

UNIVERSITAS INDONESIA

PENURUNAN TEKANAN DAN KOEFISIEN PERPINDAHAN KALOR UNTUK ALIRAN DUA FASA PADA KANAL MINI HORIZONTAL MENGGUNAKAN PROPANE DAN ISO-BUTANE

TESIS

HEDRIAWAN ANANDAPUTRA SOEMANTRI

10 06 73 5681

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK DEPOK

JANUARI 2012

UNIVERSITAS INDONESIA

PENURUNAN TEKANAN DAN KOEFISIEN PERPINDAHAN KALOR UNTUK ALIRAN DUA FASA PADA KANAL MINI HORIZONTAL MENGGUNAKAN PROPANE DAN ISO-BUTANE

TESIS

Diajukan sebagai salah satu syarat untuk memperoleh gelar magister teknik

HEDRIAWAN ANANDAPUTRA SOEMANTRI

10 06 73 5681

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK DEPOK JANUARI 2012

HALAMAN PERNYATAN ORISINALITAS

Proposal tesis ini adalah hasil karya saya sendiri, dan semua sumber yang saya kutip maupun dirujuk telah saya nyatakan dengan benar.

1006735681

24-01-12

Nama

Hedriawan Anandaputra Soemantri

NPM

Tanda Tangan

:

•

:

Tanggal

ix Universitas Indonesia

Penurunan tekanan..., Hendriawan Anandaputra Soemantri, FT UI, 2012.

HALAMAN PENGESAHAN

Tesis ini diajukan oleh

Nama: Hedriawan Anandaputra SoemantriNPM: 1006735681

:

Program Studi : Teknik Mesin

Judul Tesis : PENURUNAN TEKANAN DAN KOEFISIEN PERPINDAHAN KALOR UNTUK ALIRAN DUA FASA PADA KANAL MINI HORIZONTAL MENGGUNAKAN PROPANE DAN ISO-BUTANE

Telah berhasil dipertahankan di hadapan Dewan Penguji dan diterima sebagai bagian persyaratan yang diperlukan untuk memperoleh gelar Magister Teknik pada Program Studi Teknik Mesin, Fakultas Teknik, Universitas Indonesia.

DEWAN PENGUJI

Pembimbing : Dr. Agus Pamitran, S.T., M.Eng.

Penguji

: Prof. Dr. Ir. Raldi Artono Koestoer, D.E.A

Penguji : Ir. Imansyah Ibnu Hakim, M.Eng.

Penguji : Prof. Dr.Ing. Nandy Putra

Ditetapkan di : Depok

Tanggal : 9 Januari 2012

KATA PENGANTAR

Puji dan syukur saya panjatkan kehadirat Allah SWT, karena atas berkat rahmat dan hidayah-Nya saya dapat menyelesaikan tesis ini tepat pada waktunya dalam rangka memenuhi salah satu syarat untuk mendapatkan gelar Magister Teknik Jurusan Teknik Mesin Universitas Indonesia. Dalam penyusunan ini saya ucapkan terimakasih ke beberapa pihak yaitu

- 1. Allah swt atas berkah dan hidayah Nya serta segala petunjuk Nya hingga tesis ini dapat diselesaikan dengan baik
- 2. Orang tua dan keluarga saya yang selalu memberika dukungan moril dan materiil
- Dr. Agus Sunjarianto Pamitran S.T., M.Eng dosen pembimbing yang telah bersedia meluangkan waktu memberikan pengarahan, diskusi, dan bimbingan serta persetujuan sehingga tesis ini dapat diselesaikan dengan baik
- Prof. Dr-ing. Ir. Nandy Setiadi Djaya Putra, selaku mentor sekaligus tempat bertanya mengenai tesis hingga tesis ini dapat terselesaikan dengan baik
- 5. Dr.Ir. Harinaldi selaku kepala Departemen Teknik Mesin Universitas Indonesia
- 6. Seluruh dosen DTM FTUI yang dengan saran dan masukkan-masukkan yang berharga
- 7. Seluruh karyawan DTM FTUI atas penyediaan saran dan prasaran pengujian selama menjalani skripsi ini.

Akhir kata, saya berharap semoga skripsi ini dapat bermanfaat bagi pengembangan ilmu pengetahuan.

Depok, Januari 2012

Penulis

Universitas Indonesia

۷

HALAMAN PERNYATAAN PERSETUJUAN PUBLIKASI TUGAS AKHIR UNTUK KEPENTINGAN AKADEMIS

Saya yang bertanda tangan di bawah ini :

Nama	: Hedriawan Anandaputra Soemantri
NPM	: 1006735681
Program Studi	: Teknik Mesin
Departemen	: Teknik Mesin
Fakultas	: Teknik
Jenis karya	: Tesis

demi pengembangan ilmu pengetahuan, menyetujui untuk memberikan kepada Universitas Indonesia Hak Bebas Royalti Nonekslusif (Non-exclusive Royalty Free Right) atas karya ilmiah saya yang berjudul PENURUNAN TEKANAN DAN KOEFISIEN PERPINDAHAN KALOR UNTUK ALIRAN DUA FASA PADA KANAL MINI HORIZONTAL MENGGUNAKAN PROPANE DAN ISO-BUTANE beserta perangkat yang ada (jika diperlukan). Dengan Hak Bebas Royalti Noneksklusif ini Universitas Indonesia berhak menyimpan, mengalihmedia/formatkan, mengelola dalam bentuk pangkalan data (database), merawat, dan memublikasikan tugas akhir saya selama mencantumkan nama saya sebagai penulis/pencipta dan sebagai pemilik Hak Cipta.

Demikian pernyataan ini saya buat dengan sebenarnya.

Dibuat di : Depok

Pada tanggal : 24 - 01 - 12

Yang menyatakan

(Hedriawan AS)

xii Universitas Indonesia Penurunan tekanan..., Hendriawan Anandaputra Soemantri, FT UI, 2012.

ABSTRAK

Nama : Hedriawan Anandaputra Soemantri Program Studi : Teknik Mesin Judul : PENURUNAN TEKANAN DAN KOEFISIEN PERPINDAHAN KALOR UNTUK ALIRAN DUA FASA PADA KANAL MINI HORIZONTAL MENGGUNAKAN PROPANE DAN ISO-BUTANE

Koefisien perpindahan kalor dan penurunan tekanan didapat dari pengujian pada kanal mini horizontal berukuran diameter luar 5 mm, diameter dalam 3mm dan panjang 1 m dengan material stainless steel 316L. Nilai koefisien perpindahan kalor dihitung pada kisaran nilai fluks massa 50 hingga 250 kg m⁻² s⁻¹, fluks panas 1 hingga 8 kW m⁻², temperatur saturasi hingga 10^oC, kualitas uap hingga 1 dan menggunakan fluida kerja Propane dan Iso-butane. Kalor diaplikasikan pada kanal mini horizontal dengan menggunakan lilitan kawat nikel yang dihubungkan ke sumber daya yang dapat diatur daya nya. Hasil dari eksperimen ini dibandingkan dengan beberapa korelasi yang sudah ada sebelumnya dan dilihat perbandingannya. Korelasi koefisien perpindahan kalor dan penurunan tekanan dikembangkan dari data hasil ekperimen ini.

Kata kunci : Koefisien perpindahan kalor, penurunan tekanan, aliran dua fasa

ABSTRACT

Name: Hedriawan Anandaputra SoemantriStudy program: Mechanical EngineeringTitle: TWO-PHASE FLOW PRESSURE DROP AND HEATTRANSFERCOEFFICIENT IN HORIZONTAL MINICHANNEL USINGPROPANE AND ISO-BUTANE

The coefficient of heat transfer and pressure drop obtained from an experiment on a horizontal mini channel with outer diameter of 5 mm, inner diameter of 3mm and a length of 1 m using 316L stainless steel material. Heat transfer coefficient calculated in the range of mass flux value from 50 to 250 kg m-2 s-1, a heat flux of up to 8 kW m-2, the saturation temperature up to 10^{0} C, quality up to 1 and use Propane and iso-butane as the working fluid. Heat was applied to the horizontal mini channel using nickel wire coil which is connected to a power source. The results of this experiment compared with some pre-existing correlations and see the comparison. The correlation coefficient of heat transfer and pressure drop were developed from the results of this experiment

Keywords : Heat transfer coefficient, pressure drop, two-phase flow

DAFTAR ISI

2.2 Did	ih dan kondensasi	. 42
2.3 Alir	an Dua Fasa (Two Phase Flow)	. 43
2.3.1	Koefisien Perpindahan Kalor Konveksi Aliran Dua Fasa (h _{TP})	. 55
2.3.2	Korelasi Koefisien Perpindahan Kalor Aliran Dua Fasa	. 59
2.4 Pen	urunan tekanan pada aliran dua fasa	. 65
2.4.1	Penurunan persamaan umum aliran dua fasa	. 66
2.4.2	Metode analisa penurunan tekanan dalam aliran dua fasa	. 72
BAB 3 P	ENGUJIAN DAN PERANCANGAN ALAT	. 83
3.1 Diag	gram alir (<i>flow chart</i>) pengujian	. 83
3.2 Insta	alasi Alat Uji	. 84
3.2.1	Skematik Alat Uji	. 84
3.2.2	Prinsip kerja alat uji	. 86
3.2.3	Tes Kebocoran	. 87
3.2.4	Vaccum Sistem	. 87
3.3 Kor	nponen Alat Uji	. 88
3.3.1	Condensing unit 3PK	. 88
3.3.2	Pompa fluida	. 88
3.3.3	Plate Heat Exchanger (PHE)	. 89
3.3.4	High Low Pressure (HLP)	. 90
3.3.5	Test Section	. 90
3.3.6	Pressure gauge	. 91
3.3.7	Pipa Tembaga	. 91
3.3.8	Variable Transformer	. 92
3.3.9	Sight Glass	. 92
3.3.10	Termokopel	. 93
3.3.11	Timbangan Digital	. 94

3.3.12	Toren	
3.3.13	Ethylene Glicol	
3.3.14	Tube in tube heat exchanger	
3.3.15	Sabuk Pemanas	
3.3.16	Data Akuisisi	
3.3.17	Needle Valve	
3.4 Pen	gujian menggunakan fluida kerja Propane (R-290) dan Iso-but	ane (R-
600a)		
BAB 4	IASIL DAN ANALISA	
4.1 Bila	angan Reynolds	100
4.1.1	Fluida kerja Propane (MC 22)	100
4.1.2	Fluida kerja Isobutane (MC 600)	104
4.2 Pen	urunan tekanan	108
4.2.1	Penurunan tekanan eksperimen	110
4.2.2	Perbandingan nilai penurunan tekanan hasil eksperimen dan	
perhitu	ingan dengan menggunakan propane	110
4.2.3	Perbandingan nilai penurunan tekanan hasil eksperimen dan	
perhitu	ingan dengan menggunakan Iso-Butane	118
4.3 Koe	efisien perpindahan kalor	126
4.3.1	Data hasil pengujian Propane (MC22)	126
4.3.2	Data hasil pengujian Isobutane (MC600)	131
4.4 Perl	hitungan Koefisien Perpindahan Kalor Aliran Dua Fasa Hasil	
Penguku	ran	135
4.5 Perl	hitungan Koefisien Perpindahan Kalor Aliran Dua Fasa Denga	n
menggun	akan Korelasi	136
4.6 Perl	hitungan Deviasi	139
4.7 Has	il Perhitungan	140

4.7.1	Koefisien Perpindahan Kalor Propane (MC22)	140
4.7.2	Koefisien Perpindahan Kalor Isobutane (MC22)	157
4.8 Mo	difikasi nilai C	174
BAB 5 H	KESIMPULAN	178
DAFTAR	PUSTAKA	180
LAMPIRA	N	182

DAFTAR TABEL DAN GAMBAR

Gambar 2. 1 Konduksi pada plat (Cengel, Y. A., 2003)[18]	. 25
Gambar 2. 2 Konduksi pada silinder berongga (Incropera & DeWitt, 2007)[8].	. 26
Gambar 2. 3 Perpindahan Kalor Konveksi Paksa Dan Konveksi Alami	. 27
Gambar 2. 4 Profil Perpindahan Kalor Konveksi Dari Blok Panas Ke Udara	. 28
Gambar 2. 5 Aliran dalam pipa dengan fluks kalor permukaan konstan	. 31
Gambar 2. 6 Proses Evaporasi Dan Pendidihan	. 34
Gambar 2. 7 (a) Pool Boiling, (b) Flow Boiling	. 34
Gambar 2. 8 Percobaan Nukiyama	. 35
Gambar 2. 9 Kurva Pool Boiling	. 36
Gambar 2. 10 Rezim Natural Convection Boiling	. 37
Gambar 2. 11 Rezim Nucleat Boiling	. 37
Gambar 2. 12 Pembentukan Gelembung Pertama Pada Titik ONB	. 37
Gambar 2. 13 Nucleate Boiling Dengan Flux Kalor Rendah	. 38
Gambar 2. 14 Nucleat Boiling Dengan Flux Kalor Tinggi	. 39
Gambar 2. 15 Nucleat Boiling Dengan Flux Kalor Maksimum	. 39
Gambar 2. 16 Rezim Transition Boiling	. 40
Gambar 2. 17 Rezim Film Boiling	. 40
Gambar 2. 18 Pengaruh Kecepatan Terhadap Flux Kalor	. 41
Gambar 2. 19 Pola Aliran Dua Fasa Pada Pipa Horizontal	. 44
Gambar 2. 20 Peta Pola Aliran Dua Fasa Pada Pipa Horizontal	. 46
Gambar 2. 21 P-h Diagram	. 49
Gambar 2. 22 Panjang Subcooled	. 51
Tabel 2. 1 Rumus Friction Factor Berdasarkan Bilangan Reynolds	. 53
Gambar 2. 23 Grafik Faktor Pengali (F)	. 60
Tabel 2. 2 Parameter Chisolm Pada Beberapa Kondisi Aliran Fasa Cair Dan Ga	1S
	. 62
Tabel 2. 3. Parameter Chisolm Pada Beberapa Kombinasi Aliran lainnya	. 62
Gambar 2. 24 Simplikasi model aliran multi-fasa dalam sebuah kanal	. 66
Gambar 3. 1 Diagram alir pengujian	. 83
Tabel 3. 1 Spesifikasi Pompa Wasser	. 88

Gambar 3. 3 Pompa Wasser	89
Tabel 3. 2 Spesifikasi plate heat exchanger	89
Gambar 3. 4 Plate Heat exchanger	89
Gambar 3. 5 Pressure Control	90
Gambar 3. 6 Test Section	90
Gambar 3. 7 Pressure Gauge	91
Gambar 3. 8 Pipa Tembaga	91
Gambar 3. 9 Variable Transformer	92
Gambar 3. 10 Sight Glass	92
Gambar 3. 11 Peletakan Termokopel Pada Test Section	93
Gambar 3. 12 Termokopel	93
Gambar 3. 13 Timbangan Digital	94
Gambar 3. 14 Toren	94
Tabel 3. 3 Titik Beku Air Dan Campuran Glikol	95
Gambar 3. 15 Tube in tube heat exhanger	95
Gambar 3. 16 Sabuk Pemanas	96
Gambar 3. 17 Data akuisisi NI	97
Gambar 3. 18 Needle Valve	97
Gambar 3. 19 Pemberian Flux Kalor Pada Test Section	98
Tabel 4. 1 Kondisi Pengujian	99
Gambar 4. 1 Grafik bilangan Reynolds untuk kualitas massa uap (x) pada pada (G
(mass flux) = 51,470 kg/m2.s dan q (heat flux) = 5 kw/m21	01
Gambar 4. 2 Grafik bilangan Reynolds untuk kualitas massa uap (x) pada pada	G
(mass flux) = 155,597 kg/m2.s dan q (heat flux) = 5 kw/m2	01
Gambar 4. 3 Grafik bilangan Reynolds untuk kualitas massa uap (x) pada pada	G
(mass flux) = 90,073 kg/m2.s dan q (heat flux) = 8 kw/m21	02
Gambar 4. 4 Grafik bilangan Reynolds untuk kualitas massa uap (x) pada pada	G
(mass flux) = 242,192 kg/m2.s dan q (heat flux) = 8 kw/m2	02
Gambar 4. 5 Grafik distribusi temperatur vs jarak menggunakan Propane 1	03
Gambar 4. 6 Grafik bilangan Reynolds untuk kualitas massa uap (x) pada pada	G
(mass flux) = 198,1604 kg/m2.s dan q (heat flux) = 1 kw/m21	04

Gambar 4. 7 Grafik bilangan Reynolds untuk kualitas massa uap (x) pada pada G
(mass flux) = 226,469 kg/m2.s dan q (heat flux) = 2 kw/m2105
Gambar 4. 8 Grafik bilangan Reynolds untuk kualitas massa uap (x) pada pada G
(mass flux) = 169,851 kg/m2.s dan q (heat flux) = 3 kw/m2
Gambar 4. 9 Grafik bilangan Reynolds untuk kualitas massa uap (x) pada pada G
(mass flux) = 141,543 kg/m2.s dan q (heat flux) = 4 kw/m2106
Gambar 4. 10 Grafik distribusi temperatur vs jarak menggunakan Iso-butane 106
Tabel 4. 2 Kondisi pengujian menggunakan Propane (MC-22) dan Iso-butane
(MC-600)
Tabel 4. 3 Penurunan tekanan kondisi 1 110
Gambar 4. 11 Grafik Penurunan Tekanan Friksi untuk kualitas massa uap (x) pada
pada G (mass flux) = 51,470 kg/m2.s dan q (heat flux)= 5 kw/m2 111
Tabel 4. 4 Penurunan tekanan friksi kondisi pengujian 2 112
Gambar 4. 12 Grafik Penurunan Tekanan Friksi untuk kualitas massa uap (x) pada
pada G (mass flux) = 155,597 kg/m2.s dan q (heat flux)= 5 kw/m2 113
Tabel 4. 5 Penurunan tekanan friksi kondisi pengujian 2 113
Gambar 4. 13 Grafik Penurunan Tekanan Friksi untuk kualitas massa uap (x) pada
pada G (mass flux) = 90,073 kg/m2.s dan q (heat flux) = 8 kw/m2 114
Tabel 4. 6 Penurunan tekanan friksi kondisi pengujian 3 115
Gambar 4. 14 Grafik Penurunan Tekanan Friksi untuk kualitas massa uap (x) pada
pada G (mass flux) = 241,192 kg/m2.s dan q (heat flux)= 8 kw/m2 116
Gambar 4. 15 Grafik penurunan tekanan friksi menggunakan propane 117
Tabel 4. 7 Penurunan tekanan friksi kondisi pengujian 1 118
Gambar 4. 16 Grafik Penurunan Tekanan Friksi untuk kualitas massa uap (x) pada
pada G (mass flux) = 198,1604 kg/m2.s dan q (heat flux)= 1 kw/m2 119
Tabel 4. 8 Penurunan tekanan friksi kondisi pengujian 2 120
Gambar 4. 17 Grafik Penurunan Tekanan Friksi untuk kualitas massa uap (x) pada
pada G (mass flux) = 226,469 kg/m2.s dan q (heat flux) = 2 kw/m2 121
Tabel 4. 9 Penurunan tekanan friksi kondisi pengujian 3 121
Gambar 4. 18 Grafik Penurunan Tekanan Friksi untuk kualitas massa uap (x) pada
pada G (mass flux) = 169,851 kg/m2.s dan q (heat flux)= 3 kw/m2 122

Gambar 4. 19 Grafik Penurunan Tekanan Friksi untuk kualitas massa uap (\boldsymbol{x}) pada
pada G (mass flux) = 141,543 kg/m2.s dan q (heat flux)= 4 kw/m2 124
Gambar 4. 20 Grafik penurunan tekanan friksi menggunakan iso-butane 125
Tabel 4. 11 Kondisi Pengujian 1 menggunakan Propane 127
Tabel 4. 12 Kondisi Pengujian 2 menggunakan Propane 128
Tabel 4. 13 Kondisi Pengujian 3 menggunakan Propane
Tabel 4. 14 Kondisi Pengujian 4 menggunakan Propane
Tabel 4. 15 Kondisi pengujian 1 menggunakn Iso-butane
Tabel 4. 16 Kondisi pengujian 2 menggunakn Iso-butane
Tabel 4. 17 Kondisi pengujian 3 menggunakn Iso-butane
Tabel 4. 18 Kondisi pengujian 4 menggunakn Iso-butane
Gambar 4. 21 Pembagian tekanan pada test section
Tabel 4. 19 Koefisien Perpindahan Kalor Untuk Kondisi 1 Perhitungan Manual
Tabel 4. 20 Tabel Koefisien Perpindahan Kalor Untuk Kondisi 1 Perhitungan
Matlab
Tabel 4. 21 Deviasi pengujian kondisi 1 142
Gambar 4. 22 Grafik Koefisien Perpindahan Kalor Untuk kualitas massa uap (x)
pada pada G (mass flux) = $51,470$ kg/m2.s dan q (heat flux) = 5 kw/m2143
pada pada G (mass flux) = 51,470 kg/m2.s dan q (heat flux)= 5 kw/m2
pada pada G (mass flux) = 51,470 kg/m2.s dan q (heat flux)= 5 kw/m2
pada pada G (mass flux) = 51,470 kg/m2.s dan q (heat flux)= 5 kw/m2
pada pada G (mass flux) = 51,470 kg/m2.s dan q (heat flux)= 5 kw/m2
pada pada G (mass flux) = 51,470 kg/m2.s dan q (heat flux)= 5 kw/m2
pada pada G (mass flux) = 51,470 kg/m2.s dan q (heat flux)= 5 kw/m2
pada pada G (mass flux) = 51,470 kg/m2.s dan q (heat flux)= 5 kw/m2
pada pada G (mass flux) = 51,470 kg/m2.s dan q (heat flux)= 5 kw/m2
pada pada G (mass flux) = 51,470 kg/m2.s dan q (heat flux)= 5 kw/m2
pada pada G (mass flux) = 51,470 kg/m2.s dan q (heat flux)= 5 kw/m2
pada pada G (mass flux) = 51,470 kg/m2.s dan q (heat flux)= 5 kw/m2

Tabel 4. 28 Koefisien Perpindahan Kalor Untuk Kondisi 4 Perhitungan Manual
Tabel 4. 29 Koefisien Perpindahan Kalor Untuk Kondisi 4 Perhitungan Matlab153
Tabel 4. 30 Deviasi kondisi pengujian 4
Gambar 4. 25 Grafik Koefisien Perpindahan Kalor Untuk kualitas massa uap (x)
pada pada G (mass flux) = 242,192 kg/m2.s dan q (heat flux)= 8 kw/m2 154
Gambar 4. 26 Koefisien perpindahan kalor menggunakan Propane 156
Tabel 4. 31 Koefisien Perpindahan Kalor Untuk Kondisi 1 Perhitungan Manual
Tabel 4. 32 Koefisien Perpindahan Kalor Untuk Kondisi 1 Perhitungan Matlab158
Tabel 4. 33 Deviasi kondisi pengujian 1 159
Gambar 4. 27 Grafik Koefisien Perpindahan Kalor Untuk kualitas massa uap (x)
pada pada G (mass flux) = 198,1604 kg/m2.s dan q (heat flux)= 1 kw/m2 160
Tabel 4. 34 Koefisien Perpindahan Kalor Untuk Kondisi 2 Perhitungan Manual
Tabel 4. 35 Koefisien Perpindahan Kalor Untuk Kondisi 2 Perhitungan Matlab162
Tabel 4. 36 Deviasi kondisi pengujian 2 163
Gambar 4. 28 Grafik Koefisien Perpindahan Kalor Untuk kualitas massa uap (x)
pada pada G (mass flux) = 226,469 kg/m2.s dan q (heat flux)= 2 kw/m2 164
Tabel 4. 37 Koefisien Perpindahan Kalor Untuk Kondisi 3 Perhitungan Manual
Tabel 4. 38 Koefisien Perpindahan Kalor Untuk Kondisi 3 Perhitungan Matlab166
Tabel 4. 39 Deviasi kondisi pengujian 3 167
Gambar 4. 29 Grafik Koefisien Perpindahan Kalor Untuk kualitas massa uap (x)
pada pada G (mass flux) = 169,851 kg/m2.s dan q (heat flux)= 3 kw/m2 168
Tabel 4. 40 Koefisien Perpindahan Kalor Untuk Kondisi 4 Perhitungan Manual
Tabel 4. 41 Koefisien Perpindahan Kalor Untuk Kondisi 4 Perhitungan Matlab170
Tabel 4. 42 Deviasi kondisi pengujian 4 171
Gambar 4. 30 Grafik Koefisien Perpindahan Kalor Untuk kualitas massa uap (x)
pada pada G (mass flux) = 141,543 kg/m2.s dan q (heat flux)= 4 kw/m2 172
Gambar 4. 31 Koefisien perpindahan kalor menggunakan iso-butane 173

BAB 1

PENDAHULUAN

1.1 Latar Belakang

Pada zaman modern ini, perkembangan teknologi sangatlah pesat. Perkembangan nya dilakukan seiring dengan hal-hal yang dibutuhkan oleh manusia saat ini. Setiap perusahaan ataupun individu saling berlomba untuk menciptakan sebuah penemuan yang nantinya diharapkan dapat memudahkan kehidupan manusia. Teknologi pendingan atau refrijerasi merupakan salah satu teknologi yang sedang berkembang pesat. Proses pendinginan dan perpindahan kalor telah berkembang menjadi suatu bidang teknologi yang erat kaitannya dengan perkembangan di dunia energi.Sebuah siklus refrijerasi merupakan sebuah siklus yang menggunakan refrijeran sebagai fluida kerja nya untuk menciptakan efek pendinginan. Sebuah sistem siklus refrijerasi standar terdiri dari kondenser, evaporator, kompresor dan katup ekspansi.

Refrijeran yang digunakan pun saat ini telah beraneka ragam jenis nya dengan kekurangan dan kelebihan nya masing-masing. Salah satu refrijeran yang banyak digunakan adalah refrijeran jenis R-22. R-22 banyak digunakan karena memiliki properti fisika dan termal yang baik sebagai refrigeran, stabil, tidak mudah terbakar, tidak beracun dan kompatibel terhadap sebagian besar bahan komponen dalam sistem refrigerasi. Namun, seperti yang disebutkan oleh Min Soo Kim et. al pada jurnal nya, salah satu kekurangan dari R-22 ini adalah refrijeran ini merupakan jenis refrijeran HCFC (Hydrochlorofluorocarbons). Karena telah diketahui bahwa hydrochlorofluorocarbons (HCFC) sebagian mempengaruhi deplesi lapisan ozon dan pemanasan global. Dan jenis refrijeran ini nantinya akan dilarang dan digantikan dengan jenis refrijeran lain yang tidak berpengaruh terhadap deplesi lapisan ozon dan refrijeran. Refrijeran ini adalah jenis refrijeran alam (nature refrigerants) [1]. Yang menyebabkan R-22 termasuk kedalam ODS (Ozone Depleting Substance) adalah karena terdapatnya ikatan C-Cl dimana ikatan ini akan terputus sehingga menghasilkan radikal-radikal bebas klorin. Radikal-radikal inilah yang merusak ozon.

Beberapa jenis refrijeran CFC seperti R-11 mulai digantikan dengan menggunakan R-123 dan juga beberapa jenis peralatan pendinginan yang masih menggunakan R-123 sebagai refrijeran mulai di konversi menggunakan R-134. Jenis refrijeran lain yang banyak digunakan adalah ammonia (NH3) yang sudah digunakan pada flood chilers dan aplikasi alat pendingin lainnya. R-12 juga mulai digantikan oleh R-22 dan R-134A. R134a sudah diterapkan pada pada kendaraan mobil. Sedangkan R-22 akan digantikan oleh jenis refrijeran campuran seperti R-410a [2].

Refrijeran yang tepat akan menghasilkan efisiensi alat yang optimum, namun selain dari jenis refrijeran yang digunakan adapula beberapa hal yang mempengaruhi efisiensi dari alat/sistem yang akan digunakan. Salah satu nya adalah geometri dari tempat dimana fluida kerja terjadi pada sistem pendingin tersebut. Celah sempit (micro-channel/mini channel) mulai banyak diaplikasikan pada berbagai alat industri. Berdasarkan ukuran nya, pipa kanal mini dibagi menjadi beberapa jenis, antara lain:

- 1. Pipa konvensional, yaitu pipa dengan ID > 3 mm.
- 2. Pipa mini, yaitu pipa dengan 200 μ m < ID \leq 3 mm.
- 3. Pipa mikro, yaitu pipa dengan 10 μ m \leq ID \leq 200 μ m.
- 4. Pipa mikro transisi, yaitu pipa dengan 1 μ m \leq ID \leq 10 μ m.
- 5. Pipa nano transisi, yaitu pipa dengan 0.1 $\mu m \le ID \le 1 \mu m$.
- 6. Pipa nano, yaitu pipa dengan ID $\leq 0.1 \, \mu m$.

Namun selain dari jenis refrijeran yang digunakan adapula beberapa hal yang mempengaruhi efisiensi dari alat/sistem yang akan digunakan. Salah satu nya adalah geometri dari tempat dimana fluida kerja terjadi pada sistem pendingin tersebut. Celah sempit (micro-channel/mini channel) mulai banyak diaplikasikan pada berbagai alat industri Beberapa peneliti sebelumnya seperti Peng et. al (1993)[3] dan Peterson et. al (1995) [4] telah melakukan eksperimen tentang sifat dan karakteristik dari koefisien perpindahan kalor pada celah sempit menggunakan jenis refrijeran tertentu. Jong Taek Oh et al (2006-2008) [5][6] juga telah melakukan eksperimen tentang nilai perpindahan kalor dan penurunan tekanan pada celah sempit yang dialiri oleh aliran dua fasa. Selain itu Studi eksperimental dan analisis perpindahan kalor pendidihan pada celah sempit/kanal mini berbentuk anulus yang dipanaskan hingga mencapai temperatur awal sekitar 800°C telah dilakukan dan hasilnya dibandingkan dengan korelasi-korelasi lainnya.

Pada eksperimen kali ini akan dilakukan pengujian aliran dua fasa dengan menggunakan propane dan iso-butane pada sebuah kanal mini horizontal. Dalam eskperimen ini akan dihitung nilai temperatur pada beberapa titik di sepanjang test section dan nilai tekanan pada inlet dan outlet dari test section. Data nilai perpindahan kalor akan dibandingkan dengan beberapa persamaan yang sudah ada seperti pada persamaan yang dibuat oleh Wattelet et al. [7], Jung et al. [8], Kandlikar-Steinke [9], Tran et al. [10], Shah [11], Gungor-Winterton [12], Chen [13] dan Zhang et al [14] untuk dilihat perkembangannya misalnya seperti pada persaman koefisien perpindahan kalor. Pada ekseperimen ini diharapkan dapat mendapatkan nilai koefisien perpindahan kalor yang lebih baik dan penurunan tekanan yang tepat.

1.2 Perumusan Masalah

Aliran dua fasa dalam kanal mini horizontal telah terbukti dapat meningkatkan nilai koefisien perpindahan kalor. Pada penelitian ini, akan dilakukan karakteristik dari aliran dua fasa pada kanal mini horizontal untuk mengetahui besar nya penurunan tekanan dan nilai koefiesien perpindahan kalor. Pengujian dilakukan pada sebuah test section kanal mini horizontal berbentuk annulus dengan diameter dalam 3mm dan panjang 1 m. Kanal mini dialiri oleh refrijeran jenis Propane dan Iso-butane. Pada test section divariasikan temperatur nya dengan mengaliri listrik kemudian divariasikan voltase nya dengan tujuan hasil temperatur dan tekanan akan bervariasi pula. Sistem pendinginan menggunakan heat exchanger yang dialiri oleh ethylene glycol yang sebelum nya didinginkan dengan menggunakan condensing unit 3 PK.

1.3 Tujuan Penelitian

Tujuan dari penelitian ini antara lain adalah:

- 1. Mendapatkan data temperatur inlet, outlet dan disepanjang test section
- 2. Mendapatkan data tekanan inlet dan outlet dari test section menggunakan pressure gauge dan pressure transmitter,
- 3. Mendapatkan nilai koefisien perpindahan kalor dari aliran dua fasa pada kanal mini horizontal.
- 4. Mendapatkan nilai penurunan tekanan dari aliran dua fasa pada kanal mini horizontal.
- Membandingkan nilai koefisien perpindahan kalor percobaan aliran dua fasa percobaan pada kanal mini horizontal dengan beberapa korelasi koefisien perpindahan kalor lainnya
- Membandingkan nilai penurunan tekanan percobaan dari aliran dua fasa pada kanal mini horizontal dengan beberapa model penurunan tekanan lainnya.
- Mengembangkan sebuah korelasi baru sesuai dengan kondisi pengujian yang dilakukan agar didapatkan nilai koefisien perpindahan kalor yang lebih spesifik

1.4 Pembatasan masalah

Pada eksperimen ini, pengujian dilakukan dengan menggunakan refrijeran propane dan isobutane sebagai fluida kerja. Aliran dari refrijeran tidak diatur namun dapat diketahui dengan menimbang tabung refrijeran sebelum dan sesudah pengujian dilakukan dalam periode waktu tertentu. Temperatur test section di variasikan dengan mengaplikasikan sebuah electric heater yang dapat diatur voltase nya. Data temperatur didapatkan dengan menggunakan data temperatur yang dipasang pada inlet (1 buah), outlet (1 buah) dan disepanjang test section (27 buah) yang terhubung dengan data akuisisi National Instruments. Sedangkan untuk data tekanan didapatkan dengan menggunakan pressure gauge dan pressure transmitter yang juga terhubung ke data akuisisi National Instruments pada bagian inlet dan outlet.

1.5 Metodologi Penelitian

Metodologi yang digunakan pada penelitian ini antara lain adalah sebagai berikut :

1. Studi literatur

Studi literatur dilakukan dengan membaca buku , jurnal- jurnal dan situssitus dari internet yang relevan untuk dijadikan referensi

2. Merancang sistem untuk pengujian

Sistem dirancang agar sebisa mungkin dapat sesuai dengan kondisi pengujian yang tepat agar hasil yang didapatkan lebih presisi dan optimal.

3. Pengujian sistem / alat

Sistem yang telah dirancang kemudian dijalankan dan diukur variabel – variabel yang dibutuhkan seperti temperatur dan tekanan.

4. Melakukan simulasi pengujian

Simulasi pengujian dilakukan dengan menggunakan software MATLAB yang dikondisikan seperti pada kondisi pengujian.

5. Membandingkan hasil pengujian dan hasil simulasi

Kedua hasil yang didapatkan dibandingkan hasil nya untuk mengetahui simpangan-simpangan dan deviasi yang terjadi.

1.6 Sistematika Penulisan

Sistematika penulisan tesis ini dilakukan menurut urutan bab-bab sebagai berikut:

BAB I PENDAHULUAN

Bagian ini berisi latar belakang yang melandasi penulisan tesis, perumusan masalah, tujuan penelitian, pembatasan masalah, metodologi penelitian, dan sistematika penulisan.

BAB II TINJAUAN PUSTAKA

Bagian ini berisi tentang dasar teori termoelektrik yang dijadikan landasan literatur dalam pengujian cryosurgery yang dilakukan.

BAB II STUDI LITERATUR

Bagian ini bersisi tentang dasar-dasar teori yang dijadikan landasan dalam penulisan, perhitungan dan pengolahan data tesis

BAB III PENGUJIAN DAN PERANCANGAN ALAT

Bagian ini berisi tentang bagaimana sistematika dan perancangan dari alat yang digunakan untuk melakukan eksperimen aliran dua fasa ini

BAB IV ANALISA DAN HASIL

Bagian ini berisi tentang analisa dari data dan grafik dari pengujian koefisien perpindahan kalor dan penurunan tekanan aliran dua fasa pada kanal mini horizontal

BAB VI KESIMPULAN DAN SARAN

Bagian ini berisi tentang kesimpulan apa yang bisa diambil dari pengujian yang telah dilakukan dan apabila ada kekurangan-kekurangan, saran apa yang harus diberikan untuk mengatasi nya.

BAB 2

TINJAUAN PUSTAKA

2.1 Perpindahan kalor

2.1.1 Konduksi

Kalor dari suatu bagian benda bertemperatur lebih tinggi akan mengalir melalui zat benda itu ke bagian lainnya yang bertemperatur lebih rendah. Zat atau partikel zat dari benda yang dilalui kalor ini sendiri tidak mengalir sehingga tenaga kalor berpindah dari satu partikel ke lain partikel dan mencapai bagian yang dituju. Perpindahan kalor cara ini disebut konduksi; arus panasnya adalah arus kalor konduksi dan zatnya itu mempunyai sifat konduksi kalor. Konduksi kalor ini bergantung kepada zat yang dilaluinya dan juga kepada distribusi temperatur dari bagian benda. Berlangsungnya konduksi kalor melalui zat dapat diketahui oleh perubahan temperatur yang terjadi.

Ditinjau dari sudut teori molukuler, yakni benda atau zat terdiri dari molekul, pemberian kalor pada zat menyebabkan molekul itu bergetar. Getaran ini makin bertambah jika kalor ditambah, sehingga tenaga kalor berubah menjadi tenaga getaran. Molekul yang bergetar ini tetap pada tempatnya tetapi getaran yang lebih hebat ini akan menyebabkan getaran yang lebih kecil dari molekul di sampingnya, bertambah getarannya, dan demikian seterusnya sehingga akhirnya getaran molekul pada bagian lain benda akan lebih hebat. Sebagai akibatnya, temperatur pada bagian lain benda itu akan naik dan kita lihat bahwa kalor berpindah ke tempat lain.

Jadi pada konduksi kalor, tenaga kalor dipindahkan dari satu partikel zat ke partikel di sampingnya, berturut-turut sampai mencapai bagian lain zat yang bertemperatur lebih rendah.

2.1.1.1 Laju Perpindahan Kalor Konduksi

Persamaan umum laju konduksi untuk perpindahan kalor dengan cara konduksi dikenal dengan hukum Fourier (Fourier's Law) dimana "Laju perpindahan kalor konduksi pada suatu plat (Gambar 2.1) sebanding dengan beda temperature diantara dua sisi plat dan luasan perpindahan kalor, tetapi berbanding terbalik dengan tebal", yang dirumuskan seperti dibawah :

$$\dot{Q} = kA\left(-\frac{dT}{dx}\right) \tag{2.1}$$

dimana :

- \dot{Q} = laju perpindahan kalor konduksi (Watt);
- k = konduktivitas termal bahan (W/m. K);
- A = luas penampang tegak lurus terhadap arah aliran kalor (m2);

dT/dx = gradien temperatur (perubahan temperatur terhadap arah x) (K/m). Tanda negatif (-) diselipkan dalam hukum Fourier yang menyatakan bahwa kalor berpindah dari media bertemperatur tinggi ke media yang bertemperatur lebih rendah.

