

UNIVERSITAS INDONESIA

KETAHANAN KOROSI SAMBUNGAN LAS DISSIMILAR SS304 DAN CS A36 YANG DIPENGARUHI OLEH POSISI PENGELASAN DAN KETEBALAN PELAT

TESIS

Diajukan sebagai salah satu syarat untuk memperoleh gelar Magister Teknik

I Nyoman Suarjana **1006735826**

FAKULTAS TEKNIK PROGRAM STUDI TEKNIK METALURGI DAN MATERIAL KEKHUSUSAN KOROSI DEPOK JULI 2012

Universitas Indonesia

i

HALAMAN PERNYATAAN ORISINALITAS

Tesis ini adalah hasil karya saya sendiri dan semua sumber yang dikutip maupun dirujuk telah saya nyatakan dengan benar

Nama	: I Nyoman Suarjana
NPM	: 1006735826
Tanda Tangan	
Tanggal	P +

HALAMAN PENGESAHAN

Tesis ini diajukan oleh :

Nama	:	I Nyoman Suarjana
NPM	:	1006735826
Program Studi	:	Metalurgi dan Material
Judul Tesis	:	Ketahanan korosi sambungan las dissimilar SS304 dan
		CS A36 yang dipengaruhi oleh posisi pengelasan dan
		ketebalan pelat

Telah berhasil dipertahankan dihadapan Dewan Penguji dan diterima sebagai bagian persyaratan yang diperlukan untuk memperoleh gelar Magister Teknik pada Program Studi Teknik Metalurgi dan Material, Fakultas Teknik, Universitas Indonesia

		DEWAN PENGUJI	
į	Pembimbing I	: Ir. Winarto, Ph.D	(BROWNY
	Pembimbing II	: Ir. Rini Riastuti, M.Sc.	(Typene,
	Penguji I	: Prof. Dr. Ir. Dedi Priadi, DEA	the state of the s
	Penguji II	: Dra. Sari Katili, M.S.	(Post
	-	705	
	Ditetapkan di	: Depok	2000000

Ditetapkan di : Tanggal :

Depok 6 juli 2012

Universitas Indonesia

iii

KATA PENGANTAR / UCAPAN TERIMA KASIH

Puji syukur penulis panjatkan kepada Tuhan Yang Maha Pengasih atas segala rahmat-Nya berupa kesempatan, kesehatan dan kemudahan yang telah dilimpahkan kepada kami selama proses perkuliahan hingga menyelesaikan penelitian ini guna memperoleh gelar Magister Teknik.

Pada kesempatan ini, penulis ingin menyampaikan rasa terima kasih yang sebesarbesarnya kepada semua pihak yang telah membantu baik selama proses perkuliahan maupun penyelesaian penelitian ini, diantaranya :

- 1. Bp. Ir. Winarto, M.Sc., Ph.D, selaku pembimbing yang telah banyak memberikan bimbingan, dorongan semangat dan informasi kepada penulis sehingga bisa menyelesaikan tesis ini
- Ibu Ir. Rini Riastuti, M.Sc., selaku pembimbing yang telah banyak memberikan bimbingan, dorongan semangat dan berbagai informasi sehingga penulis bisa menyelesaikan tesis ini.
- 3. Bp. Prof. Dr. Ing. Bambang Suharno, sebagai ketua Departemen Teknik Metalurgi dan Material, Fakultas Teknik, Universitas Indonesia
- 4. Bp. Ir. Muhammad Anis, M.Met, Ph.D, selaku dosen penguji, yang telah banyak memberikan masukan dan dorongan semangat sehingga penulis dapat menyelesaikan tesis ini.
- Ibu Dra. Sari Katili, M.S., selaku dosen penguji, yang telah memberikan masukan-masukan kepada penulis untuk perbaikan dan penyempurnaan tesis ini.
- 6. Bp. Prof. Dr. Ir. Dedi Priadi, DEA, selaku dosen penguji, yang memberikan masukan dan saran-saran kepada penulis untuk perbaikan dan penyempurnaan tesis ini.
- Seluruh staff pengajar dan karyawan Departemen Teknik Metalurgi dan Material, Fakultas Teknik, Universitas Indonesia
- 8. Orang tua, saudara-saudara dan seluruh keluarga yang selalu memberikan dukungan moril dan material sehingga penulis dapat menyelesaikan tesis ini

Universitas Indonesia

iv

- 9. Rekan-rekan dari PT Bajamukti Tirta Perkasa Tangerang khususnya Bp. Sarwadi dan staff dan rekan-rekan ditempat kerja yang telah banyak mendukung penulis dalam penyelesaian tesis ini
- 10. Rekan-rekan penelitian : Dik Abdullah (Bedul), Dik Brian Hermawan, Nurdian, Rizal, Ary, Reky, Bp. Surya, Bp. Ifan dan rekan-rekan lainnya yang tidak mungkin penulis sebutkan satu persatu, yang telah banyak membantu penulis dalam penyelesaian tesis ini.

Akhir kata, semoga Tuhan yang maha pengasih akan membalas kebaikan semua pihak yang telah membantu sehingga tesis ini bisa selesai sesuai dengan harapan dan semoga tesis ini dapat memberikan manfaat bagi ilmu pengetahuan dan pengembangan rekayasa teknik khususnya bidang pengelasan dan korosi.

		0.6 1.11 0010
	Depok,	06 Juli 2012
	Penulis	
STATE STATE		
		S.
		C.
		P.

٧

HALAMAN PERNYATAAN PERSETUJUAN PUBLIKASI TUGAS AKHIR UNTUK KEPENTINGAN AKADEMIS

Sebagai sivitas akademik Universitas Indonesia, saya yang bertandatangan di bawah ini :

Nama	:	I Nyoman Suarjana
NPM	:	1006735826
Program Studi	:	Korosi
Departemen	:	Metalurgi dan Material
Fakultas	: 8	Teknik
Jenis Karya	11	Tesis

demi pengembangan ilmu pengetahuan, menyetujui untuk memberikan kepada Universitas Indonesia **Hak Bebas Royalti Non-Eksklusif** (*Non-Excusive Royalty Free Right*) atas karya ilmiah saya yang berjudul :

KETAHANAN KOROSI SAMBUNGAN LAS DISSIMILAR SS304 DAN CS A36 YANG DIPENGARUHI OLEH POSISI PENGELASAN DAN KETEBALAN PELAT

beserta perangkat yang ada (jika diperlukan). Dengan Hak Bebas Royalty Noneksklusif ini, Universitas Indonesia menyimpan, mengalihmedia/formatkan, mengelola dalam bentuk pangkalan data (*Data base*), merawat dan mempublikasikan tugas akhir saya selama tetap mencantumkan nama saya sebagai penulis/pencipta dan sebagai pemilik Hak Cipta.

Demikian pernyataan ini saya buat dengan sebenarnya.

Dibuat di Depok 06 Juli 2012 Pada tanggal Yang menyatakan, (I Nyoman Suarjana)

Universitas Indonesia

vi

ABSTRAK

Nama	:	I Nyoman Suarjana
Program studi	:	Metalurgi dan Material
Judul	:	Ketahanan korosi sambungan las dissimilar SS304 dan CS A36 yang dipengaruhi oleh posisi pengelasan dan ketebalan pelat

Pengelasan dissimilar banyak dilakukan untuk mengoptimalkan kebutuhan aplikasi dan rekayasa dengan pertimbangan ekonomi. Sifat-sifat mekanis dan ketahanan terhadap korosi sambungan las sangat dipengaruhi oleh jenis, ukuran, orientasi dan distribusi struktur mikro sambungan las tersebut. Pengaruh dan perubahan struktur mikro akan dipelajari pada pengelasan dissimilar antara baja karbon A36 dan SS 304 untuk posisi pengelasan 1G, 2G, 3G dengan variasi ketebalan 6 mm, 8mm, 10 mm, 12 mm.

Hasil pengelasan menunjukan bahwa posisi pengelasan dan ketebalan sambungan las mempengaruhi struktur mikro baik pada HAZ maupun inti las-lasan (weld metal). Ukuran, distribusi dan orientasi struktur mikro menjadi lebih halus dan merata dengan naiknya ketebalan sambungan las-lasan. Pada HAZ baja karbon memperlihatkan struktur GB ferrite dominan untuk posisi pengelasan 1G sedangkan untuk posisi 2G dan 3G memperlihatkan adanya struktur widmanstaten ferrite, martensite dan bainit. Pada daerah dekat fusion line dan inti las terjadi perubahan komposisi kimia akibat proses agitasi, konveksi, difusi dan terjadinya makrosegregasi karena penetrasi cairan logam induk baja karbon kedalam inti las (weld metal) dan pembekuan cepat. Hasil pengujian sifat-sifat mekanik memperlihatkan tegangan tarik putus terjadi pada sisi logam induk baja karbon, hasil test bending menunjukan tegangan yang sangat tinggi pada sambungan las hingga mencapai 887 Mpa dan pengujian kekerasan Vickers menunjukan distribusi kekerasan meningkat pada inti las dan HAZ hingga mencapai nilai HVN 296.9 yakni pada fusion line baja SS 304. Ketahanan korosi khususnya korosi micro-pitting sangat masif terjadi pada bagian inti las khususnya untuk posisi pengelasan 1G dan ketebalan 6 mm dan kurang masif pada HAZ yang secara visual dari foto mikro mengindikasikan pembentukan dan sebaran karbida yang lebih sedikit. Korosi seragam (uniform corrosion) secara galvanik terjadi sangat agresif pada bagian baja karbon

Kata Kunci : Pengelasan dissimilar, A36, SS304, posisi pengelasan, sifat mekanik, struktur mikro, ketahanan korosi, *micro-pitting*, korosi galvanik.

Universitas Indonesia

vii

ABSTRACT

Name	:	I Nyoman Suarjana
Study Program	:	Metallurgy dan Material Engineering
Title	:	The corrosion resistance of dissimilar metal welded joints of SS304 and CS A36 affected by the welding positions and plate thickness

Dissimilar metal welding was mostly done to optimize the application and engineering requirements with economic considerations. Mechanical properties and corrosion resistance of welded joints were greatly influenced by weld microstructures. Influences and changes in the microstructure will be studied in the welding of dissimilar metals between carbon steel A36 and stainless steel SS304 with variation of welding position 1G, 2G, 3G and weld thickness of 6 mm, 8 mm, 10 mm, 12 mm.

Welding results shown that welding position and thickness of the welded joints influenced the microstructure both in HAZ and weld metal. Size, distribution and orientation of microstructure were finer and more uniform with increasing of welding joint thickness. In HAZ carbon steel, GB ferrite was dominant especially for 1G welding position while for position of 2G and 3G shown other structures such as widmanstaten ferrite, martensite and bainite. In the region near the fusion line and weld metal, the chemical composition changes due to the agitation, convection, diffusion and makrosegregasi caused by penetration of liquid metal carbon steel into the weld pool and quick freezing. The test results showed the mechanical properties of tensile breaking point occurs in the parent metal of carbon steel, bending test results showed a very high stress on the welding joint up to 887 MPa and Vickers hardness testing showed hardness distribution trend increase in the weld metal and HAZ to achieve value for HVN 296.9 at the fusion line of steel SS 304. Corrosion resistance, especially micro-pitting corrosion occurs denser in the weld metal, especially for welding positions 1G and thickness 6 mm and less dense in the HAZ which visually indicates in micro-photographs, the formation and distribution of carbides is much less. Uniform corrosion by galvanic process happens very aggressive on the carbon steel side.

Key-words : Dissimilar welding, A36, SS304, welding position, mechanical properties, microstructures, corrosion resistance, micro-pitting, galvanic corrosion.

DAFTAR ISI

HALAMAN JUDUL	i
HALAMAN PERNYATAAN ORISINALITAS	ii
LEMBAR PENGESAHAN	iii
KATA PENGANTAR / UCAPAN TERIMA KASIH	iv
LEMBAR PERSETUJUAN PUBLIKASI KARYA ILMIAH	vi
ABSTRAK	vii
ABSTRACT	viii
DAFTAR ISI	ix
DAFTAR GAMBAR	xii
DAFTAR TABEL	XV
DAFTAR LAMPIRAN	xvii
1. PENDAHULUAN	1
1.1. Latar Belakang Penelitian	1
1.2. Rumusan Masalah	3
1.3. Ruang Lingkup Penelitian	4
1.4. Tujuan Penelitian	5
1.5. Hipotesis	6
1.6. Kegunaan Penelitian	8
2. TINJAUAN PUSTAKA	9
2.1. Logam Induk	9
2.1.1. Baja Karbon ASTM A36	9
2.1.1.1. Metalurgi Baja Karbon	11
2.1.1.2. Transformasi fase pada baja karbon	14
2.1.1.3. Sifat mampu las baja karbon	17
2.1.2. Baja Tahan Karat seri 300	18
2.1.2.1. Baja tahan karat tipe austenitic	18
2.1.2.2. Komposisi kimia dan sifat – sifat baja tahan karat ASTM	18
A240 tipe 304	_
2.1.2.3. Metalurgi baja tahan karat tipe austenitic	20
2.2. Proses Pengelasan	24
2.2.1. Posisi Pengelasan	25
2.2.2. Proses pengelasan Gas Tungsten Arc Welding (GTAW)	26
2.2.3. Polaritas listrik pada proses pengelasan GTAW	27
2.3. Metalurgi Las	27
2.3.1. Panas Pengelasan	27
2.3.2. Daerah terpengaruh panas (<i>Heat Affected Zone</i>)	28
2.3.3. Aliran dalam cairan las-lasan	30
2.4. Solidifikasi dan struktur mikro las-lasan	33
2.4.1. Solidifikasi cairan logam las	33
2.4.2. Distribusi elemen-elemen paduan pada proses solidifikasi	36
2.4.3. Makrosegregasi pada alas-lasan	36
2.4.4. Makrosegregasi karena pengelasan dissimilar	37
2.5. Korosi pad alas-lasan	41
1	

2.5.1. Fenomena korosi sumuran	41
2.5.2. Korosi sumuran (pitting) pada alas-lasan baja tahan karat	44
2.5.3. Korosi Galvanik pada las-lasan baja karbon dengan baja tahan	44
karat	
Karat	
3. METODOLOGI PENELITIAN	51
3.1. Diagram alir penelitian	51
3.1.1. Persiapan pembuatan specimen	52
3.1.2. Proses pengelasan GTAW	55
3.1.3. Pengujian awal	58
3.1.4. Pemotongan dan perlakuan untuk persiapan sampel uji	58
3.2. Pengujian – pengujian	60
3.2.1. Pengujian komposisi kimia	60
3.2.2. Pengujian dengan Dye-Penetrant	61
3.2.3. Pengujian dengan radiografi	62
3.2.4. Pengujian sifat mekanik	63
3.2.4.1. Pengujian Tarik	63
3.2.4.2. Pengujian Bending	64
3.2.4.3. Pengujian Kekerasan Vicker's	65
3.2.5. Pengujian Metalografi	67
3.2.5.1. Pengamatan foto makro	67
3.2.5.2. Pengamatan foto mikro	67
3.2.5.3. Pengamatan dengan SEM	68
3.2.6. Pengujian Korosi	68
3.2.6.1. Pengujian korosi pitting	68
	A.,
4. DATA-DATA PENELITIAN DAN PEMBAHASAN	71
4.1. Data-data penelitian	71
4.1.1. Data masukan panas pengelasan	71
4.1.2. Data hasil Dye-Penetrant	73
4.1.3. Data hasil uji radiografi	73
4.1.4. Data hasil pemindaian dengan protable XRF Analyzer	73
4.1.5. Data hasil uji tarik	74
4.1.6. Data hasil uji bending	76
4.1.7. Data hasil uji kekerasan	82
4.1.8. Data hasil foto makro	86
4.1.9. Data hasil foto mikro	87
4.1.10. Data hasil Scanning Electron Microscopy	87
4.1.11. Data hasil test korosi dengan metode celup	88
4.1.12. Data hasil foto makro setelah test korosi	88
4.2. Pembahasan	92
4.2.1. Masukan panas pengelasan	92
4.2.2. Hasil pemindaian dengan XRF analyzer	94
4.2.3. Hasil pengujian tarik	97
4.2.4. Hasil pengujian bending	98
4.2.5. Hasil pengujian kekerasan penampang las-lasan	99

Universitas Indonesia

x

 4.2.6. Hasil pengamatan foto makro 4.2.7. Hasil pengamatan foto mikro 4.2.8 Hasil pengamatan dengan SEM 	104 106 112
4.2.9. Hasil test korosi	112
5. KESIMPULAN	125
DAFIAK KEFEKENSI	. 128

xi

DAFTAR GAMBAR

Gambar 2.1.1.1	Diagram fase Fe-Fe ₃ C	12
Gambar 2.1.1.2	Fotomikro struktur ferrite (90x)	13
Gambar 2.1.1.3	Fotomikro struktur austenite (325x)	13
Gambar 2.1.1.4	Fotomikro struktur pearlite kasar dan halus (3000x)	14
Gambar 2.1.1.5	Fotomikro struktur martensite (1220x)	14
Gambar 2.1.1.6	Transformasi phase besi murni dalam Sistem Fe-Fe ₃ C	15
	diagram	
Gambar 2.1.1.7	Transformasi phase besi eutectoid dalam Sistem Fe-	15
	Fe ₃ C diagram	
Gambar 2.1.1.8	Transformasi phase besi Hypo eutectoid dalam Sistem	16
	Fe-Fe ₃ C diagram	
Gambar 2.1.1.9	Transformasi phase besi Hyper eutectoid dalam	16
	Sistem Fe-Fe ₃ C diagram	
Gambar 2.1.2.1	Diagram phase Fe-Cr-Ni	20
Gambar 2.1.2.2	Diagram phase Fe-Cr dengan kadar Ni 8 % wt	21
Gambar 2.1.2.3	Diagram phase Fe-Ni dengan kadar Cr 18 % wt	21
Gambar 2.1.2.4	Potongan tertiary diagram phase Fe-Cr-Ni untuk	22
	70% wt Fe dan 60% wt Fe	
Gambar 2.1.2.5	Presipitasi karbida chrom pada batas butir	23
Gambar 2.1.2.6	Penurunan kadar chrom disekitar batas butir	23
Gambar 2.1.2.7	Laju presipitasi $Cr_{23}C_6$ sebagai fungsi kadar karbon	23
Gambar 2.1.2.8	Pengaruh kadar krom terhadap pembentukan jenis	24
	sensitisasi	
Gambar 2.2.1	Posisi pengelasan untuk desain sambungan groove	25
Gambar 2.2.2	Posisi pengelasan pada desain sambungan groove	26
	untuk pelat	
Gambar 2.2.3	Skema umum proses pengelasan GTAW	26
Gambar 2.3.1	Variasi temperature terhadap waktu pada daerah yang	29
	berbeda dari sumber panas	
Gambar 2.3.2	Variasi perubahan struktur pada daerah sekitar las-	29
	lasan	
Gambar 2.3.3	Gaya penggerak konveksi massa cairan las.	30
Gambar 2.3.4	Gaya apung penggerak konveksi massa cairan las	31
Gambar 2.3.5	Gaya lorentz penggerak konveksi massa cairan las	32
Gambar 2.3.6	Model dari Heipel untuk konveksi mangaroni	33
Gambar 2.4.1	Distribusi elemen-elemen terlarut (solute) tanpa	34
	adanya proses difusi dalam padatan logam	
Gambar 2.4.2	Mode solidifikasi	35
Gambar 2.4.3	Variasi laju pertumbuhan butir, gradient temperature	36
	dan mode solidifikasi	
Gambar 2.4.4	Dilusi dan komposisi pada pengelasan dissimilar	37
Gambar 2.4.5	Makrosegregasi karena pendinginan yang lebih cepat	38
	pada cairan logam induk	

Universitas Indonesia

xii

	Gambar 2.4.6	Mekanisme I untuk makrosegregasi di dekat fusion line	39
	Gambar 2.4.7	Makrosegregasi karena pendinginan yang lebih cepat	40
	Gambar 2.4.8	Mekanisme II untuk makrosegregasi di dekat fusion	41
	Gambar 2.5.1	Mekanisme terjadinya korosi sumuran	42
	Gambar 2.5.2	Mekanisme pecahnya lapisan pasif dan pembentukan sumuran	43
	Gambar 2.5.3.1	Ilustrasi korosi galvanik pada logam	45
	Gambar 2.5.3.2	Diagram Evans untuk gabungan dua logam yang mengalami korosi galvanic	45
	Gambar 2.5.3.3	Pengaruh rasio luasan area pada korosi galvanic	46
	Gambar 2.5.3.4	Urutan potesial galvanic beberapa material dengan media air laut	47
	Gambar 2.5.3.5	Grafik laju korosi vs rasio luasan anode/katode untuk	50
		kopel baja karbon dan baja stainless dalam media air	
		laut	
	Gambar 2.5.3.6	Grafik lain korosi vs jarak sambungan untuk kopel	50
	Guillout Lieleto	baja karbon dan baja stainless dalam media klorinasi	20
4		air lant	
	Gambar 3.1.1	Diagram Alir Penelitian	52
	Gambar 3.1.1.1	Desain pelat sampel pengelasan (tampak 3D)	54
3	Gambar 3112	Desain pelat sampel pengelasan (tampak atas)	54
h	Gambar 3113	Desain pelat sampel pengelasan (tampak atas)	55
	Gambar 3114	Desain detail sambungan pengelasan	55
	Gambar 3121	Desain frame dudukan sampel pengelasan (tampak	56
١	Guillour 5.11.2.1	3D)	50
	Gambar 3.1.4.1	Rencana pemotongan sampel pengujian	59
	Gambar 3.2.1.1	Portable XRF analyzer	60
	Gambar 3.2.1.2	Titik lokasi pemindaian dengan portable XRF	61
		analyzer	
	Gambar 3.3.3.1	Area pengujian dye-penetrant	62
	Gambar 3.5.1.1	Standard specimen uji tarik	64
	Gambar 3.5.2.1	Standard specimen uji bending untuk permukaan	65
		(face) las-lasan	
	Gambar 3.5.2.2	Standard specimen uji bending untuk akar (root) las-	65
		lasan	
	Gambar 3.5.3.1	Lokasi titik indentifikasi kekerasan vicker's	66
	Gambar 4.1.1.1	Variasi masukan panas total terhadap variasi tebal	72
		pelat	
	Gambar 4.1.1.2	Variasi masukan panas/pass terhadap variasi tebal	72
	· · · -	pelat	
	Gambar 4.1.1.3	Variasi kebutuhan arus rata-rata terhadap variasi tebal	72
		pelat	
	Gambar 4.1.4.1 Gambar 4.1.4.2	Variasi kadar chrom dalam inti las (<i>weld metal</i>) Variasi kadar Nikel dalam inti las (<i>weld metal</i>)	73 74

Universitas Indonesia

xiii

Gambar 4.1.4.3	Variasi kadar besi dalam inti las (weld metal)	74
Gambar 4.1.5.1	Grafik tegangan – regangan hasil pengelasan	77
Gambar 4.1.6.1	Sket metode pengujian bending dengan 3(tiga) titik	77
Gambar 4.1.6.2	Kurva stress strain untuk face weld bending	80
Gambar 4.1.6.3	Kurva stress strain untuk root weld bending	82
Gambar 4.1.7.1	Grafik distribusi kekerasan untuk posisi pengelasan	84
	terhadap variasi ketebalan	
Gambar 4.1.7.2	Grafik distribusi kekerasan untuk ketebalan las-lasan	86
	terhadap variasi posisi pengelasan	
Gambar 4.1.11	Foto sampel hasil uji korosi	88
Gambar 4.1.12	Hasil foto makro sampel las-lasan setelah uji korosi	91
Gambar 4.2.2.1	Distribusi Cr. Ni. C pada daerah fusion line	96
Gambar 4 2 5 1	Kekerasan nada inti lasan terhadan variasi ketebalan	101
Guillbur 4.2.3.1	nelat	101
Gambar 4 2 5 2	Kekerasan nada fusion line CS terhadan variasi	102
Gambal 4.2.3.2	ketebalan pelat	102
Gambar 4253	Kekerasan nada HAZ CS terhadan variasi ketehalan	102
	nelat	102
Combar 4254	Kekerasan fusion line SS terhadan variasi ketebalan	103
Oambai 4.2.3.4	nelat	105
Combor 1255	Kekerasan HAZ SS terhadan variasi ketebalan pelat	103
Cambar 4 2 6 1	Jumlah pass weld untuk variasi katabalan dan posisi	103
Gainbal 4.2.0.1	Junnan pass-weid untuk variasi kelebaran dan posisi	104
	pengelasan	4
Gambar 4.2.6.2	Estimasi % ferrite dengan Creq dan Nieq pada	105
	schaeffler diagram	
Gambar 4.2.7.1	Struktur mikro pada HAZ baja karbon	107
Gambar 4.2.7.2	Struktur mikro pada HAZ baja karbon	108
Gambar 4.2.7.3	Martensite band pada fusion line.	109
Gambar 4.2.7.4	Struktur mikro inti las WM-2G-10 mm	110
Gambar 4.2.7.5	Transisi struktur mikro dari planar ke cellular dan	110
	cellular ke dendritik	
Gambar 4.2.7.6	Sensitisasi pada daerah dekat fusion line	111
Gambar 4.2.7.7	Sensitisasi pada inti las-lasan	113
Gambar 4.2.8.1	Martensite band sepanjang fusion line FL-3G 8 mm	113
Gambar 4.2.8.2	Martensite band sepanjang fusion line FL-1G 8 mm	114
Gambar 4.2.8.3	Hasil EDAX fusion line WM-CS 3G-12 mm	115
Gambar 4.2.8.4	Pola struktur inti lasan untuk ketebalan 12 mm	116
Gambar 4.2.8.5	Pola struktur inti lasan untuk ketebalan berbeda	117
Gambar 4.2.9.1	Mikro pitting pada inti lasan 1G-6 mm	118
Gambar 4.2.9.2	Mikro pitting pada HAZ SS 1G-6 mm	118
Gambar 4.2.9.3	Mikro pitting pada inti lasan 2G-6 mm	119
Gambar 4.2.9.4	Mikro pitting pada inti lasan 3G-6 mm	119
Gambar 4.2.9.5	Diagram evans untuk reaksi korosi galvanic selama	121
	perendalam dalam larutan elektrolit	
Gambar 4.2.9.6	Baja karbon yang terkorosi	122
Gambar 4.2.9.7	Makrosegregasi pad alas-lasan dissimilar baja SS 304	124
	dengan baja karbon A36	
	xiv Universitas Indo	onesia

DAFTAR TABEL

Tabel 2.1.1.1	Komposisi kimia baja karbon ASTM A36	9				
Tabel 2.1.1.2	Kekuatan tarik baja karbon ASTM A36	10				
Tabel 2.1.1.3	Sifat-sifat fisik baja karbon	10				
Tabel 2.1.1.4	Sifat-sifat fisik baja karbon terhadap variasi					
	temperature					
Tabel 2.1.1.5	Jenis-jenis fase dalam sistem diagram Fe-Fe ₃ C	12				
Tabel 2.1.1.6	Klasifikasi kemampuan las baja karbon berdasarkan	17				
	% wt C					
Tabel 2.1.1.7	Klasifikasi kemampuan las baja karbon berdasarkan	17				
	Ceq					
Table 2.1.2.1	Persyaratan standard komposisi kimia SS 304, 304L	18				
	dan 309					
Table 2.1.2.2	Standard kekuatan mekanik 304, 304L	19				
Table 2.1.2.3	Sifat – sifat fisik baja tahan karat tipe 304	19				
Table 2.2.1	Karakteristik polaritas dan arus dalam pengelasan	27				
	GTAW	11 C				
Tabel 3.1.2.1	Tabel pencatatan parameter pengelasan	58				
Tabel 3.2.2.1	Material untuk Dye-Penetrant Test	61				
Tabel 3.2.6	Hasil analisa komposisi kimia FeCl ₃	69				
Tabel 4.1.1	Data masukan panas rata-rata	71				
Tabel 4.1.7.1	Nilai kekerasan sepanjang penampang las-lasan	83				
Tabel 4.1.8.1	Dilusi actual hasil pengelasan dengan variasi posisi	87				
	pengelasan dan tebal					
Tabel 4.2.1.1	Perbandingan hasil pengelasan dengan variasi	92				
	ketebalan pelat					
Tabel 4.2.1.2	Perbandingan hasil pengelasan untuk ketebalan pelat	92				
	6 mm, 8 mm, 10 mm dan 12 mm dengan variasi	- C				
T 1 1 4 2 2 1	posisi pengelasan	0.4				
Tabel 4.2.2.1	Perbandingan komposisi pada inti las-lasan ternadap	94				
T-h-14222	Retebalan pelat	0.4				
Tabel 4.2.2.2	Perbandingan komposisi pada inti las-lasan ternadap	94				
Tabel 4 2 3 1	Nilei tagangan hasil uji tarik tarhadan naruhahan	07				
1 abel 4.2.3.1	ketebalan pelat	97				
Tabel 4 2 3 2	Nilai tagangan hasil uji tarik tarbadan perubahan	07				
14001 7.2.3.2	nosisi pengelasan)1				
Tabel 4 2 4 1	Perhandingan hasil uji bending terhadan posisi	98				
14001 7.2.7.1	nengelasan	70				
Tabel 4 2 4 2	Perhandingan hasil uji bending terhadan ketebalan	98				
14001 4.2.4.2	nelat	70				
Tabel 4.2.5.1	Rata-rata nilai kekerasan pada penampang las-lasan	100				
	dengan posisi pengelasan yang berbeda	100				
Tabel 4.2.5.2	Rata-rata nilai kekerasan pada penampang las-lasan	100				
	dengan ketebalan pelat pengelasan yang berbeda					

XV

Tabel 4.2.6.1	Perhitungan Cr _{eq} dan Ni _{eq}	105
Tabel 4.2.6.2	Estimasi rata-rata % ferrite dalam las-lasan	106

Universitas Indonesia

xvi

DAFTAR LAMPIRAN

Lampiran 4.1.1	Data Masukan Panas Pengelasan13			
Lampiran 4.1.2	Data Hasil Penetrant Test	159		
Lampiran 4.1.3	Data Hasil Uji Radiografi	160		
Lampiran 4.1.4	Data Hasil Pemindaian XRF Analyzer	165		
Lampiran 4.1.5	Data Hasil Uji Tarik	167		
Lampiran 4.1.6	Data Hasil Uji Bending			
Lampiran 4.1.8	Data Hasil Foto Makro	182		
Lampiran 4.1.9	Data Hasil Foto Mikro	184		
Lampiran 4.1.10	Prosedur Pengelasan	194		

BAB 1

PENDAHULUAN

1.1. Latar Belakang Penelitian

Kemajuan ilmu pengetahuan dan teknologi yang sangat pesat mendorong pertumbuhan industri yang menjadi salah satu motor penggerak perekonomian dunia saat ini. Berbagai hasil yang telah dicapai dari penerapan ilmu pengetahuan dan rekayasa teknologi telah banyak berperan dalam mempermudah berbagai aktivitas manusia dalam memenuhi kebutuhan hidupnya termasuk mempercepat dan memperluas lalu lintas manusia dan barang serta meningkatkan frekuensi transaksi jasa yang tanpa sekat negara ataupun bangsa.

