ}$ C.
- Mengalirkan gas hidrogen untuk reduksi katalis Fe/Mo/MgO dengan laju 40 L/jam selama 30 menit

- Mengalirkan reaktan metana pada suhudan tekanan atmosferik, dengan laju alir 160 L/jamselama 30 menit
- 5. Mengambil data laju alir produk dengan bubble soap dan data komposisi aliran gas produk dengan GC FID dan GC TCD setiap periode 5 menit selama 20 menit dan selanjutnya data diambil setiap 15 menit selama 3 jam
- 6. Menghentikan aliran metana.
- 7. Menurunkan suhu *furnace* menjadi suhu ruang lalu mengeluarkan katalis terstruktur dari dalam reaktor.
- 8. Menimbang berat gauze.

3.3.7 Karakterisasi Nanokarbon yang dihasilkan

- 1. Menyiapkan 30 mg sampel nanokarbon untuk karakterisasi *Transmission Electron Microscope* (TEM). Hal ini dilakukan untuk mengetahui jenis nanokarbon yang dihasilkan seperti *nanofiber*, nanotube, *atau bamboo-shaped*. Sedangkan untuk menghitung diameter nanokarbon dapat dilakukan dengan menggunakan skala pada gambar TEM. Dengan gambar pada TEM, mekanisme pertumbuhan dari nanokarbon pada katalis juga dapat diamati.
- 2. Menyiapkan 30mg sampel nanotube karbon untuk karakterisasi XRD untuk mengetahui keberadaan nanotube karbon pada sampel dengan adanya *peak* C (0 0 2) pada $2\theta = 26^{\circ}$. Metode ini diterapkan oleh Xu *et al* (2011). Sedangkan, untuk ukuran kristal pada oksida yang terlihat pada XRD dapat dihitung dengan persamaan Schrerrer berikut.

$$D = \frac{0.9\,\lambda}{B\cos\theta} \tag{3.1}$$

Dimana: D = ukuran kristal;B = FWHM (*Full width at half maximum*) dalam radian; $\lambda = panjang gelombang (untuk jenis CuK\alpha = 0,1541 nm); \theta$ = sudut pada puncak oksida yang terdapat pada hasil XRD (derajat)

3.3.8 Perhitungan konversi dan yield karbon yang dihasilkan

Perhitungan konversi dan yield karbon diperoleh dari rumus berikut.

$$X_{CH_4} = \frac{n CH_{4 \text{ in}} - n CH_{4 \text{ out}}}{n CH_{4 \text{ in}}} \quad (3.2) \text{ yield Karbon} = \frac{M_{CNT \text{ actual}}}{M \text{ katalis}} \quad (3.3)$$

BAB 4

HASIL DAN PEMBAHASAN

Bab ini akan mengulas hasil nanotube karbon yang dihasilkan dari reaksi dekomposisi katalitik metana dengan menggunakan katalis Fe/Mo/MgO. Berbagai analisis mengenai preparasi dan karakterisasi katalis Fe/Mo/MgO yang berpengaruh terhadap nanotube karbon yang dihasilkan juga akan dibahas pada bab ini.

4.1 Katalis Fe/Mo/MgO yang dihasilkan dari metode sol gel

Perubahan fisik larutan campuran $Fe(NO_3)_3.9H_2O$, $Mg(NO_3)_2.6H_2O$, $(NH_4)_6Mo_7O_{24}.4H_2O$, dan asam sitrat dalam *deionized water* hingga menjadi gel ditunjukkan pada Gambar 4.1.

Gambar 4. 1 Proses pembuatan katalis Fe/Mo/MgO

Larutan katalis Fe/Mo/MgO yang ditunjukkan pada Gambar 4.1(a) belum diberi perlakuan pemanasan dan pengadukan berwarna oranye muda. Perubahan larutan yang menjadi lebih kental dan berwarna cokelat hitam pekat saat larutan diaduk dan dipanaskan selama beberapa jam pada suhu 90°C ditunjukkan pada Gambar 4.1(b). Larutan mengalami perubahan menjadi gel karena adanya sebagian pelarut air maupun uap nitrat yang telah menguap. Sedangkan, Gambar 4.1 (c) menunjukkan perubahan fisik larutan yang telah menjadi gel yang sangat kaku dan siap dikalsinasi.

Perilaku kalsinasi untuk menghasilkan struktur kristal katalis yang lebih stabil dilakukan pada suhu 550°C dan 850°C masing-masing selama 1 jam. Hasil

bubuk katalis yang diperoleh pada kalsinasi suhu 550°C akan ditunjukkan pada Gambar 4.2 (a) dan kalsinasi suhu 850°C ditunjukkan pada Gambar 4.2 (b).

Gambar 4. 2 Bubuk katalis (a) kalsinasi 550°C (b) kalsinasi 850°C (c) reduksi 850°C

Sebelum reaksi dekomposisi katalitik metana dilakukan, perilaku reduksi oleh gas H_2 juga dilakukan untuk menghasilkan inti aktif Fe dan Mo. Bubuk katalis yang telah direduksi pada suhu 850°C ditunjukkan pada Gambar 4.2 (c).

Ukuran partikel katalis menjadi faktor penting untuk mengetahui diameter nanotube karbon yang terbentuk. Hubungan antara diameter nanotube karbon dengan diameter nanotube karbon yang dihasilkan seperti yang ditunjukkan pada Gambar 2.9. Perilaku kalsinasi pada suhu 550°C, 850°C, serta perilaku reduksi akan menyebabkan perubahan ukuran partikel katalis serta jenis oksida yang terbentuk. Menurut hasil penelitian Moodley *et al* (2009), perubahan ini akan sangat memengaruhi diameter nanotube karbon yang terbentuk. Selain itu, jenis oksida tertentu yang diperoleh memang diperlukan untuk menghasilkan nanotube karbon berdiameter kurang dari 10 nm. Oleh karena itu, katalis yang telah diperoleh kemudian dikarakterisasi dengan metode XRD dan SEM yang akan dibahas selanjutnya pada sub bab 4.2.

4.2 Hasil Karakterisasi Katalis Fe/Mo/MgO

4.2.1 Karakterisasi XRD

Hasil karakterisasi XRD yang dilakukan ditunjukkan pada Gambar 4.3.

Hasil XRD katalis Fe/Mo/MgO yang dilakukan pada kalsinasi 550°C ditunjukkan pada K-550C, kalsinasi pada suhu 850°C ditunjukkan pada K-850C, dan katalis yang diberi perlaku reduksi ditunjukkan pada reduksi hidrogen pada Gambar 4.3.

Hasil XRD katalis pada suhu 550°C (K-550C) menunjukkan adanya *peak* MgO pada $2\theta = 42,74^{\circ}$ dan $61,932^{\circ}$ pada Gambar 4.3. Ukuran kristal MgO berkisar antara 5,38 nm hingga 5,97 nm dari perhitungan XRD pada Tabel 4.1. Hasil XRD ini sesuai dengan hasil XRD pada literatur bahwa *peak* MgO memang terdapat pada theta tersebut (Qian *et al*, 2008).

