

# **UNIVERSITAS INDONESIA**

# SINTESIS IN SITU CARBON NANOTUBE TERORIENTASI TEGAK PADA CARBON PAPER SEBAGAI PENYANGGA KATALIS PADA PROTON EXCHANGE MEMBRANE FUEL CELL (PEMFC)

SKRIPSI

SIGIT HARGIYANTO 0806456852

UNIVERSITAS INDONESIA FAKULTAS TEKNIK PROGRAM STUDI TEKNIK KIMIA DEPOK JUNI 2012

Sintesis in..., Sigit Hargiyanto, FT UI, 2012



# **UNIVERSITAS INDONESIA**

# SINTESIS IN SITU CARBON NANOTUBE TERORIENTASI TEGAK PADA CARBON PAPER SEBAGAI PENYANGGA KATALIS PADA PROTON EXCHANGE MEMBRANE FUEL CELL (PEMFC)

# SKRIPSI

Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana

SIGIT HARGIYANTO 0806456852

FAKULTAS TEKNIK UNIVERSITAS INDONESIA PROGRAM STUDI TEKNIK KIMIA DEPOK JUNI 2012

### HALAMAN PERNYATAAN ORISINALITAS

Skripsi ini adalah hasil karya saya sendiri dan semua sumber baik yang dikutip maupun dirujuk telah saya nyatakan dengan benar.

Nama

NPM

: Sigit Hargiyanto

: 0806456852

Tanda Tangan

Tanggal

andres

: 26 Juni 2012

# HALAMAN PENGESAHAN

Skripsi ini diajukan oleh Nama NPM Program Studi Judul Skripsi

Sigit Hargiyanto

0806456852

:

:

•

: Teknik Kimia

Sintesis In Situ Carbon Nanotube Terorientasi Tegak Pada Carbon Paper Sebagai Penyangga Katalis Pada Proton Exchange Membrane Fuel Cell

Telah berhasil dipertahankan di hadapan Dewan Penguji dan diterima sebagai bagian persyaratan yang diperlukan untuk memperoleh gelar Sarjana Teknik pada Program Studi Teknik Kimia, Fakultas Teknik, Universitas Indonesia.

### **DEWAN PENGUJI**

Pembimbing : Prof. Dr. Ir. Widodo Wahyu Purwanto, DEA

Penguji I

: Dr. Ir. Asep Handaya Saputra M.Eng.

Penguji II : K

: Kamarza Mulia, PhD

Penguji III : Ir. Yuliusman, M.Eng.

Ditetapkan di : Depok

Tanggal : 26 Juni 2012

### KATA PENGANTAR

Segala puji dan syukur bagi Tuhan Yang Maha Esa atas segala berkat dan rahmat–Nya sehingga seminar ini dapat diselesaikan tepat pada waktunya. Dalam penyusunan makalah ini, penulis banyak mendapatkan bantuan, bimbingan, dan dukungan dari berbagai pihak. Oleh karena itu, penulis mengucapkan terima kasih yang sebesar-besarnya kepada:

- Bapak Prof. Dr. Ir. Widodo W. Purwanto, DEA. selaku pembimbing skripsi di Departemen Teknik Kimia Fakultas Teknik Universitas Indonesia (DTK FTUI) atas bimbingan, ilmu, waktu, dan saran dalam pembuatan skripsi ini.
- Bapak Ir. Yuliusman, M.Eng selaku koordinator skripsi, Ibu Eva Fathul K, ST. MT. selaku pembimbing akademis dan para dosen DTK FTUI yang telah membimbing dan memberikan ilmu yang sangat berguna.
- 3. Keluarga (Ayah, Ibu, dan Adik tercinta) di rumah yang telah memberikan semangat, kasih sayang, dukungan, dan doa.
- 4. Mang Ijal dan Mang Jajat yang telah membantu teknis penggunaan peralatan selama di bengkel dan laboratorium RPKA.
- 5. Mang Jajat dan Mang Ijal, Mas Opik, Mas Sri, Mas Eko, Mas Mughni, Mas Her, Mas Rinan, Mbak Yanti, Mbak Ita, serta seluruh karyawan DTK UI atas bantuannya dalam administrasi dan perlengkapan skripsi.
- 6. Bagas Triyatmojo, M. Habiburohman, Fazza I.H.R., M. Afreza Sidiq, M. Mada Indra H., Adibowo Mursid, Ikbal Faturahman, Fikri Aulia R., Migel Aldila, atas persahabatan, dukungannya serta dalam bertukar wawasan, ilmu dan ruangan kosan untuk menyelesaikan skripsi ini.
- Ade Sri Rahayu, Gina Anisa, Rainer Christian selaku tim satu bimbingan, serta Nur Muchamad Arifin, Ryan Januar, Miradha Herdini Widiatmi, dan Rita Yulianda selaku satu team bimbingan *Fuel cell*, terima kasih atas bantuan dan kerjasamanya.

- 8. Teman-teman Teknik Kimia 2008 yang telah memberi dukungan dari awal hingga akhir penyusunan skripsi ini
- 9. Serta semua pihak yang telah membantu penyusunan skripsi ini baik secara langsung ataupun tidak langsung.

Semoga Tuhan YME membalas kebaikan dan bantuan yang telah diberikan. Penulis menyadari bahwa masih terdapat banyak kekurangan dalam skripsi ini, oleh sebab itu kritik dan saran yang membangun sangat penulis harapkan untuk pengembangan penelitian dalam skripsi ini

Depok, 26 Juni 2012 Sigit Hargiyanto

Sebagai sivitas akademika Universitas Indonesia, saya yang bertanda tangan di bawah ini:

Nama: Sigit HargiyantoNPM: 0806456852Program Studi : Teknik KimiaDepartemen: Teknik KimiaFakultas: TeknikJenis Karya: Skripsi

Demi pengembangan ilmu pengetahuan, menyetujui untuk memberikan kepada Universitas Indonesia Hak Bebas Royalti Noneksklusif (Non-exclusive Royalty-Free Right) atas karya ilmiah saya yang berjudul:

## Sintesis In Situ Carbon Nanotube Terorientasi Tegak Pada Carbon Paper Sebagai Penyangga Katalis Pada Proton Exchange Membrane Fuel Cell (PEMFC)

beserta perangkat yang ada (jika diperlukan). Dengan Hak Bebas Royalti Noneksklusif ini Universitas Indonesia berhak menyimpan, mangalihmedia/format-kan, mengelola dalam bentuk pangkalan data (*database*), merawat, dan memublikasikan tugas akhir saya selama tetap mencantumkan nama saya sebagai penulis/pencipta dan sebagai pemilik Hak Cipta. Demikian pernyataan ini saya buat dengan sebenarnya.

> Dibuat di : Depok Pada tanggal : 26 Juni 2012

> > Yang menyatakan

(Sigit Hargiyanto)

### ABSTRAK

Nama : Sigit Hargiyanto

Program Studi : Teknik Kimia

Judul : Sintesis In Situ Carbon Nanotube Terorientasi Tegak Pada Carbon Paper Sebagai Penyangga Katalis Pada Proton Exchange Membrane Fuel Cell (PEMFC)

Pemanfaatan PEMFC masih memiliki kendala, yakni degradasi penyangga katalis berupa *carbon black. Carbon black* dapat diganti dengan *carbon nanotube* (CNT) yang terorientasi tegak karena menghasilkan kinerja lebih tinggi. Pada penelitian ini CNT ditumbuhkan diatas *carbon paper* menggunakan metode *floating catalyst*-CVD dengan variasi temperatur 700°C-900°C, sumber karbon berupa metana, dan katalis ferrocene yang dipanaskan 200°C pada *bubbler*. Konversi metana meningkat dengan meningkatnya suhu reaktor. *Carbon loss* pada 700°C, 800°C, dan 900°C sebesar 98,31%, 95.01% dan 96.69%, tingginya *carbon loss* dikarenakan sedikitnya katalis yang terdeposisi pada carbon paper. Hasil SEM menunjukan CNT terorientasi tegak pada suhu penumbuhan 800°C dan 900°C dengan OD dan panjang sebesar 36 nm dan 10 µm. Hasil yang didapatkan kurang efektif untuk aplikasi fuel cell, karena densitas CNT yang terbentuk rendah dan besarnya rasio diameter dan panjang CNT.

Kata kunci: Aligned Carbon Nanotube, Carbon Paper, Polymer Electrolyte Membrane Fuel Cell, metana

### ABSTRACT

Name : Sigit Hargiyanto

Study Program : Chemical Engineer

Title : Synthesis In Situ of Vertically Aligned Carbon Nanotube on Carbon Paper as Catalyst Suport in Proton Exchange Membrane Fuel Cell (PEMFC)

Utilization of PEMFC still have constraints, wich is degradation of catalyst support carbon black. Carbon black can be replaced with vertically aligned carbon nanotube as it results in higher performance. In this study CNT directly grown on carbon paper using floating catalyst-CVD method with temperature variation 700°C-900°C, using methane as carbon source, and catalyst ferrocene heated at 200°C in bubbler. Methane conversion increases with increasing temperature of reactor. Carbon loss at 700°C, 800°C, and 900°C are 98.31 %, 95.01%, and 96.69% respectively, the high carbon loss due to slightly catalyst deposited on carbon paper. SEM results showed vertically aligned CNT growth at 800 °C and 900°C with OD and length are 36 nm and 10  $\mu$ m respectively. The results obtained are less effective for fuel cell applications, because of the low density of CNT formed and the higher ratio of diameter and length of the CNT.

**Kata kunci**: Aligned Carbon Nanotube, Carbon Paper, Polymer Electrolyte Membrane Fuel Cell, methane.

# **DAFTAR ISI**

| HALAMAN PERNYATAAN ORISINALITAS                     | ii   |
|-----------------------------------------------------|------|
| HALAMAN PENGESAHAN                                  | iii  |
| KATA PENGANTAR                                      | iv   |
| HALAMAN PERNYATAAN PERSÉTUJUAN PUBLIKASI            | vi   |
| ABSTRAK                                             | vii  |
| ABSTRACT                                            | viii |
| DAFTAR ISI                                          | ix   |
| DAFTAR GAMBAR                                       | xi   |
| DAFTAR TABEL                                        | xii  |
| DAFTAR LAMPIRAN                                     | xiii |
| DAFTAR SINGKATAN                                    | xiv  |
|                                                     |      |
| BAB 1 PENDAHULUAN                                   | 1    |
| 1.1 Latar Belakang                                  | 1    |
| 1.2. Rumusan Masalah                                | 3    |
| 1.3. Tujuan Penelitian                              | 3    |
| 1.4. Ruang Lingkup Masalah                          | 3    |
| 1.5. Sistematika Penulisan                          | 3    |
| BAB 2 TINJAUAN PUSTAKA                              | 5    |
| 2.1 Fuel Cell                                       | 5    |
| 2.2. Polymer Electrolyte Membrane Fuel Cell (PEMFC) | 5    |
| 2.3 Struktur PEMFC                                  | 6    |
| 2.3.1 Bipolar Plate                                 | 7    |
| 2.3.2 Membrane Electrode Assemblies (MEA)           | 7    |
| 2.3.3 End Plate                                     | 9    |
| 2.4 Degradasi Karbon Sebagai Penyangga Katalis      | 9    |

| 2.5 Sintesis Alligned CNT                       | 11 |
|-------------------------------------------------|----|
| 2.5.1 Metode Termal Pirolisis                   | 12 |
| 2.5.2 Pemilihan Katalis                         | 14 |
| 2.5.3 Pemilihan Sumber Karbon                   | 18 |
| 2.5.4 Penggunaan CNT Sebagai Katalis Suport     | 18 |
| 2.6 Reaksi Dekomposisi Metana                   | 20 |
| 2.7 Produk Reaksi Dekomposisi Metana            | 21 |
| 2.7.1 Hidrogen                                  | 21 |
| 2.7.2 Nanokarbon                                | 21 |
| 2.8 SEM (Scanning Electron Microscopy)          | 23 |
| BAB 3 METODOLOGI PENELITIAN                     | 24 |
| 3.1 Rancangan Penelitian                        | 24 |
| 3.2 Alat dan Bahan Penelitian                   | 25 |
| 3.3 Rincian Kegiatan Penelitian                 | 27 |
| BAB 4 HASIL DAN PEMBAHASAN                      | 30 |
| 4.1 Uji Panjang Efektif Reaktor                 | 30 |
| 4.2 Preparasi Karbon Paper                      | 31 |
| 4.3 Pengaruh Temperatur                         | 32 |
| 4.3.1 Pengaruh Temperatur Terhadap Konversi     | 32 |
| 4.3.2 Pengaruh Temperatur terhadap yield karbon | 34 |
| 4.4 Carbon Loss                                 | 35 |
| 4.5 Perbandingan Karakterisasi Menggunakan SEM  | 36 |
| BAB 5 KESIMPULAN DAN SARAN                      | 42 |
| 5.1 Kesimpulan                                  | 42 |
| 5.2 Saran                                       | 43 |
| DAFTAR PUSTAKA                                  | 44 |
| LAMPIRAN                                        | 49 |

# DAFTAR GAMBAR

| Gambar 2.1. Fuel cell stack (Yuan et.al., 2005)                                                                                                  | 6           |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Gambar 2.2. Struktur MEA (Chen, 2008)                                                                                                            | 8           |
| Gambar 2.3 Skema CVD (Yulianti, 2009)                                                                                                            | .11         |
| Gambar 2.4. Jenis model pertumbuhan CNT                                                                                                          | . 12        |
| Gambar 2.5. hubungan antara orbital kosong dengan aktivitas katalis pada reak<br>dehidrogenasi etilen (kurva <i>volcano</i> ) (Manggiasih, 2011) | csi<br>. 14 |
| Gambar 2.6. Perbandingan kinerja pada beberapa referensi                                                                                         | . 16        |
| Gambar 3.1 Diagram Alir Penelitian                                                                                                               | . 24        |
| Gambar 3.2. skema rangkaian alat reaksi                                                                                                          | . 27        |
| Gambar 4.1. profil temperature di dalam reaktor                                                                                                  | . 30        |
| Gambar 4.2. carbon paper yang telah dipotong                                                                                                     | . 31        |
| Gambar 4.3. Acid Treatment pada carbon paper                                                                                                     | . 31        |
| Gambar 4.4. Profil Konversi metana terhadap waktu                                                                                                | . 32        |
| Gambar 4.5. Profil konversi rata-rata metana terhadap temperature                                                                                | . 33        |
| Gambar 4.6. Perbandingan yield karbon terhadap temperature                                                                                       | . 35        |
| Gambar 4.7. Deposit karbon pada ujung keluaran reactor                                                                                           | . 36        |
| <b>Gambar 4.8.</b> Morfologi <i>carbon paper</i> yang belum ditumbuhkan dengan perbesaran 10000x.                                                | . 36        |
| <b>Gambar 4.9.</b> Morfologi carbon paper setelah sintesis pada temperature 700°C dengan perbesaran (a) 10000x; (b)50000x                        | . 37        |
| <b>Gambar 4.10.</b> Morfologi <i>carbon paper</i> setelah sintesis pada temperature 800°C dengan perbesaran (a) 10000x; (b)50000x                | C<br>. 38   |
| Gambar 4.11. Morfologi <i>carbon paper</i> setelah sintesis pada temperature 800°C dengan perbesaran (a) 10000x; (b)50000x                       | 2<br>. 39   |
|                                                                                                                                                  |             |

# DAFTAR TABEL

| Tabel. | 2.1. Penggunaan | Ferrocene of | dalam menumbuhkan | ACNT | 16 |
|--------|-----------------|--------------|-------------------|------|----|
| Tabel. | 3.1. Penggunaan | Ferrocene d  | dalam menumbuhkan | ACNT | 25 |
| Tabel. | 3.2. Penggunaan | Ferrocene d  | dalam menumbuhkan | ACNT | 26 |



xii

# DAFTAR LAMPIRAN

| Lampiran A. Kalibrasi Rotameter Untuk Aliran Nitrogen (N2)       | 49 |
|------------------------------------------------------------------|----|
| Lampiran B. Kalibrasi Rotameter untuk aliran metana pada 50 sccm | 51 |
| Lampiran C. Data kalibrasi Gas Kromatografi                      | 52 |
| Lampiran D. Perhitungan Laju Alir Katalis Ferrocene              | 55 |
| <b>Lampiran E</b> . Data Hasil Sintesis pada $T = 700^{\circ}C$  | 56 |
| <b>Lampiran F.</b> Data Hasil Sintesis pada $T = 800^{\circ}C$   | 58 |
| Lampiran G. Data Hasil Sintesis pada T = 900°C                   | 60 |
| Lampiran H. Kesetimbangan Termodinamika                          | 62 |



xiii

### DAFTAR SINGKATAN

- ACNT = Aligned Carbon Nanotube
- CNT = *Carbon Nanotube*
- CFP = Carbon Fiber Paper
- CP = Carbon Paper
- FCCVD = Floating Catalyst Chemical Vapor Deposition
- GDL = Gas Diffusion Layer
- MEA = Membrane Electrode Assembly
- MPL = *Microporous layer*
- PEM = Polymer Electrolyte Membrane
- PEMFC = Polymer Electrolyte Membrane Fuel cell
- VACNT = Vertically Aligned Carbon Nanotube
- SEM = Scanning Electron Microscopy



xiv

# BAB 1 PENDAHULUAN

#### **1.1 Latar Belakang**

Bahan bakar fosil hingga saat ini masih menjadi sumber energi utama. Namun penggunaan bahan bakar fosil dalam jumlah dalam jumlah yang sangat besar dan meningkat setiap tahunnya menyebabkan persedian bahan bakar fosil tersebut semakin menipis. Kemudian emisi yang dihasilkan dari penggunaan bahan bakar fosil tersebut juga berbahaya bagi lingkungan. Selain itu dengan bertambanya jumlah penduduk, akan semakin sulit menurunkan konsumsi bahan bakar fosil ini. *Energy Information Administration* telah memprediksi bahwa konsumsi energi dunia akan meningkat sebesar 49% antara tahun 2007 hingga 2030 (EIA, 2010).