Demikian juga dengan jumlah penduduk dunia yang dari tahun ke tahun semakin meningkat, tentunya akan disertai dengan peningkatan tuntutan kebutuhan hidup baik kebutuhan primer, sekunder maupun tersier. Untuk itu diperlukan penyediaan sarana dan prasarana yang memadai baik berupa pembangunan fasilitas produksi, transportasi, komunikasi, tempat tinggal maupun fasilitas-fasilitas pendukung lainnya.

Indonesia merupakan salah-satu negara yang sedang berkembang di asia tenggara yang memiliki jumlah penduduk terbesar ke-5 didunia. Dengan jumlah penduduk yang sedemikian besar, Indonesia memiliki kesempatan yang sangat luas dan sumber daya yang sangat besar dalam pengembangan dan pembangunan berbagai sarana dan prasarana yang terkait dengan pemenuhan kebutuhan masyarakat Indonesia khususnya dan dunia pada umumnya.

Pembangunan fasilitas-fasilitas produksi, transportasi, komunikasi dan fasilitas-fasilitas lainnya tidak bisa dipisahkan dari proses manufaktur dan fabrikasi. Logam baja merupakan salah-satu bahan yang banyak digunakan karena kemudahan dalam manufaktur, fabrikasi, sifat-sifat mekanik dan sifat-sifat fisik yang memadai serta ketersediaannya yang cukup melimpah. Namun pemakaian logam baja juga memiliki keterbatasan tergantung pada kondisi lingkungan dan perlakuan yang dialami mulai dari proses manufaktur, proses fabrikasi serta jenis pembebanan dalam aplikasi teknisnya. Untuk mengatasi beberapa keterbatasan ini, sesuai dengan kebutuhan aplikasinya, Beberapa jenis baja paduan telah dibuat

Universitas Indonesia

1

dengan karakteristik tertentu. Proses pembuatan beberapa jenis baja paduan seringkali membutuhkan biaya yang cukup tinggi sehingga harga material tersebut juga mahal. Sedangkan pemakaian material baru dengan karakteristik yang lebih baik dengan sifat khusus, pada umumnya relatif mahal. Dengan demikian, pemilihan material agar memenuhi persyaratan teknis maupun ekonomis, dapat dilakukan dengan mengkombinasikan material-material yang memiliki karakteristik tertentu yang sesuai dengan perencanaan desain atau aplikasi tertentu. Kombinasi material dengan jenis dan sifat yang berbeda telah banyak diaplikasikan misalnya pada alat penukar panas (heat exchanger), bejana tekan, dan sistem perpipaan. Namun beberapa kendala teknis sering muncul terutama saat proses fabrikasi, khususnya yang melibatkan proses penyambungan dua atau lebih logam yang berbeda.

Metode penyambungan bagian-bagian logam yang umum digunakan adalah metode penyambungan dengan baut dan metode penyambungan dengan pengelasan. Dalam penelitian ini, yang akan ditelaah lebih lanjut adalah metode penyambungan las pada dua material yang berbeda. Ada beberapa jenis proses pengelasan yang sering digunakan dibidang fabrikasi industri yakni salah satunya adalah proses pengelasan *Gas Tungsten Arc Welding (GTAW)*. Proses pengelasan ini cukup populer dan banyak digunakan, hal ini cukup beralasan karena jenis pengelasan ini cukup sederhana, tidak memerlukan peralatan yang kompleks, mobilitas peralatan yang bisa menjangkau berbagai tempat kerja, kualitas hasil pengelasan yang cukup baik, dan konsumsi energi, waktu serta biaya yang relative kompetitif

Untuk proses pengelasan *GTAW*, prinsip dasarnya adalah penyambungan dua logam dengan proses pencairan setempat (*local*) di area sambungan dengan sumber panas dari busur api listrik yang terbentuk diantara ujung elektroda dan logam induk. Proses pemanasan, pencairan dan pembekuan selama proses pengelasan, akan menyebabkan terjadinya perubahan komposisi kimia, struktur mikro, sifat-sifat mekanik maupun sifat ketahanan korosi sambungan las tersebut.

Dalam beberapa kondisi lingkungan kerja atau fabrikasi, pengelasan harus dilakukan dengan posisi yang berbeda-beda. Posisi pengelasan yang dimaksud adalah pengelasan dengan posisi datar (*flat welding*, 1G), horizontal (*horizontal* Universitas Indonesia

welding, 2G), Vertikal (vertical welding, 3G) dan atas kepala (overhead welding, 4G). Tiap posisi pengelasan memiliki tingkat kesulitan tertentu khususnya karena pengaruh gravitasi pada kolam cairan las maupun saat transfer material pengisi las. Demikian juga dengan ketebalan logam yang akan di las dapat bervariasi sesuai dengan kebutuhan design. Dalam penelitian ini akan dipelajari bagaimana pengaruh dari posisi pengelasan dan ketebalan bahan logam yang akan di las terhadap struktur mikro yang terbentuk dan ketahanan korosi sambungan las tersebut. Dengan demikian diharapkan penelitian ini dapat memberikan kontribusi infromasi untuk memperoleh kualitas sambungan las yang terbaik terkait dengan parameter posisi pengelasan dan ketebalan sambungan las.

1.2. Rumusan Masalah

Pada proses penyambungan dengan pengelasan, material logam didaerah sambungan akan mengalami proses pemanasan, pencairan dan pembekuan, dimana selama proses tersebut, dapat terjadi peristiwa difusi, konveksi, pencampuran (*mixing*), pengadukan (*agitation*), pemisahan (*segregation*), dan reaksi-reaksi kimia baik antara elemen-elemen penyusun logam induk, logam pengisi maupun lingkungan disekitar daerah pengelasan, yang antara lain dapat dipengaruhi oleh faktor- faktor seperti posisi pengelasan terkait dengan efek gravitasi pada cairan kolam las dan transfer cairan logam pengisi, desain sambungan las, sifat-sifat logam yang akan disambung dan logam pengisi, ketebalan sambungan las dan lain-lain. Hal ini menyebabkan perubahan distribusi dan komposisi kimia sambungan las, perbedaan laju perpindahan massa, perpindahan panas, dan laju pendinginan, sehingga akan mempengaruhi struktur mikro dan tegangan dalam pada sambungan las-lasan.

Dalam penelitian ini, akan dikaji lebih detail keterkaitan antara posisi pengelasan dan ketebalan sambungan las dua logam yang berbeda (*Dissimilar Metal Welding*) terhadap kualitas hasil pengelasan melalui proses pengujian struktur mikro, tegangan tarik, bending, kekerasan dan ketahanan korosi antara pelat baja tahan karat ASTM A240 type 304 dengan baja karbon ASTM A 36

1.3. Ruang Lingkup Penelitian

Untuk penelitian ini, dilakukan persiapan sampel pelat diworkshop sesuai dengan kondisi aktual proses pengelasan sambungan dua material berbeda (*Dissimilar Weld Metal*) yakni baja tahan karat ASTM A240 Type 304 dan ASTM A36 melalui proses pengelasan *Gas Tungsten Arc Welding* (*GTAW*) dengan posisi pengelasan datar (*flat welding*), Horisontal (*Horizontal Welding*), Vertikal (*Vertical welding*) dan pengelasan atas kepala (*Overhead Welding*) masing-masing untuk ketebalan sambungan las 6 mm, 8 mm, 10 mm dan 12 mm. Dimensi sampel adalah panjang 600 mm dan lebar 300 mm. Banyaknya sampel untuk masing-masing ketebalan sambungan las dan posisi pengelasan adalah 4 sampel sehingga total adalah 16 sampel

Kegiatan ekperimental pada proyek penelitian ini meliputi :

1.3.1. Pembuatan sampel

- a) Sampel dibuat dari pelat baja karbon ASTM A36 dan baja tahan karat ASTM A240 type 304 yang dibeli local dan masing-masing dipotong dengan ukuran 150 mm x 600 mm. Penyambungan kedua pelat tersebut dilakukan diworkshop lokal dengan proses pengelasan *Gas Tungsten Arc Welding* sesuai dengan prosedur pengelasan yang telah ditetapkan.
- b) Untuk mendapatkan sampel pengujian, selanjutnya sambungan kedua pelat tersebut dipotong-potong dengan dimensi dan orientasi sesuai dengan kebutuhan pengujian
- 1.3.2. Pengujian sifat-sifat mekanik

Untuk mendapatkan informasi sifat-sifat mekanik dari sambungan las, akan dilakukan beberapa pengujian yakni pengujian kekuatan tarik, kekuatan bending, dan distribusi kekerasan pada penampang sambungan las.

1.3.3. Karakterisasi struktur mikro

Karakterisasi struktur mikro pada sambungan las akan dievaluasi dengan pengamatan mikroskop optik (*Optical Microscope*) dan pemindaian mikroskop elektron (*Scanning Electron Microscope / SEM*)

1.3.4. Pengujian ketahanan korosi

Pengujian perilaku korosi sambungan las dilakukan di laboratorium yakni pitting korosi sambungan las yang dilakukan dengan metode perendaman dalam larutan kimia elektrolit (*immersion test*) yang mengacu pada standard

- a) ASTM G-31(Practice for Laboratory Immersion Corrosion Testing of Metals),
- b) ASTM G-48 (Test Methods for Pitting and Crevice Corrosion Resistance of Stainless Steels and Related Alloys by Use of Ferric Chloride Solution)

1.4. Tujuan Penelitian

Secara umum tujuan penelitian ini adalah untuk mendapatkan kualitas hasil pengelasan dari sambungan las dua material yang berbeda (*Dissimilar Metal Welding*) untuk tiap-tiap posisi pengelasan dan ketebalan sambungan yang berbeda. Tujuan penelitian ini adalah :

- 1.4.1. Untuk mengetahui struktur mikro akhir yang terbentuk akibat dari perbedaan posisi pengelasan dan variasi ketebalan sambungan las antara baja tahan karat ASTM A240 tipe 304 dan baja karbon ASTM A36 (Dissimilar Metal Welding)
- 1.4.2. Menginvestigasi dan menganalisa parameter-parameter yang mempengaruhi struktur mikro sambungan las jika terdapat variasi struktur mikro akibat perbedaan posisi pengelasan dan ketebalan sambungan las
- 1.4.3. Menginvestigasi ketahanan korosi khususnya korosi sumuran (*Pitting Corrosion*) pada sambungan las dua bahan yang berbeda (*Dissimilar Weld Metal*) yang dalam hal ini adalah antara baja tahan karat ASTM A240 tipe 304 dengan ASTM A36 untuk tiap posisi pengelasan dan ketebalan sambungan las
- 1.4.4. Mempelajari korelasi kualitas pengelasan terhadap posisi pengelasan dan ketebalan sambungan las. Kualitas pengelasan di evaluasi dari struktur mikro akhir sambungan las yang terjadi, sifat-sifat mekanik dan ketahanan terhadap korosi sumuran (*Pitting Corrosion*).

1.5. Hipotesis

Proses pengelasan adalah proses penggabungan dua logam atau lebih melalui proses pencairan setempat (*local*) bagian logam yang akan disambung atau digabungkan yang dengan atau tanpa penambahan logam pengisi dan dengan atau tanpa tekanan. Pencairan logam diakibatkan oleh paparan panas yang dapat berasal dari busur api listrik (*Electric Arc*), sinar laser, api acetilin, gesekan atau dari sumber panas lainnya.

Pengelasan dengan sumber panas yang dihasilkan oleh busur api listrik (*Electric Arc*) sangat banyak digunakan karena peralatan yang sederhana, mudah dalam mobilisasinya, fleksibel dalam aplikasinya serta kualitas dan kuantitas pengelasan yang dihasilkan mampu memenuhi persyaratan desain sambungan yang diinginkan. Ada beberapa jenis proses pengelasan yang telah dikembangkan, salah satu proses pengelasan dengan busur listrik yang umum digunakan untuk pekerjaan-pekerjaan fabrikasi baik di bengkel kerja (*workshop*) maupun saat konstruksi di lapangan (*Site Erection*) adalah *Gas Tungsten Arc Welding (GTAW*)

Prinsip kerja proses pengelasan ini adalah penyambungan dua logam dengan proses pencairan setempat (local) di area sambungan dengan sumber panas dari busur api listrik (Arc) yang terbentuk diantara ujung elektroda dan logam induk. Selama proses pengelasan melibatkan pemanasan hingga terjadi pencairan (Melting) logam yang akan disambung dan proses pemadatan kembali (Solidification). Sifat-sifat logam pada sambungan las tersebut sangat erat kaitannya dengan jenis, ukuran dan orientasi struktur mikro yang terbentuk. Beberapa faktor yang berperan dalam proses pembentukan struktur mikro diantaranya adalah siklus termal yang dialami terutama temperatur pemanasan, waktu, dan laju pendinginan, serta distribusi dan komposisi kimia^[1]. Terbentuk 3 zona yang berbeda yakni HAZ pada sisi baja tahan karat, inti las (weld metal), dan HAZ pada sisi baja karbon yang memiliki struktur mikro dan morfologi yang berbeda yakni epitaxial cellular crystal terbentuk di interface solid-liquid dan non-epitaxial dendrites terbentuk pada bagian tengah dan atas weld metal karena adanya perbedaan komposisi kimia, rasio dilusi dan terjadinya proses difusi terutama unsur karbon ke arah baja stainless selama proses welding^[21], sehingga terdapat daerah-daerah yang akan miskin unsur paduan khususnya krom (Cr-Depleted Zone) yang rentan Universitas Indonesia terhadap korosi local^[23]. Design joint sambungan las akan mempengaruhi banyaknya *pass-weld* sehingga terjadi perbedaan siklus termal selama proses pengelasan. Hal ini akan menyebabkan terjadinya perbedaan difusi atom karbon dalam menstabilkan struktur austenite (*austenite reformation*), transformasi δ-ferrite menjadi austenite (*secondary austenite*)^[24] dan distribusi δ-ferrite didalam sambungan las dimana prosentase terendah ada ditengah las-lasan. Tebal HAZ juga berbeda pada sisi baja stainless dan baja karbon^[25]. Struktur mikro logam induk (*base metal*) dan inti las (*weld metal*) pada temperature tinggi (*solidus*) sangat mempengaruhi pola evolusi struktur mikro pada fusion line yakni saat base metal dan weld metal menunjukan perbedaan struktur kristal BCC/FCC saat temperature solidifikasi (*solidus*), nukleasi dari inti lasan terjadi secara heterogen di area PMZ (*partially melted zone*) - HAZ pada fusion line dan menyebabkan terjadi *random misorientation grain* antara butir logam induk dan butir inti lasan. Sebaliknya jika struktur yang identik FCC/FCC saat solidifikasi terjadi pertumbuhan kristal secara epitaxial meskipun komposisi kimianya berbeda^[26].

Dengan mengacu pada beberapa penelitian-penelitian sebelumnya seperti yang telah disebutkan diatas dan dari pengalaman dilapangan, maka dalam penelitian ini akan dilakukan tambahan analisis pada pengelasan dua material yang berbeda (*Dissimilar Weld Metal*) dengan proses pengelasan *Gas Tungsten Arc Welding (GTAW)*, yakni dengan posisi pengelasan dan ketebalan sambungan las yang bervariasi. Dari penelitian ini diharapkan diperoleh gambaran pengaruh dari posisi pengelasan dan ketebalan sambungan las terhadap struktur mikro akhir yang terbentuk, sifat-sifat mekanik dan ketahanan terhadap korosi sumuran (*Pitting Corrosion*). Hipotesa yang terkait dengan penelitian ini adalah sebagai berikut :

- Perbedaan posisi pengelasan akan sangat mempengaruhi transfer logam pengisi kedalam kolam cairan las, pola aliran dan pengadukan dalam kolam cairan las, distribusi komposisi kimia las-lasan dan mungkin juga heat input yang dibutuhkan saat pengelasan
- Perbedaan posisi pengelasan pada pengelasan dissimilar akan mempengaruhi prosentasi dilusi yang terjadi pada pengelasan tersebut dan ketebalan HAZ

- Variasi ketebalan akan mempengaruhi siklus termal pengelasan dan laju pendinginan sehingga akan mempengaruhi struktur mikro yang terbentuk dan ketebalan HAZ
- Variasi ketebalan dan posisi akan mempengaruhi tingkat ketahanan korosi terkait dengan kemungkinan terjadinya perubahan struktur mikro sambungan las

1.6. Kegunaan Penelitian

Dari hasil penelitian ini diharapkan dapat diperoleh informasi perkiraan tingkat kualitas dari suatu sambungan las hasil pengerjaan atau fabrikasi aktual di lapangan, untuk suatu posisi pengelasan dan ketebalan sambungan las tertentu. Dalam hal ini informasi tersebut akan sangat bermanfaat sebagai bahan acuan dan pertimbangan untuk efisiensi biaya pengelasan, dan keamanan design suatu peralatan, perpipaan atau struktur baja.

BAB 2

TINJAUAN PUSTAKA

2.1. Logam Induk

2.1.1. Baja Karbon ASTM A36

Baja karbon secara sederhana adalah paduan antara unsur besi dan karbon dimana unsur karbon sebagai unsur penguatan paduan tersebut. AISI (Institusi besi dan baja amerika) mendefenisikan baja karbon adalah baja dengan unsur karbon maksimal 2.0% dan unsur-unsur lain seperti silicon maksimal 0.6%, tembaga maksimal 0.6% dan mangan maksimal 1.65%. Unsur – unsur lainnya dapat ditambahkan hanya sebagai element untuk de-oksidasi seperti aluminium^[2].

Berdasarkan kandungan unsur karbon, baja karbon dibedakan menjadi^[1]:

- □ Baja karbon rendah dengan kadar karbon maksimum 0.15%,
- □ Baja karbon lunak (*mild*) dengan kadar karbon $0.15\% \sim 0.30\%$,
- \square Baja karbon medium dengan kadar karbon 0.30% ~ 0.50%
- □ Baja karbon tinggi dengan kadar karbon 0.50% ~ 1.0%.

Baja karbon ASTM A36 termasuk dalam kategori baja karbon lunak dengan komposisi kimia sebagai berikut^[4]:

Ben-	Ketebalan	Komposisi kimia					
tuk	in. (mm)	C max.%	Mn %	P max.%	S max.%	Si %	Cu min.%
All		0.26	1 · · · ·	0.04	0.05	0.04 max.	0.20
	~ 3⁄4" (20)	0.25		0.04	0.05	0.04 max.	0.2
	³ ⁄4"~ ¹ ⁄2" (20~40)	0.25	0.80 - 1.20	0.04	0.05	0.04 max.	0.2
Pelat	1 ½"~2 ½"(40~65)	0.25	0.80 - 1.20	0.04	0.05	0.15 - 0.04	0.2
	2 ¼2"~ 4"(65~100)	0.25	0.80 - 1.20	0.04	0.05	0.15 - 0.04	0.2
	> 4" (100)	0.25	0.80 - 1.20	0.04	0.05	0.15 - 0.04	0.2
	~ ¾" (20)	0.26		0.04	0.05	0.04 max.	0.2
Bar	³ ⁄4"~ ¹ ⁄2" (20~40)	0.27	0.60 - 0.90	0.04	0.05	0.04 max.	0.2
	1 ½"~ 4"(40~100)	0.25	0.60 - 0.90	0.04	0.05	0.04 max.	0.2

Tabel 2.1.1.1 Komposisi kimia baja karbon ASTM A36^[4]

Universitas Indonesia

9

Kekuatan tarik baja karbon ASTM A36 adalah sebagai berikut^[4] :

Pelat, shapes, dan barsKekuatan tarik, ksi [Mpa]58 - 80 [400 - 550]Yield point, min, ksi [Mpa]36 [250]Pelat dan bars20Elongasi pada 8" [200 mm],min,%23ShapesElongasi pada 8" [200 mm],min,%Elongasi pada 8" [200 mm],min,%20Elongasi pada 2" [50 mm],min,%21

Tabel 2.1.1.2 Kekuatan tarik baja karbon ASTM A36^[4]

Sifat-sifat fisik baja karbon secara umum adalah sebagai berikut^[6] :

Sifat-sifat fisik	Nilai (metrik)
Berat jenis pada temperatur ruang	7850 kg/m ³
Modulus geser pada temperature ruang	75.0 – 80.0 GPa
Titik lebur	1425 °C
Poisson's ratio pada temperature ruang	0.29

Sifat-sifat fisik baja karbon secara umum yang bervariasi terhadap temperatur adalah sebagai berikut^[6] :

Tabel 2.1.1.4 Sifat-sifat fisik baja karbon terhadap variasi temperatur^[6]

Sifat – sifat fisik	Temperatur			
	$70^{\circ}\mathrm{F} - 500^{\circ}\mathrm{F}$	$500^{\circ}F - 1000^{\circ}F$	$1000^{\circ}F - 1200^{\circ}F$	
Konduktivitas termal, Btu/hr.ft.°F	27.3 – 25.7	~ 21.1	~ 18.3	
Difusivitas termal, ft ² /hr	0.53 – 0.399	~ 0.263	~ 0,204	

Koefisien expansi termal, 10 ⁻⁶ in/in/°F	6.4 – 7.3	~ 8.1	~ 8.3
Modulus elastisitas, psi x 10 ⁶	29.2 – 27.1	~ 20.2	~ 15.4
Hambatan listrik, μΩ-m	0.213 - 0.623	~ 1.167	~ 1.219
Catatan : $^{\circ}C = 5/9(^{\circ}F-32)$ 1 psi = 6.89 kPs = $\mu m/\mu m/^{\circ}C$	a Btu/hr.ft.ºF=1.72	$2 \times W/m^{\circ}C$ $ft^{2}/hr = 0$	0.929 m2/hr in/in/ºF

2.1.1.1. Metalurgi Baja Karbon

Baja karbon pada temperature ruang secara umum terdiri dari struktur α -ferrite (BCC) dan Fe₃C-cementite. Proses perlakuan panas yang dilakukan pada baja karbon akan mempengaruhi struktur yang terbentuk. Berikut diagram fase keseimbangan besi – karbon^[6] yang menunjukan fase-fase yang terjadi sebagai fungsi temperature dan kadar karbon :

Gambar 2.1.1.1 Diagram fase Fe-Fe₃C^[6]

Beberapa jenis fase-fase dalam sistem diagram $\text{Fe-Fe}_3\text{C}^{[6]}$:

Tabel 2.1.1.5	Jenis-jenis	fase dalam	sistem	diagram	Fe-Fe ₃ C ^[6]
---------------	-------------	------------	--------	---------	-------------------------------------

Fase	Struktur atom	Penjelasan
Cair		Cairan dengan karbon C terlarut dalam besi Fe
Padat δ (ferrite)	BCC	Larutan padat dengan atom C terlarut secara acak dan
		interstitial dalam struktur Fe BCC. Maximum kelarutan C
		adalah 0.08% wt pada temperature 1492°C. Besi δ murni
		stabil pada rentang temperature $1391^{\circ}C - 1536^{\circ}C$
Padat y (Austenite)	FCC	Larutan padat dengan atom C terlarut secara acak dan

		interstitial dalam struktur Fe FCC. Maximum kelarutan C
		adalah 1.7 % wt pada temperature 1130°C. Besi γ murni
		stabil pada rentang temperature 914°C - 1391°C
Padat α (ferrite)	BCC	Larutan padat dengan atom C terlarut secara acak dan
		interstitial dalam struktur Fe BCC. Maximum kelarutan C
		adalah 0.035 %wt pada temperature 723°C. Besi α murni
		stabil pada temperature dibawah 914°C
Fe ₃ C (karbida besi	Komplek	Struktur yang keras dan getas yang secara kimia terdiri dari
/Cementite)		unsur besi Fe dan karbon C 25% atom (6.7%wt)
Pearlite	12	Struktur yang terbentuk pada temperature eutectoid (723°C)
		yang terdiri dari campuran nukleat Fe ₃ C (± 11.5 %wt) dan α -
		ferrite (± 88.5 % wt)
Ledeburite	-	Struktur eutectic yang terdiri dari γ -austenite dan Fe ₃ C yang
		terbentuk saat kadar karbon dalam cairan 4.3 %wt dan
		didinginkan pada temperature $1130^{\circ}\mathrm{C}$. Pada temperature
		eutectoid (723°C), ledeburite dapat bertransformasi menjadi
		α-ferrite dan Fe ₃ C.
Si al	ACV.	
ia.	150	
200	XT	
signer.	7 4	-C
1.7	11:	
a frid	11/1	

Gambar 2.1.1.3 Fotomikro struktur austenite (325x)^[7]

Gambar 2.1.1.2 Fotomikro struktur ferrite (90x)^[7]

Gambar 2.1.1.4 Fotomikro struktur pearlite kasar dan halus (3000x)^[7]

Gambar 2.1.1.5 Fotomikro struktur martensite (1220x)^[7]

2.1.1.2. Transformasi fase pada baja karbon

Transformasi fase dalam keadaan padat secara umum dapat dibedakan menjadi 2 (dua) yaitu transformasi yang terjadi melalui proses difusi (diffusion) dan tranformasi yang terjadi tanpa terjadinya difusi (diffusionless). Transformasi fase yang melalui proses difusi tergantung dari perbedaan konsentrasi, besarnya hambatan selama proses difusi dan waktu yang tersedia untuk proses difusi.

 $J = -D\frac{dC}{dx}$

Fick's First Law^[7]

Fick's Second Law^[7]

Dimana :

J : Flux difusi

D : Koefision Difusi

dC/dx : Gradien konsentrasi

Transformasi fase yang tanpa proses difusi (Diffusionless) biasanya terjadi dengan terbentuknya fase baru yang metastabil seperti pembentukan struktur martensite.

 $\frac{\partial C}{\partial t} = D$

Pada baja karbon, proses transformasi yang membentuk struktur mikro akhir sangat dipengaruhi oleh kadar karbon dan laju pendinginan.