Hasil XRD katalis pada suhu 850°C (K-850C) menunjukkan adanya *peak* MgO pada $2\theta = 42,74^{\circ}$ dan 61,84°. Ukuran kristal MgO berkisar antara 24 nm hingga 55,78 nm dari perhitungan XRD. *Peak* Fe₃O₄ juga yang merupakan sumber inti aktif katalis Fe/Mo/MgO sebelum direduksi dengan hidrogen juga berada pada hasil karakterisasi XRD. *Peak* XRD ditunjukkan pada $2\theta = 30,26$; 35,45; 35,9338; 56,945; 74,6792 dalam Gambar 4.3. Ukuran kristal Fe₃O₄ berada

pada kisaran 15 sampe 27 nm pada hasil perhitungan Tabel 4.1. Oksida MoO₃ yang mungkin muncul tidak terlihat pada data XRD karena adanya logam Mo pada prekursor awal. Ketidakhadiran *peak* Mo ini sama seperti pada penelitian Liu *et al* (2003). Hal ini disebabkan konsentrasi garam Mo pada prekursor sangat kecil sekali (kurang dari 1% berat).

Hasil XRD katalis setelah reduksi dengan hidrogen pada suhu 850°C pada Gambar 4.3 menunjukkan adanya puncak FeMoO₄ pada $2\theta = 26,33^{\circ}$ jika disesuaikan dengan *peak* yang terdapat pada hasil XRD yang terdapat pada jurnal Qian *et al* (2008). Berdasarkan hasil reduksi, seharusnya *peak* yang mungkin muncul berupa Fe dan Mo. Namun, *peak* Fe dan Mo tidak muncul karena fasa FeMoO₄ merupakan fasa yang sangat stabil sehingga sulit direduksi oleh gas H₂ dalam waktu yang sangat singkat (Qian *et al*, 2008). Menurut penelitian Qian *et al* (2008) juga dengan adanya *peak* ini, Fe np akan lebih mudah dihasilkan sehingga diameter nanotube karbon yang kecil seperti SWNT atau FWNT lebih mudah terbentuk. Maka, diharapkan dengan adanya *peak* ini nanotube karbon dengan diameter seperti SWNT atau FWNT dapat terbentuk.

Hasil perhitungan ukuran kristal katalis dengan metode Scherrer ditunjukkan pada Tabel 4.1.

	2 teta	D (nm)	Peak
Kalsinasi	42,75	5,97	MgO
550 C	61,93	5,39	MgO
Kalsinasi	42,93	24,18	MgO
850 C	30,26	24,36	Fe ₃ O ₄
	35,45	15,53	Fe_3O_4
	35,94	25,13	Fe_3O_4
	56,94	16,89	Fe_3O_4
	61,84	55,78	MgO
	74,68	27,08	Fe_3O_4
Reduksi	42,26	41,75	MgO
850C	62,38	28,73	MgO
	36,93	24,10	MgO
	74,57	31,49	MgO
	78,52	24,80	MgO

Tabel 4. 1 Ukuran kristal katalis Fe/Mo/MgO

• 御人間、•

3.6

4.2.2 Karakterisasi FE SEM

Karakterisasi FE SEM dilakukan untuk mengetahui morfologi sekaligus ukuran partikel pada katalis. Partikel dapat berbentuk kristal. Susunan jenis kristal yang menyusun partikel dapat dilihat pada hasil XRD di sub bab 4.2.1. di atas. Berdasarkan karakterisasi XRD, ukuran partikel Fe atau Mo nanopartikel tidak dapat dihitung karena tidak tersedia data yang diberikan oleh karakterisasi tersebut. Maka pengukuran dilakukan dengan FE SEM.

Berdasarkan kedua hasil karakterisasi FE SEM di atas, ukuran partikel dari katalis sebelum mengalami reduksi 18 nm hingga 56 nm. Hal ini menunjukkan bahwa diameter partikel katalis yang dihasilkan setelah kalsinasi memiliki ukuran yang bervariasi. Variasi ukuran ini dapat dijelaskan pada Tabel 4.1untuk kalsinasi 850°C (K-850C) dengan variasi ukuran kristal Fe₃O₄ dan MgO yang menyusun ukuran partikel yang teramati pada FE SEM. Ukuran partikel katalis yang besar setelah kalsinasi terjadi akibat dari perilaku kalsinasi berulang-ulang (*furnace* dan reaktor) pada suhu 850°C. Hal ini dapat menyebabkan sintering partikel katalis membentuk ukuran yang lebih besar (Richardson, 1989).

Namun, setelah mengalami reduksi dengan gas hidrogen, ukuran partikel katalis justru mengalami perubahan diameter dari 20 nm hingga lebih dari 100 nm (mencapai lima kali dari *range* semula). Hal serupa juga terjadi pada katalis Fe₂O₃/SiO₂, dengan reduksi oleh gas hidrogen (Moodley *et al*, 2009). Katalis yang semula memiliki diameter 4 nm memiliki *range* diameter dari 4 nm hingga 20 nm (hingga mencapai 5 kali dari *range* semula). Namun, katalis Fe yang telah direduksi pada kondisi inert memiliki diameter sekitar 5 nm dari yang semula 4 nm. Hal ini membuat diameter nanotube karbon yang dihasilkan pada penelitan Moodley bervariasi dari 5 hingga 23 nm. Sebagai perbandingan, ukuran diameter katalis setelah reduksi yang terukur sekitar 20 hingga 100 nm juga dapat menghasilkan diameter nanotube karbon dengan *range* sekitar 20 hingga 100 nm bahkan lebih (sesuai dengan Gambar 2.9tentang hubungan diameter nanotube karbon dengan diameter nanotube katalis).

Hasil karakterisasi FE SEM ditunjukkan pada Gambar 4.4.

Gambar 4. 4 Hasil karakterisasi SEM (a) katalis sebelum reduksi T=850°C (b) katalis setelah reduksi T=850°C

Penggabungan katalis pada saat reduksi untuk membentuk partikel yang lebih besar terjadi karena adanya partikel katalis yang bergerak mendekati partikel katalis yang lain pada suhu tinggi (Lihat pada Gambar 4.5). Selanjutnya, partikel dapat berada dalam keadan meleleh sehingga sangat mudah melebur untuk membentuk partikel yang lebih besar. Hal ini dapat terjadi tergantung pada suhu yang digunakan. Reduksi partikel Fe pada sebelum reaksi dilakukan pada suhu 850°C (1123°K). Jika kita bandingkan dengan Gambar 4.5 dengan Gambar 4.4 (b), partikel Fe berada di antara keadaan mendekati Gambar C dimana partikel Fe cenderung mengalami penggabungan dengan partikel Fe lain dan membentuk partikel Fe dengan ukuran yang lebih besar .

Gambar 4. 5 Pergerakan partikel Fe pada suhu (A) 500 K (B) 800 K (C) 1200 K (D) 1400K (E) 1460 K (Ding *et al*, 2004)

Salah satu fungsi promoter Mo dalam katalis Fe/Mo/MgO adalah dapat mencegah partikel Fe mengalami sintering untuk membentuk partikel katalis yang lebih besar (Li *et al*, 2004). Begitu pula dengan adanya penyangga MgO yang dapat membantu dispersi katalis Fe dan Mo yang baik di dalam katalis Fe/Mo/MgO (Ni *et al*, 2006). Oleh karena itu, penyebaran Fe dan Mo di dalam katalis yang baik.Untuk mengetahui penyebaran logam Fe, Mo, dan Mg pada

katalis, karakterisasi *mapping* katalis dilakukan. Berikut hasil *mapping* katalis Fe/Mo/MgO ditunjukkan pada Gambar 4.5.