Gambar 2. 1 Konduksi pada plat (Cengel, Y. A., 2003)[18]

2.1.1.2 Laju perpindahan kalor pada silinder berongga

Pada Gambar 2.2 merupakan silinder panjang berongga dengan jari-jari dalam (r1), jari-jari luar (r2) dan panjang (L) dialiri kalor sebesar q. Temperatur permukaan dalam (T1) dan temperature permukaan luar (T2), konduktivitas termal silinder (k). Aliran kalor hanya berlangsung ke arah radial (arah r) saja. Luas bidang aliran kalor dalam system silinder ini adalah

$$A = 2\pi r L \tag{2.2}$$

Gambar 2. 2 Konduksi pada silinder berongga (Incropera & DeWitt, 2007)[8]

Sehingga hukum Fourier konduksi kalor untuk silinder berongga menjadi :

$$q_k = kA\left(-\frac{dT}{dr}\right) = -k2\pi rL\frac{dT}{dr}$$
(2.3)

r = r1 T = T1

r = r2

Kondisi batas (Boundary Condition, BC) :

T = T2

$$q_k \int_{r_1}^{r_2} \frac{1}{r} dr = -k2\pi L \int_{T_1}^{T_2} dT$$

$$q_k = k2\pi L \frac{(T_1 - T_2)}{\ln(T^2/T_1)}$$
(2.4)

2.1.2 Konveksi

Konveksi ialah perpindahan kalor yang terjadi antara permukaan zat padat yang berbatasan dengan fluida yang bergerak. Konveksi terjadi karena adanya perbedaan massa jenis akibat adanya perbedaan temperatur pada fluida. Fluida yang memiliki temperatur tinggi memiliki massa jenis yang lebih kecil daripada fluida yang memiliki temperatur lebih rendah, sehingga fluida dangan temperatur tinggi akan naik dan fluida yang memiliki temperatur lebih rendah akan turun mengisi ruang yang ditinggalkan oleh fluida dengan temperatur tinggi tadi. Proses terjadinya perpindahan kalor konveksi tersebut disebut sebagai konveksi alami (natural convection) sedangkan tetapi jika fluida dipaksa mengalir pada suatu permukaan panas oleh suatu alat, maka konveksi tersebut disebut sebagai konveksi paksa (forced convection). Berikut ini merupakan ilustrasi dari konveksi alami dan konveksi paksa:

Gambar 2. 3 Perpindahan Kalor Konveksi Paksa Dan Konveksi Alami

(Yunus A. Cengel, 2003)[18]

Perpindahan kalor yang terjadi secara konveksi merupakan kombinasi dari konduksi dan kecepatan aliran fluida. Semakin besar kecepatan fluida maka semakin besar pula perpindahan kalor konveksi yang terjadi, seperti yang di ilustrasikan pada gambar 2.4.

Gambar 2. 4 Profil Perpindahan Kalor Konveksi Dari Blok Panas Ke Udara (Yunus A. Cengel, 2003)[18]

Kalor pertama kali dipindahkan dari blok panas ke lapisan udara secara konduksi, selanjutnya kalor dibawa oleh udara menjauhi permukaan blok panas secara konveksi. Besarnya laju perpindahan kalor konveksi yang terjadi dapat dihitung dengan menggunakan persamaan:

$$Q = hA(T_w - T_\infty) \tag{2.5}$$

Koefisien perpindahan kalor konveksi bukanlah karakteristik fluida, akan tetapi merupakan parameter yang ditentukan dengan percobaan yang besar nilainya tergantung dari faktor yang mempengaruhi proses konveksi seperti geometri permukaan, aliran/gerakan fluida, karakteristik dari fluida, dan perbedaan temperatur.

2.1.3 Koefisien perpindahan kalor konveksi

Pada hukum Newton pendinginan, koefisien h adalah koefisien perpindahan kalor konveksi dimana merupakan konstanta proporsionalitas pada persamaan pada hokum Newton pendinginan. Pada persamaan 2.5 yang mungkin serupa dengan Hukum Fourier tentang konduksi kalor. Namun, koefisien "h" merupakan koefisien yang sama sekali berbeda dengan konduktivitas termal "k" yang muncul sebagai konstanta proporsionalitas dalam hukum Fourier. Secara khusus, h bukanlah merupakan properties dari material. Melainkan nilai koefisien h bergantung pada geometri, properties fluida, gerak, dan dalam beberapa kasus perbedaan suhu, $\Delta T = (Ts - T\infty)$, dimana

h = f (geometri, gerakan fluida, sifat fluida, ΔT)

Dalam menentukan nilai dari koefisien perpindahan kalor konveksi perlu diperhatikan beberapa parameter tak berdimensi (dimensionless parameter) dimana:

- Sejumlah besar parameter dibutuhkan untuk menjelaskan perpindahan kalor.
- Parameter tersebut dapat dikelompokkan bersama untuk membentuk suatu nilai kecil parameter tak berdimensi.
- Dalam hal ini, memberikan persamaan umum menjadi lebih sederhana dimana koefisien perpindahan kalor dapat dihitung. Adapun parameter tak berdimensi seperti bilangan Reynolds, bilangan Nusselt, dan bilangan Prandtl biasa digunakan dalam menentukan nilai dari koefisien perpindahan kalor.

2.1.3.1 Bilangan Reynolds

Bilangan Reynolds merupakan rasio inersia dan viskositas dalam aliran. Bilangan Reynolds digunakan untuk menentukan aliran fluida apakah laminar, turbulen, dan transisi. Untuk menentukan nilai dari Reynolds number (Re) untuk aliran dalam pipa digunakan :

$$Re = \frac{GD}{\mu} \tag{2.6}$$

Dimana :

Re : Bilangan Reynolds

G : kecepatan aliran massa (kg/m2s)

D : diameter pipa (m)

μ : viskositas dinamik fluida (Ns/m2)

2.1.3.2 Bilangan Nusselt

Bilangan Nusselt (Nu) yang dapat didefinisikan sebagai rasio perpindahan kalor konveksi fluuida dengan perpindahan kalor konduksi fluida dalam kondisi yang sama. Sehingga bilangan Nusselt :

$$Nu = \frac{q^{''} (konveksi)}{q^{''} (konduksi)} = \frac{h\Delta T}{k\Delta T/L} = \frac{hL}{k}$$
(2.7)

Bilangan Nusselt untuk alran dalam pipa dapat di tuliskan :

$$Nu = \frac{hD}{k_f} \tag{2.8}$$

۸

Dimana :

Nu : Bilangan Nusselt

h : Koefisien perpindahan kalor konveksi (W/m2 .K)

L : panjang (m)

D : diameter pipa (m)

Dengan bilangan Nusselt, koefisien perpindahan kalor dengan mudah dapat dihitung.

2.1.3.3 Bilangan Prandtl

Bilangan Prandtl merupakan rasio kinematik viskositas (v) fluida dengan difusivitas kalor (α), dimana bilangan Prandtl merupakan properties thermodinamika dari fluida.

$$Pr = \frac{v}{\alpha} = \frac{\mu c p}{k} \tag{2.9}$$

Dimana :

Pr : Bilangan Prandtl

v :viskositas kinematik fluida (m2/s)

- α :thermal diffusivity (m2/s)
- cp : kalor spesifik $(J/kg \cdot {}^{\circ}K)$
- μ :viskositas dinamik fluida (N·s/m2)
- kf : konduktifitas kalor fluida (W/m.K)

2.1.4 Konveksi Paksa Aliran dalam Pipa

Perpindahan kalor aliran dalam pipa menjadi subyek penting akibat aplikasinya di bidang industri. Sehingga, banyak korelasi-korelasi yang digunakan untuk menghitung koefisien perpindahan kalor untuk aliran dalam pipa. Korelasi diberikan untuk masing-masing bergantung pada rezim aliran; turbulen, transisi, dan laminar.

Situasi fisik yang diuraikan oleh korelasi digambarkan dalam Gambar 2.3. fluida memasuki pipa pada temperatur (Ti) dan keluar pada pada temperature (Te). Dimana fluks kalor permukaan pipa (q_s) adalah konstan. Berdasar rezim alirannya ada beberapa kosrelasi yang digunakan untuk menetukan nilai koefisien perpindahan kalor konveksi.

Gambar 2. 5 Aliran dalam pipa dengan fluks kalor permukaan konstan

(Cengel, Y. A., 2003)

Adapun korelasi – korelasi adalah sebagai berikut :

2.1.4.1 Aliran laminar (Re<2300)

Untuk rezim aliran ini menurut Incropera dan De Witt dimana aliran fluida adalah laminar sehingga efek dari kekasaran permukaan dan factor gesekan dapat diabaikan. Bilangan Nusselt pada rezim ini adalah :

$$Nu_D = 4.36$$
 (2.10)

Dari persamaan 2.8 dan persamaan 2.10 didapat untuk persamaan koefisien perpindahan konveksi (hf) :

$$\boldsymbol{h_f} = 4.36 \frac{k_f}{D} \tag{2.11}$$

2.1.4.2 Aliran transisi (2300 < Re < 104)

6

Untuk rezim aliran ini korelasi yang sering digunakan untuk menentukan nilai koefisien perpindahan konveksi adalah korelasi Gnielinski (1976) dimana range bilangan Prandtl adalah $0.5 \le Pr \le 2000$. Bilangan Nusselt pada rezim ini dimana faktor gesekan fluida (ff) adalah :

$$Nu = \frac{(Re_f - 1000)(f_f/2)Pr_f}{\left[1 + 12.7(Pr_f^{2/3} - 1)(f_f/2)^{0.5}\right]}$$
(2.12)

Untuk nilai dari factor gesek dimana factor gesek pada likuid (ff) dan factor gesek pada gas (fg). Dimana nilai dari factor gesek dilihat berdasarkan bilangan Reynolds dari fluida. Dimana

Re < 2300 f=16 / Re (2.13)

$$Re > 3000$$
 f=0.079 Re -0.25 (2.14)

Dari persamaan 2.8 dan persamaan 2.12 didapat untuk persamaan koefisien perpindahan konveksi (hf) :

$$\boldsymbol{h}_{f} = \frac{(Re_{f} - 1000)(f_{f}/2)Pr_{f}\frac{k_{f}}{D}}{\left[1 + 12.7(Pr_{f}^{2/3} - 1)(f_{f}/2)^{0.5}\right]}$$
(2.15)

2.1.4.3 Aliran turbulen (104 < Re < 5 x106)

Untuk rezim aliran ini korelasi yang sering digunakan untuk menentukan nilai koefisien perpindahan konveksi adalah korelasi Petukhov dan Popov (1963) dimana range bilangan Prandtl adalah $0.5 \le Pr \le 2000$. Bilangan Nusselt pada rezim ini dimana adalah :

$$Nu = \frac{(Re_f)(f_f/2)Pr_f}{\left[1.07 + 12.7\left(Pr_f^{2/3} - 1\right)(f_f/2)^{0.5}\right]}$$
(2.16)

Dari persamaan 2.8 dan persamaan 2.13 didapat untuk persamaan koefisien perpindahan konveksi (hf) :

$$\boldsymbol{h}_{f} = \frac{(Re_{f})(f_{f}/2)Pr_{f}\frac{k_{f}}{D}}{\left[1.07 + 12.7\left(Pr_{f}^{2/3} - 1\right)(f_{f}/2)^{0.5}\right]}$$
(2.17)

2.1.4.4 Aliran turbulen (Re > 5 x106)

Untuk aliran turbulen dengan nilai bilangan Reynolds yang tinggi digunakan persamaan Dittus Bolter dimana range bilangan Prandtl adalah $0.7 \le$ Pr ≤ 160 . Bilangan Nusselt pada rezim ini dimana adalah :

$$Nu = 0.023 Re_f^{0.8} Pr_f^n (2.18)$$

Dimana untuk nilai n = 0.4 adalah untuk proses pemanasan (heating) dan untuk nilai n=0.3 adalah untuk proses pendingan (cooling). Dari persamaan 2.8 dan persamaan 2.15 didapat untuk persamaan koefisien perpindahan konveksi (hf) :

$$\boldsymbol{h}_{f} = 0.023 R e_{f}^{0.8} P r_{f}^{0.4} \frac{k_{f}}{D}$$
(2.19)

2.1.5 Perpindahan Kalor Didih (*Boiling Heat Transfer*)

Pendidihan merupakan proses perubahan fasa dari cair ke gas karena temperatur cairnya melebihi temperatur sarurasinya pada tekanan tertentu. Lain halnya dengan proses evaporasi, terjadinya perubahan fasa dari cair ke gas dikarenakan tekanan uapnya berada di bawah tekanan saturasi cairnya pada temperatur tertentu. Fenomena evaporasi dan pendidihan diilustasikan pada gambar berikut:

Gambar 2. 6 Proses Evaporasi Dan Pendidihan

(Yunus A. Cengel, 2003)[18]

Pendidihan dapat diklasifikasikan menjadi dua yaitu pool boiling dan flow boiling. Pendidiahan dikatakan sebagai pool boiling jika selama proses pendidihan kondisi fluida cairnya tidak mengalir/diam, sedangkan pendidihan dikatakan flow boiling jika selama proses pendidihan kondisi fluida cairnya mengalir, seperti yang diilustrasikan pada bambar 2.6.

Gambar 2. 7 (a) Pool Boiling, (b) Flow Boiling

(Yunus A. Cengel, 2003)[18]

Pendidihan juga dapat diklasifikasikan lagi menjadi subcooled boiling dan saturated boiling. Subcooled boiling adalah pendidihan yang terjadi ketika bulk temperatur dari fluida cairnya masih berada di bawah temperatur saturasinya sedangkan pendidihan dikatakan saturated boiling jika bulk temperatur dari fluida cairnya berada pada temperatur saturasinya. Fenomena tersebut diilustrasikan oleh gambar berikut:

2.1.5.1 Kolam didih (*Pool boiling*)

Pada kondisi pool boiling pergerakan fluida disebabkan oleh konveksi alami dan pergerakan gelembung dipengaruhi oleh gaya apung. Fenomena paling mudah ditemukan yang dapat menggambarkan Kondisi pool boiling yaitu ketika kita memanaskan air pada wajan di atas kompor.

Pada tahun 1934, Nukiyama (1896-1983) melakukan suatu percobaan yaitu, memberikan kawat nichrome yang dipasang horizontal dan dialiri arus listrik yang berfungsi sebagai pemanas pada suatu wadah berisi air pada tekanan atmosfer. Dengan mengetahui tahanan dari kawat nichrome tersebut Nukiyama dapat mengontrol flux kalor dan temperatur dengan mengatur arus dan tegangan listrik, seperti yang diilustrasikan pada gambar 2.8.

Nukiyama mengamati bahwa ketika ia menaikkan input daya pada kawat, flux kalor meningkat tajam, tetapi suhu kawat meningkat relatif kecil dan air belum mulai mendidih sampai $\Delta Tw \approx 5^{\circ}$ C. Kemudian tiba-tiba pada titik tertentu, sedikit diatas q"max suhu kawat melonjak ke titik leleh dan putus (burnout).

Nukiyama kemudian kembali mencoba dengan menggunakan kawat platinum yang memiliki titik leleh yang lebih tinggi. Dan kali ini dia dapat mempertahankan flux kalor diatas flux kalor maksimum tanpa terjadinya putus (burnout), walaupun kawat platinum tersebut menjadi hampir putih-panas. Ketika ia membalikkan percobaan tersebut, dengan menurunkan input daya ke kabel platinum, sehingga terjadi penurunan flux kalor dan temperatur secara kontinyu, hingga nilai flux kalor jauh di bawah nilai dimana terjadi lonjakan temperatur pertama terjadi. Dan pada saat flux kalor berada dibawah flux kalor minimum, lapisan film uap jatuh, lapisan isolasi gelembung terbentuk. Kemudian temperatur drop dengan tiba-tiba hingga ke posisi awal.

Nukiyama menyadari bahwa bentuk dari pendidihan yang terjadi berbedabeda, tergantung pada besarnya nilai excess temperature (Δ Te) dimana Δ Te adalah Temperatur permukaan solid yang dipanaskan (Ts) dikurangi dengan Temperatur saturasi cair (Tsat).

Nukiyama membagi proses pool boiling kedalam 4 rezim, yaitu natural convection boiling, nucleat boiling, transition boiling dan film boiling seperti yang ditunjukan pada gambar 2.9.

Gambar 2. 9 Kurva Pool Boiling

(Yunus A. Cengel, 2003)[18]

• Natural Convection boiling (Antara Titik Awal dan Titik A)

Pada kondisi ini temperatur permukaan berada sedikit di atas dari temperatur saturasi cairnya. Pergerakan fluida dipengaruhi oleh proses konveksi alami dan perpindahan kalor yang terjadi adalah secara konveksi dari permukaan yang
dipanaskan ke fluida cair yang bergerak naik turunseperti yang diilustrasikan pada gambar 2.10.

Gambar 2. 10 Rezim Natural Convection Boiling

(Yunus A. Cengel, 2003, Collier & Thome, 1994)[9][18]

• Nucleat Boiling (Antara Titik A dan C)

Gambar 2. 11 Rezim Nucleat Boiling

(Yunus A. Cengel, 2003)[18]

Gambar 2.11. diatas menunjukan kondisi pada saat Rezim Nucleat Boiling terbentuk. Pada titik onset of Nucleat boiling (ONB) yaitu pada titik A di kurva, gelembung pertama kali mulai terbentuk pada tempat-tempat tertentu pada permukaan yang dipanaskan seperti yang ditunjukan pada gambar 2.12

Gambar 2. 12 Pembentukan Gelembung Pertama Pada Titik ONB

(Collier & Thome, 1994)[9]

Rezim nucleat boiling dapat dibagi menjadi dua bagian, yaitu daerah A–B merupaka nucleat boiling dengan flux kalor rendah seperti yang diilustrasikan pada gambar 2.13. dimana pada daerah ini terbentuk gelembung yang disebut dengan isolated bubble di berbagai daerah inti (nucleation) tertentu pada permukaan yang dipanaskan. Gelembung ini bergerak tidak sampai ke permukaan karena setelah terpisah dari permukaan yang dipanaskan, gelembung tersebut terkondensasikan oleh cair yang berada diatasnya karena temperatur cair diatas gelembung tersebut lebih rendah daripada temperatur gelembung. Ruang kosong yang ditinggalkan oleh gelembung yang bergerak naik akan diisi oleh cair yang berada diatasnya dan proses ini akan terus berulang. Pada daerah ini sebagian besar pertukaran kalor terjadi secara konveksi langsung yaitu dari permukaan yang dipanaskan ke cair yang bergerak disekitar permukaan tersebut.

Gambar 2. 13 Nucleate Boiling Dengan Flux Kalor Rendah

(Collier & Thome, 1994)[9]

Daerah B–C merupaka nucleat boiling dengan flux kalor tinggi, dimana temperatur permukaan yang dipanaskan akan mengalami kenaikan lebih lanjut dan gelembung terbentuk dengan laju yang besar pada banyak daerah inti (nucleation) dan membentuk kolom uap yang kontinyu pada cair. Gelembunggelembung tersebut akan bergerak naik menuju permukaan kemudian pecah dan mengeluarkan uap yang ada didalamnya, seperti yang di diilustrasikan pada gambar berikut:

Gambar 2. 14 Nucleat Boiling Dengan Flux Kalor Tinggi

(Collier & Thome, 1994)[9]

Pada nilai Δ Te yang besar, laju evaporasi yang terjadi pada permukaan yang dipanaskan menjadi tinggi sehingga sebagian besar permukaan yang dipanaskan akan diselimuti oleh gelembung seperti yang ditunjukan pada gambar 2.15. dan hal tersebut akan membuat cair sulit untuk mencapai dan membasahi permukaan yang dipanaskan. Akibatnya flux kalor akan mengalami kenaikan dengan laju yang rendah yang diikuti dengan kenaikan Δ Te dan akhirnya flux kalor akan mencapai nilai maximum atau biasa disebut flux kalor kritikal pada titik C.

Gambar 2. 15 Nucleat Boiling Dengan Flux Kalor Maksimum (Yunus A. Cengel, 2003, Collier & Thome, 1994)[18][9]

• Transition Boiling (Antara Titik C dan D)

Kondisi ini biasa disebut juga dengan film boiling yang tidak stabil atau partial film boiling. Ketika ∆Te dinaikan melebihi titik C, maka heat flux akan mengalami penurunan karena sebagaian besar fraksi permukaan heater diselimuti oleh lapisan gelembung (vapour film) seperti yang ditunjukan pad gambar 2.16 dimana lapisan gelembung tersebut berperan sebagai insulasi dengan konduktivitas kalor yang lebih rendah daripada cair. Pada kondisi ini, baik nucleat boiling maupun film boiling terjadi secara parsial atau sebagian, dimana selanjutnya nucleat boiling pada titik C akan berubah seluruhnya menjadi film boiling pada titik D.

Gambar 2. 16 Rezim Transition Boiling (Yunus A. Cengel, 2003, Collier & Thome, 1994)

• Film Boiling (Melewati titik D pada kurva)

Pada kondisi ini permukaan heater seluruhnya telah diselimuti oleh film vapor yang stabil dan kontinyu seperti yang diilustrasikan pada gambar 2.17. sehingga pada titik D ini tercapai nilai minimum flux kalor (Leidenfrost). Pada rezim ini perpindahan kalor yang terjadi dari permukaan yang dipanaskan ke cair yaitu secara konduksi dan radiasi melalui lapisan gelembung uap (film vapour).

Gambar 2. 17 Rezim Film Boiling (Yunus A. Cengel, 2003, Collier & Thome, 1994)

2.1.5.2 Pendispersian pada berbagai media

Flow Boiling adalah proses pendidihan yang terjadi pada fluida cair yang mengalir/bergerak. *Flow boiling* dikelompokkan menjadi *External flow boiling* dan *Internal flow boiling*. Perbedaan keduanya hanya terletak pada proses pendidihannya, yaitu jika cairan dialirkan di atas sebuah permukaan pemanas maka disebut dengan *External flow boiling*. Sebaliknya jika cairan tersebut dialirkan dalam sebuah pipa pemanas, maka disebut dengan *internal flow boiling*.

• External flow boiling

External flow boiling hampir sama dengan pool boiling, hanya bedanya jika pada *external flow boiling* cairan dipaksa mengalir/bergerak diatas permukaan pemanas, sementara pada *pool boiling* tidak demikian. Pada *external flow boiling*, adanya gerakan pada cairan membawa keuntungan besar pada proses perpindahan panas, karena dengan naiknya kecepatan cairan maka akan diikuti dengan peningkatan nilai heat flux kritis (*critical heat flux*, CHF) pada *nucleat boiling* seperti yang terlihat pada gambar berikut.

Gambar 2. 18 Pengaruh Kecepatan Terhadap Flux Kalor

• Internal flow boiling

Tidak seperti *external flow boiling*, *internal flow boiling* jauh lebih rumit karena tidak ada permukaan bebas bagi gelembung uap untuk meloloskan diri ke udara bebas. Sehingga gelembung uap tersebut akan terseret mengikuti arus aliran cairannya. Aliran inilah yang selanjutnya disebut dengan "aliran dua fasa" (*two phase flow*) yaitu uap dan cair yang akan mengalir bersamaan dalam pipa. Pola aliran akan terus berubah seiring bertambahnya gelembung uap dalam pipa sehingga akan terbentuk beberapa pola aliran yang berbeda.

2.2 Didih dan kondensasi

Boiling dan kondensasi dalam kondisi natural ataupun dalam konveksi paksa sangatlah penting. Hal ini penting karena akan desain dari beberapa jenis alat industri akan tergantung pada boiling dan kondensasi yang terjadi pada fluida kerja tersebut, contohnya pada alat refrijerasi dan pendinginan, kondenser, heat pumps, boilers dll. Semua alat industri tersebut bekerja tergantung pada dinamika fluida dan proses perpindahan kalor yang timbul pada saat convective boiling dan kondensasi terjadi pada fluida kerja nya.

Convective boiling dapat didefinisikan sebagai proses penambahan panas (kalor) terhadap fluida yang mengalir yang akan menyebabkan timbul nya vapour (gas). Sedangkan condensation didefinisikan sebagai pelepasan panas (kalor) dari sistem ke lingkungan yang menyebabkan vapor berubah fasa menjadi liquid. Fenomena ini penting untuk di telusuri karena terkadang dapat memberikan solusi pada beberapa problem yang berkaitan dengan performance dari sebuah peralatan seperti perubahan pada proses hidrodinamika dan perpindahan kalor. Pada proses boiling dan kondensasi proses hidrodinamika dan perpindahan kalor sangatlah berkaitan satu sama lain nya. Penambahan atau pelepasan panas dari aliran dua fasa akan menyebabkan variasi dari jumlah dan distribusi dari setiap fasa dan pola aliran (flow pattern) atau topologi dari aliran tersebut. Perubahan ini menyebabkan varias dari proses perpindahan kalor lokal (local heat transfer). Karena perubahan termal dan properti fluida pada aliran yang terus menerus terjadi secara kontinu, kondisi aliran pada setiap titik aksial tidak akan pernah bisa berkembang penuh (fully developed) baik secara termal maupun hidrodinamik [9].

2.3 Aliran Dua Fasa (Two Phase Flow)

Aliran dua fasa adalah aliran fluida yang terdiri dari fasa cair dan fasa gas yang biasanya terjadi pada proses pendidihan atau kondensasi. Untuk mempelajari dan menganalisa aliran dua fasa dilakukan beberapa macam metode yang umumnya digunakan diantaranya:

1. Model aliran homogen (homogeneous flow model)

Pada metode ini, aliran dua fasa diasumsikan sebagai aliran satu fasa.

2. Model aliran terpisah (separated flow model)

Pada metode ini, aliran dua fasa diasumsikan sebagai aliran yang terpisah yaitu aliran dengan fasa cair dan fasa gas dimana masing-masing fasa memiliki persamaannya masing-masing.

3. Model pola aliran (flow pattern model)

Pada metode ini, aliran dua fasa diasumsikan tersusun oleh satu dari tiga atau empat geometri yang telah ditentukan. Geometeri tersebut berdasarkan pada variasi konfigurasi dari pola aliran yang ditemukan ketika fasa gas dan fasa cair secara bersamaan mengalir pada suatu kanal.

Pada aliran dua fasa, konfigurasi yang dibentuk oleh fasa gas dan fasa cair mempunyai bentuk-bentuk tertentu, konfigurasi-konfigurasi yang disusun oleh fasa gas dan fasa cair disebut dengan pola aliran (flow pattern).

Banyak penelitian yang telah dilakukan dengan menggunakan berbagai metode yang berbeda untuk mempelajari pola aliran dua fasa pada pipa yang dipanaskan maupun tidak dipanaskan, seperti yang dilakukan oleh Hewitt (1978) dengan menggunakan kanal transparan, Derbyshire (1964) dan Hewit (1978) dengan menggunakan X-radiography. Kemudian pada tahun 1954, Alves memperkenalkan pola aliran dua fasa yang terjadi pada kanal horizontal seperti yang ditunjukan pada gambar berikut

Gambar 2. 19 Pola Aliran Dua Fasa Pada Pipa Horizontal

(Collier & Thome, 1994)[9]

• Bubbly flow

Pada pola aliran ini,fasa gas atau uap tersebar sebagai gelembung diskrit (terputus-putus) pada fasa cair dengan ukuran kecil dimana gelembung uap tersebut bergerak menuju ke setengah bagian atas pipa.

• Plug flow

Pada pola aliran ini gelembung gas atau uap besarnya kurang lebih mendekati besarnya diameter pipa.ujung dari gelembungnya mempunyai karakteristik bentuk seperti tutup yang berbentuk bola dan gas didalam gelembung dipisahkan dari dinding pipa dengan adanya penurunan lapisan cair secara perlahan-lahan.

• Strarified flow

Pola aliran ini terjadi ketika kecepatan fasa cair dan gas rendah sekali.

• Wavy flow

Pola aliran ini terjadi ketika kecepatan uap naik, dimana nantinya permukaan pemisah (interface) akan terganggu oleh gelombang yang bergerak pada arah alirannya.

• Slug flow

Pola aliran ini terjadi ketika adanya kenaikan lebih lanjut kecepatan uap yang menyebabkan gelombang pada permukaan pemisah (interface) akan terbawa dalam bentuk busa yang disebarkan disepanjang kanal dengan kecepatan tinggi.

• Annular flow

Pola aliran ini terjadi ketika kecepatan uap tinggi yang akan menyebabkan pembentukan inti gas dengan lapisan cair disekeliling selimut pipa. Lapisan cair tersebut mungkin tidak kontinyu disekeliling pipa tapi pada akhirnya akan kontinyu mengelilingi pipa dimana lapisan cair pada bagian bawah pipa akan lebih tebal.

Peta pola aliran dua fasa pada aliran horizontal yang digunakan secara luas yaitu peta pola aliran yang diberikan oleh Baker (1954) seperti yang ditunjukan pada Gambar 2.20. dimana Gg adalah flux massa gas dan Gf flux massa cair, sedangkan faktor baker λ dan ψ dapat dihitung dengan menggunakan persamaan di bawah ini.

$$\lambda = \left[\left(\frac{\rho_g}{\rho_A} \right) \left(\frac{\rho_f}{\rho_w} \right) \right]^{\frac{1}{2}}$$
(2.4)

 $\psi = \left(\frac{\sigma_w}{\sigma}\right) \left[\left(\frac{\mu_f}{\mu_w}\right) \left(\frac{\rho_w}{\rho_f}\right)^2 \right]^{\frac{1}{3}}$ (2.5)

Gambar 2. 20 Peta Pola Aliran Dua Fasa Pada Pipa Horizontal

(Collier & Thome, 1994)[9]

Berdasarkan diameter dalam pipa yang digunakan, kanal untuk aliran dua fasa ini diklasifikasikan menjadi 6 jenis, seperti terlihat pada Tabel 2.1, yaitu:

- Kanal nano, yaitu apabila kanal yang digunakan untuk aliran dua fasa memiliki diameter dalam pipa kurang dari atau sama dengan 0,1 μm (Din ≤ 0,1 μm).
- Kanal nano transisi, yaitu apabila kanal yang digunakan untuk aliran dua fasa memiliki diameter dalam pipa lebih besar dari 0,1 µm sampai kurang dari atau sama dengan 1 µm (1 µm ≥ Din > 0,1 µm).
- Kanal mikro transisi, yaitu apabila kanal yang digunakan untuk aliran dua fasa memiliki diameter dalam pipa lebih besar dari 1 µm sampai kurang dari atau sama dengan 10 µm (10 µm ≥ Din > 1 µm).
- Kanal mikro, yaitu apabila kanal yang digunakan untuk aliran dua fasa memiliki diameter dalam pipa lebih besar dari 10 µm sampai kurang dari atau sama dengan 200 µm (200 µm ≥ Din > 10 µm).
- Kanal mini, yaitu apabila kanal yang digunakan untuk aliran dua fasa memiliki diameter dalam pipa lebih besar dari 200 µm sampai kurang dari atau sama dengan 3 mm (3 mm ≥ Din > 200 µm).

 Kanal konvensional, yaitu apabila kanal yang digunakan untuk aliran dua fasa memiliki diameter dalam pipa lebih besar dari 3 mm (Din > 3 mm).

Pada aliran dua fasa, terjadi perubahan secara hidrodinamik dan termodinamik. Perubahan secara hidrodinamik merupakan perubahan yang berhubungan dengan mekanika fluida seperti terjadinya penurunan tekanan. Adapun perubahan secara termodinamik merupakan perubahan yang berhubungan dengan perpindahan panas.

Dalam melakukan analisa terhadap aliran dua fasa, terdapat beberapa notasi dan bilangan tak berdimensi yang sering digunakan.

• Bilangan Tak Berdimensi

Beberapa bilangan tak berdimensi yang sering digunakan adalah:

1. Bilangan Reynolds (Re)

Bilangan Reynolds merupakan perbandingan inersia dan viskositas dalam aliran. Bilangan Reynolds digunakan untuk mengetahui apakan aliran fluida termasuk aliran laminar, turbulen, atau transisi. Untuk menghitung nilai dari bilangan Reynolds untuk fasa gas digunakan persamaan:

$$Re_g = \frac{GDx}{\mu_g} \tag{2.6}$$

Sedangkan untuk menghitung nilai dari bilangan Reynolds untuk fasa cair digunakan persamaan:

$$Re_f = \frac{GD(1-x)}{\mu_f} \tag{2.7}$$

2. Bilangan Nusselt (Nu)

Bilangan Nusselt didefinisikan sebagai rasio perpindahan kalor konveksi fluida dengan perpindahan kalor konduksi fluida dalam kondisi yang sama. Sehingga bilangan Nusselt dapat ditulis sebagai berikut:

$$Nu = \frac{h\Delta T}{k\Delta T/L} = \frac{hL}{k}$$
(2.8)

Bilangan Nusselt untuk aliran dalam pipa dapat ditulis sebagai berikut:

$$Nu = \frac{hD}{k_f} \tag{2.9}$$

3. Bilangan Prandtl (Pr)

Bilangan Prandtl merupakan rasio viskositas kinematik fluida (v) dengan diffusifitas kalor (α), dimana bilangan Prandtl merupakan karakteristik termodinamika dari fluida.

$$Pr = \frac{v}{\alpha} = \frac{\mu c p}{k} \tag{2.10}$$

• Notasi

Notasi yang sering digunakan diantaranya adalah:

1. Void Fraction (α)

Pada aliran dua fasa, terdapat daerah pipa yang ditempati oleh fasa gas dimana perbandingan dari luas daerah yang ditempati oleh fasa gas pada pipa tersebut dengan luas penampang total pipa biasa disebut sebagai fraksi gas (void fraction). Void fraction dapat dihitung dengan menggunakan persamaan berikut:

$$\alpha = \frac{A_g}{A} \qquad (1 - \alpha) = \frac{A_f}{A} \qquad (2.11)$$

2. Kualitas Massa Uap/Mass Quality (x)

Selama proses penguapan, sebagian zat berwujud cair dan sebagian lain berwujud uap. Kondisi ini disebut campuran cair jenuh dan uap jenuh. Untuk menganalisis kondisi campuran tersebut dengan tepat, maka perlu diketahui bagian fasa cair dan bagian fasa uap dari campuran tersebut. Sifat ini disebut kualitas massa uap (x), yang didefinisikan sebagai rasio massa uap terhadap massa total campuran. Nilai kualitas massa uap ini selalu antara 0 dan 1. Kualitas massa uap dari sistem yang berada dalam kondisi saturated cair adalah 0 dan kualitas massa uap dari sistem yang berada dalam kondisi saturated vapor adalah 1. Posisi kualitas massa uap dapat dilihat pada P-h diagram berikut:

Untuk menghitung kualitas massa uap, dapat menggunakan persamaan:

$$x = \frac{m_{vapor}}{m_{total}} = \frac{m_f}{m_f + m_g}$$
(2.12)

$$m_{total} = m_{liquid} + m_{vapor} = m_f + m_g \tag{2.13}$$

Atau dengan menggunakan persamaan berikut:

$$x = \frac{W_g}{W_g + W_f} \quad (1 - x) = \frac{W_f}{W_g + W_f}$$
(2.14)

$$x = \frac{i - i_f}{i_{fg}} \tag{2.15}$$

Universitas Indonesia

49

3. Mass Flux (G)

Mass Flux adalah laju aliran massa fluida yang mengalir per satuan luas penampang pada suatu pipa. Untuk menghitung besarnya nilai mass flux dapat menggunakan persamaan berikut:

$$G = \frac{W}{A} = \rho u = \frac{u}{v} \tag{2.16}$$

4. Laju Aliran Massa (W)

Untuk mencari laju aliran massa pada masing-masing fasa, baik cair maupun gas pada aliran dua fasa dapat menggunakan persamaan berikut:

$$W_g = GAx \qquad W_f = GA(1-x) \tag{2.17}$$

5. Kecepatan Aliran (u)

Untuk mencari besarnya kecepatan aliran pada masing-masing fasa, dapat menggunakan persamaan dibawah ini:

$$u_g = \frac{W_g}{\rho_g A_g} \qquad \qquad u_f = \frac{W_f}{\rho_f A_f} \tag{2.18}$$

Karena:

 $Q = \frac{W}{\rho}$, maka persamaan 2.18 dapat ditulis sebagai berikut:

$$u_g = \frac{Q_g}{A_g} \qquad \qquad u_f = \frac{Q_f}{A_f} \tag{2.19}$$

Atau karena:

 $W_g = GAx \operatorname{dan} W_f = GA(1 - x)$, maka persamaan 2.18 menjadi:

$$u_g = \frac{Gx}{\rho_g \alpha} \qquad \qquad u_f = \frac{G(1-x)}{\rho_f(1-\alpha)} \tag{2.20}$$

6. Panjang Subcooled (Zsc)

Aliran dua fasa sering terjadi pada saat proses pendidihan dan kondensasi, dimana pada kedua proses tersebut biasanya menggunakan temperatur saturasi

sebagai temperatur acuan. Material yang memiliki temperatur di atas temperatur saturasinya disebut dengan kondisi superheated (panas lanjut) dimana selisih temperaturnya dengan temperatur saturasinya diberi simbol Δ Tsat yang dapat dihitung dengan persamaan 2.21. Sedangkan material yang memiliki temperatur di bawah termperatur saturasinya disebut dengan kondisi subcooled yang diberi simbol Δ Tsub yang dapat dihitung dengan persamaan 2.22.

$$T - T_{SAT} = \Delta T_{SAT} \tag{2.21}$$

$$T_{SAT} - T = \Delta T_{SUB} \tag{2.22}$$

Pada kasus fluida yang melewati suatu pipa horozontal yang dipanaskan dengan memberikan flux kalor pada pipa tersebut seperti yang diilustrasikan oleh gambar di bawah ini:

(Collier & Thome, 1994)[9]

Maka perlu juga mempertimbangkan pada titik mana fluida tersebut mulai dalam keadaan saturasi. Oleh karena itu perlu diketahui panjang subcooled-nya untuk mengetahui pada jarak berapa fluida tersebut dalam keadaan saturasi. Untuk menghitung panjang subcooled tersebut dapat menggunakan persamaan:

$$Z_{sc} = L \frac{i_f - i_{f,in}}{\Delta i} = L \frac{i_f - i_{f,in}}{(Q/W)}$$
(2.23)

Sedangkan untuk menghitung besarnya kualitas massa uap yang keluar dari dari pipa tersebut dapat digunakan persamaan sebagai berikut

$$x_{out} = \frac{\Delta i + i_{f,in} - i_f}{i_{fg}}$$
(2.24)

Untuk mengetahui kualitas uap pada tiap tiik di sepanjang pipa dapat digunakan interpolasi yaitu dengan persamaan

$$x_Z = x_{out} \left(\frac{Z - Z_{sc}}{L - Z_{sc}}\right) \tag{2.25}$$

Dan untuk koefisien perpindahan kalor lokal di tiap titik pada pipa yang dipanaskan dapat dihitung dengan menggunakan persamaan berikut

$$h = \frac{q}{(T_{wi} - T_{SAT})}$$
(2.26)

7. Faktor gesekan (friction factor)

Faktor gesekan ini merupakan fungsi dari bilangan Reynolds, karena nilainya bergantung pada jenis aliran fluida. Untuk aliran dua fasa, bilangan Reynolds dihitung untuk masing- masing fasa, yaitu bilangan Reynolds untuk liquid dan bilangan Reynolds untuk gas.