Universitas Indonesia

(2.1.1.1)

(2.1.1.2)

a. Transformasi Besi Murni

Gambar 2.1.1.7 Transformasi phase besi eutectoid dalam Sistem Fe-Fe₃C diagram^[6]

c. Transformasi Baja Hypoeutectoid

α

0

Ċ_{y3} C_{y4}

C_{y5}

Gambar 2.1.1.9 Transformasi phase besi Hyper eutectoid dalam Sistem Fe-Fe₃C diagram ^[6]

γ composition shifts to C_{γ4}

Fe₃C films at former γ grain boundaries + nodules of pearlite

2.1.1.3. Sifat mampu las baja karbon

Sifat mampu las di definisikan sebagai kapasitas suatu material untuk di las dalam kondisi perakitan atau fabrikasi yang khusus sehingga sesuai dengan desain struktur dan memberikan performa yang memuaskan dalam applikasinya. Secara mudahnya, kemampuan las dapat dikatakan tingkat kemudahan suatu material untuk di las tanpa menyebabkan perubahan sifat-sifat yang signifikan, tanpa adanya keretakan atau cacat-cacat lainnya^[6]. Pada umumnya sifat mampu las dari karbon steel agar tidak terjadi retak diprediksi dari nilai karbon ekuivalen Ceq. dalam baja tersebut.

$$CE(IIW) = %C + %Mn/6 + (%Cr + %Mo + %V)/5$$
(2.1.1.3)
+ (%Cu + % Ni)/15

Klasifikasi baja	Kadar karbon	Sifat mampu las		
karbon	(%wt)			
Baja karbon rendah	~ 0.15 max.	Sangat baik		
Baja karbon lunak	0.15 ~ 0.30	Baik		
Baja karbon medium	0.30 ~ 0.50	Sedang		
Baja karbon tinggi	0.50 ~ 1.00	Buruk		

Tabel 2.1.1.6 Klasifikasi kemampuan las baja karbon berdasarkan % wt C^[8]

Tabel 2.1.1.7 Klasifikasi kemampuan las baja karbon berdasarkan Ceq

Nilai Ceq.	Sifat mampu las	Perlakuan pengelasan
< 0.40	Sangat baik	Preheat untuk menghilangkan uap air
0.41 - 0.45	Baik	Preheat + elektroda dengan kadar hydrogen rendah
> 0.45 - 0.52	Sedang	Preheat + elektroda dengan kadar hydrogen rendah + control temperatur
> 0.52	Buruk	Preheat + elektroda dengan kadar hydrogen rendah + control

|--|

2.1.2. Baja Tahan Karat seri 300

2.1.2.1. Baja tahan karat tipe austenitik

Stainless steel type austenitic sangat umum digunakan dan cukup banyak jenisnya. Material austenitic stainless steel sangat mudah dibentuk dan di las serta dapat diaplikasikan untuk kondisi temperature tinggi maupun temperature sangat rendah tanpa banyak mengalami perubahan sifat-sifat mekanis maupun korosi. Secara metalurgi, austenitic stainless steel memiliki struktur dominan face center cubic (FCC), komposisi utama adalah chrom 12% wt ~ 25% wt dan Nickel. Kekuatan tariknya antara 200 MPa dan dapat ditingkatkan hingga 2000 MPa melalui pengerjaan dingin. Namun austenitic stainless steel juga memiliki beberapa kelemahan antara lain^[5] :

- Kurang tahan terhadap cyclic oxidation jika dibandingkan dengan tipe ferritic karena koefisien expansi termal yang tinggi sehingga cenderung menyebabkan rusaknya dan mengelupasnya lapisan pelindung chromium oksida
- Rentan terhadap SCC
- Fatigue endurance limitnya relative lebih rendah (~ 30% Tensile Strength) jika dibandingkan dengan tipe ferritic (~ 50% – 60% Tensile Strength).
- Termal fatigue relative rendah karena koefisien ekspansi termal yang relative tinggi

2.1.2.2. Komposisi kimia dan sifat – sifat baja tahan karat ASTM A240 tipe 304

a. Komposisi kimia baja tahan karat seri 300

Table 2.1.2.1 Persyaratan standard komposisi kimia SS 304, 304L dan 309^[3,9]

Des	sain	Komposisi Kimia									
UNS	Nama	С	Cr	Mn	Мо	N	Ni	Р	S	Si	Lain-
CIND	umum	C	CI			1	111	-	5	51	lain
S30400	SS304	0.08	18.0-	2.00	-	0.1	8.0-	0.045	0.030	0.75	-

		max.	20.0	max.			10.5	max.	max		
\$20402	552041	0.03	18.0-	2.00	-	0.1	8.0-	0.045	0.030	0.75	-
330403	33304L	max.	20.0	max.			12.0	max.	max		
\$30900	\$\$309	0.20	22.0-	2.00	-	0.1	12.0	0.045	0.030	1.0	-
330900	33309	max.	24.0	max.			15.0	max.	max	max	

b. Sifat – sifat mekanik baja tahan karat seri 300

Table 2.1.2.2 Standard kekuatan mekanik 304, 304L	Standard kekuatan mekanik 304, 304L ^[9]
---	--

	Kekuatan mekanik									
	UNS	Nama umum	ASTM	Bentuk	YS	TS	Elongasi pada 50 mm min., %	Kekerasan		
(S30400	SS304	A240	Pelat	30 ksi min 205 Mpa min.	75 ksi min 515 Mpa min.	40	201 BHN Max 92 HRB Max		
	\$30403	SS304 L	A240	Pelat	25 ksi min 170 Mpa min.	70 ksi min 485 Mpa min.	40	201 BHN Max 92 HRB Max		

c. Sifat – sifat fisik baja tahan karat SS 304

Fable 2.1.2.3 Sifat – sifat fisik baja tahan karat tipe 304	[3][9]
---	--------

٠

Sifat – sifat fisik								
Density, kg/m3	7900							
Mean coefficient of thermal expansion, x 10^{-6}	16.5 (20°C – 200°C)							
K ⁻¹	17.5 (20°C – 400°C)							
Specific heat at 20°C, J/kg.K	500							
Temperatur lebur, °C	1400 - 1450							
Modulus of elasticity, GPa	200							
Thermal conductivity at 20°C, W/m.K	15							
Electrical resistivity at 20°C, Ω .mm ² /m	0.73							
2.1.2.3. Metalurgi baja tahan karat tipe austenitic

a. Transformasi fase dan struktur mikro baja tahan karat tipe austenitic

Sesuai dengan tipenya, baja tahan karat austenitic memiliki struktur FCC austenitic yang stabil pada temperature ruang. Baja ini tidak dapat dikeraskan dengan proses perlakuan panas, namun kekuatan akan naik bila dilakukan pengerjaan dingin. Hal ini karena adanya transformasi austenite menjadi martensite akibat adanya energy regangan karena pengerjaan dingin. Martensite yang terbentuk dibagi menjadi 2(dua) yaitu α '-martensite yang strukturnya BCC magnetik dan ϵ -martensit yang strukturnya HCP non magnetic. Berikut adalah diagram transformasi fase kesetimbangan paduan Fe-Cr-Ni :

Gambar 2.1.2.3 Diagram phase Fe-Ni dengan kadar Cr $18\ \% wt^{[5]}$

Gambar 2.1.2.4 Potongan tertiary diagram phase Fe-Cr-Ni untuk 70% wt Fe dan 60% wt Fe^[5]

b. Sensitisasi pada baja tahan karat

Karbon pada stainless steel berfungsi sebagai salah satu unsur penstabil struktur austenite. Namun kehadiran karbon dalam stainless steel pada dasarnya tidak diinginkan karena secara termodinamika, karbon memiliki afinitas kimia yang tinggi terhadap chromium sehingga mudah membentuk karbida krom $Cr_{23}C_6$ yang berpresipitasi di sepanjang batas butir. Presipitasi kromium karbida menyebabkan kehilangan kromium disekitar batas butir sehingga akan menurunkan ketahanan korosi sepanjang daerah tersebut yang umum dikenal sebagai korosi batas butir (intergranullar corrosion)

Gambar 2.1.2.5 Presipitasi karbida chrom pada batas butir^[5]

Gambar 2.1.2.7 Laju presipitasi $Cr_{23}C_6$ sebagai fungsi kadar karbon^[3]

Gambar 2.1.2.8 Pengaruh kadar krom terhadap pembentukan jenis sensitisasi^[3]

Ukuran atau lebar sensitisasi pada las-lasan baja tahan karat tipe 304 dipengaruhi oleh beberapa faktor seperti besarnya masukan panas, maksimum temperature, dan laju pendinginan pada temperature 900oC – 550oC. Dengan mengontrol parameter-parameter ini, dapat dibuat ukuran sensitisasi yang minimum dan permukaan las-lasan yang bebas terhadap sesitisasi sehingga akan mengurangi potensi terjadinya korosi intergranullar khususnya akibat dari kondisi lingkungan yang agresif (*environment induced IGC*)^[18].

2.2. Proses Pengelasan

Proses pengelasan adalah proses penyambungan dua logam atau lebih dalam keadaan leleh, dengan atau tanpa logam pengisi, dengan atau tanpa tekanan. Ada beberapa proses welding yang umum diaplikasikan dalam proses fabrikasi logam sebagai berikut :

Gas welding	OAW (Oxyacetylene welding)
Arc welding	GTAW (Gas Tungsten Arc Welding)

	GMAW (Gas Metal Arc Welding)
	SMAW (Shielded Metal Arc Welding)
	SAW (Submerged Arc Welding)
	FCAW (Flux Core Arc Welding)
	PAW (Plasma Arc Welding)
	ESW (Electroslag Welding)
High Energy Beam	LBW (Laser Beam Welding)
Welding	EBM (Electron Beam Welding)

Tiap-tiap proses welding ini memiliki kelebihan dan kekurangan tergantung dari persyaratan aplikasi seperti sifat-sifat mekanik, korosi, waktu dan biaya.

2.2.1. Posisi Pengelasan

Posisi pengelasan sangat tergantung dari lokasi dan posisi benda kerja. Kriteria untuk tiap posisi diatur sebagai berikut :

Gambar 2.2.1 Posisi pengelasan untuk desain sambungan groove $^{[11]}$

Gambar 2.2.2 Posisi pengelasan pada desain sambungan groove untuk pelat^[1]

2.2.2. Proses pengelasan Gas Tungsten Arc Welding (GTAW)

Proses GTAW adalah proses penyambungan dengan pencairan bagian logam yang akan di sambung dan dapat menggunakan logam pengisi atau tidak. Skema secara umum pengelasan GTAW adalah sebagai berikut :

Gambar 2.2.3 Skema umum proses pengelasan GTAW^[1]

2.2.3. Polaritas listrik pada proses pengelasan GTAW

Polaritas yang digunakan dalam proses pengelasan GTAW dibagi menjadi 3 (tiga) tipe yakni polaritas lurus (DCSP/DCEN), polaritas terbalik (DCRP/DCEP) dan polaritas arus bolak-balik (AC) yang masing –masing memiliki karakteristik yang berbeda.

Jenis Arus	DCEN/DCSP	DCEP/DCRP	AC (Balance)
	Polaritas lurus	Polaritas terbalik	Polaritas bolak-balik
Polaritas elektroda	Negatif	Positif	Positif-negatif
Aliran ion dan elektron Karakteristik penetrasi	DC electrode negative	DC electrode positive + + + + • • • • • • •	AC
Efek pembersihan	Tidak	Ya —	Ya sekali dalam tiap
oksida			siklus
Keseimbangan	70% panas terjadi	30% panas terjadi	50% panas terjadi pada
panas pengelasan	pada benda kerja	pada benda kerja	benda kerja
dalam busur listrik.	30% panas terjadi	70% panas terjadi	50% panas terjadi pada
(pendekatan)	pada ujung	pada ujung	ujung elektroda
	elektroda	elektroda	
Penetrasi	Dalam, sempit	Dangkal, lebar	Medium
Kapasitas elektroda	Sangat bagus	Kurang bagus	Sedang
	Misal : 1/8 in.(3.2	Misal : 1/4 in.(6.4	Misal : 1/8 in (3.2
	mm) 400 A	mm) 120 A	mm) 225 A

Table 2.2.1 Karakteristik polaritas dan arus dalam pengelasan GTAW^{[1][12]}

2.3. Metalurgi Las

2.3.1. Panas Pengelasan

Proses pengelasan membutuhkan panas yang cukup tinggi untuk mencairkan logam yang akan disambung yang tergantung dari titik lebur logam tersebut. Pada proses pengelasan dengan busur listrik, tidak semua panas yang dihasilkan pada Universitas Indonesia elektroda dapat digunakan untuk melebur logam yang akan disambung, sebagian panas akan terbuang selama proses transfer energi panas tersebut ke benda kerja. Dengan demikian panas yang diterima oleh benda kerja tergantung dari efisiensi transfer energy panas selama pengelasan yang didefinisikan sebagai berikut :

$$\eta = \frac{Qt_{\text{weld}}}{Q_{\text{nominal}t_{\text{weld}}}} = \frac{Qt_{\text{weld}}}{EIt_{\text{weld}}} = \frac{Q}{EI}$$
(2.3.1)

Dimana :

E

L

Q : Laju perpindahan panas dari sumber panas ke benda kerja Q_{nominal} : Nominal energi panas yang dihasilkan oleh sumber panas

t_{weld} : waktu lama pengelasan

- : Beda potensial listrik pada elekroda pengelasan busur
- : Arus listrik yang dibutuhkan untuk pengelasan

Selain itu, panas pengelasan juga sering dinyatakan dalam bentuk "masukan panas pengelasan per-unit panjang las-lasan" sebagai berikut :

$$Q_{in} = Q_{nominal} / V atau \quad Q_{in} = EI / V$$

(2.3.2)

Dimana :

V : kecepatan pengelasan

2.3.2. Daerah terpengaruh panas (Heat Affected Zone)

Selama proses pengelasan akan terjadi proses pemanasan dan pendinginan, hal ini akan menyebabkan perubahan pada daerah disekitar las-lasan yang terpapar panas.

Gambar 2.3.2 Variasi perubahan struktur pada daerah sekitar las-lasan^[12]

2.3.3. Aliran dalam cairan las-lasan

Cairan logam las dapat dikategorikan sebagai fluida yang dapat berdeformasi atau bergerak akibat gaya-gaya yang bekerja pada fluida tersebut. Perpindahan massa dan perpindahan panas yang terjadi akan mempengaruhi struktur mikro laslasan, komposisi kimia maupun sifat-sifat mekanik lainnya. Ada beberapa gaya penggerak yang menyebabkan deformasi atau gerakan cairan las-lasan :

Gambar 2.3.3 Gaya penggerak konveksi massa cairan las. (a,b) Gaya apung; (c,d) Gaya Lorenz; (e,f) Gaya tegangan permukaan; (g,h) Gaya geser permukaan ^[1]

2.3.3.1. Gaya penggerak karena gaya apung

Akibat adanya gaya gravitasi dan adanya perbedaan massa jenis (*density*) menyebabkan terjadinya peristiwa konveksi massa cairan las-lasan. Perbedaan massa jenis karena adanya perbedaan distribusi temperatur dalam cairan las-lasan dimana pada daerah pusat las-lasan yang dekat dengan sumber panas memiliki temperature yang lebih tinggi sehingga massa jenisnya akan lebih kecil sementara di daerah yang agak jauh dari sumber panas, temperaturnya lebih rendah sehingga massa jenisnya lebih besar. Akibat gaya gravitasi maka massa jenis fluida yang lebih besar akan mengalir kebawah (searah gaya gravitasi) sedangkan fluida dengan massa jenis lebih kecil akan terdorong keatas. Hal ini menyebabkan konveksi aliran dalam kolam las-lasan.

2.3.3.2. Gaya Lorentz

Dalam fisika listrik dinyatakan bahwa disekitar kawat yang dialiri arus listrik akan timbul medan magnet yang sebanding dengan besarnya arus listrik ($\underline{F} = \underline{J} \times \underline{B}$). Menurut faraday dan lorentz, pada kawat yang dialiri arus listrik melintasi medan magnet akan menghasilkan gaya listrik (*Dua kawat sejajar dengan jarak 1 m akan menimbulkan gaya sebesar 1 N bila dialiri arus searah sebesar 1 A*) yang arahnya masing-masing tegaklurus arah medan magnet dan arah arus listrik (*aturan tangan kanan*). Pada pengelasan GTAW, arus searah akan mengalir dengan densitas arus tertentu dalam kolam las dengan arah tertentu tergantung polaritas pengelasan. Kolom-kolom densitas arus listrik ini akan menghasilkan medan magnet yang akan mempengaruhi kolom densitas arus listrik disekitarnya sehingga timbul gaya listrik (*lorentz*) yang akan menggerakan cairan logam las Universitas Indonesia

tersebut. Semakin besar densitas arus listrik, semakin besar pula gaya lorentz yang dihasilkan.

Gambar 2.3.5 Gaya lorentz penggerak konveksi massa cairan las^[1].

2.3.3.3. Gaya tegangan permukaan

Secara umum, kenaikan temperatur fluida akan menurunkan tegangan permukaannya. Jika tanpa penambahan bahan kimia tertentu (*surface active agent*), tegangan permukaan cairan kolam las akan turun dengan kenaikan temperatur. Temperature pada pusat kolam las yang dekat dengan sumber panas lebih tinggi dibandingkan dengan pada bagian tepi sehingga tegangan permukaan di tepi kolam las akan lebih tinggi yang mengakibatkan adanya tarikan kearah luar dan menimbulkan gaya geser pada cairan las yang akan menggerakan cairan yang ada dibawahnya. Akibatnya terjadi konveksi atau perpindahan massa cairan las dalam kolam las. Peristiwa ini juga sering disebut konveksi Mangaroni atau konveksi Thermokapiler. Arah konveksi tergantung dari sifat tegangan permukaan terhadap temperatur.

2.3.3.4. Gaya geser permukaan

Aliran plasma pada proses pengelasan akan menginduksikan geseran pada permukaan cairan kolam las-lasan sehingga akan menggerakkan cairan las-lasan yang ada dibawahnya. Arah aliran cairan las-lasan pada permukaan adalah dari pusat las-lasan kearah tepi searah dengan arah aliran plasma.

2.4. Solidifikasi dan struktur mikro las-lasan

2.4.1. Solidifikasi cairan logam las

Logam yang dilas akan mengalami pencairan pada titik leburnya dan komposisi kimia elemen-elemen penyusun logam akan bercampur dalam cairan las dan dapat dianggap tercampur merata. Pada saat terjadi pembekuan, elemenelemen tersebut mulai mengatur diri yang dipengaruhi oleh aspek termodinamika seperti diagram fase dan kinetic seperti proses difusi, konveksi, agitasi, dan lainlain.

Komposisi kimia logam selama proses solidifikasi dalam diagram fase dipengaruhi oleh perbandingan komposisi elemen-elemen terlarut pada antarmuka batas padat-cair (*solid-liquid S/L interface*) yakni komposisi dalam padatan C_s dan komposisi dalam cairan C_L yang disebut koefisien kesetimbangan segregasi k.

$$k = \frac{C_{\rm S}}{C_{\rm L}} \tag{2.4.1}$$

Kombinasi nilai k dan efek kinetic seperti difusi baik dalam padatan maupun cairan serta efek konveksi-agitasi akan sangat memperngaruhi komposisi akhir dalam padatan logam.

Gambar 2.4.1 Distribusi elemen-elemen terlarut (*solute*) tanpa adanya proses difusi dalam padatan logam^[1].

Profil struktur mikro yang terjadi selama proses solidifikasi dipengaruhi oleh adanya unsur paduan, difusi dan laju pendinginan dimana untuk logam murni Universitas Indonesia biasanya terbentuk mode solidifikasi planar, sedangkan pada logam paduan bisa terbentuk mode solidifikasi planar, cellular, columnar dendritic atau equiaxed dendritic.

Gambar 2.4.2 Mode solidifikasi; (a) planar, (b) Cellular, (c) Columna dendritic, (d) equiaxed dendritic; dan pengaruh laju pendinginan terhadap mode solidifikasi^[1].

Dalam proses solidifikasi kolam las-lasan, terjadi variasi mode solidifikasi karena faktor-faktor seperti dalam gambar 4.5.2.2

Gambar 2.4.3 Variasi laju pertumbuhan butir, gradient temperature dan mode solidifikasi^[1].

2.4.2. Distribusi elemen-elemen paduan pada proses solidifikasi

Dalam keadaan cair, komponen paduan baik yang berasal dari logam induk maupun logam pengisi melebur dalam kolam las. Komponen-komponen paduan ini dapat terdistribusi dalam kolam las-lasan karena efek termodinamika dan kinetika (gaya-gaya penggerak (*driving forces*), efek turbulensi, undercooling dan difusi).

2.4.3. Makrosegregasi pada alas-lasan

Proses konveksi massa cairan las-lasan yang baik menghasilkan pencampuran dan pengadukan cairan logam las-lasan secara sempurna sehingga akan mengurangi terjadinya makrosegregasi selama proses pembekuan. Pada pengelasan dissimilar, rasio dilusi sangat mempengaruhi terjadinya ketidakseragaman komposisi kimia cairan las-lasan dan menyebabkan segregasi selama proses pendinginan.

Gambar 2.4.4 Dilusi dan komposisi pada pengelasan dissimilar^[1].

Ketidakseragaman komposisi kimia dalam cairan las-lasan akan mempengaruhi struktur mikro, pengendapan maupun reaksi kimia sehingga memungkinkan akan menimbulkan beberapa permasalahan seperti keretakan karena hydrogen, korosi dan korosi retak tegang (SCC).

2.4.4. Makrosegregasi karena pengelasan dissimilar^[14,15]

Penyambungan dengan metode pengelasan dapat dilakukan untuk material logam induk yang berbeda dan dengan logam pengisi yang berbeda. Penggunaan logam pengisi yang berbeda dari logam induk pada umumnya dimaksudkan untuk mendapatkan sifat-sifat sambungan las yang lebih baik baik dari sisi sifat-sifat mekanik, kimia, fisik dan ketahanan korosi. Namun disisi lain, perbedaan material ini dapat menyebabkan makrosegregasi yang dapat menurunkan kualitas pengelasan. Biasanya makrosegregasi terjadi di daerah dekat fusion boundary. Ada beberapa mekanisme makrosegregasi yang diusulkan yakni : Mekanisme I untuk $T_{LW} < T_{LB}$ dan Mekanisme II untuk $T_{LW} > T_{LB}$ dimana T_{LW} adalah temperature liquidus untuk bulk weld metal, T_{LB} adalah temperature liquidus untuk base metal. Kedua mekanisme ini menimbulkan perbedaan bentuk dari makrosegregasi. Pada mekanisme I, terdapat gundukan daerah-daerah yang miskin campuran logam pengisi secara diskontinyu dan parallel sepanjang fusion boundary. Pada mekanisme II, daerah -daerah yang miskin campuran logam pengisi terjadi secara kontinyu sepanjang fusion boundary serta sebagian menerobos weld metal.

2.4.4.1. Makrosegregasi pada mekanisme I

Pada mekanisme I, temperature lebur logam induk lebih tinggi daripada temperature lebur logam pengisi sehingga menyebabkan cairan logam induk yang terbawa secara konveksi ke daerah cairan logam pengisi akan segera membeku sehingga tidak sempat bercampur dengan baik. Hal ini menyebabkan terjadinya makrosegragasi logam induk yang tidak tercampur atau tercampur tidak sempurna di sekitar *fusion line*.

Gambar 2.4.5 Makrosegregasi karena pendinginan yang lebih cepat pada cairan logam induk: diagram fase; (b) pembekuan yang cepat pada cairan logam induk dibawah TLB; (c) makrosegregasi bagian logam induk yang tidak tercampur sempurna

Gambar 2.4.6 Mekanisme I untuk makrosegregasi di dekat *fusion line*; (a) diagram phase; potongan longitudinal penampang sambungan las; (c) kondisi tanpa adanya konveksi; (d) penetrasi akibat terjadinya konveksi cairan logam induk.

2.4.4.2. Makrosegregasi pada mekanisme II

Pada mekanisme II, temperature lebur logam pengisi lebih tinggi dari temperature logam induk sehingga sebagian logam pengisi yang terbawa kedaerah logam induk akibat konveksi massa akan mengalami pendinginan cepat dan

membeku. Hal ini menyebabkan makrosegregasi akibat terjadinya pencampuran yang tidak sempurna di daerah sekitar *fusion line*

Gambar 2.4.7 Makrosegregasi karena pendinginan yang lebih cepat pada cairan logam pengisi; (a) diagram fase; (b) pembekuan yang cepat pada cairan logam pengisi dibawah T_{LW} ; (c) makrosegregasi bagian logam pengisi yang tidak tercampur sempurna

2.5. Korosi pada alas-lasan

2.5.1. Fenomena korosi sumuran

Korosi sumuran merupakan salah satu korosi local yang pada umumnya dimulai dengan pecahnya lapisan pasif pada permukaan logam. Pecah atau rusaknya lapisan pasif dapat disebabkan oleh faktor-faktor mekanik, fisik, metalurgi, kimia maupun elektrokimia. Secara elektrokimia, ada dua teori yang menjelaskan fenomena pecahnya lapisan pasif yaitu teori penyerapan ion klor melalui lapisan *monolayer* oksigen yang ada pada permukaan logam. Menurut teori ini, meskipun oksigen memiliki afinitas kimia lebih tinggi terhadap logam dibandingkan ion klor, namun dengan kehadiran ion klor akan menaikan beda

potensial lapisan pasif sehingga lapisan monolayer oksigen akan rusak dan digantikan oleh lapisan ion klor yang memicu terjadinya pelarutan logam secara anodic. Yang berikutnya adalah teori dengan pendekatan termodinamik yakni terdapat beda potensial kritis untuk memulai terjadinya pitting dan menjaga piting dapat terus berlangsung, dimana beda potensial yang terjadi tergantung dari konsentrasi ion klor.

Dengan pecahnya lapisan pasif, reaksi elektrokimia mulai terjadi dengan adanya sel-sel anodic di daerah pecahnya lapisan pasif dan sel katodik didaerah lapisan pasif. Rasio luasan daerah katodik dan anodic yang besar, kehadiran ion klor dalam sumuran dengan reaksi bersifat autokatalik dan potensial yang sangat rendah di ujung sumuran, menyebabkan pelarutan pada daerah anodic dapat berlangsung secara terus-menerus.

Gambar 2.5.1 Mekanisme terjadinya korosi sumuran^[20]

Gambar 2.5.2 Mekanisme pecahnya lapisan pasif dan pembentukan sumuran; (a) mekanisme penetrasi ion agresif; (b) pecahnya lapisan film pasif; (c) penyerapan ion agresif dan pelarutan ion ke dalam elektrolit^[20]

2.5.2. Korosi sumuran (pitting) pada las-lasan baja tahan karat

Proses pengelasan melibatkan proses pemanasan hingga temperature leleh dan proses solidifikasi dalam rentang waktu tertentu yang akan mempengaruhi sifat-sifat material tersebut diantaranya perubahan komposisi kimia, sifat-sifat fisik, mekanik maupun ketahanan korosi.

Pada pengelasan baja tahan karat khususnya yang tipe austenitic, diharapkan hasil pengelasan memiliki kandungan ferit (ferrite content) dalam rentang 3% ~ 20% untuk mencegah terjadinya retak panas (hot cracking). Kadar ferrite hasil pengelasan baja tahan karat dipengaruhi oleh parameter rasio Crea / Niea. Selain itu kadar ferrite dalam las-lasan dalam rentang 6% ~ 7% juga akan menurunkan resiko terhadap terjadinya korosi retak tegang intergranullar (intergranullar stress corrosion cracking)^[17]. Kadar ferrite yang terlalu tinggi pada hasil las-lasan akan memicu terbentuknya fase-fase sekunder yang salah-satunya adalah fase sigma^[18]. Kadar karbon juga sangat menentukan terbentuknya lapisan tipis serupa martensite (martensite-like layers) dan butiran bergerigi (saw-like grain) didaerah transisi didekat *fusion line*^[19]. Adanya perbedaan fase, inklusi, fase intermetallic dan perbedaan struktur mikro akan menyebabkan timbulnya sel-sel eletrokimia mikro-lokal dalam las-lasan sehingga memicu inisiasi terjadinya korosi galvanic dan korosi sumuran (*pitting*). Lingkungan yang agresif khususnya dengan kehadiran ion klor akan mempercepat dan mempermudah inisiasi terjadinya korosi sumuran pada las-lasan.

2.5.3. Korosi Galvanik pada las-lasan baja karbon dengan baja tahan karat

Setiap logam memiliki potensial korosi E_{corr} yang spesifik saat dicelupkan dalam larutan elektrolit. Saat dua material yang berbeda dihubungkan secara elektrik-konduktif dalam larutan yang elektrolit atau konduktif, akan timbul beda potensial yang merupakan *driving force* untuk terjadinya korosi dimana logam dengan potensial korosi E_{corr} yang lebih negative akan melepaskan elektron dan terjadi pelarutan secara anodik dengan reaksi korosi sebagai berikut :

$$M \to M^{n^+} + ne^- \tag{2.5.3.1}$$

Bagian logam yang mengalami reaksi ini disebut anoda sel galvanik

Logam yang lebih positif akan mendapatkan tambahan electron dari logam M (anoda) sehingga terjadi penurunan laju reaksi korosi :

$$N \to N^{m^+} + me^-$$
 (2.5.3.2)

Bagian logam yang mengalami reaksi ini disebut katoda sel galvanik

Laju korosi yang terjadi secara galvanic dapat dijelaskan dengan menggunakan diagram Evans berikut :

Gambar 2.5.3.2 Diagram Evans untuk gabungan dua logam yang mengalami korosi galvanik^[20]

Tampak bahwa laju korosi untuk logam dengan potensial korosi E_{corr} yang lebih aktif meningkat dan laju korosi logam memiliki potensial korosi E_{corr} yang lebih positif akan menurun setelah kedua logam tersebut saling kontak, jika dibandingkan dengan laju korosi individual masing-masing logam tersebut.

Pada umumnya luasan area bagian anoda dan katoda sel galvanik tidak selalu sama sehingga menyebabkan rapat arus korosi akan berbeda pula. Hukum kekekalan muatan menyatakan bahwa muatan yang dilepaskan pada anoda harus sama dengan muatan yang diterima pada katoda :

Gambar 2.5.3.3 Pengaruh rasio luasan area pada korosi galvanic^[20]

Urutan beda potensial secara elekrokimia disusun berdasarkan standard termodinamika data dikenal sebagai *galvanic series*, yang menunjukan rangking tingkat keaktifan material jika dihubungkan secara eletrokimia.

Berikut galvanic series untuk lingkungan air laut :

Gambar 2.5.3.4 Urutan potesial galvanic beberapa material dengan media air laut^[22]

Korosi galvanic hanya dapat terjadi jika terjadi kontak secara elektrik-konduktif antara material yang memiliki potensial korosi yang berbeda dalam media yang elektrolit-konduktif. Beberapa faktor yang mempengaruhi laju korosi galvanic diantaranya :

a) Potensial elektrode

Potensial electrode untuk tiap alloy berbeda-beda tergantung dari faktorfaktor temperature, kondisi permukaan dan kondisi elektrolit. Dua electrode yang memiliki beda potensial yang besar belum tentu akan memberikan laju korosi yang besar, demikian juga sebaliknya.

b) Efisiensi electrode /katode

Arus listrik yang mengalir diantara dua logam yang kontak akan diikuti dengan pergeseran potensial anoda kea rah yang lebih elektropositif dan katoda kea rah yang lebih elektro negative. Persegeran potensial ini disebut polarisasi. Tingkat polarisasi ini akan menentukan sejauh mana efektivitas suatu logam akan berperan sebagai katoda dalam system kopel dua logam yang berbeda.

c) Variabel potensial

Potensial dan polaritas logam secara individual dapat berubah tergantung dari kondisi lingkungannya misalnya dengan kehadiran ion-ion komplek, perubahan derajat keasaman (P^H) larutan, temperature, dan tingkat aerasi larutan. Hal ini berkaitan dengan tingkat kestabilan produk korosi yang terbentuk pada daerah anoda. Misalnya logam seng (Zn) biasanya bersifat anodic terhadap besi dalam larutan air normal pada temperature ruang, tetapi sebaliknya berubah menjadi bersifat katodik terhadap besi pada temperature diatas 60°C.

d) Elektrolit

Elektrolit sangat berperan dalam korosi galvanic khususnya komposisi elektrolit, derajat keasaman (P^H), dan konduktivitas listrik elektrolit tersebut. Pada umumnya konduktivitas suatu larutan akan naik dengan kehadiran ion-ion asam atau basa. Berikut konduktivitas listrik beberapa elektrolit :

Distilled water	0.5 - 2 μS/cm	
After storage	2 - 4 μS/cm	
Supply water	50 - 1,500 μS/cm	
Saturated sodium 250,000 µS/cm		
chloride solution		
Sulphuric acid	up to 8,000,000 µ.S/cm	
Molten salts 20,000 - 107 μS		

e) Rasio area katodik-anodik

Rasio area kotodik-anodik sangat mempengaruhi laju korosi karena hal ini berkaitan dengan control kelangsungan proses reaksi oksidasi –reduksi yang terjadi di masing-masing permukaan. Rasio area katodik-anodik yang besar akan meningkatkan laju korosi di anodic area karena proses reaksi reduksi di katoda dapat berlangsung secara terus menerus. Dalam aplikasi, penggunaan casing pompa dan valve yang terbuat dari carbon steel atau besi tuang dengan trim stainless steel atau high alloy menunjukan rasio area katodik-anodik yang kecil sehingga laju korosi dapat diminimalkan.

f) Aerasi dan laju aliran elektrolit

Laju korosi logam yang dicelupkan dalam larutan elektrolit berkaitan dengan proses reaksi reduksi oksigen dalam larutan tersebut. Semakin cepat proses reaksi tersebut berlangsung akan mempercepat proses korosi. Untuk itu diperlukan kontak yang lebih intensif antara molekul oksigen dengan permukaan logam yang sangat tergantung dari laju difusi dan konsentrasi oksigen serta konveksi larutan yang membawa oksigen dan produk korosi.

g) Komposisi dan kondisi metalurgi

Komposisi kimia dan kondisi metalurgi material yang dapat menciptakan sistem galvanik diantaranya

- perbedaan struktur mikro akibat beda komposisi kimia, heat treatment misal pada weld metal, HAZ yang bersifat lebih anodik, Austenitik SS lebih katodik terhadap ferritik dan martensitik SS
- perbedaan tegangan dalam misal residual stress akibat cold forming material akan bersifat lebih anodik
- h) Konsentrasi oksigen

Korosi galvanik dapat dipicu oleh perbedaan konsentrasi oksigen didalam elektrolit. Dalam hal ini, adanya produk korosi yang bersifat hygroscopis akan menyebabkan permukaan akan tetap basah dan kontak dengan elektrolit, namun konsentrasi oksigen di area tersebut terbatas tergantung dari porositas dan kemampuan oksigen untuk berdifusi kedalam produk korosi tersebut. Dengan demikian diarea tersebut akan bersifat lebih anodik

Berikut grafik hubungan rasio luasan area anodik-katodik dengan laju korosi^[1].