Dari hasil *mapping* pada Gambar 4.6, terlihat bahwa katalis Fe, Mo, dan Mg memiliki persebaran yang kurang merata pada bubuk katalis (K-850C). Hal ini dapat dilihat dengan adanya bagian hitam pada hasil *mapping*. Oleh karena itu, sintering partikel Fe sangat mungkin terjadi. Melalui hasil *mapping* dapat disimpulkan bahwa kondisi katalis Fe/Mo/MgO tidak berada dalam keadaan yang optimal untuk menghasilkan nanotube karbon.

4.3 Pelapisan Katalis dengan Metode Dip Coating / Spray Coating pada Kawat Wiremesh SS 316

Pelapisan bubuk katalis pada substrat wiremesh SS 316 dilakukan dengan metode spray coating (Fang, 2003). Perhitungan berat bubuk katalis yang diloading pada substrat disesuaikan dengan W/F (rasio berat per umpan gas metana). Dengan rasio W/F 0,0113 gram jam/L dan laju alir metana 160 L/jam maka diperoleh loading bubuk katalis sebesar 1,356 gram inti aktif Fe.

Untuk mendeposisikan bubuk katalis pada substrat, bubuk katalis dilarutkan dalam isopropanol dengan konsentrasi 0,05 gram/ml. Penyemprotan dilakukan pada substrat yang telah dipanaskan terlebih dahulu di suhu 350°C selama 1 jam. Tujuan pemanasan inidilakukan adalah uutk mencegah wiremesh menjadi lebih jenuh sehingga penyemprotan tidak akan merontokkan bubuk yang telah terdeposisi (Fang, 2003). Penyemprotan dilakukan berulang-ulang untuk memperoleh loading katalis yang diinginkan. Berikut data penyemprotan yang dilakukan.

Kondisi Katalis	Massa (gram)	Penambahan massa katalis (gram)
Substrat awal	374.65	0.00
Spray coating ke 1	378.93	4.28
Spray coating ke 2	382.68	3.75
Spray coating ke 3	384.70	2.02
Spray coating ke 4	385.60	0.90
Spray coating ke 5	387.08	1.48
Spray coating ke 6	388.69	-1.61
Massa Katalis (Wcat)		14.04

Karakterisasi SEM juga dilakukan untuk melihat ketebalan dari pelapisan dengan metode *spray coating*. Berikut hasilnya.

Gambar 4. 7 Hasil karakterisasi SEM pelapisan bubuk katalis Fe/Mo/MgO dengan metode spray coating (a) tampak atas 1 substrat (b)tampak atas 2 substrat (c) tampak samping kawat

Berdasarkan Gambar 4.7, bubuk katalis terlihat menempel dengan tebal tetapi tidak cukup merata di setiap bagian kawat SS 316. Ketebalan dari pelapisan bubuk katalis Fe/Mo/MgO pada kawat sekitar 18 hingga 20 µm (Gambar 4.7 c). Ketebalan tersebut diperoleh setelah penyemprotan hingga 5 hingga 6 kali.

Sedangkan, tampak sebelum dan setelah pelapisan oleh katalis Fe/Mo/MgO dapat dilihat pada Gambar 4.8.

Gambar 4. 8 Pelapisan katalis pada wiremesh (a) sebelum dilapisi (b) sesudah dilapisi

Warna oranye pada katalis Fe/Mo/MgO yang telah melapisi kawat *wiremesh* yang telah terbentuk menunjukkan adanya ion Fe^{3+} atau adanya oksida Fe_2O_3 pada katalis tersebut.

4.5 Karakterisasi Nanotube Karbon

Karakterisasi nanotube karbon dilakukan melalui karakterisasi XRD,FE SEM, dan TEM. Karakterisasi XRD dilakukan untuk mengetahui keberadaan *peak* Mo_2C , Fe-C, dan nanokarbon terstruktur C (0 0 2) pada $2\theta = 26^0$. Karakterisasi FE SEM dapat digunakan untuk melihat diameter nanotube karbon. Sedangkan, karakterisasi TEM untuk melihat jenis nano karbon yang dihasilkan, morfologi, serta pertumbuhan dari nanotube karbon.

Hasil XRD yang dilakukan pada katalis yang telah ditumbuhi nanotube karbon ditunjukkan pada Gambar 4.9.

Gambar 4. 9 Hasil XRD katalis yang telah ditumbuhi nanotube karbon

Berdasarkan hasil XRD pada Gambar 4.9, keberadaan nanotube karbon ditunjukkan pada*peak* $2\theta = 26,3405$. Hal ini sesuai dengan Jurnal Xu *et al* (2011) bahwa *peak* daerah tersebut menunjukkan *peak* nanotube karbon atau C (0 0 2). Dengan rumus Scherrer, diameter luar nanotube karbon yang terbentuk adalah 6,2

nm. Kemudian, keberadaan *peak* Mo₂C menunjukkan adanya fungsi Mo untuk membantu aromatisasi metana dan keberadaan *peak* Fe-Carbida menunjukkan bahwa Fe berperan dalam perengkahan katalitik metana (Ni *et al*, 2006). Sedangkan, menurut Ruemmeli *et al* (2007), keberadaan senyawa Fe₃C (salah satu senyawa pada Fe-Carbida) menunjukkan bahwa adanya partikel katalis yang berfungsi sebagai penutup nukleasi dari CNT.

Hasil nanokarbon yang diperoleh dari karakterisasi TEM ditunjukkan pada Gambar 4.10.

Gambar 4. 10 Hasil TEM nanokarbon pada skala 50 nm

Hasil TEM pada Gambar 4.10 menunjukkan adanya nanotube karbon berukuran 4,5 nm hingga 89,5 nm. Hasil TEM pada Gambar 4.11 menunjukkan adanya

nanotube karbon berukuran 6 nm hingga 90 nm. Namun, juga terdapat nanokarbon tipe *bamboo shaped* yang menyerupai nanokarbon, *coil nanotube carbon*, serta *carbon nanofiber*.

Gambar 4. 11 Hasil TEM nanokarbon (skala 200 nm)

Jika dibandingkan dengan katalis-katalis yang digunakan pada penelitian sebelumnya (Lih. Tabel 4.3), katalis Fe/Mo/MgO memiliki rentang diameter yang cukup besar, yaitu 4,5 nm hingga 89,5 nm tetapi memiliki diameter lebih kecil dari katalis Fe/MgO atau Ni/Cu/Al₂O₃. Namun, katalis Fe/Mo/MgO sudah dapat menghasilkan nanotube karbon di bawah 10 nm seperti pada tujuan penelitan. Tetapi, diameter nanotube karbon yang dihasilkan di atas 10 nm hingga 89,5 nm, keberadaan *bamboo-shaped* mirip dengan nanotube karbon, dan *nanofiber* menyebabkan nanotube karbon yang diinginkan tidak murni.

No	Katalis	Rentang	Yield karbon	Waktu	Peneliti
		diameter	(gc/gkatalis)	reaksi	
		nanotube			
		karbon (nm)			
1	NiCu/Al ₂ O ₃	50 nm – 100	93,09	17 jam	Francy (2009)
		nm			
2	Fe/MgO	50 nm - 100	3,45	3 jam	Manggiasih
		nm			(2011)
3	Fe/Mo/MgO	4,5 nm – 89,5	1,515	1 jam 10	Bernadet
		nm		menit	(2012)

Tabel 4. 3 Katalis yang digunakan pada reaktor katalitik terstruktur

Range diameter yang besar ini juga ditemukan pada penelitian Coqueay et al (2002) dengan menggunakan katalis Fe/MgO (range diameter 4 hingga 80 nm) yang disebabkan dispersi katalis yang kurang baik pada penyangga sehingga ukuran partikel katalis yang bervariasi. Hal ini dapat dijelaskan melalui hasil karakterisasi mapping logam Fe, Mo, dan MgO pada katalis yang menunjukkan bahwa dispersi logam memang kurang baik pada penyangga. Hal tersebut dapat menyebabkan diameter nanotube karbon yang bervariasi. Menurut Qian et al (2008), logam Mo dapat membantu dispersi katalis Fe dengan baik pada MgO. Namun, hasil penelitian menunjukkan bahwa pengaruh logam Mo tidak terlihat secara signifikan.

