

UNIVERSITAS INDONESIA

Pengaruh doping Fe terhadap mikrostruktur dan resistivitas material perovskite $La_{0.67}Sr_{0.33}Mn_{1-x}Fe_xO_3$ dengan variasi doping x=0; 0.05 ;0.1 ;0.15 ;0.5

THESIS

Diajukan sebagai salah satu syarat untuk memperoleh gelar master

FRILLA RENTY TAMA SAPUTRA

1006733511

PROGRAM PASCASARJANA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM KEKHUSUSAN FISIKA MURNI & TERAPAN UNIVERSITAS INDONESIA DEPOK JUNI 2012

Pengaruh doping..., Frilla Renty Tama Saputra, FMIPA UI, 2012

HALAMAN PERNYATAAN ORISINALITAS

Thesis ini adalah hasil karya saya sendiri,

dan semua sumber baik yang dikutip maupun dirujuk

telah saya nyatakan dengan benar

Frilla Renty Tama Saputra

10066733511

2 C S

.

18 juni 2012

HALAMAN PENGESAHAN

Tesis ini diajukan oleh

- Nama : Frilla Renty Tama Saputra
- NPM : 1006733511
- Program Studi : Fisika Murni dan Terapan

Telah berhasil dipertahankan dihadapan Dewan Penguji dan diterima sebagai bagian persyaratan yang diperlukan untuk memperoleh gelar Magister Sains pada Program Fisika Murni dan Terapan Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia

		DEWAN PENGUJI	NO
Pembimbing	:	Dr. Budhy Kurniawan	()
Penguji I	:	Dr. Muhammad Aziz Majidi	
Penguji II	e.	Dr. Azwar Manaf, M.Met	(
Penguji III	:	Dr. Dede Djuhana	Juliana

Ditetapkan di : Jakarta

Tanggal : 18 Juni 2012

KATA PENGANTAR

Tiada daya upaya melainkan atas kehendak Allah semata. Segala puji bagi Allah SWT yang telah melimpahkan nikmatNya yang tiada terhingga, yang diketahui maupun tidak diketahui, dan yang telah memberikan kekuatan kepada penulis untuk dapat menyelesaikan karya akhir ini dalam batas waktu yang ditentukan. Shalawat dan salam semoga senantiasa tercurah kepada Rasulullah Muhammad SAW yang tidak ada lagi nabi sesudahnya, untuk keluarga beliau, para sahabat seluruhnya, dan orang-orang yang mengikuti jejak dan berjuang dalalm ajarannya.

Penulis merasa sangat perlu berterima kasih kepada semua pihak yang telah membantu penulis dalam penyelesaian karya akhir ini, terutama sekali kepada dosen pembimbing penulis Bapak Budhy Kurniawan atas egala kebaikannya memberikan kemudahan, dorongan, masukan, nasehat baik moril maupun materil. Semoga Allah memberikan pahala yang sebaik-baiknya kepada beliau yang memperberat timbangan amal kebaikannya, memberikan kemudahan dalam segala urusan, kemuliaan dan derajat yang tinggi dunia wal akhirat kepada beliau. Terima kasih juga penulis tujukan kepada Bapak Dr. M. Aziz Majidi, Bapak Dr. Azwar Manaf, dan Bapak Dr. Dede Djuhana selaku penguji atas koreksi, kritik, dan saran yang sangat berharga dan begitu membangun.

Terima kasih yang sangat besar penulis khususkan untuk kedua orang tua, Ayahanda Subagiyo dan Ibunda Hartutik dan kedua mertua tercinta yang senantiasa mendo'akan penulis. Terima kasih juga penulis ucapakan untuk suami tercinta Attar Sunandar atas do'a, dukungan, serta waktu yang dicurahkan untuk membantu penulis dalam menyelesaikan karya akhir ini. Juga kepada adik dan kakak penulis tersayang, Terima kasih tiada terhingga atas segala do'a dan perhatian yang mereka berikan kepada penulis. Semoga para malaikat juga mendo'akan mereka dengan limpahan do'a yang lebih baik. Penulis mengucapkan terima kasih kepada Pak Herry, Bu Eka, Bu Ade, Iyan, sebagai rekan satu tim penulis yang telah memberikan banyak sekali bantuan kepada penulis selama melakukan penelitian ini. Tak lupa penulis mengucapkan terima kasih kepada Pa Hamid, Aziz, Suntar, Pa Mardona, Pa Erwin, Bu Gobi, Pa Khabib dan seluruh rekan seperjuangan penulis atas waktuwaktu menyenangkan selama menimba ilmu di kampus ini. Penulis juga mengucapkan terima kasih kepada Pa Erfan, yang telah memberikan dukungan dan motivasi kepada penulis untuk melanjutkan studi di universitas ini. Semoga Allah membalas kebaikan mereka dengan yang lebih besar dan berkah.