Gambar 2.5.3.5 Grafik laju korosi vs rasio luasan anode/katode untuk kopel baja karbon dan baja stainless dalam media air laut^[22]

Gambar 2.5.3.6 Grafik laju korosi vs jarak sambungan untuk kopel baja karbon dan baja stainless dalam media klorinasi air laut^[22]

BAB 3

METODOLOGI PENELITIAN

3.1. Diagram Alir Penelitian

51

Gambar 3.1.1 Diagram Alir Penelitian

Untuk persiapan sampel dilakukan di sebuah bengkel kerja (*workshop*) machining dan fabrikasi PT. Bajamukti Tirta Perkasa (BMTP) di daerah Tangerang Banten.

Berikut adalah keterangan detail dari langkah-langkah kegiatan yang tercantum dalam *Gambar 7.1 Diagram alir kegiatan penelitian* diatas :

3.1.1. Persiapan pembuatan specimen

3.1.1.1 Persiapan material

- a) Plate carbon steel A36 tebal 6, 8, 10, 12 mm ukuran 150 mm x 600 mm
- b) Plate stainless steel 304 tebal 6, 8, 10, 12 mm ukuran 150 mm x 600 mm
- c) Besi profil UNP 150x75x6 mm
- d) Kawat las ER-309L diameter 2.4 mm x 1000 mm
- e) Gas argon purity 99.99%

- f) Penetrant, Developer, cleaner
- g) Majun, lakban, selang, clamp
- h) Material lainnya yang dibutuhkan
- 3.1.1.2 Persiapan prosedur pengelasan
- a) Prosedur pembuatan sample sebagai panduan untuk persiapan material dan pengelasan
- b) Spesifikasi prosedure pengelasan (Welding Procedure Specification, WPS). Untuk pengelasan ini dibuatkan spesifikasi prosedur pengelasan dan dijadikan petunjuk bagi welder untuk pekerjaan persiapan sampel. Prosedur pengelasan yang digunakan dicantumkan lampiran
- c) Dokumen kualifikasi juru las antara lain sertifikat juru las, daftar pengalaman kerja.
- 3.1.1.3 Persiapan peralatan pendukung
- a) Mesin las dan perlengkapannya
- b) Alat-alat potong seperti gerinda, alat potong plasma, mesin bubut
- c) Alat-alat pengukuran seperti tang ampere, meteran, caliper, welding gage set, stopwatch
- d) Alat-alat untuk dokumentasi seperti alat-alat tulis, kamera
- e) Peralatan safety
- f) Peralatan pendukung lainnya
- 3.1.1.4 Persiapan juru las

Untuk persiapan pembuatan sampel, diperlukan beberapa tenaga terampil antara lain:

- a) Tenaga terampil dan berpengalaman untuk mengelas
- b) Tenaga terampil untuk pemotongan, gerinda, machining dan lain-lain. Untuk pekerjaan persiapan sampel ini, digunakan juru las, *fitter*, operator *machining* yang sudah dikenal dan berpengalaman

3.1.1.5 Pemotongan dan beveling

Pekerjaan pemotongan dan beveling dikerjakan oleh operator yang telah berpengalaman untuk machining di PT. BMTP tangerang. Dimensi pelat sampel dan bevel sambungan las dibuat sesuai dengan gambar berikut :

Gambar 3.1.1.2 Desain pelat sampel pengelasan (tampak atas)

Gambar 3.1.1.3 Desain pelat sampel pengelasan (tampak samping)

Gambar 3.1.1.4 Desain detail sambungan pengelasan

3.1.2. Proses pengelasan GTAW

3.1.2.1 Persiapan pengelasan sampel

a) Pembuatan frame dudukan untuk pengelasan sampel

Agar memudahkan penempatan sampel selama pengelasan maka diperlukan dudukan sampel yang kuat dan permanen. Persiapan untuk pembuatan frame dudukan pengelasan meliputi :
- Persiapan desain atau gambar kerja untuk frame pengelasan
- Fabrikasi frame untuk dudukan sampel pengelasan

Gambar 3.1.2.1 Desain frame dudukan sampel pengelasan (tampak 3D)

- 3.1.2.2 Pelaksanaan pengelasan sampel
- a) Persiapan mesin las dan perlengkapannya berikut installasinya. Pastikan semua komponen peralatan dan instalasinya dapat berfungsi dengan baik dan terukur
- b) Lakukan pengetesan parameter –parameter pengelasan dengan menggunakan material lain sebelum dilakukan pengelasan pada sampel yang sebenarnya
- c) Catat semua parameter-parameter pengelasan tersebut dan lakukan setting pada peralatan las. Hal ini juga dilakukan untuk memverifikasi parameter las dalam WPS yang dibuat
- d) Posisikan masing-masing plate sedemikian rupa untuk mengurangi efek deformasi selama pengelasan.
- e) Untuk menjaga agar gap pengelasan tetap dan deformasi diminimalkan, tahan kedua pelat sampel dengan metode tack-weld pada tiap ujung dan sisi kedua pelat.
- f) Pastikan daerah groove yang akan dilas benar-benar bersih, bebas dari oli, minyak, atau kotoran lainnya

- g) Pastikan kondisi kebersihan area pengelasan
- h) Pastikan kondisi kelembaban mendukung untuk pelaksanaan pengelasan. Jangan melakukan pengelasan jika saat hujan
- i) Pastikan pengelasan dilakukan dalam area yang terlindungi dari hembusan angin
- j) Pastikan jenis dan kondisi filler (electrode) yang akan digunakan telah sesuai dengan spesifikasi serta panjangnya cukup untuk menyelesaikan satu pass sampel
- Pastikan volume flowrate shielding gas dan backing gas berfungsi dengan baik
- 1) Lakukan pengelasan sesuai dengan prosedur pengelasan yang telah disetujui
- m) Selama pengelasan, jaga kecepatan pengelasan secara tetap, usahakan tidak terjadi start-stop sepanjang pengelasan tiap layer/pass
- n) Pengelasan untuk tiap layer / pass berikutnya dimulai jika temperatur layer/pass sebelumnya sudah mendekati temperature ruang (< 40oC)
- Pastikan kebersihan tiap-tiap layer / pass sebelum melakukan pengelasan berikutnya
- p) Pengelasan dilakukan oleh satu welder yang sama dan welder dalam keadaan sehat
- q) Tiap sampel harus selesai di las pada hari yang sama
- r) Pengelasan untuk posisi horizontal, posisi untuk stainless steel berada pada bagian atas
- s) Setelah selesai pengelasan, akan dilakukan pengecekan awal terhadap kemungkinan terjadinya open crack dengan liquid penetrant test
- Lakukan pencatatan parameter parameter las yang diperlukan untuk tiap posisi dan ketebalan pelat selama proses pengelasan berlangsung.

Parameter pengelasan							
Parameter	Sampel 1	Sampel 2	Sampel 3	Sampel 4	Note		
Posisi pengelasan							
Diameter filler							
Ampere (Amp)							
Voltage (Volt)	242						
Welding Speed							
(mm/min.)							
Shielding Gas (LPM)							
Backing Gas (LPM)			11				
untuk root pass							

Tabel 3.1.2.1 Tabel pencatatan parameter pengelasan

- Selama pengelasan, untuk tiap layer atau weld pass, heat input dijaga konstan.
- v) Setelah selesai pengelasan dan permukaan las-lasan telah mencapai temperature ambient, tutup hasil las-lasan dengan menggunakan plester dan tandai posisi pengelasan (F, H, V) dan ketebalan pelat dengan menggunakan spidol permanen.
- w) Simpan sampel pada tempat yang kering

3.1.3. Pengujian awal

Untuk memastikan tidak terjadi retak terbuka pada hasil las-lasan, dilakukan pengujian dye-penetrant, sedangkan untuk memastikan tidak terdapat retak dalam dan inklusi yang mempengaruhi sifat mekanis hasil pengelasan, maka dilakukan pengujian dengan radiografi

3.1.4. Pemotongan dan perlakuan untuk persiapan sampel uji

- 3.1.4.1 Pemotongan sampel untuk persiapan pengujian
- a) Tahap awal, buang pelat las-lasan ± 15 mm pada kedua sisi ujung las-lasan dan bersihkan sisa-sisa potongan pada sampel

- b) Lakukan marking sebelum dilakukan pemotongan. Ukuran pemotongan disesuaikan dengan kebutuhan sampel plus 1 ~ 3 mm pada masing-masing tepi untuk dimachining untuk menghilangkan sisa-sisa bekas pemotongan, efek panas selama pemotongan dan untuk pengaturan dimensi akhir sampel
- c) Untuk kebutuhan pengujian, sampel akan dipotong potong sesuai dengan keperluan pengujian. Dimensi sampel uji dipersiapkan mengikuti standard ASME IX, AWS D1.1, ASTM E1, E8, E384, G1, G48 dan standard terkait. Pemotongan direncanakan sebagai berikut :

 d) Sampel uji yang telah terpotong sesuai dengan keperluan pengujian, selanjutnya di bawa ke laboratorium untuk dilakukan treatment lebih lanjut sesuai dengan standard dan prosedur masing-masing pengujian.

3.2. Pengujian-pengujian

3.2.1. Pengujian komposisi kimia

3.2.1.1 Pemindaian dengan portable X-Ray Fluorescence Analyzer (XRF)

Pengujian dengan portable XRF analyzer dilakukan di workshop oleh personel yang telah berpengalaman dan bersertifikat untuk Positive Material Inspection (PMI)

- Jenis peralatan a)
- □ Merek : OXFORD INSTRUMENT X-MET3000 TX+ Type XTPS 2610

Gambar 3.2.1.1 Portable XRF analyzer

- Batasan pemindaian b)
- □ Tidak dapat memindai atom-atom dengan ukuran kecil < 0.13 Å seperti atom C, S, P, Si, Al, B karena memiliki level energy yang rendah
- \square Hasil pemindaian menunjukan komposisi global (bulk) dalam area $\pm 10 \text{ mm}^2$
- 3.2.1.2 Prosedur pemindaian
- Sampel uji dibersihkan dengan digerinda dan sikat kawat stainless. Pastikan a) titik pengujian bersih dan rata
- b) Durasi untuk pemindaian sesuai dengan standard peralatan yakni selama 7 detik
- Pemindaian dilakukan hanya pada sisi capping las-lasan karena untuk c) pemindaian membutuhkan area $\pm 10 \text{ mm}^2$

 d) Letakkan semua sampel las-lasan pada tempat yang rata. Berikut lokasi titik pengujian

Sampel las-lasan

Keterangan :

Titik A : pemindaian pada logam induk SS304

Titik B : pemindaian pada las-lasan

Titik C : pemindaian pada logam induk baja

Karbon

Gambar 3.2.1.2 Titik lokasi pemindaian dengan portable XRF analyzer

3.2.2. Pengujian dengan dye-penetrant

3.2.2.1 Standard acuan pengujian penetrant

ASMEN	· Nondostructivo Examination
ASIVIE V	. Nondestructive Examination
ASME IX	: Welding and Brazing Qualifications
ASNT RP SNT-TC-1A	: Nondestructive Testing Personnel Qualification and Certification
ASTM E 165	: Standard Test Method for Liquid Penetrant Examination

3.2.2.2 Material untuk tes dye penetrant

Material	Nama merek
Cairan cleaner/remover	NABAKEM MEGACHECK CLEANER
Cairan penetrant	NABAKEM MEGACHECK PENETRANT
Cairan developer	NABAKEM MEGACHECK DEVELOPER

3.2.2.3 Prosedur pengujian

- a) Permukaan sampel las-lasan yang akan diuji dibersihkan dengan menggunakan gerinda dan sikat kawat stainless. Selanjutnya pada area las-lasan dengan lebar ± 50 cm dibersihkan dengan menggunakan cleaner/remover serta dibiarkan ± 1 menit agar kering.
- b) Permukaan uji harus berada pada rentang suhu $10^{\circ}C 52^{\circ}C$
- c) Penyemprotan penetrant dilakukan secara merata pada bagian area uji dan dibiarkan selama ± 10 menit. Selanjutnya penetrant yang ada dipermukaan dibersihkan dengan kain bersih yang telah dibasahi dengan cleaner hingga benar-benar bersih.
- d) Penyemprotan developer dilakukan secara merata (dengan jarak penyemprotan ± 30 cm) dan dilakukan secara berlapis serta dibiarkan minimal selama 10 menit hingga indikasi muncul dan jelas
- e) Pengamatan indikasi dilakukan di tempat yang terang dan dipastikan tidak terdapat retak

Gambar 3.3.3.1 Area pengujian dye-penetrant

3.2.3. Pengujian dengan radiografi

3.2.3.1 Pelaksana pengujian

Pelaksanaan radiografi dilakukan oleh perusahaan professional yang bergerak di bidang inspeksi dan pengujian yakni PT. Citra Solusindo

3.2.3.2 Standard acuan pengujian radiografi

ASME V	: Nondestructive Examination
ASME VIII Div. 1	: Rules for Construction of Pressure Vessels

ASME IX	: Welding and Brazing Qualifications
ASNT RP SNT-TC-1A	: Nondestructive Testing Personnel Qualification and Certification

3.2.3.3 Prosedur pengujian

- a) Permukaan sampel yang akan diuji dibersihkan dari *spatter* sisa las-lasan, tonjolan-tonjolan serta kotoran lainnya dengan cara di gerinda dan dibersihkan dengan sikat kawat *stainless* untuk menghindari kesalahan interpretasi hasil foto radiografi
- b) Pelaksanaan foto radiografi selanjutnya dilakukan dengan mengacu pada langkah-langkah dan persyaratan yang tertuang dalam ASME Sec. V
- 3.2.3.4 Data-data pengujian radiografi

Radiasi	÷.	Ir-192	Sensitivitas	:	2%
Intensitas screen	:	Pb 0.125 mm	Currie	:	10 Ci
Densitas	÷	2-4	Paparan	÷	2 menit
IQI	:	ASTM			

3.2.4. Pengujian Sifat Mekanik

3.2.4.1 Pengujian tarik

Pengujian ini dilakukan untuk mendapatkan informasi perilaku mekanis material terhadap beban tarik khususnya kekuatan tarik yield dan maksimum, elongasi, modulus elastisitas dan kekuatan pada titik patah. Pengujian ini juga digunakan sebagai acuan kriteria penerimaan sambungan las-lasan yang diindikasikan oleh lokasi terjadinya titik patah pada specimen uji.

a) Standard acuan

ASME IX

: Welding and Brazing Qualifications

- b) Prosedur uji tarik
- Pengujian uji tarik dilakukan di laboratorium uji tarik departemen metalurgi UI
- □ Alat uji tarik yang digunakan adalah (merek),(kapasitas)

 Specimen uji disiapkan dengan memotong pelat hasil pengelasan, dibentuk dan di *machining* sesuai dengan ukuran dan pola seperti gambar x.xx dibawah ini.

Gambar 3.5.1.1 Standard specimen uji tarik

□ Spesimen uji di tempatkan pada alat uji tarik dan dilakukan pembebanan secara bertahap dengan kenaikan beban sesuai dengan standard peralatan.

3.2.4.2 Pengujian bending

Pengujian ini dimaksudkan untuk mengetahui keuletan dan cacat-cacat yang tidak nampak saat test radiografi.

a) Standard acuan

ASME IX	: Welding and Brazing Qualifications
ASTM E 190	: Standard Test Method for Guide Bend Test
	for Ductility of welds

b) Prosedur pengujian

Gambar 3.5.2.1 Standard specimen uji bending untuk permukaan (face) las-lasan

Gambar 3.5.2.2 Standard specimen uji bending untuk akar (root) las-lasan

Ketebalan pelat (mm)	Nilai y (mm)
3 – 10	Т
> 10	10

3.2.4.3 Pengujian kekerasan vicker's

Pengujian kekerasan vicker's dilakukan untuk mengetahui distribusi kekerasan penampang las-lasan. Dari distribusi kekerasan tersebut dapat Universitas Indonesia dievaluasi jenis struktur mikro yang terjadi, efek parameter pengelasan dan mengevaluasi kualitas dari las-lasan.

a) Standard acuan

ASTM E 384

: Standard Test Method for Microindentation Hardness of Materials

- b) Procedure pengujian
- Persiapan sampel untuk pengujian kekerasan penampang potongan las-lasan sama dengan persiapan untuk pengujian foto makro. Untuk itu, dalam pengujian ini digunakan sampel yang sama yakni setelah dilakukan pengujian foto makro.
- Penjejakan untuk pengujian kekerasan dilakukan sepanjang penampang potongan las-lasan seperti *mapping* berikut dengan spasi penjejakan ± 0.5 mm ~ 2 mm:

Gambar 3.5.3.1 Lokasi titik indentifikasi kekerasan vicker's

 Metode yang digunakan untuk pengujian ini adalah metode Vicker's dengan beban 200gr, indentasi awal selama 10 detik dan indentasi utama selama 30 detik. Dimensi penjejakan diukur dengan menggunakan mikroskop optik. Untuk mendapatkan nilai kekerasan, dapat dengan menggunakan table nilai

kekerasan atau dihitung secara manual dengan menggunakan persamaan berikut :

 $Hv = 1.854 P/d^2$ (3.5.3.1)

Dimana : p = beban yang digunakan, kg

d = panjang rata-rata diagonal penjejakan,

mm

3.2.5. Pengujian Metalografi

3.2.5.1 Pengamatan foto makro

Pengamatan foto makro bertujuan untuk melihat lebar daerah terpengaruh panas atau *HAZ*, besarnya dilusi dari las-lasan, banyaknya lapisan pengelasan (*weld-pass*) dan distribusi besaran butir las-lasan.

- a) Prosedur foto makro
- Persiapan sample untuk foto makro dilakukan dengan pemotongan sampel secara melintang terhadap hasil las-lasan yang akan diamati
- Perlakuan permukaan penampang las-lasan yang akan diamati dengan pengamplasan mulai dari amplas kasar 100#-grit hingga ampelas halus 1200#grit. Selanjutnya dilakukan proses *polishing* sehingga permukaan penampang las-lasan benar-benar halus dan bebas dari sisa goresan.
- Permukaan penampang las-lasan tadi diletakan dibawah mikroskop untuk di foto dengan perbesaran 7X untuk mendapatkan foto yang dapat memberikan informasi yang memadai.

3.2.5.2 Pengamatan foto mikro

Pengamatan foto mikro bertujuan untuk mendapatkan gambaran detail struktur mikro pada area tertentu pada penampang permukaan las-lasan. Area yang akan diamati adalah area logam induk, HAZ, *fusion line*, dan inti las-lasan

- a) Prosedur foto mikro
- Persiapan sample untuk foto mikro dilakukan dengan pemotongan sampel secara melintang terhadap hasil las-lasan yang akan diamati

- Perlakuan permukaan penampang las-lasan yang akan diamati dengan pengamplasan mulai dari amplas kasar 100#-grit hingga ampelas halus 1200#-grit. Selanjutnya dilakukan proses *polishing* sehingga permukaan penampang las-lasan benar-benar halus dan bebas dari sisa goresan.
- □ Untuk mendapatkan gambaran geradasi dari struktur mikro yang berbeda pad alas-lasan, pada bagian baja karbon dilakukan *etsa* dengan mengunakan larutan *NITAL* 2% selama 10 20 detik, kemudian dibilas dengan air mengalir dan dengan alcohol serta dikeringkan. Untuk bagian baja tahan karat, dilakukan *electrolytic etching* dengan cairan 10% oxalic acid tegangan 4-6 volt selama ± 10 detik, lalu dibilas dengan air mengalir dan alcohol serta dikeringkan.
- Selanjutnya permukaan penampang las-lasan tadi diletakan dibawah mikroskop untuk di foto dengan perbesaran 500X untuk mendapatkan foto yang dapat memberikan informasi yang memadai.

3.2.5.3 Pengamatan struktur mikro dengan *Scanning Electron Microscopy* (SEM)

Pengamatan dengan menggunakan SEM bertujuan untuk mengetahui detail fase yang terbentuk pada daerah HAZ, *fusion line*, inti las-lasan dan melihat kemungkinan terjadinya keretakan-keretakan mikro, korosi pitting mikro dan adanya makrosegregasi serta sensitisasi.

3.2.6. Pengujian Korosi

3.2.6.1 Pengujian korosi pitting

Pengujian korosi pitting dimaksudkan untuk mengetahui tingkat kerentanan terhadap serangan korosi pitting pada hasil las-lasan dissimilar baja karbon dengan baja tahan karat grade 304 yang divariasikan ketebalan pelat dan posisi pengelasannya.

- a) Prosedur pengujian korosi pitting
- □ Standard acuan pengujian korosi pitting

ASTM G 48 Standard Test Methods for Pitting and Crevice

	Corrosion Resistance of Stainless Steels and Related
	Alloys by Use of Ferric Chloride Solution
ASTM G 46	Standard Guide for Examination and Evaluation of
	Pitting Corrosion

- Persiapan pengujian b)
- Sampel uji berukuran 25 mm x 50 mm
- Sampel tersebut diampelas dan dipolishing sehingga benar-benar halus dan rata. Sampel yang telah siap disimpan dalam plastic kedap udara dengan silicagel bag
- □ Larutan untuk pengujian dibuat dengan mengacu pada persyaratan yang tertuang dalam ASTM G 48 metode A yakni larutan 6% FeCl₃ reagent grade. Dalam penelitian ini digunakan equivalen larutan 6% FeCl₃ yang dibuat dari FeCl₃ bubuk grade teknis dengan kemurnian 98.37% FeCl₃. Berikut hasil analisis komposisi Ferric Chloride (FeCl3) yang dilakukan di laboratorium PT. Amoco dengan metode ICP (Inductively Coupled Plasma) :

No.	Parameter	Unit	Result
1	FeCl ₃	%	98.37%
2	Zn	ppm	115
3	Mn	ppm	100
4	Mg	ppm	15
5	Cu	ppm	100
6	Ca	ppm	70

- Pelaksanaan uji korosi pitting c)
- □ Larutan 6% wt FeCl₃ dimasukan dalam gelas uji ukuran 1000 ml sebanyak 600 ml
- □ Sampel yang telah disiapkan dicelupkan kedalam larutan. Temperatur larutan dijaga tetap dalam temperature 25°C

- Durasi pencelupan adalah selama 72 jam. Setelah durasi tersebut terlampaui, sampel dikeluarkan dari gelas percobaan, dibilas dengan air dan aceton/methanol untuk menghilangkan produk korosi yang terbentuk.
- d) Evaluasi hasil uji korosi
- Secara visual, hasil uji korosi akan dibandingkan untuk tiap-tiap sampel dengan mengacu pada ASTM G 46 yakni tingkat kerapatan, ukuran dan kedalaman sumuran yang terbentuk
- Selanjutnya hasil uji akan di amati dengan foto makro dan SEM (*Scanning Electron Microscopy*) untuk mengobservasi lebih detail korosi pitting yang terjadi.

BAB 4

DATA PENELITIAN DAN PEMBAHASAN

4.1. Data-data penelitian

4.1.1. Data-data masukan panas pengelasan

Detail data-data masukan panas (*Heat Input*) untuk hasil pengelasan dengan variasi posisi pengelasan 1G, 2G, dan 3G serta variasi ketebalan 6 mm, 8 mm, 10 mm, 12 mm dapat dilihat dalam Lampiran 4.1.1 Data-data masukan panas pengelasan

Berikut adalah ringkasan data masukan panas pengelasan :

	2 H			Rata-rata				1.12
	Posisi Penge- Iasan	Tebal pelat (mm)	jumlah pass- weld	Arus (A)	Tegang- an (V)	kecepatan pengelasan (cm/s)	Masukan Panas/pa ss (kJ/cm)	Total Masukan panas (kJ/cm)
1		6	3	108.817	10.194	0.082	10.010	30.029
i.	16	8	4	134.979	10.546	0.083	12.343	49.371
	16	10	6	124.022	10.594	0.087	11.595	69.570
1		12	9	133.013	10.193	0.102	10.219	91.975
l	100 C	6	3	117.289	9.706	0.090	9.147	27.442
	20	8	6	122.408	9.978	0.111	8.220	49.320
	20	10	8	129.752	9.919	0.125	8.122	64.977
		12	12	131.708	10.126	0.133	7.556	90.668
	3G	6	2	122.425	9.700	0.055	15.707	31.414
		8	3	116.878	10.056	0.049	18.184	54.551
		10	5	126.600	10.010	0.064	14.717	73.583
		12	7	123.895	9.802	0.059	14.772	103.401

Tabel 4.1.1 Data masukan panas rata-rata

Catatan : Asumsi effisiensi adalah 70%

Gambar 4.1.1.1 Variasi masukan panas total terhadap variasi tebal pelat

Gambar 4.1.1.2 Variasi masukan panas/pass terhadap variasi tebal pelat

Gambar 4.1.1.3 Variasi kebutuhan arus rata-rata terhadap variasi tebal pelat

Hasil pengujian dengan dye-penetrant berupa hasil kualitatif untuk melihat adanya cacat-cacat signifikan pada permukaan

4.1.2.1 Dari pengujian kedua sisi permukaan las-lasan baik untuk sisi *capping* maupun sisi *root* mengindikasikan tidak terdapat retak terbuka

4.1.3. Data hasil uji radiografi

Dari hasil interpretasi, tidak ditemukan cacat-cacat yang signifikan pada semua hasil las-lasan. Detail laporan hasil pengujian dapat dilihat dalam Lampiran 4.1.3 Data hasil test radiografi

4.1.4. Data hasil pemindaian dengan protable XRF Analyzer

Detail hasil pemindaian dengan *XRF analyzer* untuk hasil pengelasan dengan variasi posisi pengelasan 1G, 2G, dan 3G serta variasi ketebalan 6 mm, 8 mm, 10 mm, 12 mm dapat dilihat dalam Lampiran 4.1.4 Data-data hasil pemindaian dengan XRF Analyzer

Gambar 4.1.4.1 Variasi kadar chrom dalam inti las (weld metal)

Gambar 4.1.4.2 Variasi kadar Nikel dalam inti las (weld metal)

Gambar 4.1.4.3 Variasi kadar besi dalam inti las (weld metal)

4.1.5. Data hasil uji tarik

4.1.5.1 Perhitungan hasil uji tarik

Untuk mendapatkan besarnya tegangan yang bekerja saat dilakukan uji tarik digunakan persamaan sebagai berikut :

$$\sigma_{\rm n} = P/A_{\rm o} \tag{4.1.5.1}$$

$$\varepsilon_{\rm n} = (L_{\rm t} - L_{\rm o})/L_{\rm o} = \Delta L/L_{\rm o} \tag{4.1.5.2}$$

Dimana :

- σ_n : Tegangan tarik nominal, Mpa
- $\epsilon_n \quad : \text{Regangan nominal, } mm/mm$
- P : Beban tarik, N
- A_o : Luasan penampang gage awal, mm²
- ΔL : Pertambahan panjang saat uji tarik, mm
- L_o : Panjang gage awal, mm

Dari perhitungan dengan menggunakan persamaan diatas diperoleh grafik Tegangan - Regangan untuk hasil pengelasan sebagai berikut :

(b) Hasil uji tarik untuk pelat tebal 8 mm

4.1.6. Data hasil uji bending

4.1.6.1 Perhitungan hasil pengujian bending

Pengujian bending dilakukan dengan metode 3 (tiga) titik yakni 2(dua) titik tumpu bebas dengan 1 (satu) pusat beban ditengah-tengah batang uji.

Gambar 4.1.6.1 Sketsa metode pengujian bending dengan 3 (tiga) titik

Untuk perhitungan besarnya tegangan yang terjadi pada bagian yang mengalami beban tarik digunakan persamaan sebagai berikut :

$$\sigma_f = \frac{3PL}{2bd^2}$$
(4.1.6.1)

$$\epsilon_f = \frac{6Dd}{L^2}$$
(4.1.6.2)

$$E_f = \frac{L^3m}{4bd^3}$$
(4.1.6.3)

Dimana :

 $\sigma_{\rm f}$ = Tegangan tarik pada serat terluar di titik tengah batang uji (Mpa)

 $\varepsilon_{\rm f}$ = Strain pada serat terluar di titik tengah batang uji (mm/mm)

Ef = Modulus bending (Mpa)

- P = Beban pada tengah batang uji (N)
- D = Defleksi maksimum di tengah-tengah batang uji (mm)
- L = Jarak antar span / support (mm)
- b = Lebar batang uji (mm)
- d = Tebal batang uji (mm)
- m = Kemiringan kurva dalam daerah elastis, P/D (N/mm)

Dari persamaan diatas, data-data hasil uji diplot dalam grafik *stress* –*strain* untuk melihat maksimum strain yang dapat dicapai sebelum terjadi retakan atau patah.