Pengembangan alat konversi energi alternatif telah banyak dilakukan di dunia ini. Salah satu alat konversi energi alternative pengganti bahan bakar fosil adalah *polmer electrolyte membrane fuel cell* (PEMFC). *Polymer electrolyte membrane fuel cell* (PEMFC) saat ini pesat dikembangkan sebagai sistem konversi energi ramah lingkungan. PEMFC juga memiliki kelebihan pada bahan bakar yang dipakai, yaitu hidrogen yang dapat dihasilkan dari sumber terbaharukan. Ditambah lagi, PEMFC hanya menghasilkan air sebagai sisa buangan. Teknologi *fuel cell* berbahan bakar hidrogen tersebut kini tengah dikembangkan pada banyak aplikasi seperti mobil *zero emission* ataupun pada sumber listrik peralatan elektronik portabel (Lamy et. al, 2002). Namun, pengembangan *fuel cell* mengalami kendala-kendala sebelum dapat digunakan sebagai alat konversi energi yang dipakai secara massal.

Kendala yang timbul pada PEMFC salah satunya adalah durabilitas yang sangat dipengaruhi oleh stabilitas lapisan katalis. Kendala tersebut muncul karena penggunaan *carbon black* sebagai penyangga katalis. *Carbon black* memiliki keterbatasan transport massa pada densitas arus tinggi disebabkan oleh strukturnya yang *dense* sehingga memicu rendahnya utilisasi katalis platina. Ditambah lagi, penelitian menunjukkan lapisan katalis berpenyangga *carbon* 

*black* mengalami perubahan struktur dan degradasi yang juga memicu degradasi katalis setelah digunakan dalam jangka waktu tertentu (Wang, 2004).

Penggunaan *carbon nanotube* (CNT) diharapkan dapat mengatasi kendala yang diakibatkan oleh penggunaan carbon black, mengingat keunggulannya pada stabilitas struktur antar karbon yang mencegah terjadinya degradasi. Beberapa penelitan menunjukan bahwa CNT dapat menjadi material pendukung yang lebih baik. *Carbon nanotube* dengan komponen *graphite* yang lebih tinggi juga menunjukkan konduktivitas elektrik yang jauh lebih baik dibanding *carbon black* (Tang, 2011). Carbon nanotube yang terorientasi tegak dapat memberikan kinerja PEMFC yang lebih baik dibandingkan dengan yang tidak terorientasi tegak (Li, 2005). Penelitian yang sudah dilakukan sebelumnya adalah pengembangan kinerja PEMFC melalui fabrikasi *membrane electrode assembly* (MEA) dengan mengguanakan *multi wall carbon nanotube* (MWCNT) komersil menggunakan metode filtrasi untuk mendeposisikan penyangga katalis CNT (Anggraini, 2010).

Berdasarkan penelitian penggunaan *fuel cell* yang telah disebutkan sebelumnya (Anggraini, 2010), penelitian ini memfokuskan untuk perbaikan penelitian sebelumnya. Pada penelitiannya CNT disaring di kertas saring hidrofilik agar terorientasi tegak. Namun, ketika proses transfer CNT ke membran, tidak semua CNT berpindah dari kertas saring ke membran dan tidak semua CNT terorientasi tegak. Hal ini menyebabkan jumlah Pt/CNT yang melekat pada membran tidak memenuhi harapan sehingga kinerja nya masih rendah. Oleh karena itu, penelitian ini melakukan metode lain dalam mengorientasikan CNT dengan menggunakan proses sintesis in situ CNT pada carbon paper.

Penggunaan CNT sebagai penyangga katalis dapat dilakukan dengan beragam jalan. CNT dapat dicampurkan pada larutan Nafion, difiltrasi agar CNT terorientasi tegak lalu di-*coating* ke permukaan kertas karbon. CNT juga dapat ditumbuhkan langsung pada permukaan kertas karbon dengan metode *chemical vapour deposition* (CVD) (Wang et al. 2009; Saminathan et al. 2009; Kannan et al. 2009; Reddy, 2011). Pada beragam penelitian yang telah dilakukan kedua metode tersebut memberikan hasil yang berbeda dalam meningkatan kinerja *fuel cell*. Penelitian ini bertujuan untuk dapat menumbuhkan CNT pada carbon paper secara aligned dengan menggunakan metode *Floating Catalyst Chemical Vapor Deposition* (FCCVD).

#### 1.2 Rumusan Masalah

Rumusan masalah penelitian ini adalah : mensintesis CNT pada *carbon paper* secara in situ, dengan keadaan operasi yang telah ditentukan sehingga didapatkan CNT pada *carbon paper* yang terorientasi tegak.

### **1.3 Tujuan Penelitian**

Penelitian ini bertujuan untuk mendapatkan CNT yang tersusun secara vertically aligned pada carbon paper dengan menggunakan floating catalyst CVD, yang nantinya dapat digunakan sebagai GDL dan penyangga katalis dalam fuel cell.

### 1.4 Ruang Lingkup Masalah

Penelitian ini dibatasi dengan :

- 1. Reaktor yang digunakan selama penelitian adalah reaktor yang telah ada pada penelitian sebelumnya dalam mensintesis CNT pada wiremesh skala lab dengan OD, ID dan panjang secara berturut-turut adalah 5 cm, 4.5 cm dan 50 cm, dengan perancangan ulang dengan menambahkan bubbler untuk mengalirkan katalis ke dalam reaktor dan lokasi berada di Laboratorium RPKA Departemen Teknik Kimia UI
- Menggunakan katalis Ferrocene (Fe(C<sub>5</sub>H<sub>5</sub>)<sub>2</sub>) dari Sigma Aldrich dengan metode *floating catalyst* menggunakan *bubler* dan system operasi bubbler 200°C.

#### 1.5 Sistematika Penulisan

Sistematika penulisan dalam skripsi ini adalah sebagai berikut :

### Bab I : PENDAHULUAN

Menjelaskan latar belakang permasalahan, perumusan masalah, tujuan penelitian, ruang lingkup permasalahan, dan sistematika penulisan.

### Bab II : TINJAUAN PUSTAKA

Menjelaskan mengenai *fuel cell* dan PEMFC dan permasalahan mengenai degradasi karbon. Serta studi literature mengenai hal-hal tentang penelitian

mengenai sintesis aligned CNT, metode sintesis yang digunakan, katalis. Kemudian reaksi dekomposisi katalitik metana dan produknya.

### Bab III: METODE PENELITIAN

Berisikan diagram alir penelitian, alat, dan bahan yang digunakan dalam penelitian serta persiapan uji, perangkaian alat, preparasi bahan *carbon paper*, dan proses pengoperasian rangkaian peralatan serta pengolahan data.

### Bab IV: HASIL DAN PEMBAHASAN

Berisi uraian analisa terhadap data uji kinerja reactor yang meliputi konversi, kemurnian hydrogen, dan yield karbon, serta karakterisasi produk.

### Bab V : KESIMPULAN DAN SARAN

Berisi kesimpulan dan saran dari hasil penelitian dan pembahasan

# BAB 2 TINJAUAN PUSTAKA

### 2.1 Fuel Cell

Fuel cell adalah suatu alat elektrokimia yang secara kontinyu mengkonversi energi kimia menjadi energi listrik secara langsung sepanjang bahan bakar dan oksidan dialirkan (Hoogers, 2003). Fuel cell mirip seperti baterai, perbedaannya, baterai adalah alat untuk menyimpan energi, sedangkan fuel cell adalah alat untuk mengkonversi energi. Selama ada suplai bahan bakar maka fuel cell dapat terus memproduksi listrik.

Teknologi *fuel cell* yang memiliki efisiensi tinggi dan zero emission ini dapat menjadi jawaban atas isu ketahanan energi yang saat ini banyak dikhawatirkan. Oleh karena itu fuel cell banyak dikembangkan secara komersial dan dalam aplikasi militer, seperti kendaraan, peralatan listrik portable, dan power plant (Hoogers., 2003).

Fuel cell memiliki beberapa kelebihan dan kekurangan. Beberapa kelebihannya adalah emsisi yang dihasilkan tidak berbahaya, efisiensinya yang tinggi karena tidak dibatasi siklus carnot, temperature operasional biasanya rendah. Kemudian kekurangan yang dimiliki fuel cell adalah sulitnya produksi dan penyimpanan hydrogen, sensitif terhadap kontaminasi zat asing, dan harga katalis platina yang mahal

### **2.2** Polymer Electrolyte Membrane Fuel Cell (PEMFC)

Polymer Electrolyte Membrane Fuel Cell (PEMFC) adalah jenis fuel cell yang memiliki kelebihan daripada jenis yang lain sehingga dapat dikembangkan untuk produk komersil. Dikarenakan sifatnya dibandingkan jenis-jenis fuel cell lain, jenis PEMFC lebih menguntungkan. Sifat-sifat tersebut diantaranyaadalah temperatur kerja yang relatif rendah jika dibandingkan dengan *fuel cell* jenis lain yang temperatur kerjanya tinggi, densitas daya (*power density*) yang tinggi, sistemnya yang kompak, dan efisiensinya yang tinggi. Kelebihan tersebut menjadikan PEMFC memiliki potensi untuk diaplikasikan untuk transportasi, peralatan portable, power plant, bahkan peralatan militer (Hoogers, 2003).

#### 2.3 Struktur PEMFC

Seperti pada struktur *fuel cell* jenis lainnya, PEMFC terdiri dari *cell stack*, yang didalamnya terdapat membran. *Cell stack* terdiri dari pelat bipolar (*bipolar plate*), dan pelat penutup (*end plate*). Untuk membran disusun membentuk suatu *Membrane Electrode Assembly* yang terdiri dari lapisan difusi gas (GDL), lapisan katalis, dan membran polimer.

Bagian terpenting dari PEMFC adalah *Membrane Electrode Assembly* (MEA) yang terdiri dari elektrolit polimer yang dikontakkan dengan anoda dan katoda pada kedua sisinya. Dua komponen utama,dalam MEA yaitu membran dan elektroda dimana elektroda terdiri dari dua bagian, yaitu anoda dan katoda. Di elektroda terdapat lapisan katalis serta lapisan difusi gas atau *Gas Diffusion Layer* (GDL). MEA umumnya disusun diantara dua buah pelat *flowfield* yang identik sehingga membentuk pelat bipolar.

Untuk menghasilkan listrik fuel cell harus disusun hingga membentuk *single cell*. Namun *single cell* hanya dapat memproduksi listrik hingga 1 V maksimal. Sehingga untuk mendapatkan energi listrik dalam jumlah yang lebih tinggi *single cell* ini harus disusun hingga menjadi seperti Gambar 2.1 *fuel cell stack* (Yuan et.al., 2005).



Gambar 2.1. Fuel cell stack (Yuan et.al., 2005)

### 2.3.1 Bipolar Plate

Kebanyakan dari fuel cell, terdiri dari struktur pelat (stack structure) yang disusun oleh beberapa pelat bipolar, yang dapat pula disebut pelat pemisahatau pelat laju aliran. Fungsi utama *bipolar plate* adalah untuk menyuplai gas-gas reaktan ke *gas diffusion electrode* (GDE). Sebagian besar efektivitas dari transport reaktan bergantung pada desain *flow-field*, sehingga *bipolar plate* sering disebut sebagai *flow-field plate* (Yuan et.al., 2005).

Fungsi lain dari pelat bipolar adalah sebagai kolektor arus listrik (current collecctor) dimana salah satu sisi dari pelat bipolar berhadapan dengan anoda dan sisi lain berhadapan dengan katoda. Voltase total dari suatu sel bahan bakar ditentukan jumlah satuan sel dan densitas arus.

### 2.3.2 Membrane Electrode Assemblies (MEA)

*Membrane electrode assemblies* (MEA) merupakan inti dari PEMFC, karena reaksi elektrokimia yang menghasilkan listrik terjadi disni. Suatu MEA terdiri dari sebuah membran *Polymer Electrolyte Membrane* (PEM),dan dua buah elektroda (*Anoda & Catoda*) yang berada diantara PEM, serta *gas diffusion layer* (GDL) yang menempel pada masing-masing lapisan katalis di elektroda, seperti Gambar 2.2. berikut ini.



Gambar 2.2. Struktur MEA, meliputi *diffusion media* (GDL), lapisan katalis anoda dan katoda, serta membran. (Chen, 2008).

### a) Gas Diffusion Layer (GDL)

Komponen-komponen utama PEMFC adalah *gas diffusion layer* (GDL), membran, dan katalis. Pada PEMFC, GDL memiliki beberapa fungsi, antara lain:

- melewatkan gas-gas reaktan dan produk untuk mengalir di antara anoda dan katoda
- penyangga struktural bagi lapisan katalis
- konduktor listrik antara katalis dan current collector plate
- terkadang, GDL juga digunakan sebagai substrat untuk deposisi katalis.

GDL biasanya berupa *Carbon Fiber Paper* (CFP) atau *Carbon Cloth* (CC). Untuk menjalankan fungsinya dengan baik, GDL harus memiliki ketebalan serendah mungkin dengan hambatan listrik yang rendah. Dengan ketebalan yang rendah, gas-gas reaktan dan produk akan dapat berdifusi dengan lebih mudah (permeabilitas gas tinggi). Untuk menghasilkan transport massa yang optimum, GDL dibuat bersifat porous tanpa terlalu menurunkan konduktivitas elektriknya. Berdasarkan praktek, GDL yang terlalu tipis tidak dapat memberikan kontak elektrik yang baik antara *current collector plate* dengan lapisan katalis, sementara GDL yang terlalu tebal menghasilkan hambatan listrik yang terlalu besar. Oleh karena itu, setiap jenis material yang digunakan sebagai GDL memiliki ketebalan optimum tertentu yang berbeda-beda (Mathur, 2009).

### b) Lapisan Katalis Anoda dan Katoda

Lapisan katalis pada PEMFC berada dalam kontak langsung dengan membran dan GDL. Lapisan katalis merupakan lokasi terjadinya reaksi setengah sel, baik pada katoda maupun anoda. Lapisan katalis tersebut dapat dilapiskan pada GDL ataupun pada membran, selama partikel-partikel katalis berada sedekat mungkin dengan membran. Hingga saat ini, platina masih merupakan katalis terbaik yang dapat digunakan pada PEMFC.

Reaksi reduksi oksigen atau *Oxygen Reduction Reaction* (ORR) adalah reaksi yang terdiri dari banyak reaksi elementer pada katoda. Kompleksnya jalur reaksi menjadikan ORR berjalan lambat. Salah satu parameternya adalah nilai *exchange current density*. *Exchange current density* ORR 10<sup>5</sup> kali lebih rendah daripada oksidasi oksigen. Perbedaan inilah yang menjadikan kinerja fuel cell sangat bergantung pada aktivitas katoda. Oleh sebab itu pengembangan elektroda PEMFC umumnya dilakukan pada katoda.Untuk menigkatkan aktivitas katoda maka penggunaan katalis harus ditingkatkan. Hal ini tidak saja meningkatkan kinerja tetapi juga mengurangi loading katalis Pt.

Reaksi yang terjadi pada anoda adalah hydrogen berubah menjadi ion hydrogen positif (proton) dan menarik electron. Katalis Pt yang digunakan untuk mempercepat kinetika reaksi. Harga Pt sangat mahal dan mudah teracuni CO (Tanaka, 2009) yang menyebabkan luas permukaan Pt semakin kecil.

### c) Membran

PEMFC menggunakan elektrolot dari membran berbahan polimer (PEM). Membran ini memiliki fungsi sebagai pembatas antara katoda dan anoda dan juga sebagai elektrolit. Sifat-sifat membran elektrolit penukar ion yang baik antara lain konduktivitas ionik yang tinggi, konduktivitas elektrik yang rendah, permeabilitas gas yang rendah, memiliki stabilitas dimensional dan kekuatan mekanis yang tinggi, ketahanan yang tinggi terhadap degradasi, dan memiliki stabilitas kimia terhadap oksidasi dan hidrolisis. (Dhathathreyan, et.al., 2009).

### 2.3.3 End Plate

*End plate* merupakan pelat penutup yang berfungsi sebagai penjepit kedua elektroda dan mengencangkan sel PEMFC. Pelat penutup pada *fuel cell stack* PEMFC berjumlah dua buah yang terdapat pada sisi anoda dan sisi katoda.