Aliran turbulen didefinisikan sebagai aliran fluida yang memiliki bilangan Reynolds > 3000, sedangkan aliran viskous didefinisikan sebagai aliran fluida yang memiliki bilangan Reynolds < 2300. Adapun aliran yang memiliki bilangan Reynolds antara 2300 sampai 3000 didefinisikan sebagai aliran transisi.

Jika Re < 2.300, maka

$$f = 16 R_e^{-1} \tag{2.28}$$

Jika Re > 3.000, maka

$$f = 0.079 R_e^{-0.25} \tag{2.29}$$

Jika $2.300 \le \text{Re} \le 3.000$, maka faktor gesekannya dihitung dengan metoda interpolasi. Kondisi interpolasi ini dapat dilihat pada Tabel 2.2.

Bilangan Reynolds (Re)	Faktor Gesekan (f)
<2300	16.Re ⁻¹
>3000	0,079.Re ^{-0.025}

Tabel 2. 1 Rumus Friction Factor Berdasarkan Bilangan Reynolds

$$\frac{f - 16 R_e^{-1}}{0.079 R_e^{-0.25} - 16 R_e^{-1}} = \frac{R_e - 2300}{3000 - 2300}$$

$$f = \left[\frac{(R_e - 2300) x (0.0107 - 0.00695)}{700} + 0.00695\right]$$
(2.30)

Keterangan

Re = bilangan Reynolds

f = faktor gesekan (friction factor)

8. Parameter Martinelli (X)

Parameter Martinelli ini merupakan bagian dari Lockhart- Martinelli (1949) correlation. Pada metoda ini, bagian tertentu dari area aliran diberikan kepada masing- masing fasa dan diasumsikan bahwa persamaan penurunan tekanan konvensional dapat digunakan pada garis aliran dari masing- masing fasa.

$$X_{martinelli}$$
² = $\frac{pressure\ drop\ liquid}{pressure\ drop\ vapor}$

$$X^{2} = \frac{\left(\frac{dp}{dz} F\right)_{f}}{\left(\frac{dp}{dz} F\right)_{g}}$$
(2.31)

$$\frac{\left(\frac{dp}{dz}F\right)_{f}}{\left(\frac{dp}{dz}F\right)_{g}} = \left[\frac{2f_{f}G^{2}(1-x)^{2}v_{f}}{D}\right]}{\left(\frac{dp}{dz}F\right)_{g}} = \left[\frac{2f_{g}G^{2}x^{2}v_{g}}{D}\right]}$$
$$X^{2} = \left(\frac{f_{f}}{f_{g}}\right)\frac{(1-x)^{2}}{x^{2}}\frac{v_{f}}{v_{g}}$$
$$X = \left(\frac{f_{f}}{f_{g}}\right)^{1/2}\left(\frac{1-x}{x}\right)\left(\frac{\rho_{g}}{\rho_{f}}\right)^{1/2}$$
(2.32)

Keterangan

- *X* = parameter Martinelli
- f_f = friction factor untuk fasa liquid
- f_g = friction factor untuk fasa gas
- x = kualitas massa uap
- ρ_f = massa jenis liquid (kg/ m3)
- ρ_g = massa jenis gas (kg/ m3)

9. Two-phase frictional multiplier (ϕ_f^2)

Setelah nilai C, X, dan X2 diketahui, maka two-phase frictional multiplier dapat dihitung dengan persamaan berikut ini.

$$\phi_f^2 = \frac{\left(\frac{dp}{dz}\right)_{TP}}{\left(\frac{dp}{dz}\right)_f} = \frac{\left(\frac{dp}{dz}\right)_f}{\left(\frac{dp}{dz}\right)_f} + C \frac{\left[\left(\frac{dp}{dz}\right)_f \left(\frac{dp}{dz}\right)_g\right]^{0.5}}{\left(\frac{dp}{dz}\right)_f} + \frac{\left(\frac{dp}{dz}\right)_g}{\left(\frac{dp}{dz}\right)_f}$$
$$\phi_f^2 = \frac{\left(\frac{dp}{dz}\right)_f}{\left(\frac{dp}{dz}\right)_f} + C \left[\frac{\left(\frac{dp}{dz}\right)_g}{\left(\frac{dp}{dz}\right)_f}\right]^{0.5} + \frac{\left(\frac{dp}{dz}\right)_g}{\left(\frac{dp}{dz}\right)_f}$$

10. Deviasi

Untuk mengetahui besarnya deviasi antara perhitungan terhadap pengukuran, maka dapat dihitung dengan menggunakan persamaan

$$Mean \, dev = \left| \frac{nilai_{per \, hitungan} - nilai_{pengukuran}}{nilai_{pengukuran}} \right| x100$$
(2.33)

$$Average \ dev = \frac{nilai_{per \ hitungan} \ - nilai_{pengukuran}}{nilai_{pengukuran}} x100 \quad (2.34)$$

2.3.1 Koefisien Perpindahan Kalor Konveksi Aliran Dua Fasa (h_{TP})

Untuk kasus aliran yang dipanaskan (flow boiling), perpindahan kalor yang terjadi dipengaruhi oleh dua mekanisme utama, yaitu pendidihan nukleasi (nucleate boiling) dan konveksi paksa (force convection).

2.3.1.1 Pendidihan nukleasi (Nucleate Boiling)

Nucleate boiling merupakan salah satu kondisi pada proses pendidihan dimana pada kondisi inilah gelembung pertama kali mulai terbentuk. Hal tersebut menandakan bahwa pada kondisi ini aliran dua fasa mulai bekerja.

Kondisi Nucleate boiling ini telah banyak dipelajari sehingga banyak korelasi yang dapat digunakan untuk menghitung besarnya nilai koefisien perpindahan kalor yang terjadi, diantaranya adalah korelasi Forster-Zuber (1955) dan Cooper (1984).

• Korelasi Forster-Zuber (1955)

Korelasi ini dipublikasikan oleh Foster-Zuber pada tahun 1955. Dimana bentuk persamaannya adalah sebagai berikut :

$$h_{NB} = 0.00122 \left[\frac{k_f^{0.79} c_{Pf}^{0.45} \rho_f^{0.49}}{\sigma^{0.5} \mu_f^{0.29} h_{fg}^{0.24} \rho_g^{0.24}} \right] \Delta T_{sat}^{0.24} \Delta P_{sat}^{0.75}$$
(2.35)

• Korelasi Cooper (1984)

Cooper (1984) mempublikasikan korelasi untuk nukleat pool boiling. Dimana dalam korelasi cooper menggunakan penurunan tekanan, berat molekul, dan kekasaran permukaan sebagai parameter yang berhubungan.

$$h_{NB} = 55\dot{q}^{0.67} P_r^{0.12} (-0.4343 \ln P_r)^{-0.55} M^{-0.55}$$
(2.36)

2.3.1.2 Konveksi Paksa (force convection)

Perpindahan kalor untuk aliran dalam pipa memiliki peranan yang penting dalam dunia industri, karena banyak sekali alat-alat industri yang mengaplikasikan fenomena tersebut. Oleh karena itu, banyak penelitian yang dilakukan dan menghasilkan korelasi-korelasi yang dapat digunakan untuk menghitung koefisien perpindahan kalor yang terjadi. Pemilihan korelasi yang akan digunakan bergantung pada kondisi alirannya, laminer, turbulen, atau transisi.

Pada daerah konveksi paksa aliran dua fasa, Martinelli memberikan suatu persamaan yang digunakan untuk menghitung besarnya koefisien perpindahan kalor yaitu dengan persamaan sebagai berikut:

$$\frac{h_{TP}}{h_f} = fn\left(\frac{1}{X_{tt}}\right) \tag{2.37}$$

Pada nilai kualitas uap yang rendah, kontribusi dari mekanisme nukleat boling lebih dominan, tapi kontribusi dari konveksi paksa boiling meningkat seiring meningkatnya nilai kualitas uap. Sehingga pada saat memasuki rezim aliran annular maka konveksi paksa akan menjadi dominan.

Banyak metode untuk memprediksi koefisien perpindahan kalor mendidih di tabung pada aliran dua fasa. Secara umum, koefisien perpindahan kalor nucleat boiling (hNB) ditentukan menggunakan korelasi nucleat boiling pada pool boiling. Sama halnya dengan koefisien perpindahan kalor pada konveksi paksa (hf), yang biasanya terkait atau sama hubungannya dengan koefisien perpindahan kalor cair.

• Aliran Laminar (Re<2300)

Menurut Incropera dan De Witt, karena alirannya laminar maka efek dari kekasaran permukaan dan faktor gesekannya dapat diabaikan. Bilangan Nusselt pada kondisi ini adalah :

$$Nu_D = 4.36$$
 (2.38)

Maka persamaan koefisien perpindahan kalor konveksi nya adalah:

$$h_f = 4.36 \frac{k_f}{D}$$
(2.39)

• Aliran Turbulen $(2300 < \text{Re} < 10^4)$

Untuk kondisi aliran ini korelasi yang sering digunakan untuk menentukan nilai koefisien perpindahan kalor konveksi adalah korelasi Gnielinski (1976) dimana range bilangan Prandtl adalah $0.5 \le Pr \le 2000$. Bilangan Nusselt pada rezim ini dimana faktor gesekan fluida (ff) adalah :

$$Nu = \frac{(Re_f - 1000)(f_f/2)Pr_f}{\left[1 + 12.7(Pr_f^{2/3} - 1)(f_f/2)^{0.5}\right]}$$
(2.40)

Untuk nilai dari faktor gesek dimana faktor gesek pada cair (ff) dan faktor gesek pada gas (fg). Dimana nilai dari faktor gesek dilihat berdasarkan bilangan Reynolds dari fluida.

Re < 2300
$$f = 16 / Re$$
 (2.41)

$$Re > 3000 fmta = 0.079 Re - 0.25 (2.42)$$

$$2300 \ge \text{Re} \ge 3000$$
 $f = \left(\frac{Re - 2300}{700}\right)(0.0037) + 0.0069$ (2.43)

Maka persamaan koefisien perpindahan kalor konveksi nya adalah:

$$h_f = \frac{(Re_f - 1000)(f_f/2)Pr_f \frac{k_f}{D}}{\left[1 + 12.7(Pr_f^{2/3} - 1)(f_f/2)^{0.5}\right]}$$
(2.44)

• Aliran Turbulen (104 < Re < 5 x106)

Untuk kondisi aliran ini korelasi yang sering digunakan untuk menentukan nilai koefisien perpindahan kalor konveksi adalah korelasi Petukhov dan Popov (1963) dimana range bilangan Prandtl adalah $0.5 \le Pr \le 2000$. Bilangan Nusselt pada rezim ini dimana adalah :

$$Nu = \frac{(Re_f)(f_f/2)Pr_f}{\left[1.07 + 12.7(Pr_f^{2/3} - 1)(f_f/2)^{0.5}\right]}$$
(2.37)

Maka persamaan koefisien perpindahan kalor konveksi nya adalah:

$$h_f = \frac{(Re_f)(f_f/2)Pr_f \frac{k_f}{D}}{\left[1.07 + 12.7(Pr_f^{2/3} - 1)(f_f/2)^{0.5}\right]}$$
(2.38)

• Aliran Turbulen (Re > 5 x106)

Untuk aliran turbulen dengan nilai bilangan Reynolds yang tinggi digunakan persamaan Dittus-Boelter dimana range bilangan Prandtl adalah $0.7 \le Pr \le 160$. Bilangan Nusselt pada rezim ini dimana adalah :

$$Nu = 0.023 Re_f^{0.8} Pr_f^n (2.39)$$

dimana nilai n untuk proses pemanasan (heating) adalah 0.4, sedangkan untuk proses pendingan (cooling) adalah 0.3.

Maka persamaan koefisien perpindahan kalor konveksi nya adalah:

$$h_f = 0.023 Re_f^{0.8} Pr_f^{0.4} \frac{k_f}{D}$$
(2.40)

• Aliran Transisi $(2300 \le \text{Ref} < 3000)$

Untuk kondisi ini, dilakukan interpolasi sehingga persamaannya menjadi:

$$h_{f(2300 \le Re_{f} < 3000)} = \frac{\left(h_{f(3000 \le Re_{f} < 10^{4})} - h_{f(Re_{f} < 2300)}\right) \times (Re_{f} - 2300)}{700} + h_{f(Re_{f} < 2300)}$$
(2.41)

2.3.2 Korelasi Koefisien Perpindahan Kalor Aliran Dua Fasa

Banyak korelasi yang dapat digunakan untuk menghitung besarnya koefisien perpindahan kalor dua fasa, diantaranya adalah korelasi Chen (1963) korelasi Gungor-winterton (1986) dan korelasi Zhang et al. (2004).

2.3.2.1 Korelasi Chen (1963)[16]

Pada tahun 1963, Chen memperkenalkan korelasi yang dapat digunakan untuk memprediksi nilai koefisien perpindahan kalor pada aliran dua fasa. Persamaan tersebut terdiri dari mekanisme Nucleat Boiling dan forced convection dengan tambahan dua komponen, yaitu faktor pengali bilangan Reynolds (F) dan faktor penekanan (S). Pada dasarnya korelasi ini berlaku untuk aliran dua fasa pada pipa konvensional dimana kondisi alirannya adalah turbulen untuk kedua fasa cair dan gas. Bentuk korelasi Chen tersebut adalah:

$$h_{TP} = (h_{NB})(S) + (h_f)(F)$$
 (2.42)

Untuk mendapatkan nilai faktor pengali (F), dapat dihitung dengan persamaan berikut:

$$F = \left[\frac{Re_{TP}}{Re_f}\right]^{0.8} = \left[\frac{Re_{TP}\mu_f}{G(1-x)D}\right]^{0.8}$$
(2.43)

Chen juga menyatakan bahwa faktor pengali F merupakan fungsi dari parameter martinelli (F = fn(Xtt)), dimana Xtt adalah parameter martinelli pada kondisi aliran turbulen pada kedua fasa cair dan fasa gas. Persamaan dasar dari parameter Martinelli adalah sebagai berikut:

$$X^{2} = \frac{\left(\frac{dp}{dz}\right)_{f}}{\left(\frac{dp}{dz}\right)_{g}} = \frac{\left(\frac{2f_{f}G^{2}(1-x)^{2}v_{f}}{D}\right)}{\left(\frac{2f_{g}G^{2}x^{2}v_{g}}{D}\right)} = \left(\frac{f_{f}}{f_{g}}\right)\left(\frac{(1-x)^{2}}{x^{2}}\right)\left(\frac{v_{f}}{v_{g}}\right)$$
(2.44)

$$X = \left(\frac{f_f}{f_g}\right)^{\frac{1}{2}} \left(\frac{1-x}{x}\right) \left(\frac{\rho_g}{\rho_f}\right)^{\frac{1}{2}}$$
(2.45)

Universitas Indonesia

Penurunan tekanan..., Hendriawan Anandaputra Soemantri, FT UI, 2012.

Maka untuk kondisi aliran turbulen-turbulen, persamaannya menjadi:

$$X = \left(\frac{f_f}{f_g}\right)^{\frac{1}{2}} \left(\frac{1-x}{x}\right) \left(\frac{\rho_g}{\rho_f}\right)^{\frac{1}{2}}$$
$$X_{tt} = \left(\frac{0.079 \times Re_f^{-0.25}}{0.079 \times Re_g^{-0.25}}\right)^{\frac{1}{2}} \left(\frac{1-x}{x}\right) \left(\frac{\rho_g}{\rho_f}\right)^{\frac{1}{2}}$$
$$X_{tt} = \left(\frac{Re_f^{-0.25}}{Re_g^{-0.25}}\right)^{\frac{1}{2}} \left(\frac{1-x}{x}\right) \left(\frac{\rho_g}{\rho_f}\right)^{\frac{1}{2}}$$
$$X_{tt} = \left[\left(\frac{1-x}{x}\right)^{-0.25} \left(\frac{\mu_g}{\mu_f}\right)^{-0.25}\right]^{\frac{1}{2}} \left(\frac{1-x}{x}\right) \left(\frac{\rho_g}{\rho_f}\right)^{\frac{1}{2}}$$
$$X_{tt} = \left(\frac{1-x}{x}\right)^{0.875} \left(\frac{\rho_g}{\rho_f}\right)^{0.5} \left(\frac{\mu_f}{\mu_g}\right)^{0.125}$$
$$X_{tt} \approx \left(\frac{1-x}{x}\right)^{0.9} \left(\frac{\rho_g}{\rho_f}\right)^{0.5} \left(\frac{\mu_f}{\mu_g}\right)^{0.1}$$
(2.46)

Chen membuat suatu plot yang menyatakan hubungan antara faktor F dengan parameter Martinelli dimana kondisi aliran fasa cair dan fasa gasnya ialah turbulen-turbulen seperti yang diperlihatkan pada grafik berikut ini:

Gambar 2. 23 Grafik Faktor Pengali (F)

(Collier & Thome, 1994)[9]

Akan tetapi fungsi ini masih harus dievaluasi lagi karena kondisi aliran yang terjadi tidak hanya turbulen saja akan tetapi ada kondisi aliran laminar dan transisi. Dengan mempertimbangkan kondisi aliran tersebut, kemudian Chen memberikan persamaan dimana faktor F sebagai fungsi dari faktor pengali friksi aliran dua fasa dengan dasar gradien tekanan pada fasa cair, sehingga bentuk persamaannya menjadi:

$$F = \left(\phi_f^2\right)^{0.444} \tag{2.47}$$

dimana besarnya faktor pengali friksi aliran dua fasa yang didasarkan pada gradien tekanan pada aliran fasa cair (ϕ_f^2) dapat dihitung dengan menggunakan persamaan berikut:

$$\phi_{f}^{2} = \frac{\left(\frac{dp}{dz}F\right)_{TP}}{\left(\frac{dp}{dz}F\right)_{f}} = \frac{\left(\frac{dp}{dz}F\right)_{f}}{\left(\frac{dp}{dz}f\right)_{f}} + C\frac{\left[\left(\frac{dp}{dz}F\right)_{g}\left(\frac{dp}{dz}F\right)_{f}\right]^{0.5}}{\left(\frac{dp}{dz}F\right)_{f}} + \frac{\left(\frac{dp}{dz}F\right)_{g}}{\left(\frac{dp}{dz}F\right)_{f}}$$

$$\phi_{f}^{2} = 1 + C\left[\frac{\left(\frac{dp}{dz}F\right)_{g}}{\left(\frac{dp}{dz}F\right)_{f}}\right]^{0.5} + \frac{\left(\frac{dp}{dz}F\right)_{g}}{\left(\frac{dp}{dz}F\right)_{f}}$$

$$\phi_{f}^{2} = 1 + \frac{c}{\chi} + \frac{1}{\chi^{2}}$$

$$(2.48)$$

Sedangkan faktor pengali friksi aliran dua fasa yang didasarkan pada gradien tekanan pada aliran fasa gas (ϕ_g^2) besarnya dapat dihitung dengan menggunakan persamaan berikut ini ;

$$\phi_a^2 = 1 + CX + CX^2 \tag{2.49}$$

Besarnya parameter Chisolm (C) tergantung dari kondisi aliran yang terjadi pada fasa cair dan fasa gas. Berikut ini merupakan tabel nilai parameter Chisolm untuk beberapa kondisi aliran fasa cair dan fasa gas.

Kondisi aliran		simbol	Parameter
Fasa cair	Fasa gas		Chisolm (C)
Turbulen	Turbulen	tt	20
Laminar	Turbulen	vt	12
Turbulen	Laminar	tv	10
Laminar	Laminar	VV	5

Tabel 2. 2 Parameter Chisolm Pada Beberapa Kondisi Aliran Fasa Cair Dan Gas

Selain keempat kombinasi aliran yang terlihat pada tabel 2.1. diatas, masih terdapat beberapa kombinasi aliran yang dapat terjadi dimana dalam menentukan nilai parameter chisolm (C) digunakan cara interpolasi, seperti yang ditunjukan pada tabel berikut:

Tabel 2. 3. Parameter Chisolm Pada Beberapa Kombinasi Aliran lainnya

Kondisi aliran			
		simbol	Parameter Chisolm (C)
Cair	Gas		
Turbulen	Transisi	ttr	$\frac{(Re_g - 2300)}{700} \times 10 + 10$
Transisi	Turbulen	trt	$\frac{(Re_f - 2300)}{700} \times 8 + 12$
Laminar	Transisi	vtr	$\frac{(Re_g - 2300)}{700} \times 7 + 5$
Transisi	Laminar	trv	$\frac{(Re_f - 2300)}{700} \times 5 + 5$
Transisi	Transisi	trtr	$\left(\frac{(Re_f - 2300)}{700} \times 7.5\right) + \left(\frac{(Re_g - 2300)}{700} \times 7.5\right) + 5$

Selanjutnya Chen memperkenalkan faktor penekanan (S) yang merupakan fungsi dari bilangan Reynolds dua fasa, dimana bentuk persamaannya adalah sebagai berikut:

$$S = \frac{1}{(1+2.53 \times 10^{-6} Re_{TP}^{1.17})}$$
(2.50)

dan besarnya nilai bilangan Reynolds dua fasa (ReTP) dihitung dengan menggunakan persamaan berikut:

$$Re_{TP} = \frac{GD}{\overline{\mu}} \tag{2.51}$$

besarnya nilai viskositas rata-rata ($\bar{\mu}$) diperoleh dengan menggunakan persamaan yang diberikan oleh Mc Adaam et.al (1942) seperti di bawah ini:

$$\bar{\mu} = x\mu_g + (1 - x)\mu_f \tag{2.52}$$

Chen membuat suatu plot yang menyatakan hubungan antara faktor S dengan bilangan Reynolds dua fasa dimana kondisi aliran fasa cair dan fasa gasnya ialah turbulen-turbulen seperti yang diperlihatkan pada grafik berikut ini:

Gambar 2.25. Grafik Faktor Penekanan (S)

(Collier & Thome, 1994)

2.3.2.2 Korelasi Gungor-Winterton (1986) [15]

Pada tahun 1986, Gungor-Winterton juga memberikan korelasi untuk menghitung besarnya nilai koefisien perpindahan kalor aliran dua fasa. Hampir sama dengan persamaan yang diperkenalkan oleh Chen, persamaan Gungor-Winterton terdiri dari mekanisme Nucleat Boiling dan forced convection dengan tambahan dua komponen, berlaku untuk aliran dua fasa pada pipa konvensional dimana kondisi alirannya adalah turbulen untuk kedua fasa cair dan gas. Yang membedakannya adalah dua komponen tambahannya, dimana bentuk persamaannya adalah sebagai berikut:

$$h_{TP} = (h_{NB})(S) + (h_f)(E)$$
(2.53)

Dalam persamaannya, Gungor-Winterton menggunakan komponen tambahan berupa faktor peningkatan konveksi (E) yang merupakan fungsi dari Boiling Number (Bo) dan parameter Martinelli (X). Besarnya nilai faktor E dapat diperoleh dengan menggunakan persamaan:

$$E = 1 + 24000Bo^{1.16} + 1.37 \left(\frac{1}{x}\right)^{0.86}$$
(2.54)

besarnya boiling number (Bo) didapatkan dengan persamaan berikut:

$$Bo = \frac{q}{G \times i_{fg}} \tag{2.55}$$

Dan untuk komponen tambahan satu lagi, Gungor-Winterton menggunakan faktor penekanan (S) yang merupakan fungsi dari bilangan Reynolds fasa cair (Re_f) dan faktor peningkatan konveksi (E). Besarnya nilai faktor S dapat diperoleh dengan menggunakan persamaan:

$$S = \frac{1}{\left(1 + 1.15 \times 10^{-6} E^2 R e_f^{1.17}\right)}$$
(2.56)

Untuk horizontal tube, jika nilai bilangan Froude di bawah 0.05, maka nilai faktor E harus dikalikan lagi dengan fungsi bilangan Froude berikut:

$$Fr_{f}^{(0.1-2Fr_{f})}$$
 (2.57)

dan nilai faktor S harus dikalikan lagi dengan fungsi bilangan Froude berikut:

$$Fr_f^{0.5}$$
 (2.58)

dimana besarnya bilangan Froude (Frf) dihitung dengan persamaan:

$$Fr_f = \left(\frac{G^2}{\rho_f^2 g D}\right) \tag{2.59}$$

2.3.2.3 Korelasi Zhang et al. (2004)[17]

Pada tahun 2004 Zhang memperkenalkan korelasi baru hasil modifikasi dari korelasi Chen. Zhang menyatakan bahwa berdasarkan analisis dari dari percobaan Flow boiling yang telah dilakukan, ditemukan bahwa kondisi aliran laminer pada cair dan kondisi aliran turbulen pada gas merupakan komposisi umum yang terjadi pada pengaplikasian pipa mini. Sedangkan kebanyakan korelasi terdahulu yang sering digunakan untuk memprediksi besarnya koefisien perpindahan kalor dibentuk untuk kondisi aliran turbulen-turbulen pada fasa cair dan fasa gas, sehingga pada prinsipnya tidak cocok bila digunakan untuk memprediksi nilai koefisien perpindahan kalor pada pipa mini dimana kondisi alirannya adalah laminer untuk fasa cair dan turbulen untuk fasa gas. Oleh sebab itu Zhang memodifikasi persamaan Chen menjadi:

$$h_{TP} = S \times h_{NB} + F \times h_f$$
 (2.60)
Dimana:
 $S = \frac{1}{(1+2.53 \times 10^{-6} Re_f^{1.17})}$ (2.61)
 $F = 0.64(\phi_f)$ (2.62)

2.4 Penurunan tekanan pada aliran dua fasa

Persamaan dasar dari aliran dua fasa telah menarik perhatian banyak ilmuwan dan telah diturunkan ke dalam berbagai jenis persamaan yang lebih spesifik dan sesuai dengan variabel-variabel yang sesuai dengan kondisi eksperimen seperti yang dilakukan oleh Boure (1978), Boure dan Reocreux (1972), Ishii (1990) dan Delhaye (1990). Sebuah persamaan di simplifikasi menjadi sebuah analisa satu dimensi dari aliran multi-fasa dengan mempertimbangkan sistem seperti pada gambar 2.1 dibawah. Pada gambar ini dapat terlihat sebuah aliran multi-fasa bertingkat (stratified flow) pada sebuah kanal. Sebuah aliran beetingkat dipilih agar persamaan dapat diturunkan untuk kasus umum dimana pada setiap fasa terjadi kontak dinding kanal. Asumsi kecepatan uniform pada kecepatan rata-rata dan densitas untuk setiap fasa diasumsikan normal terhadap arah aliran.

Gambar 2. 24 Simplikasi model aliran multi-fasa dalam sebuah kanal

Persamaan dasar dari aliran dua fasa berasal dari 3 hukum konservasi yaitu konservasi massa, konservasi momentum dan konservasi energi. Pada sub bab ini akan dibahas penurunan persamaan dari ketiga konservasi ini

2.4.1 Penurunan persamaan umum aliran dua fasa

2.4.1.1 Konservasi Massa

Persamaan ini menggambarkan konservasi massa pada kanal dengan asumsi tidak ada penambahan ataupun pelepasan massa di sepanjang dinding kanal.

 $\Gamma = transfer massa (jumlah massa per satuan jarak)pada fase k$

$$W(t,z)(kg/s) = A_k(m^2) \rho_k(kg/m^3) u_k(m/s)$$

 $dW = \frac{\partial W}{\partial t} dt + \frac{\partial W}{\partial z} dz$

$$\frac{\partial}{\partial t} (A_{k}\rho_{k}u_{k})dt + \frac{\partial}{\partial z} (A_{k}\rho_{k}u_{k})dz = dW_{k}$$

$$\frac{\partial}{\partial t} \left(A_{k}\alpha_{k}\rho_{k}\frac{dz}{dt}\right)dt + \frac{\partial}{\partial z} (A_{k}\alpha_{k}\rho_{k}u_{k})dz = dW_{k} \rightarrow (asumsi \ mean \ velocity)$$

$$\frac{\partial}{\partial t} (A\alpha_{k}\rho_{k}) + \frac{\partial}{\partial z} (A\alpha_{k}\rho_{k}u_{k}) = \frac{dW_{k}}{dz} = \Gamma_{k}$$

$$0 + \frac{\partial}{\partial z} (A\alpha_{k}\rho_{k}u_{k}) = \frac{dW_{k}}{dz} = \Gamma_{k} \rightarrow (untuk \ steady \ state \ aliran \ dua \ fasa)$$

$$\frac{\partial}{\partial z} (A\alpha_{k}\rho_{k}u_{k}) = \frac{dW_{k}}{dz} = \Gamma_{k} \qquad (2.63)$$

Untuk kondisi steady state pada aliran dua fasa gas (g) dan liquid (f) pada luas area konstan dalam sebuah kanal, persamaan menjadi sebagai berikut.

$$\sum_{k} \Gamma_{k} = 0$$

$$\sum_{k} \Gamma_{k} = \Gamma_{g} + \Gamma_{f} = 0 \text{ (untuk aliran dua fasa liquid dan gas)}$$

$$\sum_{k} \Gamma_{k} = \Gamma_{g} + \Gamma_{f} = \frac{d}{dz} (A\alpha_{g}\rho_{g}u_{g}) + \frac{d}{dz} (A\alpha_{f}\rho_{f}u_{f}) = \frac{d}{dz} (A_{g}\rho_{g}u_{g}) = 0$$

$$\Gamma_{g} = -\Gamma_{f} \rightarrow \frac{dW_{g}}{dz} = -\frac{dW_{f}}{dz} \rightarrow \frac{d}{dz} (A_{g}\rho_{g}u_{g}) = -\frac{d}{dz} (A_{f}\rho_{f}u_{f}) \tag{2.64}$$

2.4.1.2 Konservasi Momentum

Dalam konservasi momentum, besarnya momentum yang dihasilkan pada fase k dalam sebuah kontrol volum (elemen) ditambahkan dengan besarnya momentum yang masuk kedalam sistem adalah sama dengan jumlah dari seluruh gaya yang bekerja pada fasa tersebut di dalam kontrol elemen tersebut.

(Rate of momentum in) – (Rate of momentum out) + (Rate of momentum generation) = (Rate of Momentum accumulation)

$$(Wu)(t,z)(N/s^2) = A_k(m^2) \rho_k(kg/m^3) u_k(m/s) u_k(m/s)$$
$$= laju \ aliran \ momentum$$

Dimana k adalah fase

$$d(Wu) = \frac{\partial (Wu)}{\partial t} dt + \frac{\partial (Wu)}{\partial z} dz$$

$$\frac{\partial}{\partial t} (W_k u_k) dt + \frac{\partial}{\partial z} (W_k u_k) dz = d(W_k u_k)$$

$$\frac{\partial}{\partial t} \left(W_k \frac{dz}{dt} \right) dt + \frac{\partial}{\partial z} (W_k u_k) dz = d(W_k u_k) \rightarrow \text{(asumsi mean velocity)}$$

$$\frac{\partial}{\partial t} (W_k \vartheta z) dt + \vartheta z \frac{\partial}{\partial z} (W_k u_k) dz = d(W_k u_k)$$

$$0 + \vartheta z \frac{\partial}{\partial z} (W_k u_k) = d(W_k u_k) \rightarrow \text{(steady state aliran dua fasa)}$$

$$\vartheta z \frac{\partial}{\partial z} (W_k u_k) = \vartheta z \frac{\partial}{\partial z} (A_k p) = \vartheta z \frac{\partial}{\partial z} (A \alpha_k p)$$
(2.65)

Tekanan yang terjadi pada elemen dapat direpresentasikan pada rumus sebagai berikut

$$\left[A\alpha_k p - (A\alpha_k p + \left(\vartheta z \frac{\partial}{\partial z} (A\alpha_k p)\right) + \left(p\vartheta z \frac{\partial}{\partial z} (A\alpha_k p)\right)\right]$$
(2.64)

Gaya gravitasi didefinisikan oleh persamaan di bawah ini

$$A\alpha_k \rho_k \,\vartheta z \,g \sin\theta \tag{2.65}$$

Gaya geser pada dinding didefinisikan oleh persamaan di bawah ini

$$\tau_{kw} P_{kw} \vartheta z \tag{2.66}$$

Dimana tww adalah tegangan geser dinding antara fase k dan dinding kanal, dan Pkw adalah kontak perimeter antara dinding dan fase k.

Total dari gaya geser yang terjadi dapat (S1,S2, dst) dapat didefinisikan pada persamaan sebagai berikut:

Dimana τ knz adalah komponen arah-z dari tegangan geser antara fase k dan fase n, dan Pkn adalah perimeter kontak antara fase k dan fase n.

Laju pembangkitan momentum dari fase k yang disebabkan oleh transfar massa dengan asumsi massa yang dipindahkan (transfer) di sepanjang interfasial dipercepat ke mean velocity dari fase penerima (receiving phase). Maka dari itu, persamaan keseimbangan terhadapat jumlah gaya yang bekerja pada arah-z pada fase k di kontrol elemen ditambah dengan pembangkitan momentum yang diakibatkan transfer massa, dapat diberikan oleh persamaan dibawah ini.

$$\begin{bmatrix} (A\alpha_{k}p) - \left(A\alpha_{k}p + \vartheta z \frac{\partial}{\partial z}(A\alpha_{k}p)\right) + \left(p\vartheta z \frac{\partial}{\partial z}(A\alpha_{k}p)\right) \end{bmatrix} - A\alpha_{k}\rho_{k} \vartheta z g \sin \theta \\ - \tau_{kw}P_{kw}\vartheta z + \sum_{1}^{n}\tau_{knz}P_{kn}\vartheta z + u_{k}\Gamma_{k} \\ \begin{bmatrix} (A\alpha_{k}p) - \left(A\alpha_{k}p + p\vartheta z \frac{\partial}{\partial z}(A\alpha_{k}) + A\alpha_{k}\vartheta z \frac{\partial}{\partial z}(p)\right) + \left(p\vartheta z \frac{\partial}{\partial z}(A\alpha_{k}p)\right) \end{bmatrix} \\ - A\alpha_{k}\rho_{k}\vartheta z g \sin \theta - \tau_{kw}P_{kw}\vartheta z + \sum_{1}^{n}\tau_{knz}P_{kn}\vartheta z + u_{k}\Gamma_{k} \\ -A\alpha_{k}\vartheta z \frac{\partial}{\vartheta z}(p) - A\alpha_{k}\rho_{k}\vartheta z g \sin \theta - \tau_{kw}P_{kw}\vartheta z + \sum_{1}^{n}\tau_{knz}P_{kn}\vartheta z + u_{k}\Gamma_{k} \\ = \frac{\partial}{\partial t}(W_{k}\vartheta z) + \vartheta z \frac{\partial}{\partial z}(W_{k}u_{k}) \end{bmatrix}$$

 $-A_k dp - A_k \rho_k dz \ g \sin \theta - \tau_{kw} P_{kw} dz + \sum_{1}^{n} \tau_{knz} P_{kn} dz + u_k \Gamma_k = W_k du_k \rightarrow$ (untuk steady state aliran dua fasa pada luas area kanal konstan
(2.68)

Dari persamaan 2.8 tersebut dapat digunakan untuk masing-masing fasa Untuk fasa gas (2.67)

$$-A_g dp - A_g \rho_g dz g \sin \theta - \tau_{gw} P_{gw} dz + \tau_{gf} P_{gf} dz + u_g \Gamma_g = W_g du_g$$

Untuk fasa liquid

$$A_{f}dp - A_{f}\rho_{f}dz \ g \sin\theta - \tau_{fw}P_{fw}dz + \tau_{fg}P_{fg}dz + u_{f}\Gamma_{f} = W_{f}du_{f} + -A_{g}dp - A_{g}\rho_{g}dz \ g \sin\theta - \tau_{gw}P_{gw}dz + \tau_{gf}P_{gf}dz + u_{g}\Gamma_{g} - A_{f}dp - A_{f}\rho_{f}dz \ g \sin\theta - \tau_{fw}P_{fw}dz + \tau_{fg}P_{fg}dz + u_{f}\Gamma_{f} = W_{g}du_{g} + W_{f}du_{f}$$
(2.69)

Karena $\tau_{gf}P_{gf}dz + u_g\Gamma_g = \tau_{fg}P_{fg}dz + u_f\Gamma_f$, maka persamaan dapat diubah menjadi

$$-A_g dp - A_g \rho_g dz \ g \sin \theta - \tau_{gw} P_{gw} dz - A_f dp - A_f \rho_f dz \ g \sin \theta - \tau_{fw} P_{fw} dz = W_g du_g + W_f du_f$$
(2.70)

Persamaan turunan momentum untuk satu dimensi di simplifikasi menjadi seperti dibawah ini

$$-Adp - \tau_{gw} P_{gw} dz - \tau_{fw} P_{fw} dz - g \sin \theta \left(A_g \rho_g dz + A_f \rho_f dz \right) = d(W_g u_g + W_f u_f)$$
(2.71)

Sedangkan untuk gaya friksi yang bekerja pada setiap fase dapat dijelaskan pada persamaan dibawah ini

Untuk gas
$$\rightarrow (dF_g + s) = -\tau_{gw} P_{gw} dz - \tau_{gf} P_{gf} dz = -A_g (\frac{dp}{dz} F)_g dz$$

$$(2.72)$$

Untuk liquid
$$\rightarrow (dF_f + s) = -\tau_{fw} P_{fw} dz - \tau_{fg} P_{fg} dz = -A_f (\frac{dp}{dz} F)_f dz$$

 $\rightarrow (dF_f - s) = -\tau_{fw} P_{fw} dz + \tau_{gf} P_{gf} dz = -A_f (\frac{dp}{dz} F)_f dz$ (2.73)

Dimana $\left(\frac{dp}{dz}F\right)$ adalah gradien dari tekanan statik yang dibutuhkan untuk mengatasi gaya friksi. Kemudian total dari gaya friksi adalah penjumlahan persamaan (2.12) dan (2.13)

$$(dF_g + s) + (dF_f - s) = -\tau_{gw} P_{gw} dz - \tau_{gf} P_{gf} dz - \tau_{fw} P_{fw} dz + \tau_{gf} P_{gf} dz = -A_g (\frac{dp}{dz} F)_g dz - A_f (\frac{dp}{dz} F)_f dz$$

$$dF = dF_g + dF_f = -\tau_{gw} P_{gw} dz - \tau_{fw} P_{fw} dz = -A\left(\frac{dp}{dz}F\right) dz$$
(2.74)

Berangkat dari persamaan (2.14) inilah maka persamaan dasar turunan momentum pada persamaan (2.11) dapat ditulis sebagai berikut

$$-Adp - A(\frac{dp}{dz}F)dz - g\sin\theta \left(A_g\rho_g dz + A_f\rho_f dz\right) = d(W_g u_g + W_f u_f) \qquad x \frac{1}{Adz}$$
$$-\left(\frac{dp}{dz}\right) - \left(\frac{dp}{dz}F\right) - \frac{1}{A}g\sin\theta \left(A_g\rho_g + A_f\rho_f\right) = \frac{1}{A}\frac{d}{dz}d(W_g u_g + W_f u_f)$$
$$\left(\frac{dp}{dz}\right) = -\left(\frac{dp}{dz}F\right) - \left[\frac{1}{A}\frac{d}{dz}d(W_g u_g + W_f u_f)\right] - \left[\frac{1}{A}g\sin\theta \left(A_g\rho_g + A_f\rho_f\right)\right] (2.75)$$

Dimana

$$-\left(\frac{dp}{dz}F\right) = -\frac{1}{A}\left(\tau_{gw}P_{gw} + \tau_{fw}P_{fw}\right)$$
(2.76)

$$-\left(\frac{dp}{dz}a\right) = -\left[\frac{1}{A}\frac{d}{dz}\left(W_g u_g + W_f u_f\right)\right] = -\left[\frac{d}{dz}\left(G u_g x + G u_f(1-x)\right)\right]$$
$$= -\left[\frac{d}{dz}\left(G\frac{Gx}{\rho\alpha}x + G\frac{G(1-x)}{\rho(1-\alpha)}(1-x)\right)\right]$$
$$= -\left[\frac{d}{dz}\left(G^2\frac{x^2}{\rho\alpha} + G^2\frac{(1-x)^2}{\rho(1-\alpha)}\right)\right]$$
$$= -G^2\frac{d}{dz}\left(\frac{x^2 v_g}{\alpha} + \frac{(1-x)^2 v_f}{(1-\alpha)}\right)$$

$$-\left(\frac{dp}{dz}z\right) = -\left[\frac{1}{A}g\sin\theta\left(A_g\rho_g + A_f\rho_f\right)\right] = -\left[\frac{1}{A}g\sin\theta\left(A\alpha_g\rho_g + A(1 - \alpha_f)\rho_f\right)\right] = -\left[g\sin\theta\left(\alpha_g\rho_g + (1 - \alpha_f)\rho_f\right)\right]$$
(2.78)

Sehingga persamaan turunan momentum menjadi

$$\left(\frac{dp}{dz}\right) = -\left(\frac{dp}{dz}F\right) - \left[G^2 \frac{d}{dz} \left(\frac{x^2 \nu_g}{\alpha} + \frac{(1-x)^2 \nu_f}{(1-\alpha)}\right)\right] - \left[g\sin\theta \left(\alpha_g \rho_g + (1-\alpha_f)\rho_f\right)\right]$$
(2.79)

2.4.2 Metode analisa penurunan tekanan dalam aliran dua fasa

Untuk menganalisa penurunan tekanan dalam aliran dua fasa, dapat dilakukan dengan 2 metode yaitu Model aliran homogen dan model aliran terpisah. Kedua jenis analisa ini dapat digunakan sesuai dengan kondisi dan asumsi dari masing-masing pengujian.