Berikut grafik *stress-strain* perbandingan hasil uji bending untuk posisi pengelasan 1G, 2G, 3G dengan variasi ketebalan 6 mm, 8 mm, 10 mm, 12 mm :

(b) Hasil uji face bending sambungan las tebal 8 mm untuk posisi pengelasan 1G,2G,3G

(c) Hasil uji face bending sambungan las tebal 10 mm untuk posisi pengelasan 1G,2G,3G

(d) Hasil uji face bending sambungan las tebal 12 mm untuk posisi pengelasan 1G,2G,3G Gambar 4.1.6.2 Kurva stress-strain untuk face weld bending

(a) Hasil uji root bending sambungan las tebal 6 mm untuk posisi pengelasan 1G,2G,3G

(b) Hasil uji root bending sambungan las tebal 8 mm untuk posisi pengelasan 1G,2G,3G

(c) Hasil uji root bending sambungan las tebal 10 mm untuk posisi pengelasan 1G,2G,3G

4.1.6.2 Data hasil uji bending selengkapnya dapat di lihat dalam Lampiran4.1.6 Data hasil uji bending

4.1.7. Data hasil uji kekerasan

4.1.7.1 Hasil pengujian

a) Distribusi kekerasan pada daerah tengah las-lasan

Kode	Carbon Steel				Þ	Stainless Steel			
Sampel	Base Metal	HAZ	FL CS	FL WM	Weld Metal	FL WM	FL SS	HAZ	Base Metal
1G 12	189.9	223.4	246.5	266.3	278.2	284.3	271.4	291.5	194.4
1G 10	153.3	187.5	208.2	217	247.5	258.8	268.3	277.4	254.4
1G 8	160.5	183.6	204.4	220.8	245.3	262.8	239.2	269.1	252.7
1G 6	158.5	170.3	208.3	210.3	239.1	243	253.3	278.5	226.9
2G 12	152.1	208.6	226.9	236.6	266.9	252.2	232.7	244.3	255.5
2G 10	152.1	234.6	243.6	268.6	282.6	296.6	274.3	250.3	237.5

Tabel 4.1.7.1 Nilai kekerasan sepanjang penampang las-lasan

2G 8	143	232.9	227.9	241.5	258.7	288.4	262.6	293.9	245.9
2G 6	175.4	205.1	223.2	242	270.5	220.2	242	289.7	230.7
3G 12	163.5	233.7	257.6	271.8	275.4	275.9	253.8	260.3	221.5
3G 10	134.2	249.3	247.4	261.3	277.8	281.7	284.1	280	214.6
3G 8	165.8	232.6	255.6	265.8	275.8	278.8	290.2	295.5	220.5
3G 6	180.4	220.5	245.6	256	272.6	254.7	244.8	288.9	250.2

(a) Distribusi kekerasan penampang las-lasan posisi 1G

(b) Distribusi kekerasan penampang las-lasan posisi 2G

(c) Distribusi kekerasan penampang las-lasan posisi 3G

Gambar 4.1.7.1 Grafik distribusi kekerasan untuk posisi pengelasan terhadap variasi ketebalan

(a) Distribusi kekerasan penampang las-lasan ketebalan 6 mm

(b) Distribusi kekerasan penampang las-lasan ketebalan 8 mm

(c) Distribusi kekerasan penampang las-lasan ketebalan 10 mm

(d) Distribusi kekerasan penampang las-lasan ketebalan 12 mm

Gambar 4.1.7.2 Grafik distribusi kekerasan untuk ketebalan las-lasan terhadap variasi posisi pengelasan

4.1.8. Data hasil foto-makro

Detail hasil foto makro lainnya untuk hasil pengelasan dengan variasi posisi pengelasan 1G, 2G, dan 3G serta variasi ketebalan 6 mm, 8 mm, 10 mm, 12 mm dapat dilihat dalam *Lampiran 4.1.8 Data Hasil Foto Makro*

Dari foto makro dihitung besarnya dilusi actual yang terjadi sebagai berikut :

```
% Dilusi = [(\text{Area SS} + \text{Area CS}) / \text{Area lasan total}] \times 100\% (4.1.8.1)
```

Hasil perhitungan diatas di tabulasikan kedalam bentuk tabel berikut :

Posisi pengelas an	Tebal (mm)	Area SS (mm2)	Area CS (mm2)	Area lasan total (mm2)	% Dilusi	
	6	10.6475	11.5874	60.3019	36.873	
1G	8	8.2081	6.6592	67.3845	22.063	
	10	9.8607	15.7974	99.9332	25.675	
	12	20.0936	19.8934	148.9862	26.839	
2G	6	14.0218	6.4153	51.8802	39.393	
	8	14.9240	11.9334	92.3460	29.083	
	10	16.2138	22.0494	121.0286	31.615	
	12	31.6178	26.4829	168.3869	34.504	
3G	6	11.0225	12.6407	66.4172	35.628	
	8	18.9174	17.3527	125.6716	28.861	
	10	33.6776	18.1799	153.1116	33.869	
1	12	21.0446	16.9127	155.0211	24.485	

Tabel 4.1.8.1 Dilusi actual hasil pengelasan dengan variasi posisi pengelasan dan tebal

Dilusi rata-rata terhadap variasi Ketebalan

Tebal	Rata-rata % dilusi				
6	37.298				
8	26.669				
10	30.386				
12	28.610				

4.1.9. Data hasil foto-mikro

Detail hasil foto mikro untuk hasil pengelasan dengan variasi posisi pengelasan 1G, 2G, dan 3G serta variasi ketebalan 6 mm, 8 mm, 10 mm, 12 mm dapat dilihat dalam *Lampiran 4.1.9 Data Hasil Foto Mikro*

4.1.10. Data hasil Scanning Electron Microscopy

Detail hasil pemindaian dengan Scanning Electron Microscopy (SEM) untuk hasil pengelasan dengan variasi posisi pengelasan 1G, 2G, dan 3G serta variasi ketebalan 6 mm, 8 mm, 10 mm, 12 mm dapat dilihat dalam Lampiran 4.1.10 Data Hasil Pemindaian SEM

87

Dari hasil pengujian dengan metode celup (Immersion test) dengan mengacu pada ASTM G48 Method A diperoleh hasil pencelupan selama 72 jam sebagai berikut :

4.1.12. Data hasil foto makro setelah test korosi

Hasil pencelupan sampel sambungan las-lasan dissimilar antara baja karbon dan baja stainless seri 304 selanjutnya dilakukan foto makro untuk melihat tingkat keparahan korosi yang terjadi dan melihat pitting yang terjadi pada bagian baja stainless. Berikut hasil foto makro sampel korosi setelah direndam selama 72 jam :

(d) Sampel 1G – 12 mm

(h) Sampel 2G – 12 mm

(l) Sampel 3G – 12 mm

Gambar 4.1.12 Hasil foto makro sampel las-lasan setelah uji korosi
4.2. Pembahasan

4.2.1. Masukan panas pengelasan

Dari data hasil penelitian pada pengelasan dissimilar dengan variasi ketebalan pelat 6 mm, 8mm, 10 mm, 12 mm dan variasi posisi pengelasan 1G, 2G, 3G diperoleh informasi sebagai berikut :

Paramotor		Tebal p	oelat (mm)	
Faiametei	6	8	10	12
Masukan panas total rata-rata, kJ/cm	29.628	51.081	69.377	95.348
Masukan panas /volume logam las, kJ/mm3	0.494	0.639	0.694	0.795
jumlah pass-weld rata-rata	2.67	4.33	6.33	9.33
kecepatan pengelasan rata-rata/pass weld, cm/s	0.076	0.081	0.092	0.098
Masukan arus listrik rata-rata, Amp.	116.18	124.76	126.79	129.54
Masukan tegangan listrik rata-rata, Volt	9.87	10.19	10.17	10.04
Dilusi rata-rata, %	37.30	26.67	30.39	28.61

Tabel 4.2.1.1 Perbandingan	hasil pengelasan dengan	ı variasi ketebalan pelat
----------------------------	-------------------------	---------------------------

Tabel 4.2.1.2 Perbandingan hasil pengelasan untuk ketebalan pelat 6 mm, 8 mm, 10 mm dan 12 mm dengan variasi posisi pengelasan

Posisi Pongolasan					
Parameter	i valari eliyelasali				
i didiliotoi	1G	2G	3G		
Masukan panas total rata-rata, kJ/cm	60.236	58.102	65.737		
Masukan panas /volume logam las, kJ/mm3	0.645	0.62	0.701		
jumlah pass-weld rata- rata/mm tebal lasan	0.5875	0.7625	0.448		
kecepatan pengelasan rata- rata/pass weld, cm/s	0.088	0.115	0.057		
Masukan arus listrik rata-rata, Amp.	125.2	125.3	122.8		
Masukan tegangan listrik rata- rata, Volt	10.4	9.9	9.9		
Dilusi rata-rata, %	27.86	33.65	30.71		

Panas pengelasan total yang dibutuhkan berbanding lurus dengan ketebalan pelat yang akan dilas untuk posisi pengelasan datar, horizontal dan Universitas Indonesia vertical. Masukan panas total maupun masukan panas per-pass pengelasan dalam kJ/cm yang dibutuhkan untuk pengelasan dissimilar dengan variasi ketebalan menunjukan bahwa pengelasan dengan posisi horizontal (2G) membutuhkan masukan panas rata-rata paling rendah dan dengan posisi pengelasan vertical (3G) membutuhkan rata-rata panas pengelasan paling besar. Perbedaan ini rata-rata sebesar 13%. Hal ini berkaitan dengan kecepatan pengelasan yang lebih tinggi dengan posisi 2G karena cairan kolam las lebih mudah tertahan oleh logam induk jika dibandingkan dengan pada posisi vertical. Perbedaan masukan panas ini sangat diperlukan dalam aplikasi khususnya dari sisi efisiensi atau ekonomis.

Pass-weld yang diperlukan tergantung dari ketebalan pelat dan posisi pengelasan. Dari tabel 4.2.1.1 nampak bahwa semakin tebal sambungan las, membutuhkan jumlah pass-weld yang lebih banyak. Demikian juga untuk pengelasan dengan posisi 2G menunjukan jumlah pass-weld yang paling banyak dibandingkan dengan pengelasan dengan posisi datar (1G) dan vertical (3G). Jumlah pass pengelasan untuk posisi 2G dibutuhkan lebih banyak, untuk mencegah cairan las terlalu banyak mengalir kearah pelat bagian bawah sehingga berpotensi menyebabkan cold-lap, incomplete fusion dan undercut. Untuk kecepatan pengelasan ini membutuhkan waktu sedemikian hingga terjadi pembekuan pada kolam las bagian bawah sebelum proses pencairan berikutnya untuk menghindari tidak terjadi bad-contour, concave, undercut dan incomplete fusion baik pada face maupun root las-lasan.

Kebutuhan arus rata-rata untuk pengelasan menunjukan tren naik terhadap ketebalan pelat yang akan dilas. Pelat yang lebih tebal memiliki luasan kontak dan sebaran untuk konduksi panas yang lebih besar sehingga dibutuhkan arus yang lebih besar pula untuk mencairkan logam diarea tersebut.

4.2.2. Hasil pemindaian dengan XRF analyzer

Dari variasi komposisi Nikel, krom dan besi dalam inti las (*weld metal*) hasil pemindaian dengan *portable XRF Analyzer* diperoleh informasi sebagai berikut :

Parameter Tebal pelat (mm)					
Farameter	6	8	10	12	Logam
XRF A	pengisi				
%wt Cr	18.89	20.48	20.22	20.29	23.9
%wt Ni	10.68	11.49	11.29	11.55	12.8
%wt Fe	66.34	64.21	64.69	64.48	60.93

Tabel 4.2.2.1 Perbandingan komposisi pada inti las-lasan terhadap ketebalan pelat

Tabel 4.2.2.2 Perbandingan komposisi pada inti las-lasan terhadap posisi pengelasan

Parameter					
Farameter	1G	2G	3G	Logam	
Pada weld	metal		(-)	pengisi	
%wt Cr	20.015	20.983	18.913	23.9	
%wt Ni	11.09	11.75	10.91	12.8	
%wt Fe	65.00	63.49	66.31	60.93	

Secara umum komposisi inti las berada dalam rentang komposisi diantara logam induk dan logam pengisi. Hal ini menunjukan bahwa telah terjadi dilusi dan pencampuran antara logam induk dan logam pengisi selama proses pengelasan. Menurut hasil penelitian Ya Jiang LI, Zeng da Zou, dan Bing Zhou [21], kadar krom (Cr) dan nikel (Ni) akan menurun dari inti lasan ke fusion line dan kadar Karbon (C) dan besi (Fe) akan meningkat dalam inti lasan. Hal ini juga terkait karena adanya difusi dari logam dengan unsur dengan paduan yang lebih tinggi ke yang rendah. Hasil EDAX pada daerah fusion line baja karbon dan baja tahan karat menunjukan kenaikan kadar karbon (C) dan besi (Fe) didaerah inti lasan (*weld metal*) dan sebaliknya ada penurunan karbon dan juga krom di sisi baja tahan karat.

0.9

KCn

0.6

0.3

0.0

3.75

Fe

Gambar 4.2.2.1 Distribusi elemen krom (Cr), karbon (C), dan Nikel (Ni) pada daerah fusion line

Dari grafik dalam *gambar 4.1.4.1* dan *gambar 4.1.4.2* juga tampak bahwa posisi pengelasan sangat mempengaruhi distribusi komposisi unsur paduan dalam inti lasan (*weld metal*). Posisi pengelasan horizontal (2G) memiliki komposisi yang paling mendekati dengan komposisi logam pengisi khususnya dengan kenaikan ketebalan pelat. Hal ini mengindikasikan bahwa posisi pengelasan horizontal (2G) memberikan efek pencampuran yang minimal dibandingan dengan posisi pengelasan vertikal (3G). Dari *tabel data lampiran 4.1.4* nampak bahwa komposisi *bulk weld metal* mengalami penurunan kategori dari logam pengisi SS309 menjadi bervariasi dari SS308, *dual grade* SS308/309, SS308/321 dan

SS309. Variasi ini dipengaruhi oleh faktor-faktor ketebalan pelat yang dilas, banyaknya *pass-weld*, dan posisi pengelasan yang mana akan mempengaruhi tingkat konveksi, agitasi dan difusi dalam kolam las-lasan.

4.2.3. Hasil pengujian tarik

Hasil uji tarik untuk semua las-lasan menunjukan beberapa hal berikut yang berkaitan dengan sifat-sifat mekanisnya antara lain :

Parameter	Tebal pelat (mm)						
Falailletei	6	8	10	12			
Uji Tarik							
Tegangan tarik maksimum, Mpa	341.67	352.33	340.00	356.33			
Tegangan luluh, Mpa	251.33	273.67	250.67	262.33			
Regangan maksimum, %	16.50	15.91	14.40	16.92			

Tabel 4.2.3.1 Nilai tegangan hasil uji tarik terhadap perubahan ketebalan pelat

Tabel 4.2.3.2 Nilai tegangan hasil uji tarik terhadap perubahan posisi pengelasan

	Posisi Pengelasan					
Parameter	1G	2G	3G			
Uji Tarik			1			
Lokasi titik putus	BM-CS	BM-CS	BM-CS			
Tegangan tarik maksimum, Mpa	348.75	347.75	346.25			
Tegangan luluh, Mpa	258.25	262.00	256.25			
Regangan maksimum, %	16.94	14.73	16.12			

Catatan : BM-CS : Base metal (logam induk) carbon steel

Secara qualitatif nampak bahwa hasil pengelasan menunjukan performa uji tarik yang baik yakni titik putus terjadi pada bagian logam induk baja karbon. Dari data awal kekuatan tarik baja karbon memiliki nilai yang sedikit lebih rendah daripada baja stainless SS 304. Dari kurva Tegangan-Regangan nampak bahwa % strain dan tegangan putus cenderung naik terhadap kenaikan ketebalan yakni masing-masing dari 14% ~ 17% strain dan tegangan maksimum dari 340 MPa ~ 356 MPa. Tegangan maksimum, tegangan luluh dan regangan yang ditunjukan pada hasil uji

tarik ini menunjukan sifat-sifat mekanik logam induk baja karbon. Jika dibandingkan dengan hasil uji bending, kekuatan tarik inti las jauh lebih tinggi

4.2.4. Hasil pengujian bending

Dari analisa hasil uji bending baik untuk sisi *face weld* maupun sisi *root weld*, menunjukan beberapa sifat-sifat mekanis antara lain :

Parameter	Posi	si Pengelas	an
Parameter	1G	2G	3G
Uji Bending (Face)			
Keretakan	Tidak ada	Tidak ada	Tidak ada
Modulus elastisitas rata-rata, Gpa	180.32	155.31	137.73
Regangan maksimum, %	14.88%	15.60%	15.80%
Tegangan maksimum, Mpa	683.85	744.04	808.26
Tingkat keuletan	baik	baik	baik
Uji Bending (Root)	1000		
Keretakan	Tidak ada	Tidak ada	Tidak ada
Modulus elastisitas rata-rata, Gpa	128.35	114.08	132.69
Regangan maksimum, %	14.43%	14.98%	14.68%
Tegangan maksimum, Mpa	745.29	785.19	711.41
Tingkat keuletan	baik	baik	baik

Tabel 4.2.4.1 perbandingan hasil uji bending terhadap posisi pengelasan

Tabel 4.2.4.2 Perbandingan hasil uji bending terhadap ketebalan pelat

Parameter	Tebal pelat (mm)				
Farameter	6 8		10	12	
Uji Bending (Face)		_			
Modulus elastisitas rata-rata, Gpa	159.65	151.62	179.68	140.19	
Regangan maksimum, %	15.47%	14.27%	16.80%	15.17%	
Tegangan maksimum, Mpa	619.58	680.69	793.84	887.42	
Uji Bending (Root)	10	210			
Modulus elastisitas rata-rata, Gpa	142.67	127.92	113.85	115.73	
Regangan maksimum, %	14.60%	16.30%	14.67%	13.20%	
Tegangan maksimum, Mpa	567.95	795.05	786.09	840.09	

Semua hasil pengelasan menunjukan keuletan yang sangat baik yakni tidak terjadi keretakan pada bagian serat terluar baik pada inti-las (*weldment*), *fusion line*, dan **Universitas Indonesia** *HAZ* dengan rentang strain sebesar 13% ~ 17%. Kenaikan ketebalan pelat yang dilas menunjukan nilai tegangan (*stress*) yang lebih besar. Dari kurva diatas juga nampak bahwa untuk *face-weld* bending, stress tertinggi yang ditunjukan oleh posisi pengelasan vertical (3G) dan stress terendah ditunjukan oleh posisi pengelasan datar (1G). Nilai tegangan yang lebih tinggi yang timbul pada permukaan las-lasan (*face weld*) untuk posisi 3G sejalan dengan masukan panas rata-rata yang lebih besar, laju pendinginan pada bagian permukaan las-lasan yang besar dan siklus termal yang minimal. Laju pendinginan memiliki korelasi dengan pertumbuhan butir yang akan mempengaruhi nilai tegangan sesuai dengan persamaan Hall-petch berikut :

$$\sigma_y = \sigma_0 + \frac{\kappa_y}{\sqrt{d}}$$

(4.2.4.2)

Dimana : σ : Tegangan d : ukuran butir

Nilai tegangan yang dicapai dari hasil uji bending sebagian besar melampaui nilai tegangan maksimum logam induk yakni lebih besar dari 550 Mpa. Kenaikan nilai tegangan lasan saat bending dipengaruhi oleh beberapa faktor yakni (1) adanya difusi karbon ke dalam lasan selama pengelasan sehingga menyebabkan perubahan struktur mikro dengan kehadiran kromium karbida dalam inti las. Hal ini ditunjukan dari hasil SEM-EDAX, foto mikro dan hasil uji kekerasan vicker's. Prediksi nilai tegangan pada lasan dapat diperoleh dari hubungan $\sigma = 3.45$ BHN (Mpa) dimana BHN = Brinnel Hardness Number dalam range BHN 200 – 350. (2) Adanya *strain harderning* akibat beban bending pada serat terluar las-lasan sesuai dengan persamaan $\sigma = K\epsilon^{n}$ dimana K : *strength coefficient* (K=1275 Mpa untuk SS 304) dan n : *strain harderning exponent* (n = 0.45 untuk SS304).

4.2.5. Hasil pengujian kekerasan penampang las-lasan

Dari hasil pengujian kekerasan dengan metode Vicker's sepanjang penampang las-lasan menunjukan bahwa :

Parameter	Posisi Pengelasan				
Falameter	1G	2G	3G		
Uji kekerasan Vicker's					
BM-CS	165.55	155.55	160.98		
HAZ-CS	191.20	220.30	234.03		
WM	252.53	269.68	275.40		
HAZ-SS	279.13	269.55	281.18		
BM-SS	232.11	242.41	226.71		

Tabel 4.2.5.1Rata-rata nilai kekerasan pada penampang las-lasan denganposisi pengelasan yang berbeda

Tabel 4.2.5.2Rata-rata nilai kekerasan pada penampang las-lasan denganketebalan pelat pengelasan yang berbeda

Paramatar	Tebal pelat (mm)					
Parameter	6	8	10	12		
Uji kekerasan Vicker's			<i></i>			
BM-CS	171.43	156.43	146.53	168.50		
HAZ-CS	198.63	216.37	223.80	221.90		
WM	260.73	259.93	269.30	273.50		
HAZ-SS	285.70	286.17	269.23	265.37		
BM-SS	235.93	239.70	235.50	223.80		

Nilai kekerasan di area HAZ dan inti las rata-rata lebih tinggi jika dibandingkan dengan kekerasan pada logam induk. Kenaikan kekerasan pada HAZ disebabkan oleh (1) perubahan struktur mikro pada area tersebut akibat adanya siklus termal selama pengelasan sehingga dapat terbentuk ukuran butir yang lebih halus. (2) kehadiran kromium karbida yang tersebar sepanjang batas butir. Hal ini dapat dilihat dari hasil foto mikro pada HAZ-SS. Sedangkan kenaikan kekerasan pada inti las disebabkan oleh adanya difusi atom karbon kedalam inti las selama proses pengelasan. Kenaikan kadar karbon di sekitar inti las dapat diverifikasi dari hasil EDAX. Secara umum kekerasan rata-rata tertinggi terjadi didaerah sekitar *fusion line* stainless steel. Dari hasil SEM-EDAX dapat ditunjukan pada *fusion line* terdapat karbon dengan konsentrasi yang lebih tinggi dari daerah disekitarnya. Dari beberapa literature menunjukan terbentuknya struktur martensite yang keras dan getas sepanjang *fusion line* tersebut.

Dari hasil evaluasi kekerasan terhadap fungsi posisi pengelasan nampak bahwa posisi vertical (3G) memberikan rata-rata nilai kekerasan sepanjang penampang las-lasan yang lebih tinggi daripada posisi horizontal (2G) dan datar (1G). Hal ini

sebanding dengan masukan panas yang diperlukan untuk posisi 3G yang rata-rata lebih besar daripada posisi 2G dan 1G. Masukan panas yang lebih besar akan menyebabkan laju pendinginan yang lambat sehingga akan memungkinkan adanya difusi atom karbon kedalam inti las-lasan dan membentuk krom karbida yang memiliki kekerasan yang relative tinggi. Demikian juga dari hasil pemindaian dengan XRF menunjukan untuk posisi 3G memberikan variasi komposisi kimia yang lebih mendekati logam induk yang mengindikasikan proses agitasi dan konveksi dalam kolam las-lasan yang lebih intensif. Jika ditinjau lebih jauh nampak bahwa kecenderungan (trend) variasi nilai kekerasan untuk daerah HAZ dan FL (Fusion line) baja karbon dengan posisi 1G dan 3G menunjukan kenaikan terhadap ketebalan pelat yang dilas, namun untuk posisi 2G, nilai distribusi kekerasan agak berfluktuasi. Hal ini disebabkan saat pengelasan, cairan dalam kolam las-lasan untuk posisi 2G mengalami pengadukan dan konveksi yang berfluktuasi kearah pelat baja karbon yang berada pada posisi bawah. Sedangkan untuk daerah *fusion line* dan HAZ baja stainless, distribusi nilai kekerasan agak berfluktuasi karena kehadiran distribusi karbida yang tidak merata.

Gambar 4.2.5.1 Kekerasan pada inti lasan terhadap variasi ketebalan pelat

Gambar 4.2.5.2 Kekerasan pada fusion line CS terhadap variasi ketebalan pelat

Gambar 4.2.5.3 Kekerasan pada HAZ CS terhadap variasi ketebalan pelat

102

Gambar 4.2.5.4 Kekerasan fusion line SS terhadap variasi ketebalan pelat

Gambar 4.2.5.5 Kekerasan HAZ SS terhadap variasi ketebalan pelat

4.2.6. Hasil pengamatan dengan foto makro

Dari hasil pengamatan foto makro, dihitung dilusi yang terjadi pada masing-masing hasil pengelasan. Dari hasil perhitungan dilusi yang terjadi dapat dianalisa bahwa dilusi paling tinggi terjadi pada pelat 6 mm. Hal ini sesuai dengan jumlah pass-weld yang paling sedikit.

Gambar 4.2.6.1 Jumlah pass-weld untuk variasi ketebalan dan posisi pengelasan

Dilusi cenderung menurun dengan kenaikan ketebalan pelat yang dilas. Semakin banyak pass-weld, akan semakin memperkecil dilusi, namun akan meningkatkan frekuensi siklus termal. Posisi pengelasan horizontal (2G) menunjukan nilai dilusi rata-rata yang paling tinggi. Secara actual pengelasan dengan posisi horizontal, arah ujung electrode cenderung mengarah pada salah-satu logam induk khususnya yang berada pada posisi bawah sehingga penetrasi busur las (*arc*) lebih intensif kearah logam induk. Jika dievaluasi dari diagram schaeffler-delong berikut, diperoleh posisi masing-masing titik % ferrite dan ferrite number (FN)

* X = 30 if N = 0/0.2; X = 22 if N = 0.21/0.25; X = 20 if N = 0.26/0.35; ** constant for Mn between 0 and 10%

Gambar 4.2.6.2 Estimasi % ferrite dengan Cr_{eq} dan Ni_{eq} pada schaeffler diagram

Tabel 4.2.6.1	Perhitungan	Cr _{eq}	dan	Nie	0
---------------	-------------	------------------	-----	-----	---

Delong Formula							
Cr eq = %Cr + %Mo + 1.5%Si + 0.5%Nb							
Nieq = %Ni + 30%C + 0.5% Mn + 30% N							
Dilution: 37.298%							
Elements	SS304	Dilusion (%)	SS309L	Dilusion (%)	CS	Dilusion(%)	WM
С	0.080	0.015	0.023	0.014	0.250	0.047	0.076
Cr	18.000	3.357	23.900	14.986	0.000	0.000	18.343
Ni	8.000	1.492	12.800	8.026	0.000	0.000	9.518
Мо	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Si	0.750	0.140	0.390	0.245	0.040	0.007	0.392

				2			FN12
Ferrite C	Ferrite Content Schaeffler /Delong =			r /Delong =	8.0%		
Ni _{eq}	10.400		13.490		7.500		11.797
$\mathrm{Cr}_{\mathrm{eq}}$	19.125		24.485		0.060		18.930
Cu	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Cu	0.000	0.000	0 000	0.000	0 000	0 000	0 000
Mn	2.000	0.373	1.930	1.210	0.000	0.000	1.583
Ν	0.100	0.019	0.000	0.000	0.000	0.000	0.019
Nb	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Tabel 4.2.6.2	Estimasi	rata-rata	% 1	ferrite	dalam	las-lasan

Tebal	Rata-rata % dilusi	Estimasi %ferrite
6	37.298	8.0%
8	26.669	8.0%
10	30.386	6.0%
12	28.610	7.0%

Dari evaluasi diagram diatas, dengan % ferrite dalam range 3% ~ 20% dapat mencegah terjadinya *Hot Cracking*. Dengan % ferrite dalam range tersebut, ferrite sebagai *primary solidification phase* yang memiliki kelarutan terhadap *impurities* dan *low melting temperature constituent* lebih besar sehingga mengurangi terjadinya *solute segregation* di batas butir yang rentan terhadap *intergranullar cracking*. Kandungan ferrite sedikit berkurang terhadap ketebalan pelat. Pada pelat yang lebih tebal membutuhkan *pass-weld* yang lebih banyak sehingga siklus termal akan terjadi lebih intensif yang menyebabkan sebagian δ -ferrite akan bertransformasi kembali menjadi austenite (*secondary austenite*).

4.2.7. Hasil pengamatan foto mikro

Pengamatan hasil foto mikro menunjukan bahwa ukuran butir pada HAZ baja karbon cenderung semakin halus dengan kenaikan ketebalan pelat yang dilas. Semakin tebal pelat yang akan dilas, semakin luas area dan arah sebaran konduksi panas sehingga laju pendinginan meningkat. Selain itu pelat yang lebih tebal membutuhkan masukan panas/pass-weld yang lebih rendah. Dengan demikian tidak cukup waktu untuk terjadinya pertumbuhan butir.

Gambar 4.2.7.1 Struktur mikro pada HAZ baja karbon. (a) HAZ-CS-1G 6 mm; (b) HAZ-CS-1G 8 mm; (c) HAZ-CS-1G 10 mm; (d) HAZ-CS-1G 12 mm

Perbedaan posisi pengelasan menghasilkan struktur yang berbeda dimana pada posisi datar (1G), struktur yang terbentuk dominan struktur *grain boundary ferrite* sedangkan pada posisi horizontal (2G) dan vertical (3G) sebagian muncul *widmanstaten ferrite* dan *upper bainite*.

(a)

(b)

Pada *fusion line* baja karbon dan baja stainless terbentuk martensite band yang sangat tipis membentang mengikuti *fusion line* tersebut. Lebar band yang sangat tipis tidak memungkinkan untuk pengecekan kekerasan, namun band tersebut dapat dilihat dari hasil pemindaian dengan SEM pada Gambar 4.2.8.1 Martensite band sepanjang fusion line FL-1G 8mm. Pada pelat 6 mm, martensite band ini tidak terlalu jelas, tetapi sangat jelas pada ketebalan 8 mm, 10 mm dan 12 mm. Laju pendinginan yang cepat dan kadar karbon yang tinggi di daerah fusion line berperan dalam pembentukan martensite.

Gambar 4.2.7.3 Martensite band pada fusion line. (a) Fusion line pada pelat 6 mm ; (b) Fusion line pada pelat 8 mm; (c) Fusion line pada pelat 10 mm; (d) Fusion line pada pelat 12 mm

Pada inti las dekat sisi baja stainless terbentuk sel-sel dendrite dengan ukuran yang nampak secara jelas berbeda dimana pada daerah dekat dengan pusat lasan, strukturnya lebih halus sedangkan di dekat fusion line cenderung lebih kasar. Pertumbuhan butir menjadi lebih kasar akibat adanya siklus termal dari *pass-weld* berikutnya. Spasi dan orientasi sel-sel dendrite tersebut dipengaruhi oleh kecepatan pengelasan, masukan panas dan laju pendinginan (G x R, dimana G : Gradient temperature, R : laju pertumbuhan butir).

Gambar 4.2.7.4 Struktur mikro inti las WM-2G-10 mm

Selama proses solidifikasi inti las, dapat terjadi transisi mode solidifikasi dari planar – cellular – dendritic –equiaxed dendritic tergantung dari rasio gradient temperature terhadap laju pertumbuhan butir (G/R ratio) yang mempengaruhi morfologi mikro struktur dan laju pendinginan (GxR) yang mempengaruhi ukuran mikro struktur. Dalam gambar berikut terjadi transisi mode solidifikasi pada inti las pelat 12 mm posisi 2G.

Gambar 4.2.7.5 Transisi struktur mikro dari planar ke cellular dan cellular ke dendritik

Sensitisasi terjadi pada daerah dekat fusion line dan HAZ baja stainless. Pola sensitisasi yang terjadi bervariasi dimana untuk posisi pengelasan datar (1G)

pola presipitasi karbida krom ($M_{23}C_6$) terbentuk bergerombol sepanjang batas butir, sedangkan pada posisi pengelasan horizontal (2G) dan vertical (3G), pola presipitasi karbida krom berupa untaian dengan bentuk tidak beraturan dan bercabang sepanjang batas butir. Hal ini berkaitan dengan laju pendinginan dimana dari perhitungan masukan panas diperoleh untuk posisi 1G memiliki nilai masukan panas diantara 2G dan 3G. Dengan demikian, dengan posisi 1G, laju pendinginan yang cukup memberikan waktu difusi karbon untuk membentuk karbida yang lebih masif, sedangkan pada posisi 2G dan 3G, difusi karbon tidak sempurna sehingga terbentuk karbida yang menyebar.