Diameter nanotube karbon yang kecil (<10 nm) masih dapat teridentifikasi dalam hasil penelitian ini. Hal ini disebabkan keberadaan oksida FeMoO₄ yang terdeteksi pada XRD saat katalis telah mengalami reduksi. Berdasarkan penelitian Qian *et al* (2008), oksida FeMoO₄ merupakan oksida yang dapat membantu pembentukan nanotube karbon berdiameter kecil (kurang dari 5 nm). Hal ini disebabkan adanya keberadaan Mo pada Fe yang mencegah partikel katalis mengalami *sintering* sehingga dapat mencegah peningkatan diameter nanotube karbon yang terbentuk. Selain itu, oksida ini merupakan oksida yang stabil sehingga katalis Fe maupun Mo dapat tereduksi perlahan-lahan saat bereaksi dengan metana. Akibatnya, Fe akan sulit mengalami agregasi menjadi partikel yang besar sehingga diameter nanotube karbon yang dihasilkan akan menjadi kecil.

Namun, jika dibandingkan dengan Jurnal Li et al (2004) yang memiliki komposisi katalis serta kondisi operasi yang hampir sama dengan penelitian ini,

diameter nanotube karbon yang dihasilkan memiliki diameter yang sangat berbeda. Pada penelitian Li *et al* (2004), diameter nanotube karbon yang dihasilkan kurang dari 3 nm karena ukuran nanopartikel Fe juga sekitar 3 hingga 4 nm. Sedangkan, nanotube karbon dengan diameter 10 nm hingga 90 nm memiliki porsi yang terbesar pada hasil penelitian ini. Hal ini disebabkan ukuran partikel katalis yang dihasilkan juga sebesar 20 hingga 100 nm. Fenomena ini sesuai dengan korelasi diameter nanotube karbon yang dihasilkan dengan diameter nanotube karbon yang dihasilkan dengan diameter nanotube karbon yang dihasilkan dengan diameter nanotube karbon yang dihasilkan pada penelitian ini juga sekitar 20 nm hingga 100 nm setelah reduksi dari hasil karakterisasi ukuran partikel pada FE SEM dapat menghasilkan diameter nanotube karbon hingga mencapai 4 hingga 89,5 nm.

Ukuran partikel dapat mencapai 20 hingga 40 nm dapat disebabkan oleh waktu kalsinasi yang terlalu lama pada suhu 850°C. Prosedur kalsinasi ini dilakukan karena dapat menghasilkan kristalinitas katalis yang baik saat mengalami reaksi. Namun, waktu kalsinasi yang panjang dapat menyebabkan partikel katalis mengalami sintering sehingga menghasilkan ukuran partikel yang terlalu besar akibat adanya pergerakan partikel pada suhu tinggi (Richardson, 1989).

Salah satu parameter operasi yang juga berpengaruh terhadap jenis nanokarbon yang dihasilkan adalah waktu reaksi. Hasil nanotube karbon yang bervariasi pada penelitian ini berdasarkan pengamatan pada TEM juga disebabkan oleh pengaruh waktu reaksi yang terlalu lama, yaitu 70 menit. Menurut Fang (2004) yang menyelidiki pengaruh waktu reaksi dengan katalis Fe/Mo/MgO pada suhu reaksi 850°C terhadap jenis nanotube karbon yang dihasilkan, waktu optimal untuk menghasilkan nanotube karbon berdiameter kurang dari 3 nm adalah 30 menit. Jika waktu reaksi melebihi 30 menit, hasil nanokarbon berupa nanofiber dan karbon amorf akan semakin meningkat sehingga nanotube karbon berdiameter seperti SWNT hanya sedikit yang dihasilkan. Hal ini disebabkan sisi aktif dari katalis telah tertutup tetapi reaksi dekomposisi metana tetap terjadi.

Gambar 4. 12 Hasil FE SEM pertumbuhan nanotube karbon pada katalis

Gambar 4. 13 Hasil FE SEM pertumbuhan nanotube karbon pada katalis

Berdasarkan Gambar 4.12 dan Gambar 4.13, pertumbuhan nanotube karbon pada katalis mengikuti *base growth mechanism* dimana nanotube karbon tumbuh memanjang dari katalis (Chen *et al*, 2004). Inti aktif pada Gambar 4.13 memanjang mengikuti nanotube karbon yang tumbuh pada katalis. Katalis membentuk tutup *cap* nanotube karbon sesuai dengan keberadaan Fe-C pada hasil XRD pada Gambar 4.9.

56

4.6 Uji Kinerja Reaktor

Reaksi dekomposisi katalitik metana dilakukan pada suhu 850°C menghasilkan produk gas utama berupa gas hidrogen dan metana yang tidak habis bereaksi yang terdeteksi pada GC TCD. Selain itu, juga terdapat gas karbon monoksida, gas etana, etena, propana, butana yang terdeteksi oleh GC FID.

Hasil konversi gas metana menjadi produk karbon (solid) dan gas hidrogen ditunjukkan pada Gambar 4.8.

Gambar 4. 14 Konversi gas metana pada menit tertentu

Konversi gas metana yang ditunjukkan pada Gambar 4.14 memperlihatkan bahwa katalis Fe/Mo/MgO kemiripan tren grafik konversi metana yang ditunjukkan pada Gambar 2.14 (W/F = 0,083 gL/menit). Total karbon yang terdeposisi pada reaktor adalah 19,6 gram. *Yield* karbon yang dihasilkan pada katalis ini adalah sebesar 1,48 gc/gkatalis. Jika dibandingkan dengan katalis yang digunakan pada penelitian sebelumnya (Lih. Tabel 4.3), katalis Fe/Mo/MgO memiliki *yield* karbon yang jauh lebih kecil. Hal ini disebabkan waktu reaksi yang sangat singkat dan jenis katalis yang digunakan. Berdasarkan kurva vulcano pada Gambar 2.5, perbedaan *yield* karbon yang signifikan dari katalis Ni/Cu/Al₂O₃ dengan katalis Fe/Mo/MgO atau katalis Fe/MgO terletak pada keaktifan katalis dalam reaksi dehidorgenasi. Katalis Ni jauh lebih aktif dibandingkan dengan katalis Fe maka katalis Ni akan

menghasilkan *yield* karbon yang jauh lebih banyak. Konversi metana tertinggi yang dihasilkan mencapai 97,64%.

Gauze yang sudah ditumbuhi oleh nanotube karbon dapat dilihat pada Gambar 4.15. Jika dilihat secara visual, hasil nanotube karbon ini tidak terlalu jelas. Hal ini dikarenakan nanotube karbon yang terbentuk pada kawat berbentuk lapisan yang tidak terlalu tebal dan tersebar pada permukaan kawat. Berikut gambar hasil nanotube karbon yang tersebar di permukaan kawat ditunjukkan pada Gambar 4.15.