### 2.4 Degradasi Karbon Sebagai Penyangga Katalis

Degradasi terjadi karena korosi yang disebabkan oleh reaksi oksidasi elektrokimia yang dialami karbon pada kondisi operasi PEMFC sehingga karbon membentuk CO<sub>2</sub> dan oksida karbon lainnya ditunjukkan pada reaksi 2.1.

$$R-C_{surf}-H + 2H_2O \rightarrow R-H + CO_2(g) + 4H^+ + 4e^-$$
 (2.1)

Jika penyangga karbon teroksidasi menjadi CO<sub>2</sub>, struktur morfologi karbon penyangga akan berubah menyebabkan Pt ikut hilang dari penyangga karbon. Dengan demikian semakin banyak karbon yang teroksidasi, semakin banyak pula Pt yang hilang sehingga memicu terjadinya penurunan area aktif dan performa fuel cell.

$$C + 2H_2O \rightarrow CO_2 + 4H^+ + 4e^-$$
(2.2)

$$C + H_2O \rightarrow CO + 2H^+ + 2e^-$$
 (2.3)

Secara teoritis, mekanisme degradasi pada karbon diterangkan oleh persamaan 2.2 dan 2.3. Pada reaksi 2.2 dan 2.3 (Maass, 2007) karbon di anoda teroksidasi menjadi CO<sub>2</sub> ataupun CO akibat kekurangan hidrogen untuk menghasilkan elektron yang digunakan pada reaksi reduksi oksigen di katoda. Akibatnya karbon yang teroksidasi untuk memenuhi kebutuhan elektron pada katoda. Keberadaan air pada anoda memungkinkan karena oksigen seringkali dapat menembus lapisan membran elektrolit dan masuk kedalam anoda. Peristiwa tersebut juga memicu tegangan yang dihasilkan menjadi negatif akibat operasi *fuel cell* yang berbalik diantara elektroda sehingga reaksi serupa dapat terjadi pada katoda. Oksidasi pada permukaan juga dapat menghasilkan ikatan C-O (persamaan 2.4) pada karbon di permukaan dan dapat terjadi oksidasi lebih lanjut seperti yang ditunjukkan persamaan 2.5.

$$C + H_2O \rightarrow C - O_{ad} + 2H^+ + 2e^-$$
(2.4)

$$C-O_{ad} + H_2O \rightarrow CO_2 + 2H + +2e^-$$
(2.5)

Keberadaan partikel Pt juga mempercepat laju degradasi seperti yang ditunjukkan persamaan 2.6 berikut.

$$Pt-CO_{ad} + Pt-OH_{ad} \rightarrow Pt_2 + CO_2 + H^+ + e^-$$
(2.6)

Penggunaan struktur karbon selain *carbon black* dalam mendapatkan stabilitas kimia terhadap korosi diperlukan untuk meningkatkan durabilitas MEA yang dihasilkan. Wenzhen Li (2005) telah mempelopori penggunaan CNT sebagai penyangga katalis pada katoda untuk memperbaiki utilisasi Pt dan ketahanan lapisan katalis dari degradasi. Penelitian awal mereka yang mendeposisikan partikel Pt berukuran 4 nm pada CNT dapat menunjukkan peningkatan durabilitas *fuel cell*.

#### 2.5 Sintesis Alligned CNT

Penumbuhan langsung CNT pada permukaan kertas karbon umumnya menggunakan metode *chemical vapour decomposition* (CVD), ditunjukkan pada Gambar 2.3. Proses CVD merupakan reaksi dekomposisi katalitik hidrokarbon di dalam reaktor berbentuk *tube* pada temperatur 600-1200°C (Mukul, 2010), yang diikuti pertumbuhan karbon *nanotube* di permukaan katalis.



Gambar 2.3 Skema CVD (Yulianti, 2009)

Mekanismenya adalah pada mulanya gas inert dialirkan kedalam tube untuk membuat udara terdorong keluar dari reaktor karena diperlukan kondisi reaksi yang bebas oksigen dalam mempirolisis hidrokarbon prekursor. Setelah itu, gas sumber karbon yang dapat berupa gas (CH<sub>4</sub>, C<sub>2</sub>H<sub>2</sub>, LPG, dll.) dengan suhu reactor yang telah mencapai suhu pertumbuhan (suhu tinggi sekitar 600-1200°C), karbon akan melepaskan ikatannya dengan atom H dan terdekomposisi pada katalis di substrat. Dan kemudian tumbuh pada katalis dengan dua jenis penumbuhan bergantung pada jenis katalis ,yaitu *tip growth* dimana katalis berada diatas CNT yang terbentuk dan *base growth* yang menempatkan katalis di dasar CNT yang terbentuk (Mukul, 2010).

### a.) Tips growth model

*Tips Growth Model* terjadi apabila atom karbon yang terdeposisi pada permukaan logam melarut dalam logam dan berdifusi melalui partikel logam. Karbon yang berdifusi mengendap sebagai lapisan grafitik pada interface antara partikel logam dan support. Pembentukan lapisan ini melepaskan partikel metal dari support. Pembentukan karbon secara terus menerus ini menunjukkan pertumbuhan nanotube karbon dengan partikel logam yang terangkat ke ujung (tips) nanotube karbon.

#### *b.)* Base growth model

Base Growth Model hampir sama dengan tips growth model hanya saja pertumbuhan nanotube karbon terjadi pada partikel logam yang tetap menempel pada support. Model ini dipercaya terjadi karena partikel logam memiliki interaksi yang kuat dengan support sehingga tidak bisa dipisahkan oleh lapisan grafitik yang terbentuk pada interface logam dan support. Kedua jenis pertumbuhan ini dapat dilihat pada Gambar 2.4. berikut ini.



Gambar 2.4. Jenis model pertumbuhan CNT. (Mukul, 2010)

### 2.5.1 Metode Termal Pirolisis

Pirolisis termal atau dikenal dengan *metal organic* CVD (MOCVD) atau *floating catalyst* (FC-CVD) (Dupuis 2005). Merupakan salah satu metode yang paling pupuler dalam mensintesis CNT yang terorientasi dan memiliki densitas tinggi. FC-CVD melibatkan pirolisis dari organometallic precursor seperti Ferrocene (Zhang, 2008), iron (II) phthalocyanine (FePc), iron pentacarbonyl (Wang, 2001) nickelocene dan cobaltocene (Rao, 2002) untuk mennukleasi pertumbuhan carbon nanotube.

Dalam banyak kasus jumlah *carbon source* harus dilebihkan untuk meningkatkan rasio karbon terhadap katalis dan mencegah metal impurity dalam jumlah yang tinggi dalam CNT (Mukul, 2003). Sumber karbon yang digunakan bersamaan dengan ferrocene biasanya adalah benzene, naftalena, dan senyawa aromatic lainnya. Namun senyawa-senyawa hidrokarbon yang berat tersebut tidak optimum dikarenakan senyawa hidrokarbon yang berat tersebut akan terdeposit pada dinding reactor pada profil suhu yang rendah (Zhang, 2008). Dikarenakan hal tersebut maka senyawa hidrokarbon yang yang lebih ringan seperti etilen, asetilen, dan alkana lah yang saat ini sering digunakan (Seah, Choon-Ming, 2011).

Ada dua jenis reactor yang digunakan dalam penumbuhan CNT terorientasi ini yakni *double furnace* dan *single furnace*. Dalam *double furnace*, *furnace* pertama berfungsi untuk menguapkan dan mensublimasi precursor katalis, sedangkan *furnace* kedua dijaga pada temperature tinggi untukmenumbuhkan CNT. Salah satu permasalahan dalam reactor jenis ini adalah perbedaan gradient temperature yang terjadi antara *furnace* pertama dan kedua, yang menjadikan sulit untuk mengatur laju evaporasi untuk keseluruhan proses. Untuk *single-furnace setup* yang konvensional, hanya 1 high temperature furnace yang digunakan, campuran feed stock (katalis dan sumber karbon) dipanaskan pada heater sebelum dimasukan ke dalam reactor. Permasalahan pada single-furnace ini adalah mengontrol keseragaman partikel di dalam reactor.

Selain menggunakan dua buah furnace system *floating catalyst* juga dapat menggunakan *bubbler cylinder*. *Bubbler cylinder* juga memiliki tujuan yang sama dengan furnace pertama dalam system *floating catalyst*. Bentuk container bubbler ini sama seperti bentuk *gas washing bottle* sekaligus digunakan untuk melindungi katalis metalorganic dari udara sekitar. Di dalam tube gas inert masuk dan akan menciptakan gelembung (buble) jika yang diisikan berupa cairan, jika padatan maka akan menyublim, yang kemudian campuran gas carier inert dan metalorganic keluar bubler dan menuju reactor. Dengan begitu jika menggunakan bahan kimia yang mahal atau sensitive dapat dikendalikan dengan mengatur laju alir gas inert yang masuk dan temperature masuk gas menghasilkan tekanan uap dari bahan kimia tersebut. Laju alir katalis dalam bubbler dapat dihitung melalui persamaan 2.7 berikut ini (Engelhardt, Rolf., 2000)

$$Q_{MO}[mol/\min] = \frac{P_{MO}(T_{bub})[mbar] \times Q_{B}[ml/\min] \times \frac{P_{\text{standard}}[mbar]}{P_{B}[mbar]}}{8.314 \times 10^{4} \left[\frac{J}{K \, mol}\right] \times T_{bub}[K]}$$
(2.7)

Dimana  $Q_{mo}$  adalah laju alir *metalorganic* dalam mol/menit;  $P_{mo}$  adalah tekanan uap *metalorganic* pada temperature di bubbler; Qb adalah laju alir gas yang mengalir ke dalam bubbler (ml/menit);  $P_B$  adalah tekanan di dalam bubbler yang

berasal dari tekanan gas yang masuk ke dalam bubbler, tekanan ruangan bubbler, dan tekanan cairan metalorganic pada bubbler dalam mbar;  $P_{Standard}$  adalah tekanan standar 1 atm; dan  $T_{bub}$  adalah temperature yang di set pada bubbler dalam Kelvin.

#### 2.5.2 Pemilihan Katalis

Reaksi dekomposisi sebuah hidrokarbon merupakan reaksi yang sangat endotermis, sehingga diperlukan temperature yang sangat tinggi agar tercapai konversi maksimum. Temperature yang sangat tinggi ini tidak disukai dalam industri karena mengakibatkan tambahan biaya untuk kebutuhan energy dan biaya perawatan. Penambahan katalis kedalam rekasi memungkinkan tercapainya konversi yang maksimum pada temperature yang lebih rendah. Katalis untuk reaksi dekomposisi metana biasanya terdiri dari beberapa unsur penyusun. Unsur utamanya adalah inti aktif sedangkan unsur lainnya dapat berfungsi sebagai penyangga atau promotor.

Katalis yang paling banyak digunakan sebagai inti aktif dalam dekomposisi metana ini berasal dari logam transisi golongan VIII. Tetapi tidak semua logam tersebut menunjukan aktivitas yang baik untuk proses dekomposisi metana. Hal ini dapat dijelaskan dengan kurva *volcano* yang menggambarkan kekuatan dehidrogenasi logam golongan transisi sperti terlihat pada Gambar 2.5



Gambar 2.5. hubungan antara orbital kosong dengan aktivitas katalis pada reaksi dehidrogenasi etilen (kurva *volcano*) (Manggiasih, 2011).

Pemilihan katalis merupakan variable yang sangat penting dalam sintesis CNT karena bisa mempengaruhi laju dekomposisi karbon, yield, selektivitas dan kualitas produk. Inti aktif suatu katalis merupakan unsur utama penentu aktifitas katalis dalam reaksi. Dalam kurva diatas dapat dilihat bahwa logam Pd dan Rh terletak diatas kurva yang mengindikasikan kemampuan dehidrogenasinya tinggi. Tetapi karena dari aspek harga logam yersebut mahal, maka reaksi dekomposisi metana yang paling banyak dipakai adalah logam Ni, Co, dan Fe

Ferrocene adalah senyawa organometallic yang memiliki formula  $Fe(C_5H_5)_2$ . Merupakan salah satu prototipikal metalocene, sebuah tipe metal organic yang didalamnya tersusun ikatan dengan dua cincin cyclopentadienil yang terikat dengan posisi yang metal yang berada di diantara dua cincin tersebut. Senyawa organometallic seperti itu biasa dikenal dengan *sandwich compound* (Paulson, 2001).

Ferrocene telah banyak digunakan dalam berbagai percobaan untuk menumbuhkan CNT yang terorientasi. Tabel 2.1. berikut ini adalah rangkuman jurnal yang menggunakan Ferrocene untuk menumbuhkan CNT yang terorientasi.

|                          |                  |              |                 |                 |                   |           | Т                  |              |                       |                   |                    |        |
|--------------------------|------------------|--------------|-----------------|-----------------|-------------------|-----------|--------------------|--------------|-----------------------|-------------------|--------------------|--------|
| Peneliti                 | Sumber<br>karbon | Laju<br>alir | Carier<br>Gas 1 | Carier<br>gas 2 | Laju<br>Alir      | Katalis   | Furnace<br>Katalis | Substrat     | Temperatur<br>Reaktor | Waktu<br>sintesis | Metode             | Hasil  |
| C - ( - 1 - 1            | Methane          | 50 sccm      | Argon           | -               | 950 sccm          | Ferrocene | 350 C              | -            | 1100 C                | -                 | FC-CVD             | ACNT   |
| Satisnkumar              | acetylene        | 50 sccm      | Argon           | -               | 950 sccm          | Ferrocene | 350 C              | -            | 1100 C                | -                 | FC-CVD             | ACNT   |
| et al. (1999)            | n-Butane         | 50 sccm      | Argon           | -               | 950 sccm          | Ferrocene | 350 C              | -            | 1100 C                | -                 | FC-CVD             | ACNT   |
| Wang et al. (2009)       | Alkohol          | 200<br>sccm  | Argon           | -               | -                 | Ferrocene | -                  | Carbon Paper | 850 C                 | 5 menit           | Spray<br>Pyrolysis | VA-CNT |
| Saminathan et al. (2009) | Xylene           | -            | Argon           | -               | -                 | Ferrocene |                    | Carbon Paper | 800 C                 | -                 | CVD                | MWCNT  |
| Kannan et al.<br>(2009)  | Xylene           | 500sccm      | Argon           | -               | -                 | Ferrocene | -                  | Carbon Paper | 800 C                 | 30<br>menit       | injection<br>CVD   | MWCNT  |
| Atiyah et al.<br>(2010)  | Benzene          | -            | Argon           | Hidrogen        | 200 &<br>300 sccm | Ferrocene | 150 C              | Ceramic Boat | 570 C                 | -                 | FC-CVD             | MWCNT  |
|                          | Benzene          | -            | Argon           | Hidrogen        | 200 &<br>300 sccm | Ferrocene | 200 C              | Ceramic Boat | 570 C                 | -                 | FC-CVD             | MWCNT  |
|                          | Benzene          | -            | Argon           | Hidrogen        | 200 &<br>300 sccm | Ferrocene | 250 C              | Ceramic Boat | 570 C                 | -                 | FC-CVD             | MWCNT  |
|                          | Benzene          | -            | Argon           | Hidrogen        | 200 &<br>300 sccm | Ferrocene | 300 C              | Ceramic Boat | 570 C                 | -                 | FC-CVD             | MWCNT  |
|                          | Benzene          | -            | Argon           | Hidrogen        | 200 &<br>300 sccm | Ferrocene | 350 C              | Ceramic Boat | 570 C                 | -                 | FC-CVD             | VA-CNT |
|                          | Benzene          | -            | Argon           | Hidrogen        | 200 &<br>300 sccm | Ferrocene | 400 C              | Ceramic Boat | 570 C                 | -                 | FC-CVD             | VA-CNT |

 Tabel. 2.1.
 Penggunaan Ferrocene dalam menumbuhkan ACNT

Lanjutan

| Peneliti             | Sumber<br>karbon | Laju<br>alir | Carier<br>Gas 1 | Carier<br>gas 2 | Laju<br>Alir | Katalis   | T<br>Furnace<br>Katalis | Substrat                             | Temperatur<br>Reaktor | Waktu<br>sintesis | Metode           | Hasil          |
|----------------------|------------------|--------------|-----------------|-----------------|--------------|-----------|-------------------------|--------------------------------------|-----------------------|-------------------|------------------|----------------|
| Handuja et al (2010) | Xylene           | -            | Argon           | -               | -            | Ferrocene | )                       | untreated quartz                     | 900 C                 | -                 | injection<br>CVD | ACNT           |
| · · ·                | Xylene           | -            | Argon           | -               | -            | Ferrocene | -                       | Fe-Deposited<br>Quartz               | 900 C                 | -                 | injection<br>CVD | ACNT           |
|                      | Xylene           | -            | Argon           | -               |              | Ferrocene | -                       | HF-Treated<br>Silicon                | 900 C                 | -                 | injection<br>CVD | no CNT         |
|                      | Xylene           | -            | Argon           | -               | -            | Ferrocene |                         | Fe-Deposited<br>Silicon              | 900 C                 | -                 | injection<br>CVD | ACNT           |
|                      | Xylene           | -            | Argon           | -               | - 9          | Ferrocene | -                       | Silicon Oxide                        | 900 C                 | -                 | injection<br>CVD | ACNT           |
|                      | Xylene           | -            | Argon           | -               | -            | Ferrocene | -                       | Silicon Nitride<br>Deposited Silicon | 900 C                 | -                 | injection<br>CVD | ACNT           |
|                      | Xylene           | -            | Argon           |                 | -            | Ferrocene |                         | Copper                               | 900 C                 | -                 | injection<br>CVD | no CNT         |
|                      | Xylene           | -            | Argon           |                 |              | Ferrocene |                         | Stainles Stell<br>Mesh               | 900 C                 | -                 | injection<br>CVD | no<br>alligned |
|                      |                  |              |                 |                 | 2            |           |                         |                                      |                       |                   |                  |                |

#### 2.5.3 Pemilihan Sumber Karbon

Dalam penelitian ini digunakan gas metana (CH<sub>4</sub>) sebagai sumber karbon dalam mensintesis CNT. Pemilihan gas metana ini dikarenakan gas metana mudah didapatkan. Dikarenakan Indonesia merupakan Negara dengan kekayaan sumber daya alam gas yang sangat besar. Menurut Purwanto et al. (2011) dan Ermakova et al. (2000), metana merupakan komponen utama dari gas alam tersebut. Oleh sebab itu, gas metana mudah untuk didapatkan.