Penulis menyadari masih banyak kekurangan dalam pembuatan thesis ini, untuk itu penulis mengharapkan saran dan kritik yang membangun dari berbagai pihak. Akhirul kalam penulis berharap agar thesis ini banyak memberikan kontribusi terhadap riset dalam bidang material Manganite.

HALAMAN PERNYATAAN PERSETUJUAN PUBLIKASI KARYA ILMIAH UNTUK KEPENTINGAN AKADEMIS

Sebagai civitas akademik Universitas Indonesia, saya bertanda tangan dibawah ini

Nama	: Frilla Renty Tama Saputra
NPM	: 1006733511
Program Studi	: Fisika Murni dan Terapan
Fakultas	: Matematika dan Ilmu Pengetahuan Alam
Jenis Karya	: Thesis

Demi pengembangan ilmu pengetahuan, menyetujui untuk memberikan kepada Universitas Indonesia Hak Bebas Royalti Non-Eksklusif (Non-exclusive Royalty Free Right) atas karya ilmiah saya yang berjudul:

Pengaruh Doping Fe terhadap Mikrostruktur dan Resistivitas Material Peorvskite La0.67Sr0.33Mn1-xFexO3 dengan Variasi Doping x = 0; 0.05; 0.1; 0.15; 0.5 beserta perangkat yang ada (bila diperlukan). Dengan Hak Bebas Royati Non-Eksklusif ini Universitas Indonesia berhak menyimpan, mengalihmedia/ formatkan, mengelolanya dalam bentuk pangkalan data (database), mendistribusikannya, dan menampilkan/ mempublikasikannya di Internet atau media lain untuk kepentingan akademis tanpa perlu meminta ijin dari saya selama tetap mencantumkan nama saya sebagai penulis/ pencipta dan sebagai pemilik Hak Cipta. Segala bentuk tuntutan hukum yang timbul atas pelanggaran Hak Cipta dalam karya ilmiah ini menjadi tanggung jawab saya pribadi.

Demikian pernyataan ini saya buat dengan sebenarnya.

Dibuat di : Jakarta Pada tanggal : 18 Juni 2012 Yang menyatakan

TK G S

(Frilla Renty Tama Saputra)

ABSTRACT

Name : Frilla Renty Tama Saputra

- Majors : Theory and applied physics
- Title: Effect of Fe doping on microstructure and resistivity of
perovskite materials La_{0.67}Sr_{0.33}Mn_{1-x}Fe_xO₃ with doping
variation x = 0; 0.05; 0.1; 0.15; and 0.5

Synthesis, characterization, and measurement of electrical properties of the alloys $La_{0.67}Sr_{0.33}Mn_{1-x}Fe_xO_3$ with doping variation x = 0; 0.05; 0.1; 0.15; and 0.5 has been carried out by XRD, SEM, and standart four point probe (FPP). Synthesis of this material is performed using mechanical alloying method with base material La₂O₃, SrCO₃, MnCO₃, and Fe₂O₃. Milling and mixing process is done by PBM for 15 hours. The sample then compacted with a pressure of 8 ton and held for 5 minutes. The sample then calcined at temperature 800°C for 8 hours and sintered at temperature 1200°C for 12 hours. The XRD measurement shows that all samples was single phase with rombohedral structure (R -3 c). Refinement with GSAS shows that Fe substitution does not alter the crystal structure. Microstructure observation with SEM showed that the samples was porous and the addition of Fe doping tend to inhibit the grain growth process. The resistivity measurement showed an increase of resistivity with increase of Fe doping concentration, this was due to the addition of Fe doping inhibits the movement of electrons due to $e_g \uparrow Mn^{3+}$ electrons can not move to $t_{2g} \downarrow Fe^{3+}$ thereby weakening the double exchange interaction. Observation of the grain size showed that subtitution of Fe doping tends to decrease the grain size and this makes the potential barrier at the grain boundaries become taller and wider so that the resistivity of the material become increased

ABSTRAK

Nama : Frilla Renty Tama Saputra

- Jurusan : Fisika Murni dan Terapan
- Judul : Pengaruh doping Fe terhadap mikrostruktur dan resistivitas material perovskite La_{0.67}Sr_{0.33}Mn_{1-x}Fe_xO₃ dengan variasi doping x = 0; 0.05; 0.1; 0.15; dan 0.5