2.4.2.1 Homogenous flow model (Model aliran Homogen)

Beberapa asumsi yang diambil dalam model ini antara lain

- 1. Kecepatan fasa gas dan liquid adalah sama
- 2. Tercapai kesetimbangan termodinamik (thermodynamic equilibrium) diantara 2 fasa tersebut
- 3. Penggunaan friction factor satu fasa yang tepat untuk mendefinisikan aliran 2 fasa yang sesuai.

Untuk model aliran homogen, digunakan persamaan dasar dibawah ini

Kontinuitas
$$W = A \bar{\rho} \bar{u}$$
 (2.80)

Momentum
$$-Adp - A\left(\frac{dp}{dz}F\right)dz - A\rho g\sin\theta \, dz = Wd\bar{u} \qquad (2.81)$$

Energi
$$\delta q - \delta w = di + d\left(\frac{\overline{u}^2}{2}\right) + g\sin\theta \, dz$$
 (2.82)

72
Nilai spesifik volume dari fluida homogen diberikan oleh lambang \bar{v} yang berumakan pembagian nilai total debit aliran Q dengan laju aliran massa W.

$$\bar{\upsilon} = \frac{Q}{W} = \left[x\nu_g + (1-x)\nu_f\right] = \left[\nu_f + x\nu_g\right] = \frac{1}{\bar{\rho}}$$
(2.83)

Gradien tekanan akibat friksi (Frictional pressure gradient)

$$dF = dF_{g} + dF_{f} = -\tau_{gw} P_{gw} dz - \tau_{fw} P_{fw} dz = -A \left(\frac{dp}{dz}F\right) dz$$

$$d\bar{F} = \tau_{w} P dz ; \quad \tau_{w} = f_{TP} \left(\frac{\bar{\rho} \,\bar{u}^{2}}{2}\right)$$

$$-\left(\frac{dp}{dz}F\right) = -\frac{1}{A} \frac{d\bar{F}}{dz} = -\frac{1}{A} \left(\tau_{gw} P_{gw} + \tau_{fw} P_{fw}\right) = -\frac{1}{A} \tau_{w} P_{w}$$

$$= -\frac{1}{A} f_{TP} \left(\frac{\bar{\rho} \,\bar{u}^{2}}{2}\right) \frac{4A}{D} = \frac{2f_{TP}G^{2}}{D\bar{\rho}} = \frac{2f_{TP}G^{2}\bar{v}}{D}$$
(2.84)

Gradien tekanan akibat percepatan (Accelerational pressure gradient)

$$-\left(\frac{dp}{dz}a\right) = -\left[G^2\frac{d}{dz}\left(\frac{x^2v_g}{\alpha} + \frac{(1-x)^2v_f}{(1-\alpha)}\right)\right] = -\left[G\frac{d}{dz}\left(\frac{Gx^2v_g}{\alpha} + \frac{G(1-x)^2v_f}{(1-\alpha)}\right)\right]$$
$$= -\left[G\frac{d}{dz}\left(u_gx + u_f(1-x)\right)\right] = -G\frac{d\overline{u}}{dz} = -G\frac{G}{\overline{\rho}\,\overline{\overline{u}}}\frac{d\overline{u}}{dz} = -G^2\frac{d\overline{v}}{dz}$$
(2.85)

Nilai \bar{v} didapatkan dari persamaan (2.23), makan persamaan (2.25) dapat ditulis sebagai berikut

$$-\left(\frac{dp}{dz}a\right) = -G^2 \frac{d\bar{v}}{dz} = -G^2 \frac{d[v_f + xv_{fg}]}{dz} = -G^2 \left(\frac{dv_f}{dz} + v_{fg}\frac{dx}{dz} + x\frac{dv_{fg}}{dz}\right)$$
$$= -G^2 \left(\frac{dv_f}{dz} + v_{fg}\frac{dx}{dz} + x\frac{dv_{fg}}{dz} - x\frac{dv_f}{dz}\right)$$
$$= -G^2 \left(v_{fg}\frac{dx}{dz} + x\frac{dv_g}{dp}\frac{dp}{dz} + (1 - x)\frac{dv_f}{dp}\frac{dp}{dz}\right)$$

$$-\left(\frac{dp}{dz}a\right) = -G^2\left(v_{fg}\frac{dx}{dz} + x\frac{dv_g}{dp}\frac{dp}{dz}\right)$$
(2.86)

Gradien tekanan akibat static head (Static head pressure gradient)

$$-\left(\frac{dp}{dz}z\right) = -\left[\frac{1}{A}g\sin\theta\left(A_{g}\rho_{g} + A_{f}\rho_{f}\right)\right]$$
$$= -\frac{1}{A}g\sin\theta\left(A\bar{\rho}\right) = -\bar{\rho}g\sin\theta = -\frac{g\sin\theta}{\bar{v}}$$
(2.87)

Total gradien tekanan (Total pressure gradient)

$$\begin{pmatrix} \frac{dp}{dz} \end{pmatrix} = -\frac{2f_{TP}G^2\bar{v}}{D} - G^2 \left(v_{fg} \frac{dx}{dz} + x \frac{dv_g}{dp} \frac{dp}{dz} \right) - \frac{g\sin\theta}{\bar{v}}$$

$$= -\frac{2f_{TP}G^2\bar{v}}{D} \left[1 + x \left(\frac{v_{fg}}{v_f} \right) \right] - G^2 v_f \left(\frac{v_{fg}}{v_f} \right) \frac{dx}{dz} - \frac{g\sin\theta}{v_f \left[1 + x \left(\frac{v_{fg}}{v_f} \right) \right]$$

$$\begin{aligned} \left(\frac{dp}{dz}\right) \left[1 + G^2 x \frac{dv_g}{dp}\right] \\ &= -\frac{2f_{TP}G^2 \bar{v}}{D} \left[1 + x \left(\frac{v_{fg}}{v_f}\right)\right] - G^2 v_f \left(\frac{v_{fg}}{v_f}\right) \frac{dx}{dz} - \frac{g \sin \theta}{v_f \left[1 + x \left(\frac{v_{fg}}{v_f}\right)\right]} \\ &- \frac{2f_{TP}G^2 \bar{v}}{D} \left[1 + x \left(\frac{v_{fg}}{v_f}\right)\right] - G^2 v_f \left(\frac{v_{fg}}{v_f}\right) \frac{dx}{dz} - \frac{g \sin \theta}{v_f \left[1 + x \left(\frac{v_{fg}}{v_f}\right)\right]} \\ &\left(\frac{dp}{dz}\right) = \frac{1 + G^2 x \frac{dv_g}{dp}}{1 + G^2 x \frac{dv_g}{dp}} \end{aligned}$$

(2.88)

Two-phase frictional multiplier

Penurunan tekanan..., Hendriawan Anandaputra Soemantri, FT UI, 2012.

$$-\left(\frac{dp}{dz}F\right) = -\frac{2f_{TP}G^2v_f}{D}\left[1 + x\left(\frac{v_{fg}}{v_f}\right)\right] = \frac{2f_{fo}G^2v_f}{D}\frac{f_{TP}}{f_{fo}}\left[1 + x\left(\frac{v_{fg}}{v_f}\right)\right]$$
$$= -\frac{2f_{fo}G^2v_f}{D}\frac{C\left[\frac{GD}{\mu}\right]^n}{C\left[\frac{GD}{\mu_f}\right]^n}\left[1 + x\left(\frac{v_{fg}}{v_f}\right)\right]$$
$$= \frac{2f_{fo}G^2v_f}{D}\left[\frac{\mu_f}{\mu}\right]^{-1/4}\left[1 + x\left(\frac{v_{fg}}{v_f}\right)\right] =$$
$$= -\frac{2f_{fo}G^2v_f}{D}\left[1 + x\left(\frac{v_{fg}}{v_f}\right)\right]\left[\mu_f\left(\frac{x}{\mu_g} + \frac{(1-x)}{\mu_f}\right)\right]^n$$
$$= -\left(\frac{dp}{dz}F\right)_{fo}\phi_{fo}^2$$
(2.8)

(2.89)

Total gradien tekanan dapat dijelaskan sebagai berikut

$$\begin{pmatrix} \frac{dp}{dz}F \end{pmatrix}_{fo} \phi_{fo}^2 - G^2 v_f \left(\frac{v_{fg}}{v_f}\right) \frac{dx}{dz} \frac{g \sin \theta}{v_f \left[1 + x \left(\frac{v_{fg}}{v_f}\right)\right]} \\ \begin{pmatrix} \frac{dp}{dz} \end{pmatrix} = \frac{1 + G^2 x \frac{dv_g}{dp}}{1 + G^2 x \frac{dv_g}{dp}}$$

$$\begin{pmatrix} \frac{dp}{dz} \end{pmatrix} = -\left(\frac{dp}{dz}F\right)_{fo} \phi_{fo}^2 - G^2 v_f \left(\frac{v_{fg}}{v_f}\right) \frac{dx}{dz} - \frac{g \sin \theta}{v_f \left[1 + x \left(\frac{v_{fg}}{v_f}\right)\right]} \text{ ketika } \left|G^2 x \frac{dv_g}{dp}\right|$$

$$\int \left(\frac{dp}{dz}\right) = \int \left[-\left(\frac{2f_{fo}G^2v_f}{D}\right)\phi_{fo}^2\right] + \int \left[-G^2v_f\left(\frac{v_{fg}}{v_f}\right)\frac{dx}{dz}\right] + \int \left[-\frac{g\sin\theta}{v_f\left[1+x\left(\frac{v_{fg}}{v_f}\right)\right]}\right]$$
(2.90)

Untuk perubahan nilai x secara linier pada sebuah panjang L (dx/dz=konstan) maka

$$\Delta p = -\left(\frac{2f_{fo}G^2v_f}{D}\right)\phi_{fo}^2L - G^2v_f\left(\frac{v_{fg}}{v_f}\right)x - \frac{g\sin\theta}{v_{fg}x}\ln\left[1 + x\frac{v_{fg}}{v_f}\right]$$
$$\Delta p = -\left(\frac{dp}{dz}F\right)_{fo}\phi_{fo}^2L - G^2v_f\left(\frac{v_{fg}}{v_f}\right)x - \frac{g\sin\theta}{v_{fg}x}\ln\left[1 + x\frac{v_{fg}}{v_f}\right]$$
(2.91)

2.4.2.2 Separated flow model (Model aliran terpisah)

Pada model aliran terpisah, fasa fluida yang mengalir dianggap terdiri dari dua fasa aliran, yaitu liquid dan uap.dalam bentuk model yang paling sederhana, masing- masing aliran diasumsikan bergerak dengan kecepatan yang rata- rata (sedang). Pada kondisi dimana kecepatan rata- rata kedua fasa sama, persamaannya berkurang menjadi seperti pada model homogeneous. Model aliran terpisah dikembangkan sejak tahun 1994 ketika Lockhart dan Martinelli mempublikasikan paper mereka tentang aliran dua fasa liquid- gas.

Asumsi asumsi yang digunakan pada persamaan ini antara lain adalah :

- 1. Aliran dianggap konstan, tetapi kecepatan fasa liquid dan uap tidak harus sama.
- 2. Kondisi antara kedua fasa berada dalam kesetimbangan secara termodinamik.

Penggunaan hubungan empiris atau penyederhanaan konsep untuk menghubungkan two- phase friction multiplier (ϕ 2) dan void fraction (α) ke variabel terpisah dari aliran.

$$\begin{pmatrix} \frac{dp}{dz} \end{pmatrix} = -\left(\frac{dp}{dz} F\right) - \left[G^2 \frac{d}{dz} \left(\frac{x^2 v_g}{\alpha} + \frac{(1-x)^2 v_f}{(1-\alpha)}\right)\right] -g \sin\theta \left(\alpha \rho_g + (1-\alpha)\rho_f\right)$$

(2.92)

Untuk seluruh aliran dalam fasa liquid :

$$-\left(\frac{dp}{dz}F\right) = -\left(\frac{2f_{fo}G^2v_f}{D}\right) \left[1 + x\left(\frac{v_{fg}}{v_f}\right)\right] \left[\mu_f\left(\frac{x}{\mu_g} + \frac{(1-x)}{\mu_f}\right)\right]^n$$
$$= -\left(\frac{2f_{fo}G^2v_f}{D}\right)\phi_{fo}^2 = -\left(\frac{dp}{dz}F\right)_{fo}\phi_{fo}^2$$
(2.93)

Untuk asumsi hanya fasa liquid yang mengalir di dalam kanal :

$$\begin{split} &-\left(\frac{dp}{dz} F\right) = -\frac{2f_{TP}G^2 v_f}{D} \left[1 + x \left(\frac{v_{fg}}{v_f}\right)\right] = -\frac{2f_f G^2 v_f}{D} \frac{f_{TP}}{f_f} \left[1 + x \left(\frac{v_{fg}}{v_f}\right)\right] \\ &= -\frac{2f_f G^2 v_f}{D} \frac{vC \frac{GD}{\mu}}{c \left[\frac{G(1-x)D}{\mu_f}\right]^n} \left[1 + x \left(\frac{v_{fg}}{v_f}\right)\right] \\ &= \frac{2f_f G^2 v_f}{D} \left[\frac{\mu_f}{\mu(1-x)}\right]^n \left[1 + x \left(\frac{v_{fg}}{v_f}\right)\right] \\ &= -\left(\frac{2f_f G^2 v_f}{D}\right) (1 - x)^{-n} \left[1 + x \left(\frac{v_{fg}}{v_f}\right)\right] \left[\mu_f \left(\frac{x}{\mu_g} + \frac{(1-x)}{\mu_f}\right)\right]^n \\ &= -\left(\frac{2f_f G^2(1-x)^2 v_f}{D}\right) (1 - x)^{-2-n} \left[1 + x \left(\frac{v_{fg}}{v_f}\right)\right] \left[\mu_f \left(\frac{x}{\mu_g} + \frac{(1-x)}{\mu_f}\right)\right]^n \\ &= -\left(\frac{dp}{dz} F\right)_f \phi_f^2 \\ &- \left(\frac{dp}{dz} F\right) = -\left(\frac{dp}{dz} F\right)_f \phi_f^2 \\ &\frac{\phi_{fg}^2}{\phi_f^2} = \frac{\left[1 + x \left(\frac{v_{fg}}{v_f}\right)\right] \left[\mu_f \left(\frac{x}{\mu_g} + \frac{(1-x)}{\mu_f}\right)\right]^n \\ &= (1 - x)^{2+n} \end{split}$$
(2.94)

Gradien tekanan akibat akselerasi :

$$\begin{split} -\left(\frac{dp}{dz}\alpha\right) &= -\left[G^2\frac{d}{dz}\left(\frac{x^2v_g}{\alpha} + \frac{(1-x)^2v_f}{(1-\alpha)}\right)\right] \\ \left(\frac{dp}{dz}\alpha\right)(x,a,v_g,v_f) \\ &= \frac{\partial}{\partial_x}\left(\frac{dp}{dz}\alpha\right)dx + \frac{\partial}{\partial_a}\left(\frac{dp}{dz}\alpha\right)d\alpha + \frac{\partial}{\partial_{vg}}\left(\frac{dp}{dz}\alpha\right)dv_g \\ &+ \frac{\partial}{\partial_{vf}}\left(\frac{dp}{dz}\alpha\right)d_{vf} \\ \\ &= \frac{\partial}{\partial_x}\left[G^2\frac{d}{dz}\left(\frac{x^2v_g}{\alpha} + \frac{(1-x)^2v_f}{(1-\alpha)}\right)\right]dx + \frac{\partial}{\partial_a}\left[G^2\frac{d}{dz}\left(\frac{x^2v_g}{\alpha} + \frac{(1-x)^2v_f}{(1-\alpha)}\right)\right]d\alpha \\ &+ \frac{\partial}{\partial_{vg}}\left[G^2\frac{d}{dz}\left(\frac{x^2v_g}{\alpha} + \frac{(1-x)^2v_f}{(1-\alpha)}\right)\right]dv_g \\ &+ \frac{\partial}{\partial_{vf}}\left[G^2\frac{d}{dz}\left(\frac{x^2v_g}{\alpha} + \frac{(1-x)^2v_f}{(1-\alpha)}\right)\right]dv_f \\ \\ &= \left[G^2\frac{dx}{dz}\frac{2xv_g}{\alpha} - G^2\frac{dx}{dz}\frac{2(1-x)v_f}{(1-\alpha)}\right] + \left[-G^2\frac{da}{dz}\frac{x^2v_g}{\alpha} + G^2\frac{da}{dz}\frac{(1-x)^2v_f}{(1-\alpha)}\right] \\ &+ \left[G^2\frac{dv_g}{dz}\left(\frac{x^2}{\alpha}\right)\right] + \left[G^2\frac{dv_f}{dz}\left(\frac{(1-x)^2}{(1-\alpha)}\right)\right] \\ \\ &= \frac{dx}{dz}\left[\frac{2xv_g}{\alpha} - \frac{2(1-x)v_f}{(1-\alpha)}\right] + G^2\frac{da}{dz}\left[-\frac{x^2v_g}{\alpha^2} + \frac{(1-x)^2v_f}{(1-\alpha)^2}\right] + G^2\frac{dp}{dz}\left[\frac{dv_g}{dp}\left(\frac{x^2}{\alpha}\right)\right] \\ \\ &+ G^2\frac{dp}{dz}\left[\frac{dv_f}{dp}\left(\frac{(1-x)^2}{1-\alpha}\right)\right] \\ \\ &d\alpha(p,x) = \left(\frac{\partial\alpha}{\partial p}\right)_x dp + \left(\frac{\partial\alpha}{\partial p}\right)_p dx \\ \left(\frac{dp}{dz}\alpha\right) = G^2\frac{dx}{dz}\left[\frac{2xv_g}{\alpha} - \frac{2(1-x)v_f}{(1-\alpha)}\right] \\ &+ G^2\frac{(\frac{\partial\alpha}{\partial p})_x dp + \left(\frac{\partial\alpha}{\partial p}\right)_p dx \\ \\ \end{array}$$

Universitas Indonesia

78

$$\begin{split} +G^{2} \frac{dp}{dz} \left[\frac{dv_{g}}{dp} \left(\frac{x^{2}}{\alpha} \right) \right] + G^{2} \frac{dp}{dz} \left[\frac{dv_{f}}{dp} \left(\frac{(1-x)^{2}}{(1-\alpha)} \right) \right] \\ = G^{2} \frac{dx}{dz} \left[\frac{2xv_{g}}{\alpha} - \frac{2(1-x)v_{f}}{(1-\alpha)} \right] + G^{2} \frac{dx}{dz} \left(\frac{\partial\alpha}{\partial p} \right)_{p} \left[-\frac{x^{2}v_{g}}{\alpha^{2}} + \frac{(1-x)^{2}v_{f}}{(1-\alpha)^{2}} \right] \\ + G^{2} \frac{dp}{dz} \left[\frac{dv_{g}}{dp} \left(\frac{x^{2}}{\alpha} \right) \right] + G^{2} \frac{dp}{dz} \left(\frac{\partial\alpha}{\partial p} \right)_{x} \left[-\frac{x^{2}v_{g}}{\alpha^{2}} + \frac{(1-x)^{2}v_{f}}{(1-\alpha)^{2}} \right] \\ + G^{2} \frac{dp}{dz} \left[\frac{dv_{f}}{dp} \left(\frac{(1-x)^{2}}{(1-\alpha)} \right) \right] \\ = G^{2} \frac{dx}{dz} \left[\left[\frac{2xv_{g}}{\alpha} - \frac{2(1-x)v_{f}}{(1-\alpha)} \right] + \left(\frac{\partial\alpha}{\partial p} \right)_{p} \left[-\frac{x^{2}v_{g}}{\alpha^{2}} + \frac{(1-x)^{2}v_{f}}{(1-\alpha)^{2}} \right] \right] \\ + G^{2} \frac{dp}{dz} \left[\left[\frac{dv_{g}}{dp} \left(\frac{x^{2}}{\alpha} \right) \right] + \left(\frac{\partial\alpha}{\partial p} \right)_{x} \left[-\frac{x^{2}v_{g}}{\alpha^{2}} + \frac{(1-x)^{2}v_{f}}{(1-\alpha)^{2}} \right] \right] \\ + G^{2} \frac{dp}{dz} \left[\frac{dv_{f}}{dp} \left(\frac{(1-x)^{2}}{(1-\alpha)} \right) \right] \\ = G^{2} \frac{dx}{dz} \left[\left[\frac{2xv_{g}}{dp} - \frac{2(1-x)v_{f}}{(1-\alpha)} \right] + \left(\frac{\partial\alpha}{\partial p} \right)_{x} \left[-\frac{x^{2}v_{g}}{\alpha^{2}} + \frac{(1-x)^{2}v_{f}}{(1-\alpha)^{2}} \right] \right] \\ + \frac{dp}{dz} \left[\frac{dv_{g}}{dp} \left(\frac{x^{2}}{\alpha} \right) + \left(\frac{\partial\alpha}{\partial p} \right)_{x} \left[-\frac{x^{2}v_{g}}{\alpha^{2}} + \frac{(1-x)^{2}v_{f}}{(1-\alpha)^{2}} \right] \right] \end{split}$$

(2.95)

(kompresibilitas pada fasa liquid diabaikan)

Jadi, total gradien tekanan statik adalah :

$$\left(\frac{dp}{dz}\right) = -\left(\frac{2f_{fo}G^2v_f}{D}\right)\phi_f^2$$

$$-G^{2}\left[\frac{dx}{dz}\left[\left[\frac{2xv_{g}}{\alpha}-\frac{2(1-x)v_{f}}{(1-\alpha)}\right]+\left(\frac{\partial\alpha}{\partial p}\right)_{p}\left[-\frac{x^{2}v_{g}}{\alpha^{2}}+\frac{(1-x)^{2}v_{f}}{(1-\alpha)^{2}}\right]\right]\right]$$

$$+\frac{dp}{dz}\left[\left[\frac{dv_{g}}{dp}\left(\frac{x^{2}}{\alpha}\right)\right]+\left(\frac{\partial\alpha}{\partial p}\right)_{x}\left[-\frac{x^{2}v_{g}}{\alpha^{2}}+\frac{(1-x)^{2}v_{f}}{(1-\alpha)^{2}}\right]\right]\right]$$

$$-gsin\theta\left(\alpha\rho_{g}+(1-\alpha)\rho_{f}\right)$$

$$\left(\frac{dp}{dz}\right)+\left(\frac{dp}{dz}\right)G^{2}\left[\left[\frac{dv_{g}}{dp}\left(\frac{x^{2}}{\alpha}\right)\right]+\left(\frac{\partial\alpha}{\partial p}\right)_{x}\left[-\frac{x^{2}v_{g}}{\alpha^{2}}+\frac{(1-x)^{2}v_{f}}{(1-\alpha)^{2}}\right]\right]$$

$$=-\left(\frac{2f_{f\sigma}G^{2}v_{f}}{D}\right)\phi_{fo}^{2}$$

$$-G^{2}\frac{dx}{dz}\left[\left[\frac{2xv_{g}}{\alpha}-\frac{2(1-x)v_{f}}{(1-\alpha)}\right]+\left(\frac{\partial\alpha}{\partial p}\right)_{x}\left[-\frac{x^{2}v_{g}}{\alpha^{2}}+\frac{(1-x)^{2}v_{f}}{(1-\alpha)^{2}}\right]\right]$$

$$-g\sin\theta\left(\alpha\rho_{g}+(1-\alpha)\rho_{f}\right)$$

$$\left(\frac{dp}{dz}\right) =$$

$$-\frac{\left(\frac{2f_{f\sigma}G^{2}v_{f}}{D}\right)\phi_{fo}^{2}-G^{2}\frac{dx}{dx}\left[\frac{2xv_{g}}{\alpha}-\frac{2(1-x)v_{f}}{(1-\alpha)}\right]+\left(\frac{\partial\alpha}{\partial p}\right)_{x}\left[-\frac{x^{2}v_{g}}{\alpha^{2}}+\frac{(1-x)^{2}v_{f}}{(1-\alpha)^{2}}\right]-g\sin\theta\left(\alpha\rho_{g}+(l-\alpha)\rho_{f}\right)}{\left[1+G^{2}\left[\left[\frac{dv_{g}}{dp}\left(\frac{x^{2}}{\alpha}\right)\right]+\left(\frac{\partial\alpha}{\partial p}\right)_{x}\left[-\frac{x^{2}v_{g}}{\alpha^{2}}+\frac{(1-x)^{2}v_{f}}{(1-\alpha)^{2}}\right]\right]\right]}$$

$$(2.96)$$

Ketika kompresi pada fasa gas diabaikan, nilai v_f dan v_g , dan faktor friksi f_{fo} dianggap konstan. Maka

$$\begin{pmatrix} \frac{dp}{dz} \end{pmatrix} == -\left(\frac{2f_{fo}G^2v_f}{D}\right)\phi_{fo}^2 - G^2\frac{dx}{dz} \left[\left[\frac{2xv_g}{\alpha} - \frac{2(1-x)v_f}{(1-\alpha)}\right] + \left(\frac{\partial\alpha}{\partial p}\right)_x \left[-\frac{x^2v_g}{\alpha^2} + \frac{(1-x)^2v_f}{(1-\alpha)^2} \right] \right] - g\sin\theta(\alpha\rho_g + (I-\alpha)\rho_f)$$

$$\begin{pmatrix} \frac{dp}{dz} \end{pmatrix} \begin{pmatrix} \frac{dp}{dx} \end{pmatrix} = -\left(\frac{2f_{fo}G^2v_f}{D}\right)\phi_{fo}^2 \left(\frac{dz}{dx}\right) - G^2 \frac{dx}{dz} \left[\left[\frac{2xv_g}{\alpha} - \frac{2(1-x)v_f}{(1-\alpha)}\right] + \left(\frac{\partial\alpha}{\partial p}\right)_x \left[-\frac{x^2v_g}{\alpha^2} + \frac{(1-x)^2v_f}{(1-\alpha)^2} \right] \right] - g\sin\theta (\alpha\rho_g + (I-\alpha)\rho_f) \left(\frac{dz}{dx}\right)$$

$$\begin{pmatrix} \frac{dp}{dx} \end{pmatrix} = -\left(\frac{2f_{fo}G^2v_f}{D}\right)\phi_{fo}^2\left(\frac{dz}{dx}\right) - G^2\frac{dx}{dz} \left[\left[\frac{2xv_g}{\alpha} - \frac{2(1-x)v_f}{(1-\alpha)}\right] + \left(\frac{\partial\alpha}{\partial p}\right)_x \left[-\frac{x^2v_g}{\alpha^2} + \frac{(1-x)^2v_f}{(1-\alpha)^2}\right] \right] - g\sin\theta\left(\alpha\rho_g + (I-\alpha)\rho_f\right)\left(\frac{dz}{dx}\right)$$

Untuk perubahan nilai x secara linier pada sebuah panjang L (dx/dz=konstan) maka

$$dp = \left(\frac{2f_{fo}G^2v_f}{D}\right)\left(\frac{L}{x}\right)\phi_{fo}^2 dx$$

$$-G^2 \left[\left[\frac{2xv_g}{\alpha} - \frac{2(1-x)v_f}{(1-\alpha)}\right] dx + \left[-\frac{x^2v_g}{\alpha^2} + \frac{(1-x)^2v_f}{(1-\alpha)^2}\right] d\alpha \right]$$

$$-g\sin\theta\left(\frac{L}{x}\right)\int\left(\alpha\rho_g + (I-\alpha)\rho_f\right) dx$$

$$\int dp = -\left(\frac{2f_{fo}G^2v_f}{D}\right)\left(\frac{L}{x}\right)\int\phi_{fo}^2 dx$$

$$-G^2 \left[\int \left[\frac{2xv_g}{\alpha} - \frac{2(1-x)v_f}{(1-\alpha)}\right] dx$$

$$+ \int \left[-\frac{x^2v_g}{\alpha^2} + \frac{(1-x)^2v_f}{(1-\alpha)^2}\right] d\alpha \right]$$

$$-g\sin\theta\left(\frac{L}{x}\right)\left(\alpha\rho_g + (I-\alpha)\rho_f\right) dx$$

$$\Delta p = -\left(\frac{2f_{fo}G^{2}v_{f}}{D}\right) \left[\frac{1}{x}\int\phi_{fo}^{2}dx\right] -G^{2}\left[\left[\frac{x^{2}v_{g}}{\alpha^{2}} + \frac{(1-x)^{2}v_{f}}{(1-\alpha)^{2}} + c_{1}\right] + \left[\frac{x^{2}v_{g}}{\alpha^{2}} + \frac{(1-x)^{2}v_{f}}{(1-\alpha)^{2}} + c_{2}\right]\right] -\frac{Lgsin\theta}{x}\int(\alpha\rho_{g} + (I-\alpha)\rho_{f})dx \Delta p = -\left(\frac{2f_{fo}G^{2}v_{f}}{D}\right) \left[\frac{1}{x}\int\phi_{fo}^{2}dx\right] - G^{2}v_{f}\left[\frac{x^{2}}{\alpha}\left(\frac{v_{g}}{v_{f}}\right) + \frac{(1-x)^{2}v_{f}}{(1-\alpha)^{2}} + c_{3}\right] -\frac{Lgsin\theta}{x}\int(\alpha\rho_{g} + (I-\alpha)\rho_{f})dx$$
(2.05)

(2.97)

Ketika x = 0, $\alpha = 0$ dan kemudian $G^2 v_f \left[\frac{x^2}{\alpha} \left(\frac{v_g}{v_f} \right) + \frac{(1-x)^2 v_f}{(1-\alpha)^2} + c_3 \right] = 0$, sehingga $c_3 = -1$

$$\Delta p = -\left(\frac{2f_{fo}G^2v_f}{D}\right) \left[\frac{1}{x}\int\phi_{fo}^2dx\right] - G^2v_f\left[\frac{x^2}{\alpha}\left(\frac{v_g}{v_f}\right) + \frac{(1-x)^2v_f}{(1-\alpha)^2} - 1\right] \\ -\frac{Lgsin\,\theta}{x}\int\left(\alpha\rho_g + (I-\alpha)\rho_f\right)dx$$
(2.98)

BAB 3

PENGUJIAN DAN PERANCANGAN ALAT

3.1 Diagram alir (*flow chart*) pengujian

Dibawah ini merupakan diagram alir dari pengujian yang dilakukan

Gambar 3. 1 Diagram alir pengujian

3.2 Instalasi Alat Uji

3.2.1 Skematik Alat Uji

Proses yang terjadi pada setiap titik adalah sebagai berikut :

• Titik 1 :

Tabung refrijeran di panaskan, sehingga terjadi kenaikan temperatur pada dinding tabung. Dan panasnya dinding tabung tersebut menyebabkan menguapnya refrijeran yang ada di dalamnya. Maka tekanan di dalam tabung akan naik sehingga refrijeran akan keluar dari tabung dengan pressure yang tetap walaupun refrijeran mengalami pengurangan terus menerus akibat di alirkan.

• Titik 2 :

Refrijeran yang keluar dari tabung di teruskan dengan menggunakan pipa tembaga, pipa tembaga tersebut dibungkus oleh isolator dan di teruskan ke alat penukar kalor.

• Titik 3 :

Condensing unit 3PK berfungsi mendinginkan fluida yang mengalir pada alat penukar kalor. Sehingga apabila ada fluida ataupun gas yang mengalir pada alat penukar kalor, akan terjadi perpindahan kalor. Dari fluida yang mengalir ke dalam alat penukar kalor dalam pipa tembaga, ke glikol yang mengalir dalam alat penukar kalor.

• Titik 4 :

Setelah memasuki alat penukar kalor, fluida kerja dalam pipa tembaga di teruskan. Kondisi fluida kerja pada titik ini telah mengalami penurunan tekanan dan temperatur. Jumlah fluida yang akan mengalir ke test section sangat bergantung pada pembukaan katup pada titik ini.

• Titik 5 :

Sebelum fluida kerja memasuki test section, fluida kerja tersebut memasuki Sight Glass terlebih dahulu. Dari sight glass ini dapat terlihat fasa yang akan mengalir ke test section. Kita dapat mengatur apakah alirannya sudah berkembang penuh atau belum.

• Titik 6 :

Test section terbuat dati Stainless Steel 316 dengan panjang 1 m dan diameter dalam 3 mm. Test section dibagi menjadi 9 titik pengujian yang ditempeli termokopel setiap titik bagiannya tersebut. Test section mendapatkan pemanasan dari electric heater yang heat fluks nya dapat kita atur. Pada test section ini terjadi perubahan fasa, dari cair menjadi gas. Dimana Tekanan dan perubahan fasenya dapat terlihat pada sight glass.

• Titik 7 :

Setelah fluida kerja melewati test section selanjutnya akan melewati sight glass kembali, sight glass ini berfungsi untuk melihat perubahan fasa yang terjadi setelah fluida kerja mendapat heat fluks dari heater.

• Titik 8 :

Pada fase ini refrijeran sudah berubah fasa menjadi fasa gas. Maka dibutuhkan check valve yang mencegah aliran balik yang mungkin terjadi pada sistem ini.

• Titik 9 :

Pada titik ini refrijeran dilepaskan ke udara lepas.

3.2.2 Prinsip kerja alat uji

Sistem dibuat sebagai sistem "open loop" dimana fluida kerja tidak disirkulasikan kembali ke dalam sistem setelah melewati test section, namun dibuang ke udara luar. Fluida kerja dialirkan ke dalam sistem dengan cara menaruh tangki refrijeran dalam posisi terbalik. Hal ini dilakukan agar fluida kerja yang masuk ke dalam test section nanti nya sudah dalam fasa cair. Sebelum masuk ke test section, temperatur fluida kerja diatur dengan cara didinginkan oleh ethylene glycol yang telah didinginkan oleh condensing unit 3PK. Kemudian ethylene glycol ini dialirkan kedalam alat penukar kalor agar terjadi pertukaran panas dengan fluida kerja, sehingga temperatur fluida kerja yang akan masuk ke test section dapat disesuaikan.