Selain itu, metana merupakan salah satu sumber karbon yang sering digunakan untuk membentuk *carbon nanotube* seperti dilakukan oleh beberapa pendahulu yakni Sutopo (2009) dan Manggiasih (2011), serta *aligned CNT* oleh Satishkumar (1999), Dang et al. (2006) dan Zhang et al. (2002).

### 2.5.4 Penggunaan CNT Sebagai Katalis Suport

*Carbon nanotube* menjadi material yang menarik dalam penggunaanya sebagai penyangga katalis dalam PEMFC. Karena beberapa sifatnya yang menarik tersebut, antara lain ukuran nanometer, luas area permukaan yang tinggi, ketahanan terhadap korosi, konduktivitas elektik yang baik, dan stabilitas yang tinggi.

Beberapa tahun terakhir, *carbon nano tube* (CNT) telah dipakai sebagai penyangga katalis yang menjanjikan dikarenakan sifatnya tersebut. Beberapa studi telah melaporkan bahwa dibandingkan *carbon black*, CNT memiliki ketahanan terhadap oksidasi elektrokimia yang lebih tinggi, strukturnya yang tertutup (menyerupai tabung) menjadikannya sulit untuk diserang atom-atom oksidan dari luar dan menjadikannya bersifat lebih stabil dalam kondisi yang oksidatif (Wang et. al, 2008).

Beberapa penelitian mengenai penggunaan CNT sebagai penyangga katalis telah dilakukan. Li et. al (2005) menggunakan CNT (MER corp. menggunakan *Catalytic* CVD MWNT dengan  $35 \pm 10$  nm diameter dengan panjang hingga 30 micron) pada PEMFC dengan metode etilen glikol untuk mendeposisikan katalis Pt pada CNT dan fitrasi menggunakan kertas saring nylon yang bersifat hidrofilik untuk mengatur agar CNT terorientasi tegak. Karena CNT bersifat hidrofobik, ketika disaring menggunakan filter yang bersifat hidrofilik akan terjadi penolakan antara kertas saring dan CNT sehingga CNT terorientasi

tegak. Dengan loading katalis sebesar 0.2 mg/cm<sup>2</sup>, kinerja yang dihasilkan cukup tinggi mendekati 2800 mW/mg katalis Pt pada peak tertinggi di 1500 A cm<sup>-2</sup>.

Xuguang Li (2006), menggunakan CNT yang diproduksi sendiri sendiri menggunakan metode CVD, kemudian deposisi katalis ke CNT dilakukan dengan metode staillized surfactant menggunakan precursor *hexachloroplatinic acid* (H<sub>2</sub>PtCl<sub>6</sub>) dan dilapiskan ke carbon paper menggunakan 2 layer, layer hidrofobik dan hidrofilik, dengan loading katalis 0.4 mg/cm<sup>2</sup>. Kinerja yang dihasilkan mendekati 2000 mW/mg katalis Pt pada peak tertinggi di 1500 A cm<sup>-2</sup>.

Kemudian A. Leela Mohana Reddy dan S. Ramaprabhu (2007) menggunakan CNT yang diproduksi sendiri menggunakan metode CVD. Lalu, deposisi katalis ke CNT menggunakan metode koloidal menggunakan precursor *hexachloroplatinic acid* (H<sub>2</sub>PtCl<sub>6</sub>) dan *catalyst ink* dideposisikan ke kertas carbon (Torray) menggunakan *spin coating*. Loading katalis yang digunakan sebesar 0.5 mg/cm<sup>2</sup>, menghasilkan kinerja sekitar 500 mW/mg katalis Pt pada peak tertinggi di 500 A cm<sup>-2</sup>.

Yu Chun Chiang et. Al (2011) menggunakan CNT yang diperoleh dari ConYuan Biochemical Technology Co (20-40 nm diameter dan panjang 5-15  $\mu$ m). Lalu deposisi katalis menggunakan metode koloidal etilen glikol dan *catalyst ink* dideposisikan ke membran nafion menggunakan metode *air-spray*. Loading katalis yang digunakan sebesar 0.4 mg/cm<sup>2</sup>, menghasilkan kinerja sekitar 2250 mW/mg katalis Pt pada peak tertinggi di 2000 A cm<sup>-2</sup>.

Gambar 2.6. menunjukan perbandingan kinerja pada penggunaan CNT sebagai penyangga katalis. Pada grafik tersebut, Li et. al (2005) menghasilkan power density per satuan berat katalis lebih tinggi dibandingkan dengan hasil penelitian lainnya, hal ini dikarenakan CNT yang digunakan Whenzen Li diorientasikan tegak lurus. Dengan CNT yang diorientasikan tegak lurus memiliki kelebihan diantaranya sifat konduktivitas yang lebih baik dan sifat hidrofobik yang lebih kuat sehingga dapat menolak air dalam katoda (Li et. al, 2005). Dibandingkan dengan Yun Chun Chiang (2011) yang sama menggunakan etilen

glikol namun deposisinya menggunakan air-spray, kinerjanya lebih rendah karena CNT yang digunakan tidak diorientasikan.



Gambar 2.6. Perbandingan kinerja pada beberapa referensi

### 2.6 Reaksi Dekomposisi Metana

Dekomposisi didefinisikan sebagai salah satu dari reaksi kimia yang menguraikan atau memutuskan ikatan rantai suatu senyawa menjadi unsur-unsur atau senyawa yang lebih sederhana. Definisi ini memiliki arti yang sama dengan perengkahan (*cracking*). Salah satu contohnya adalah dekomposisi metana (hidrokarbon yang paling stabil) yang dapat diartikan sebagai pemutusan ikatan H-C dari metana menjadi komponen yang lebih sederhana, yaitu hidrogen dan karbon. Pemilihan metana sebagai reaktan untuk produksi CNT dan hidrogen disebabkan karena metana merupakan hidrokarbon dengan perbandingan hidrogen/karbon yang paling tinggi. Selain itu, metana bisa didapat langsung dari alam tanpa harus diolah terlebih dahulu, sehingga mengurangi biaya produksi. Adapun reaksi dekomposisi metana atau *Methane Decomposition Reaction* (MDR) adalah sebagai berikut (Ermakova, 2000):

$$CH_4(g) \rightarrow C(s) + 2H_2(g) \quad \Delta H_{298} = +75 \text{ kJ/mol}$$
 (2.8)

Pada reaksi dekomposisi katalitik metana, sebuah molekul metana direngkah menjadi sebuah molekul karbon dan dua buah molekul hidrogen. Atom hidrogen putus satu persatu membentuk ion karbonium dan pada akhirnya didapatkan sebuah molekul atom karbon dan dua molekul hidrokarbon pada akhir reaksi. Produk *intermediate* dari reaksi ini tidak terdeteksi.

#### 2.7 Produk Reaksi Dekomposisi Metana

### 2.7.1 Hidrogen

Hidrogen merupakan zat yang sangat mudah terbakar. Dalam konsentrasi 4% di udara saja dapat menimbulkan reaksi pembakaran berikut (Muradov, 2001):

 $\mathbf{A}$ 

$$2 H_2(g) + O_2(g) \rightarrow 2 H_2O(l) \quad \Delta H = -286 \text{ kJ/mol}$$
 (2.9)

Dalam prosesnya pembakaran hydrogen ini memiliki kelebihan dibandingkan dengan pembakaran dengan menggunakan hidrokarbon, yakni hasil pembakarannya berupa air ( $H_2O$ ) bukan gas polutan  $CO_x$  serta pembakaraanya dapat dilakukan pada temperature ingisi yang lebih rendah disbanding pembakaran pada umumnya.

Gas hydrogen ini juga digunakan sebagai bahan bakar *Proton Exchange Membran Fuel Cell* (PEMFC). Namun ada syarat yang harus dipenuhi agar dapat digunakan yakni terbebas dari gas-gas pengotor (CO) karena gas tersebut dapat merusak katalis di anode pada sel bahan bakar. Dan kemurnian hydrogen yang digunakan dalam PEMFC ini harus mencapai 99% (Muradov, 2001).

Gas hydrogen murni dapat diproduksi dengan beberapa cara. Salah satunya dengan menelektrolisis air. Selain itu hydrogen dapat diperoleh juga dari bahan baku gas bumi (metana) melalui reaksi *methane reforming*, oksidasi parsial metana, dan reformasi CO<sub>2</sub>/metana. Selain itu bisa juga dengan *methane decomposition reaction* (MDR). Dalam proses MDR tidak terbentuk CO<sub>2</sub> dan CO.

### 2.7.2 Nanokarbon

Nanokarbon ddideskripsikan sebagai material karbon yang dibuat dengan skala ukuran nanometer. Berdasarkan bentuknya nanokarbon dibagi menjadi 3 jenis, yaitu *fullerene* (bulat), *carbon nano fiber* yang berbentuk seperti serabut, dan *carbon nanotube* yang berbentuk tabung.

*Carbon nanotube* (CNT) adalah suatu rangkaian karbon berbentuk tabung yang berukuran nano. CNT memiliki sifat-sifat yang baik sehingga berpotensi untuk digunakan pada berbagai aplikasi dalam nanoteknologi, elektronik, optik,
dan lainnya. CNT memiliki kekuatan yang luar biasa dan sifat elektrik yang unik serta merupakan konduktor panas yang efisien. Namun, penggunaan CNT cukup terbatas karena berpotensi menimbulkan keracunan.

Berdasarkan jumlah penyusun dindingnya, CNT dibagi menjadi dua jenis, yaitu *Single Walled Nanotube* (SWNT) dan *Multi Walled Nanotube* (MWNT). CNT secara umum dapat dibagi menjadi 2 jenis yaitu :

1. Single-Walled Carbon nanotube (SWNT)

Jenis karbon nanotube berdiameter antara 0.4 nm dan 2.5 nm dengan panjang beberapa mikrometer sampai beberapa milimeter. Karbon nanotube jenis SWNT memiliki 3 jenis bentuk struktur yang berbeda antara lain: *armchair type, zig-zag type*, dan *helical type*.

2. Multi-Walled Carbon nanotube (MWNT)

Karbon nanotube jenis ini merupakan SWNT yang tersusun secara aksial konsentris dengan jarak antara SWNT yang satu dengan yang lainnya sebesar 0.34 nm. Jumlah lapisan yang terdapat MWNT bervariasi dari dua sampai beberapa puluh lapisan, sehingga memungkinkan diameter eksternalnya mencapai 100 nm. Jenis MWNT lebih banyak diaplikasikan untuk *fuel cell* karena sifat konduktivitas elektriknya yang lebih tinggi dan biaya pembuatannya yang lebih rendah (Wang, 2004)

CNT memiliki kekuatan yang luar biasa dan sifat elektrik yang unik serta merupakan konduktor panas yang efisien. CNT ini dapat dimanfaatkan sebagai pengganti dari penggunaan Carbon Vulcan X72. Tujuannya adalah mengatasi masalah degradasi katalis Pt dan meningkatkan kualitas konduktifitas lapisan elektroda. Pembuktian durabilitas CNT telah dilakukan dengan potensiostatic treatment yang dilakukan selama 168 jam pada Pt yang disangga oleh CNT maupun karbon Vulcan XC-72. Uji tersebut menunjukkan bahwa CNT memiliki oksida permukaan yang lebih sedikit dari Vulcan XC-72. Beberapa kelebihan lain CNT jika dibandingkan dengan *carbon black* Vulcan XC-72 antara lain (O'Connell, 2006):

1. CNT memiliki kekuatan yang jauh lebih tinggi dari *carbon black* karena ikatan antar atom karbon pada CNT merupakan salah satu ikatan terkuat di alam.

Ikatan tersebut menyebabkan CNT memiliki modulus Young dan yield strenght yang tinggi

- 2. CNT memiliki konduktivitas elektrik yang tinggi
- 3. Konduktivitas termal CNT pada suhu ruang mencapai 6000 W/mK

#### 2.8 SEM (Scanning Electron Microscopy)

Elektron Microscopy (EM) adalah salah satu teknik yang digunakan untuk karakterisasi material komposit. Dua teknik utama EM dibedakan menjadi Scanning Elektron Microscopy (SEM) dan Transmission Elektron Microscopy (TEM). Karakterisasi SEM bertujuan untuk mengetahui struktur permukaan (morfologi), porositas, serta ketebalan suatu specimen. Prinsip dasar proses ini adalah dengan menembakkan elektron ke permukaan spesimen yang ingin dianalisis. Penembakan elektron tersebut menghasilkan sinyal berupa transmisi elektron yang akanmemberikan kondisi gambar dari daerah spesimen yang ditembakkan. Bentuk transmisi elektron tersebut ada menyebar sehingga mampu menghasilkan gambar yang terang, dan ada juga yang penyebaranya tidak elastik sehingga menghasilkan gambar yang gelap.

Metode mikroskopi dapat secara cepat menunjukkan ukuran nominal dan bentuk serat. Permukaan spesimen yang akan diuji, di-*scan* dengan pancaran berkas elektron dan pantulan dari elektron ditangkap, kemudian ditampilkan di atas tabung sinar katoda. Bayangan yang tampak diatas *layer* menampilkan gambaran permukaan dari spesimen.

# BAB 3 METODOLOGI PENELITIAN

#### 3.1 Rancangan Penelitian

Penelitian akan dilakukan di laboratorium rekayasa produk kimia dan bahan alam (RPKA) Departemen Teknik Kimia FTUI Depok.

Adapun diagram alir penelitian adalah sebagai berikut :



Gambar 3.1. Diagram Alir Penelitian

## 3.2 Alat dan Bahan Penelitian

Peralatan yang digunakan selama penelitan dapat dilihat pada Tabel 3.1.

| Tabel 3.1 Peralatan yang digunakan selama peneli | tian |
|--------------------------------------------------|------|
|--------------------------------------------------|------|

| No | Alat                              | Kegunaan                                                                                                                 |
|----|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| 1  | Bubbler                           | Untuk melelahkan katalis ferrocene                                                                                       |
| 2  | Spatula besi                      | Untuk mengambil katalis <i>ferrocene</i> pada saat penimbangan                                                           |
| 3  | Beaker Glass                      | Wadah untuk pre-treatment carbon paper                                                                                   |
| 4  | Pinset                            | Untuk menahan Carbon paper pada saat treatment                                                                           |
| 5  | Pinset                            | Untuk mengambil mengambil substrat yang telah ditumbuhi <i>carbon nanotube</i> hasil reaksi dekomposisi katalitik metana |
| 6  | Timbangan digital                 | Untuk menimbang berat <i>carbon nanotube</i> yang diperoleh serta katalis yang diperlukan                                |
| 7  | Cawan keramik                     | Sebagai wadah untuk menimbang katalis yang akan digunakan                                                                |
| 8  | Stop watch                        | Untuk menghitung waktu operasi                                                                                           |
| 9  | Flowmeter                         | Alat untuk mengukur laju alir gas yang masuk                                                                             |
| 10 | Quartz, Tube                      | Reaktor tempat berlangsungnya reaksi dekomposisi katalitik metana                                                        |
| 11 | Digital<br>Atmospheric<br>Furnace | Alat untuk memanaskan reaktor hingga suhu reaksi yang ditentukan                                                         |
| 13 | GC (Gas<br>Chromatography)        | Alat untuk menganalisis hasil gas keluaran                                                                               |
| 14 | Thermocouple                      | Untuk mengukur suhu pada reaktor                                                                                         |
| 15 | Alat SEM                          | Alat untuk melihat orientasi dari carbon nanotube yang diperoleh                                                         |

Sementara itu, bahan-bahan yang akan digunakan selama penelitian dapat dilihat pada Tabel 3.2.

| No | Bahan                                                        | Kegunaan                                                                                                      | Keterangan          |
|----|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------|
| 1  | Ferrocene (Fe(C <sub>2</sub> H <sub>5</sub> ) <sub>2</sub> ) | Katalis untuk menumbuhkan<br>carbon nanotube                                                                  | Sigma Aldrich       |
| 2  | Asam Nitrat (HNO <sub>3</sub> )                              | Untuk <i>pre-treatment</i> substrat<br><i>carbon paper</i>                                                    | 67% Merck           |
| 3  | Asam Sulfat (H <sub>2</sub> SO <sub>4</sub> )                | Untuk pre-treatment substrat<br>carbon paper                                                                  | 98% Merck           |
| 4  | Aseton (CH <sub>3</sub> COCH <sub>3</sub> )                  | Untuk pre-treatment substrat carbon paper                                                                     | Lab DTK UI          |
| 5  | Carbon paper                                                 | Substrat untuk penumbuhan carbon nanotube                                                                     | Toray<br>Industries |
| 6  | Gas metana (CH <sub>4</sub> )                                | Sebagai reaktan dalam reaksi<br>dekomposisi katalitik metana                                                  | Lab DTK UI          |
| 8  | Gas Nitrogen (N <sub>2</sub> )                               | Untuk membersihkan reaktor<br>dari udara serta pembawa<br>katalis <i>nickelocene</i> masuk<br>kedalam reaktor | Lab DTK UI          |
|    |                                                              |                                                                                                               |                     |

Tabel 3.2 Bahan yang digunakan selama penelitian

#### 3.3 Rincian Kegiatan Penelitian

Tahap 1 : Set-Up Rangkaian Peralatan

Merangkai peralatan yang akan digunakan lalu menghubungkan : tabung gas, mass flow meter, mas flow controller, bubler, reactor, dan GC.