Telah dilakukan sintesis dan karakterisasi XRD, SEM dan sifat listrik pada paduan $La_{0.67}Sr_{0.33}Mn_{1-x}Fe_xO_3$ dengan variasi doping x = 0; 0.05; 0.1; 0.15; dan 0.5. Sintesis bahan ini dilakukan dengan menggunakan metode mechanical alloying dengan bahan dasar La₂O₃, SrCO₃, MnCO₃, dan Fe₂O₃. proses pencampuran dilakukan dengan cara di-milling dengan menggunakan peralatan PBM selama 15 jam kemudian di kompaksi dengan tekanan sebesar 8 ton dan ditahan selama 5 menit. Selanjutnya dilakukan proses kalsinasi pada suhu 800°C selama 8 jam yang dilanjutkan dengan proses sintering pada suhu 1200°C selama 12 jam. Hasil pengukuran XRD menunjukkan bahwa semua sampel telah membentuk fasa tunggal dengan struktur Rombhohedral (R-3c). Hasil refinement dengan GSAS menunjukkan bahwa pemberian doping Fe tidak merubah struktur kristal. Pengamatan mikrostruktur dengan menggunakan SEM menunjukkan bahwa sampel bersifat porous (berpori) dan penambahan doping Fe cenderung menghambat proses pertumbuhan butir. Pengukuran resistivitas menunjukkan terjadinya peningkatan resistivitas seiring dengan bertambahnya konsentrasi doping Fe, hal ini disebabkan karena penambahan doping Fe menghambat pergerakan elektron karena elektron $e_g \uparrow Mn^{3+}$ tidak dapat berpindah ke $t_{2g} \downarrow Fe^{3+}$ sehingga melemahkan interaksi double exchange. Hasil pengamatan terhadap ukuran butir menunjukkan bahwa pemberian doping Fe cenderung memperkecil ukuran butir dan hal ini membuat potensial penghalang yang berada pada batas butir menjadi lebih tinggi dan lebih lebar sehingga resistivitas bahan menjadi meningkat.

DAFTAR ISI

Halaman Pernyataan Orisinalitas	i
Halaman Pengesahan	ii
Kata Pengantar	iii
Halaman Pernyataan Persetujuan Publikasi Karya Ilmiah	v
Abstract	vi
Abstrak	vii
Daftar Isi	viii
Daftar Gambar	X
Daftar Tabel	xii
Bab I PENDAHULUAN	
1.1 Latar Belakang	1
1.2 Tujuan	3
1.3 Pembatasan Masalah	4
1.4 Sistematikas Penulisan	4
Bab II TINJAUAN LITERATUR	
2.1 Material Perovskite Manganites	6
2.2 Double Exchange	9
2.3 Pengaruh Kisi Pada Material Perovskite Manganites	12
2.4 Pengaruh doping Fe terhadap sifat magnetik dan	
transport pada manganite	14
Bab III METODE EKSPERIMEN	
3.1 Tempat dan Waktu Penelitian	16
3.2 Metode Penelitian	16
3.3 Persiapan Peralatan	17
3.4 Persiapan Bahan	18

3.5 Diagram Alir Penelitian	21
3.5.1 Proses Pencampuran dan <i>milling</i>	22
3.5.2. Proses Pemadatan (kompaksi)	22
3.5.3 Perlakuan Panas	22
Bab IV HASIL DAN PEMBAHASAN	
4.1 Hasil	24
4.1.1 Karakterisasi XRD	24
4.1.2 Karakterisasi SEM	28
4.1.3 Pengukuran resistivitas	29
4.2 Analisa dan Pembahasan	30
4.2.1 Pengaruh doping Fe terhadap struktur $La_{0.67}Sr_{0.33}Mn_{1-x}Fe_xO_3$	
(x= 0; 0.05; 0.1; 0;0.15; 0.5)	30
4.2.2 Pengaruh doping Fe terhadap struktur mikro	
La0.67Sr0.33Mn _{1-x} Fe _x O3 (x= 0; 0.05; 0.1; 0; 0.15; 0.5)	32
4.2.3 Pengaruh doping Fe terhadap resistivitas senyawa	
La0.67Sr0.33Mn _{1-x} Fe _x O3 (x= 0; 0.05; 0.1; 0; 0.15; 0.5)	33
Bab V KESIMPULAN DAN SARAN	
5.1 Kesimpulan	39
5.2 Saran	40
Daftar Pustaka	xiii
Lampiran	xvii