Gambar 4. 15 Gauze yang telah ditumbuhi nanotube karbon (baris paling bawah hingga ke atas menunjukkan gauze dari bagian depan hingga belakang reaktor)

Pertumbuhan nanotube karbon yang terjadi lebih banyak di bagian belakang reaktor dibandingkan bagian depan. Hal serupa juga terjadi pada penelitian Manggiasih (2011). Fenomena ini mungkin dapat disebabkan oleh temperatur metana yang belum mencapai temperatur reaksi (Manggiasih, 2011). Gas metana memasuki reaktor pada temperatur ruang kemudian mengalami pemanasan pre-*heating* dari bagian depan reaktor hingga bagian belakang. Maka, pada bagian belakang reaktor gas dianggap telah mencapai suhu reaksi sehingga reaksi pembentukan nanotube karbon terjadi di bagian belakang reaktor terlebih dahulu. Akibatnya, konsentrasi di bagian belakang reaktor semakin meningkat dan menggeser sudut vorteks ke bagian depan. Oleh karena itu, reaksi akan terjadi ke bagian depan gauze. Sebagai konsekuensinya, banyaknya karbon yang tumbuh di bagian depan lebih sedikit dibandingkan di bagian belakang reaktor.

4.7 Evaluasi terhadap Hasil Running 1

Berdasarkan analisis pada sub bab 4.5, ada beberapa saran yang dapat dilakukan untuk memeroleh keseragaman diameter nanotube yang lebih merata serta diameter nanotube karbon yang lebih kecil, yaitu:

- Variasi terhadap pengaruh reaksi yang lebih singkat dapat dilakukan untuk memeroleh waktu optimal katalis Fe/Mo/MgO untuk menghasilkan nanotube karbon yang baik tetapi harus disesuaikan dengan W/F yang digunakan
- 2. Kalsinasi katalis Fe/Mo/MgO dapat dilakukan secara langsung di dalam reaktor tanpa kalsinasi terlebih dahulu di dalam *furnace*. Hal ini dilakukan untuk menghindari adanya sintering katalis yang dapat menyebabkan ukuran partikel katalis membesar.
- 3. Penambahan konsentrasi terhadap molybdenum dapat dilakukan untuk membantu dispersi nanopartikel Fe pada penyangga MgO.

4.8 Hasil Running 2 Berdasarkan Evaluasi terhadap Running 1

Evaluasi Running 1 dijadikan sebagai dasar untuk melakukan Running 2. Seluruh saran dari sub bab 4.7 dilakukan pada Running 2, yaitu:

- 1. Waktu reaksi dilakukan lebih pendek (30 menit) untuk meminimalisasi adanya nanokarbon yang berdiameter besar dan pembentukan karbon amorf
- 2. Kalsinasi katalis Fe/Mo/MgO dilakukan pada suhu 550°C dengan oksigen untuk memastikan *chelating agent* (asam sitrat) dan residu menghilang. Setelah kalsinasi, sebaiknya mengalirkan gas nitrogen (inert) untuk mengusir oksigen dengan tujuan mencegah adanya oksigen saat reaksi yang dapat menghambat reaksi berlangsung karena pembentukan CO maupun CO₂.
- Reduksi dilakukan selama 40 menit pada suhu 850°C (untuk menghasilkan nanopartikel Fe dan mencegah adanya gas CO atau CO₂ yang dihasilkan pada saat reaksi sehingga hidrogen yang dihasilkan lebih murni
Pengaruh terhadap perubahan ukuran katalis tidak bisa diamati karena katalis direaksikan segera setelah kalsinasi. Berikut hasil FE SEM terhadap katalis Fe/Mo/MgO yang telah direaksikan dengan metana pada suhu 850°C. Dari hasil FE SEM pada Gambar 4.16 (a) s/d (f), diameter nanotube karbon berkisar sekitar antara 8,5 nm hingga 65,44 nm. Namun, diameter luar kurang dari 35 nm mendominasi hasil dari diameter yang dihasilkan. Sesuai dengan Evaluasi terhadap Running 1, *range* diameter yang dihasilkan menjadi lebih kecil dari semula.

(f) Gambar 4. 16 Hasil FE SEM Running 2: (a) s/d (f)

BAB 5

KESIMPULAN DAN SARAN

5.1 Kesimpulan

- Ukuran partikel katalis setelah reduksi yang berkisar antara 20 nm hingga 100 nm hampir sama dengan ukuran diameter luar nanotube karbon yang terbentuk, yaitu 4 nm hingga 90 nm.
- Yield karbon yang dihasilkan pada penelitian ini sebesar 1,48 gc/gkat. Konversi metana tertinggi 97,64%.
- 3. Hasil running 1 telah menunjukkan adanya diameter nanotube karbon yang ingin dicapai pada tujuan penelitian, yaitu nanotube karbon yang memiliki diameter luar kurang dari 10 nm tetapi hasil nanotube karbon tidak murni karena adanya diameter luar nanotube karbon yang berada di atas 10 nm (20 nm hingga 90 nm), *carbon nanofiber*, dan nanokarbon berbentuk *bamboo-shaped*.
- 4. Hasil running 2 (waktu reaksi 30 menit, kalsinasi 550°C di udara selama 1 jam, reduksi 40 menit di suhu 850°C) menghasilkan *range* diameter luar nanokarbon 8,5 nm hingga 66,85 nm. Namun, range diameter luar yang mendominasi hasil running 2 adalah *range* diameter kurang dari 35 nm dari hasil pengukuran FE SEM.

5.2 Saran

Berikut beberapa saran untuk menghasilkan nanotube karbon yang memiliki diameter kurang dari 10 nm dengan menggunakan katalis Fe/Mo/MgO.

- 1. Karakterisasi TEM pada seluruh nanotube karbon dapat ditambahkan untuk melihat persebaran diameter nanotube karbon dengan lebih efektif.
- 2. Penambahan konsentrasi terhadap molybdenum dapat dilakukan untuk membantu dispersi nanopartikel Fe pada penyangga MgO.

DAFTAR PUSTAKA

- Ago, H., Uehara, N., Yoshihara, N., Tsuji, M., Yumura, M. Tomonaga, N., dan Setoguchi, T. (2006). Gas analysis of the CVD process for high yield growth of carbon nanotubes over metal-supported catalysts.*Carbon*, 44, 2912–2918.
- Bhushan, B., dan Gupta, B.P. (1997). *Handbook of tribology materials, coating, and surface treatment*. Florida: McGraw Hill.
- Chang, S. C., Leugers, A., danBare, S. (1992). Surface chemistry of magnesium oxide-supported molybdenum oxide: an in situ Raman spectroscopic study. *Journal of Physics Chemistry*, 96, 10358.
- Chen, Y., Conway, M.J., FitzGerald, J.D., Williams, J.S., dan Chadderton, L.T. (2004). The nucleation and growth of carbon nanotubes in a mechanothermal process. *Carbon*, 42, 1543.
- Coquay, P., Grave, D.E., Peigney, A., Vandenberghe, R.E., dan Laurent, C. (2002). Carbon nanotubes by a CVD method part I: Synthesis and characterization of the (Mg, Fe)O catalysts.*Journal of Physics Chemistry B*, 106, 13186-13198.
- Coquay, P., Grave, D.E., Peigney, A., Vandenberghe, R.E., dan Laurent, C. (2002). Carbon nanotubes by a CVD method part II: Formation of Nanotubes (Mg, Fe)O catalysts. *Journal of Physics Chemistry B*, 106, 13186-13198.
- Daenen, J.M., Fouw, R., Hamers, B., Janssen, P. G.A., Schouteden, K., dan Veld, M.A.J. (2003, Februari). Wondrous world of carbon nanotubes. 27 Mei 2012. http://students.chem.tue.nl/ifp03/default.htm.
- Ding, F., Rosen, A., dan Bolton, K. (2004). Size dependence of the coalescence and melting of iron clusters: A molecular-dynamics study. *Physical Review B*, 70, 075416.
- Fang, Mei. (2003). Sintesis membran perovskite dengan menggunakan Katalis La_{0,8}NixFeyO1-x-y dengan metode Impregnasi/Spray Coating. Depok: Departemen Teknik Kimia - Universitas Indonesia.