Setelah fluida kerja keluar dari alat penukar kalor, maka propane yang telah didinginkan tersebut masuk kedalam test section. Pada bagian inlet dan outlet, diletakkan termokopel tipe K dan pressure transmitter untuk mengetahui temperatur dan tekanan inlet sekaligus outlet dari fluida kerja. Pada bagian test section, diletakkan 27 buah termokopel tipe K untuk mengukur temperatur disepanjang test section. Tiga buah termokopel diletakkan pada bagian atas, bawah dan samping test section dengan interval jarak 0,1 m. Ketika temperatur inlet fluida kerja yang diinginkan sudah tercapai, maka electric heater pada test section dinyalakan kemudian temperatur dan tekanan di setiap titik di pantau nilai nya masing-masing. Daya electric heater divariasikan untuk mendapatkan data yang lebih bervariasi sehingga fenomena perubahan fasa nya dapat dihitung.

Setelah meninggalkan test section, fluida kerja dilepas langsung ke udara. Untuk mengetahui fluks massa yang mengalir pada test section, timbangan diletakkan pada bagian bawah tangki propane dan dilihat berat nya setiap 10 detik, selama pengambilan data berlangsung. Pengambilan data dilakukan dengan durasi 2-3 menit untuk mengamati fenomena aliran dua fasa yang terjadi.

3.2.3 Tes Kebocoran

Setelah semua sistem pemipaan serta komponennya terpasang, maka terlebih dahulu dilakukan tes kebocoran dengan tujuan agar pada saat dijalankannya sistem akan berjalan dengan baik tanpa adanya kebocoran. Kebocoran pada sistem dapat menurunkan performa dari sistem tersebut. Adapun prosedur pengujian kebocoran adalah sebagai berikut.

- 1. Unit dalam keadaan mati.
- 2. Sistem diisi dengan gas atau udara dari compressor hingga tekanan tertentu.
- 3. Sistem pemipaan di tes kebocoran dengan menggunakan busa sabun.
- 4. Tandai setiap tempat yang menjadi indikasi kebocoran, untuk dapat diperbaiki.
- 5. Perbaiki kebocoran.
- Tandai tekanan yang ada, kemudian tunggu hingga beberapa jam, apabila tekanan masih berkurang maka ulangi dari langkah ke-3 hingga tekanan dipastikan tidak ada penurunan lagi.

3.2.4 Vaccum Sistem

Setelah dipastikan tidak ada kebocoran dalam sistem maka proses selanjutnya adalah melakukan proses pem-vakum-an, langkah ini dimaksud untuk memastikan sistem tidak mengandung uap air. Langkah-langkah dalam proses vakum adalah sebagai berikut:

- 1. Unit sistem dalam keadaan mati.
- 2. Hubungkan selang pompa vakum ke pentil yang ada pada inlet tangki refrijeran
- Nyalakan pompa vakum hingga pada jarum pressure gauge menunjukan angka di bawah 0 bar (sekitar 30 menit)
- 4. Lepas selang pompa vakum dari pentil
- 5. Matikan pompa vakum

3.3 Komponen Alat Uji

Komponen-komponen yang akan digunakan pada perangkat alat uji dipilih dan disesuaikan sesuai dengan kondisi pengujian yang akan dilakukan. Berikut ini adalah komponen dari alat uji yang digunakan dalam pengambilan data.

3.3.1 Condensing unit 3PK

Condensing unit merupakan gabungan antara kompresor dan kondenser dalam satu dudukan. Dengan tipe kompresor yang digunakan adalah hermetic serta 1 buah kondenser fan serta sebuah liquid receiver. yang dipasang pada posisi sebelum test section. Tujuannya adalah untuk mengubah fasa refrigeran dari gas menjadi liquid kembali sebelum refrigeran masuk ke test section dengan bantuan Shell and Coil.

3.3.2 Pompa fluida

Pompa ini berfungsi untuk mengalirkan fluida dari toren ke brazed plate alat penukar kalor, yang kemudian dialirkan ke Tube in tubbe heat exchanger

Spesifikasi Pompa							
Merk/Model	WASSER/PW-139EA						
Power Source	220 V/50Hz						
Output	125 W						
Suction Lift	9 m						
Total Head Maks	40 m						
Capacity Maks	35 ltr/min						

Tabel 3. 1 Spesifikasi Pompa Wasser

Gambar 3. 3 Pompa Wasser

3.3.3 Plate Heat Exchanger (PHE)

Berfungsi sebagai sistem pendingin pada condensing unit 3Pk. PHE ini berfungsi mendinginkan glikol yang mengalir pada sistem PHE itu sendiri. Yang kemudian glikol tersebut dialirkan ke dalam Shell and Coil.

ruber 5. 2 Spesimusi p	state near exertainger
Spesifikasi Plate A	lat penukar kalor
Merk/Model	Kaori/K105*20B
Maks Working	200oC
Temperature	
Maks Working Pressure	30 bar
Test pressure	43 bar

Tabel 3. 2 Spesifikasi plate heat exchanger

Gambar 3. 4 Plate Heat exchanger

3.3.4 High Low Pressure (HLP)

Merupakan suatu alat untuk mengontrol tekanan discharge dari kompresor agar tidak terlampau besar. Alat ini berguna sebagai sistem pengaman agar tidak terjadi breakdown pada sistem akibat overload dari kompresor.

Gambar 3. 5 Pressure Control

3.3.5 Test Section

Test section dengan material Stainless steel 316 (SS 316) dengan diameter dalam 3 mm , diameter luar 5 mm dan panjang 1 m dan diberikan insulasi agar kalor yang diberikan pada test section tidak terbuang ke lingkungan sekitar.

Gambar 3. 6 Test Section

3.3.6 Pressure gauge

Pressure gauge berfungsi untuk mengetahui tekanan yang terjadi ketika refrigeran masuk dan keluar test section. Oleh karena itu, maka pada alat uji dipasang dua pressure gauge yaitu pada bagian masuk dan keluar test section.

Gambar 3. 7 Pressure Gauge

3.3.7 Pipa Tembaga

Pipa tembaga diameter 3/8 inch dan 1/4 inch.

Gambar 3. 8 Pipa Tembaga

3.3.8 Variable Transformer

Variable Transformer yang digunakan untuk memberikan flux kalor pada heater. Alat mampu memberikan daya sampai dengan 1100 watt dan dapat diatur besar kecilnya daya keluar dengan mengatur tegangannya disesuaikan dengan flux kalor yang diinginkan.

Gambar 3. 9 Variable Transformer

3.3.9 Sight Glass

Alat yang terletak sebelum dan sesudah test section ini berfungsi untuk melihat apakah terjadi perubahan fasa atau tidak. Terjadinya perubahan fasa ditandai dengan terlihat berkurangnya fluida cair pada sight glass apabila dibandingnkan antara sight glass sebelum test section dan sight glass setelah test section.

Gambar 3. 10 Sight Glass

3.3.10 Termokopel

Untuk penelitian ini, digunakan termokopel tipe K berjumlah 27 unit. Tiap tiga unit termokopel ditempatkan pada test section pada posisi $10 \sim 90$ cm dari awal pipa dengan interval 10 cm dan dengan peletakan seperti pada gambar berikut :

Gambar 3. 11 Peletakan Termokopel Pada Test Section

Tiap termokopel disambungkan ke data akuisisi dari National Instrument dan data akan di catat di komputer melalui program LabView.

Termokopel dipasang pada bagian atas, bawah, sisi kiri dan kanan test section pada 9 titik disepanjang test section dengan jarak antar titik 0.1 m, seperti yang diilustrasikan oleh Gambar 3.12. Pemasangan termokopel hanya pada tiga sisi ini karena diasumsikan temperatur yang tejadi pada dinding samping kiri dan kanan tidak berbeda jauh, oleh karena itu pada sisi samping hanya dipasang satu termokopel saja.

Gambar 3. 12 Termokopel

3.3.11 Timbangan Digital

Pada alat uji ini timbangan berfungsi untuk melihat pertambahan massa terhadap satuan waktu. Hal ini dimaksudkan untuk mengetahu laju aliran massa yang terjadi.

Gambar 3. 13 Timbangan Digital

3.3.12 Toren

Berfungsi sebagai penyimpan refrijeran Glikol yang nantinya akan di pompa ke PHE dan diteruskan ke Tube in tube Alat penukar kalor untuk mendinginkan refrijeran yang ada pada pipa tembaga. Toren yang digunakan mempunyai capasitas maksimum sampai 300 lt.

Gambar 3. 14 Toren

3.3.13 Ethylene Glicol

Berfungsi menurunkan titik beku air. Dimana apabila air biasa titik bekunya adalah 0 oC, dan apabila sudah dicampur dengan glycol maka titik

bekunya akan turun tergantung berapa percent campuran yang dimasukan ke dalam air tersebut.

Dibawah ini table campuran glycol pada air.

Weight Percent EG (%)	Freezing Point (deg F)	Freezing Point (deg C) 0 -4		
0	32			
10	25			
20	20	-7		
<mark>30</mark>	5	-15		
40	-10	-23		
50	-30	-34		
60	-55	-48		
70	-60	-51		
80	-50	-45		
90	-20	-29		
100	10	-12		

Tabel 3. 3 Titik Beku Air Dan Campuran Glikol

3.3.14 Tube in tube heat exchanger

Dipasang pada pipa sebelum test section, tujuannya adalah untuk menurunkan temperatur serta tekanan dan merubah fasa dari fasa gas menjadi fasa liquid sebelum memasuki test section. Tube in tube Alat penukar kalor didukung oleh condensing unit 3 pk sebagai pendinginnya. Gambar dibawah merupakan dimensi dari tube in tube alat penukar kalor.

Gambar 3. 15 Tube in tube heat exhanger

3.3.15 Sabuk Pemanas

Sabuk pemanas merupakan alat yang berfungsi untuk menakan temperatur tabung dengan maksud agar tekanan di dalam tabung meningkat dan fluida kerja dari tangki lebih mudah mengalir keluar.

3.3.16 Data Akuisisi

Modul termokopel merupakan alat untuk merubah masukan dari kabel termokopel yang berupa tegangan menjadi satuan temperatur yang ditampilkan pada monitor komputer dengan bantuan suatu program.

Gambar 3. 17 Data akuisisi NI

3.3.17 Needle Valve

Dipasang sebelum test section, bertujuan untuk mengatur masuknya refrijeran ke test section. Diusahakan Needle valve mampu mengatur masuknya refrijeran sampai berkembang penuh, artinya pada sight glass yang terlihat hanya refrijeran cair yang mengalir, tidak ada udara.

Gambar 3. 18 Needle Valve

3.4 Pengujian menggunakan fluida kerja Propane (R-290) dan Iso-butane (R-600a)

Pengujian untuk mendapatkan nilai koefisien perpindahan kalor dan penurunan tekanan aliran dua fasa pada kanal mini horizontal dilakukan dengan menggunakan 2 jenis fluida kerja yaitu propane (R-290) dan iso butane (R-600a) yang dialirkan ke dalam test section. Test section terbuat dari material stainless steel 316 dengan diameter luar dan dalam berturut-turut adalah 5 mm dan 3 mm dengan panjang 1 m. Pengujian dilakukan untuk mendapatkan data temperatur dan tekanan inlet, outlet dan disepanjang test section. Gambar dibawah ini menjelaskan skema dari test section.

BAB 4

HASIL DAN ANALISA

Dalam pengujian ini, akan di analisa beberapa nilai antara lain nilai bilangan reynolds, koefisien perpindahan kalor dan penurunan tekanan di sepanjang test section. Fluida kerja yang digunakan pada aliran evaporasi dua fasa pada kanal mini horizontal adalah refrijeran propane (MC 22) dan Iso-Butane (MC 600). Nilai yang divariasikan pada pengujian ini adalah nilai fluks massa yang mengalir ke kanal mini dan fluks panas yang diaplikasikan ke kanal mini. Data hasil pengujian akan digunakan sebagai input dalam melakukan perhitungan. Berikut merupakan analisa dari data pengujian yang didapatkan dari pengujian.

Kondisi pengujian

Designer (MC 22)											
Propane (MC-22)					Iso-butane (MC-600)						
Parameter	Kondisi 1	Kondisi 2	Kondisi 3	Kondisi 4	Kondisi 1	Kondisi 2	Kondisi 3	Kondisi 4			
Diameter											
dalam (mm)											
Diameter											
Luar (mm)	5										
Konduktivitas											
Termal											
(w/m,K)	13,4										
Panjang											
(mm)	1000										
q (kW/m2)	5	5	8	8	1	2	3	4			

Tabel 4. 1 Kondisi Pengujian

99

Universitas Indonesia

Penurunan tekanan..., Hendriawan Anandaputra Soemantri, FT UI, 2012.

Daya (watt)	47,1	47,1	75,36	75,36	9.4	18,85	28,27	37,7
Tegangan (V)	39	39	67	67	10	18	20	24
Arus (A)	1,21	1,21	1,125	1,125	0.94	1,05	1,41	1,57
Fluks massa								
(kg/m2,s)	51,47	155,597	90	242,192	198,16	226,649	169,851	141,543
Laju	1,100	1,712	3,638	6,336	1,401	1,601	1,2	
massa(kg/s)	x10-3	x10-3	x10-4	x10-4	x10-3	x10-3	x10-3	1x10-3
Temperatur masuk (C)	8,81	4,428	-11,747	13,743	6,152	7,354	8,723	8,463

4.1 Bilangan Reynolds

Nilai bilangan reynolds di analisa untuk mendapatkan mengetahui fenomena aliran yang terjadi di sepanjang kanal mini horizontal. Pada aliran dua fasa ini terdapat 3 buah jenis bilangan reynolds yaitu bilangan reynolds untuk fasa fluida (Ref), bilangan reynolds untuk fasa gas (Reg) dan bilangan reynolds untuk dua fasa (ReTP). Nilai Reg didapatkan dengan menggunakan persamaan 2.6. Nilai Ref didapatkan dengan menggunakan persamaan 2.7 dan nilai ReTP didapatkan dengan menggunakaan persamaan 2.51

4.1.1 Fluida kerja Propane (MC 22)

4.1.1.1 Kondisi Fluks massa = $51,470 \text{ kg/m}^2 \text{s}$ dan Fluks panas = 5 kW/m^2

Gambar 4. 1 Grafik bilangan Reynolds untuk kualitas massa uap (x) pada pada G (mass flux) = 51,470 kg/m2.s dan q (heat flux)= 5 kw/m2

4.1.1.2 Kondisi Fluks massa = $155,597 \text{ kg/m}^2 \text{s}$ dan Fluks panas = 5 kW/m^2

Gambar 4. 2 Grafik bilangan Reynolds untuk kualitas massa uap (x) pada pada G (mass flux) = 155,597 kg/m2.s dan q (heat flux)= 5 kw/m2

4.1.1.3 Kondisi Fluks massa = 90 kg/m2s dan Fluks panas 8 kW/m2

Gambar 4. 3 Grafik bilangan Reynolds untuk kualitas massa uap (x) pada pada G (mass flux) = 90,073 kg/m2.s dan q (heat flux)= 8 kw/m2

4.1.1.4 Kondisi Fluks massa = $242,192 \text{ kg/m}^2 \text{s}$ dan Fluks panas = 8 kW/m^2

Gambar 4. 4 Grafik bilangan Reynolds untuk kualitas massa uap (x) pada pada G (mass flux) = 242,192 kg/m2.s dan q (heat flux)= 8 kw/m2

Gambar 4. 5 Grafik distribusi temperatur vs jarak menggunakan Propane

Dari keeempat variasi jenis fluks massa dan fluks panas. Dapat dilihat bahwa nilai bilangan reynolds fasa gas (Reg) cenderung mengalami peningkatan seiiring dengan meningkatknya nilai kualitas uap yang terjadi. Fenomena ini mungkin dapat dijelaskan karena massa jenis uap dari aliran dua fasa pun meningkat seiring dengan meningkatkanya nilai kualitas uap. Kualitas uap dapat meningkat karena adanya peningkatan temperatur ketika mendekati outlet dari test section. Sedangkan untuk nilai bilangan reynolds fasa cair (Ref) semakin menurun seiring dengan peningkatan kualitas. Hal ini dikarenakan karena massa jenis air dari aliran dua fasa mulai berkurang. Nilai reynolds dua fasa (ReTP) cenderung mengalami peningkatan di setiap pengujian. Hal ini dapat disebabkan karena aliran yang terjadi lebih didominasi oleh fasa uap.

Nilai bilangan reynolds untuk setiap kondisi pengujian bervariasi. Namun bila kita mengambil rata-rata, nilai bilangan reynolds tertinggi untuk masing masing Ref, Reg dan ReTP, berturut-turut adalah 5473,263 (kondisi 4), 9031,241 (kondisi 4) dan 3271,533 (kondisi 4). Hal ini dapat disebabkan karena fluks panas dan fluks massa berbanding lurus dengan kualitas uap. Nilai fluks massa berkaitan langsung dengan nilai bilangan reynolds sesuai dengan rumus dasar bilangan

reynolds seperti ditunjukkan pada persamaan 2.6 dan 2.7. Dimana peningkatan fluks massa akan meningkatkan nilai bilangan reynolds. Untuk nilai fluks panas, cukup berpengaruh pada nilai kualitas massa, dimana peningkatan nilai fluks panas akan meningkatkan nilai temperatur dan peningkatan temperatur ini secara langsung akan berpengaruh pada peningkatan kualitas uap. Peningkatan nilai kualitas uap inilah yang dapat meningkatkan nilai bilangan reynolds pada setiap fasa

4.1.2 Fluida kerja Isobutane (MC 600)

4.1.2.1 Kondisi Mass Flux = 198,1604 kg/m²s dan Heat Flux = 1 kW/m^2

Gambar 4. 6 Grafik bilangan Reynolds untuk kualitas massa uap (x) pada pada G (mass flux) = 198,1604 kg/m2.s dan q (heat flux)= 1 kw/m2

4.1.2.2 Kondisi Fluks massa = $226,469 \text{ kg/m}^2 \text{s}$ dan Fluks panas = 2 kW/m^2

Gambar 4. 7 Grafik bilangan Reynolds untuk kualitas massa uap (x) pada pada G (mass flux) = 226,469 kg/m2.s dan q (heat flux)= 2 kw/m2

4.1.2.3 Kondisi Fluks massa = $169,851 \text{ kg/m}^2 \text{s}$ dan Fluks panas = 3 kW/m^2

Gambar 4. 8 Grafik bilangan Reynolds untuk kualitas massa uap (x) pada pada G (mass flux) = 169,851 kg/m2.s dan q (heat flux)= 3 kw/m2

4.1.2.4 Kondisi Fluks massa = 141,543 kg/m²s dan Fluks panas = 4 kW/m^2

Gambar 4. 9 Grafik bilangan Reynolds untuk kualitas massa uap (x) pada pada G (mass flux) = 141,543 kg/m2.s dan q (heat flux)= 4 kw/m2

Gambar 4. 10 Grafik distribusi temperatur vs jarak menggunakan Iso-butane

Dari ketiga variasi jenis fluks massa dan fluks panas. Dapat dilihat bahwa nilai bilangan reynolds fasa gas (Reg) cenderung mengalami peningkatan seiiring dengan meningkatknya nilai kualitas uap yang terjadi. Fenomena ini mungkin dapat dijelaskan karena massa jenis uap dari aliran dua fasa pun meningkat seiring dengan meningkatkanya nilai kualitas uap. Kualitas uap dapat meningkat karena adanya peningkatan temperatur ketika mendekati outlet dari test section. Sedangkan untuk nilai bilangan reynolds fasa cair (Ref) semakin menurun seiring dengan peningkatan kualitas. Hal ini dikarenakan karena massa jenis air dari aliran dua fasa mulai berkurang. Nilai reynolds dua fasa (ReTP) cenderung mengalami peningkatan di setiap pengujian. Hal ini dapat disebabkan karena aliran yang terjadi lebih didominasi oleh fasa uap.

Nilai bilangan reynolds untuk setiap kondisi pengujian bervariasi. Namun bila kita mengambil rata-rata, nilai bilangan reynolds tertinggi untuk masing masing Ref, Reg dan ReTP, berturut-turut adalah 2239,88 (kondisi 1), 7761,664 (kondisi 4) dan 1864,234 (kondisi 2). Hal ini dapat disebabkan karena fluks panas berbanding lurus dengan kualitas uap. Pada kondisi 1 nilai bilang reynolds fasa cair (Ref) lebih besar karena fasa cair pada kondisi tersebut lebih dominan dibanding dengan nilai kondisi lainnya. Sedangkan Pada kondisi 4 nilai bilang reynolds fasa gas(Reg) lebih besar karena fasa gas pada kondisi tersebut lebih dominan dibanding dengan kondisi lainnya. Sedangkan untuk nilai bilangan reynolds dua fasa terbesar ada pada kondisi 2, karena bila dibandingkan dengan kondisi lainnya. Nilai kualitas uap pada kondisi ini lebih seimbang dibanding kondisi lainnya yang leih dominan pada bagian cair saja atau uap saja. Nilai fluks massa berkaitan langsung dengan nilai bilangan reynolds sesuai dengan rumus dasar bilangan reynolds seperti ditunjukkan pada persamaan 2.6 dan 2.7. Dimana peningkatan fluks massa akan meningkatkan nilai bilangan reynolds. Untuk nilai fluks panas, cukup berpengaruh pada nilai kualitas massa, dimana peningkatan nilai fluks panas akan meningkatkan nilai temperatur dan peningkatan temperatur ini secara langsung akan berpengaruh pada peningkatan kualitas uap. Peningkatan nilai kualitas uap inilah yang dapat meningkatkan nilai bilangan reynolds pada setiap fasa.

4.2 Penurunan tekanan

Dalam pengujian ini dilakukan pengukuran dari penurunan tekanan yang terjadi pada inlet dan outlet dari test section dengan menggunakan fluida kerja propane (MC-22) dan iso-butane (MC-600) , Dibawah ini merupakan kondisi pengujian untuk kedua jenis refrijeran,

Propane (MC-22)					Iso-butane (MC-600)			
Parameter	Kondisi 1	Kondisi 2	Kondisi 3	Kondisi 4	Kondisi 1	Kondisi 2	Kondisi 3	Kondisi 4
Diameter					\leq			
dalam					3			
(mm)								
Diameter					5			
Luar (mm)					•			
Konduktiv								
itas					31			
Termal					,т			
(w/m,K)								
Panjang				1	000			
(mm)				Ĩ				
q (kW/m2)	5	5	8	8	1	2	3	4
Daya								
(watt)	47,1	47,1	75,36	75,36	9.4	18,85	28,27	37,7
Tegangan								
(V)	39	39	67	67	10	18	20	24

Tabel 4. 2 Kondisi pengujian menggunakan Propane (MC-22) dan Iso-butane (MC-600)

108
Arus (A)	1,21	1,21	1,125	1,125	0.94	1,05	1,41	1,57
Fluks massa (kg/m2,s)	51,47	155,597	90	242,192	198,16	226,649	169,85 1	141,543
Laju massa(kg/s)	1,100 x10-3	1,712 x10-3	3,638 x10-4	6,336 x10-4	1,401 x10-3	1,601 x10-3	1,2 x10-3	1x10-3
Temperatu r masuk (K)	281,96	277,578	261,403	286,893	279,302	280,504	281,87 3	281,613

Nilai penurunan tekanan eksperimen dan penurunan tekanan perhitungan dibandingkan satu sama lain, Penurunan tekanan perhitungan dihitung dengan menggunakan 2 buah model persamaan penurunan tekanan yaiut model homogenous dan model separated flow, Penjelasan mengenai dasar-dasar persamaan ini dapat dilihat pada bab 2, Seperti yang diketahui, persamaan dasar dari penurunan tekanan terdiri dari 3 komponen yaitu penurunan tekanan akibat percepatan, friksi dan statik, Dibawah ini merupakan persamaan umum penurunan tekanan

$$\begin{pmatrix} \frac{dp}{dz} \end{pmatrix} = \left(\frac{dp}{dz}F\right) + \left(\frac{dp}{dz}a\right) + \left(\frac{dp}{dz}z\right)$$

$$\begin{pmatrix} \frac{dp}{dz} \end{pmatrix} = \left(\frac{dp}{dz}F\right) + G^2 \frac{d}{dz} \left(\frac{x^2 v_g}{\alpha} + \frac{(1-x)^2 v_f}{(1-\alpha)}\right)$$

$$+ \left[g\sin\theta \left(\alpha_g\rho_g + (1-\alpha_f)\rho_f\right)\right]$$

$$(4.7)$$

Karena pada pengujian ini test section diletakkan secara horizontal, maka komponen penurunan tekanan statik dianggap tidak ada, Dalam pengujian ini yang akan dibandingkan adalah nilai penurunan tekanan akibat friksi $\left(\frac{dp}{dz}F\right)$, Hal ini dilakukan karena dalam penurunan tekanan, nilai yang paling dominan adalah

nilai penurunan tekanan akibat friksi, Sehingga nilai penurunan tekanan $\left(\frac{dp}{dz}\right)$ yang didapatkan melalui perhitungan nanti nya harus dikurangi dengan nilai penurunan tekanan akselerasi $\left(\frac{dp}{dz}a\right)$ untuk mendapatkan nilai penurunan tekanan akibat friksi $\left(\frac{dp}{dz}F\right)$,

4.2.1 Penurunan tekanan eksperimen

Penurunan tekanan eksperimen dapat dihitung menggunakan data tekanan inlet dan tekanan outlet yang didapatkan menggunakan pressure transmitter yang kemudian di akuisisi dengan menggunakan data akuisisi NI dan Labview 8,5, Penurunan tekanan eksperimen dapat dihitung dengan menggunakan persamaan

$$\left(\frac{dp}{dz}F\right)_{percobaan} = \left(\frac{dp}{dz}\right) - \left(\frac{dp}{dz}a\right), dimana$$
$$\frac{dp}{dz} = \frac{P_{in} - P_{out}}{L}, dan \left(\frac{dp}{dz}a\right) = G^2 \frac{d}{dz} \left(\frac{x^2 v_g}{\alpha} + \frac{(1-x)^2 v_f}{(1-\alpha)}\right)$$
(4.8)

4.2.2 Perbandingan nilai penurunan tekanan hasil eksperimen dan perhitungan dengan menggunakan propane

4.2.2.1 Kondisi Mass Flux = 51,470 kg/m²s dan Heat Flux =
$$5 \text{ kW/m}^2$$

Kondisi 1			
X	dp/dz F		
	Eksperimen	Homogenous	Separated Flow
0,12	115360,5805	1566,372629	280,9810715
0,154	115431,1368	1690,181216	615,529458

Tabel 4. 3 Penurunan tekanan kondisi 1

0,188	115452,6273	1828,585659	736,3575452
0,222	115461,5463	1983,939101	858,6058993
0,256	115465,1886	2159,086958	982,8183916
0,29	115465,9775	2357,496086	1109,464963
0,324	115464,9403	2583,425482	1238,981813
0,358	115462,5766	2842,154632	1371,795621
0,392	115459,148	3140,293013	1508,340016

Gambar 4. 11 Grafik Penurunan Tekanan Friksi untuk kualitas massa uap (x) pada pada G (mass flux) = 51,470 kg/m2.s dan q (heat flux)= 5 kw/m2

Pada kondisi pengujian 1 dengan fluks massa 51,470 kg/m2.s dan fluks panas 5 kW/m2. Nilai penurunan tekanan friksi (dp/dz F) ekperimen pada x=0,12 adalah sebesar 115360,5805 Pa/m. Kemudian seiring dengan peningkatan kualitas maka nilai penurunan tekanan friksi juga semakin meningkat sehingga nilai penurunan tekanan terbesar ada pada x=0,392 sebesar 115459,148 Pa.

Peningkatan nilai ini dapat disebabkan karena nilai penurnan tekanan dapat diakibatkan karena percepatan, dan friksi. Nilai inilah yang menyebabkan nilai tekanan pada titik keluar semakin menurun sehingga nilai penurunan tekanan akan semakin tinggi. Nilai ini disebabkan karena peningkatan temperatur dan kualitas akan meningkatkan nilai faktor friksi dan kecepatan dari aliran dalam fasa gas.

4.2.2.2 Kondisi Mass Flux = $155,597 \text{ kg/m}^2 \text{s}$ dan Heat Flux = 5 kW/m^2

		Kondisi 2	
x		dp/dz F	
	Eksperimen	Homogenous	Separated Flow
0,039	213016,9924	8421,952406	1198,509826
0,05	213427,2783	8872,566681	2579,845013
0,062	213561,9554	9369,724877	3073,509846
0,073	213627,3411	9920,969744	3577,668362
0,085	213664,6256	10535,56665	4096,825451
0,096	213687,4603	11225,02562	4635,652651
0,107	213701,6071	11649,13784	4985,83331
0,119	213709,8439	11785,66074	5113,988775
0,13	213713,589	11940,03716	5201,032

Tabel 4. 4 Penurunan tekanan friksi kondisi pengujian 2

Gambar 4. 12 Grafik Penurunan Tekanan Friksi untuk kualitas massa uap (x) pada pada G (mass flux) = 155,597 kg/m2.s dan q (heat flux)= 5 kw/m2

Pada kondisi pengujian 2 dengan fluks massa 155,597 kg/m2.s dan fluks panas 5 kW/m2 . Nilai penurunan tekanan friksi (dp/dz F) ekperimen pada x=0,039 adalah sebesar 213016,9924 Pa/m. Kemudian seiring dengan peningkatan kualitas maka nilai penurunan tekanan friksi juga semakin meningkat sehingga nilai penurunan tekanan terbesar ada pada x=0,392 sebesar 213709,839 Pa/m. Peningkatan nilai ini dapat disebabkan karena nilai penurnan tekanan dapat diakibatkan karena percepatan, dan friksi. Nilai inilah yang menyebabkan nilai tekanan pada titik keluar semakin menurun sehingga nilai penurunan tekanan akan semakin tinggi. Nilai ini disebabkan karena peningkatan temperatur dan kualitas akan meningkatkan nilai faktor friksi dan kecepatan dari aliran dalam fasa gas.

4.2.2.3 Kondisi Mass Flux = 90.073 kg/m²s dan Heat Flux = 8 kW/m²

Kondisi 3			
X	dp/dz F		

Tabel 4. 5 Penurunan tekanan friksi kondisi pengujian 2

	Eksperimen	Homogenous	Separated Flow
0,033	98776,46771	3477,37055	239,7512103
0,063	98862,67617	3737,015976	370,898667
0,093	98891,22348	4025,320313	1058,860064
0,124	98903,21154	4346,560632	1364,39287
0,154	98907,13014	4705,831755	1677,327876
0,184	98905,93084	5109,23963	2000,260811
0,214	98900,92149	5564,149896	2335,464668
0,245	98892,7527	6079,510327	2685,159585
0,275	98881,75224	6666,273211	3051,668949

Gambar 4. 13 Grafik Penurunan Tekanan Friksi untuk kualitas massa uap (x) pada pada G (mass flux) = 90,073 kg/m2.s dan q (heat flux)= 8 kw/m2

Pada kondisi pengujian 3 dengan fluks massa 90,073 kg/m2.s dan fluks panas 8 kW/m2 . Nilai penurunan tekanan friksi (dp/dz F) ekperimen pada

x=0,033 adalah sebesar 98776,4677 Pa/m. Kemudian seiring dengan peningkatan kualitas maka nilai penurunan tekanan friksi juga semakin meningkat sehingga nilai penurunan tekanan terbesar ada pada x=0,275 sebesar 98881,7522 Pa/m. Peningkatan nilai ini dapat disebabkan karena nilai penurnan tekanan dapat diakibatkan karena percepatan, dan friksi. Nilai inilah yang menyebabkan nilai tekanan pada titik keluar semakin menurun sehingga nilai penurunan tekanan akan semakin tinggi. Nilai ini disebabkan karena peningkatan temperatur dan kualitas akan meningkatkan nilai faktor friksi dan kecepatan dari aliran dalam fasa gas.

4.2.2.4 Kondisi Mass Flux = $242.192 \text{ kg/m}^2 \text{s}$ dan Heat Flux = 8 kW/m^2

		Kondisi 4	
x		dp/dz F	
	Eksperimen	Homogenous	Separated Flow
0,046	137623,0278	13531,64984	4497,210665
0,058	138646,7227	13910,1792	5398,215667
0,07	138987,5401	14307,77197	6283,240393
0,083	139157,1566	14725,86446	7157,416075
0,095	139257,8878	15166,03955	8024,527373
0,107	139323,8198	15630,04579	8887,598351
0,119	139369,5417	16119,81962	9749,204373
0,132	139402,3287	16637,51113	10611,65661
0,144	139426,2024	17185,51437	11477,12148

Tabel 4. 6 Penurunan tekanan friksi kondisi pengujian 3

Gambar 4. 14 Grafik Penurunan Tekanan Friksi untuk kualitas massa uap (x) pada pada G (mass flux) = 241,192 kg/m2.s dan q (heat flux)= 8 kw/m2

Pada kondisi pengujian 4 dengan fluks massa 241,192 kg/m2.s dan fluks panas 8 kW/m2 . Nilai penurunan tekanan friksi (dp/dz F) ekperimen pada x=0,046 adalah sebesar 137623,0278 Pa/m. Kemudian seiring dengan peningkatan kualitas maka nilai penurunan tekanan friksi juga semakin meningkat sehingga nilai penurunan tekanan terbesar ada pada x=0,144 sebesar 139426,2024 Pa/m. Peningkatan nilai ini dapat disebabkan karena nilai penurnan tekanan dapat diakibatkan karena percepatan, dan friksi. Nilai inilah yang menyebabkan nilai tekanan pada titik keluar semakin menurun sehingga nilai penurunan tekanan akan semakin tinggi. Nilai ini disebabkan karena peningkatan temperatur dan kualitas akan meningkatkan nilai faktor friksi dan kecepatan dari aliran dalam fasa gas.

4.2.2.5 Analisa penurunan tekanan friksi menggunakan Propane

Pada pengujian menggunakan propane digunakan dua buah variasi fluks panas yaitu 5 dan 8 kW/m2. Nilai fluks massa divariasikan dengan kisaran 50-250 kg/m2.s. Dibawah ini merupakan nilai koefisien perpindahan kalor kondisi pengujian dengan menggunakan propane.

Gambar 4. 15 Grafik penurunan tekanan friksi menggunakan propane

Pada pengujian menggunakan propane, nilai penurunan tekanan friksi (dp/dz F) tertinggi ada pada kondisi fluks massa 155,597 kg/m².s, kualitas uap 0,13 dan fluks panas 5 kW/m² sebesar 213713,589 Pa/mm. Hal ini dapat disebabkan karena temperatur saturasi pada titik ini lebih tinggi sehingga peningkatan kualitas uap di sepanjang test section lebih tinggi dibandingkan kondisi pengujian lainnya. Selain pengaruh dari temperatur, ada pula pengaruh dari fluks massa. Fluks massa merupakan bilangan yang dominan dalam penurunan tekanan karena nilai fluks massa berbanding lurus dengan penurunan tekanan, maka seiring dengan meningkatnya fluks massa, maka nilai penuruinan tekanan akan semakin besar. Selain pengaruh temperatur dan fluks massa. Jangan dilupakan pula ada pengaruh penurunan tekanan akselerasi. Penurnan tekanan tekanan fluks massa juga berpengaruh pada penurunan volume spesifik. Peningkatan fluks massa juga berpengaruh pada penurunan volume spesifik dimana kedua nya saling menyeimbangkan untuk mendapatkan nilai penurunan tekanan akselerasi.

Sedangkan untuk penurunan tekanan friksi (dz/dz F) dengan menggunakan dua model yaitu homogenous dan separated flow, didapatkan hasil yang cukup

bervariasi. Pada model homogenous, peningkatan nilai fluks massa dapat meningkatkan nilai penurunan tekanan secara signifikan. Hal ini disebabkan karena pengaruh fluks massa pada persamaan ini sangatlah dominan. Sedangkan pada model separated flow peningkatan fluks massa dan kualitas uap pun menyebabkan kenaikan nilai penurunan tekanan friksi. Walaupun volume spesifik mengalami penurunan, namun nilai penurunan tekanan friksi model separated flow tetap meningkat karena yang dominan pada persamaan ini adalah fluks massa dan kualitas uap.

Deviasi yang terjadi cukup besar, hal ini dapat disebabkan karena model penurunan tekanan ini banyak digunakan pada kanal mini konvesional.

Deviasi antara percobaan dan pmerhitungan, model homogenous lebih kecil bila dibandingan dengan model separated flow. Hal ini menunjukkan bahwa pada kondisi pengujian seperti ini, model homogenous lebih tepat digunakan untuk perhitungan.