DAFTAR GAMBAR

Gambar 2.1 Struktur unit sel dari prototype perovskite kubik	7
Gambar 2.2. (a) plot resistivitas vs T paduan $La_{1-x}Sr_xMnO_3$ untuk berbagai	
variasi nilai x. (b) diagram fasa dari La _{1-x} Sr _x MnO ₃	8
Gambar 2.3 pemecahan lima orbital d ke dalam e_g dan t_{2g}	10
Gambar 2.4 konfigurasi elektronik dari Mn ³⁺ dan Mn ⁴⁺	11
Gambar 2.5 Penggambaran double exchange diantara Mn3+ dan Mn4+	
melalui campur tangan anion oksigen dan menunjukkan	
bahwa diijinkan terjadi lompatan	12
Gambar 2.6 Skema representasi pengaruh ukuran ionik kisi A terhadap	
amplitude lompatan diantara dua ion Mn	13
Gambar 2.7 resisitivitas listrik sampel La _{0.7} Sr _{0.3} Mn _{1-x} Fe _x O ₃ (x≤0.25)	14
Gambar 2.8 Struktur dari La _{0.67} Ca _{0.33} Mn _{1-x} Fe _x O ₃	
(a) plot kurva XRD (b) parameter kisi sebagai fungsi x	15
Gambar 2.9 Data magnetisasi untuk sampel $La_{0.7}Sr_{0.3}Mn_{1-x}Fe_xO_3$ (x=0; 0.05)	15
Gambar 3.1 Proses kalsinasi dan sintering	23
Gambar 4.1 kurva XRD senyawa La _{0.67} Sr _{0.33} Mn _{1-x} Fe _x O ₃	24
Gambar 4.2 Hasil refinement GSAS sampel La _{0.67} Sr _{0.33} MnO ₃	25
Gambar 4.3 Hasil refinement GSAS sampel La _{0.67} Sr _{0.33} Mn _{0.95} Fe _{0.05} O ₃	26
Gambar 4.4 Hasil refinement GSAS sampel La _{0.67} Sr _{0.33} Mn _{0.9} Fe _{0.1} O ₃	26
Gambar 4.5 Hasil refinement GSAS sampel La _{0.67} Sr _{0.33} Mn _{0.85} Fe _{0.15} O ₃	26
Gambar 4.6 Hasil refinement GSAS sampel La _{0.67} Sr _{0.33} Mn _{0.5} Fe _{0.5} O ₃	27
Gambar 4.7 Foto SEM sampel $La_{0.67}Sr_{0.33}Mn_{1-x}Fe_xO_3$ perbesaran 4000x	
(a) x=0, (b) x=0.05, (c) x=0.1, (d) x=0.15, dan (e) x=0.5	29

Gambar 4.8. Pengaruh doping Fe pada sampel La0.67Sr0.33Mn $_{1-x}$ Fe_xO3

untuk arus masukan sebesar 1mA, 5mA dan 10mA	
(T=300K, H =0.1280629 KOe)	30
Gambar 4.9 perubahan struktur akibat doping Sr pada kisi	
La campuran LaMnO ₃	31
Gambar 4.10 Pengaruh doping Fe terhadap parameter kisi sampel	
$La_{0.67}Sr_{0.33}Mn_{1-x}Fe_xO_3$ (x = 0; 0.05; 0.1; 0; 0.15; 0.5)	32
Gambar 4.11 skema struktur pita senyawa (a) La _{0.7} Sr _{0.3} MnO ₃	
dan (b) $La_{0.7}Sr_{0.3}Mn_{1-x}Fe_xO_3$	34
Gambar 4.12 skema ilustrasi dua butir perovskite yang dipisahkan	
oleh penghalang antargrain dimana $a = 2w + d/2$ merupakan	
lebar penghalang	36
Gambar 4.13 (a) resistivitas sebagai fungsi dari 1/cD2 untuk sistem	
granular La0.85Sr0.15MnO3. Titik yang berbentuk kotak dan	
kurva garis putus-putus didapatkan dari hasil eksperimen	
(b) resistivitas sebagai fungsi dari 1/D pada sampel	
$La_{0.67}Sr_{0.33}Mn_{1-x}Fe_{x}O_{3}(x = 0; 0.05; 0.1; 0.15) \dots$	37

DAFTAR TABEL

Tabel 2.1 Temperatur Curie $La_{0.7}Sr_{0.3}Mn_{1-x}Fe_xO_3$ (x ≤ 0.25)	15
Tabel 4.1 Parameter yang digunakan untuk melakukan analisis GSAS	25
Tabel 4.2 hasil refinement GSAS sampel La _{0.67} Sr _{0.33} Mn _{1-x} Fe _x O ₃	27
Tabel 4.3 Ukuran butir rata-rata sampel La _{0.67} Sr _{0.33} Mn _{1-x} Fe _x O ₃	28
Tabel 4.4 Pengukuran resistivitas sampel La _{0.67} Sr _{0.33} Mn _{1-x} Fe _x O ₃	29