Rangkaian peralatan seperti Gambar 3.2. berikut ini :



Tahap 2 : Kalibrasi Peralatan.

Sebelum percobaan dijalankan, dilakukan kalibrasi kromatografi gas dan kalibrasi flowmeter. Kalibrasi kromatografi gas dilakukan untuk menentukan retention time dari gas umpan dan gas produk dan juga kuantitas gas yang dihasilkan. Kalibrasi kromatografi gas ini dilakukan dengan menginjeksikan langsung gas ke GC dengan menggunakan syringe dan dengan melewatkan gas melalui reactor kosong lalu ke GC.

Kalibrasi flowmeter dilakukan untuk mengetahui laju alir yang sebenarnya dari angka yang tertera di flowmeter. Kalibrasi dilakukan dengan mengalirkan gas inert (Nitrogen atau Argon) ke buble soap sesuai laju alir yang tertera di flowmeter. Lamanya waktu yang dibutuhkan oleh gelembung udara untuk melewati volume tertentu dalat dikonversikan menjadi besaran laju alir.

Universitas Indonesia

Tahap 3 : Preparasi Carbon Paper

Dalam tahap ini carbon paper yang akan digunakan sebagai substrat yang akan ditumbuhkan carbon nanotube di treatmen untuk menghilangkan pengotor, dan meningkatkan interaksi antara katalis dengan substrat:

- 1) Membuat campuran larutan asam sulfat dengan asam nitrat
- Carbon paper dibersihkan dengan aseton dengan ultrasonikasi selama 10 menit kemudian dikeringkan pada temperature ruang.
- Rendam carbon paper yang telah dibersihkan ke dalam larutan asam sulfat/asam nitrat (Volume 1:3) selama 30 menit pada suhu 80°C. selama 30 menit
- 4) Bilas carbon paper dengan deionisized water sebanyak 3 kali
- Mengeringkan carbon paper pada oven pada temperature 150°C selama 2 jam

Tahap 4 : Sintesis In Situ CNT pada Carbon Paper

Tahapannya adalah

- Menimbang berat carbon paper sebelum dimasukan ke dalam reactor kuarsa
- 2) Memasukan carbon paper yang telah ditimbang beratnya ke dalam reactor.
- 3) Memasukan katalis Ferrocene ( $Fe(C_5H_5)_2$ ) ke dalam bubler. Kemudian memanaskan ferrocne hingga suhu 200°C.
- Mengalirkan gas inert (N<sub>2</sub>) ke dalam reactor untuk menghilangkan pengotor selama 30 menit. Dan menset temperature reaksi pada 700°C
- Mengalirkan umpan metana dengan laju alir 20 sccm, gas argon 200sccm dan hydrogen 10 sccm.
- Mengambil data laju alir produk, komposisi gas produk dalam periode 6 menit dalam 1 jam.
- Mendinginkan suhu furnace hingga carbon paper dapat diambil dengan tetap mengalirkan gas argon untuk membantu proses pendinginan
- Menimbang berat carbon paper setelah selesai produksi dan reaksi dihentikan, menghitung berat carbon nanotube yang terbentuk dan menempel pada carbon paper.
- 9) Menyimpan carbon paper untuk selanjutnya dilakukan pengujian SEM.

 Mengulangi percobaan dari poin 7 dengan temperatur reaktor 800°C dan 900°C

# Tahap 5 : Pengujian SEM dan Jumlah CNT yang terbentuk

Perhitungan CNT yang terbentuk

a. Perhitungan konversi reaktor

$$X_{CH_4} = \frac{\left[(CH_4 in) - (CH_4 out)\right]}{(CH_4 in)} \times 100\%$$
(3.1)

Konversi dihitung berdasarkan mol CH<sub>4</sub> yang masuk ke dalam reactor dan mol CH<sub>4</sub> yang keluar berdasarkan komposisi gas keluaran dan laju alir keluar gas

| b. Me | enghitung berat CNT yang telah terbentuk pada carbon paper.               |       |
|-------|---------------------------------------------------------------------------|-------|
| Wa    | carbon = (Wsubstrat akhir) – (Wsubstrat awal)                             | (3.2) |
| c. Me | enghitung Yield Carbon yakni dengan                                       |       |
| Yie   | $Pld Carbon = \frac{massa \ karbon \ yang \ dihasilkan}{massa \ katalis}$ | (3.3) |

d. Menghitung carbon losses yang terjadi

% Carbon Loss = 
$$\frac{Berat \ karbon \ teori-berat \ karbon \ aktual}{Berat \ karbon \ teori}$$
 (3.4)

Berat CNT teoritis dihitung berdasarkan data laju alir dan komposisi gas produk yang dihitung secara stoikiometri berdsarkan konversi reaksi tiap satuan waktu sedangkan berat CNT actual adalah berat CNT yang terbentuk pada substrat ditambah berat partikulat pada filter (jika ada, dan diasumsikan sebagai partikulat karbon)

Pengujian SEM

Melihat orientasi CNT yang dihasilkan dengan menggunakan SEM, dimana akan didapat bukti terbentuknya A-CNT berupa gambaran orientasi pertumbuhan A-CNT.

# BAB 4 HASIL DAN PEMBAHASAN

#### 4.1 Uji Panjang Efektif Reaktor

Uji panjang efektif reactor perlu dilakukan untuk mengetahui letak dimanakah substrat akan diletakan, dimana pada posisi tersebut temperature hampir seragam dengan temperature kondisi operasi yang diinginkan. Karena reaksi dekomposisi metana merupakan reaksi endotermik yang membutuhkan suhu tinggi, maka panjang reaktor efektif harus diketahui dengan mengukur temperature di sepanjang reactor yang dipanasi oleh *furnace* ketika proses reaksi terjadi. Pengukuran dilakukan dengan menggunakan termokopel yang digerakan setiap 1 cm sepanjang reactor.

Dari hasil pengujian suhu di dalam reaktor ini, panjang efektif reaktor adalah 12 cm yang berada di tengah furnace yang memiliki panjang 40 cm, seperti yang terlihat pada Gambar 4.1. atau dengan kata lain posisi substrat diletakan 13 cm dari ujung masuk *furnace* di kiri, dan berjarak 16 cm dari kanan *furnace*. Kisaran temperature pada panjang efektif ini adalah 683-702°C.





#### 4.2 Preparasi Karbon Paper

Preparasi carbon paper dilakukan untuk mentreatmen permukaan carbon paper dengan menambahkan gugus fungsi agar inti katalis Ferrocene yaitu Fe dapat merekat dengan kuat. Treatmen yang diberikan adalah pertama dengan membersihkan permukaan carbon paper terlebih dahulu dengan merendam carbon paper di dalam pelarut organic (aseton) selama 10 menit dan di keringkan dalam suhu ruang. Kemudian carbon paper direndam di dalam campuran H<sub>2</sub>SO<sub>4</sub>/HNO<sub>3</sub> bersuhu 80°C (perbandingan volume 1:3). Kemudian carbon paper dibilas menggunakan air demin dan di keringkan di dalam oven pada suhu 120°C, seperti yang dapat dilihat pada Gambar 4.2. dan Gambar 4.3. berikut ini.



Gambar 4.2. carbon paper yang telah dipotong



Gambar 4.3. Acid Treatment pada carbon paper

Pertama *carbon paper* dipotong dengan ukuran 3 cm x 6 cm, ukuran ini disesuaikan dengan diameter masukan dari reaktor. Kemudian melakukan perendaman pertama di dalam aseton. Perendaman pertama dalam aseton bertujuan untuk menghilangkan pengotor yang kemungkinan menempel pada permukaan carbon paper seperti minyak, debu dan partikulat-partikulat lainnya.

Kemudian setelah direndam dalam aseton selama 10 menit dan dikeringkan *carbon paper* dimasukan ke dalam campuran asam (H<sub>2</sub>SO<sub>4</sub>/HNO<sub>3</sub>). Di dalam campuran asam nitrat dengan asam sulfat yang akan bertujuan untuk menambahkan gugus fungsi oksigen pada permukaan carbon paper adalah untuk meningkatkan *metal-suport interaction* antara carbon paper dengan katalis sehingga katalis dapat terdispersi lebih merata pada carbon paper.

#### **4.3 Pengaruh Temperatur**

Jumlah katalis yang dimasukan ke dalam bubbler untuk pengujian ini sama yakni sekitar 5 gram. Namun secara teoritis katalis yang mengalir masuk sebesar 0.07 g/min. Dalam hasil percobaan laju alir katalis relative sama akan tetapi panas dari katalis ketika uji pada temperatur 700°C dilakukan tidak stabil sehingga tidak berada tepat pada suhu 200°C. Dengan jumlah katalis yang dijaga sama, begitu pula laju alir untuk menjaga laju alir katalis untuk masuk ke dalam reactor.

#### 4.3.1 Pengaruh Temperatur Terhadap Konversi

Hasil eksperimen menggambarkan pengaruh temperature reaksi terhadap konversi yang digambarkan dalam Gambar 4.4. berikut ini:



Gambar 4.4. Profil Konversi metana terhadap waktu

Pada pengujian dengan temperature 700°C konversi metana tertinggi adalah 37.23%, dengan konversi rata-rata 36.19%. sedangkan pada pengujian dengan temperature 800°C, konversi metana tertinggi adalah 46.50% dengan konversi rata-rata 47.57%, dan pada pengujian dengan temperature 900°C

konversi tertinggi adalah 50.99% dengan konversi rata-rata 42.94%. adapun konversi secara teoritis dengan pendekatan kesetimbangan teoritis secara termodinamik pada tekanan 1 atmosfer dan temperature 700 °C, 800 °C, 900 °C secara berturut-turut adalah 91.86%, 97.18%, dan 98.95%. Profil konversi rata-rata dapat dilihat pada Gambar 4.5. berikut ini.



Gambar 4.5. Profil konversi rata-rata metana terhadap temperature

Terlihat bahwa semakin tinggi temperatur, maka konversi reaksi akan meningkat. Hal ini dikarenakan reaksi dekomposisi metana merupakan reaksi endotermik sehingga peningkatan temperatur mengakibatkan konversi semakin tinggi. Profil konversi metana menurun pada suhu 800°C dan 900°C, hal ini dapat diakibatkan karena pada suhu tinggi laju difusi metana ke dalam katalis lebih cepat sehingga metana akan semakin banyak yang masuk ke dalam katalis yang menyebabkan sisi aktif katalis akan berkurang akibat deposit atom C hasil dekomposisi metana sehingga konversi menurun. Akan tetapi nilai konversi yang menunjukan peningkatan seiring dengan peningkatan suhu.

Selain hal tersebut dapat pula terjadi deaktivasi katalis. Deaktivasi kemungkinan terjadi dikarenakan sintering. Berdasarkan temperatur Huttig dan Raman, yaitu 0.3 atau 0,5 titik lebur, inti aktif ferrocene yakni Fe memiliki titik

lebur 1537.85 °C maka temperature operasi seharusnya berada diantara 461.355 °C hingga 768.965°C. Untuk uji pada temperature 700°C konversinya cukup stabil dan nilainya tidak begitu jauh dari konversi rata-rata hal ini dikarenakan temperatur operasinya tidak melebihi temperature sintering berbeda dengan uji pada temperature 800°C dan 900°C yang konversinya menurun seiring dengan bertambahnya waktu.

Jika dibandingkan dengan konversi kesetimbangan termodinamik nilai ini berbeda sangat jauh. Hal ini dapat disebabkan dikarenakan jumlah aliran metana lebih banyak. Metana yang pada suhu tinggi dapat menyebabkan sisi aktif permukaan katalis tertutup akibat laju difusi metana ke dalam katalis semakin besar sehingga kemampuan katalis untuk mengkonversi semakin rendah (Zhang, 2002). Selain itu juga dapat disebabkan karena proses yang digunakan adalah *floating katalis*, dimana sumber karbon dan katalis selalu mengalir pada laju tertentu menyebabkan aliran katalis dan sumber karbon tidak menerima panas reaktor secara sempurna. Sehingga aliran katalis dan sumber karbon memiliki temperatur yang lebih rendah dibandingkan temperature pada dinding reaktor yang menyebabkan konversi menjadi lebih rendah.

#### 4.3.2 Pengaruh Temperatur terhadap yield karbon

Berdasarkan penelitian didapatkan bahwa untuk proses sintesis selama 30 menit, yield karbon yang terbentuk pada T = 800 °C lebih besar dibandingkan T = 700 °C dan 900 °C. Yield carbon pada temperatur 700 °C sebanyak 0.001133 g karbon/g katalis, temperature 800 °C sebanyak 0.0034 g karbon/g katalis dan temperature 900 °C sebanyak 0.004 g karbon/ g katalis. Nilai yield carbon ini sesuai dengan konversi metana untuk setiap temperature uji. Jumlah katalis disini yang dimaksud adalah jumlah katalis total yang masuk ke dalam reactor dihitung berdasarkan perhitungan laju alir katalis yang masuk. Sedangkan jumlah karbon yang terbentuk dihitung berdasarkan jumlah karbon yang terbentuk pada carbon paper. Perbandingan yield karbon dapat dilihat pada Gambar 4.6 berikut ini.



Gambar 4.6. Perbandingan yield karbon terhadap temperature

Jumlah gram carbon yang terbentuk pada carbon paper ini bernilai rendah dikarenakan salah satunya adalah deposisi katalis pada carbon paper yang rendah, karena menggunakan FCCVD. Pada FCCVD tidak semua katalis akan terdeposisi pada substrat sebagian akan menempel pada dinding reactor, dalam penelitian ini terdapat deposit katalis pada ujung keluaran reactor untuk setiap temperatur uji. Sehingga treatment substrat akan sangat mempengaruhi deposisi katalis pada substrat.

Pada temperature 700°C nilai yield nya terendah diakibatkan oleh jumlah karbon yang terbentuk jauh lebih sedikit. Hal ini diakibatkan jumlah katalis pada temperature 700°C ini lebih rendah dikarenakan laju alir katalis yang masuk ke dalam reactor lebih sedikit jika dibandingkan dengan jumlah katalis yang masuk pada temperature 800°C dan 900°C diakibatkan penurunan suhu pada bubbler. Sehingga katalis yang terdeposisi pada substrat pada temperatur 700°C lebih sedikit.

#### 4.4 Carbon Loss

Carbon loss pada pada 700°C sebesar 98,73 %, pada temperature 800°C sebesar 96.11% dan 900°C sebesar 96.61%. Carbon loss ini dihitung berdasarkan jumlah karbon yang terbentuk pada carbon paper terhadap karbon teoritis yang dihitung secara stoikiometri dari laju alir masuk dan keluaran carbon. Nilai yang

besar ini dapat dikarenakan katalis yang terdeposisi pada permukaan carbon paper tidak sebanyak yang mengalir di dalam reactor. Sehingga jumlah karbon yang terbentuk pada carbon paper ini berjumlah sangat sedikit (0.0034 gram hingga 0.01 gram). Selebihnya karbon paper terbentuk pada ujung reactor dan di dinding reactor. Seperti pada Gambar 4.7. Berikut ini.



Gambar 4.7. Deposit karbon pada ujung keluaran reactor.

## 4.5 Perbandingan Karakterisasi Menggunakan SEM

Karakterisasi dilakukan melalui SEM dengan tujuan untuk melihat morfologi dari hasil sintesis pada carbon paper ini. Karakterisasi dilakukan langsung pada hasil carbon paper yang sudah telah ditumbuhkan CNT, dan yang belum ditumbuhkan pada Gambar 4.8 hingga Gambar 4.11.



Gambar 4.8. Morfologi carbon paper yang belum ditumbuhkan dengan perbesaran 10000x



**Gambar 4.9.** Morfologi *carbon paper* setelah sintesis pada temperature 700°C dengan perbesaran (a) 10000x; (b)50000x.