Gambar 4.2.7.6 Sensitisasi pada daerah dekat fusion line; (a) posisi 1G-12 mm; (b) posisi 2G-12 mm; (c) posisi 3G-12 mm

Pada inti las, pembentukan kromium karbida cukup masif terutama untuk ketebalan 12 mm dimana kromium karbida tersebar.

Gambar 4.2.7.7 Sensitisasi pada inti las; (a) 1G-6 mm; (b) posisi 1G-8 mm; (c) posisi 1G-10 mm; (d) 1G-12 mm

4.2.8. Hasil pengamatan dengan SEM

Dari hasil pemindaian dengan *Scanning Electron Microscopy (SEM)* pada beberapa titik menunjukan beberapa hal penting yakni adanya martensite band sepanjang fusion line pengelasan dissimilar dengan ketebalan kurang dari 5 μ m. Martensite band ini muncul pada pengelasan pelat dengan ketebalan > 8 mm. Karena struktur ini keras dan getas, maka sepanjang jalur ini mudah mengalami keretakan.

Gambar 4.2.8.1 Martensite band sepanjang fusion line FL-3G 8 mm

Gambar 4.2.8.2 Martensite band sepanjang fusion line FL-1G 8 mm

Pada fusion line antara baja karbon dan inti las baja stainless terjadi difusi atom karbon melintasi fusion line. Hal ini dapat dilihat dari hasil EDAX dan SEM yang menunjukan perbedaan prosentase karbon di daerah sekitar fusion line tersebut. Beberapa literature menyebutkan daerah yang kehilangan sebagian karbon sebagai Carbon Depleted Zone (CDZ) dan daerah yang kelebihan karbon Universitas Indonesia

Gambar 4.2.8.3 Hasil EDAX fusion line WM-CS 3G-12 mm

Pola struktur pada inti lasan untuk ketebalan lasan yang sama nampak mirip meskipun posisi pengelasan berbeda. Namun pola tersebut berbeda untuk ketebalan yang berbeda walaupun dengan posisi pengelasan yang sama

Gambar 4.2.8.4 Pola struktur inti lasan untuk ketebalan lasan 12 mm

Gambar 4.2.8.5 Pola struktur inti lasan untuk ketebalan berbeda

4.2.9. Evaluasi Hasil Test Korosi

Dari hasil perendaman sampel las-lasan selama 72 jam dengan temperature ruang dalam larutan *ferric chloride (FeCl₃)* sesuai dengan ASTM G48 Method A dapat diperoleh bahwa semua hasil pengujian menunjukan terjadinya korosi secara uniform pada bagian baja karbon hingga ke *fusion line* baja karbon dengan inti las-lasan. Proses yang terjadi adalah dominan korosi galvanik dalam lingkungan klorida. Beda potensial antara baja karbon dan baja stainless akan mempercepat terjadinya korosi dimana baja karbon bersifat anodic dan baja stainless bersifat katodik.

Secara visual dari foto makro tidak nampak adanya pitting pada bagian HAZ baja stainless dan inti las-lasan. Namun dari hasil SEM nampak bahwa terjadi mikro pitting yang cukup rapat dalam ukuran skala micron pada inti las dan HAZ baja stainless. Kerapatan (*Density*) pitting tertinggi terjadi pada posisi pengelasan datar (1G)

Gambar 4.2.9.1 Mikro-pitting pada inti lasan 1G-6 mm dan sensitisasi pada inti lasan 1G-6 mm

Gambar 4.2.9.2 Mikro-pitting pada HAZ-SS 1G-6 mm dan sensitisasi pada HAZ-SS 1G-6 mm

Gambar 4.2.9.3 Mikro-pitting pada inti las 2G-6 mm dan sensitisasi pada inti las 2G-6mm

Gambar 4.2.9.4 Mikro-pitting pada inti las 3G-6 mm dan sensitisasi pada inti las 3G-6mm

Dari foto mikro nampak bahwa konsentrasi kromium karbida didalam inti las cukup besar karena selama pengelasan terjadi difusi karbon dari daerah dengan konsentrasi karbon yang lebih tinggi yakni baja karbon ke daerah dengan konsentrasi karbon rendah yaitu inti las dan terjadi siklus termal yang memberi efek perlakuan panas. Hasil SEM-EDAX menunjukan kandungan karbon di daerah inti las didekat *fusion line* cukup tinggi dari komposisi awal logam pengisi. Karbon memiliki reaktivitas kimia yang tinggi terhadap krom yang dapat membentuk karbida MC, M₇C₃ atau M₂₃C₆. Akibatnya akan terdapat daerahdaerah dengan kandungan krom rendah (*Chromium-Depleted Zone*) yang mudah terserang korosi.

Kehadiran konsentrasi ion klor secara stoikiometri sebesar 0.1233 Molar dari pelarutan 6% wt FeCl₃ menyebabkan penurunan derajat keasaman (P^H) menjadi kira-kira 0.9. Keadaan yang sangat asam akan mempercepat pelarutan logam besi dan reaksi hidrolisis air (*auto-catalytic reaction*)

$$FeCl_3 + 3H_2O == Fe(OH)_3 \downarrow + 3H^+ + 3Cl^-$$
 (4.2.9.1)

Foto makro menunjukan reaksi korosi yang sangat masif pada sisi baja karbon. Beberapa tahapan korosi yang mungkin terjadi selama proses pencelupan sebagai berikut :

a) Saat awal pencelupan

Pada saat awal, untuk temperature 30° C tekanan 760 mmHg, didalam air terdapat kandungan oksigen \pm 7.5 mg/L sehingga terjadi reaksi:

Anoda	$Fe \leftrightarrow Fe^{2+} + 2e^{-}$	(4.2.9.2)
Katoda	$O_2 + 2 H_2O + 4e^- \leftrightarrow 4OH^-$	(4.2.9.3)
	$Fe^{3+} + e^- \leftrightarrow Fe^{2+}$	(4.2.9.4)

Reaksi lanjutan

$2Fe^{2+} + 4OH^- \rightarrow 2Fe(OH)_2$	(4.2.9.5)
$2Fe(OH)_2 + H_2O + 1/2O_2 \leftrightarrow 2Fe(OH)_3 \downarrow$	(4.2.9.6)
(endapan warna agak merah kehitaman)	

Gambar 4.2.9.5 Diagram evans untuk reaksi korosi galvanic selama peremdaman dalam laruta elektrolit

Selama perendaman, tidak dilakukan pengadukan sehingga secara bertahap kandungan oksigen didalam larutan akan berkurang. Difusi oksigen dari udara luar karena perbedaan konsentrasi oksigen di udara (O₂ ~20.9% Vol.) dengan permukaan larutan tergantung dari temperature dan tegangan permukaan sehingga difusi oksigen kedalam larutan hingga ke permukaan logam akan cukup lambat. Akibatnya reaksi berlangsung melambat tergantung dari ketersediaan dan difusivitas oksigen (*concentration polarization effect*). Reaksi reduksi pada katoda dalam larutan FeCl₃ tidak akan dibatasi oleh tingkat konsentrasi oksigen terlarut dengan adanya reduksi Fe³⁺ \rightarrow Fe²⁺ yang tetap mengontrol laju pelarutan Fe \rightarrow Fe²⁺ di area anoda. Dengan demikian laju korosi pada anoda tidak dibatasi oleh proses reduksi yang terjadi pada katoda.

Gambar 4.2.9.6 Bagian baja karbon yang terkorosi

b) Setelah beberapa lama direndam

Karena kopel dua material dengan beda potensial, menyebabkan terjadi aliran electron ke permukaan katoda akan mempolarisasi potensial permukaan katoda lebih jauh kearah potensial yang lebih negatif sehingga reaksi reduksi katodik akan berlangsung walaupun tanpa kehadiran oksigen. Aliran electron disupplai karena reaksi *auto-catalytic* di daerah anoda dengan adanya reaksi hidrolisis oleh kehadiran ion klorida. Selain itu ion klorida yang bersifat

Anoda	$\mathrm{Fe} \leftrightarrow \mathrm{Fe}^{2+} + 2\mathrm{e}^{-}$	(4.2.9.7)
	$FeCl_2 + 2H_2O \rightarrow Fe(OH)_2 + 2H^+ + 2Cl^-$	(4.2.9.8)
-	Besi(II) Hidroksida bersifat basa lemah	
100		<u>5-</u>
Katoda	$2H_2O + 2e^- \rightarrow H_2 + 2OH^-$	(4.2.9.9)
	$Fe^{3+} + e^- \rightarrow Fe^{2+}$	(4.2.9.10)

c) Setelah sampel diangkat dan dicuci

Dari hasil foto makro tampak produk korosi teroksidasi dengan udara luar sehingga tampak berwarna kekuningan, kecoklatan dan kehitaman yang biasanya terdiri dari α -, β -, γ -FeO(OH) dalam jumlah sedikit, Fe₃O₄ dan dominan Fe₂O₃.

Meskipun baja stainless dan inti las (*weld metal*) bersifat pasif, namun adanya perbedaan konsentrasi dan distribusi kromium dalam logam dan adanya karbida akan menciptakan sel-sel galvanic mikro pada logam. Seperti dijelaskan dalam tinjauan pustaka bahwa jarak antara anoda-katoda akan mempengaruhi laju korosi galvanik (*environment-distance effect*), maka meskipun terdapat bagian baja karbon yang menjadi semacam logam anoda korban (*anode sacrifice*), tidak akan menghentikan korosi pitting dalam sel-sel galvanic mikro karena hambatan transfer electron dalam jarak yang dekat akan jauh lebih kecil ($R = \rho L/A$ dimana hambatan R sebanding dengan panjang lintasan L yang ditempuh oleh elekron dari anoda menuju katoda) sehingga efesiensi anoda-katoda akan lebih besar. Inilah yang menyebabkan tetap terjadinya mikro pitting di logam dan inti las baja stainless meskipun secara global akan terproteksi secara katodik.

Dari hasil foto makro dan SEM tampak terjadinya makrosegregasi pada sisi *fusion line* baja karbon dimana terdapat penetrasi bagian cairan logam induk kedalam logam pengisi dan tidak tercampur sempurna dengan logam pengisi (*fillerdeficient peninsula*) sehingga bagian tersebut akan mudah terserang korosi. Makrosegregasi ini cukup jelas terjadi pada posisi pengelasan horizontal (2G). Laju pendingian yang lebih cepat serta temperatur solidifikasi yang lebih tinggi pada solidus-liquidus line (S/L line) menyebabkan cairan logam induk segera membeku.

Gambar 4.2.9.7 Makrosegregasi pada las-lasan dissimilar baja stainless 304 dengan baja karbon A36

BAB 5

KESIMPULAN

Berdasarkan hasil penelitian tentang pengaruh posisi pengelasan dan ketebalan terhadap struktur mikro dan ketahanan korosi pengelasan dissimilar antara baja karbon ASTM A36 dengan baja tahan karat ASTM A240 tipe 304, dapat ditarik beberapa kesimpulan antara lain :

- 5.1. Untuk pengelasan dissimilar antara baja karbon A36 dan baja tahan karat SS 304 membutuhkan rata-rata masukan panas antara 0.756 kJ/mm ~ 1.818 kJ/mm dimana posisi pengelasan 2G membutuhkan masukan panas paling rendah, sedangkan posisi pengelasan 3G membutukan masukan panas paling besar. Perbedaan masukan panas keduanya ± 13%. Demikian juga dengan kecepatan pengelasan yang lebih rendah dengan posisi pengelasan 3G. Jumlah *weld-pass* pengelasan dengan posisi 2G lebih banyak dibandingkan dengan posisi pengelasan lainnya. Selain itu ketebalan sambungan las-lasan juga mempengaruhi jumlah *weld-pass*, besar arus / pass dan masukan panas total yang dibutuhkan. Hal ini berkaitan dengan area dan arah vektor rambatan konduksi panas dalam logam yang biasanya dinyatakan sebagai faktor geometri sambungan las-lasan.
- 5.2. Posisi pengelasan sangat mempengaruhi komposisi akhir dalam inti laslasan dimana posisi pengelasan 2G memberikan efek pengadukan dan pencampuran yang minimum dan posisi 3G memberikan efek pengadukan yang maksimum. Peristiwa konveksi, agitasi dan difusi menyebabkan komposisi inti las berubah yakni dalam penelitian ini menggunakan SS309L sebagai logam pengisi mengalami perubahan menjadi SS 308/309 pada pelat yang tipis dan sebagian menjadi SS309 pada pelat yang tebal.
- 5.3. Uji mekanik sambungan las-lasan menunjukan bahwa pada hasil uji tarik, titik putus terjadi pada sisi baja karbon yang menunjukan performa yang baik terhadap hasil las-lasan. Nilai % elongasi dan tegangan patah sebanding dengan ketebalan sambungan las dalam rentang sifat-sifat mekanik baja karbon. Hasil tes bending baik untuk sisi *root* maupun *face weld*, semua hasil pengelasan menunjukan keuletan yang sangat baik yakni

tidak terjadi keretakan pada bagian serat terluar baik pada inti-las (weldment), fusion line, dan HAZ dengan rentang strain sebesar 13% ~ 17%. Nilai tegangan sambungan las melampaui nilai rata-rata tegangan logam induk dimana posisi pengelasan 3G menunjukan nilai tegangan tertinggi dan posisi 1G menunjukan tegangan terendah. Distribusi kekerasan pada penampang sambungan las secara umum menunjukan nilai kekerasan meningkat di daerah HAZ, fusion line dan inti las. Nilai kekerasan tertinggi terdapat pada fusion line baja stainless yakni HVN 296.9 (BHN 281). Pengelasan posisi vertikal (3G) memberikan rata-rata nilai kekerasan sepanjang penampang las-lasan yang lebih tinggi daripada posisi horizontal (2G) dan datar (1G). Pengaruh ketebalan sambungan las terhadap nilai kekerasan menunjukan bahwa pada HAZ dan *fusion line* sisi baja karbon nilai kekerasan cenderung menurun terhadap kenaikan ketebalan sambungan las dan sebaliknya pada sisi HAZ dan fusion line baja stainless, nilai kekerasan cenderung naik terhadap kenaikan ketebalan sambungan las.

5.4. Pengaruh posisi pengelasan dan ketebalan sambungan las terhadap prosentase dilusi diperoleh % dilusi tertinggi terjadi pada posisi pengelasan horizontal (2G) dan ketebalan pelat yang paling tipis yakni 6 mm. Rentang rata-rata dilusi adalah 26% ~ 38%. Prosentasi δ-ferrite ada dalam rentang $6\% \sim 8\%$ dan % δ -ferrite mengindikasikan kecenderungan menurun dengan kenaikan ketebalan sambungan las. Struktur mikro yang dihasilkan untuk semua posisi pengelasan menunjukan bahwa ukuran dan jenis struktur mikro pada daerah HAZ baja karbon dipengaruhi oleh ketebalan sambungan las-lasan yakni semakin tebal sambungan las, struktur yang terbentuk semakin halus dan jenis struktur yang muncul lebih bervariasi yakni dengan hadirnya struktur widmanstatten ferrite, butiran-butiran martensite dalam matrix ferrite dan bainite. Sedangkan struktur mikro pada daerah HAZ baja stainless mengindikasikan bahwa jumlah, bentuk dan distribusi karbida disepanjang batas butir austenite meningkat dengan kenaikan ketebalan sambungan las-lasan. Adanya proses difusi karbon dari material dengan paduan rendah ke material dengan paduan tinggi dan laju Universitas Indonesia pendinginan yang cepat pada daerah *fusion line* menyebabkan timbulnya martensite band dengan ketebalan < 5 mikron. Martensite band ini tidak terlalu tampak pada ketebalan sambungan las 6 mm tapi sangat jelas tampak pada sambungan las 8 mm, 10 mm dan 12 mm. Dari hasil uji mekanik, kehadiran martensite band ini tidak mempengaruhi sifat-sifat mekanis sambungan las.

- 5.5. Dari hasil test korosi menunjukan bahwa pada sambungan las dissimilar, korosi dominan terjadi secara galvanik. Bagian baja karbon hingga ke *fusion line* akan mengalami korosi merata (*Uniform corrosion*). Pada bagian inti las dan HAZ baja stainless menunjukan terjadinya mikro pitting. Distribusi dan jumlah mikro pitting yang cukup masif terjadi pada bagian inti las-lasan (*weldment*) dibandingkan dengan pada bagian HAZ baja stainless. Ukuran mikro pitting yang terjadi ada dalam rentang ukuran 0.5 ~ 1.0 mikron.
- 5.6. Makrosegregasi pada *fusion line* baja karbon terjadi dengan terjadinya penetrasi bagian cairan logam induk baja karbon kedalam inti las tanpa mengalami pencampuran dan jelas tampak dengan terjadinya korosi pada daerah *fusion line* tersebut. Makrosegregasi terjadi pada posisi pengelasan 1G, 2G, 3G dan semua ketebalan, namun sangat ekstrim nampak pada posisi pengelasan horizontal (2G).
DAFTAR REFERENSI

- [1] Sindo Kao, "Welding Metallurgy ", Second Edition, Wiley Interscience, John Wiley & Sons Inc., New Jersey 2003
- [2] Kenneth G. Budinski, " *Engineering Materials, Properties and Selection*", fifth edition, Prentice Hall International Inc., 1996
- [3] ASTM A 240 / A 240M 05, "Standard specification for Chromium and Chromium-Nickel Stainless Steel Plate, Sheet and Strip for Pressure Vessel and for General Applications"
- [4] ASTM A36/A36M-04, "Standard Specification for Carbon Structural Steel"
- [5] "Stainless Steel for Design Engineers", ASM International 2008
- [6] D. Gandy, " Carbon Steel Handbook", Electric Power Research Institute Inc. California – USA 2007
- [7] William D. Callister, Jr., "Fundamental of Material Sciences and Engineering, An Introduction", Fifth Edition, John Willey & Sons 2001
- [8] "Metals and Their Weldability", Welding Handbook, 7th edition
 Volume 4, AWS Miami Florida 1976
- [9] Robert Babobian, R.S. Treseder, *"NACE Corrosion Engineer's Reference Book"*, Third edition, NACE International, Houston 2002
- [10] W. E. Mayo, "Predicting IGSCC/IGA susceptibility of Ni-Cr-Fe alloys by modeling of grain boundary chromium depletion", Mater. Sci. Eng. A, 1997:232, p129-139
- [11] ASME Boiler and Pressure Vessel Code, "Qualification Standard for Welding and Brazing Procedures, Welders, Brazers, and Welding and Brazing Operators", The American Society of Mechanical Engineers, New York 2007
- [12] Regis Blondeau, " Metallurgy and Mechanics of Welding", John Willey & Sons, 2008
- [13] Md. Ibrahim Khan,"Welding Science and Technology", New Age International (P) Limited Publisher, New Delhi 2007

128

- [14] Y.K. Yang, S. Kou, "Weld-Bottom Macrosegregation Caused by Dissimilar Filler Metals", Welding Journal, Vol. 86, December 2007
- [15] Y.K. Yang, S. Kou, "Macrosegregation in Arc Welds Caused by Dissimilar Filler Metals", The welding Research, Proceedings of the 8th International Conference, 2009
- [16] N.S. Tsai, T. W. Eagar, " The size of sensitization zone in 304 stainless steel welds", J. Material for Energy System, America society for Metals, Vol. 6 No.1 June 1984
- [17] G. Sui, E.A. Charles, J. Congleton, "The effect of delta ferrite content on the stress corrosion cracking of austenitic stainless steels in a sulphate solution", Corrosion Science, Vol. 38, No. 5, pp. 687-703.
 1996
- [18] T.P.S. Gill, V. Shankar, M.G. Pujar and P. Rodriguez, " Effect of composition on the transformation of δ-ferrite to σ in type 316 stainless steel weld metals", Scripta M etallurgica Materialia, Vol. 32, No. 10, pp.1 595-1600,1995
- [19] C. Pang, Z. Zhang, "Morphologies of the transition region in dissimilar austenitic-ferritic dissimilar welds", Materials Characterization 36:5-10 (1996)
- [20] Geral S. Frankel, Dieter Landolt, "*Fundamentals of Corrosion*", Volume 4, John Wiley & Sons, 2006
- [21] Ya Jiang LI, Zeng da Zou, Bing Zhou, "Microstructure in the weld metal of austenitic pearlitic dissimilar steels and diffusion of element in the fusion zone", J. Mater. Sci. Technol. Vol. 17 No. 3, 2001
- [22] R. Francis, "Galvanic Corrosion of High Alloy Stainless Steels in Sea Water", British Corrosion Journal 1994 Vol. 29 No. 1
- [23] B.T. Lu, Z.K. Chen, J.L. Luo, B.M. Patchett, Z.H. Xu, "Pitting and stress corrosion cracking behavior in welded austenitic stainless steel', Electrochimica Acta 50 (2005) 1391–1403

- [24] Piedras Eduardo Robles, Bravo Ivan Mendoza, Zepeda Cuauhtemoc Maldonado, Hernandez Apolinar Albiter, "Dissimilar Welding of Superduplex Stainless Steel/HSLA Steel for Offshore Applications Joined by GTAW", Scientific Research, Engineering, 2010, 2, 520-528
- [25] J. Labanowski, "Mechanical Properties and Corrosion Resistance of Dissimilar Stainless Steel Weld", Material Science and Engineering, Vol. 28, Issue 1, January 2007, pg. 27-33
- [26] T. W. Nelson, J. C. Lippold, M. J. Mills, "Nature and Evolution of the Fusion Boundary in Ferritic-Austenitic Dissimilar Weld Metals, Part 1 — Nucleation and Growth", The Welding Journal, October 1999
- [27] S. Kaewkuekool, B. Amornsin, "A Study of Parameters Affecting to Mechanical Property of Dissimilar Welding between Stainless Steel (AISI 304) and Low Carbon Steel", Proceedings of the 1st WSEAS International Conference on MATERIALS SCIENCE MATERIALS'08)
- [28] Denny A. Jones, "*Principles and Prevention of Cossrosion*", Macmillan Publishing Company 1992
- [29] Jay Storer, John H. Haynes, "*The Haynes Welding Manual*", Haynes North America Inc. 1994
- [30] Mars G. Fontana, " *Corrosion Engineering*", Third edition, McGraw-Hill Book Company, 1987

LAMPIRAN 4.1.1

DATA-DATA MASUKAN PANAS PENGELASAN

Berikut data-data masukan panas untuk pengelasan dengan variasi posisi pengelasan dan ketebalan.

DATA MASUKAN PANAS PENGELASAN

Posisi Pengelasan Tebal Pelat : Datar (1G) : 6 mm

			Doniona			Magukan	Rata-rata				
Weld-pass	Arus (A)	Tegangan (V)	lasan (cm)	waktu (s)	kecepatan las (cm/s)	Panas (kJ/cm)	Arus (A)	Tegangan (V)	Ke <mark>cepatan</mark> pengelasan (cm/s)	Masukan panas/pass (kJ/cm)	
	103.5	10.6	10	196	0.0510	15.052					
1	100.1	10.9	10	186	0.0538	14.206		an and the			
	99.2	11	10	150	0.0667	11.458	101 117	10 517	0.064	11 0/3	
	101.7	10.6	10	157	0.0637	11.847	7	10.517	0.004	11.943	
	100.8	10.1	10	124	0.0806	8.837					
	101.4	9.9	10	146	0.0685	10.259					
	105.1	9.7	10	167	0.0599	11.918					
	105.4	10.1	10	156	0.0641	11.625					
	105.7	10.3	10	128	0.0781	9.755		9 767			
2	111.6	9.6	-10	96	0.1042	7.200	108 483		0.084	9 245	
2 –	112.6	9.4	10	93	0.1075	6.890	100.400	0.101	0.004	0.240	
	110.5	9.5	10	110	0.0909	8.083	3				

131

				1000		200000			
	115.7	10.4	10	128	0.0781	10.781			
	115.9	10.6	10	117	0.0855	10.062			
2	116.9	10.4	10	110	0.0909	9.361	116 950 10	0.007	0 040
3	116.5	10.2	10	92	0.1087	7.653	110.050 10	0.097	0.040
	119.9	10.1	10	89	0.1124	7.544			
	116.2	10.1	10	93	0.1075	7.640			
		- 7 -							
	108.817	10.194	·	12.989	0.082	10.010	Total	Masukan Panas	30.029

Dari data diatas diperoleh :

Untuk pengelasan posisi 1G - 6 mm			
Rata-rata arus	:	108.817	Amp
Rata-rata tegangan	:	10.194	Volt
Rata-rata durasi pengelasan	:	12.989	s/cm
Rata-rata kecepatan pengelasan	:	0.082	cm/s
Rata-rata masukan panas	101	10.010	kJ/cm
Total masukan panas	: >-	30.029	kJ/cm

DATA MASUKAN PANAS PENGELASAN

Posisi Pengelasan : Datar (1G) Tebal Pelat : 8 mm

			Deniona			Magukan		Rat	ta-rat <mark>a</mark>	
Weld-pass	Arus (A)	Tegangan (V)	lasan (cm)	waktu (s)	kecepatan las (cm/s)	Panas (kJ/cm)	Arus (A)	Tegangan (V)	Kecepatan pengelasan (cm/s)	Masukan panas/pass (kJ/cm)
	121	11	10	174	0.0575	16.212				
	121.3	10.8	10	164	0.0610	15.039				
1	122	10.9	10	160	0.0625	14.894	121 650	10 767	0.061	15 128
1	121.6	10.7	10	158	0.0633	14.390	121.000	10.707	0.001	13.120
	121.9	10.5	10	167	0.0599	14.963				
	122.1	- 10.7	10	167	0.0599	15.273				
	131.2	10.7	10	138	0.0725	13.561				
	131.7	11.2	10	107	0.0935	11.048		Sec. 2		
2	132.3	10.2	10	126	0.0794	11.902	132 167	10 350	0.084	11.468
2	132.8	9.9	10	121	0.0826	11.136	132.107	10.330		
	133.5	10	10	122	0.0820	11.401	- · · · · ·			
	131.5	10.1	10	105	0.0952	9.762	S 18			
	139.9	11.3	10	148	0.0676	16.378				
3	140.9	10.9	10	112	0.0893	12.041				
	141.4	10.5	10	102	0.0980	10.601	140.850	10.850	0.093	11.815
	141	10.7	10	102	0.0980	10.772				
	140.6	10.5	10	112	0.0893	11.574				

					1. Sec.	200007				
	141.3	11.2	10	86	0.1163	9.527				
	145.3	10.3	10	123	0.0813	12.886				
	144.6	9.9	10	97	0.1031	9.720				
4	144.9	10.6	10	101	0.0990	10.859	145 250	10 217	0.006	10.050
4	145	10.8	10	113	0.0885	12.387	145.250	10.217	0.090	10.959
	145.7	9.9	10	90	0.1111	9.087				
	146	9.8	10	108	0.0926	10.817				
								11		
	134.979	10.546		12.513	0.083	12.343		Total Masu	kan Panas	49.371

Dari data diatas diperoleh :

Rata-rata arus:134.979AmpRata-rata tegangan:10.546VoltRata-rata durasi pengelasan:12.513s/cmRata-rata kecepatan pengelasan:0.083cm/sRata-rata masukan panas:12.343kJ/cmTotal masukan panas:49.371kJ/cm	Untuk pengelasan posisi 1G - 8 mm			
Rata-rata tegangan:10.546VoltRata-rata durasi pengelasan:12.513s/cmRata-rata kecepatan pengelasan:0.083cm/sRata-rata masukan panas:12.343kJ/cmTotal masukan panas:49.371kJ/cm	Rata-rata arus	÷	134.979	Amp
Rata-rata durasi pengelasan:12.513s/cmRata-rata kecepatan pengelasan:0.083cm/sRata-rata masukan panas:12.343kJ/cmTotal masukan panas:49.371kJ/cm	Rata-rata tegangan	- t - 1	10.546	Volt
Rata-rata kecepatan pengelasan:0.083cm/sRata-rata masukan panas:12.343kJ/cmTotal masukan panas:49.371kJ/cm	Rata-rata durasi pengelasan	: 1	12.513	s/cm
Rata-rata masukan panas:12.343kJ/cmTotal masukan panas:49.371kJ/cm	Rata-rata kecepatan pengelasan	1.2	0.083	cm/s
Total masukan panas : 49.371 kJ/cm	Rata-rata masukan panas	:	12.343	kJ/cm
	Total masukan panas	:	49.371	kJ/cm

DATA MASUKAN PANAS PENGELASAN

Posisi Pengelasan : Datar (1G) Tebal Pelat : 10 mm

			Doniona			Magukan		Rat	ta-ra <mark>ta</mark>	
Weld-pass	Arus (A)	Tegangan (V)	lasan (cm)	lasan (cm) waktu (s) kecepatan las (cm/s) Pana (kJ/cr	Panas (kJ/cm)	Arus (A)	Tegangan (V)	Kecepatan pengelasan (cm/s)	Masukan panas/pass (kJ/cm)	
	113.7	11.2	10	244	0.0410	21.750		19 8		
	113.4	11.4	10	174	0.0575	15.746		1		
1	113.8	11.8	10	178	0.0562	16.732	113 233	11 167	0.057	15 9/7
I	112.6	10.9	10	154	0.0649	13.231	113.233	11.107	0.037	13.947
	113.1	10.9	10	166	0.0602	14.325		-		
	112.8	10.8	10	163	0.0613	13.900				
	113.6	10.4	10	127	0.0787	10.503				
	114	10.8	10	97	0.1031	8.360		Sec. 1		8.064
2	114.3	10.3	10	107	0.0935	8.818	114 867	10 333	0.107	
2	115.1	10	10	101	0.0990	8.138	114.007	10.000		
	115.9	10.1	10	80	0.1250	6.555	- · · · ·			
	116.3	10.4	10	71	0.1408	6.011				
	118.9	10.2	10	172	0.0581	14.602				
3	118.5	10.7	10	132	0.0758	11.716				
	118.8	10.5	10	112	0.0893	9.780	118.800	10.300	0.080	11.148
	118.6	10.1	10	127	0.0787	10.649				
	119.1	10.1	10	94	0.1064	7.915				