BAB 1

PENDAHULUAN

1.1 Latar Belakang

Pada akhir-akhir ini, material oksida perovskite telah menjadi subjek penelitian yang diteliti secara intensif oleh para peneliti. Hal ini disebabkan karena material ini dapat menunjukkan berbagai variasi sifat magnetik dan transport yang sangat bergantung terhadap stoikiometri dan struktur material. Kebanyakan yang menjadi fokus utama saat ini adalah mendoping campuran induk (*parental compound*) LaMnO³ dengan unsur divalen alkali tanah (contoh Ca, Ba, Sr), adanya subtisusi unsur divalen ke dalam kisi La mengakibatkan material perovskite ini memiliki ion Mn dengan dua valensi yang berbeda yaitu Mn³⁺ dan Mn⁴⁺ sehingga material ini dikenal dengan nama *mixed valence manganites* [1].

Material ini telah dipelajari selama lebih dari 5 dekade tetapi masih dapat dianggap sebagai material modern karena material ini memiliki banyak potensi dalam teknologi aplikasi. *Ferromagnetik manganite* dapat menunjukkan efek magnetoresistance yang sebanding dengan atau lebih besar daripada *giant magnetoresistance* (GMR) yang muncul pada lapisan tipis multilayer magnetik, dengan alasan ini maka material ini diberi nama *colossal magnetoresistance*. Potensi aplikasi dari efek CMR dalam *mixed-valence manganite* meliputi sensor magnetik, *magnetoresistive read head*, dan *magnetoresistive random access memory* (MRAM)[2]. Selain itu material manganites ini juga dapat memunculkan efek magnetokalorik yang sangat besar dan menjadi salah satu kandidat yang cukup menjanjikan untuk dijadikan substansi kerja dari teknologi pendingin magnetik. Manganite juga dapat digunakan sebagai elektroda dalam *solid oxide fuel cell* dan sebagai katalis dalam sensor oksigen[3].

Salah satu fitur utama dari material *mixed-valence manganites* ($R_{1-x}A_xMnO_3$) ini adalah adanya keterkaitan diantara sifat kemagnetan dengan sifat transfer elektrik. Doping dengan x= 0 dan 1 biasanya bersifat isolator antiferromagnetik, sedangkan campuran dengan komposisi doping pada rentang antara 0 dan 1 dapat membuat material ini bersifat konduktor ferromagnetik. Mekanisme *double exchange* (DE) menjadi pembahasan utama terkait dengan munculnya sifat-sifat menarik pada material *mixed valence manganite* ini[4]. Namun dengan penelitian yang lebih mendalam diketahui bahwa hanya dengan model DE saja tidak cukup menjelaskan fenomena transfer elektrik yang terdapat dalam material ini. Hwang et al dan millis et all [5,6] mengajukan adanya kopling elektron-phonon yang sangat kuat yang disebabkan oleh efek Jahn-Teller dari ion Mn³⁺.

Dari sudut pandang aplikasi dimasa mendatang, dibutuhkan manganites dengan ukuran butir yang lebih kecil. Pengaruh ukuran butir terhadap struktur, sifat magnetik dan sifat transport pada material manganat yang didoping telah dipelajari secara intensif oleh beberapa peneliti [7-12]. Mereka melaporkan bahwa sifat magnetik sangat dipengaruhi oleh ukuran butir, sehingga hal ini cukup menarik perhatian untuk meneliti bagaimana pengaruh ukuran butir terhadap sifat transport elektrik dan magnetik. Dari berbagai hasil penelitian yang telah dilaporkan, muncul berbagai kontroversi terkait dengan pengaruh ukuran butir terhadap sifat magnetik dari maganate polikristalin. Sanchez et al [13] mempelajari pengaruh ukuran butir pada campuran La_{0.67}Ca_{0.33}MnO₃ dan menemukan bahwa magnetisasi dan temperature Curie (Tc) berkurang dengan berkurangnya ukuran butir. Hueso et al[9] melaporkan hasil yang sama dan mengajukan penjelasan bahwa hal ini disebabkan karena munculnya lapisan permukaan non-magnetik yang terbentuk oleh material nonkristalin ketika ukuran partikel berkurang. Zhang et al [14] meneliti kebergantungan magnetisasi terhadap struktur pada oksida manganite La_{0.85}Sr_{0.15}MnO₃ dan mengemukakan hal yang bertentangan diamana magnetisasi dan Tc turun dengan bertambahnya ukuran butir. Mereka memperkirakan adanya kontradiksi ini akibat berbedanya tingkat doping yang diberikan, karena struktur dan sifat magnetiknya sangat sensitif terhadap tingkat pemberian doping.