**Universitas Indonesia** 



**Gambar 4.10.** Morfologi *carbon paper* setelah sintesis pada temperature 800°C dengan perbesaran (a) 10000x; (b)50000x;



**Gambar 4.11.** Morfologi *carbon paper* setelah sintesis pada temperature 900°C dengan perbesaran (a) 10000x; (b)10000x;

Hasil SEM ini diambil pada perbesaran 10000x, dan 50000x, dengan hasil SEM *carbon paper* yang belum ditumbuhkan pada perbesaran 10000x sebagai pembanding. Pada temperature 700°C yang teramati pada gambar SEM dengan

perbesaran dari 10000x adalah serat dari *carbon paper* dimana disekelilingnya terdapat karbon-karbon hasil dekomposisi metana. Pada perbesaran 50000x tidak terdapat CNT yang terbentuk namun partikel karbon yang berukuran nano yang jumlahnya lebih banyak. Hasil SEM pada temperature sintesis 800°C juga diambil pada perbesaran 10000x, 50000x. pada semua perbesaran jenis karbon yang terbentuk adalah VACNT. Dan pada temperature 900°C untuk perbesaran 10000x hanya sedikit carbon nanotube yang terbentuk dan sisanya adalah partikel-partikel karbon yang berukuran nano.

Dari Gambar 4.9 – 4.11 dapat diamati bahwa VACNT tidak terbentuk pada carbon paper yang temperature penumbuhannya 700°C serta karbon yang terdeteksi pada SEM ini hanya partikel-partikel karbon berukuran nano yang tersebar pada permukaan carbon paper. Tidak terbentuknya carbon nanotube ini dapat dikarenakan oleh beberapa hal, salah satunya adalah partikel katalis yang memiliki ukuran terlalu besar. Ukuran katalis yang besar ini dapat disebabkan karena katalis pada permukaan *carbon paper* mengaglomerasi atau menggumpal membentuk katalis dengan ukuran partikel yang lebih besar pada permukaan carbon paper. Selain itu agglomerasi katalis ini juga dapat dikarenakan interaksi antara substrat dan katalis tidak terlalu kuat sehinnga katalis-katalis yang telah terdeposisi pada carbon paper akan saling berinteraksi membentuk katalis yang lebih besar. Ukuran partikel yang lebih besar tidak diinginkan dalam proses penumbuhan CNT, karena luasan aktif akan semakin kecil dan yang terbentuk bukanlah CNT melainkan serbuk karbon dalam ukuran nanopartikel. Ukuran partikel katalis yang besar ini juga mempengaruhi hasil konversi. Seperti ditunjukan pada Gambar 4.5 dimana konversi tertinggi tidak mendekati hasil perhitungan konversi secara termodinamik. Dikarenakan ukuran partikel yang besar memiliki luasan aktif yang lebih sedikit sehingga metana yang dapat terkonversi pada katalis akan semakin sedikit dan mengakibatkan konversi menurun.

Untuk temperature sintesis pada 800°C dan 900°C terdapat VACNT. Vertically aligned carbon nanotube yang terbentuk pada temperature sintesis 800°C terlihat lebih banyak jika dibandingkan dengan yang terbentuk pada temperatur sintesis 900°C, hal ini dapat dikarenakan terjadi aglomerasi katalis pada *carbon paper* akibat peningkatan suhu reaktor (sintering). Diameter rata-rata dari VACNT yang terbentuk pada kedua temperature ini adalah 35 nm, dengan panjang sekitar 10 µm.

Hasil yang terbentuk ini masih kurang efektif untuk digunakan pada aplikasi fuel cell. Hal ini dikarenakan densitas CNT yang terbentuk sangat sedikit yang menyebabkan katalis Pt yang akan terdeposisi akan terlalu sedikit sehingga performa akan menurun. Selain itu rasio diameter terhadap panjang CNT yang relatif masih besar dikarenakan panjang CNT yang terbentuk tergolong rendah. Jika dibandingkan dengan penelitian Whenzen Li (2005) beliau menggunakan CNT dengan OD dan panjang, secara berurutan,  $35\pm10$  nm dan 30 µm, dengan rasio diameter yang lebih kecil dan ukuran panjang yang lebih maka katalis yang dapat dideposisikan pada CNT akan lebih banyak dalam luasan area tertentu sehingga performa *fuel cell* akan lebih meningkat.



# BAB 5 KESIMPULAN DAN SARAN

#### 5.1 Kesimpulan

a). Konversi metana dalam proses sintesis in situ VACNT pada carbon paper naik seiring dengan naiknya suhu temperature operasi. Pada pengujian dengan temperature 700°C konversi metana tertinggi adalah 37.23%, dengan konversi rata-rata 36.19%. sedangkan pada pengujian dengan temperature 800°C, konversi metana tertinggi adalah 46.50% dengan konversi rata-rata 47.57%, dan pada pengujian dengan temperature 900°C konversi tertinggi adalah 50.99% dengan konversi rata-rata 42.94%. Variasi Temperatur tidak terlalu mempengaruhi yield carbon karena yield karbon pada sintesis in situ pada carbon paper ini dipengaruhi oleh proses deposisi katalis pada carbon paper dikarenakan sistem yang digunakan bersifat FCCVD dimana katalis melayang di dalam reactor dan ada kemungkinan untuk menempel pada dinding reactor yang menyebabkan karbon loss yang besar. Carbon loss pada pada 700°C sebesar 98,73 %, pada temperature 800°C sebesar 96.11% dan 900°C sebesar 96.61%.

b). Hasil uji SEM menunjukan terjadi pertumbuhan carbon nanotube pada *carbon paper* pada temperature uji 800°C dan 900°C dengan OD dan panjang secara berturut-turut adalah 35 nm dan 10 µm. Pada temperatur 700°C tidak terjadi penumbuhan hal ini dapat dikarenakan katalis yang terdeposisi pada *carbon paper* mengalami aglomerasi sehingga ukuran partikel katalis menjadi lebih besar sehingga tidak mendukung pertumbuhan CNT.

c). Hasil yang terbentuk ini masih kurang efektif untuk digunakan pada aplikasi fuel cell. Dikarenakan densitas CNT yang terbentuk masih rendah dan rasio diameter dan panjang yang masih besar.

## 5.2 Saran

Saran untuk penelitian berikutnya adalah

- Perbaikan proses treatment pada carbon paper agar katalis lebih banyak terdeposisi pada carbon paper.
- Pengaturan jumlah katalis yang masuk ke dalam reactor diperbaiki sehingga metana yang terkonversi dan yield carbon lebih banyak.
- Pengaturan profil suhu antara furnace reactor dan pemanas pada katalis sehingga kemungkinan katalis mengaglomerat, dikarenakan penurunan suhu sebelum memasuki reactor, menjadi lebih sedikit.



### **DAFTAR PUSTAKA**

- Afianty, Anisa. (2007). Uji kinerja reaktor dengan katalis terstruktur untuk reaksi dekomposisi katalitik metana. Depok: Departemen Teknik Kimia Universitas Indonesia.
- Anggraini, Dewi. (2010). Pengembangan Kinerja Polymer Electrolyte Membrane Fuel cell melalui Fabrikasi Membrane Electrode Assembly dengan CNT sebagai Penyangga Katalis. Depok: Departemen Teknik Kimia Universitas Indonesia.
- Atiyah, M.R. et al. (2010). Low Temperature Growth of Vertically Aligned Carbon Nanotubes via Floating Catalyst Chemical Vapor Deposition Method. J. Mater. Sci. Technol 27(4), 296-300.
- Chen, Allan. (18 April 2008). Modeling to Build a Better Fuel Cell. 31 mei 2012. http://newscenter.lbl.gov/feature-stories/2008/04/18/modeling-to-build-abetter-fuel-cell/.
- Dang, C., dan T. Wang. (2006). Study on effects of substrate temperature on growth and structure of alignment carbon nanotubes in plasma-enhanced hot filament chemical vapor deposition system. *Appl. Surface Science*, 253, 904-908.
- Dhathathreyan, K.S. dan N. Rajalakshmi. (2009). Polymer Electrolyte Membrane Fuel Cell. New Delhi: Anamaya Publisher.
- Dupuis AC. (2005). The catalyst in the CCVD of carbon nanotubes –a review. Prog. Mater Science. 50(8):929–6.
- Ermakova, M.A., D.Y. Ermakov, dan G.G. Kuvshinov. (2000). Effective catalysts for direct cracking of methane to produce hydrogen and filamentous carbon Part I. Nickel catalysts. *Appl. Catal. A*, 201, 61-70.

- Energy Information Association (EIA). (2010). Key International Energy Outlook 2010. USA: EIA
- Engelhardt, Rolf. (2000). Metal organic vapor phase epitaxy and laser applications of CdSe Zn (s, Se) quantum dots. Thesis of University of Berlin: 31-32.
- Handuja, Sangeeta. P. Srivastava dan V. D. Vankar. (2010). On the Growth and Microstructure of Carbon Nanotubes Grown by Thermal Chemical Vapor Deposition. Nanoscale Res Lett 5: 1211–1216.
- Hoogers, G. (2003). Fuel cell Technology Handbook. New York: CRC Press.
- Kannan et al. (2009). Development of carbon nanotubes based gas diffusion layers by in situ chemical vapor deposition process for proton exchange membrane fuel cells. Journal of Power Sources 192 (2009) 297–303.
- Lamy, C. et al. (2002). Recent Advance in the Development of Direct Alcohol Fuel Cell. Journal Power Source, 105(2): 283-296.
- Li, W., Wang, X., Chen, Z., & Waje, M. (2005). CNT Film by Filtration as Cathode Catalyst Support for Proton-Exchange Membrane Fuel cell.
- Manggiasih, A. (2011). Perbandingan Kinerja Katalis Terstruktur Fe dan Ni Berpenyangga MgO untuk Sintesis Nanotube Karbon Melalui Reaksi Dekomposisi Katalitik Metana. Skripsi, Departemen Teknik Kimia Universitas Indonesia, Depok.
- Mass, S., Finsterwalder, F., & Frank, G. (2007). Carbon support oxidation in PEM fuel cell cathodes. *Journal of Power Source*.Wenzhen Li (2005)
- Mathur, Virendra, K. dan Crawford, J. (2009). Fundamentals of Gas Diffusion Layers in PEM Fuel cells. New Delhi: Anamaya Publishers.
- Mukul, Kumar dan Ando, Yoshinori. A simple method of producing aligned carbon nanotubes from an unconventional precursor Camphor. Chem Phys Lett 2003;374(5–6):521–6.

- Mukul, Kumar. dan Ando, Yoshinori. 2010. Chemical Vapor Deposition of Carbon Nanotubes: A Review on Growth Mechanism and Mass Production. Journal of Nanoscience and Nanotechnology Vol. 10, 3739–3758, 2010
- Muradov, N. (2001). Catalyst of Methane Decomposition Over Elemental Carbon. Catalyst Communication 2, 89-94.
- O'Connel, Michael J. (2006). Carbon Nanotubes: Property and Application. London: Taylor and Francis.
- Pauson, P. L. (2001). Ferrocene-how it all began. J. Organometal Chemistry. 637–639:
- Purwanto, W.W., P.P.Wulan, dan Y. Muharam. (2011). Intrinsic Kinetik Model for Catalytic Deposition of Methane to Produce Carbon Nanotubes on Ni-Cu-Al Catalyst. Departemen Teknik Kimia Universitas Indonesia, Depok.
- Rao, C.N.R., A, Govindaraj. (2002). Carbon nanotubes from organometallic precursors. Acc Chem Res 35(12):998–1007.
- Reddy, A. Leela Mohana., Ramaprabhu, S. (2007). Design and Fabrication of Carbon Nanotube-Based Microfuel Cell and Fuel Cell Stack Coupled With Hydrogen Storage Device. J. of Hydrogen Energy 32(17): 4272-4278.
- Saminathan et al. (2009). Preparation and evaluation of electrodeposited platinum nanoparticles on in situ carbon nanotubes grown carbon paper for proton exchange membrane fuel cells. J. of hydrogen energy 34: 3838–3844
- Satishkumar , B.C., A. Govindaraj, C.N.R. Rao. (1999). Bundles of aligned carbon nanotubes obtained by the pyrolysis of ferrocene–hydrocarbon mixtures: role of the metal nanoparticles produced in situ. Chemical Physics Letters 307: 158–162.
- Seah, Choon-Ming, (2011). Synthesis of aligned carbon nanotubes. Carbon 49 (2011) 4613 4635.

- Sutopo, F. (2009). Scale-up reaktor katalis terstruktur gauze skala pilot untuk produksi hidrogen dan nanokarbon melalui reaksi dekomposisi katalitik metana. Skripsi, Departemen Teknik Kimia Universitas Indonesia, Depok.
- Tanaka, Kenichi et al. (2009). A CO-Tolerant Hydrogen Fuel Cell System Designed by Combining with an Extremely Active Pt/CNT Catalyst. Cat. Letter, 127:148-151.
- Tang, Z., Poh, C. K., & Tian, Z. (2011). In situ Grown CNTs on Carbon Paper as Integrated Gas Diffusion and Catalyst Layer for PEMFC. Electrochimica Acta.
- Wang, Z.-B., Zuo, P.-J., & Chu, Y.-Y. (2009). Durability Studies on Performance Degradation of Pt/C Catalysts of Proton Exchange Membrane Fuel cell. International Journal of Hydrogen Energy.
- Wang, C., Waje, M., & Wang, X. (2004). Proton Exchange Membrane Fuel cells with CNT Based Electrodes. Nano Letters 4 (2), pp 345–348
- Wang, X., Liu, Y., dan Zhu, D. (2001). Controlled growth of well-alignedcarbon nanotubes with large diameters. Chem Phys Lett;340(5–6):419–24.
- Xuguang Li, I.-Ming Hsing. (2006). The effect of the Pt deposition method and the support on Pt dispersion on carbon nanotubes. Electrochimica Acta 51: 5250–5258.
- Yuan, Xiao-Zi dan Haijang Wang. (2005). PEM Fuel Cell Fundamentals. New York: Elsevier Academic Press.
- Yu-Chun Chiang, dan Jhao-Ruei Ciou. (2011). Effect of Surface Chemical States of Carbon Nanotubes Suported Pt Nanoparticles on Performance of Proton Exchange Membrane Fuel Cells. J. Hydrogen Energy 36(11): 6826-6831.
- Yulianti, Dwi. (2009). Pengaruh Space Time, Temperatur, dan Rasio Umpan Terhadap Kinerja Reaktor Gauze Untuk Memproduksi Hidrogen dan Nanokarbon Melalui Reaksi Dekomposisi Metana. Depok: Departemen Teknik Kimia Universitas Indonesia.

- Zhang, Xianfeng, et al. (2002). Rapid growth of well-aligned carbon nanotube arrays. Chem Phys Lett 362(3–4):285–90.
- Zhang, W.D., Y. Wen, S.M. Liu, W.C. Tjiu, G.Q. Xu, dan L.M. Gan. (2002). Synthesis of vertically aligned carbon nanotubes on metal deposited quartz plates. *Carbon*, 40, 1981-1989.
- Zhang, Q, et al. (2008). Radial growth of vertically aligned carbon nanotube arraysfrom ethylene on ceramic spheres. Carbon 2008;46(8):1152–8.
- Zhang, H., Liang E, Ding P, dan Chao M. (2003).Layered growth of aligned carbon nanotube arrays by pyrolysis. Phys B: Condens Mat; 337(1–4):10–



## Lampiran A. Kalibrasi Rotameter Untuk Aliran Nitrogen (N<sub>2</sub>)

| set<br>flow<br>rate | volum<br>buble<br>soap (cc) | waktu<br>(s) | laju alir<br>per detik | laju alir<br>per menit | Rata Laju<br>(ml/min) | Rata Laju<br>alir (ml/min) | Laju alir (l/h) | Rata Laju<br>(L/h) |
|---------------------|-----------------------------|--------------|------------------------|------------------------|-----------------------|----------------------------|-----------------|--------------------|
|                     | 10                          | 6.79         | 1.472754               | 88.36524               | 96.05926              |                            | 1 427620        |                    |
|                     | 10                          | 7.13         | 1.402525               | 84.15147               | 86.25836              |                            | 1.43/639        |                    |
|                     | 20                          | 14.82        | 1.349528               | 80.97166               | 86 20240              |                            | 1 420875        |                    |
| 100                 | 20                          | 13.07        | 1.530222               | 91.81331               | 80.39249              | 85 47088                   | 1.439075        | 1 424515           |
| 100                 | 30                          | 20.16        | 1.488095               | 89.28571               | 00.2052               | 05.47000                   | 1 470000        | 1.424515           |
|                     | 30                          | 20.66        | 1.452081               | 87.12488               | 88.2053               |                            | 1.470088        |                    |
|                     | 40                          | 25.7         | 1.55642                | 93.38521               | 81 02727              |                            | 1 250456        |                    |
|                     | 40                          | 34.95        | 1.144492               | 68.66953               | 81.02737              |                            | 1.330430        |                    |
|                     | 10                          | 3.09         | 3.236246               | 194.1748               | 100.9274              |                            | 2 190622        |                    |
|                     | 10                          | 3.2          | 3.125                  | 187.5                  | 190.8374              |                            | 3.180623        |                    |
|                     | 20                          | 7.07         | 2.828854               | 169.7313               | 172 2202              |                            | 0.970152        |                    |
| 200                 | 20                          | 6.86         | 2.915452               | 174.9271               | 172.3292              | 171 7626                   | 2.872135        | 2 862727           |
| 200                 | 30                          | 11.9         | 2.521008               | 151.2605               | 152 2505              | 1/1./050                   | 2 555841        | 2.802727           |
|                     | 30                          | 11.58        | 2.590674               | 155.4404               | 155.3505              |                            | 2.555841        |                    |
|                     | 40                          | 13.54        | 2.95421                | 177.2526               | 170 5276              |                            | 2.842202        |                    |
|                     | 40                          | 14.65        | 2.730375               | 163.8225               | 170.5376              |                            | 2.842295        |                    |
|                     | 10                          | 2.19         | 4.56621                | 273.9726               | 255 5624              |                            | 4 25020         |                    |
|                     | 10                          | 2.53         | 3.952569               | 237.1542               | 233.3034              |                            | 4.23939         |                    |
|                     | 20                          | 4.57         | 4.376368               | 262.5821               | 261 1612              |                            | 1 252696        |                    |
| 200                 | 20                          | 4.62         | 4.329004               | 259.7403               | 201.1012              | 261 0245                   | 4.552080        | 4 265 400          |
| 300                 | 30                          | 6.88         | 4.360465               | 261.6279               | 262 5572              | 201.9245                   | 4 202622        | 4.303409           |
|                     | 30                          | 6.78         | 4.424779               | 265.4867               | 205.5575              |                            | 4.392022        |                    |
|                     | 40                          | 8.93         | 4.479283               | 268.757                | 267 4162              |                            | 4 45 60 27      |                    |
|                     | 40                          | 9.02         | 4.43459                | 266.0754               | 207.4102              |                            | 4.430937        |                    |