	124.022	10.594		12.650	0.087	11.595		Total Masuk	an Panas	69.570
	132.3	10.9	10	109	0.0917	11.003				
	131.9	10.8	10	90	0.1111	8.974	4. N			
0	132.6	-10.4	10	100	0.1000	9.653	102.000	10.000	0.107	0.044
6	132.8	10.6	10	82	0.1220	8.080	132 350	10,650	0 107	9 344
	132.7	10.5	10	88	0.1136	8.583		Second S.		
	131.8	10.7	10	99	0.1010	9.773				
	132.6	10.4	10	91	0.1099	8.784				
	132.1	10.3	10	78	0.1282	7.429				
5	132.6	11.2	10	91	0.1099	9.460	132.600	10.600	0.106	9.394
-	131.8	10.9	10	99	0.1010	9.956	100.000	40.000	0.400	0.004
	133.6	10.5	10	97	0.1031	9.525	-			
	132.9	10.3	10	117	0.0855	11.211		11 1		
	134.1	10.4	10	196	0.0510	19.134				
	133.6	10.7	10	138	0.0725	13.809				
4	134.9	10.7	10	158	0.0633	15.069	132.283	10.517	0.063	15.672
	134.4	10.0	10	130	0.0769	13.331		32		
	122.9	10.4	10	158	0.0520	15.686				
	118.9	10.2	10	144	0.0526	12.225				

136

Dari data diatas diperoleh :				
Untuk pengelasan posisi 1G - 10 mm	1.00			
Rata-rata arus	: /	124.022	Amp	
Rata-rata tegangan	:	10.594	Volt	
Rata-rata durasi pengelasan	:	12.650	s/cm	
Rata-rata kecepatan pengelasan	:	0.087	cm/s	
Rata-rata masukan panas	:	11.595	kJ/cm	
Total masukan panas	:	69.570	kJ/cm	

DATA MASUKAN PANAS PENGELASAN

Posisi Pengelasan Tebal Pelat : Datar (1G) : 12 mm

			Deniona			Magukan		Rat	a-rat <mark>a</mark>	
Weld-pass	Arus (A)	Tegangan (V)	lasan (cm)	waktu (s)	kecepatan las (cm/s)	Panas (kJ/cm)	Arus (A)	Tegangan (V)	Kecepatan pengelasan (cm/s)	Masukan panas/pass (kJ/cm)
	120.3	10.4	10	180	0.0556	15.764		ľ.		
4	120.6	10.1	10	174	0.0575	14.836				14.005
	121	10.4	10	182	0.0549	16.032	121 192	10.033	0.062	
	122	9.8	10	155	0.0645	12.972	121.105			
	121.8	9.6	10	172	0.0581	14.078				
	121.4	9.9	10	123	0.0813	10.348				
	124.8	9.8	10	122	0.0820	10.445				
2	123.8	9.7	10	92	0.1087	7.734	123.517	9.867	0.115	7.672
	123.4	10	10	95	0.1053	8.206				

					-					
	123.5	10.3	10	80	0.1250	7.123				
	122.9	9.9	10	80	0.1250	6.814				
	122.7	9.5	10	70	0.1429	5.712				
	123.9	10.7	10	127	0.0787	11.786				
	123.5	10.1	10	89	0.1124	7.771				
2	123.7	10.4	10	96	0.1042	8.645	124 200	10 150	0 110	9 211
5	124.1	9.7	10	95	0.1053	8.005	124.200	10.150	0.110	0.511
	124.6	10.1	10	88	0.1136	7.752		11 1		
	125.4	9.9	10	68	0.1471	5.909				
	130.5	10.3	10	141	0.0709	13.267				
	130.8	10.4	10	117	0.0855	11.141				
1	130.6	10	10	112	0.0893	10.239	120 282	0.083	0.002	10 128
4	130	9.8	10	101	0.0990	9.007	130.203	9.905	0.092	10.120
	129.9	9.7	10	110	0.0909	9.702				
	129.9	9.7	10	84	0.1190	7.409		Sec. 1		
	137.2	10.6	10	157	0.0637	15.983				
	136.5	10.3	10	109	0.0917	10.727				
5	137.8	10.9	10	89	0.1124	9.358	127 217	10 517	0 110	0.857
5	137.9	10.5	10	73	0.1370	7.399	137.317	10.317	0.110	9.007
	137.2	10.3	10	85	0.1176	8.408				
	137.3	10.5	10	72	0.1389	7.266				
	138.1	10.4	10	60	0.1667	6.032				
6	137.2	10.6	10	71	0.1408	7.228	137.400	10.433	0.164	6.210
	137.5	10.2	10	60	0.1667	5.891				
						2.5				

138

					1					
	137.9	10.5	10	70	0.1429	7.095				
	136.7	10.4	10	52	0.1923	5.175				
	137	10.5	10	58	0.1724	5.840				
	140.7	10.9	10	143	0.0699	15.352				
	139.9	11.2	10	136	0.0735	14.917				
7	139.6	11	10	140	0.0714	15.049	140 450	10 750	0.075	1 / 1 / 1
I	139	10.4	10	133	0.0752	13.459	140.450	10.750	0.075	14.141
	141.2	10.4	10	117	0.0855	12.027		1 V		
	142.3	10.6	10	133	0.0752	14.043				
	140.6	10.7	- 10	139	0.0719	14.638				
	140.8	10.3	10	132	0.0758	13.400		_		
Q	141.2	9.9	10	97	0.1031	9.492	1/1 122	10.067	0 102	10 202
0	141.6	9.7	10	83	0.1205	7.980	141.155	10.007	0.102	10.295
	141.3	10	10	81	0.1235	8.012				
	141.3	9.8	10	85	0.1176	8.239		Second 1		
	142.2	9.8	10	108	0.0926	10.535				
	141.6	9.6	10	114	0.0877	10.84 8	3			
0	141.3	9.8	10	106	0.0943	10.275	1/1 622	0.022	0.087	11 257
9	141.9	10.1	10	115	0.0870	11.537	141.035	9.933	0.087	11.557
	141.6	10.3	10	134	0.0746	13.681		100		
	141.2	10	10	114	0.0877	11.268				
						1				
	133.013	10.193	- B.	10.776	0.102	10.219		Total Masul	kan Panas	91.975

Dari data diatas diperoleh :				
Untuk pengelasan posisi 1G - 12 mm		11		
Rata-rata arus		133.013	Amp	
Rata-rata tegangan	S : 1	10.193	Volt	
Rata-rata durasi pengelasan	:	10.776	s/cm	
Rata-rata kecepatan pengelasan	:	0.102	cm/s	
Rata-rata masukan panas	:	10.219	kJ/cm	
Total masukan panas		91.975	kJ/cm	

DATA MASUKAN PANAS PENGELASAN

Posisi Pengelasan Tebal Pelat : Horizontal (2G) : 6 mm

			Deniana		• •	Maguiltan		Ra	ta-ra <mark>ta</mark>	
Weld-pass	Arus (A)	Tegangan (V)	lasan (cm)	waktu (s)	kecepatan las (cm/s)	Panas (kJ/cm)	Arus (A)	Tegangan (V)	Kecepatan pengelasan (cm/s)	Masukan panas/pass (kJ/cm)
	116.7	9.9	10	160	0.0625	12.940				
	116	9.8	10	146	0.0685	11.618	2. N			
1	116.3	9.6	10	132	0.0758	10.316	116 850	0.683	0.075	10 606
I	117	9.8	10	124	0.0806	9.952	110.050	9.005	0.075	10.090
	117.5	9.4	10	144	0.0694	11.133				
	117.6	9.6	10	104	0.0962	8.219				
2	117.4	9.8	10	120	0.0833	9.664	117 650	0.450	0.087	0 001
2	118.3	9.4	10	149	0.0671	11.598	117.030	9.430	0.007	9.094

				1012		200				
	117.2	9.3	10	109	0.0917	8.316				
	117.5	9.5	10	111	0.0901	8.673				
	116.9	9.3	10	121	0.0826	9.208				
	118.6	9.4	10	91	0.1099	7.102				
	118	10	10	98	0.1020	8.095				
	117.9	9.9	10	85	0.1176	6.945				
C	116.7	10.5	10	101	0.0990	8.663	117 267	0.092	0 1 0 9	7 650
3	116.8	10	10	106	0.0943	8.667	117.307	9.965	0.100	7.052
	117.7	9.8	10	84	0.1190	6.782				
	117.1	9.7	10	85	0.1176	6.758				
			-	_	B B	£	-			
	117.289	9.706	and the second s	11.500	0.090	9.147	-	Total Masuka	an Panas	27.442
Dari data diat	as diperole	h:			V V					

Rata-rata arus	:	117.289	Amp		
Rata-rata tegangan	:	9.706	Volt		
Rata-rata durasi pengelasan	:	11.500	s/cm		
Rata-rata kecepatan pengelasan	:	0.090	cm/s		
Rata-rata masukan panas	1000	9.147	kJ/cm	100 million	
Total masukan panas	48	27.442	kJ/cm		
		1999 - A	9 m B	Contractory of	
		1 - C		1.000	
		1000			

DATA MASUKAN PANAS PENGELASAN

Posisi Pengelasan	: Horizontal (2G)
Tebal Pelat	: 8 mm

			Doniona		N 8	Magukan		Ra	ta-ra <mark>ta</mark>	
Weld-pass	Arus (A)	Tegangan (V)	lasan (cm)	waktu (s)	kecepatan las (cm/s)	Panas (kJ/cm)	Arus (A)	Tegangan (V)	Kecepatan pengelasan (cm/s)	Masukan panas/pass (kJ/cm)
	110.5	9.7	10	162	0.0617	12.155				
	109.4	10	10	122	0.0820	9.343		1		
1	109.7	10.2	10	150	0.0667	11.749	111 800	10.067	0.067	12 022
I	109.3	9.9	10	213	0.0469	16.134	111.000	10.007	0.007	12.032
	116.3	10.4	10	131	0.0763	11.091				
	115.6	10.2	10	142	0.0704	11.720				
	120.9	10.1	10	101	0.0990	8.633				
	119.2	9.8	10	73	0.1370	5.969		and the second sec		
2	121.7	10	10	106	0.0943	9.030	122.000-	10.067	0 1 1 2	7 790
2	120.4	10.2	10	89	0.1124	7.651	122.000	10.007	0.113	7.700
	124.3	10.4	10	99	0.1010	8.959				
	125.5	9.9	10	74	0.1351	6.436				
	124.7	10	10	123	0.0813	10.737				
	125.1	10.1	10	96	0.1042	8.491				
3	124.4	10.2	10	108	0.0926	9.593	125.033	10.150	0.097	9.301
	124.9	10.2	10	112	0.0893	9.988	-			
	125.3	10.1	10	112	0.0893	9.922				

	122.408	9.978		9.706	0.111	8.220		Total Masul	kan Panas	49.320
	125.3	10.2	10	13	0.1200	7.008				
	124.2	10 2	10	δ0 70	0.1763	7.4/7				
	125	10.6	10	73	0.1370	6.771	. 3			
6	124.3	10.3	10	72	0.1389	6.453	124.567	10.250	0.128	7.02
	124.7	10.3	10	74	0.1351	6.653		and the		
	123.9	10.1	10	88	0.1136	7.709				
	125.8	9.8	10	61	0.1639	5.264				
	125.5	9.9	10	80	0.1250	6.958				
5	126.4	10.1	10	78	0.1282	6.970	124.330	10.005	0.130	0.00
5	124.1	9.8	10	85	0.1176	7.236	124 950	10.083	0.130	6 89
	123.5	10.6	10	80	0.1250	7.331				
	124.4	10.3	10	84	0.1190	7.534				
	126.1	9.3	10	74	0.1351	6.075				
	125.6	9	10	72	0.1389	5.697				
4	126.6	9.3	10	79	0.1266	6.511	126.100	9.250	0.131	6.30
	125.5	9.2	10	73	0.1370	5.900				
	126.5	9.4	10	71	0.1408	5.910				
	125.0	0.3	10	94	0.1064	7 729				

Dari data diatas diperoleh :				
Untuk pengelasan posisi 2G - 8 mm	1000			
Rata-rata arus	Z : //	122.408	Amp	
Rata-rata tegangan	: 1	9.978	Volt	
Rata-rata durasi pengelasan	: 1	9.706	s/cm	
Rata-rata kecepatan pengelasan	:	0.111	cm/s	
Rata-rata masukan panas	:	8.220	kJ/cm	
Total masukan panas	:	49.320	kJ/cm	

DATA MASUKAN PANAS PENGELASAN

Posisi Pengelasan Tebal Pelat : Horizontal (2G) : 10 mm

			Deniena			Maguikan		Ra	ta-ra ta	
Weld-pass	Arus (A)	Tegangan (V)	Panjang lasan (cm)	waktu (s)	kecepatan las (cm/s)	Panas (kJ/cm)	Arus (A)	Tegangan (V)	Kecepatan pengelasan (cm/s)	Masukan panas/pass (kJ/cm)
	111.3	9.6	10	253	0.0395	18.923				
	116.7	10	10	226	0.0442	18.462	2. N			
1	120.9	9.9	10	122	0.0820	10.222	110 500	0.050	0.050 0.069	13 656
I	120.7	9.7	10	186	0.0538	15.244	119.000	3.300	0.008	13.000
	121.5	10.1	10	108	0.0926	9.277				
	125.9	10.4	10	107	0.0935	9.807				
2	131.9	10.4	10	128	0.0781	12.291	130 850	10 300	0 113	8 786
2	129	10.5	10	99	0.1010	9.387	130.030	10.300	0.113	0.700

					1					
	130.9	10.3	10	95	0.1053	8.966				
	131.7	10.1	10	95	0.1053	8.846				
	130.9	10.2	10	76	0.1316	7.103				
	130.7	10.3	10	65	0.1538	6.125				
	130.8	9.8	10	107	0.0935	9.601				
	131.4	9.9	10	93	0.1075	8.469				
3	130.9	9.8	10	108	0.0926	9.698	121 217	0.750	0 101	8 068
5	131.9	10.1	10	109	0.0917	10.165	131.217	9.750	0.101	0.900
	129.9	9.5	10	91	0.1099	7.861				
	132.4	9.4	10	92	0.1087	8.015				
	132	10.1	10	104	0.0962	9.706				
	131.8	9.9	10	77	0.1299	7.033				
4	131.5	9.7	10	70	0.1429	6.250	121 717	0 700	0 154	6 258
4	132.4	9.6	10	67	0.1493	5.961	131.717	9.700	0.134	0.230
	131.4	9.4	10	51	0.1961	4.410		town of a		
	131.2	9.5	10	48	0.2083	4.188				
	132.7	10.1	10	84	0.1190	7.881				
	132.3	10	10	68	0.1471	6.297	1. N	-		
5	131.7	9.7	10	48	0.2083	4.292	121 882	0 722	0 169	5 542
5	133.1	9.8	10	61	0.1639	5.570	131.005	9.733	0.109	5.542
	131.2	9.6	10	55	0.1818	4.849				
	130.3	9.2	10	52	0.1923	4.363				
6	133.6	9.2	10	94	0.1064	8.088	131 300	0 700	0.156	5 906
U	132.5	9.4	10	69	0.1449	6.016	131.300	9.700	0.150	5.900

					1					
	130.2	10.2	10	65	0.1538	6.043				
	129.5	9.8	10	61	0.1639	5.419				
	130.4	9.6	10	58	0.1724	5.082				
	131.6	10	10	52	0.1923	4.790				
	130.8	10.1	10	79	0.1266	7.306				
	131.3	10.4	10	73	0.1370	6.978		1.22		
7	130.3	10.2	10	82	0.1220	7.629	120 582	10.067	0 122	7 004
/	129.3	9.8	10	89	0.1124	7.894	130.303	10.007	0.155	7.004
	130.2	10.1	10	68	0.1471	6.259		14		
	131.6	9.8	- 10	66	0.1515	5.958				
	132.5	10.4	10	93	0.1075	8.971				
	130.8	10.2	10	107	0.0935	9.993				
Q	129.6	-10.2	10	103	0.0971	9.531	120.067	10 150	0 106	9 957
0	130.9	10	10	97	0.1031	8.888	130.907	10.150	0.100	0.007
	131.2	10.1	10	85	0.1176	7.884		the second second		
	130.8	10	10	86	0.1163	7.874				
							1			
	129.752	9.919	10.00	9.108	0.125	8.122	<u> </u>	Total Masuka	an Panas	64.977

Dari data diatas diperoleh :

		10000	100	Second Second	
Dari data diatas diperoleh :		÷		2000 B.Y	•
Untuk pengelasan posisi 2G - 10				_	-
mm					
Rata-rata arus	and the second	129.752	Amp	Contraction of the local division of the loc	
Rata-rata tegangan		9.919	Volt		
Rata-rata durasi pengelasan		9.108	s/cm	Concerned in	
Rata-rata kecepatan pengelasan	:	0.125	cm/s		

Rata-rata masukan panas Total masukan panas 8.122 kJ/cm 64.977 kJ/cm

:

2

DATA MASUKAN PANAS PENGELASAN

Posisi Pengelasan Tebal Pelat : Horizontal (2G) : 12 mm

			Doniona			Macukan		Ra	ta-ra <mark>ta</mark>	
Weld-pass	Arus (A)	Tegangan (V)	lasan (cm)	waktu (s)	kecepatan las (cm/s)	Panas (kJ/cm)	Arus (A)	Tegangan (V)	Kecepatan pengelasan (cm/s)	Masukan panas/pass (kJ/cm)
	105.2	10.3	10	277	0.0361	21.010				
	116.3	9.5	10	165	0.0606	12.761				
1	115.5	9.2	10	148	0.0676	11.009	115 800	0.467	0.061	13 100
I	117.9	8.9	10	157	0.0637	11.532	115.000	9.407	0.001	13.190
	119.7	9.2	10	150	0.0667	11.563				
	120.2	9.7	10	138	0.0725	11.263				
	119.9	9.2	10	99	0.1010	7.644				
	121.6	8.9	10	117	0.0855	8.864	1 C C			
2	121.8	9	10	58	0.1724	4.451	121 600	0.022	0 1 2 4	6 1 2 1
2	122.2	9.2	10	78	0.1282	6.138	121.000	9.033	0.134	0.121
	121.8	9.1	10	62	0.1613	4.810				
	122.3	8.8	10	64	0.1563	4.822				
3	126.2	10	10	85	0.1176	7.509	126.633	9.917	0.167	5.572

					1. A	2007202				
	125.5	9.5	10	67	0.1493	5.592				
	127.3	10.1	10	76	0.1316	6.840				
	126.8	9.9	10	50	0.2000	4.394				
	126.5	9.7	10	61	0.1639	5.240				
	127.5	10.3	10	42	0.2381	3.861				
	130.6	10.2	10	108	0.0926	10.071	<u></u>			
	131.2	9.9	10	71	0.1408	6.455				
1	130.4	9.7	10	77	0.1299	6.818	120 882	0.867	0 1 2 0	7 107
4	130.9	9.7	10	72	0.1389	6.399	130.003	9.007	0.130	1.121
	130.7	10.1	10	73	0.1370	6.746				
	131.5	9.6	10	71	0.1408	6.274	-			
	126.5	10.8	10	89	0.1124	8.511				
	127.2	10.6	10	70	0.1429	6.607				
F	128.7	10.9	10	79	0.1266	7.758	107 467	10 750	0 1 2 5	7 751
5	128.1	10.8	10	83	0.1205	8.038	127.407	10.750	0.125	7.751
	126.7	10.6	10	92	0.1087	8.649				
	127.6	10.8	10	72	0.1389	6.946				
	129.6	9.6	10	101	0.0990	8.796	1. N			
	128.4	10.2	10	99	0.1010	9.076				
6	131.9	10.1	10	71	0.1408	6.621	121 222	10 222	0 1 2 2	7 826
0	132.4	10.4	10	76	0.1316	7.325	131.333	10.233	0.122	7.000
	133.1	10.6	10	72	0.1389	7.111				
	132.6	10.5	10	83	0.1205	8.089				
7	129.6	10.4	10	69	0.1449	6.510	130.683	10.433	0.146	6.568

					1. A	210721-021				
	131.5	10.6	10	63	0.1587	6.147				
	130.6	10.6	10	72	0.1389	6.977				
	130.4	10.3	10	77	0.1299	7.239				
	130.2	10.2	10	65	0.1538	6.043				
	131.8	10.5	10	67	0.1493	6.490				
	142.3	10	10	86	0.1163	8.566				
	142.7	10.1	10	78	0.1282	7.869		- 2 M		
Q	141.7	10.3	10	86	0.1163	8.786	142 350	10 193	0 1 2 0	8 /01
0	143.3	10.1	10	79	0.1266	8.004	142.330	10.105	0.120	0.491
	141.9	10.2	10	86	0.1163	8.713				
	142.2	10.4	10	87	0.1149	9.006				
	139.9	10.9	10	71	0.1408	7.579				
	141.2	10.9	10	68	0.1471	7.326				
0	140.2	10.7	10	74	0.1351	7.771	1/1 117	10 717	0 1 4 5	7 225
9	140.7	10.9	10	75	0.1333	8.052	141.117	10.7.17	0.145	7.525
	141.4	10.5	10	64	0.1563	6.651				
	143.3	10.4	10	63	0.1587	6.572				
	143.2	10.2	10	96	0.1042	9.816				
	143.9	10.2	10	66	0.1515	6.781	1.48			
10	144.3	10.3	10	78	0.1282	8.115	1/3 850	10.267	0 135	7 787
10	143.7	10.2	10	71	0.1408	7.285	140.000	10.207	0.155	1.101
	144.6	10.5	10	74	0.1351	7.865				
	143.4	10.2	10	67	0.1493	6.860				
11	141.9	10.3	10	76	0.1316	7.776	143.033	10.300	0.143	7.262
					· ·	1.5				

1									
	142.6	10.4	10	73	0.1370	7.578			
	142.9	10.2	10	73	0.1370	7.448			
	143.8	10.6	10	61	0.1639	6.509			
	143.3	10	10	74	0.1351	7.423			
	143.7	10.3	10	66	0.1515	6.838			
	125.3	9.9	10	61	0.1639	5.297			
	126.1	10	10	56	0.1786	4.943			
12	125.7	10.5	10	59	0.1695	5.451	125 750 10 350	0 163	5 637
12	125.5	10.6	10	67	0.1493	6.239	123.730 10.330	0.100	5.007
	125.9	10.7	- 10	58	0.1724	5.469			
	126	10.4	10	70	0.1429	6.421			
					1 1 /	· · · · · ·			
	131.708	10.126		8.235	0.133	7.556	Total Mas	ukan Panas	90.668
Dari data diat Untuk pengela	t as diperolel asan posisi 2	n : G - 12			Т <u>и</u> і				

DATA MASUKAN PANAS PENGELASAN

Posisi Pengelasan	: Vertikal (3G)
Tebal Pelat	: 6 mm

			Panjang			Masukan		Rat	ta-ra <mark>ta</mark>	
Weld-pass	Arus (A)	Tegangan (V)	lasan (cm)	waktu (s)	kecepatan las (cm/s)	Panas (kJ/cm)	Arus (A)	Tegangan (V)	Kecepatan pengelasan (cm/s)	Masukan panas/pass (kJ/cm)
	115.9	10.2	10	130	0.0769	10.758		\mathcal{P}		
	116.9	9.8	10	266	0.0376	21.331				
1	116.6	9.6	10	240	0.0417	18.805	117.067	0.833	0.054	15 073
I	117.6	9.8	10	217	0.0461	17.506	117.007	9.000	0.034	15.975
	118.4	9.4	10	142	0.0704	11.063		Second 1		
	117	10.2	10	196	0.0510	16.373				
	127.1	10.5	10	201	0.0498	18.777				
	126.9	9.8	10	203	0.0493	17.672				
2	127.7	9.6	10	181	0.0552	15.532	107 792	0.567	0.056	15 111
2	127.5	9.3	10	160	0.0625	13.280	127.705	9.007	0.050	13.441
	128.6	9.2	10	161	0.0621	13.334				
	128.9	9	10	173	0.0578	14.049				
		1					and the second s			
	122.425	9.700		189.167	0.055	15.707		Total Masu	ıkan Panas	31.414
				~	0					

Universitas Indonesia

151

Dari data diatas diperoleh :

22.425	Amp
9.700	Volt
89.167	s/cm
0.055	cm/s
15.707	kJ/cm
31.414	kJ/cm
	22.425 9.700 89.167 0.055 15.707 31.414

DATA MASUKAN PANAS PENGELASAN

Posisi Pengelasan Tebal Pelat

: Vertikal (3G) : 8 mm

			Deniona		1 - L - L - L	Maguiltan		Rat	ta-ra <mark>ta</mark>	
Weld-pass	Arus (A)	Tegangan (V)	lasan (cm)	waktu (s)	kecepatan las (cm/s)	Panas (kJ/cm)	Arus (A)	Tegangan (V)	Kecepatan pengelasan (cm/s)	Masukan panas/pass (kJ/cm)
	107.8	9.8	10	378	0.0265	27.953				
	106.9	9.9	10	346	0.0289	25.632				
1	107.4	9.6	10	263	0.0380	18.981	107 767	0 782	0.036	21 520
I	107.7	9.7	10	313	0.0319	22.889	107.707	9.705	0.030	21.525
	108.1	9.9	10	255	0.0392	19.103				
	108.7	9.8	10	196	0.0510	14.615				
2	116.2	10.1	10	135	0.0741	11.091	116 450	10 117	0.068	12 112
2	116.6	10.4	10	144	0.0694	12.223	110.430	10.117	0.008	12.112

	115.8	10.2	10	160	0.0625	13.229			1	
Γ	444.0									
	116.9	9.5	10	142	0.0704	11.039				
	116.5	10.3	10	140	0.0714	11.760				
	116.7	10.2	10	160	0.0625	13.332				
	125.5	10.6	10	246	0.0407	22.908				
	125.6	10.3	10	244	0.0410	22.096				
2	126.6	10.4	10	243	0.0412	22.396	106 417	10.267	0.044	20.010
3	126.8	10.2	10	243	0.0412	22.000	120.417	10.207	0.044	20.910
	126.6	10.3	10	216	0.0463	19.716		1		
	127.4	9.8	- 10	187	0.0535	16.343				
			-		N S	1	-			
	116.878	10.056	Carry P	22.283	0.049	18.184		Total Masu	kan Panas	54.551

entan pengenaean peere ee		and the second se				1. State 1.
mm						
Rata-rata arus	. :	116.878	Amp	1.11		
Rata-rata tegangan	· · · ·	10.056	Volt	W		100
Rata-rata durasi pengelasan	de la color	22.283	s/cm		. Constant	- A.
Rata-rata kecepatan pengelasan		0.049	cm/s			
Rata-rata masukan panas	11 A A	18.184	kJ/cm		1	
Total masukan panas	-	54.551	kJ/cm	-		
						S
				W.		
		1.5.				