4.2.3 Perbandingan nilai penurunan tekanan hasil eksperimen dan perhitungan dengan menggunakan Iso-Butane

4.2.3.1 Kondisi Mass Flux = $198,160 \text{ kg/m}^2 \text{s}$ dan Heat Flux = 1 kW/m^2

	Kondisi 1			
X	dp/dz F			
	Eksperimen	Homogenous	Separated Flow	
0,096	46043,76421	32855,38212	6509,56751	
0,098	48411,40701	33381,65084	6473,755703	
0,099	49196,46932	33941,11886	6432,842549	
0,101	49585,40787	35082,89946	6499,95432	

Tabel 4. 7 Penurunan tekanan friksi kondisi pengujian 1

0,103	49815,42777	37668,10155	6838,412014
0,105	49965,50395	40605,38751	7208,19289
0,107	50069,37701	43968,5854	7614,592189
0,109	50143,79295	47853,2365	8064,235851
0,11	50197,90386	52385,09549	8565,540378

Gambar 4. 16 Grafik Penurunan Tekanan Friksi untuk kualitas massa uap (x) pada pada G (mass flux) = 198,1604 kg/m2.s dan q (heat flux)= 1 kw/m2

Pada kondisi pengujian 1 dengan fluks massa 190,160 kg/m² .s dan fluks panas 1 kW/m² . Nilai penurunan tekanan friksi (dp/dz F) ekperimen pada x=0,096 adalah sebesar 46043,76421Pa/m. Kemudian seiring dengan peningkatan kualitas maka nilai penurunan tekanan friksi juga semakin meningkat sehingga nilai penurunan tekanan terbesar ada pada x=0,11 sebesar 50197,90386 Pa/m. Peningkatan nilai ini dapat disebabkan karena nilai penurnan tekanan dapat diakibatkan karena percepatan, dan friksi. Nilai inilah yang menyebabkan nilai tekanan pada titik keluar semakin menurun sehingga nilai penurunan tekanan akan semakin tinggi. Nilai ini disebabkan karena peningkatan temperatur dan kualitas akan meningkatkan nilai faktor friksi dan kecepatan dari aliran dalam fasa gas

4.2.3.2 Kondisi Mass Flux = 226,469 kg/m²s dan Heat Flux = 2 kW/m^2

	Kondisi 2					
x		dp/dz F				
	Eksperimen	Homogenous	Separated Flow			
0,107	98193,93116	53828,49005	12106,32019			
0,11	101522,146	56141,81973	11931,31524			
0,113	102596,6014	58843,9705	11723,71732			
0,116	103096,5015	62053,29673	11485,02117			
0,12	103351,5755	70745,20138	12088,74576			
0,123	103461,2941	89886,28331	14013,14921			
0,126	103447,3962	120754,0363	16745,55358			
0,129	103268,9754	177758,2369	21054,10868			
0,133	102722,8146	312934,6905	29299,91067			

Tabel 4. 8 Penurunan tekanan friksi kondisi pengujian 2

Gambar 4. 17 Grafik Penurunan Tekanan Friksi untuk kualitas massa uap (x) pada pada G (mass flux) = 226,469 kg/m2.s dan q (heat flux)= 2 kw/m2

Pada kondisi pengujian 2 dengan fluks massa 226,469 kg/m².s dan fluks panas 2 kW/m². Nilai penurunan tekanan friksi (dp/dz F) ekperimen pada x=0,107 adalah sebesar 98193,93116 Pa/m. Kemudian seiring dengan peningkatan kualitas maka nilai penurunan tekanan friksi juga semakin meningkat sehingga nilai penurunan tekanan terbesar ada pada x=0,133 sebesar 102722,8146 Pa/m. Peningkatan nilai ini dapat disebabkan karena nilai penurnan tekanan dapat diakibatkan karena percepatan, dan friksi. Nilai inilah yang menyebabkan nilai tekanan pada titik keluar semakin menurun sehingga nilai penurunan tekanan akan semakin tinggi. Nilai ini disebabkan karena peningkatan temperatur dan kualitas akan meningkatkan nilai faktor friksi dan kecepatan dari aliran dalam fasa gas

4.2.3.3 Kondisi Mass Flux = $169,851 \text{ kg/m}^2 \text{s}$ dan Heat Flux = 3 kW/m^2

	Kondisi 3
X	dp/dz F

Tabel 4. 9 Penurunan tekanar	ı friksi kondisi	pengujian 3
------------------------------	------------------	-------------

	Eksperimen	Homogenous	Separated Flow
0,044	102981,4073	17334,8859	2385,99932
0,051	103781,7852	17579,36564	2538,447153
0,057	104045,1335	17845,08121	2661,414161
0,064	104173,3838	18655,89928	2850,590131
0,071	104246,6998	20811,83956	3255,386194
0,078	104291,532	23423,90226	3710,595384
0,084	104318,868	26644,70557	4229,788996
0,091	104333,7251	30701,38976	4831,995405
0,098	104338,1978	35946,52009	5544,946783

Gambar 4. 18 Grafik Penurunan Tekanan Friksi untuk kualitas massa uap (x) pada pada G (mass flux) = 169,851 kg/m2.s dan q (heat flux)= 3 kw/m2

Pada kondisi pengujian 3 dengan fluks massa 169,851 kg/m².s dan fluks panas 3 kW/m². Nilai penurunan tekanan friksi (dp/dz F) ekperimen pada x=0,044 adalah sebesar 102981,4073 Pa/m. Kemudian seiring dengan peningkatan kualitas maka nilai penurunan tekanan friksi juga semakin meningkat sehingga nilai penurunan tekanan terbesar ada pada x=0,098 sebesar 104338,1978 Pa/m. Peningkatan nilai ini dapat disebabkan karena nilai penurnan tekanan dapat diakibatkan karena percepatan, dan friksi. Nilai inilah yang menyebabkan nilai tekanan pada titik keluar semakin menurun sehingga nilai penurunan tekanan akan semakin tinggi. Nilai ini disebabkan karena peningkatan temperatur dan kualitas akan meningkatkan nilai faktor friksi dan kecepatan dari aliran dalam fasa gas

4.2.3.4	Kondisi Mass	Flux = 141,54	3 kg/m²s da	n Heat Flux =	= 4 kW/m ²
---------	--------------	---------------	-------------	---------------	-----------------------

		Kondisi 4	
х		dp/dz F	
	Eksperimen	Homogenous	Separated Flow
0,078	76894,03522	15021,48334	2553,260857
0,088	77727,95447	16348,68603	2947,541012
0,099	77999,51602	17873,91201	3373,918052
0,11	78128,80318	19641,573	3838,723037
0,12	78199,52336	21709,98942	4349,834449
0,131	78239,21155	24157,19668	4917,289517
0,141	78259,21286	27089,8895	5554,17789
0,152	78264,61045	30657,65994	6278,001329

Tabel 4. 10 Penurunan tekanan friksi kondisi pengujian 4

Gambar 4. 19 Grafik Penurunan Tekanan Friksi untuk kualitas massa uap (x) pada pada G (mass flux) = 141,543 kg/m2.s dan q (heat flux)= 4 kw/m2

Pada kondisi pengujian 4 dengan fluks massa 141,543 kg/m².s dan fluks panas 4 kW/m². Nilai penurunan tekanan friksi (dp/dz F) ekperimen pada x=0,078 adalah sebesar 76894,03522 Pa/m. Kemudian seiring dengan peningkatan kualitas maka nilai penurunan tekanan friksi juga semakin meningkat sehingga nilai penurunan tekanan terbesar ada pada x=0,163 sebesar 78257,43119 Pa/m. Peningkatan nilai ini dapat disebabkan karena nilai penurnan tekanan dapat diakibatkan karena percepatan, dan friksi. Nilai inilah yang menyebabkan nilai tekanan pada titik keluar semakin menurun sehingga nilai penurunan tekanan akan semakin tinggi. Nilai ini disebabkan karena peningkatan temperatur dan kualitas akan meningkatkan nilai faktor friksi dan kecepatan dari aliran dalam fasa gas

4.2.3.5 Analisa penurunan tekanan

Pada pengujian menggunakan iso-butane digunakan empat variasi fluks panas dari 1 - 4kW/m2 dan fluks massa pada kisaran 100-250 kg/m2.s. Dibawah ini merupakan nilai koefisien perpindahan kalor dengan menggunakan iso-butane.

Gambar 4. 20 Grafik penurunan tekanan friksi menggunakan iso-butane

Pada pengujian menggunakan propane, nilai penurunan tekanan friksi (dp/dz F) tertinggi ada pada kondisi fluks massa 168,851 kg/m².s, kualitas uap 0,098 dan fluks panas 3 kW/m² sebesar 104338,198 Pa/mm. Hal ini dapat disebabkan karena temperatur saturasi pada titik ini lebih tinggi sehingga peningkatan kualitas uap di sepanjang test section lebih tinggi dibandingkan kondisi pengujian lainnya. Selain pengaruh dari temperatur, ada pula pengaruh dari fluks massa. Fluks massa merupakan bilangan yang dominan dalam penurunan tekanan karena nilai fluks massa berbanding lurus dengan penurunan tekanan, maka seiring dengan meningkatnya fluks massa, maka nilai penuruiinan tekanan akan semakin besar. Selain pengaruh temperatur dan fluks massa. Jangan dilupakan pula ada pengaruh penurunan tekanan akselerasi ini berkaitan langsung dengan nilai fluks massa dan volume spesifik. Peningkatan fluks massa juga berpengaruh pada penurunan volume spesifik

dimana kedua nya saling menyeimbangkan untuk mendapatkan nilai penurunan tekanan akselerasi.

Sedangkan untuk penurunan tekanan friksi (dz/dz F) dengan menggunakan dua model yaitu homogenous dan separated flow, didapatkan hasil yang cukup bervariasi. Pada model homogenous, peningkatan nilai fluks massa dapat meningkatkan nilai penurunan tekanan secara signifikan. Hal ini disebabkan karena pengaruh fluks massa pada persamaan ini sangatlah dominan. Sedangkan pada model separated flow peningkatan fluks massa dan kualitas uap pun menyebabkan kenaikan nilai penurunan tekanan friksi. Walaupun volume spesifik mengalami penurunan, namun nilai penurunan tekanan friksi model separated flow tetap meningkat karena yang dominan pada persamaan ini adalah fluks massa dan kualitas uap.

Deviasi yang terjadi cukup besar, hal ini dapat disebabkan karena model penurunan tekanan ini banyak digunakan pada kanal mini konvesional Deviasi antara percobaan dan perhitungan , berbeda dengan pengujian dengan menggunakan propane, model separated flow lebih kecil bila dibandingan dengan model homogenous. Hal ini menunjukkan bahwa pada kondisi pengujian seperti ini, model separated flow lebih tepat digunakan untuk perhitungan.

4.3 Koefisien perpindahan kalor

Untuk menghitung besarnya nilai koefisien perpindahan kalor untuk aliran evaporasi dua fasa pada kanal mini horizontal dengan Refrigeran Propane (MC22) dan Isobutane (MC600), maka dilakukan pengujian langsung pada alat uji. Data hasil pengujian akan digunakan sebagai data input dalam melakukan perhitungan.

Berikut ini merupakan data-data yang diperoleh dari hasil pengujian langsung dengan beberapa kondisi pengujian.

4.3.1 Data hasil pengujian Propane (MC22)

Pengambilan data eksperimen untuk hasil analisa koefisien perpindahan kalor, diambil dari dua kondisi dengan parameter fluks massa berbeda dan fluks panas yang sama, yaitu sebagai berikut :

4.3.1.1 Kondisi Fluks massa = 51,470 kg/m²s dan Fluks panas = 5 kW/m^2

Propana									
Parameter	Nilai	Lokasi	Temperatur dinding luar (°C)						
			Atas	Bawah	Samping				
Diameter dalam (Din)	3 (mm)	Titik 1	5,507	7,433	9.420				
Diameter Luar (Dout)	5 (mm)	Titik 2	11,030	8,709	17,243				
Konduktivitas Termal (k)	13,4 (w/m.K)	Titik 3	13,517	20,259	17,472				
Panjang (L)	1000 (mm)	Titik 4	13,966	32,444	17,429				
Laju Massa (ṁ)	3,638 x10-4 (kg/s)	Titik 5	22,586	23,459	14,879				
Daya (q)	47,1 (W)	Titik 6	22,900	24,508	25,990				
Tegangan Listrik	39 (V)	Titik 7	25,192	27,610	28,912				
Arus listrik	1,21 (A)	Titik 8	25,312	25,165	23,212				
Tekanan Inlet (abs)	417,2 (kPa)	Titik 9	26,077	26,596	22,837				
Tekanan Outlet (abs)	301,65 (kPa)	G = 51,470 kg/m2.s							
Temperatur masuk	8,766 (°C)		q/A = 5 kWatt/m2						

Tabel 4. 11 Kondisi Pengujian 1 menggunakan Propane

4.3.1.2 Kondisi Fluks massa = 155,597 kg/m²s dan Fluks panas = 5 kW/m^2

Propana								
Parameter	Nilai	Lokasi	Temperatur dinding luar (°C)					
			Atas	Bawah	Samping			
Diameter dalam (Din)	3 (mm)	Titik 1	4,616	5,917	6,99			
Diameter Luar (Dout)	5 (mm)	Titik 2	5,781	5,712	9,469			
Konduktivitas Termal (k)	13,4 (w/m.K)	Titik 3	7,933	9,445	8,329			
Panjang (L)	1000 (mm)	Titik 4	9,774	17,336	10,188			
Laju Massa (ṁ)	1,100 x10-3 (kg/s)	Titik 5	11,614	10,776	3,044			
Daya (q)	47,1 (W)	Titik 6	3,976	5,755	2,961			
Tegangan Listrik	39 (V)	Titik 7	3,572	7,210	2,669			
Arus listrik	1,21 (A)	Titik 8	3,369	8,779	3,766			
Tekanan Inlet (abs)	479,6 (kPa)	Titik 9	4,546	5,546	3,708			
Tekanan Outlet (abs)	265,6 (kPa)	G =155,597 kg/m2.s						
Temperatur masuk	4,428 (°C)	q/A = 5 kWatt/m2						

Tabel 4. 12 Kondisi Pengujian 2 menggunakan Propane

4.3.1.3 Kondisi Fluks massa = 90,073 kg/m²s dan Fluks panas = 8 kW/m^2

Propana								
Parameter	Nilai	Lokasi	Temperatur dinding luar (°C)					
			Atas	Bawah	Samping			
Diameter dalam (Din)	3 (mm)	Titik 1	-7,851	-6,371	-4,570			
Diameter Luar (Dout)	5 (mm)	Titik 2	5,873	3,848	10,778			
Konduktivitas Termal (k)	13,4 (w/m.K)	Titik 3	19,316	25,150	22,857			
Panjang (L)	1000 (mm)	Titik 4	23,702	39,887	26,582			
Laju Massa (ṁ)	6,366 x10-4 (kg/s)	Titik 5	36,633	37,606	38,686			
Daya (q)	75,36 (W)	Titik 6	46,164	49,050	46,338			
Tegangan Listrik	67 (V)	Titik 7	51,895	57,354	52,904			
Arus listrik	1,125 (A)	Titik 8	56,287	60,720	56,974			
Tekanan Inlet (abs)	321,6 (kPa)	Titik 9	51,070	70,117	68,433			
Tekanan Outlet (abs)	222,5 (kPa)		G = 90,0	73 kg/m2.s				
Temperatur masuk	-11,747 (°C)	q/A = 8 kWatt/m2						

Tabel 4. 13 Kondisi Pengujian 3 menggunakan Propane

4.3.1.4 Kondisi Fluks massa = 242,192 kg/m²s dan Fluks panas = 8 kW/m^2

Propana								
Parameter	Nilai	Lokasi	Temperatur dinding luar (°C)					
			Atas	Bawah	Samping			
Diameter dalam (ID)	3 (mm)	Titik 1	44,940	45,597	48,054			
Diameter Luar (OD)	5 (mm)	Titik 2	47,097	44,126	52,040			
Konduktivitas Termal (k)	13,4 (w/m.K)	Titik 3	52,158	58,061	56,400			
Panjang (L)	1000 (mm)	Titik 4	45,701	62,467	49,119			
Laju Massa (ṁ)	1,712 x10-3 (kg/s)	Titik 5	55,574	56,860	40,940			
Daya	75,36 (W)	Titik 6	43,599	46,861	48,543			
Tegangan Listrik	67 (V)	Titik 7	47,321	48,568	48,890			
Arus listrik	1,125 (A)	Titik 8	45,972	46,602	43,379			
Tekanan Inlet (abs)	620 (kPa)	Titik 9	50,052	51,193	49,540			
Tekanan Outlet (abs)	480 (kPa)		G = 242,1	.95 kg/m2.s	3			
Temperatur masuk	13,743 (°C)	q/A = 8 kWatt/m2						

Tabel 4. 14 Kondisi Pengujian 4 menggunakan Propane

4.3.2 Data hasil pengujian Isobutane (MC600)

Pengambilan data eksperimen untuk hasil analisa koefisien perpindahan kalor, diambil dari dua kondisi dengan parameter fluks massa dan fluks panas yang berbeda, yaitu sebagai berikut :

4.3.2.1 Kondisi Mass Flux = 198,160 kg/m²s dan Heat Flux = 1 kW/m^2

Isobutana								
Parameter	Nilai	Lokasi	Temperatur dinding luar (°C)					
			Atas	Bawah	Samping			
Diameter dalam (Din)	3 (mm)	Titik 1	4,152	4,742	4,789			
Diameter Luar (Dout)	5 (mm)	Titik 2	4,504	4,641	4,969			
Konduktivitas Termal (k)	9,4 (w/m.K)	Titik 3	4,476	4,768	4,579			
Panjang (L)	1000 (mm)	Titik 4	4,408	5,209	4,477			
Laju Massa (ṁ)	1,401 x10-3 (kg/s)	Titik 5	4,467	4,494	12,056			
Daya (q)	9.4 (W)	Titik 6	24,836	24,186	24,846			
Tegangan Listrik	10 (V)	Titik 7	23,696	24,738	25,331			
Arus listrik	0.94 (A)	Titik 8	24,447	23,889	23,613			
Tekanan Inlet (abs)	113,75 (kPa)	Titik 9	23,828	23,753	23,115			
Tekanan Outlet (abs)	62,794 (kPa)	G = 198,160 kg/m2.s			5			

Tabel 4. 15 Kondisi pengujian 1 menggunakn Iso-butane

4.3.2.2 Kondisi Fluks massa = 226,469 kg/m²s dan Fluks panas = 2 kW/m^2

Isobutana								
Parameter	Nilai	Lokasi	Tempera	ıtur dinding	; luar (°C)			
			Atas	Bawah	Samping			
Diameter dalam (Din)	3 (mm)	Titik 1	7,527	8,391	8,777			
Diameter Luar (Dout)	5 (mm)	Titik 2	7,994	7,816	9,509			
Konduktivitas Termal (k)	13,4 (w/m.K)	Titik 3	7,508	8,783	8,126			
Panjang (L)	1000 (mm)	Titik 4	7,222	9,897	7,750			
Laju Massa (ṁ)	1,601 x10-3 (kg/s)	Titik 5	7,446	7,564	29,605			
Daya (q)	18,85 (W)	Titik 6	30,388	29,390	30,443			
Tegangan Listrik	18 (V)	Titik 7	27,626	30,816	33,312			
Arus listrik	1,05 (A)	Titik 8	28,560	26,656	26,619			
Tekanan Inlet (abs)	112,4 (kPa)	Titik 9	27,585	26,719	23,703			
Tekanan Outlet (abs)	7 (kPa)	G = 226,469 kg/m2.s						

Tabel 4. 16 Kondisi pengujian 2 menggunakn Iso-butane

4.3.2.3 Kondisi Fluks massa = 169,851 kg/m²s dan Fluks panas = 3 kW/m^2

Isobutana									
Parameter	Nilai	Lokasi	Temperatur dinding luar (°C)						
			Atas	Bawah	Samping				
Diameter dalam (ID)	3 (mm)	Titik 1	9,383	10,221	10,669				
Diameter Luar (OD)	5 (mm)	Titik 2	9,718	9,464	11,641				
Konduktivitas Termal (k)	13,4 (w/m.K)	Titik 3 9,118		10,744	9,865				
Panjang (L)	1000 (mm)	Titik 4	8,864	12,201	9,485				
Laju Massa (m)	1,2 x10-3 (kg/s)	Titik 5	9,007	9,059	37,098				
Daya	28,27 (W)	Titik 6	36,532	35,483	37,316				
Tegangan Listrik	20 (V)	Titik 7	31,651	37,428	42,271				
Arus listrik	1,41 (A)	Titik 8	34,041	31,106	30,704				
Tekanan Inlet (abs)	174,8 (kPa)	Titik 9	32,384	31,008	25,708				
Tekanan Outlet (abs)	70 (kPa)	G = 169,851 kg/m2.s							

Tabel 4. 17 Kondisi pengujian 3 menggunakn Iso-butane

4.3.2.4 Kondisi Fluks massa = 141,543 kg/m²s dan Fluks panas = 4 kW/m^2

Isobutana								
Parameter	Nilai	Lokasi	Temperatur dinding luar (°C)					
			Atas	Bawah	Samping			
Diameter dalam (Din)	3 (mm)	Titik 1	10,619	9,599	10,192			
Diameter Luar (Dout)	5 (mm)	Titik 2	9,105	8,679	11,259			
Konduktivitas Termal (k)	13,4 (w/m.K)	Titik 3	8,136	9,979	9,004			
Panjang (L)	1000 (mm)	Titik 4	7,869	11,582	8,666			
Laju Massa (ṁ)	1 x10-3 (kg/s)	Titik 5	8,085	8,125	38,436			
Daya (q)	37,7 (W)	Titik 6	37,769	35,754	38,915			
Tegangan Listrik	24 (V)	Titik 7	32,410	39,029	42,963			
Arus listrik	1,57 (A)	Titik 8	35,242	32,036	31,613			
Tekanan Inlet (abs)	146,108 (kPa)	Titik 9	32,286	31,759	25,712			
Tekanan Outlet (abs)	67.318 (kPa)	G = 141,543 kg/m2.s						
Temperatur masuk	8,3952 (°C)		q/A = 4	kWatt/m2				

Tabel 4. 18 Kondisi pengujian 4 menggunakn Iso-butane

4.4 Perhitungan Koefisien Perpindahan Kalor Aliran Dua Fasa Hasil Pengukuran

Tahapan dalam melakukan perhitungan koefisien perpindahan kalor aliran dua fasa adalah sebagai berikut:

 Menghitung temperatur dinding dalam bagian atas, samping dan bawah test section dengan menggunakan persamaan laju perpindahan kalor konduksi yang terjadi pada pipa berongga.

$$Tin = Tout - \frac{q \cdot \left(ln\frac{Rout}{Rin}\right)}{2.\pi.k.L}$$
(4.1)

 Menghitung tekanan saturasi dan menghitung temperatur saturasi pada 9 lokasi.

Langkah-langkah dalam menentukan temperatur saturasi (Tsat) seperti dibawah ini :

- Tentukan titik tekanan inlet dan tekanan outlet pada garis saturasi.
- Tarik garis lurus yang menghubungkan keduanya.
- Potong garis tersebut menjadi sembilan bagian yang sama panjang (karena test-suction terbagi atas sembilan bagian).
- Sembilan titik tersebut mempunyai nilai tekanan, yang mana nilainya didapat dari perbandingan dari pembagian sembilan titik tersebut dengan selisih antara P-inlet dengan P-oulet.
- Tarik titik-titk tersebut ke sebelah kiri sampai memotong garis tekanan, dan perpotongan tersebut yang merupakan temperature saturasi (Tsat), atau dengan mencari di software REFPROP dengan acuan nilai tekanan di setiap titik tersebut maka temperatur saturasi dapat diketahui.

Gambar 4. 21 Pembagian tekanan pada test section

3. Menghitung besarnya nilai koefisien perpindahan kalor lokal aliran dua fasa propana dan isobutana pada setiap titik menggunakan persamaan mencari nilai koefisien perpindahan kalor (h)

$$h = \frac{q}{A \cdot (Tin - Tsat)} \tag{4.2}$$

Sehingga nantinya akan didapatkan 27 nilai koefisien perpindahan kalor aliran dua fasa lokal dari 9 lokasi tersebut.

4. Mencari besarnya nilai koefisien perpindahan kalor lokal rata-rata aliran dua fasa propana dan isobutana pada tiap lokasi disepanjang test section dengan menggunakan persamaan sebagai berikut:

$$hPcb = \frac{h_{atas} + 2.(h_{samping}) + h_{bawah}}{4}$$
(4.3)

4.5 Perhitungan Koefisien Perpindahan Kalor Aliran Dua Fasa Dengan menggunakan Korelasi

Tahapan dalam melakukan perhitungan koefisien perpindahan kalor aliran dua fasa adalah sebagai berikut:

1. Menghitung panjang subcooled

Hal ini bertujuan untuk mengetahui posisi terjadinya kondisi saturasi. Panjang z dapat dihitung dengan menggunakan persamaan (2.23).

2. Menghitung tekanan saturasi pada 9 titik lokasi pengujian

Prosedur perhitungannya sama dengan perhitungan koefisien perpindahan kalor aliran dua fasa hasil pengukuran.

3. Menghitung kualitas massa uap pada tiap lokasi pengujian

Untuk menghitung kualitas massa uap pada tiap lokasi pengujian ini sebelumnya harus mencari besarnya nilai kualitas massa uap yang keluar (xout) dari test section yaitu dengan menggunakan persamaan (2.24). Setelah diketahui besarnya nilai kualitas massa uap yang keluar dari test section, perhitungan besarnya nilai kualitas massa uap di tiap lokasi didapat dilakukan dengan menggunakan persamaan (2.25).

4. Menghitung besarnya bilangan Reynolds fasa cair dan gas

Untuk menghitung nilai bilangan Reynolds fasa cair dan gas dapat menggunakan persamaan (2.6) dan (2.7).

5. Menghitung besarnya faktor gesekan

Besarnya faktor gesekan yang terjadi pada untuk masing-masing fasa baik cair maupun gas tergantung dari kondisi aliran yang terjadi, dimana kondisi aliran tersebut dipengaruhi oleh besarnya bilangan Reynolds. Untuk menetukan faktor gesekan pada aliran laminar baik fasa cair maupun gas dapat digunakan persamaan 2.28, untuk aliran turbulen digunakan persamaan 2.29 dan untuk aliran transisi dicari dengan cara interpolasi yang diberikan pada persamaan 2.30.

6. Menghitung besarnya parameter Martinelli (X)

Setelah mendapatkan faktor gesekan yang terjadi pada masingmasing fasa baik fasa liquid mupun gas maka selanjutnya mencari besarnya parameter Martinelli. Bilangan Martinelli ini merupakan perbandingan nilai dari penurunan tekanan fasa cair akibat gesekan dengan penurunan tekanan fasa gas akibat gesekan. Dimana besarnya parameter Martinelli dapat dihitung dengan menggunakan persamaan (2.32) juga mempertimbangkan kondisi aliran yang terjadi pada masing-masing fasa apakah laminar, transisi atau turbulen.

7. Menghitung Besarnya faktor pengali gesekan aliran dua fasa (ϕ_f^2)

Setelah mengetahui besarnya nilai parameter Martinelli, maka selanjutnya yaitu penentuan besarnya nilai faktor pengali aliran dua fasa yang besarnya dapat dihitung dengan menggunakan persamaan 2.33. Dimana besarnya faktor pengali aliran dua fasa ini dipengaruhi oleh kondisi aliran diman kondisi aliran ini akan mempengaruhi nilai C (parameter Chisolm) seperti yang dapat dilihat pada tabel 2.1. dan tabel 2.2..

8. Menghitung koefisien perpindahan kalor pendidihan nukleasi (hNB)

Dalam korelasi Chen, untuk menghitung besarnya nilai koefisien perpindahan kalor pendidihan nukleasi ini dapat menggunakan persamaan (2.367) yaitu persamaan yang dipublikasikan oleh Cooper (198).

9. Menghitung koefisien perpindahan kalor konveksi paksa fasa cair

Dalam melakukan perhitungan untuk mencari nilai koefisien perpindahan kalor konveksi paksa untuk fasa cair, maka harus mengetahui kondisi aliran yang terjadi dengan menghitung bilangan Reynolds-nya. Jika telah diketahui nilai bilangan Reynolds, maka kita dapat memilih persamaan yang terdapat pada sub bab 2.4.2 sesuai dengan bilangan Reynolds hasil perhitungan.

10. Menghitung nilai faktor pengali (F)

Untuk menghitung nilai F pada korelasi Chen dapat menggunakan persamaan (2.42), dan untuk menghitung nilai F pada korelasi Zhang dapat menggunakan persamaan (2.62).

11. Menghitung nilai faktor penekanan (S)

Untuk menghitung nilai faktor penekanan pada korelasi Chen dapat menggunakan persamaan (2.50), faktor penekanan pada korelasi Gungor-Winterton dapat menggunakan persamaan (2.56) atau (2.58) tergantung dari nilai bilangan Froude, dan faktor penekanan pada korelasi Zhang dapat dihitung dengan persamaan (2.61).

12. Menghitung nilai faktor E

Untuk menghitung faktor E pada korelasi Gungor Winterton dapat penggunakan persamaan (2.54) atau persamaan (2.57) tergantung dari nilai bilangan Froude.

13. Menghitung Besarnya Koefisien Perpindahan Kalor Aliran Dua Fasa

Untuk menghitung besarnya nilai koefisien perpindahan kalor aliran dua fasa dengan korelasi Chen dapat menggunakan persamaan (2.42), untuk korelasi Gungor Winterton menggunakan persamaan (2.53) sedangkan untuk korelasi Zhang, nilai koefisien perpindahan kalor aliran dua fasa dapat dihitung dengan menggunakan persamaan (2.60).

4.6 Perhitungan Deviasi

Untuk mengetahui mean deviasi dan average deviasi yang terjadi,maka yang pertama dilakukan adalah menentukan deviasi-nya, yaitu dengan menggunakan persamaan:

$$D = \frac{h_{TPperhitungan} - h_{TPpengukuran}}{h_{TPpengukuran}} \times 100\%$$

(4.4)

Selanjutnya ialah menghitung besarnya Mean dan Average Deviation dengan menggunakan persamaan berikut:

$$MD = \frac{1}{n} \sum_{1}^{n} \left| \frac{(h_{TP,per\ hitungan} - h_{TP,pengukuran})}{h_{TP,pengukuran}} \right| \times 100$$
(4.5)

$$AD = \frac{1}{n} \sum_{1}^{n} \left(\frac{(h_{TP, per hitungan} - h_{TP, pengukuran})}{h_{TP, pengukuran}} \right) \times 100$$
(4.6)

4.7 Hasil Perhitungan

Untuk mempermudah dalam proses ini, maka perhitungan dibantu dengan program MATLAB dan untuk mempermudah dalam mencari properti refrigeran pada kondisi tertentu, maka digunakan program Refprop.

4.7.1 Koefisien Perpindahan Kalor Propane (MC22)

4.7.1.1 Kondisi Fluks massa = 51,470 kg/m²s dan Fluks panas = 5 $\left(\frac{kW}{m^2}\right)$

	P test-		Temper	atur dind	ing dalam	Ko	efisien per	pindahan ka	alor
Lokasi	suction	Tsat		(°C)			(W/n	n2.°C)	
	(kPa)	(°C)		Deset	Gerraria		Derech		T = 1== 1
			Atas	Bawan	Samping	Atas	Bawan	Samping	Lokai
Titik 1	405,645	-5,03	5,221	7,147	9,134	487,746	410,602	353,002	401,088
Titik 2	394,09	-5,94	10,744	8,423	16,957	299,684	348,111	218,367	271,132
Titik 3	382,535	-6,86	13,231	19,973	17,186	248,865	186,336	207,933	212,767
Titik 4	370,98	-7,81	13,680	32,158	17,143	232,664	125,099	200,375	189,628
Titik 5	359,425	-8,78	22,300	23,173	14,593	160,874	156,479	213,920	186,298
Titik 6	347,87	-9,77	22,614	24,222	25,704	154,396	147,092	140,947	145,846
	336,315	-							
Titik 7		10,79	24,906	27,324	28,626	140,071	131,185	126,851	131,239
	324,76	-							
Titik 8		11,84	25,026	24,879	22,926	135,625	136,168	143,818	139,857
Titik 9	313,205	-	25,791	24,879	22,551	129,195	127,485	140,999	134,670

Tabel 4. 19 Koefisien Perpindahan Kalor Untuk Kondisi 1 Perhitungan Manual

	12,91				

Tabel 4. 20 Tabel Koefisien Perpindahan Kalor Untuk Kondisi 1 Perhitungan Matlab

	Kualitas Massa	koefisien Perpindahan Kalor (W/m2 K)						
Lokasi	Uap (x)	Percobaan	Chen	Gungor-Winterton	Zhang			
Titik 1	0.1195	400.8714	2223,766	2350,477	2111,143			
Titik 2	0.1535	271.0471	2371,400	2389,872	2230,509			
Titik 3	0.1875	212.6323	2408,948	2413,365	2260,058			
Titik 4	0.2215	189.5291	2445,395	2438,616	2288,932			
Titik 5	0.2555	186.2016	2481,631	2466,079	2317,894			
Titik 6	0.2896	145.7553	2518,356	2496,192	2347,558			
Titik 7	0.3236	131.1640	2556,177	2529,411	2378,468			
Titik 8	0.3576	139.7943	2595,670	2566,234	2411,151			
Titik 9	0.3916	134.5948	2637,414	2607,225	2446,149			

	Kualitas			
	Massa Uap			
Lokasi	(X)	Chen	Gungor-Winterton	Zhang
Titik 1	0.1195	454,7330	486,3419	426,6385
Titik 2	0.1535	774,9034	781,7184	722,9231
Titik 3	0.1875	1032,9171	1034,9944	962,8948
Titik 4	0.2215	1190,2475	1186,6707	1107,6940
Titik 5	0.2555	1232,7658	1224,4136	1144,8305
Titik 6	0.2896	1627,7971	1612,5908	1510,6158
Titik 7	0.3236	1848,8409	1828,4344	1713,3547
Titik 8	0.3576	1756,7785	1735,7219	1624,7853
Titik 9	0.3916	1859,5210	1837,0915	1717,4168
Average Deviation		1239,8729	1236,3608	1151,7171
Mean Deviation		1232,5161	1235,7993	1151,5921

Tabel 4. 21 Deviasi pengujian kondisi 1

Gambar 4. 22 Grafik Koefisien Perpindahan Kalor Untuk kualitas massa uap (x) pada pada G (mass flux) = 51,470 kg/m2.s dan q (heat flux)= 5 kw/m2

Pada kondisi pengujian 1 dengan fluks massa 51,470 kg/m2.s dan fluks panas 5 kW/m2, seperti yang ditunjukkan pada gambar 4.2 diatas dapat dilihat bahwa nilai koefisien perpindahan kalor percobaan (htpcb) tertinggi ada pada x=0,120 sebesar 400,871 W/m2C. Sedangkan seiring dengan meningkatnya kualitas uap nilai koefisien perpindahan kalor percobaan pengujian semakin menurun sehingga pada x=0,392 nilai koefisien perpindahan kalor percobaan sebesar 134,595 W/m2C. Penurunan ini dapat terjadi karena peningkata kualitas uap disebabkan oleh peningkatan nilai temperatur dinding dalam (Tw,in). Dengan tetap nya nilai Tsat, maka peningkatan nilai Tw, in ini akan menyebabkan peningkatan nilai ΔT . Sesuai dengan persamaan koefisien perpindahan kalor percobaan (htpcb) peningkatan nilai ΔT akan menyebabkan penurunan nilai htpcb. Sedangkan untuk nilai koefisien perpindahan kalor menggunakan korelasi Chen, Gunger-Winterton dan Zhang, nilai nya cenderung mengalami peningkatan. Hal ini disebabkan karena persamaan yang mereka gunakan adalah model superposisi. Dimana persamaan yang digunakan terdiri dari penjumlahan koefisien perpindahan kalor nucleate boiling (hnb) dan koefisien perpindahan kalor flow boiling (hf) yang masing-masing dikalikan dengan faktor pengali tertentu. Dimana nilai-nilai faktor tersebut cenderung mengalami peningkatan seiring dengan peningkatan nilai Tw,in dan kualitas uap sesuai dengan persamaan 2. (Chen) , persamaan 2. (Gunger-Winterton) dan persamaan 2. (Zhang).

Hal inilah yang menyebabkan tinggi nya deviasi antara nilai koefisien perpindahan kalor percobaan dengan nilai koefisien perpindahan kalor menggunakan korelasi lainnya. Nilai deviasi berbanding lurus dengan kualitas uap dan temperatur. Dimana peningkatan kualitas uap menyebabkan semakin tingginya deviasi. Hal ini disebabkan karena pada persamaan menggunakan korelasi, nilai temperatur dan kualitas uap akan berpengaruh pada properti propane yang nantinya akan memberikan pengaruh yang cukup siginifikan pada nilai koefisien perpindahan kalor sehingga deviasi antara nilai koefisien perpindahan kalor sehingga deviasi antara nilai koefisien perpindahan kalor percobaan dan koefisien perpindahan kalor korelasi menjadi sangat tinggi. Nilai average dan mean deviation tertinggi berturut-turut sebesar 1239,9729 % (Chen) dan 1235,7993 % (Gunger-Winterton),

4.7.1.2 Kondisi Fluks massa = $155,597 \text{ kg/m}^2$.s dan Fluks panas = 5 kW/m^2

	P test- suction (°C)	Temperatur dinding dalam (°C)			Koefisien perpindahan kalor (W/m2.°C)				
Lokasi									
		(°C)							
	(кра)		Atas	Bawah	Samping	Atas	Bawah	Samping	Lokal
Titik 1	458,2	-1,14	4,330	5,631	6,704	914,038	738,418	637,411	731,819
	126.0	-	5 405	5 400	0.102	(11 (02	(1(000	401 470	517.020
Titik 2	436,8	.2.68	5,495	5,426	9,183	611,603	616,809	421,470	517,838
Titik 3	415,4	-4,28	7,647	9,159	8,043	419,209	372,045	405,738	400,682
Titik 4	394	-5,94	9,488	17,050	9,902	324,081	217,484	315,612	293,197
Titik 5	372,6	-7,68	11,328	10,490	2,758	263,044	275,175	479,008	374,059
Titik 6	351,2	-9,49	3,690	5,469	2,675	379,356	334,242	411,007	383,903

Tabel 4. 22 Koefisien Perpindahan Kalor Untuk Kondisi 2 Perhitungan Manual
Titik 7	329,8	- 11,38	3,286	6,924	2,383	340,919	273,161	363,287	335,163
Titik 8	308,4	- 19,37	3,083	8,493	3,480	303,892	228,694	296,732	281,512
Titik 9	287	- 15,46	4,260	5,26	3,422	253,547	241,310	264,799	256,114

Tabel 4. 23 Koefisien Perpindahan Kalor Untuk Kondisi 2 Perhitungan Matlab

	Kualitas Massa		koefisien Perpindahan Kalor (W/m2 K)								
Lokasi	Uap (x)	Percobaan	Chen	Gungor-Winterton	Zhang						
Titik 1	0.0389	731.8093	3913,493	4031,100	3250,987						
Titik 2	0.0503	517.5896	4897,508	4180,190	4039,377						
Titik 3	0.0617	400.4696	5065,665	4221,190	4183,761						
Titik 4	0.0732	292.9832	5055,140	4176,331	4192,661						
Titik 5	0.0846	373.9831	4958,833	4097,418	4134,026						
Titik 6	0.0960	383.8556	4831,981	4011,010	4049,454						
Titik 7	0.1075	335.0244	4680,246	3917,139	3943,380						
Titik 8	0.1189	281.4164	4508,014	3815,548	3819,269						
Titik 9	0.1304	255.9515	4318,796	3705,709	3679,919						

	Kualitas		Deviasi (%)	
	Massa Uap			
Lokasi	(x)	Chen	Gungor-Winterton	Zhang
Titik 1	0.0389	434,7695	450,8403	344,2397
Titik 2	0.0503	846,2145	707,6263	680,4208
Titik 3	0.0617	1164,9314	954,0602	944,7139
Titik 4	0.0732	1625,4027	1325,4507	1331,0244
Titik 5	0.0846	1225,9511	995,6158	1005,4045
Titik 6	0.0960	1158,8017	944,9267	954,9420
Titik 7	0.1075	1296,9865	1069,2100	1077,0425
Titik 8	0.1189	1501,9017	1255,8372	1257,1594
Titik 9	0.1304	1587,3493	1347,8169	1337,7407
Average	Average Deviation		962,9459	949,3684
Mean D	Deviation	1341,0199	1071,9708	1092,8313

Tabel 4. 24 Deviasi kondisi pengujian 2

Gambar 4. 23 Grafik Koefisien Perpindahan Kalor Untuk kualitas massa uap (x) pada pada G (mass flux) = 155,597 kg/m2.s dan q (heat flux)= 5 kw/m2

Pada kondisi pengujian 2 dengan fluks massa 155,597 kg/m2.s dan fluks panas 5 kW/m2, seperti yang ditunjukkan pada gambar 4.3 diatas dapat dilihat bahwa nilai koefisien perpindahan kalor percobaan (htpcb) tertinggi ada pada x=0,039 sebesar 731,089 W/m2C. Sedangkan seiring dengan meningkatnya kualitas uap nilai koefisien perpindahan kalor percobaan pengujian semakin menurun sehingga pada x=0,130 nilai koefisien perpindahan kalor percobaan sebesar 255,592 W/m2C. Penurunan ini dapat terjadi karena peningkatan kualitas uap disebabkan oleh peningkatan nilai temperatur dinding dalam (Tw,in). Dengan tetap nya nilai Tsat, maka peningkatan nilai Tw,in ini akan menyebabkan peningkatan nilai ΔT . Sesuai dengan persamaan koefisien perpindahan kalor percobaan (htpcb) peningkatan nilai ΔT akan menyebabkan penurunan nilai htpcb. Sedangkan untuk nilai koefisien perpindahan kalor menggunakan korelasi Chen, Gunger-Winterton dan Zhang, nilai nya cenderung mengalami peningkatan. Hal ini disebabkan karena persamaan yang mereka gunakan adalah model superposisi. Dimana persamaan yang digunakan terdiri dari penjumlahan koefisien perpindahan kalor nucleate boiling (hnb) dan koefisien perpindahan kalor flow boiling (hf) yang masing-masing dikalikan dengan faktor pengali tertentu. Dimana nilai-nilai faktor tersebut cenderung mengalami peningkatan seiring dengan peningkatan nilai Tw,in dan kualitas uap sesuai dengan persamaan 2. (Chen), persamaan 2. (Gunger-Winterton) dan persamaan 2. (Zhang).