Dalam sudut pandang butir, tidak hanya ukuran butir saja yang mempengaruhi baik sifat kelistrikan ataupun kemagnetannya, tetapi juga batas butir (*grain boundary*) dan konektivitas antar grain (*grain connectivity*)[15,16]. Dalam jurnalnya Ning Zhang [17] mengajukan teori resistivitas pada granular perovskite untuk melihat bagaimana pengaruh ukuran butir serta jarak antar butir terhadap sifat transfer listrik dan magnetik pada material perovskite La_{0.85}Sr_{0.15}MnO₃. Dari hasil penelitiannya ia mendapatkan bahwa resistivitas bahan meningkat dengan berkurangnya ukuran butir yang utamanya disebabkan karena meluasnya permukaan dan berkurangnya saluran konduktif (*conductive channel*).

Doping berbagai variasi unsur merupakan metode yang sangat penting untuk mengklarifikasi mekanisme CMR khususnya pada kisi Mn, yang merupakan jantung dari DE. Beberapa penyelidikan terhadap doping pada kisi Mn oleh beberapa unsur seperti Cu, Ti, Co, dan Mg menunjukkan bahwa terjadi penurunan temperature Curie serta resistivitasnya meningkat seiring dengan bertambahnya konsentrasi doping[1,2,18,19]. Perubahan sifat ini disebabkan karena adanya perubahan besar parameter kisi akibat ukuran ion doping yang berbeda dengan ion Mn, sehingga mengubah besarnya faktor toleransi yang menentukan sudut ikatan Mn-O-Mn yang pada akhirnya mempengaruhi baik sifat magnetik maupun sifat elektrik pada perovskite manganite ini, namun penjelasan ini tidak dapat digunakan untuk menjelaskan naiknya resistivitas dan turunnya temperature Curie untuk doping Fe pada kisi Mn karena ion Fe memiliki ukuran jari-jari ionik yang hampir sama dengan ion Mn sehingga tidak terjadi perubahan struktur[20].

Untuk melihat bagaimana pengaruh pemberian doping Fe terhadap sifat transfer listrik dilihat dari sudut pandang butir (*grain*), maka dalam tesis ini dilakukan penelitian pengaruh pemberian doping Fe terhadap mikrostruktur dan resistivitas material perovskite $La_{0.67}Sr_{0.33}Mn_{1-x}Fe_xO_3$ dengan x= 0; 0.05; 0.1; 0.15, dan 0.5.

1.2 Tujuan

Berdasarkan uraian permasalahan diatas, maka tujuan dari penelitian ini adalah sebagai berikut:

- a. Mempelajari pembentukan fasa senyawa $La_{0.67}Sr_{0.33}Mn_{1-x}Fe_xO_3$ dari bahan dasar La_2O_3 , SrCO₃, MnCO₃, dan Fe₂O₃ melalui metode reaksi padatan (*solid state reaction*) dengan variasi doping x = 0; 0.05; 0.1; 0.15; 0.5
- b. Menyelidiki pengaruh doping Fe terhadap mikrostruktur senyawa $La_{0.67}Sr_{0.33}MnO_3$ dengan variasi doping x = 0; 0.05; 0.1; 0.15; 0.5 menggunakan spektroskopi SEM

c. Menyelidiki pengaruh doping Fe terhadap resistansi pada senyawa $La_{0.67}Sr_{0.33}Mn_{1-x}Fe_xO_3$ (x = 0; 0.05; 0.1; 0.15; 0.5).

1.3 Batasan Masalah

Penulis membatasi permasalahan dengan parameter-parameter yang berdekatan langsung dengan tujuan penelitian, antara lain:

- a. Studi XRD yang dilakukan adalah membandingkan sinyal XRD bahan dasar dan sampel hasil perlakuan pada temperatur ruang untuk mengetahui apakah terjadi perubahan fasa pembentukan. Kemudian menganalisa sinyal XRD terhadap variasi konsentrasi pendopingan unsur Fe.
- b. Studi SEM yang dilakukan adalah dengan membandingkan foto mikrostruktur dari masing-masing sampel untuk melihat bagaimana pengaruh doping Fe terhadap pertumbuhan butir.
- c. Studi pengaruh doping Fe terhadap resistivitas yang dibahas dari sudut pandang butir pada masing-masing sampel $La_{0.67}Sr_{0.33}Mn_{1-x}Fe_xO_3$ dengan x = 0; 0.05; 0.1; 0.15; dan 0.5.

1.4 Sistematika Penulisan

Sistematika dalam penulisan tesis ini adalah :

BAB I

PENDAHULUAN

Bab ini terdiri dari latar belakang, tujuan penelitian, rumusan masalah, dan sistematika penulisan.

BAB II TINJAUAN LITERATUR

Bab ini memuat penjabaran tentang kajian literatur yang berhubungan dengan materi dari penelitian yang dilakukan.