DATA MASUKAN PANAS PENGELASAN ASAN

Posisi Pengelasan	: Vertikal (3G)
Tebal Pelat	: 10 mm

			Doniona		N	Macukan		Rata-rata				
Weld-pass	Arus (A)	Tegangan (V)	lasan (cm)	waktu (s)	kecepatan las (cm/s)	Panas (kJ/cm)	Arus (A)	Tegangan (V)	Kecepatan pengelasan (cm/s)	Masukan panas/pass (kJ/cm)		
	106.6	9.6	10	272	0.0368	19.485		e 1				
	105.7	10.6	10	246	0.0407	19.294						
1	104.9	10.9	10	226	0.0442	18.089	111 000	10 200	0.042	10 964		
I	114.4	11	10	236	0.0424	20.789	111.000	10.300	0.043	10.004		
-	116.8	10.3	10	228	0.0439	19.201		and the				
	117.6	9.4	10	211	0.0474	16.327						
	122.5	10.2	10	203	0.0493	17.755		A	A	11.513		
	122.9	9.8	10	159	0.0629	13.405	126 600	and the				
2	127.8	9.4	10	112	0.0893	9.418		9.567	0.078			
2	128.3	9.6	10	119	0.0840	10.260	120.000					
	128.5	9.4	10	123	0.0813	10.400						
	129.6	9	10	96	0.1042	7.838	S 20					
	131.4	10.4	10	163	0.0613	15.592						
	130.5	10.1	10	139	0.0719	12.825						
3	130.9	10	10	146	0.0685	13.378	131.250	10.250	0.069	13.809		
3	131.3	10.5	10	156	0.0641	15.055						
	132.5	10.3	10	147	0.0680	14.043						

						210721-02				
	130.9	10.2	10	128	0.0781	11.963				
	129.6	10.6	10	208	0.0481	20.002				
	128.9	10.3	10	148	0.0676	13.755				
1	129.8	10.4	10	117	0.0855	11.056	120.067	10.050	0.072	12 21/
4	130.4	9.8	10	121	0.0826	10.824	130.007	10.050	0.072	13.314
	130.1	9.6	10	157	0.0637	13.726				
	131.6	9.6	10	119	0.0840	10.524				
	129.8	10.3	10	253	0.0395	23.677	-	11 8		
	134.7	9.7	10	162	0.0617	14.817		1		
Б	134.8	9.9	10	144	0.0694	13.452	124 092	0 002	0.060	16 092
5	134.7	9.7	10	169	0.0592	15.457	134.003	9.003	0.000	10.002
	135.3	9.9	10	152	0.0658	14.252				
	135.2	9.8	10	160	0.0625	14.840				
	126.600	10.010		16.733	0.064	14.717		Total Masu	kan Panas	73.583
Dari data dia Untuk pengel mm Rata-rata aru Rata-rata teg Rata-rata dur Rata-rata kec Rata-rata ma Total masuka	tas diperole asan posisi 3 angan asi pengelas epatan peng sukan panas in panas	eh : 3G - 10 gelasan		126.600 10.010 16.733 0.064 14.717 73.583	Amp Volt s/cm cm/s kJ/cm kJ/cm					

155

DATA MASUKAN PANAS PENGELASAN LAJAN

Posisi Pengelasan	: Vertikal (3G)
Tebal Pelat	: 12 mm

			Doniona		N	Macukan		Ra	ta-ra <mark>ta</mark>	
Weld-pass	Arus (A)	Tegangan (V)	lasan (cm)	waktu (s)	kecepatan las (cm/s)	Panas (kJ/cm)	Arus (A)	Tegangan (V)	Kecepatan pengelasan (cm/s)	Masukan panas/pass (kJ/cm)
	109.3	10.1	10	258	0.0388	19.937		e 1		
	116.9	10.6	10	228	0.0439	19.777				
1	118.4	10.4	10	233	0.0429	20.083	116 792	10.217	0.045	19 627
I	119.1	9.6	10	227	0.0441	18.168	110.703	10.217	0.045	10.027
	118.7	10.8	10	212	0.0472	19.024		and the		
	118.3	9.8	10	182	0.0549	14.770				
	117.6	9.6	10	156	0.0641	12.328		A		
	117	9.6	10	140	0.0714	11.007		and the		
2	117.3	9.8	10	150	0.0667	12.070	117 450	0.592	0.070	11 220
2	116.7	9.4	10	151	0.0662	11.595	117.450	9.005	0.070	11.559
	117.8	9.4	10	147	0.0680	11.394				
	118.3	9.7	10	120	0.0833	9.639	S 20			
	121.3	10	10	233	0.0429	19.784				
	120.6	9.7	10	173	0.0578	14.167				
3	121.2	9.6	10	197	0.0508	16.045	121.667	9.600	0.054	15.397
	121.9	9.9	10	203	0.0493	17.149				
	122.3	9.3	10	154	0.0649	12.261				

122.7 9.1 10 166 0.0602 12.975 122.3 9.3 10 181 0.0552 14.411 121.7 9.6 10 178 0.0562 14.557 122.7 9.5 10 202 0.0495 16.482 127.8 9.8 10 138 0.0725 12.099 127.3 9.8 10 135 0.0654 13.361 126.7 9.9 10 135 0.0741 11.853 125.7 10.2 10 197 0.0508 17.681 125.6 10 10 158 0.0633 13.891	13.794
122.3 9.3 10 181 0.0552 14.411 121.7 9.6 10 178 0.0562 14.557 122.7 9.5 10 202 0.0495 16.482 127.8 9.8 10 138 0.0725 12.099 127.3 9.8 10 153 0.0654 13.361 126.7 9.9 10 135 0.0741 11.853 125.7 10.2 10 197 0.0508 17.681 125.6 10 10 158 0.0633 13.891	13.794
121.7 9.6 10 178 0.0562 14.557 122.7 9.5 10 202 0.0495 16.482 127.8 9.8 10 138 0.0725 12.099 127.3 9.8 10 153 0.0654 13.361 126.7 9.9 10 135 0.0741 11.853 125.7 10.2 10 197 0.0508 17.681 125.6 10 10 158 0.0633 13.891	13.794
4 122.7 9.5 10 202 0.0495 16.482 124.750 9.650 0.062 127.8 9.8 10 138 0.0725 12.099 124.750 9.650 0.062 127.3 9.8 10 153 0.0654 13.361 124.750 9.650 0.062 126.7 9.9 10 135 0.0741 11.853 10 11.853 10 11.853 10 11.853 10 11.853 10 11.853 10 11.853 10 11.853 10 11.853 10 11.853 10 11.853 10 11.853 10 11.853 10 11.853 10 11.853 11.891 11.853 11.891 11.853 11.891 11.853 11.891 11.891 11.891 11.891 11.891 11.891 11.891 11.891 11.891 11.891 11.891 11.891 11.891 11.891 11.891 11.891 11.891 11.891 11.891 <td>13.794</td>	13.794
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
127.3 9.8 10 153 0.0654 13.361 126.7 9.9 10 135 0.0741 11.853 125.7 10.2 10 197 0.0508 17.681 125.6 10 10 158 0.0633 13.891	
126.7 9.9 10 135 0.0741 11.853 125.7 10.2 10 197 0.0508 17.681 125.6 10 10 158 0.0633 13.891	
125.7 10.2 10 197 0.0508 17.681 125.6 10 10 158 0.0633 13.891	
125.6 10 10 158 0.0633 13.891	
126.2 9.8 10 167 0.0599 14.458 126.182 0.000 0.061	14 524
125.8 10.2 10 157 0.0637 14.102 120.163 9.900 0.081	14.524
127.2 9.5 10 173 0.0578 14.634	
126.6 9.7 10 144 0.0694 12.378	
127.6 9.7 10 174 0.0575 15.075	
126.3 9.5 10 187 0.0535 15.706	
6 126.5 10.1 10 202 0.0495 18.066 126 550 0.717 0.061	14 461
126.4 9.9 10 124 0.0806 10.862	14.401
126.1 9.4 10 174 0.0575 14.437	
126.4 9.7 10 147 0.0680 12.616	
126.9 9.9 10 165 0.0606 14.510	
132.2 9.7 10 189 0.0529 16.965	
7 133.6 9.3 10 206 0.0485 17.917 133.883 9.950 0.062	15.260
136.9 10.3 10 157 0.0637 15.497	
136.4 10.7 10 144 0.0694 14.712	

					1					
	137.3	9.8	10	127	0.0787	11.962	1			
	II	1		1	<u>/ </u>			I		
	123.895	9.802		17.402	0.059	14.772		Total Masuka	an Panas	103.401
Dari data diat Untuk pengela mm Rata-rata arus Rata-rata tega Rata-rata dura Rata-rata kece Rata-rata mas Total masukar	123.895 as diperole san posisi 3 ngan si pengelas patan peng ukan panas panas	9.802 h : 3G - 12 an elasan		17.402 123.895 9.802 17.402 0.059 14.772 103.401	0.059 Amp Volt s/cm cm/s kJ/cm kJ/cm			Total Masuk	an Panas	103.401
					V					

LAMPIRAN 4.1.2

DATA HASIL UJI PENETRANT

Berikut beberapa dokumentasi hasil uji penetrant test

LAMPIRAN 4.1.3

DATA HASIL UJI RADIOGRAFI

Berikut adalah laporan hasil pengujian tanpa merusak dengan radiografi untuk hasil pengelasan dengan variasi posisi pengelasan dan ketebalan.

160

lusindo	SPT. CIT	RA SOLUSINDO	Head J. Ray	Office : a Jatiwa	aringin	No. 34 Por	ndok Ge	ede 17	411	04621	0.5	RA	0100	GRAPI	HIC	INSE	PECT	ION	REP	PORT	CON	TRAC	T/ JOB :
S			Phone	: +02-2	I 8403	105, 84990	6949. Fi	ax : H	52-21 TAL	84031	05						-		_	-	REP	ORT	NO: TINS / XII
Cont	ractor :			RAD	DIOGE	APHY	DATA	A .	710	-		-1	Den	sity .	9	L- (1	-			IOI	A	57.00
Mate	rial : 0 to	1 40	-	Tect	Date	· 00	- 01		00	0			Indi	icated	Sen	ditiv	iter .	-10	29		Ky/	Ma:	11-1
Wald		1 75		Tech	nique	Detail	ause		24	0			Mir	SOI).	JABAN	ity .		10	-	Curr	ie ·	10 (-
Inen	retion Code	61400		Radi	ation	Source	100	100	-	-		1	Mar	s SS(DD t	o Fi	Im :		-		Erno	sure T	ime: 0 ME1 11
mspy			_	Inter	cifivi	ng Scree	ens ·	94		A 10	~	-	Dia	anosti	ic Fi	Im I	eng	th ·		-	Lapo	JULO XI	a picon
-		WELD IOINT	TAT	Inter	ISHIYI	ng boro	1	pa	5.0	0112	4	M M	FV	ALIJAT	TION	an 1	Ang	un .	-	-	RESI	JLTS	
		WELD JOINT	LIAIL	1				1	-	1	-	1 BLA		Lon			E D						
No	Weld Reference	Drawing / Spool Number	Film Pos	Pipe Dismetor	Material Thickness	Welder No.	No Sign Discontinuty	Undercut	Misalignment	Exess Penetraction	Root Concavity	Surface Defect	Omek	Lack Of Root Penetration	Lack Of Fusion	Wormhoje	Porouity	Slag	Tungsien Inchusion	Burn Through	Accept	Reject	REMARKS
1	16	1125 16 GTAIN	A B	Par	Aw	7	1	1						-		1					V		
1.	10	T - 19 mm	D F	ILIN	10.1.																		
-		1.10 1111	00				-			-													
-			-	-	-	-	1 1					-	-					1					
~	20	MATE OF SOLL	1 0	0.00	10 mm								1	-	1		-				V	-	
æ.	00	T = 10 mm	2 5	VGAIC	10.00				-	-				-							1	-	1
-		1 = 10 1111	BC	1			-			-											-	-	
-		-	-	-	-	-	-	17	-		-	-	1	-		-		1		-			
0	05	LISE 2 M MARIN	A A	RATE	Mane		1	1	-		-		-		-					-	V	-	1
3.	36	INO 36 GIAU	0 5	1 unic	18-1130	-	1	1 1	-				-		-			-			-	-	1.
) = 10 pm)	SC			-	-						-	-			-			-		-	
-				-	-	-	-					-	-					-			-	-	
-				-	-		100	1	-	-	-		-	-		-	-	-		-	-	-	
-			-	1	-		1	-	-		-		-	-	-		-	-		-	-	-	
-				1	1		1			-	-		-	-	-	-	-	-		-	-		
-	1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 -		1	-		-	1	-	-	-	-			-	-	-	-	-		-	-	-	
			1	-						1				-	0	-				_	OT	1001	
-	Film Accept	:		INI	ERPI	RETER	:		2	AIQ	-				CL	TEL	11:				CL	ASS/	SURVEYOR
1	Film Repair	:			2		1											1.					
	Total Film	1		1	1	-	D			30			-	-	1	D	, 1		-	-			
RAI	DIOGRAPHER	; 		1	1	-	C		4			-				1	1	N					
1	-//	MULL-	_	A	1212	AL.T				44.	-				4	tog	om	du	5.			10	1. 1. 2. 3

161

olusindo	SPT. CIT	RA SOLUSINDO	Head JI. Ra	Office : ya Jatiw	aringin	No. 34 Por	ndok G	ede 17	7411	9463	105	RA	DIO	GRAP	ніс	INS	PEC	TION	RE	PORT	CON	TRAC	CT/ JOB :		
N N	SZ		Fnone	1	21 0403	105, 84990	5949. F	ax : +	02-2	1 8403	105		1		1			-			REI	PORT	NO:		
CLIE	NT IN.	2		PRC	DJECT	: //	US	61	AU	U			Density : 0 //									02/ AT /1N3/ X11			
onu	actor :	1.01	-	RAI	DIOGE	JRAPHY DAIA :						Density : 2-9								KulMai					
viate	$rial : \frac{\gamma_s}{\gamma_s}$	1 15	10 - Inc.	Test	Date	: 30-	04	- 2	018	2	_		Ind	icated	1 Ser	asitiv	vity :	1	2%	2	Kv	/ Ma :			
weld	ing process :	GTAW		Tech	mique	Detail :	sw	5/		1		A 1140	Mir	1. SO	D :			_			Cur	rie :	10 CT		
nspe	cuon Code :			Radi	iation	Source :	10-	190	1	-		1	Ma	x. SS	OD	to Fi	lm :	-			Expo	osure T	ime: 2.MEN		
				Inter	nsifiyii	ng Scree	ens :	Pb	. 0	0,125	m	m	Dia	gnost	tic F	ilm I	Leng	th :							
H		WELD JOINT D	ETAIL	1	1 1		-	-	-	1	1	VELI	DEV	ALUA	TION	1	-				RES	ULTS	a la constante		
No	Weld Reference	Drawing / Spool Number	Film Pos	Pipe Diameter	Material Thickpess	Welder No.	No Sign Discontinuty	Underout	Misalignment	Excess	Root Concarrity	Surface Defect	Cruck	Lack Of Root Penetration	Lack Of Fusion	Wormhole	Poroeity	Slag	Tungsitm Inclusion	Burn Through	Accept	Reject	REMARKS		
	16	INS 16 GTAW	AR	DIATE	8 mm			1	-				-								L		-		
		T = R mm	BC	1 cm	- and			- 15210			-				-	-	-	-			-		-		
													-			-	-		-						
			-	1	1	-				1			-		-	1	-	-			-		T		
2	26	INS QC CTAU	AP	DATE	Dimm	-					1	-	-		1		-		1	-	v				
	0.0	T - D mm	D F	- mine	111119			-		1	-	-				-	-		-	-	-				
+	-	1 - 0 /////	p	-		-	1	-		-	1		-	-	-	-				-	-				
+				-		_		-	-	-						-			-		-				
	21	his 20 00011	A 0	DJ .com	2.00		-	-	-	-			100			-			1.1	-					
-	86	103 36 0110	A 15	MHE	8 mm		1			-			-		-	-		-		_	V				
-		T = & mm	6 C	-						-			-		-	1.100	-	-		-	-				
-			-	-		-				1. 1		-	-	-	-	1	-	-		-	-				
-			-	-					. 1					-		-	-	-							
-			-			1000																			
-				-	-		641	-	_	100		-				1.1	-	1			1				
-			-	1					1		1		-	Contraction of the						1	1				
								1	1																
1	Film Accept	1 1 9 1 1 1 1 1	1	INT	TERPR	ETER :	-		QA	1/00	5				CL	IEN	T :				CL	ASS/	SURVEYOR		
]	Film Repair	:	and the second		1		1							-	-	0		4.							
	Total Film	: 4 ×15" = 6	SHEE7	1.1			1	-							1	T	1	10		/	-				
AD	OGRAPHER	:		14		C	-								11	X	۱L	1/1	1						
				1	1				-	1.1						1	Ve								
	-H m	ANA CONTRACTOR		hel	acia	I.T				1.1						1		V							
				#7	SA ZA	0.1									t	16	900	nau	. 5	-					
	1 5	RIA		-	1.000	1.	- 100 C	-	1			_			-	-									

Solusir	S PI. CH	RASC	DLUS	SINDO		Head Jl. Ray Phone	a Jatiw	: varingin 21 8463	No. 34 Po 3105, 8499	ondok G 96949. F	ede 1 ax : +	7411 62-2	1 8463	105	RA	DIO	GRAP	ніс	INS	PEC	TION	RE	PORT	REI	PORT	T/ JOB :
CLIE	INT	ZNI		_	-	1	PRO	DJECT	1:	INS	G	TAL	ω			1 12					1		177	01/	RIL	INS /XII
Cont	ractor :	1	1				RA	DIOG	RAPHY	DAT	A :				1	Der	isity	:	2-	y			199	IQI	: 4	STAG
Mate	rial : γ_s	1 1/5	2		1		Test	Date	: 30	- 01	1 -	201	12			Indi	icated	I Ser	sitiv	vity :	7	2%	6	Kv	Ma :	
weid	ing process :	GTAW	4				Tecl	nique	Detail	: sw	51					Mir	I. SO	D:						Cun	rie :	10 G
nspe	cuon Code :						Rad	iation	Source	: 10-	- 191	2			18	Max	x. SS	OD	to Fi	ilm :			1.1	Expo	sure Ti	me: 2 ME
							Inte	nsifiyi	ng Scre	ens :	pb	. 0	, 125	- 11	m	Dia	gnost	ic Fi	lm]	Leng	th:		-	-	2	
H		1	WELI	D JOINT I	DETAI	IL	1	-	-		-		-	1	VELI	DEVA	LUA	TION	ĩ					RES	JLTS	
No	Weld Reference	Drawin	ag / Spool	l Number		Film Pos	Pipe Diameter	Material Thickness	Welder No.	No Sign Discontinuty	Undercut	Misalignment	Exeta	Root Concavity	Surface Defect	Crack	ack Of Root	ack Of Fusion	Wormhole	'orosity	Sec.	ungalen Inclusion	turn Through	locept	eject	REMARKS
1.	16	INS	16	GTAW	A	B	Rote	Gom		-	-	-		-		-	HK	-		A.	8	H	-	<	24	
	111111	TI	s m	m	R	F	1						1	-	-		-				1		-	-	-	
	and the second second		~ ~ ~		0										-		-		-		-	-		-		
	22.2		100			5	1.00						-	-	-		-	1	-	-	-	-	-			
2	26	1115	20	(I)Atto	0	R	FLATE	1 mm	-		-	-	-	-	-	-	-	-	-				_		-	
		7.1	00	p line	0	5	Pane	10 Part	-	1	-		-	-	-		_	-	-					V		
	Charles and the	110	> /////	-	A	0	-				-		-		-		-	-	-							1. F
-			-	1000	-									-	-			-	1		1					2
	30	/110	85 1	TAOL	0	n	an	0	-	-		-	F 4	-	-			h.,	1							
-	06	T	C 01	51-100	0	P	PLATE	6 min	-	-		-	-		_		-	-	-		-			V		
	C	1- 1	6 141	12	B	C	-		-		-	-	-	-			-	-	-		-	_			-	14
		1.0.0		-	-		-				-	_	-	_					1000							
-					-				-		-					-	-	-		_						
-			-	-	1		-				-	-			-	-	_	_		-			6	-		
-			-		1		-		_	-	-		-	_	-			-	-							
-					1	-	-	-			1					-	_	1	-							
-	ilm Account			-		-	-		-		-					_			-							
E	ilm Densin		-		_	-	INT	ERPR	ETER :	-07		QA	100		1.2		-	CLI	EN.	T :				CLA	SS/S	URVEYOR
1	atal Eiles			~		24		\wedge		0			1000				-	in the	~		-					
ADI	OGRAPHER	Thur	v.	- 6	Ste	1	4	1	in the	P				-			-	(9	W	V	-	-			
_			1			-	luzz	TCHC		-				-		-		I/	NY	onu	du	3.				
	(TR11	9-6)									1	18		-		-	-	-			1.1	-		-	
Arity : 2 0.%	REPORT NO: 03/121/1105/ IQI: AST/M Kv/Ma: Currie: 10 Exposure Time: 2 RESULTS RESULTS RESULTS RESULTS RESULTS	×// MED WARKS																								
---	--	---------------------																								
Arity : 2 0.%	C3/P2 (Inds) IQI: A ST/M Kv / Ma: Currie: 10 Exposure Time: 2 RESULTS RESULTS RESULTS RESULTS RESULTS	X //																								
kity : 2 0.%	RESULTS RESULTS RESULTS RESULTS RESULTS RESULTS RESULTS RESULTS RESULTS RESULTS	MEN MEN MARKS																								
Im : Length : Aliyona and an	KV / Ma : Currie : /O Exposure Time: 2 RESULTS RESULTS RESULTS RESULTS RESULTS	MEN MARKS																								
Im : Cength : Safe Safe Safe Safe Safe Safe Safe Safe	RESULTS RESULTS RESULTS RESULTS RESULTS RESULTS	MEN																								
Im : Cength : State Anonaly State Line Stat Line State Line State Line Stat Line State State Line S	RESULTS RESULTS RESULTS RESULTS RESULTS RESULTS	MEN																								
Pendin :	RESULTS the second sec	MARKS																								
Potoidy Sist Tagein Inchriton Ban Throuch	RESULTS RESULTS RESULTS RESULTS RESULTS	MARKS																								
Rowicy Stag Taggies lacterio	REI 130007	MARKS																								
		-																								
		-																								
	V	_																								
		-																								
		1.1																								
		1																								
	~	_																								
The second second																										
		-																								
NT :	CLASS/ SURV	/EYO																								
1 +																										
MAN																										
IVI/																										
Momen s.	R.																									
	T: Morneur S	T: CLASS/SURV																								

164

DATA HASIL PEMINDAIAN DENGAN XRF ANALYZER

Berikut adalah hasil pemindaian dengan XRF Analyzer untuk pengelasan dengan variasi posisi pengelasan dan ketebalan.

Posisi/	Material			-		Кс	omposisi (%)	_		S		
tebal		Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Nb	Мо	W	Kategori Grade
1G-	BM-CS		0	0.11	0.58	94.01	4	0	0.1		0.16		C-1045
6 mm	WM	0.2	0.02	20.16	1.54	65.18	1.22	10.67	0.47	0.15	0.31	0.4	SS304/SS308
	BM-SS	0.17	0.08	17.87	1.61	70.56	0.92	7.63	0.32	0.14	0.19	0.51	SS304
1G-	BM-CS		0.01	0.06	0.69	92.95	V 85	0	0.13		0.16		C-1045
8 mm	WM	0.22	0.08	20.28	1.69	64.35	1.22	11.26	0.46	0.16	0.21	0.36	SS308
	BM-SS	0.12	0.16	17.68	1.72	70.48	0.86	8.08	0.21	0.13	0.18	0.4	SS304
1G-	BM-CS		0	0.11	0.66	93.81		0	0.13	1.000	0.19		C-1045
10 mm	WM	0.09	0.05	19.48	1.8	65.76	0.97	11.24	0.28	0.12	0.25	0.31	SS308/SS321
	BM-SS	0.16	0.14	17.99	1.5	70.62	0.91	7.8	0.18	0.13	0.13	0.4	SS304
1G-	BM-CS		0.05	0.1	0.76	93.22		0	0.08		0.19		C-1045
12 mm	WM	0.16	0.07	20.14	1.76	64.69	1.08	11.2	0.35	0.16	0.3	0.35	SS308
	BM-SS	0.17	0.13	17.23	1.33	71.18	0.85	7.76	0.36	0.16	0.23	0.51	SS304
2G-	BM-CS		0	0.14	0.71	93.49		0	0.08		0.15		C-1045
6 mm	WM	0.14	0.1	19.8	1.82	65.25	0.87	10.97	0.52	0.16	0.41	0.29	SS308
	BM-SS	0.29	0.11	16.73	1.47	71.03	0.79	8.36	0.29	0.1	0.57	0.39	SS321
2G-	BM-CS		0.02	0.1	0.82	94.26		-0	0.12		0.14		C-1045
8 mm	WM	0.06	0.06	20.84	1.91	63.71	0.99	11.67	0.41	0.12	0.29	0.42	SS308

	BM-SS	0.04	0.08	17.84	1.24	71.17	0.72	7.84	0.39	0.11	0.25	0.36	SS304
2G-	BM-CS		0.04	0.1	0.72	93.42		0	0.14		0.15		C-1045
10 mm	WM	0.03	0.09	21.46	1.94	62.83	0.92	11.91	0.5	0.14	0.29	0.31	SS308/309
	BM-SS	0.13	0.04	17.74	1.57	70.89	1.05	7.9	0.21	0.09	0.1	0.33	SS304
2G-	BM-CS		0	0.05	0.77	94		0	0.07		0.16		C-1045
12 mm	WM	0.13	0.1	21.83	1.79	62.17	0.77	12.45	0.44	0.13	0.23	0.34	SS309
	BM-SS	0.13	0.04	17.96	1.53	70.39	0.9	7.99	0.26	0.15	0.24	0.35	SS304
3G-	BM-CS	0	0	0.09	0.89	94.54	0	0	0.14	0	0.15	0	C-1045
6 mm	WM	0.1	0.11	16.7	1.77	68.6	1.18	10.39	0.45	0.14	0.34	0.42	SS321
	BM-SS	0.43	0.08	16.8	1.82	70.12	1.05	8.41	0.34	0.12	0.58	0.32	SS321
3G-	BM-CS		0.02	0.07	0.58	94.35	19 A	0.01	0.17		0.16		C-1045
8 mm	WM	0.01	0.07	20.31	1.98	64.56	0.95	11.54	0.42	0.12	0.23	0.22	SS308
	BM-SS	0.15	0.24	17.21	1.66	71.11	0.97	7.77	0.29	0.11	0.16	0.35	SS321
3G-	BM-CS		0	0.07	0.58	94.54	10	0.09	0.11		0.14		C-1045
10 mm	WM	0.18	0.05	19.73	1.86	65.47	1.26	10.71	0.48	0.11	0.25	0.3	SS308/321
	BM-SS	0.1	0.19	18.02	1.34	70.91	0.87	7.75	0.18	0.13	0.12	0.34	SS304
3G-	BM-CS		0	0.11	0.89	93.73		0	0.2		0.17		C-1045
12 mm	WM	0.01	0.11	18.91	1.87	66.59	0.85	11.01	0.33	0.13	0.21	0.31	SS308
	BM-SS	0.1	0.07	17.9	1.09	70.66	1.03	8.22	0.3	0.13	0.19	0.29	SS304

166

DATA HASIL UJI TARIK

Berikut adalah hasil uji tarik untuk pengelasan dengan variasi posisi pengelasan dan ketebalan.

A. Grafik hasil uji tarik

(2) Spesimen pengelasan 1G-8 mm

(5) Spesimen pengelasan 2G-10 mm dan 1G-10 mm

B. Dokumentasi hasil uji tarik

167

DATA HASIL UJI BENDING

Berikut adalah hasil uji bending face dan root untuk pengelasan dengan variasi posisi pengelasan dan ketebalan.

A. Grafik hasil uji bending

Universitas Indonesia

Universitas Indonesia

Dending 50-12 min

Root Bending 1G-10 mm

176

178

Root Bending 3G-12 mm

Face Bending 3G-8mm

Face Bending 3G-10mm

Face Bending 3G-12mm

DATA HASIL FOTO MAKRO

Berikut adalah hasil foto makro untuk pengelasan dengan variasi posisi pengelasan dan ketebalan.

2G-6 mm

2G-8 mm

2G-10 mm

DATA HASIL FOTO MIKRO

Berikut adalah hasil foto mikro untuk pengelasan dengan variasi posisi pengelasan dan ketebalan.

184

Thk 12 mm

Thk 12 mm

Thk 10 mm

Thk 12 mm

Thk 8mm

Thk 6 mm

Thk 8mm

Thk 10 mm

Thk 12 mm

Posisi 1G -WM

Thk 6 mm

Thk 8mm

Thk 12 mm

Thk 6 mm

Thk 8mm

Universitas Indonesia

Thk 10 mm

Thk 12 mm

PROSEDUR PENGELASAN

Berikut adalah prosedur pengelasan (*Welding Prosedur Specification*) untuk pengelasan dissimilar antara baja karbon A36 dengan baja tahan karat A240-304

	Section IX-2007, AS	SME Boiler and Press	ure Vessels	
Company Name :- WPS No. :001/WPS Revision No. :(0) Welding Process : GTAW	-UI/2012		Date Supporting PQR No. Revision Date Welding Type	: March 2012 : 001/PQR-UI/2012 : (0) : Manual
JOINTS (QW-402)				
Joint Design : Single V- Backing (Yes/No) : No Backing Material (type) :: N/A	Groove		Details	
Metal NonFi	using Metal		S CAREON STELL	55 304
Non-metallic Other		100		
BASE METALS (OW 402)				VING" # 1/32" L6 m ± 0.8 m
P No.: 1 Group No.	: 1 10	P No. : 8	Group No. : 1	
OR		1 1100	Croop No 1	
Specification Type and Grade : AS to Specification Type and Grade : OR	TM A36 ASTM A240 Type 304	110		
Chem, Analysis and Mech, Prop.				
to Chem. Analysis and Mech. Prop.				1
Thickness Range :				transfer all the
Base Metal (mm)	Groove : 5 - 22 mr	n	Fillet : All	
Pipe Diameter Range	Groove : All		Fillet : All	
Other				
FILLER METALS (OW-404)		Contract of the local division of the local		
The contract (and the first of the second seco	G	TAW	The second	
Spec. No. (SFA)	1000	A5.9	1. 1. YES.	
AWS No. (Class)	EF	R-309L	1 B. D. M.	
F - No.		6		
A - No.		8		
Size of filler metals	4.	4 mm		
Thk. Range	1			
Groove	Max	c. 8 mm		
Fillet	Un	limited		
Electrode - Flux (Class)			1000	
Flux Trade Name		• B.a.		
Consumable insert		·		
Other				
POSITIONS (QW-405)		PWHT (QW-407)		
Position(s) of Groove :	All	Temperature Range	- (°C)	
Welding Progression :	Uphill	Time Range (min.)		
Position(s) of fillet :	All			
PREHEAT (QW-406)		GAS (QW-408)		
Preheat Temperature (oC), Min.	: Ambient		Percent composition	
Interpass Temperature (oC), Max.	: 150°C	Gas(es	s) Mixture	Flowrate
Preheat Maintenance	: N/A	Shielding Argon	99.99%	7-20 LPM
Other	: Temp. control	Trailing -	-	7.051.014
1	Digitally	Backing Argon	99.99%	7-25 LPM
		1		

WELDING PROCEDURE SPECIFICATION Section IX-2007, ASME Boiler and Pressure Vessels

194

WELDING PROCEDURE SPECIFICATION Section IX-2007, ASME Boiler and Pressure Vessels

Company WPS No. Revision N Welding Pr	Name o. ocess	: - : 001/WPS-0 : (0) : GTAW	UI/2012				Date Supporting PQR Revision Date Welding Type	No.	: March 2012 : 001/PQR-UI/2012 : (0) : Manual
ELECTRIC	AL CHARA	CTERISTICS	(QW-409)						
Current AC	or DC	: DC			Polarity		: DCEN (DCSP)		
Amps (Ran	ge)	: As Per-We	Iding Param	neter*	Volts (Rang	ge)	: As Per-Welding	Parame	ter*
Tungsten E	elctrode Siz	e and Type	: Ф 2.4 mm	n Type EW	TH-2				
Mode of m	etal transfer	for GMAW	: N/A						
Electrode V	Vire Feed Sp	beed Range	: N/A						
TECHNIQU	JE (QW-410))							
String or W	eave Bead	11	: Both	1					
Orifice or C	as Cup Size	aning (Bruch	: N/A	(oto)	Grinding	and Brushi			
mitian and I	nterpass cle	anny (Brushi	ng, onnung	y, a.c.)	(Stainless	Steel Brus	th Iron Free)		
Method of	Back Gougin	g	: N/A		(otaniess	01001 0103	,	100	
Oscilation			: N/A						
Contact Tu	be to Work [Distance	: N/A						2
Multiple or	Single Pass	(Per Side)	: Both						
Multiple or	Single Electi	rodes	: Single			60 Y -			
Page ing	ed (Range)		: As Per-W	eiding Para	ameter				AM 1999
Other	: N/A : N/A			- A - A					
				WELDI	NG PARAM	ETERS			
Weld	Drawna	Filler	Metal	Cur	rent	Volt	Travel Speed		Other
Layer(s)	Process	Class	Dia.	Polarity	Amp. Range	Range	mm/min.		Other
Root	GTAW	ER-309L	2.4	DCEN	70-120	8-15	50-80	-	
Hot Pass	GTAW	ER-309L	2.4	DCEN	90-150	8-15	70-120		
Filler	GTAW	ER-309L	2.4	DCEN	90-150	8-15	70-120	2000	
Capping	GTAW	ER-309L	2.4	DCEN	90-150	8-15	70-120		
1.04									
							E		
							1 1	100	
		<u> </u>		-	<u> </u>				
10000					16 Ta				
	S 1	1.	Sec. 2	- 1 F		-	1000		
1.1				- A - A - A - A - A - A - A - A - A - A	a ter				
0.7	- A	1100	100			1000	N 10 10		
					1000	16. or 24		00000	
1.1		-	_		_	DEVIC	ON STATUS	-	
- S.			Rev No.	Date	Prena	red by	Checked h	V	Approved by
			(0)	3/1/2012	I Nyor	nan S	Checked D	,	Approved by
			1.1.1	1.1.1		·	100		
					Y 18.				