- Fang, Y. dan Niu, Zhiqiang. (2004). Effects of synthesis time for synthesizing single-walled carbon nanotubes over Mo-Fe-MgO catalyst and suggested growth mechanism. *Journal of Crystal Growth*, 297, 228 – 233.
- Francy. (2009). Scale-up Reaktor Katalis Terstruktur Gauze Skala Pilot untuk Produksi Hidrogen dan Nanokarbon Melalui Reaksi Dekomposisi Katalitik Metana. Depok: Departemen Teknik Kimia - Universitas Indonesia.
- Freedonia. (2009). World nanotubes to 2009 Market research, market share, market size, market leaders, company profiles, industry trends. 23 Juni 2012. www.freedoniagroup.com/World-Nanotubes.html.
- Global Industry Analyst, Inc. (2007). *Global carbon* nanotubes market to exceed US\$ 1,9 billion by 2010. 22 Juni 2012. www.prweb.com/releases/carbon_nanotubes/prweb540780.htm.
- Richarson, J.T. (1989). *Principles of catalyst development*. New York: Plenum Press.
- Lamouroux, E.,Serp, P.,Klack, P. (2007). Catalytic routes towards single wall carbon nanotubes. *Catalysis Review*, 49, 341–405.
- Li, D., Chen, J., dan Li, Yongdan. (2009). Evidence of composition deviation of metal particles of a Ni-Cu/Al₂O₃ catalyst during methane decomposition to Cox-free hydrogen. *International Journal of Hydrogen Energy*, 34, 299 – 307.
- Liu, B.C., Lyu, S.C., Lee, T.J., Choi, S.K., Eum, S.J., Yang, C.W., Park, C.Y., Lee, C.J. (2003). Synthesis of single- and double-walled carbon nanotubes by catalytic decomposition of methane. *Chemical Physics Letters*, 373, 475– 479.
- Li, Y., Zhang, X., Shen, L., Luo, J., Tao, X., Liu, F., Xu, G., Wang, Y., dan Geishe, V. T. (2006). Controlling the diameters in large-scale synthesis of single-walled carbon nanotubes by catalytic decomposition of CH₄. *Chemical Physics Letters*, 398, 276-282.
- Lux Research Inc. (2010). New horizons in integrated circuit production and
magnetic storage. 20 Juni, 2012.
http://www.naacp.org/president/releases/police_brutality.htm
- Manggiasih, Anggi. (2011). Perbandingan Kinerja Katalis Terstruktur Fe dan Ni Berpenyangga MgO Untuk Sintesis Nanotube Karbon Melalui Reaksi

Dekomposisi Katalitik Metana. Depok: Departemen Teknik Kimia -Universitas Indonesia.

- Moodley, P., Loos, J., Niemantsverdriet, J.W., dan Thu, P.C. (2009). Is there a correlation between catalyst particle size and CNT diameter? *Carbon*, 47, 2003-2012.
- Ni, L., Keiji, K., Zhou, L., Ohta, K., Matsuishi, K., dan Nakamura, J. (2009). Decomposition of metal carbides as an elementary step of carbon nanotubes synthesis. *Carbon*, 44, 3054 – 3062.
- Ning, Q., Wei, F., Wen, Q.,Luo, G., Wang, Y., dan Jin, Y. (2006). Improvement of Fe/MgO catalysts by calcination for the growth of single- and double-walled carbon nanotubes. *Journal Physics and Chemistry*, B (110), 1201 1205.
- Phinilla, J.L., Utrilla, R., Karn, R.K., Suelves, I., Lazaro, M.J., Moliner, R., Rouzaud, J.N., dan Garci, A.B. (2011). High temperature iron-based catalysts for hydrogen and nanostructured carbon production by methane decomposition. *International Journal of Hydogren Energy*, 36, 7832-7843.
- Purwanto, W.W., Muharam, Yuswan, dan Yulianti, Dwi. (2009). Pengaruh kondisi kperasi terhadap kinerja reaktor gauze untuk produksi hidrogen dannanotube karbon. Seminar Nasional Teknik Kimia Indonesia – SNTKI 2009.
- Qian, W., Weizhong, Q., dan Fei, W. (2008). Synthesis of single-walled carbon nanotubes with narrow diameter by calcination of a Mo-modified Fe/MgO catalyst. *Chinese Journal of Catalysis*, 29 (7), 617 623.
- Sivakumar, V.M, Mohamed, A. R., Abdullah, A. Z., dan Chai, S.P. (2010). Role of Reaction and Factors of Carbon Nanotubes Growth in Chemical Vapour Decomposition Process Using Methane—A Highlight. *Journal of Nanomaterials*, 395191.
- Xiangju Xu, Shaoming Huang, Zhi Yang, Chao Zhou, Junfang Jiang, Zhijie Shang. (2011). Controllable synthesis of carbon nanotubes by changing the Mo content in bimetallic Fe-Mo/mgO catalyst. *Materials Chemistry and Physics*, 127, 379 – 384.
- Yulianti, Ira. (2008). Perancangan reaktor katalis terstruktur untuk produksi CNT dan Hidrogen melalui proses dekomposisi katalitik metana. Depok: Departemen Teknik Kimia - Universitas Indonesia.

- Zhan, S., Tian, Y., Cui, Y., Wu, H., Wang, Y., Ye, S., dan Chen, Y. (2006). Effect of process condition on the synthesis of carbon nanotubes by catalytic decomposition of methane. *China Partiocuology*, 5, 213-319.
- Zhang, Lanlin. (2004). Preparation of multi-component ceramic nanoparticles. March 23, 2004. The Ohio State University, Departemen Material Science and Engineering Group Inorganic Material Science. <u>http://www.matsceng.ohio-state.edu/ims/LR_multioxides.pdf</u>

LAMPIRAN A PERHITUNGAN PREKURSOR KATALIS

Perhitungan jumlah prekursor katalis yang digunakan menggunakan perbandingan molar Fe: Mo: MgO yang digunakan pada Jurnal Li *et al* (2004) yang dapat menghasilkan *Single Walled Carbon* Nanotubes. Perbandingan yang digunakan adalah 1:0,1:13. Sedangkan, penggunaan asam sitrat yang digunakan sebagai *chelating agent* dihitung menggunakan persamaan stoikiometri sesuai dengan Jurnal Ganesh *et al* (2005).

Berikut prosedur perhitungan yang digunakan.