Tabel A.1. Kalibrasi laju alir rotameter untuk aliran nitrogen

| 10 1.65 6.060606 363.6364   10 1.70 5.882353 352.9412   20 3.35 5.970149 358.209   20 3.41 5.865103 351.9062   30 5.12 5.859375 351.5625   356.5041 5.941736                   |     |    |      |          |          |          |          |          |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|------|----------|----------|----------|----------|----------|----------|
| 10 1.70 5.882353 352.9412 5.97148   20 3.35 5.970149 358.209 355.0576 5.917626   400 20 3.41 5.865103 351.9062 359.8537 5.997561   30 5.12 5.859375 351.5625 356.5041 5.941736 |     | 10 | 1.65 | 6.060606 | 363.6364 |          |          |          |          |
| 20   3.35   5.970149   358.209   355.0576   5.917626     400   3.41   5.865103   351.9062   359.8537   5.997561     30   5.12   5.859375   351.5625   356.5041   5.941736      |     | 10 | 1.70 | 5.882353 | 352.9412 | 358.2888 |          | 5.97148  |          |
| 400 20 3.41 5.865103 351.9062 359.8537 5.997561<br>30 5.12 5.859375 351.5625 356.5041 5.941736                                                                                 |     | 20 | 3.35 | 5.970149 | 358.209  | 055.0556 |          | 5.015/0/ | 5.997561 |
| 30 5.12 5.859375 351.5625<br>356.5041 5.941736                                                                                                                                 | 400 | 20 | 3.41 | 5.865103 | 351.9062 | 355.0576 | 359 8537 | 5.917626 |          |
| 550.5041 5.941750                                                                                                                                                              |     | 30 | 5.12 | 5.859375 | 351.5625 | 256 5041 |          | 5.941736 |          |
| 30 4.98 6.024096 361.4458                                                                                                                                                      |     | 30 | 4.98 | 6.024096 | 361.4458 | 350.5041 |          |          |          |
| 40 6.57 6.08828 365.2968                                                                                                                                                       |     | 40 | 6.57 | 6.08828  | 365.2968 | 260 5642 |          | 6 150405 |          |
| 40 6.42 6.23053 373.8318 6.139405                                                                                                                                              |     | 40 | 6.42 | 6.23053  | 373.8318 | 309.3043 |          | 0.139403 |          |



Gambar A.1. Grafik kalibrasi rotameter untuk aliran nitrogen

(Lanjutan)

## Lampiran B. Kalibrasi Rotameter untuk aliran metana pada 50 sccm

| set flow<br>rate | volum<br>buble<br>soap<br>(cc) | waktu<br>(s) | laju alir<br>per<br>detik | laju alir<br>per<br>menit | Rata<br>Laju<br>(cc/min) | Rata<br>laju alir<br>(cc/min) | Laju<br>alir (l/h) | Rata<br>Laju<br>(L/h) |
|------------------|--------------------------------|--------------|---------------------------|---------------------------|--------------------------|-------------------------------|--------------------|-----------------------|
| 50               | 10                             | 12           | 0.833333                  | 50                        | 52 82021                 |                               | 0 000 100          |                       |
| 50               | 10                             | 10.78        | 0.927644                  | 55.65863                  | 32.82931                 |                               | 0.880489           |                       |
| 50               | 20                             | 21.28        | 0.93985                   | 56.39098                  | 56 10070                 |                               | 0.040510           |                       |
| 50               | 20                             | 21.25        | 0.941176                  | 56.47059                  | 56.43078                 |                               | 0.940513           |                       |
| 50               | 30                             | 31.88        | 0.941029                  | 56.46173                  | 52 04515                 | 55.39073                      | 0.00000            | 0.923179              |
| 50               | 30                             | 35           | 0.857143                  | 51.42857                  | 53.94515                 |                               | 0.899086           |                       |
| 50               | 40                             | 40.15        | 0.996264                  | 59.77584                  |                          |                               |                    |                       |
| 50               | 40                             | 42.15        | 0.948992                  | 56.9395                   | 58.35767                 |                               | 0.972628           |                       |
|                  |                                |              | 2                         |                           |                          |                               |                    |                       |

Tabel B.1. Kalibrasi rotameter untuk aliran metana pada 50 sccm.



### Lampiran C. Data kalibrasi Gas Kromatografi



Gambar C.1. Grafik kalibrasi GC untuk gas CH<sub>4</sub>, H<sub>2</sub>, CO, dan CO<sub>2</sub>

Tabel C.1 RRF untuk senyawa CH<sub>4</sub>, H<sub>2</sub>, CO, dan CO<sub>2</sub>

| Gas | <b>Response Factor</b> | RRF    | Dengan T injection dan T coloum secara berurutan adalah 130°C dan 100°C |
|-----|------------------------|--------|-------------------------------------------------------------------------|
| CH4 | 1,091,292.00           | 1.0000 |                                                                         |
| H2  | 3,403,728.50           | 3.1190 |                                                                         |
| CO  | 379,810.33             | 0.3480 |                                                                         |
| CO2 | 312,349.50             | 0.2862 |                                                                         |

| Volumo (mI.) | Concentration |         |           | <b>Retention Time</b> |       |       | Peak Area |         |         | Mean    |       |            |
|--------------|---------------|---------|-----------|-----------------------|-------|-------|-----------|---------|---------|---------|-------|------------|
| volume (mL)  | C1            | C2      | <b>C3</b> | τ1                    | τ2    | τ3    | PA1       | PA2     | PA3     | С       | τ     | PA         |
| 0.20         | 93.8752       | 93.3349 | 93.9616   | 1.952                 | 1.962 | 1.942 | 205221    | 201909  | 206172  | 93.7239 | 1.952 | 204434.00  |
| 0.40         | 95.7398       | 95.5568 | 95.7590   | 1.897                 | 1.905 | 1.898 | 421493    | 417640  | 414880  | 95.6852 | 1.900 | 418004.33  |
| 0.60         | 96.6521       | 96.4973 | 96.4360   | 1.838                 | 1.848 | 1.840 | 640125    | 628851  | 637703  | 96.5285 | 1.842 | 635559.67  |
| 0.80         | 97.7376       | 97.4195 | 97.0473   | 1.808                 | 1.782 | 1.825 | 857689    | 855218  | 840430  | 97.4015 | 1.805 | 851112.33  |
| 1.00         | 98.8074       | 98.2743 | 97.9668   | 1.775                 | 1.792 | 1.762 | 1081922   | 1085587 | 1070007 | 98.3495 | 1.776 | 1079172.00 |
|              |               |         |           |                       |       |       |           |         |         | 96.338  | 1.855 | 637656.467 |

2015

## Kalibrasi Metana (CH<sub>4</sub>).

Kalibrasi Hidrogen (H<sub>2</sub>).

|             | Concentration |          |         | Retention Time |       |       | Peak Area |         |         | Mean    |       |             |  |
|-------------|---------------|----------|---------|----------------|-------|-------|-----------|---------|---------|---------|-------|-------------|--|
| volume (mL) | C1            | C2       | C3      | τ1             | τ2    | τ3    | PA1       | PA2     | PA3     | С       | τ     | PA          |  |
| 0.20        | 98.9790       | 97.3880  | 98.8654 | 0.490          | 0.488 | 0.483 | 847330    | 840200  | 846444  | 98.4108 | 0.487 | 844658.00   |  |
| 0.40        | 99.5089       | 99.4365  | 99.4869 | 0.512          | 0.500 | 0.512 | 1615006   | 1598597 | 1613167 | 99.4774 | 0.508 | 1608923.33  |  |
| 0.60        | 99.5542       | 99.4579  | 99.7442 | 0.520          | 0.517 | 0.525 | 2307318   | 2302490 | 2324798 | 99.5854 | 0.521 | 2311535.33  |  |
| 0.80        | 99.7999       | 100.0000 | 99.6508 | 0.533          | 0.540 | 0.533 | 2958471   | 2984837 | 2974549 | 99.8169 | 0.535 | 2972619.00  |  |
| 1.00        | 100.0000      | 97.7834  | 99.7264 | 0.563          | 0.550 | 0.545 | 3622041   | 3486635 | 3590940 | 99.1699 | 0.553 | 3566538.67  |  |
|             |               |          |         |                |       |       |           |         |         | 99.292  | 0.521 | 2260854.867 |  |

| Volumo (mI ) | Concentration |         |           | <b>Retention Time</b> |       |       | Peak Area |        |        | Mean    |       |            |
|--------------|---------------|---------|-----------|-----------------------|-------|-------|-----------|--------|--------|---------|-------|------------|
| volume (mL)  | C1            | C2      | <b>C3</b> | τ1                    | τ2    | τ3    | PA1       | PA2    | PA3    | С       | τ     | PA         |
| 0.20         | 94.6946       | 94.8031 | 94.9066   | 1.067                 | 1.062 | 1.053 | 76099     | 76623  | 78256  | 94.8014 | 1.061 | 76992.67   |
| 0.40         | 96.5132       | 96.5064 | 96.3697   | 1.047                 | 1.043 | 1.050 | 154633    | 154812 | 153801 | 96.4631 | 1.047 | 154415.33  |
| 0.60         | 97.1090       | 97.0512 | 97.0863   | 1.023                 | 1.028 | 1.033 | 231852    | 230460 | 232048 | 97.0822 | 1.028 | 231453.33  |
| 0.80         | 97.3623       | 97.3637 | 97.3682   | 1.025                 | 1.018 | 1.023 | 305871    | 306026 | 306725 | 97.3647 | 1.022 | 306207.33  |
| 1.00         | 98.2887       | 97.6218 | 97.4528   | 0.995                 | 0.997 | 1.002 | 386172    | 380816 | 375733 | 97.7878 | 0.998 | 380907.00  |
|              |               |         |           |                       |       |       |           |        |        | 96.700  | 1.031 | 229995.133 |

Kalibrasi Karbon Monoksida (CO).



Kalibrasi Karbon Dioksida (CO<sub>2</sub>).

| Volumo (mI.) | Concentration |         |         | Retention Time |       |       | Peak Area |        |        | Mean    |       |            |  |
|--------------|---------------|---------|---------|----------------|-------|-------|-----------|--------|--------|---------|-------|------------|--|
| volume (mL)  | C1            | C2      | C3      | τ1             | τ2    | τ3    | PA1       | PA2    | PA3    | С       | τ     | PA         |  |
| 0.20         | 98.6191       | 96.4425 | 96.2104 | 3.903          | 3.913 | 3.915 | 63540     | 66172  | 63713  | 97.0907 | 3.910 | 64475.00   |  |
| 0.40         | 96.7262       | 96.8238 | 96.5709 | 3.820          | 3.812 | 3.808 | 126924    | 129472 | 128292 | 96.7070 | 3.813 | 128229.33  |  |
| 0.60         | 97.3180       | 97.5190 | 97.5657 | 3.725          | 3.720 | 3.723 | 191070    | 193725 | 189037 | 97.4676 | 3.723 | 191277.33  |  |
| 0.80         | 97.8091       | 97.9745 | 98.0147 | 3.637          | 3.642 | 3.648 | 253696    | 251931 | 254248 | 97.9328 | 3.642 | 253291.67  |  |
| 1.00         | 99.2107       | 98.2460 | 98.2874 | 3.583          | 3.613 | 3.563 | 316924    | 309007 | 316949 | 98.5814 | 3.586 | 314293.33  |  |
|              |               |         |         |                |       |       |           |        |        | 97.556  | 3.735 | 190313.333 |  |

55

$$Q CH_{4} = 53.39 \text{ ml/min} \\ Q N_{2} = 85.47 \text{ ml/min} \\ Q N_{2} = 85.47 \text{ ml/min} \\ P_{10} (200 \,^{\circ}\text{C} (473.15 \,^{\circ}\text{K})) \\ Q_{MO} [mol / \min] = \frac{P_{MO} (T_{bub}) [mbar] \times Q_{B} [ml / \min] \times \frac{P_{standad} [mbar]}{P_{B} [mbar]} \\ 8.314 \times 10^{4} \left[\frac{J}{K mol}\right] \times T_{bub} [K] \\ \text{Mr Ferrocene} = 186.03 \text{ g/mol} \\ P_{nother} = 2 + P_{mo} \text{ bar} \\ P_{standard} = 1 \text{ bar} \\ \text{Tekanan Uap Ferrocene} (P_{mo}) : \\ \text{Log}(p) = B - A/T \\ \text{Dimana A} = 12.92; \text{ dan B} = 3856.3 \\ Log(p) = 3856.3 - \frac{12.92}{473.15} \\ p = 39242.42 \,^{\circ}Pa = 392.4242 \,^{\circ}mbar \\ \text{Maka laju alir katalis adalah} \\ Q_{MO} [mol / \min] = \frac{392.4242 [mbar] \times 138.86[ml / \min] \times \frac{1000[mbar]}{(2000 + 392.4242)[mbar]} \\ 8.314 \times 10^{4} \left[\frac{J}{K mol}\right] \times 473.15[K] \\ Q_{MO} [mol / \min] = 0.000417 mol / \min \\ = 0.0776 gram / \min \\ = 2.3280 \,^{\circ}gram / 30 \,^{\circ}min \\ \end{array}$$

- $Q CH_4 = 53.39 ml/min$
- $Q N_2 = 68.03 \text{ ml/min}$
- P = 1 atm
- T = 300 K

R = 0.082057 atm m3/kmol.K

|                  |                | ¥7 - 1                   | Output                     |                           |                                       |          | Peak Area Kor   |                   | mposisi gas (y, %) |          | Out molar flow rate<br>(mol/h) |    |                 |          | Konversi<br>CH4 (%) |    |     |          |
|------------------|----------------|--------------------------|----------------------------|---------------------------|---------------------------------------|----------|-----------------|-------------------|--------------------|----------|--------------------------------|----|-----------------|----------|---------------------|----|-----|----------|
| Waktu<br>(menit) | Waktu<br>(jam) | volume<br>bubble<br>(ml) | Waktu<br>bubble<br>(detik) | flow<br>total<br>(ml/min) | flow non<br>carier<br>gas<br>(ml/min) | mol/hr   | CH <sub>4</sub> | H <sub>2</sub> CO | CO <sub>2</sub>    | CH4      | H <sub>2</sub>                 | со | CO <sub>2</sub> | CH4      | H2                  | со | CO2 |          |
| 0                | 0              | 50                       |                            |                           |                                       |          |                 |                   |                    |          |                                |    |                 |          |                     |    |     |          |
| 5                | 0.083333       | 10                       | 5.21                       | 115.1631                  | 47.12992                              | 0.114623 | 582118          | 206984            |                    | 0.737697 | 0.262303                       | 0  | 0               | 0.084557 | 0.030066            | 0  | 0   | 37.23129 |
| 10               | 0.166667       | 10                       | 5.15                       | 116.5049                  | 48.47162                              | 0.117886 | 600560          | 202060            | C                  | 0.748249 | 0.251751                       | 0  | 0               | 0.088208 | 0.029678            | 0  | 0   | 34.52091 |
| 15               | 0.25           | 10                       | 5.25                       | 114.2857                  | 46.25248                              | 0.112489 | 601087          | 194787            | C                  | 0.755254 | 0.244746                       | 0  | 0               | 0.084958 | 0.027531            | 0  | 0   | 36.93379 |
| 20               | 0.333333       | 10                       | 5.21                       | 115.1631                  | 47.12992                              | 0.114623 | 596911          | 199547            | C                  | 0.749457 | 0.250543                       | 0  | 0               | 0.085905 | 0.028718            | 0  | 0   | 36.23065 |
| 25               | 0.416667       | 10                       | 5.19                       | 115.6069                  | 47.57371                              | 0.115702 | 592828          | 200267            | C                  | 0.747487 | 0.252513                       | 0  | 0               | 0.086486 | 0.029216            | 0  | 0   | 35.7994  |
| 30               | 0.5            | 10                       | 5.2                        | 115.3846                  | 47.35138                              | 0.115161 | 574495          | 198441            | C                  | 0.743263 | 0.256737                       | 0  | 0               | 0.085595 | 0.029566            | 0  | 0   | 36.46046 |
|                  |                |                          |                            |                           |                                       |          |                 | Rata-rata         |                    |          |                                |    |                 |          |                     |    |     | 36.19608 |

| Tabel E.1. | Perhitungan | konversi | metana | pada T | $\Gamma = 700$ | °( |
|------------|-------------|----------|--------|--------|----------------|----|
|            |             |          |        |        |                |    |