Hal inilah yang menyebabkan tinggi nya deviasi antara nilai koefisien perpindahan kalor percobaan dengan nilai koefisien perpindahan kalor menggunakan korelasi lainnya. Nilai deviasi berbanding lurus dengan kualitas uap dan temperatur. Dimana peningkatan kualitas uap menyebabkan semakin tingginya deviasi. Hal ini disebabkan karena pada persamaan menggunakan korelasi, nilai temperatur dan kualitas uap akan berpengaruh pada properti propane yang nantinya akan memberikan pengaruh yang cukup siginifikan pada nilai koefisien perpindahan kalor sehingga deviasi antara nilai koefisien perpindahan kalor sehingga deviasi antara nilai koefisien perpindahan kalor percobaan dan koefisien perpindahan kalor korelasi menjadi sangat tinggi. Nilai average dan mean deviation tertinggi berturut-turut sebesar 1156,8699 % (Chen) dan 1341,0199 % (Chen).

4.7.1.3 Kondisi Fluks massa = 90.073 kg/m².s dan Fluks panas = 8 kW/m^2

Lokasi	P test- suction	Tsat (°C)	Temperatur dinding dalam (°C)			Koefisien perpindahan kalor (W/m2.°C)			
	(KI d)		Atas	Bawah	Samping	Atas	Bawah	Samping	Lokal
Titik 1	311,69	- 13,05	-8,308	-6,828	-5,027	1687,132	1285,806	997,161	1241,815
Titik 2	301,78	- 14,00	5,416	3,391	10,321	412,036	460,014	328,937	382,481
Titik 3	291,87	- 14,98	18,859	24,693	22,400	236,415	201,650	214,019	216,526
Titik 4	281,96	- 15,97	23,245	39,432	26,125	204,005	144,400	190,047	182,125

Tabel 4.	25 Koefisien	Perpindahan K	alor Untuk Ko	ondisi 3 Perhi	tungan Manual
		- P			0

Titik 5	272,05	- 17,00	36,176	37,149	38,229	150,444	147,741	144,852	146,972
Titik 6	262,14	- 18,05	45,707	48,593	45,881	125,477	120,043	125,135	123,948
Titik 7	252,23	- 19,13	51,438	56,897	52,447	113,366	105,226	111,768	110,532
Titik 8	242,32	- 20,25	55,830	60,263	56,517	105,153	99,363	104,212	103,235
Titik 9	232,41	- 21,14	68,613	69,660	67,976	88,876	87,854	89,510	88,938

Tabel 4. 26 Koefisien Perpindahan Kalor Untuk Kondisi 3 Perhitungan Matlab

	Kualitas		koefisien Perp	indahan Kalor (W/m2 K)						
	Massa									
Lokasi	Uap (x)	Percobaan	Chen	Gungor-Winterton	Zhang					
Titik 1	0.0326	1240.2220	2577,945	2671,172	2468,825					
Titik 2	0.0629	382.2267	2609,205	2675,070	2493,973					
Titik 3	0.0932	216.4426	2783,440	2699,547	2634,669					
Titik 4	0.1235	182.0196	2829,648	2713,900	2672,113					
Titik 5	0.1537	146.9048	2872,536	2730,032	2706,702					
Titik 6	0.1840	123.8838	2913,806	2748,573	2740,001					
Titik 7	0.2143	110.4697	2954,584	2770,056	2773,053					
Titik 8	0.2445	103.1817	2995,727	2794,987	2806,654					

Titik 9	0.2748	88.8902	3037,954	2823,879	2841,477
---------	--------	---------	----------	----------	----------

	Kualitas		Deviasi (%)	
	Massa Uap			
Lokasi	(x)	Chen	Gungor-Winterton	Zhang
Titik 1	0.0326	107,8616	115,3785	99,0631
Titik 2	0.0629	582,6329	599,8648	552,4853
Titik 3	0.0932	1185,9948	1147,2348	1117,2601
Titik 4	0.1235	1454,5839	1390,9930	1368,0356
Titik 5	0.1537	1855,3728	1758,3685	1742,4875
Titik 6	0.1840	2252,0467	2118,6694	2111,7500
Titik 7	0.2143	2574,5643	2407,5248	2410,2378
Titik 8	0.2445	2803,3510	2608,8010	2620,1082
Titik 9	0.2748	3317,6491	3076,8182	3096,6157
Average Deviation		1602,0510	1518,3544	1502,6785
Mean D	eviation	1589,0294	1518,0644	1502,5581

Tabel 4. 27 Deviasi kondisi pengujian 3

Gambar 4. 24 Grafik Koefisien Perpindahan Kalor Untuk kualitas massa uap (x) pada pada G (mass flux) = 90,073 kg/m2.s dan q (heat flux)= 8 kw/m2

Pada kondisi pengujian 3 dengan fluks massa 90,073 kg/m2.s dan fluks panas 8 kW/m2, seperti yang ditunjukkan pada gambar 4.4 diatas dapat dilihat bahwa nilai koefisien perpindahan kalor percobaan (htpcb) tertinggi ada pada x=0,033 sebesar 1240,222 W/m2C. Sedangkan seiring dengan meningkatnya kualitas uap nilai koefisien perpindahan kalor percobaan pengujian semakin menurun sehingga pada x=0,275 nilai koefisien perpindahan kalor percobaan sebesar 88,890 W/m2C. Penurunan ini dapat terjadi karena peningkata kualitas uap disebabkan oleh peningkatan nilai temperatur dinding dalam (Tw,in). Dengan tetap nya nilai Tsat, maka peningkatan nilai Tw, in ini akan menyebabkan peningkatan nilai ΔT . Sesuai dengan persamaan koefisien perpindahan kalor percobaan (htpcb) peningkatan nilai ΔT akan menyebabkan penurunan nilai htpcb. Sedangkan untuk nilai koefisien perpindahan kalor menggunakan korelasi Chen, Gunger-Winterton dan Zhang, nilai nya cenderung mengalami peningkatan. Hal ini disebabkan karena persamaan yang mereka gunakan adalah model superposisi. Dimana persamaan yang digunakan terdiri dari penjumlahan koefisien perpindahan kalor nucleate boiling (hnb) dan koefisien perpindahan kalor flow boiling (hf) yang masing-masing dikalikan dengan faktor pengali tertentu. Dimana nilai-nilai faktor tersebut cenderung mengalami peningkatan seiring dengan peningkatan nilai Tw,in dan kualitas uap sesuai dengan persamaan 2. (Chen), persamaan 2. (Gunger-Winterton) dan persamaan 2. (Zhang).

Hal inilah yang menyebabkan tinggi nya deviasi antara nilai koefisien perpindahan kalor percobaan dengan nilai koefisien perpindahan kalor menggunakan korelasi lainnya. Nilai deviasi berbanding lurus dengan kualitas uap dan temperatur. Dimana peningkatan kualitas uap menyebabkan semakin tingginya deviasi. Hal ini disebabkan karena pada persamaan menggunakan korelasi, nilai temperatur dan kualitas uap akan berpengaruh pada properti propane yang nantinya akan memberikan pengaruh yang cukup siginifikan pada nilai koefisien perpindahan kalor sehingga deviasi antara nilai koefisien perpindahan kalor sehingga deviasi antara nilai koefisien perpindahan kalor percobaan dan koefisien perpindahan kalor korelasi menjadi sangat tinggi. Nilai average dan mean deviation tertinggi berturut-turut sebesar 1602,0510 % (Chen) dan 1589,0294 % (Chen).

4.7.1.4 Kondisi Fluks massa = 242.192 kg/m².s dan Fluks panas = 8 kW/m^2

		_							
	P test-		Temper	atur dind	ing dalam	Koefisi	en perpinc	lahan kalor	(W/m2
	1 1051-	Tsat							
Lokasi	suction	1 Sut		(°C)				C)	
Lonusi	Suction	(°C)							
	(kPa)		Atac	Bawah	Samping	Atas	Bawah	Samping	Lokal
			Alas	Dawan	Samping	Alas	Dawan	Samping	LOKai
Titik 1	606	8.26	44,483	45,140	47.597	220,856	216,921	203.372	211.130
-		- , -	,	- , -			- 9-		· · · ·
Titik 2	592	7,46	46,640	43,669	47,597	204,187	220,941	181,312	196,938
T'(1 2	<i>67</i> 0	(()	<i>c</i> 1 701	57 (04	55.042	177 400	156.042	1(2,220	164 725
1 1t1K 3	5/8	6,63	51,/01	57,604	55,943	1//,499	156,943	162,230	164,725
Titik 4	564	5 79	45 244	62 010	48 662	202 769	142 299	186 603	179 568
I TUIX I	501	5,17	10,211	02,010	10,002	202,709	112,277	100,005	179,500
Titik 5	550	4,93	55,117	56,403	40,483	159,405	155,422	225,018	191,215
		-	· ·	·	·	,	,	,	,
TP ¹ · 11 · 6		1.0.6	12.1.10	46.40.4	10.000	••••	100.000	101 - 10	100.060
Titik 6	536	4,06	43,142	46,404	48,086	204,699	188,930	181,712	189,263
Titik 7	522	3 1 7	16 861	18 111	18 133	183.002	178.012	176 746	178 640
IIIK /	522	5,17	40,004	40,111	40,433	105,092	170,012	170,740	170,049

Tabel 4. 28 Koefisien Perpindahan Kalor Untuk Kondisi 4 Perhitungan Manual

Titik 8	508	2,26	45,515	46,145	42,922	184,951	182,296	196,745	190,184
Titik 9	494	1,33	49,595	51,473	49,083	165,752	159,544	167,530	165,089

Tabel 4. 29 Koefisien Perpindahan Kalor Untuk Kondisi 4 Perhitungan Matlab

	Kualitas Massa		koefisien Perpindahan Kalor (W/m2 K)							
Lokasi	Uap (x)	Percobaan	Chen	Gungor-Winterton	Zhang					
Titik 1	0.0457	211.0827	7927,641	6795,564	6381,482					
Titik 2	0.0578	196.8282	8288,887	6907,547	6689,987					
Titik 3	0.0700	164.6447	8603,358	7011,471	6962,182					
Titik 4	0.0822	179.4722	8882,304	7109,276	7206,605					
Titik 5	0.0943	191.1232	9132,948	7202,246	7428,821					
Titik 6	0.1065	189.1533	9360,237	7291,288	7632,689					
Titik 7	0.1187	178.5413	9567,724	7377,067	7821,004					
Titik 8	0.1309	190.0721	9758,049	7460,088	7995,862					
Titik 9	0.1430	165.0006	9933,232	7540,742	8158,875					

Tabel 4. 30 Deviasi kondisi pengujian 4

	Kualitas	Deviasi (%)						
	Massa Uap							
Lokasi	(x)	Chen	Gungor-Winterton	Zhang				
Titik 1	0.0457	3655,7029	3119,3839	2923,2134				
Titik 2	0.0578	4111,2298	3409,4299	3298,8970				

Titik 3	0.0700	5125,4091	4158,5470	4128,6104
Titik 4	0.0822	4849,1265	3861,2139	3915,4446
Titik 5	0.0943	4678,5661	3668,3789	3786,9281
Titik 6	0.1065	4848,4935	3754,6985	3935,1876
Titik 7	0.1187	5258,8296	4031,8546	4280,5013
Titik 8	0.1309	5033,8659	3824,8718	4106,7511
Titik 9	0.1430	5920,1202	4470,1312	4844,7560
Average Deviation		4695,1529	3728,5473	3796,9417
Mean Deviation		4654,4710	3738,9790	3809,5893

Gambar 4. 25 Grafik Koefisien Perpindahan Kalor Untuk kualitas massa uap (x) pada pada G (mass flux) = 242,192 kg/m2.s dan q (heat flux)= 8 kw/m2

Pada kondisi pengujian 4 dengan fluks massa 242,192 kg/m2.s dan fluks panas 8 kW/m2, seperti yang ditunjukkan pada gambar 4.4 diatas dapat dilihat bahwa nilai koefisien perpindahan kalor percobaan (htpcb) tertinggi ada pada x=0.046 sebesar 211.083 W/m2C. Sedangkan seiring dengan meningkatnya kualitas uap nilai koefisien perpindahan kalor percobaan pengujian semakin menurun sehingga pada x=0,144 nilai koefisien perpindahan kalor percobaan sebesar 165,001 W/m2C. Penurunan ini dapat terjadi karena peningkata kualitas uap disebabkan oleh peningkatan nilai temperatur dinding dalam (Tw,in). Dengan tetap nya nilai Tsat, maka peningkatan nilai Tw, in ini akan menyebabkan peningkatan nilai AT. Sesuai dengan persamaan koefisien perpindahan kalor percobaan (htpcb) peningkatan nilai ΔT akan menyebabkan penurunan nilai htpcb. Sedangkan untuk nilai koefisien perpindahan kalor menggunakan korelasi Chen, Gunger-Winterton dan Zhang, nilai nya cenderung mengalami peningkatan. Hal ini disebabkan karena persamaan yang mereka gunakan adalah model superposisi. Dimana persamaan yang digunakan terdiri dari penjumlahan koefisien perpindahan kalor nucleate boiling (hnb) dan koefisien perpindahan kalor flow boiling (hf) yang masing-masing dikalikan dengan faktor pengali tertentu. Dimana nilai-nilai faktor tersebut cenderung mengalami peningkatan seiring dengan peningkatan nilai Tw,in dan kualitas uap sesuai dengan persamaan 2. (Chen), persamaan 2. (Gunger-Winterton) dan persamaan 2. (Zhang).

Hal inilah yang menyebabkan tinggi nya deviasi antara nilai koefisien perpindahan kalor percobaan dengan nilai koefisien perpindahan kalor menggunakan korelasi lainnya. Nilai deviasi berbanding lurus dengan kualitas uap dan temperatur. Dimana peningkatan kualitas uap menyebabkan semakin tingginya deviasi. Hal ini disebabkan karena pada persamaan menggunakan korelasi, nilai temperatur dan kualitas uap akan berpengaruh pada properti propane yang nantinya akan memberikan pengaruh yang cukup siginifikan pada nilai koefisien perpindahan kalor sehingga deviasi antara nilai koefisien perpindahan kalor sehingga deviasi antara nilai koefisien perpindahan kalor percobaan dan koefisien perpindahan kalor korelasi menjadi sangat tinggi. Nilai average dan mean deviation tertinggi berturut-turut sebesar 4695,1529 % (Chen) dan 4654,4710 % (Chen).

4.7.1.5 Analisa koefisien perpindahan kalor menggunakan Propane

Gambar 4. 26 Koefisien perpindahan kalor menggunakan Propane

Pada fluks panas 5 kW/m2 nilai koefisien perpindahan kalor percobaan tertinggi ada pada kondisi fluks massa 155,597 kg/m2.s, kualitas uap 0,039 sebesar 731,809 W/m2.C. Sedangkan pada fluks panas 8 kW/m2 ada pada kondisi fluks massa 242.192 kg/m2.s, kualitas uap 0,033 sebesar 1240,222 .Namun apabila kita mengamati lebih lanjut, dengan fluks panas yang sama, terjadi anomali dimana pada fluks massa tinggi terdapat nilai htpcb yang lebih rendah dibanding pada kondisi fluks massa rendah. Fenomena ini seharus nya tidak terjadi karena seharusnya nilai fluks massa berbanding lurus dengan nilai koefisien perpindahan kalor. Fenomena ini kemungkinan dapat terjadi karena pada pada kondisi fluks massa tinggi dan mulai mendekati kualitas uap akhir, terjadi fenomena dry-out dimana temperatur dinding meningkat secara signifikan yang menyebabkan nilai koefisien perpindahan kalor menurun secara drastis. Seiring dengan peningkatan kualitas uap nilai koefisien perpindahan kalor percobaan (htpcb) cenderung mengalami penurunan. Penurunan ini dapat terjadi karena peningkatan kualitas uap disebabkan oleh peningkatan nilai temperatur dinding dalam (Tw,in). Dengan tetap nya nilai Tsat, maka peningkatan nilai Tw,in ini akan menyebabkan peningkatan nilai AT. Sesuai dengan persamaan

koefisien perpindahan kalor percobaan (htpcb) peningkatan nilai ΔT akan menyebabkan penurunan nilai htpcb.

Untuk nilai koefisien perpindahan kalor korelasi, peningkatan fluks massa, fluks panas dan kualitas uap menyebabkan peningkatan nilai koefisien perpindahan kalor. Peningkatan fluks panas sudah jelas akan meningkatkan temperatur dinding bagian dalam dari test section dan meningkatkan nilai koefisien perpindahan kalor. Sedangkan peningkatan fluks massa akan meningkatkan nilai koefisien perpindahan kalor. Hal ini dapat disebabkan karena sesuai dengan persamaan bahwa peningkatan fluks massa akan meningkatkan nilai bilangan reynolds. Peningkatan bilangan reynolds ini pun akan menyebabkan peningkatan nilai koefisien perpindahan kalor sesuai dengan persamaan.

Karena perpindahan kalor korelasi menggunakan model superposisi yang terdiri dari komponen nucleate boiling, flow boiling dan faktor pengali lain maka peningkatan kualitas uap dan temperatur dinding akan semakin meningkatkan nilai koefisien perpindahan kalor korelasi. Perbedaan persamaan yang digunakan inilah yang menyebabkan cukup tinggi nya nilai deviasi koefisien perpindahan kalor yang terjadi.

4.7.2 Koefisien Perpindahan Kalor Isobutane (MC22)

4.7.2.1 Kondisi Mass Flux = $198,1604 \text{ kg/m}^2$.s dan Heat Flux = 1 kW/m^2

P test- Lokasi suction	Tsat (°C)	Temper	Temperatur dinding dalam (°C)			Koefisien perpindahan kalor (W/m2. °C)			
(kPa)			Atas	Bawah	Samping	Atas	Bawah	Samping	Lokal
Titik 1	108.09	- 10,09	4.095	4.685	4.732	70.499	67.683	67.469	68.280

Tabel 4. 31 Koefisien Perpindahan Kalo	Untuk Kondisi 1 Perhitungan Manual
--	------------------------------------

Titik 2	102.43	- 11,47	4.447	4.584	4.912	62.825	62.291	61.043	61.801
Titik 3	96.76	- 12,92	4.419	4.711	4.522	57.674	56.719	57.334	57.265
Titik 4	91.10	- 14,43	4.351	5.152	4.420	53.246	51.068	53.052	52.604
Titik 5	85.44	- 16,02	4.410	4.437	12.999	48.948	48.884	34.460	41.688
Titik 6	79.78	- 17,70	24.779	24.129	24.788	23.541	23.907	23.536	23.630
Titik 7	74.12	- 19,47	23.639	24.681	25.273	23.197	22.650	22.350	22.636
Titik 8	68.46	- 21,35	24.390	23.832	23.556	21.863	22.133	22.269	22.133
Titik 9	17,54	- 49,23	23.771	23.696	23.057	26,075	26,373	27,465	26,845

Tabel 4. 32 Koefisien Perpindahan Kalor Untuk Kondisi 1 Perhitungan Matlab

	Kualitas Massa	koefisien Perpindahan Kalor (W/m2 K)						
Lokasi	Uap (x)	Percobaan	Chen	Gungor-Winterton	Zhang			
Titik 1	0,096	68,7510	3726,641	2851,681	2944,205			
Titik 2	0,098	62,7208	3621,106	2815,571	2866,509			
Titik 3	0,099	58,5953	3512,030	2777,254	2785,911			
Titik 4	0,101	54,2069	1043,818	872,246	892,476			

Titik 5	0,103	43,0617	1052,744	879,684	899,224
Titik 6	0,105	24,1484	1062,295	887,789	906,489
Titik 7	0,107	23,2356	1072,566	896,661	914,350
Titik 8	0,109	22,8415	1083,673	906,425	922,906
Titik 9	0,11	22,1960	1095,760	917,232	932,282

Tabel 4. 33 Deviasi kondisi pengujian 1

	Kualitas Massa Uap		Deviasi (%)	
Lokasi	(X)	Chen	Gungor-Winterton	Zhang
Titik 1	0,096	5320,48988	4047,839	4182,418
Titik 2	0,098	5166,98666	3995,316	4069,407
Titik 3	0,099	5008,33297	3939,583	3952,175
Titik 4	0,101	1418,25864	1168,703	1198,128
Titik 5	0,103	1431,24173	1179,522	1207,943
Titik 6	0,105	1445,13389	1191,311	1218,51
Titik 7	0,107	1460,07331	1204,215	1229,944
Titik 8	0,109	1476,22871	1218,417	1242,389
Titik 9	0,11	1493,80954	1234,136	1256,027
Average	Deviation	2840,84322	2243,113	2287,614
Mean I	Deviation	711,568917	652,2504	645,7803

Gambar 4. 27 Grafik Koefisien Perpindahan Kalor Untuk kualitas massa uap (x) pada pada G (mass flux) = 198,1604 kg/m2.s dan q (heat flux)= 1 kw/m2

Pada fluks panas 5 kW/m² nilai koefisien perpindahan kalor percobaan tertinggi ada pada kondisi fluks massa 155,597 kg/m².s, kualitas uap 0,039 sebesar 731,809 W/m².C. Sedangkan pada fluks panas 8 kW/m² ada pada kondisi fluks massa 242.192 kg/m².s, kualitas uap 0,033 sebesar 1240,222 .Namun apabila kita mengamati lebih lanjut, dengan fluks panas yang sama, terjadi anomali dimana pada fluks massa tinggi terdapat nilai htpcb yang lebih rendah dibanding pada kondisi fluks massa rendah. Fenomena ini seharus nya tidak terjadi karena seharusnya nilai fluks massa berbanding lurus dengan nilai koefisien perpindahan kalor. Fenomena ini kemungkinan dapat terjadi karena pada pada kondisi fluks massa tinggi dan mulai mendekati kualitas uap akhir, terjadi fenomena partikular dry-out dimana temperatur dinding meningkat secara signifikan yang menyebabkan nilai koefisien perpindahan kalor menurun kemudian tertutup lagi oleh refrijeran. Seiring dengan peningkatan kualitas uap nilai koefisien perpindahan kalor percobaan (ht_{pcb}) cenderung mengalami penurunan. Penurunan ini dapat terjadi karena peningkatan kualitas uap disebabkan oleh peningkatan nilai temperatur dinding dalam ($T_{w,in}$). Dengan meningkat nya nilai ΔT_{sat} , sesuai dengan persamaan koefisien perpindahan kalor percobaan (h_{tpcb}),akan menyebabkan penurunan nilai h_{tpcb}.

Untuk nilai koefisien perpindahan kalor korelasi, peningkatan fluks massa, fluks panas dan kualitas uap menyebabkan peningkatan nilai koefisien perpindahan kalor. Peningkatan fluks panas sudah jelas akan meningkatkan temperatur dinding bagian dalam dari test section dan meningkatkan nilai koefisien perpindahan kalor. Dimana peningkatan temperatur saturasi akan mengakibatkan penurunan nilai koefisien perpindahan kalor. Sedangkan peningkatan fluks massa akan meningkatkan nilai koefisien perpindahan kalor. Hal ini dapat disebabkan karena sesuai dengan persamaan bahwa peningkatan fluks massa akan meningkatkan nilai bilangan reynolds. Peningkatan bilangan reynolds ini pun akan menyebabkan peningkatan nilai koefisien perpindahan kalor

Karena perpindahan kalor korelasi menggunakan model superposisi yang terdiri dari komponen nucleate boiling, flow boiling dan faktor pengali lain maka peningkatan kualitas uap dan temperatur dinding akan semakin meningkatkan nilai koefisien perpindahan kalor korelasi. Perbedaan persamaan yang digunakan inilah yang menyebabkan cukup tinggi nya nilai deviasi koefisien perpindahan kalor yang terjadi.

4.7.2.2 Kondisi Fluks massa = 226,469 kg/m².s dan Fluks panas = 2 kW/m^2

Lokasi	P test- suction	Tsat (°C)	Temper	Temperatur dinding dalam (°C)		Koefisien perpindahan kalor (W/m2. °C)			
	(kPa)		Atas	Bawah	Samping	Atas	Bawah	Samping	Lokal
Titik 1	101,86	- 11,61	7.413	8.277	8.663	105,138	100,570	98,655	100,755
Titik 2	91,32	- 14,37	7.880	7.702	9.395	89,889	90,614	84,159	87,205

Tabel 4. 34 Koefisien Perpindahan Kalor Untuk Kondisi 2 Perhitungan Manual

Titik 3	80,78	- 17,39	7.394	8.669	8.012	80,698	76,750	78,735	78,730
Titik 4	70,24	- 20,74	7.108	9.783	7.636	71,819	65,525	70,483	69,578
Titik 5	59,7	- 24,15	7.332	7.450	29.491	62,811	62,579	37,037	49,866
Titik 6	49,16	- 28,85	30.274	29.256	30.329	33,827	34,420	33,796	33,960
Titik 7	38,62	- 34,00	27.512	30.702	33.198	32,514	30,911	29,763	30,738
Titik 8	28,08	- 40,43	28.446	26.542	26.505	29,038	29,863	29,880	29,665
Titik 9	17,54	- 49,23	27.471	26.605	23.589	26,075	26,373	27,465	26,845

Tabel 4. 35 Koefisien Perpindahan Kalor Untuk Kondisi 2 Perhitungan Matlab

	Kualitas Massa	koefisien Perpindahan Kalor (W/m2 K)						
Lokasi	Uap (x)	Percobaan	Chen	Gungor-Winterton	Zhang			
Titik 1	0,107	100,7345	5738,640	4171,395	4582,844			
Titik 2	0,11	87,1911	5412,329	4062,700	4338,581			
Titik 3	0,113	78,7162	5061,557	3940,689	4074,418			
Titik 4	0,116	69,5747	4682,682	3801,168	3787,471			
Titik 5	0,12	49,8667	1367,078	1156,721	1193,338			

Titik 6	0,123	33,9625	1392,631	1181,353	1212,099
Titik 7	0,126	30,7396	1428,120	1217,028	1239,228
Titik 8	0,129	29,6661	1481,689	1272,945	1281,869
Titik 9	0,133	26,8459	1575,823	1374,821	1360,092

Tabel 4. 36 Deviasi kondisi pengujian 2

	Kualitas		Deviasi (%)	
	Massa Uap			
Lokasi	(x)	Chen	Gungor-Winterton	Zhang
Titik 1	0.107	5596,7995	4040,9813	4449,4305
Titik 2	0.11	6107,4360	4559,5376	4875,9473
Titik 3	0.113	6330,1314	4906,1963	5076,0838
Titik 4	0.116	6630,4351	5363,4320	5343,7452
Titik 5	0.12	2641,4672	2219,6282	2293,0580
Titik 6	0.123	4000,4925	3378,4011	3468,9302
Titik 7	0.126	4545,8652	3859,1547	3931,3743
Titik 8	0.129	4894,5521	4190,9073	4220,9888
Titik 9	0.133	5769,8880	5021,1622	4966,2972
Average	Average Deviation		4064,7798	4207,4448
Mean Deviation		4983,6876	3976,3586	4107,1101

Gambar 4. 28 Grafik Koefisien Perpindahan Kalor Untuk kualitas massa uap (x) pada pada G (mass flux) = 226,469 kg/m2.s dan q (heat flux)= 2 kw/m2

Pada kondisi pengujian 2 dengan fluks massa 226,469 kg/m2.s dan fluks panas 2 kW/m2, seperti yang ditunjukkan pada gambar 4.4 diatas dapat dilihat bahwa nilai koefisien perpindahan kalor percobaan (htpcb) tertinggi ada pada x=0,107 sebesar 100,734 W/m2C. Sedangkan seiring dengan meningkatnya kualitas uap nilai koefisien perpindahan kalor percobaan pengujian semakin menurun sehingga pada x=0,133 nilai koefisien perpindahan kalor percobaan sebesar 26,846 W/m2C. Penurunan ini dapat terjadi karena peningkata kualitas uap disebabkan oleh peningkatan nilai temperatur dinding dalam (Tw,in). Dengan tetap nya nilai Tsat, maka peningkatan nilai Tw,in ini akan menyebabkan peningkatan nilai ΔT . Sesuai dengan persamaan koefisien perpindahan kalor percobaan (htpcb) peningkatan nilai ΔT akan menyebabkan penurunan nilai htpcb. Sedangkan untuk nilai koefisien perpindahan kalor menggunakan korelasi Chen, Gunger-Winterton dan Zhang, fenomena yang terjadi berbeda dengan yang terjadi ketika menggunakan propane. Nilai nya cenderung mengalami penurunan. Hal ini disebabkan karena properti iso-butane berbeda dengan propane, sehingga peningkatan yang terjadi pada pengujian menggunakan propane tidak terjadi ketika menggunakan iso-butane. Pengaruh properti dari iso-butane inilah yang mempengaruhi nilai koefisien perpindahan kalor nucleate boiling (hnb) dan koefisien perpindahan kalor flow boiling (hf) dan faktor pengali. Dimana nilainilai faktor tersebut cenderung mengalami peningkatan seiring dengan penurunan nilai Tw,in dan kualitas uap sesuai dengan persamaan 2. (Chen), persamaan 2. (Gunger-Winterton) dan persamaan 2. (Zhang).

Hal inilah yang menyebabkan tinggi nya deviasi antara nilai koefisien perpindahan kalor percobaan dengan nilai koefisien perpindahan kalor menggunakan korelasi lainnya. Nilai deviasi berbanding lurus dengan kualitas uap dan temperatur. Dimana peningkatan kualitas uap menyebabkan semakin tingginya deviasi. Hal ini disebabkan karena pada persamaan menggunakan korelasi, nilai temperatur dan kualitas uap akan berpengaruh pada properti isobutane yang nantinya akan memberikan pengaruh yang cukup siginifikan pada nilai koefisien perpindahan kalor sehingga deviasi antara nilai koefisien perpindahan kalor sehingga deviasi antara nilai koefisien perpindahan kalor percobaan dan koefisien perpindahan kalor korelasi menjadi sangat tinggi. Nilai average dan mean deviation tertinggi berturut-turut sebesar 5093,3974 % (Chen) dan 4983,6876 % (Chen).

4.7.2.3 Kondisi Fluks massa = $169,851 \text{ kg/m}^2$.s dan Fluks panas = 3 kW/m^2

		r							
Lokasi	P test- suction	Tsat (°C)	Temper	atur dindi (°C)	ng dalam	Koefisi	en perpind °	ahan kalor C)	(W/m2.
	(kPa)		Atas	Bawah	Samping	Atas	Bawah	Samping	Lokal
Titik 1	164,32	1,30	9.211	10.049	10.527	371,149	336,285	319,183	336,450
Titik 2	153,84	-0,56	9.546	9.292	11.469	291,886	299,282	245,881	270,733
Titik 3	143,36	-2,53	8.946	10.572	9.693	257,555	226,006	242,033	241,907
Titik 4	132,88	-4,61	8.692	12.029	9.313	222,651	178,455	212,841	206,697
Titik 5	122,4	-6,82	8.835	8.887	36.926	189,550	188,929	68,309	128,774

Tabel 4. 37 Koefisien Perpindahan Kalor Untuk Kondisi 3 Perhitungan Manua	nual
---	------

Titik 6	111,92	-9,18	36.360	35.311	37.144	65,628	67,170	64,522	65,460
	101,44	-							
Titik 7		11,72	31.479	37.256	42.099	69,171	61,040	55,565	60,335
	90.96	_							
Titik 8	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	14,47	33.869	30.934	30.532	61,842	65,824	66,410	65,121
	80,48	-							
Titik 9		13,49	32.212	30.836	25.533	60,152	61,858	69,452	65,229

Tabel 4. 38 Koefisien Perpindahan Kalor Untuk Kondisi 3 Perhitungan Matlab

	Kualitas Massa	koefisien Perpindahan Kalor (W/m2 K)						
Lokasi	Uap (x)	Percobaan	Chen	Gungor-Winterton	Zhang			
Titik 1	0,044	343,0454	3225,541	2676,148	2602,352			
Titik 2	0,051	274,8712	3164,623	2643,306	2565,868			
Titik 3	0,057	245,2740	3081,762	2602,909	2511,512			
Titik 4	0,064	209,1684	1392,607	1256,445	1263,714			
Titik 5	0,071	129,9308	1401,668	1257,661	1268,565			
Titik 6	0,078	65,6958	1411,143	1259,793	1273,605			
Titik 7	0,084	60,5364	1421,319	1263,111	1279,072			
Titik 8	0,091	65,3510	1432,560	1267,982	1285,258			
Titik 9	0,098	65,4706	1445,354	1274,918	1292,563			

	Kualitas		Deviasi (%)	
	Massa Uap		Γ	r
Lokasi	(x)	Chen	Gungor-Winterton	Zhang
Titik 1	0.044	840,2666	680,1149	658,6029
Titik 2	0.051	1051,3111	861,6524	833,4800
Titik 3	0.057	1156,4568	961,2250	923,9617
Titik 4	0.064	565,7827	500,6858	504,1610
Titik 5	0.071	978,7807	867,9471	876,3392
Titik 6	0.078	2047,9974	1817,6172	1838,6414
Titik 7	0.084	2247,8748	1986,5312	2012,8972
Titik 8	0.091	2092,1027	1840,2655	1866,7012
Titik 9	0.098	2107,6381	1847,3137	1874,2647
Average	Average Deviation		1189,5049	1189,3481
Mean D	Mean Deviation		1123,9887	1120,2787

Tabel 4. 39 Deviasi kondisi pengujian 3

Gambar 4. 29 Grafik Koefisien Perpindahan Kalor Untuk kualitas massa uap (x) pada pada G (mass flux) = 169,851 kg/m2.s dan q (heat flux)= 3 kw/m2

Pada kondisi pengujian 3 dengan fluks massa 169,851 kg/m2.s dan fluks panas 3 kW/m2, seperti yang ditunjukkan pada gambar 4.4 diatas dapat dilihat bahwa nilai koefisien perpindahan kalor percobaan (htpcb) tertinggi ada pada x=0,044 sebesar 343,045 W/m2C. Sedangkan seiring dengan meningkatnya kualitas uap nilai koefisien perpindahan kalor percobaan pengujian semakin menurun sehingga pada x=0,098 nilai koefisien perpindahan kalor percobaan sebesar 65,471 W/m2C. Penurunan ini dapat terjadi karena peningkata kualitas uap disebabkan oleh peningkatan nilai temperatur dinding dalam (Tw,in). Dengan tetap nya nilai Tsat, maka peningkatan nilai Tw, in ini akan menyebabkan peningkatan nilai ΔT . Sesuai dengan persamaan koefisien perpindahan kalor percobaan (htpcb) peningkatan nilai ΔT akan menyebabkan penurunan nilai htpcb. Sedangkan untuk nilai koefisien perpindahan kalor menggunakan korelasi Chen, Gunger-Winterton dan Zhang, fenomena yang terjadi berbeda dengan yang terjadi ketika menggunakan propane. Nilai nya cenderung mengalami penurunan. Hal ini disebabkan karena properti iso-butane berbeda dengan propane, sehingga peningkatan yang terjadi pada pengujian menggunakan propane tidak terjadi ketika menggunakan iso-butane. Pengaruh properti dari iso-butane inilah yang mempengaruhi nilai koefisien perpindahan kalor nucleate boiling (hnb) dan koefisien perpindahan kalor flow boiling (hf) dan faktor pengali. Dimana nilainilai faktor tersebut cenderung mengalami peningkatan seiring dengan penurunan nilai Tw,in dan kualitas uap sesuai dengan persamaan 2. (Chen), persamaan 2. (Gunger-Winterton) dan persamaan 2. (Zhang).