BAB III METODE PENELITIAN

Bab ini memuat tentang mekanisme penelitian, alat dan bahan yang digunakan, serta mekanisme perolehan data.

BAB IV ANALISIS DAN PEMBAHASAN

Bab ini membahas tentang hasil yang diperoleh dari data yang telah didapatkan kemudian melakukan telaah sesuai dengan teori atau konsep yang bersumber dari berbagai referensi.

BAB V KESIMPULAN DAN SARAN

BAB II

TINJAUAN LITERATUR

2.1 Material Perovskite Manganite

Pada akhir-akhir ini, oksida jenis perovskite banyak menarik perhatian para peneliti karena penemuan fenomena "colossal magnetoresistance (CMR)" dan kekayaan fisika yang terdapat pada material ini di tahun 1993. Penamaan material perovskite manganite ini ditujukan kepada material yang memiliki rumus kimia R_{1-x}A_xMnO₃ (dimana R adalah unsur-unsur tanah jarang dan A adalah alkali tanah) yang dapat menunjukkan sifat magnetik dan elektrik yang tidak biasa. Alasan mendasar mengapa material ini menarik diteliti adalah munculnya fenomena transisi fasa dari paramagnetik (PM) ke ferromagnetik (FM) dan (AFM), canted transisi dari logam ke insulator, antiferromagnetik antiferromagnetik (CAF), orbital ordering (OO), charge ordering (CO), transisi dari logam ke isolator yang digerakkan oleh medan magnet, fenomena pemisahan fasa elektronik di daerah yang bervariasi pada diagram fasanya. Beberapa fenomena termasuk CMR terkait dengan transisi magnetik dan logam-isolator diantara fasa-fasa ini.

Valensi dari La (dan semua anggota dari keluarga unsur tanah jarang) dalam R_{1-x}A_xMnO₃ adalah +3 sedangkan valensi dari O pada komposisi ini adalah -2. Sehingga valensi dari ion Mn dapat bernilai +3 atau +4 bergantung terhadap nilai dari x untuk mempertahankan kenetralan. Karena konfigurasi elektronik dari atom Mn netral adalah $4s^2$ $3d^5$, hal ini berarti bahwa ion Mn³⁺ memiliki empat elektron pada orbital *d* yang bertanggung jawab terhadap sifat-sifat elektronik pada material ini. Jika kita mensubtitusi semua atom trivalen tanah jarang La dengan logam divalen seperti Sr, maka kita akan mendapatkan campuran Sr²⁺Mn⁴⁺O₃ diamana Mn bervalensi +4 dan memiliki 3 elektron pada orbital *d*. Campuran ini juga memiliki struktur perovskite seperti yang ditunjukkan pada gambar 2.1 . Dalam perovskite ABO₃ kisi B diisi oleh Mn dan dikelilingi oleh oktahedra oksigen atau dengan kata lain Mn terletak pada *body center* (pusat kubus), sedangkan ion La mengisi kisi A diantara oktahedral ini atau dengan kata lain terletak pada sudut kubus.

Gambar 2.1. Struktur unit sel dari prototype perovskite kubik[3]

kebanyakan penelitian yang dilakukan akhir-akhir ini fokus terhadap subtitusi campuran Ca dan Sr serta trend magnetoresistance yang dapat diamati pada kedua subtitusi jenis dopan ini sebagai fungsi dari konsentrasi ion divalent x,. Namun terdapat perbedaan diagram fasa untuk kedua jenis dopan tersebut, yang utamanya disebabkan karena perbedaan ukuran diantara ion Ca dan Sr. Dalam jurnalnya Urushibara et al [27] menunjukkan ketergantungan resistivitas terhadap temperatur dan diagram fasa dalam senyawa La_{1-x}Sr_xMnO₃ sebagai fungsi dari x yang dapat dilihat dalam gambar 2.2 berikut ini.

Gambar 2.2 (a) plot resistivitas vs T paduan La_{1-x}Sr_xMnO₃ untuk berbagai variasi nilai x. (b) diagram fasa dari La_{1-x}Sr_xMnO₃.