(lanjutan)

|                         | NERACA MA                | SSA CARBON         |                     | Carbon teoritis [CH4]           | 0.2680          |
|-------------------------|--------------------------|--------------------|---------------------|---------------------------------|-----------------|
| laju masuk<br>(gram/hr) | laju keluar<br>(gram/hr) | Akumulasi<br>masuk | Akumulasi<br>keluar | Carbon hasil<br>Carbon Loss (%) | 0.0034<br>98.73 |
| 1.616542095             | 1.014682604              | 0.067355921        | 0.042278442         |                                 | ノ               |
| 1.616542095             | 1.058497039              | 0.134711841        | 0.086382485         |                                 |                 |
| 1.616542095             | 1.019491785              | 0.134711841        | 0.086582868         |                                 |                 |
| 1.616542095             | 1.030858446              | 0.134711841        | 0.08543126          |                                 |                 |
| 1.616542095             | 1.037829789              | 0.134711841        | 0.086195343         |                                 |                 |
| 1.616542095             | 1.027143343              | 0.134711841        | 0.086040547         |                                 |                 |
| Akun                    | nulasi                   | 0.740915127        | 0.472910945         |                                 |                 |
| Sel                     | Selisih                  |                    | 004182              | 101                             |                 |
|                         |                          |                    |                     |                                 |                 |

**Tabel E.2.** Neraca Massa Karbon Pada  $T = 700^{\circ}C$
- $Q CH_4 = 53.39 ml/min$
- $Q N_2 = 68.03 \text{ ml/min}$
- P = 1 atm
- T = 300 K
- R = 0.082057 atm m3/kmol.K

|                       |                | Volume<br>bubble<br>(ml) | Output                     |                           |                                       |          |        | Peak Area Komposisi gas (y, |        |          | ( <b>y, %</b> ) | , %) Out molar flow rate<br>(mol/h) |     |          |          | Konversi<br>CH4<br>(%) |     |          |
|-----------------------|----------------|--------------------------|----------------------------|---------------------------|---------------------------------------|----------|--------|-----------------------------|--------|----------|-----------------|-------------------------------------|-----|----------|----------|------------------------|-----|----------|
| waktu w<br>(menit) (j | Waktu<br>(jam) |                          | Waktu<br>bubble<br>(detik) | flow<br>total<br>(ml/min) | flow non<br>carier<br>gas<br>(ml/min) | mol/hr   | CH4    | H2                          | CO CO2 | CH4      | H2              | CO                                  | CO2 | CH4      | H2       | CO                     | CO2 |          |
| 0                     | 0              | 50                       |                            |                           |                                       |          | 716    |                             |        |          |                 |                                     |     |          |          |                        |     |          |
| 5                     | 0.083333       | 10                       | 5.21                       | 115.1631                  | 45.41302                              | 0.110447 | 527516 | 280944                      |        | 0.652495 | 0.347505        | 0                                   | 0   | 0.072066 | 0.038381 | 0                      | 0   | 46.50341 |
| 10                    | 0.166667       | 10                       | 5.17                       | 116.0542                  | 46.30403                              | 0.112614 | 576301 | 298701                      |        | 0.658628 | 0.341372        | 0                                   | 0   | 0.074171 | 0.038443 | 0                      | 0   | 44.94107 |
| 15                    | 0.25           | 10                       | 5.11                       | 117.4168                  | 47.6667                               | 0.115928 | 518628 | 272007                      |        | 0.655964 | 0.344036        | 0                                   | 0   | 0.076045 | 0.039884 | 0                      | 0   | 43.55004 |
| 20                    | 0.333333       | 10                       | 5.1                        | 117.6471                  | 47.89693                              | 0.116488 | 548279 | 269836                      |        | 0.670174 | 0.329826        | 0                                   | 0   | 0.078067 | 0.038421 | 0                      | 0   | 42.04865 |
| 25                    | 0.416667       | 10                       | 5.13                       | 116.9591                  | 47.20894                              | 0.114815 | 533390 | 265138                      |        | 0.667967 | 0.332033        | 0                                   | 0   | 0.076693 | 0.038122 | 0                      | 0   | 43.06916 |
| 30                    | 0.5            | 10                       | 5.13                       | 116.9591                  | 47.20894                              | 0.114815 | 535871 | 242612                      |        | 0.688353 | 0.311647        | 0                                   | 0   | 0.079033 | 0.035782 | 0                      | 0   | 41.33164 |
|                       |                |                          |                            |                           |                                       |          |        | Rata-rata                   |        |          |                 |                                     |     |          |          |                        |     | 43.5740  |

## **Tabel F.1.** Perhitungan konversi metana pada $T = 800^{\circ}C$

(lanjutan)

|                         | NERACA MA                | SSA CARBON         |                     | Carbon teoritis [CH4]           |
|-------------------------|--------------------------|--------------------|---------------------|---------------------------------|
| laju masuk<br>(gram/hr) | laju keluar<br>(gram/hr) | Akumulasi<br>masuk | Akumulasi<br>keluar | Carbon hasil<br>Carbon Loss (%) |
| 1.616542095             | 0.864794917              | 0.067355921        | 0.036033122         |                                 |
| 1.616542095             | 0.890050752              | 0.134711841        | 0.07311857          |                                 |
| 1.616542095             | 0.912537402              | 0.134711841        | 0.07510784          |                                 |
| 1.616542095             | 0.936807997              | 0.134711841        | 0.077056058         |                                 |
| 1.616542095             | 0.920310937              | 0.134711841        | 0.077379956         |                                 |
| 1.616542095             | 0.948398775              | 0.134711841        | 0.077862905         |                                 |
| Akun                    | nulasi                   | 0.740915127        | 0.416558449         |                                 |
| Sel                     | isih                     | 0.3243             | 56678               | 10                              |

**Tabel F.2.** Neraca Massa Karbon Pada  $T = 800^{\circ}C$ 

- $Q CH_4 = 53.39 ml/min$
- $Q N_2 = 68.03 \text{ ml/min}$
- P = 1 atm
- T = 300 K
- R = 0.082057 atm m3/kmol.K

| <b>XX</b> 7 - 1 - 4 | <b>XX</b> 7 <b>1</b> 4 | Volume         | Output                     |                           |                                       | >        | Peak Area Ko |           |    | Komposisi gas (y, %) |          |          | Out molar flow rate<br>(mol/h) |     |          |          | Konversi<br>CH4<br>(%) |     |          |
|---------------------|------------------------|----------------|----------------------------|---------------------------|---------------------------------------|----------|--------------|-----------|----|----------------------|----------|----------|--------------------------------|-----|----------|----------|------------------------|-----|----------|
| (menit)             | vv aktu<br>(jam)       | bubble<br>(ml) | Waktu<br>bubble<br>(detik) | flow<br>total<br>(ml/min) | flow non<br>carier<br>gas<br>(ml/min) | mol/hr   | CH4          | H2        | CO | CO2                  | CH4      | H2       | СО                             | CO2 | CH4      | H2       | СО                     | CO2 |          |
| 0                   | 0                      | 50             |                            |                           |                                       | 10       | 10           |           |    | 577                  |          | -        |                                |     |          |          |                        |     |          |
| 5                   | 0.083333               | 10             | 5.2                        | 115.3846                  | 45.79517                              | 0.111377 | 448431       | 308062    |    |                      | 0.592776 | 0.407224 | 0                              | 0   | 0.066021 | 0.045355 | 0                      | 0   | 50.99064 |
| 10                  | 0.166667               | 10             | 5.18                       | 115.8301                  | 46.24067                              | 0.11246  | 491762       | 289311    |    |                      | 0.629598 | 0.370402 | 0                              | 0   | 0.070805 | 0.041655 | 0                      | 0   | 47.43991 |
| 15                  | 0.25                   | 10             | 5.26                       | 114.0684                  | 44.47899                              | 0.108176 | 514111       | 291623    |    |                      | 0.638065 | 0.361935 | 0                              | 0   | 0.069023 | 0.039152 | 0                      | 0   | 48.7624  |
| 20                  | 0.333333               | 10             | 5.25                       | 114.2857                  | 44.69627                              | 0.108704 | 534689       | 293910    |    |                      | 0.645293 | 0.354707 | 0                              | 0   | 0.070146 | 0.038558 | 0                      | 0   | 47.9289  |
| 25                  | 0.416667               | 10             | 5.15                       | 116.5049                  | 46.91541                              | 0.114101 | 512869       | 287283    |    |                      | 0.640964 | 0.359036 | 0                              | 0   | 0.073135 | 0.040966 | 0                      | 0   | 45.71022 |
| 30                  | 0.5                    | 10             | 5.14                       | 116.7315                  | 47.14207                              | 0.114652 | 530637       | 284612    |    |                      | 0.650889 | 0.349111 | 0                              | 0   | 0.074626 | 0.040026 | 0                      | 0   | 44.60322 |
|                     |                        |                |                            |                           |                                       |          |              | Rata-rata | ı  |                      |          |          |                                |     |          |          |                        |     | 47.57255 |

## **Tabel G.1.** Perhitungan konversi metana pada $T = 900^{\circ}C$

(lanjutan)

|                         | NERACA MA                | SSA CARBON         |                     | Carbon teoritis [CH4]           | 0.3545          | gra |
|-------------------------|--------------------------|--------------------|---------------------|---------------------------------|-----------------|-----|
| laju masuk<br>(gram/hr) | laju keluar<br>(gram/hr) | Akumulasi<br>masuk | Akumulasi<br>keluar | Carbon hasil<br>Carbon Loss (%) | 0.0120<br>96.61 | gr  |
| 1.616542095             | 0.79225686               | 0.067355921        | 0.033010703         |                                 |                 |     |
| 1.616542095             | 0.84965591               | 0.134711841        | 0.068413032         |                                 |                 |     |
| 1.616542095             | 0.828277371              | 0.134711841        | 0.069913887         |                                 |                 |     |
| 1.616542095             | 0.841751181              | 0.134711841        | 0.069584523         |                                 |                 |     |
| 1.616542095             | 0.877617108              | 0.134711841        | 0.071640345         | 000                             |                 |     |
| 1.616542095             | 0.895512273              | 0.134711841        | 0.073880391         |                                 |                 |     |
| Akun                    | nulasi                   | 0.740915127        | 0.386442881         |                                 |                 |     |
| Sel                     | isih                     | 0.3544             | 472246              | 101                             |                 |     |
|                         |                          |                    |                     |                                 |                 |     |

**Tabel G.2.** Neraca Massa Karbon Pada  $T = 900^{\circ}C$ 

## Lampiran H. Kesetimbangan Termodinamika

| Tabel H.1. Konstanta p | ada reaksi | dekomposisi metana | , |
|------------------------|------------|--------------------|---|
|------------------------|------------|--------------------|---|

| Reaksi                                                                                                                                             | CH4 →C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | + 2H2        |                                     |                   |                | To=               | 298.15 K      |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------------|-------------------|----------------|-------------------|---------------|--|--|--|--|--|--|
| Cp = A                                                                                                                                             | +BT+CT2+D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DT2          |                                     |                   |                | R = 1.9           | 987 cal/mol K |  |  |  |  |  |  |
| Specie                                                                                                                                             | , Vi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •            | P                                   | C                 | D              | Но                | Co            |  |  |  |  |  |  |
| species                                                                                                                                            | 5 VI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A            | D                                   | C                 | D              | 110               | Gu            |  |  |  |  |  |  |
| CH4                                                                                                                                                | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.43         | 0.0115                              | 0                 | 0              | -17798.8          | -12059.329    |  |  |  |  |  |  |
| С                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.673        | 0.002617                            | 0                 | -116900        | 0                 | 0             |  |  |  |  |  |  |
| H2                                                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.62         | 0.00081                             | 0                 | 0              | 0                 | 0             |  |  |  |  |  |  |
| r                                                                                                                                                  | Fotal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.483       | -0.00726                            | 0                 | -116900        | 17798.8           | 12059.329     |  |  |  |  |  |  |
|                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ΔΑ           | ΔΒ                                  | ΔC                | ΔD             | ΔΗο               | ΔGo           |  |  |  |  |  |  |
| $\int_{T_o}^{T} \frac{\Delta C p^o}{R} dt$ $\tau = T / T,$ $\frac{\Delta G^o}{RT} = -$ $\int_{T_o}^{T} \frac{\Delta C p^o}{R}$ $\ln K = -$ Keteran | $\Delta H^{\circ} = \Delta H_{\circ}^{\circ} + R_{\int_{T_{o}}^{r}} \frac{\Delta Cp^{\circ}}{R} dT$ $\int_{T_{o}}^{T} \frac{\Delta Cp^{\circ}}{R} dT = (\Delta A)T_{0}(\tau - 1) + \frac{\Delta B}{2}T_{0}^{2}(\tau^{2} - 1) + \frac{\Delta C}{3}T_{0}^{3}(\tau^{3} - 1) + \frac{\Delta D}{T_{0}}\left(\frac{\tau - 1}{\tau}\right)$ $\tau = T/T_{0}$ $\frac{\Delta G^{\circ}}{RT} = \frac{\Delta G_{o}^{\circ} - \Delta H_{o}^{\circ}}{RT_{0}} + \frac{\Delta H_{o}^{\circ}}{RT} + \frac{1}{T}T_{T_{o}}^{T} \frac{\Delta Cp^{\circ}}{R} dT - \int_{T_{o}}^{T} \frac{\Delta Cp^{\circ}}{R} \frac{dT}{T}$ $\int_{T_{o}}^{T} \frac{\Delta Cp^{\circ}}{R} \frac{dT}{T} = \Delta A \ln \tau + \left[\Delta BT_{0} + \left(\Delta CT_{0}^{2} + \frac{\Delta D}{\tau^{2}T_{0}^{2}}\right)\left(\frac{\tau + 1}{2}\right)\right](\tau - 1)$ $\ln K = -\frac{\Delta G^{\circ}}{RT}$ Keterangan : |              |                                     |                   |                |                   |               |  |  |  |  |  |  |
| $\Delta H^{\circ}$                                                                                                                                 | = entalpi per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ubahan sta   | ndar pada reak                      | ksi, Joule        |                |                   |               |  |  |  |  |  |  |
| Cp°                                                                                                                                                | = kapasitas Į                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | panas pada   | tekanan consta                      | ant saat kead     | aan standar, J | $mol^{-1} K^{-1}$ |               |  |  |  |  |  |  |
| τ                                                                                                                                                  | = rasio temp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | erature (T/  | Γ <sub>0</sub> )                    |                   |                |                   |               |  |  |  |  |  |  |
| $\Delta G^{\rm o}$                                                                                                                                 | = energi gibl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | bs standar p | oada reaksi, J 1                    | mol <sup>-1</sup> |                |                   |               |  |  |  |  |  |  |
| R                                                                                                                                                  | = konstanta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | gas; 8,314   | $J \text{ mol}^{-1} \text{ K}^{-1}$ |                   |                |                   |               |  |  |  |  |  |  |

K = konstanta kesetimbangan reaksi

 $T_0$  = Temperatur referensi, K

A,B,C,D = parameter pada persamaan kapasitas panas

| T<br>("C) | T (K)   | t        | int 1    | $\Delta \mathbf{H}$ | int 2       | ∆G/RT    | К           | Xe          |
|-----------|---------|----------|----------|---------------------|-------------|----------|-------------|-------------|
| 100       | 373.15  | 1.251551 | 524.5824 | 18841.15            | 1.569737094 | 14.1534  | 7.13276E-07 | 7.13275E-07 |
| 200       | 473.15  | 1.586953 | 1199.337 | 20181.88            | 3.173748465 | 8.604823 | 0.00018322  | 0.000183186 |
| 300       | 573.15  | 1.922355 | 1824.566 | 21424.21            | 4.374248002 | 4.749802 | 0.00865341  | 0.008579171 |
| 400       | 673.15  | 2.257756 | 2389.973 | 22547.68            | 5.284893593 | 1.884451 | 0.151912373 | 0.13187841  |
| 500       | 773.15  | 2.593158 | 2890.588 | 23542.4             | 5.979330521 | -0.34285 | 1.408951839 | 0.584881697 |
| 600       | 873.15  | 2.928559 | 3323.717 | 24403.03            | 6.507007852 | -2.12956 | 8.411187401 | 0.893743482 |
| 700       | 973.15  | 3.263961 | 3687.776 | 25126.41            | 6.902441821 | -3.59626 | 36.46151477 | 0.973305938 |
| 800       | 1073.15 | 3.599363 | 3981.768 | 25710.57            | 7.190572925 | -4.82129 | 124.1252658 | 0.992008009 |
| 900       | 1173.15 | 3.934764 | 4205.039 | 26154.21            | 7.389963619 | -5.85814 | 350.0738306 | 0.997151596 |
| 1000      | 1273.15 | 4.270166 | 4357.138 | 26456.43            | 7.514781344 | -6.74477 | 849.6021717 | 0.998824362 |

 Tabel H.2. Perhitungan konversi secara termodinamik