1. Komponen prekursor katalis (Bilangan oksida: Mg = +2; Fe = +3; N = 0;

$$O = -2; H_2O = 0; C = +4; H=+1):$$

$$Mg(NO_3)_2.6H_2O : 2 + 2 (0-6) + 0 = -10$$

$$Fe(NO_3)_3.9H_2O : 3 + 3(0-6) + 0 = -15$$

$$(NH_4)_6Mo_7O_{24}.4H_2O : 6 (4) + 7 (+2) + 24(-2) + 36$$

$$C_6H_8O_7.H_2O$$
 : 6(4) + 8 +7(-2) = 18

Perhitungan prekursor:

mol *chelating agent* pada prekursor * jumlah bilangan oksida *chelating agent* = total (mol prekursor katalis * jumlah bilangan oksida) masing-masing prekursor katalis

0 = -10

$$-10(13) - 15(2) - 10/7 (0,1) + 18 n = 0$$

-130 - 30 - 0,143 = 18n

n = 8,89 mol asam sitrat

2. Perbandingan berat masing-masing prekursor dapat dihitung sebagai berikut.

Mg/Fe/Mo/asam sitrat: 13 / 1 / 0,1 / 8,89

$Mg(NO_3)_2.6H_2O$: 13 mol * 256 g/mol = 3328 g
Fe(NO ₃) ₃ .9H ₂ O	: 1 mol * 404 g/mol = 404 g
$(NH_4)_6Mo_7O_{24}.4H_2O$: 0,0143 mol * 1235,6 g/mol = 17,7 g
$C_{6}H_{8}O_{7}.H_{2}O$: 8,89 mol * 210 g/mol = 1886,9 mol

Maka, perbandingan berat masing-masing prekursor katalis adalah sebagai berikut.

$$\begin{split} Mg(NO_3)_{2.}6H_2O &: Fe(NO_3)_{3.}9H_2O : (NH_4)_6Mo_7O_{24.}4H_2O : C_6H_8O_7.H_2O \\ &= 183.2 \ / \ 22.4 \ / \ 1 \ / \ 106.85 \end{split}$$

 Untuk me-*loading* 14,04 g katalis pada substrat diperlukan 27 g katalis Fe₁Mo_{0,1}Mg₁₃Ox (dengan memperhitungkan *loses* 50% saat *spray coating*). Maka, untuk memperoleh 27 g katalis diperlukan prekursor sebesar (40 gram katalis diperoleh dengan massa total prekursor di luar asam sitrat sebesar 225 gram):

% w/w Mg(NO₃)₂.6H₂O : Fe(NO₃)₃.9H₂O : (NH₄)₆Mo₇O₂₄.4H₂O : C₆H₈O₇.H₂O = 133,01 / 15,12 / 0,7 / 72,14

LAMPIRAN B

HASIL KARAKTERISASI XRD

B.1 Hasil XRD Reaksi Dekomposisi Katalitik Metana

Universitas Indonesia

B.2 Hasil XRD Reduksi Katalis dengan Gas Hidrogen

B.3 Hasil XRD Katalis Fe/Mo/MgO (Kalsinasi 550°C)

	•••	Sasie Dat	a Process	•••			
Data		-2880					
• Strong	nat 3	peaks			_		
so. pe		(deg)	a.	1/11	(deg)	(Counts)	(Counts)
1 1		42.7466	2.11364	100	1.42670	273	22448
2 2	8	61.9310 21.5200	1.49712 4.12597	15	0.00000	143	12655
· Peak D	ata I	dat					
pe	ak 🛛	27beta	a	1/11	1000	Intensity	Integrated Int
	D.	(deg)	(A)		(deg)	(Counts)	(Counts)
	2	12.8100	6.90507		0.62000	12	633
	3	13,9800	6.32970	3	0.08000	9	104
	4	17.4600	5.07516		0.52000	14	691
	6	18.7600	4.72630	10	1.20000	27	2152
	2	19.9000	4.45805		0.00000	25	0
		22.7800	3.80053	15	1.10000	30	3487
1	ō 👘	23.9900	3.70646		0.94000	11	1010
1	1	25,4300	3.40075		0.50000		518
	3	29,5016	3.01735		0.42330		238
1	4	32.7600	2.73150	4	0.08000	10	70
1	5	34.2000	2.61971	·	1.96000	22	1761
1	7	37.3800	2.40382	15	2.56000	40	5284
1		42.7466	2.11364	100	1.42670	273	22448
1	9	44.5600	2.04306	12	0.91000	23	1117
2	1	47.1100	1.92754	- - -	0.50000	11	412
2	2	48.5350	1.87422		0.33000	13	475
2	2	52.8750	1.73015	;	0.11000		104
2	5	54.0950	1.69398	4	0.23000	11	275
2	6	55.3800	1.65767	3	0.28000		202
2	6	59.1400	1.56093	14	1.80000	39	4260
2	2	61.9310	1.49712	52	1.72200	143	12655
	1	66.1600	1.45038	•	0.76000	17	1242
3	2	74.5400	1.27202		0.68000	12	653
3	3	76.8000	1.24012		0.60000	15	470
		78.2100	1.11110	10	1.10000		1043
							- 19 mar
			~~^ `		(*************************************		
100	2.1			63	A CONTRACTOR OF THE OWNER		
1	100				-		
1.1							a. 2
			11			_	
	- 6		10 8				

B.4 Hasil XRD Katalis Fe/Mo/MgO (Reduksi dengan Gas Hidrogen)

LAMPIRAN C

PERHITUNGAN KOMPOSISI GAS PRODUK DENGAN ANALISIS GC TCD DAN GC FID

Gas produk : Komponen belum diketahui

Analisis GC TCD:

Komponen yang bisa	% berdasarkan analisis GC	% komponen pada gas			
dideteksi	TCD	produk			
CH4	A1	% CH4			
СО	A2	(A2/A1)*%CH4			
CO2	A3	(A3/A1)*%CH4			
H2	A4	(A4/A1)*%CH4			
H2O	A5	(A5/A1)*%CH4			

Jumlah komponen selain $CH4 = \overline{C}$

Analisis GC FID

Komponen yang bisa	% berdasarkan analisis	% komponen pada gas
dideteksi	GC TCD	produk
CH4	B1	% CH4
C2H2	B2	(B2/B1)* % CH4
C2H4	B3	(B3/B1)* % CH4
С2Н6	B4	(B4/B1)* % CH4
C4H10	B5	(B5/B1)* % CH4

Jumlah komponen selain CH4 = D

Penentuan komposisi CH₄

$$\% CH_4 = \frac{nCH_4}{nCH_4 + nC + nD} x \ 100\%$$

Berdasarkan analisis GC-TCD

$$A1 = \frac{nCH_4}{nCH_4 + nC} \rightarrow \frac{1}{A1} = \frac{nCH_4 + nC}{nCH_4} \quad (*)$$

Berdasarkan analisis GC-TCD

$$B1 = \frac{nCH_4}{nCH_4 + nD} \rightarrow \frac{1}{B1} = \frac{nCH_4 + nD}{nCH_4} \quad (**)$$

Dari penjumlahan persamaan * dan ** diperoleh :

$$\frac{1}{A1} + \frac{1}{B1} = \frac{nCH_4 + nC}{nCH_4} + \frac{nCH_4 + nD}{nCH_4}$$
$$\frac{A1 + B1}{A1.B1} = 1 + \frac{nCH_4 + nC + nD}{nCH_4}$$
$$\% CH_4 = \frac{A1.B1}{A1 + B1 - A1.B1} \times 100\%$$