Hal inilah yang menyebabkan tinggi nya deviasi antara nilai koefisien perpindahan kalor percobaan dengan nilai koefisien perpindahan kalor menggunakan korelasi lainnya. Nilai deviasi berbanding lurus dengan kualitas uap dan temperatur. Dimana peningkatan kualitas uap menyebabkan semakin tingginya deviasi. Hal ini disebabkan karena pada persamaan menggunakan korelasi, nilai temperatur dan kualitas uap akan berpengaruh pada properti isobutane yang nantinya akan memberikan pengaruh yang cukup siginifikan pada nilai koefisien perpindahan kalor sehingga deviasi antara nilai koefisien perpindahan kalor sehingga deviasi antara nilai koefisien perpindahan kalor percobaan dan koefisien perpindahan kalor korelasi menjadi sangat tinggi. Nilai average dan mean deviation tertinggi berturut-turut sebesar 1372,5716 % (Chen) dan 1296,0076 % (Chen).

4.7.2.4 Kondisi Fluks massa = $141,543 \text{ kg/m}^2 \text{s}$ dan Fluks panas = 4 kW/m^2

Lokasi	P test- suction (kPa)	Tsat (K)	Temper	atur dindi (°C) Bawah	ng dalam Samping	Kor Atas	efisien per (W/n Bawah	pindahan ka n2.°C) Samping	alor Lokal
Titik 1	138.229	-3,53	10.390	9.370	4.095	287.348	310.076	296.449	297.580
Titik 2	130.35	-5,13	8.876	8.451	4.447	285.595	294.539	247.520	268.794
Titik 3	122.471	-6,80	7.907	9.749	4.419	271.983	241.713	256.824	256.836
Titik 4	114.592	-8,56	7.640	11.353	4.351	246.910	200.874	235.331	229.611
Titik 5	106.713	- 10,42	7.856	7.896	4.410	218.866	218.384	82.258	150.442

Tabel 4. 40 Koefisien Perpindahan Kalor Untuk Kondisi 4 Perhitungan Manual

Titik 6	98.834	- 12,38	37.540	35.525	24.779	80.127	83.499	78.329	80.071
Titik 7	90.955	- 14,47	32.181	38.801	23.639	85.742	75.088	69.925	75.170
Titik 8	83.076	- 16,71	35.013	31.807	24.390	77.334	82.446	83.170	81.530
Titik 9	75.197	- 19,12	32.057	31.530	23.771	78.160	78.974	89.680	84.124

Tabel 4. 41 Koefisien Perpindahan Kalor Untuk Kondisi 4 Perhitungan Matlab

	Kualitas	koefisien Perpindahan Kalor (W/m2 K)						
Lokasi	Massa Uap (x)	Percobaan	Chen	Gungor-Winterton	Zhang			
Titik 1	0.078	297.5278	1621,523	1495,642	1490,679			
Titik 2	0.088	268.8030	1637,734	1501,896	1502,102			
Titik 3	0.099	256.7811	1653,760	1508,905	1513,322			
Titik 4	0.110	229.5833	1669,883	1516,875	1524,584			
Titik 5	0.120	150.4586	1686,372	1526,035	1536,124			
Titik 6	0.131	80.0682	1703,513	1536,656	1548,189			
Titik 7	0.141	75.1661	1721,624	1549,068	1561,059			
Titik 8	0.152	81.5289	1741,089	1563,687	1575,069			
Titik 9	0.163	84.1214	1762,389	1581,063	1590,640			

	Kualitas		Deviasi (%)	
	Massa Uap			
Lokasi	(x)	Chen	Gungor-Winterton	Zhang
Titik 1	0.078	444,999	402,690	401,022
Titik 2	0.088	509,269	458,735	458,811
Titik 3	0.099	544,035	487,623	489,343
Titik 4	0.110	627,354	560,708	564,066
Titik 5	0.120	1020,821	914,256	920,961
Titik 6	0.131	2027,577	1819,184	1833,588
Titik 7	0.141	2190,426	1960,860	1976,813
Titik 8	0.152	2035,548	1817,954	1831,915
Titik 9	0.163	1995,054	1779,502	1790,886
Average	Average Deviation		1052,751	1059,565
Mean D	Mean Deviation		652,250	645,780

Tabel 4. 42 Deviasi kondisi pengujian 4

Gambar 4. 30 Grafik Koefisien Perpindahan Kalor Untuk kualitas massa uap (x) pada pada G (mass flux) = 141,543 kg/m2.s dan q (heat flux)= 4 kw/m2

Pada kondisi pengujian 4 dengan fluks massa 141,543 kg/m2.s dan fluks panas 4 kW/m2, seperti yang ditunjukkan pada gambar 4.4 diatas dapat dilihat bahwa nilai koefisien perpindahan kalor percobaan (htpcb) tertinggi ada pada x=0,078 sebesar 297,578 W/m2C. Sedangkan seiring dengan meningkatnya kualitas uap nilai koefisien perpindahan kalor percobaan pengujian semakin menurun sehingga pada x=0,163 nilai koefisien perpindahan kalor percobaan sebesar 84,121 W/m2C. Penurunan ini dapat terjadi karena peningkata kualitas uap disebabkan oleh peningkatan nilai temperatur dinding dalam (Tw,in). Dengan tetap nya nilai Tsat, maka peningkatan nilai Tw,in ini akan menyebabkan peningkatan nilai AT. Sesuai dengan persamaan koefisien perpindahan kalor percobaan (htpcb) peningkatan nilai ΔT akan menyebabkan penurunan nilai htpcb. Sedangkan untuk nilai koefisien perpindahan kalor menggunakan korelasi Chen, Gunger-Winterton dan Zhang, fenomena yang terjadi berbeda dengan yang terjadi ketika menggunakan propane. Nilai nya cenderung mengalami penurunan. Hal ini disebabkan karena properti iso-butane berbeda dengan propane, sehingga peningkatan yang terjadi pada pengujian menggunakan propane tidak terjadi ketika menggunakan iso-butane. Pengaruh properti dari iso-butane inilah yang mempengaruhi nilai koefisien perpindahan kalor nucleate boiling (hnb) dan koefisien perpindahan kalor flow boiling (hf) dan faktor pengali. Dimana nilainilai faktor tersebut cenderung mengalami peningkatan seiring dengan penurunan nilai Tw,in dan kualitas uap sesuai dengan persamaan 2. (Chen), persamaan 2. (Gunger-Winterton) dan persamaan 2. (Zhang).

Hal inilah yang menyebabkan tinggi nya deviasi antara nilai koefisien perpindahan kalor percobaan dengan nilai koefisien perpindahan kalor menggunakan korelasi lainnya. Nilai deviasi berbanding lurus dengan kualitas uap dan temperatur. Dimana peningkatan kualitas uap menyebabkan semakin tingginya deviasi. Hal ini disebabkan karena pada persamaan menggunakan korelasi, nilai temperatur dan kualitas uap akan berpengaruh pada properti isobutane yang nantinya akan memberikan pengaruh yang cukup siginifikan pada nilai koefisien perpindahan kalor sehingga deviasi antara nilai koefisien perpindahan kalor sehingga deviasi antara nilai koefisien perpindahan kalor percobaan dan koefisien perpindahan kalor korelasi menjadi sangat tinggi. Nilai average dan mean deviation tertinggi berturut-turut sebesar 1175,004 % (Chen) dan 711,569 % (Chen).

Gambar 4. 31 Koefisien perpindahan kalor menggunakan iso-butane

Pada kondisi pengujian dengan menggunakan iso butane, nilai koefisien perpindahan kalor tertinggi ada pada kondisi fluks panas 3 kW/m², fluks massa 169,851 kg/m².s dan kualitas uap 0,044 yaitu sebesar 343,045 W/m².C. Seiring dengan peningkatan kualitas uap nilai koefisien perpindahan kalor percobaan (ht_{pcb}) cenderung mengalami penurunan. Penurunan ini dapat terjadi karena peningkatan kualitas uap disebabkan oleh peningkatan nilai temperatur dinding dalam (T_{w,in}). Dengan meningkat nya nilai ΔT_{sat} , sesuai dengan penurunan nilai h_{tpcb}.

Untuk nilai koefisien perpindahan kalor korelasi, peningkatan fluks massa, fluks panas dan menyebabkan peningkatan nilai koefisien perpindahan kalor. Peningkatan fluks panas sudah jelas akan meningkatkan temperatur dinding bagian dalam dari test section dan meningkatkan nilai koefisien perpindahan kalor. Dimana peningkatan temperatur saturasi akan mengakibatkan penurunan nilai koefisien perpindahan kalor. Sedangkan peningkatan fluks massa akan meningkatkan nilai koefisien perpindahan kalor. Hal ini dapat disebabkan karena sesuai dengan persamaan bahwa peningkatan fluks massa akan meningkatkan nilai bilangan reynolds. Peningkatan bilangan reynolds ini pun akan menyebabkan peningkatan nilai koefisien perpindahan kalor sesuai dengan persamaan. Namun, pada kondisi pengujian ini peningkatan kualitas uap pada titik tertentu menyebabkan penurunan nilai koefisien perpindahan kalor. Anomali ini kemungkinan dapat disebabkan karena properti iso-butane yang kurang sesuai dengan persamaan superposisi yang digunakan pada tiga jenis persamaan koefisien perpindahan kalor korelasi.

4.8 Modifikasi nilai C

Pada pengujian ini dikembangkan sebuah persamaan baru untuk nilai C yang merupakan pengembangan dari metode Lockhart-Martinelli. Penurunan tekanan dua fasa dari Lockhart-Martinelli terdiri dari 3 bagian yaitu, penurunan tekanan fasa cair, interaksi antara fasa cair dan fasa gas, dan penurunan tekanan fasa gas. Hubungan antara 3 bagian ini dapat dijelaskan pada persamaan 4.8 dibawah ini

$$\left(-\frac{dp}{dz}F\right)_{tp} = \left(-\frac{dp}{dz}F\right)_{f} + C\left[\left(-\frac{dp}{dz}F\right)_{f}\left(-\frac{dp}{dz}F\right)_{g}\right]^{1/2} + \left(-\frac{dp}{dz}F\right)_{g}$$

$$(4.9)$$

Nilai *two-phase frictional multiplier* (ϕ_f^2) , dihitung dengan membagi persamaan diatas dengan penurunan tekanan fasa cair

$$\phi_{f}^{2} = \frac{\left(\frac{dp}{dz}\right)_{TP}}{\left(\frac{dp}{dz}\right)_{f}} = \frac{\left(\frac{dp}{dz}\right)_{f}}{\left(\frac{dp}{dz}\right)_{f}} + C \frac{\left[\left(\frac{dp}{dz}\right)_{f} \left(\frac{dp}{dz}\right)_{g}\right]^{0.5}}{\left(\frac{dp}{dz}\right)_{f}} + \frac{\left(\frac{dp}{dz}\right)_{g}}{\left(\frac{dp}{dz}\right)_{f}}$$

$$\phi_{f}^{2} = \frac{\left(\frac{dp}{dz}\right)_{f}}{\left(\frac{dp}{dz}\right)_{f}} + C \left[\frac{\left(\frac{dp}{dz}\right)_{g}}{\left(\frac{dp}{dz}\right)_{f}}\right]^{0.5} + \frac{\left(\frac{dp}{dz}\right)_{g}}{\left(\frac{dp}{dz}\right)_{f}}$$

$$\phi_{f}^{2} = 1 + \frac{C}{X} + \frac{1}{X^{2}}$$

$$(4.10)$$

Dan nilai parameter martinelli (X) dapat dihitung menggunakan persamaan 9 dibawah ini

$$X_{martinelli}^{2} = \frac{pressure\ drop\ liquid}{pressure\ drop\ vapor}$$

$$X^{2} = \frac{\left(\frac{dp}{dz} F\right)_{f}}{\left(\frac{dp}{dz} F\right)_{g}}$$

$$\frac{\left(\frac{dp}{dz}F\right)_f = \left[\frac{2f_f \ G^2 \ (1-x)^2 \ v_f}{D}\right]^{1/2}}{\left(\frac{dp}{dz}F\right)_g = \left[\frac{2f_g \ G^2 \ x^2 \ v_g}{D}\right]^{1/2}}$$

Penurunan tekanan..., Hendriawan Anandaputra Soemantri, FT UI, 2012.

$$X^{2} = \left(\frac{f_{f}}{f_{g}}\right) \frac{(1-x)^{2}}{x^{2}} \frac{v_{f}}{v_{g}}$$
$$X = \left(\frac{f_{f}}{f_{g}}\right)^{1/2} \left(\frac{1-x}{x}\right) \left(\frac{\rho_{g}}{\rho_{f}}\right)^{1/2}$$
(4.11)

Nilai faktor friksi (*friction factor*) disesuaikan dengan nilai bilangan Reynolds yang menunjukkan aliran turbulen atau laminar. Apabila turbulen menggunakan faktor friksi Blasius, sedangkan untuk laminar menggunakan faktor friksi Darcy-Weisbach.Dari eksperimen, nilai penurunan tekanan merupakan fungsi dari fluks massa, diameter dalam pipa, tegangan permukaan, massa jenis dan viskositas. Berdasarkan teori inilah maka nilai C akan dikembangkan sebagai fungsi dari bilangan Weber (We_{TP}) dan bilangan Reynolds (Re_{TP}) seperti yang ditunjukkan pada persamaan 10 dibawah ini.

$$C = \left(\phi_f^2 - 1 - \frac{1}{X^2}\right) X = fn(We_{TP}, Re_{TP})$$
(4.11)

Dimana ReTP dan WeTP didefinisikan sebagai berikut

$$Re_{TP} = \frac{GD}{\bar{\mu}}$$
(4.12)
$$We_{TP} = \frac{G^2 D}{\bar{\rho}\sigma}$$
(4.13)

Menurut Dukler et al. [15] model viskositas rata-rata memberikan prediksi yang baik untuk data eksperimen. Maka nilai massa jenis rata-rata dihitung dengan menggunakan persamaan Dukler [15]. Nilai persamaan ini dihitung dengan menggunakan analisa regresi. Sehingga nilai faktor C yang baru berdasarkan pengujian didapatkan adalah sebagai berikut

Model Homogenous

$$C = 1,002386 \, Re^{1,041035} \, We^{-0,96797} \tag{4.14}$$

• Model Separated flow

$$C = 1,004238 \, Re^{1,126415} \, We^{-1,1489} \tag{4.15}$$

Deviasi untuk model homogenous adalah sebesar 62,08% dan untuk model separated flow adalah sebesar 77,30%. Sehingga kedepannya persamaan bilangan C yang digunakan untuk perhitungan lebih lanjut adalah bilangan C dengan model homogenous.

BAB 5

KESIMPULAN

Dari pengujian yang telah dilakukan, dapat diambil beberapa kesimpulan sementara antara lain

- Koefisien perpindahan kalor percobaan (ht_{pcb}) tertinggi untuk propane ada pada kondisi fluks panas 8 kW/m², fluks massa 242.192 kg/m².s dan kualitas uap 0,033 sebesar 1240,222 W/m².C
- Koefisien perpindahan kalor percobaan (ht_{pcb}) tertinggi untuk pengujian menggunakan iso-butane tertinggi ada pada kondisi fluks panas 3 kW/m², fluks massa 169,851 kg/m².s dan kualitas uap 0,044 yaitu sebesar 343,045 W/m².C
- Untuk perancangan alat seperti pengujian ini, propane menghasilkan koefisien perpindahan kalor yang cenderung lebih tinggi dibanding isobutane
- 4. Semakin besar nilai fluks massa maka nilai koefisien perpindahan kalor akan semakin meningkat
- 5. Semakin besar nilai temperatur saturasi maka akan menurunkan nilai koefisien perpindahan kalor
- 6. Terjadi anomali dimana terdapat nilai koefisien perpindahan kalor yang lebih rendah pada fluks massa tinggi dibanding pada fluks massa rendah. Hal ini dapat disebabkan karena terjadi nya fenomena dry-out pada test section yang menyebabkan penurunan nilai koefisien perpindahan kalor ketika mendekati kualitas keluar.
- 7. Deviasi yang terjadi antara koefisien perpindahan kalor percobaan dengan menggunakan korelasi cukup besar dan trend nya cukup berbeda. Hal ini disebabkan karena penggunaan persamaan yang berbeda dimana pada koefisien perpindahan kalor percobaan peningkatan temperatur menyebabkan penurunan nilai koefisien perpindahan kalor. Sedangkan pada koefisien perpindahan kalor korelasi, persamaan yang digunakan adalah jenis superposisi dimana peningkatan fluks massa dan fluks panas akan meningkatkan nilai koefisien perpindahan kalor.

- Penurunan tekanan friksi percobaan ((dp/dz F)_{pcb}) tertinggi untuk propane ada pada kondisi fluks massa 155,597 kg/m².s, kualitas uap 0,13 dan fluks panas 5 kW/m² sebesar 213713,589 Pa/mm.
- Penurunan tekanan friksi percobaan ((dp/dz F)_{pcb}) tertinggi untuk isobutane ada pada kondisi fluks massa 168,851 kg/m².s, kualitas uap 0,098 dan fluks panas 3 kW/m² sebesar 104338,198 Pa/mm
- 10. Pada pengujian propane deviasi antara penurunan tekanan friksi percobaan dengan model homogenous lebih kecil dibandingkan model separated flow. Hal ini menunjukkan bahwa pada kondisi pengujian seperti ini, model homogenous lebih tepat digunakan untuk perhitungan.
- 11. Pada pengujian iso-butane deviasi antara penurunan tekanan friksi percobaan model separated flow lebih kecil dibandingkan model homogenous. Hal ini menunjukkan bahwa pada kondisi pengujian seperti ini, model separated flow lebih tepat digunakan untuk perhitungan.
- 12. Semakin besar nilai fluks massa maka nilai penurunan tekanan semakin besar.
- 13. Semakin besar nilai temperatur saturasi maka nilai penurunan tekanan semakin besasr.
- 14. Untuk modifikasi nilai C (Bilangan Chisolm) di analisa menggunakan metode regresi dan hasil yang didapatkan adalah deviasi antara perhitungan dan pengukuran bilangan C lebih kecil menggunakan model homogenous dibanding model separated flow.

DAFTAR PUSTAKA

- Min Soo Kim et. al. Experimental study on forced convective boiling heat transfer of pure refrigerants and refrigerant mixtures in a horizontal tube. Int J. Refrig. Vol 20. No. 4 pp 267-275, Elsevier 1997.
- Thome, John R. *Boiling of new refrigerants : a state-of-the-art review*. Int J. Refrig. Vol 19. No. 7 pp 267-275, Elsevier 1996.
- 3. Peng, X.F et al "Forced convection and flow coining heat transfer or liquid flowing through microchannels", People Republic of China. 1993
- 4. Peterson, G.P. et al. *"Flow boiling of binary mixtures in microchanneled plates"*, People Republic of China.1995
- 5. Oh, Jong-Taek. et al. "Forced convective boiling heat transfer of R-410A in horizontal minichannels", Republic of Korea. 2006
- 6. Oh, Jong-Taek. et al. "Two-phase pressure drop during CO2 vaporization in horizontal smooth minichannels", Republic of Korea. 2008
- Cengel, Y. A., & Boles, M. A. (1994). *Thermodynamics: An Engineering Approach* (2nd ed.). United States of America: McGraw-Hill.
- 8. Incropera, Frank P., Dewit, David P., "Fundamental of Heat and Mass Transfer". John Wiley & Son (Asia) Pte. Ltd., Singapore. 2002
- 9. G. Collier, John dan R. Thome, John. (1994). *Convective Boiling and Condensation* (3rd ed.). United Kingdom: Oxford University Press.
- 10. J.P. Wattelet, J.C. Chato, A.L. Souza, B.R. Christoffersen, "Evaporative characteristics of R 12, R-134a, and a mixture at low mass fluxes", ASHRAE Trans. 94-2-1 (1994) 603e615
- D.S. Jung, M. McLinden, R. Radermacher, D. Didion, "A study of flow boiling heat transfer with refrigerant mixtures", Int. J. Heat Mass Transfer 32 (9) (1989) 1751e1764.
- S.G. Kandlikar, M.E. Steinke, "Predicting heat transfer during flow boiling in minichannels and microchannels", ASHRAE Trans. CH-03-13-1 (2003) 667e676.
- T.N. Tran, M.W. Wambsganss, D.M. France, "Small circularand rectangular-channel boiling with two refrigerants", Int. J. Multiphase Flow 22 (3) (1996) 485e498.
- 14. M.M. Shah," Chart correlation for saturated boiling heat transfer: equations and further study", ASHRAE Trans. 2673 (1988) 185e196.
- K.E. Gungor, H.S. Winterton, "Simplified general correlation for saturated flow boiling and comparisons of correlations with data", Chem. Eng. Res. 65 (1987) 148e156.
- 16. J.C. Chen, "A correlation for boiling heat transfer to saturated fluids in convective flow", Ind. Eng. Chem. Process Des. Dev. 5 (1966) 322e329.
- W. Zhang, T. Hibiki, K. Mishima, "Correlation for flow boilingheat transfer in mini-channels", Int. J. Heat Mass Transfer 47 (2004) 5749e5763.
- Cengel, Y. A., & Boles, M. A. (1994). *Thermodynamics: An Engineering Approach* (2nd ed.). United States of America: McGraw-Hill.
- 19. Chisholm, D., 1967. "A theoretical basis for the Lockhart–Martinelli correlation for two-phase flow". Int. J. Heat Mass Transfer 10, 1767–1778
- 20. Chisholm, D., 1983. "Two-phase Flow in Pipelines and Heat Exchangers". Longman, New York.

LAMPIRAN

PEMROGRAMAN MATLAB UNTUK KOEFISIEN PERPINDAHAN KALOR (PROPANE DAN ISO-BUTANE)

```
clear all
clc
%DAFTAR SIMBOL
%Do
          = diameter luar (m)
%Di
          = diameter dalam (m)
%Zsc = panjang subcooled (m)
%Tin = temperatur masuk test section (K)
%Tsat = temperatur saturasi (K)
%Pin = tekanan masuk test sec
%Psat = tekanan saturasi (kpa)
          = tekanan masuk test section (kpa)
%Pout = tekanan keluar (kpa)
%Pcrt = tekanan critical fluid(kpa)
%Tuo
%Tso
          = temperatur atas dinding luar test section (K)
         = temperatur samping dinding luar test section (K)
= temperatur bawah dinding luar test section (K)
= temperatur atas dinding dalam test section (K)
%Tso = temperatur samping dinding fuar test set
%Tbo = temperatur bawah dinding luar test set
%Tui = temperatur atas dinding dalam test set
%Tsi = temperatur samping dinding dalam test set
%Tbi = temperatur bawah dinding dalam test set
%Tmi = temperatur rata-rata dinding dalam test
%xIn = kualitas massa uap masuk test section
%xOut = kualitas massa uap keluar test section
          = temperatur samping dinding dalam test section (K)
         = temperatur bawah dinding dalam test section (K)
= temperatur rata-rata dinding dalam test section (K)
%xZ
          = kualitas massa uap pada titik Z
%L
%iF
          = panjang pipa test section (m)
= entalpi fluida pada saturasi liquid (kj/kg)
%iF = entalpi fluida pada saturasi riquid (kj/kg)
%iG = entalpi pada saturasi gas (kj/kg)
%iFG = entalpi saturssi liquid dikurang entalpi saturasi gas(
kj/kg)
%iFin = entalpi fluida pada temperatur inlet dan tekanan
inlet(kj/kg)
%iDelta = heat flux dibagi dengan laju aliran massa (kj/kg)
%G = flux massa (kg/m2s)
%Mr
          = massa molekul relatif (kg/kmol)
°°d
         = heat flux (W/m2)
%h
         = heat transfer koefisien (W/m2.K)
%Re
%K
         = Bilangan reynold
          = konduktivitas termal solid(stainless steel 316) (W/m.K)
%MiuF = viskositas dinamik liquid (Pa.s)
%MiuG = viskositas dinamik gas (Pa.s)
%Ai = Luas melintang bagian dalam test section(m2)
%As
         = Luas selimut bagian dalam test section(m2)
°Z
          = jarak titik dari sisi masukan test section (m)
%vF
        = volume spesifik liquid (m3/kg)
%vG
          = volume spesifik gas(m3/kg)
8W
         = mass flow (kg/s)
%MFf = Multiplier two phase friction factor fasa liquid
%MFg = Multiplier two phase friction factor fasa gas
```

```
%KONDISI
fluid='isobutan';
Pdaya=input('Daya=');
Tin=input('Temperatur Masuk=');
Pin=input('Tekanan Masuk=');
Pout=input('Tekanan Keluar=');
W=input('mass flow=');
Tuo=input('Temperatur Atas Luar=');
Tso=input('Temperatur Samping Luar=');
Tbo=input('Temperatur Bawah Luar=');
Di=0.003;
Do=0.005;
L=1;
K=13.4;
Mr=44.096;
Pcrt=4251.2;
Ai=0.25*pi*(Di^2);
As=pi*Di*L;
q=Pdaya/As;
G=W/Ai;
```

```
%tempetarur dalam pipa
for n=1:9;
    Tui(n)=Tuo(n)-((Pdaya*log(Do/Di))/(2*pi*K*L));
    Tsi(n)=Tso(n)-((Pdaya*log(Do/Di))/(2*pi*K*L));
    Tbi(n)=Tbo(n)-((Pdaya*log(Do/Di))/(2*pi*K*L));
```

```
Tmi(n) = (Tui(n) + 2*Tsi(n) + Tbi(n)) / 4;
```

end

```
%properti di tiap titik percobaan
z=0.1:0.1:0.9;
Pz=1:9;
for n=1:9;
        Pz(n) = (z(n) * (Pout-Pin)) + Pin;
```

Tsat(n) = refpropm('T', 'P', Pz(n), 'Q', 0, fluid);

MiuF(n) =refpropm('V', 'P', Pz(n), 'Q', 0, fluid); MiuG(n) =refpropm('V', 'P', Pz(n), 'Q', 1, fluid); kF(n) =refpropm('L', 'P', Pz(n), 'Q', 0, fluid); Cpf(n) =refpropm('C', 'P', Pz(n), 'Q', 0, fluid);

```
iFttk(n) = refpropm('H', 'P', Pz(n), 'Q', 0, fluid);
iGttk(n) = refpropm('H', 'P', Pz(n), 'Q', 1, fluid);
iFGttk(n) = iGttk(n) - iFttk(n);
rhof(n) = refpropm('D', 'P', Pz(n), 'Q', 0, fluid);
rhog(n) = refpropm('D', 'P', Pz(n), 'Q', 1, fluid);
```

PrndltF(n) = (MiuF(n) * Cpf(n)) / kF(n);

```
hu(n) =q/(Tui(n) -Tsat(n));
hs(n) =q/(Tsi(n) -Tsat(n));
hb(n) =q/(Tbi(n) -Tsat(n));
```

```
%h percobaan
    hTPcb(n) = (hu(n) + (2*hs(n)) + hb(n)) / 4;
    %h nucleat boiling Cooper
    hNB(n) = 55*(Pz(n)/Pcrt)^{0.12*}(-0.4343*log(Pz(n)/Pcrt))^{(-)}
0.55)*...;
    Mr^(-0.5)*q^0.67;
    end
 %panjang subcooled
iFin=refpropm('H', 'T', Tin, 'Q', 0, fluid);
iF=refpropm('H', 'P', Pin, 'Q', 0, fluid);
iG=refpropm('H', 'P', Pin, 'Q', 1, fluid);
iFG=iG-iF;
iDelta=Pdaya/W;
Zsc=L*(iF-iFin)/iDelta;
xKel=(iDelta+iFin-iF)/iFG;
if xKel > 1;
    xOut=1
elseif xKel<0</pre>
    xOut=0
else xOut=xKel
end
z=0.1:0.1:0.9;
xZ=1:9;
for n=1:9
    if z(n)<Zsc;</pre>
         xZ(n) = -1;
         fprintf('Pada z= %.3f m, masih kondisi subcooled.\n',z(n))
    else
         xZ(n) = xOut*((z(n) - Zsc)/(L-Zsc));
         fprintf('Pada z= .3f m, x= .3f n', z(n), xZ(n))
    end
    ReF(n) = G*Di*(1-xZ(n))/MiuF(n);
    \operatorname{ReG}(n) = \operatorname{G*Di*xZ}(n) / \operatorname{MiuG}(n);
    Miurata(n) = (MiuG(n) / xZ(n)) + (MiuF(n) / (1-xZ(n)));
    ReTP(n) = G*Di/Miurata(n);
    rhorata(n) = (rhog(n) / xZ(n)) + (rhof(n) / (1-xZ(n)));
    sTension(n)=refpropm('I', 'P', Pz(n), 'Q', xZ(n), fluid);
    WeTP(n) = (G^{2}Di) / (rhorata(n) * sTension(n));
    cHi(n) = Chisolm(ReF(n), ReG(n));
    cHihedri(n) = (1.002386* (ReTP(n)^1.041035)* (WeTP(n)^-0.96797));
```

```
fF(n) = Friction(ReF(n));
    fG(n) = Friction(ReG(n));
    vF(n)=1/refpropm('D', 'P', Pz(n), 'Q', 0, fluid);
    vG(n)=1/refpropm('D', 'P', Pz(n), 'Q', 1, fluid);
    vrata(n) = (vG(n) / xZ(n)) + (vF(n) / (1-xZ(n)));
    xMarti(n) = ((fF(n) / fG(n)) * ((1 - 
xZ(n))/xZ(n))^2*(vF(n)/vG(n)))^0.5;
     MFf(n) =1+(cHi(n)/xMarti(n))+(1/xMarti(n)^2);
     MFg(n) =1+(cHi(n) *xMarti(n)) +xMarti(n) ^2;
     MFfhedri(n)=1+(cHihedri(n)/xMarti(n))+(1/xMarti(n)^2);
     MFghedri(n) =1+(cHihedri(n) *xMarti(n)) +xMarti(n)^2;
     faktorF(n) = MFf(n) ^0.444;
     Fzhang(n) = 0.64*(MFf(n)^{0.5});
     S(n)=1/(1+(0.00000253*ReTP(n)^1.17));
     Szhang(n)=1/(1+(0.00000253*ReF(n)^1.17));
     faktorFhedri(n) = MFfhedri(n) ^0.444;
     Fhedri(n) = 0.64 \times (MFfhedri(n)^{0.5});
     S(n) = 1/(1+(0.00000253 \times ReTP(n)^{1.17}));
     Shedri(n)=1/(1+(0.00000253*ReF(n)^1.17));
     Bo(n) =q/(G*iFGttk(n));
     Frf(n) = G^2/(rhof(n)^2*9.81*Di);
     E(n) = 1 + (24000 * Bo(n)^{1.16}) + (1.37 * (1/xMarti(n))^{0.86});
     St (n) =1/(1+(1.15*10<sup>(-6)</sup> *E(n)<sup>2</sup>*ReF(n)<sup>1.17</sup>));
end
```

```
for n=1:9
    if Frf(n)<0.05
        Egw(n)=E(n)*Frf(n)^(0.1-(2*Frf(n)));
        Sgw(n)=St(n)*Frf(n)^0.5;
    else
        Egw(n)=E(n);
        Sgw(n)=St(n);
    end</pre>
```

end

```
%h konveksi paksa fluida cair
hLo=1:9;
for n=1:9
    if ReF(n)<2300
        hLo(n)=4.36*kF(n)/Di;
    elseif 3000<=ReF(n)<10000
        hLo(n)=((ReF(n)-
1000)*PrndltF(n)*(fF(n)/2)*(kF(n)/Di))/(1+...;
        (12.7*(PrndltF(n)^(2/3)-1)*(fF(n)/2)));
```

```
for n=1:9
  if faktorF(n)<1
    F(n)=1;
  else
  F(n)=faktorF(n);
  end
  %koralasi Chen
  hTPchen(n)=(F(n)*hLo(n))+(S(n)*hNB(n));
  %korelasi Gungor-Winterton
  hTPgw(n)=(Egw(n)*hLo(n))+(Sgw(n)*hNB(n));
  %Korelasi Zhang
  hTPzhang(n)=(Fzhang(n)*hLo(n))+(Szhang (n)*hNB(n));
  %korelasi Hedri
  hTPhedri(n)=(Fhedri(n)*hLo(n))+(Shedri (n)*hNB(n));
end</pre>
```

PEMROGRAMAN MATLAB UNTUK PENURUNAN TEKANAN FRIKSI (PROPANE DAN ISO-BUTANE)

```
clear all clc
```

```
fluid='isobutan';
Di=0.003; % meter
Pdaya=input('Daya (Watt)= '); % Watt
W=input('Mass flow (kg/s)= '); % kg/s
G=W/(0.25*pi*(Di^2)); % kg/m2.s
Tin=input('Temperature inlet (K)= '); % Kelvin
Pin=input('Tekanan inlet (kPa)= '); % kPa
Pout=input('Tekanan outlet (kPa)= '); % kPa
L=1; % meter
pDropexp=1000*((Pin-Pout)/L);
fprintf('\n');
fprintf('Gradien penurunan tekanan = %.3g Pa/m\n',pDropexp);
```

```
%properti di tiap titik percobaan
z=0.1:0.1:0.9;
Pz=1:9;
for n=1:9;
     Pz(n)=(z(n)*(Pout-Pin))+Pin;
```

```
Tsat(n) = refpropm('T', 'P', Pz(n), 'Q', 0, fluid);
```

```
MiuF(n) = refpropm('V', 'P', Pz(n), 'Q', 0, fluid);
MiuG(n) = refpropm('V', 'P', Pz(n), 'Q', 1, fluid);
kF(n) = refpropm('L', 'P', Pz(n), 'Q', 0, fluid);
Cpf(n) = refpropm('C', 'P', Pz(n), 'Q', 0, fluid);
```

```
iFttk(n)=refpropm('H','P',Pz(n),'Q', 0,fluid);
iGttk(n)=refpropm('H','P',Pz(n),'Q', 1,fluid);
iFGttk(n)=iGttk(n)-iFttk(n);
rhof(n)=refpropm('D','P',Pz(n),'Q', 0,fluid);
rhog(n)=refpropm('D','P',Pz(n),'Q', 1,fluid);
```

```
PrndltF(n) = (MiuF(n) * Cpf(n)) / kF(n);
```

end

```
%panjang subcooled
iFin=refpropm('H','T',Tin,'Q',0,fluid);
iF=refpropm('H','P', Pin,'Q', 0,fluid);
iG=refpropm('H','P', Pin,'Q', 1,fluid);
iFG=iG-iF;
```

```
iDelta=Pdaya/W;
Zsc=L*(iF-iFin)/iDelta;
xKel=(iDelta+iFin-iF)/iFG;
```

```
if xKel > 1;
    xOut=1
elseif xKel<0</pre>
```

```
x \cap i = 0
else xOut=xKel
end
z=0.1:0.1:0.9;
xZ=1:9;
for n=1:9;
    if z(n)<Zsc;</pre>
         xZ(n) = -1;
         fprintf('Pada z= %.3f m, masih kondisi subcooled.\n',z(n))
    else
         xZ(n) = xOut*((z(n) - Zsc)/(L-Zsc));
    end
    ReF(n) = G*Di*(1-xZ(n))/MiuF(n);
    \operatorname{ReG}(n) = \operatorname{G*Di*xZ}(n) / \operatorname{MiuG}(n);
    Miurata(n) = (MiuG(n) / xZ(n)) + (MiuF(n) / (1-xZ(n)));
    ReTP(n) = G*Di/Miurata(n);
    CHi(n) = Chisolm(ReF(n), ReG(n));
    fF(n) = Friction(ReF(n));
    fG(n) = Friction(ReG(n));
    sTension(n)=refpropm('L', 'P', Pz(n), 'Q', xZ(n), fluid);
vF(n)=1/refpropm('D', 'P', Pz(n), 'Q', 0, fluid);
    vG(n)=1/refpropm('D', 'P', Pz(n), 'Q', 1, fluid);
    vrata(n) = (vG(n) / xZ(n)) + (vF(n) / (1-xZ(n)));
    rhorata(n) = (rhog(n) / xZ(n)) + (rhof(n) / (1-xZ(n)));
    WeTP(n) = (G^{2}*Di) / (rhorata(n) * sTension(n));
    xMarti(n) = ((fF(n) / fG(n)) * ((1 - 
xZ(n))/xZ(n))^2*(vF(n)/vG(n)))^0.5;
      MFf(n) = 1 + (cHi(n) / xMarti(n)) + (1/xMarti(n)^2);
      MFg(n) = 1 + (cHi(n) * xMarti(n)) + xMarti(n)^2;
end
for n=1:9
if z(1) == Zsc;
         void(n) = 0;
    else
          void (n) = (xZ(n) / rhog(n)) / (((1+(0.12*(1-xZ(n)))))...
               * ((xZ(n)/rhog(n)) + (1-xZ(n))/rhof(n)))...
               +1.18*(1-xZ(n))/(G*rhof(n)^0.5)*...
               (9.81*sTension(n)*((rhof(n)-rhog(n))))^0.25);
    end
end
```

```
pDropATP=1:9;
for n=1:9;
    pDropATP(n) = (G^2) * ((xZ(n)^2/rhog(n)/void(n)) + (((1-
xZ(n))^{2}/(1-void(n))/rhof(n))))/z(n);
    pDropFTPcal(n) = ((2*fF(n)*(G^2)*vrata(n))/Di);
    pDropFTPexp(n) = (1000*(Pin-Pout)/L) - pDropATP(n);
    MFTPcal(n) = (1 + (xZ(n) * (vG(n) -
vF(n))/vF(n)))*((1+(xZ(n)*(MiuG(n)-MiuF(n))/MiuG(n)))^(-0.25));
    MFTPexp(n) = pDropFTPexp(n) / (2*fF(n) * (G^2) * vF(n) / Di);
    CExp(n) = (MFTPexp(n) - 1 - (1/(xMarti(n)^2))) * xMarti(n);
end
% deviasi
for n=1:9
    mean(n) = abs((pDropFTPcal(n))
pDropFTPexp(n))/pDropFTPexp(n)*100);
    meanAve(n) = (pDropFTPcal(n) - pDropFTPexp(n)) / pDropFTPexp(n) *100;
end
meanDev=sum(mean)/n;
meanDevAve=sum(meanAve)/n;
% output
fprintf('\nposis
                               dp/dz A\t
                                               dp/dz F
                                                                 dp/dz
                                                      exp
F cal\n');
for n=1:9
    fprintf('%.3fm\t %.3f\t
                              %.3f Pa \t %.3f Pa
Pa \mid r, z(n), xZ(n), pDropATP(n), pDropFTPexp(n), pDropFTPcal(n));
end
fprintf('\nNilai Mean Deviasi = %.3f %%\n',meanDev);
fprintf('\nNilai Average Deviasi = %.3f %%\n',meanDevAve);
```

Penurunan tekanan..., Hendriawan Anandaputra Soemantri, FT UI, 2012.