LAMPIRAN D HASIL KALIBRASI GC FID dan TCD

Kalibrasi GC dengan gas standar baik untuk GC FID maupun TCD digunakan untukmenghitung nilai relative respon factor (RRF) untuk masing-masing senyawa terhadap senyawa acuan. Untuk GC TCD senyawa acuannya adalah metana sedangkan untuk GC FID senyawa acuannya adalah etena. Sehingga nilai masing senyawa untuk GC TCD adalah

Dan untuk GC FID adalah :

$$RRF_i = \frac{RF_i}{RF_{C2H2}}$$

 $RRF_i = \frac{1}{RF_{CH_4}}$

RFi

Mencari komposisi gas keluaran dari masing-masing GC dengan menggunakan rumus.

$$y_i = \frac{PA/RRF_i}{\sum PA/RRF_i}$$

Temperatur injector = 100° C Temperatur kolom = $130^{\circ}C$

Gambar D. 1Kurva kalibrasi Gas Metana dengan GC FID

Gambar D. 4 Kalibrasi Gas Karbon dioksida dengan GC FID

	Retention	ising musing ous putur	
Gas	time	Response Factor	RRF
CH ₄	1.855	1,091,292.00	0.3206
H_2	0.521	3,403,728.50	1.0000
СО	1.031	379,810.33	0.1116
CO ₂	3.735	312,349.50	0.0918

Tabel D. 1 Hasil RRF masing-masing Gas pada GC FID

Laju alir *carrier gas* (Helium) = 40 ml/min

Gambar D. 7Kalibrasi Gas Etena dengan GC TCD

Gambar D. 8Kalibrasi Gas Etuna dengan GC TCD

Gambar D. 9Kalibrasi Gas Butana dengan GC TCD

	Tabe	l D. 2 Hasil RRF G	as pada GC TCD		
-	Gas	Retention Time	Response Factor	RRF	
1	CH ₄	1.029	700000000	3.500	
	C_2H_6	2.496	700000000	3.500	
4	C_2H_4	2.164	800000000	4.000	
	C_2H_2	3.151	200000000	1.000	
	C_4H_{10}	7.292	300000000	1.500	

C₄H₁₀ 7.292 300000000 1.500

LAMPIRAN E

HASIL PERHITUNGAN NERACA MASSA KARBON SECARA KESELURUHAN

		X 7 1	Volume Output							
Waktu (menit)	Waktu (jam)	Volume bubble (ml)	flow (ml/min)	flow correction by delta P	mol/h	Waktu bubble (detik)	Flow terukur	error buble soap	flow (ml/min)	mol/hr
0.00	0.00	200	0.00							
5.48	0.09	200	1266.84	1266.84	3.087707325	5.71	2188.50	1.78%	2227.443684	5.334106801
9.42	0.16	150	2919.61	2919.64	7.116134507	2.43	3856.23	2.52%	3953.250208	9.398893744
15.46	0.26	150	2919.61	2907.87	7.08744677	3.02	3102.86	2.16%	3169.744299	7.562686026
20.42	0.34	100	2919.61	2898.21	7.063888629	2.03	3084.98	2.15%	3151.2356	7.519114995
24	0.40	100	2919.61	2891.23	7.04688497	2.05	3044.39	2.13%	3109.221838	7.420179271
28	0.47	100	2919.61	2883.44	7.027886469	2.07	3017.92	2.12%	3081.831606	7.355655973
36	0.60	100	2919.61	2867.85	6.989889467	2.23	2798.87	2.02%	2855.497694	6.821777717
46	0.77	100	2919.61	2848.36	6.942393214	2.20	2839.58	2.04%	2897.524137	6.921003575
55	0.92	100	2919.61	2830.82	6.899646587	2.19	2855.81	2.05%	2914.279663	6.960552167
60	1.00	100	2919.61	2821.08	6.875898461	2.40	2602.95	1.94%	2653.490994	6.344253277
65	1.08	100	2919.61	2811.33	6.852150335	2.31	2704.37	1.98%	2758.004513	6.591431976
70	1.17	100	2919.61	2801.59	6.828402208	2.40	2602.95	1.94%	2653.490994	6.344253277

		Peak Are	ea GC TC	D		Komposisi gas (y, %) GC TCD					
Waktu	CH4	H2	СО	CO2	un iden	CH4	H2	СО	CO2	un iden	
0.00											
5.48	38453	2860417				0.04024	0.95976	0.00000	0.00000	0	
9.42	261115	1987762				0.29064	0.70936	0.00000	0.00000	0	
15.46	210961.6	1605965.4				0.29064	0.70936	0.00000	0.00000	0	
20.42	640665	1031770				0.65948	0.34052	0.00000	0.00000	0	
24.00	0.438752	0.561248	ļ			0.70915	0.29085	0.00000	0.00000	0	
28.00	724010	727477	699651	729941	21	0.13121	0.04227	0.36433	0.46219	7.3E-06	
36.00	753773	619698				0.79140	0.20860	0.00000	0.00000	0	
46.00	786540	493736		1 18	8 107	0.83246	0.16754	0.00000	0.00000	0	
55.00	795850	458940				0.84396	0.15604	0.00000	0.00000	0	
60.00	806637	411162			1 I <i>b</i>	0.85953	0.14047	0.00000	0.00000	0	
65.00	811692	391828				0.86597	0.13403	0.00000	0.00000	0	

76

			PEAK	GC FID				KOMPOSISI %						
Waktu	CH4	C2H2	C2H4	C2H6	СЗН8	C4H10	no name	CH4	C2H2	C2H4	C2H6	СЗН8	C4H10	no name
0.00						1.50		<						
5.48	222651103	2298	7806	11713	0	0	106371	0.999880607	3.61195E-05	3.06733E-05	5.26E-05	0	0	0.000477473
9.42	1213631166	7817	144069	173879	0	0	476044	0.999730387	2.25374E-05	0.000103842	0.0001432	0	0	0.000391989
15.46	2627644759	0	440018	525990	0	0	960880	0.99965342	0	0.000146474	0.0002001	0	0	0.000365413
20.42	1551413888	479449	296058	395008	0	14042	378174	0.998477972	0.001079994	0.000166723	0.0002542	0	2.109E-05	0.000243516
24.00	2467167767	3092	515920	724390	0	33619	4316	0.999487494	4.38416E-06	0.000182881	0.0002935	0	3.178E-05	1.74847E-06
28.00	2700816816	10734	711336	965676	-0	35291	892358	0.999367995	1.39014E-05	0.00023031	0.0003573	0	3.047E-05	0.000330083
36.00	2583711339	6002	1012065	1161066	0	69825	935589	0.99913743	8.12354E-06	0.00034245	0.000449	0	6.3E-05	0.000361665
46.00	2611241869	17330	1871505	1481888	0	172164	964000	0.998630185	2.31966E-05	0.000626263	0.0005667	0	0.0001536	0.000368537
55.00	19015731	1063070	404576	195919	0		2105	0.816602473	0.159781897	0.015202179	0.0084135	0	0	0.000101782
60.00	1678356687	14351	2212295	1172375	0	243977	497369	0.997783915	2.98609E-05	0.001150809	0.000697	0	0.0003384	0.000295614
65.00	58939236	0	133626	47978	0	22797	0	0.996313327	0	0.001976471	0.000811	0	0.0008992	0
70.00	2387464794	35737	4192334	2800819	0	3302388	3064	0.994046143	5.20782E-05	0.001527332	0.0011662	0	0.0032083	1.27784E-06