Dalam gambar 2.2a ditunjukkan ketergantungan resistivitas terhadap temperatur dari senyawa La_{1-x}Sr_xMnO₃ ($0 \le x \le 0.4$). Tanda panah menunjukkan temperatur Curie (T_c) yang ditentukan oleh pengukuran suseptibilitas ac. Dalam gambar tersebut tidak teramati adanya transisi fasa ferromagnetik untuk $x \le 0.05$. perubahan resistivitas yang sangat mencolok teramati disekitar T_c (tanda panah kebawah). Konduksi metalik teramati pada fasa ferromagnetik temperatur rendah ($T \le T_c$) diatas x = 0.175. Pada x = 0.1 dan 0.15, resistivitas pertama-tama mengalami penurunan untuk temperatur dibawah T_c tetapi kemudian meningkat karena beberapa efek lokalisasi (*vide infra*). Pada fasa paramagnetik di temperatur tinggi ($T \ge T_c$), kurva ρ -T masih menunjukkan karakteristik nonlogam (semikonduktor) atau dengan kata lain $\frac{d\rho}{dT} < 0$ untuk $x \le 0.2$. Dengan meningkatnya x (>0.3) kurva menjadi semakin bersifat logam. Anomali yang ditandai dengan tanda segitiga untuk x = 0.15, 0.175, dan 0.2 disebabkan karena adanya transisi struktur dari rombhohedral ($\mathbf{R} - 3$ c) menjadi orthorhombic (Pbnm).

Urushibara et al [27] merangkum diangam fasa elektronik dari senyawa yang dapat dilihat dalam gambar 2.2b. Pada temperatur rendah fasa yang muncul adalah spin-canted antiferromagnetik untuk $0 \le x \le 0.1$ dan fasa ferromagnetik

untuk x > 0.1. Temperatur transisi ferromagnetik (T_c) meningkat dengan meningkatnya x dan mencapai maksimum (≈ 370 K) desekitar x = 0.4. Kita dapat mengklasifikasikan diagram fasa La_{1-x}Sr_xMnO₃ ini ke dalam lima kelompok berdasarkan konfigurasi spin dan konduksi listrik; dibawah temperatur transisi magnetik terdapat tiga fasa yang muncul yaitu spin canted antiferromagnetik insulator (CNI) untuk tingkat doping rendah (x < 0.1), ferromagnetik insulator (FI) dalam rentang doping $0.1 \le x \le 0.15$, dan ferromagnetik logam (FM) untuk tingkat doping tinggi x > 0.15. diatas temperatur transisi magnetik (T_N dan T_C) terdapat transisi dari paramagnetik insulator (PI) menjadi paramagnetik logam (PM) yang muncul disekitar x =0.3. Garis vertikal yang membatasi fasa-fasa ini ditentukan oleh titik puncak $\rho(T)$. Bersama-sama dengan transisi isolator ke logam pada temperatur rendah, terjadi transisi dari orthorhombic (x≤0.175) ke rombhohedral (x≥0.175). Sebuah aspek yang penting dari subtitusi Sr adalah ketidakmampuannya untuk membentuk fasa tunggal untuk konsentrasi doping x >0.6. Diantara kelima fasa ini, fasa FI menjadi pusat perhatian karena teori sederhana yang hanya melibatkan interaksi double exchange hanya dapat memprediksi fasa FM pada temperatur rendah.

2.2 Double exchange

Kopling magnetik pada kebanyakan oksida dan material lain yang serupa tidak dapat dijelaskan melalui mekanisme pertukaran langsung (*direct exchange*) karena ion-ion (dimana terdapat momen magnetik) terletak cukup jauh dan ketika struktur Kristal dari material tersebut diuji ditemukan bahwa terdapat anion non-magnetik seperti oksigen terletak pada satu garis bergabung dengan kation magnetik. Kramers dan Anderson mengajukan sebuah mekanisme yang disebut dengan Superexchange[24]. Dimana spin dari ion magnetik berpasangan secara tidak langsung karena dispisahkan oleh anion.

Orbital yang aktif secara elektronik adalah orbital d manganese. Konfigurasi elektronik keadaan dasar dari trivalent dan quadrivalen Mn adalah $3d^4$ dan $3d^3$. kelima orbital d maisng-masing dapat megakomodasi elektron dengan satu spin up dan satu spin down akan terpecah (*split*) akibat adanya medan Kristal octahedral yang berasal dari enam atom oksigen yang berada disekeliling ion Mn. Pemisahan energi ini membagi orbital d menjadi tiga orbital pada energi rendah t_{2g} (d_{xy} , d_{xz} , d_{yz}) dan dua orbital pada energi tinggi e_g ($d_{x^2-y^2}, d_{z^2}$). Pemisahan ini, yang berada pada orde 1.5eV tidak cukup untuk membentuk keadaan *low-spin state;* sehingg elektron mengisi keadaan orbital dengan spin maksimum terkait dengan hukum pertama Hund.

Gambar 2.3 pemecahan lima orbital d ke dalam e_g dan t_{2g}

Double exchange merujuk kepada interaksi pertukaran magnetik melalui muatan pembawa pita *d* dalam manganite dengan valensi campuran. Teori ini dipostulatkan pertama kali oleh Zener[4] dan dikembangkan oleh Anderson, Hasegawa, dan de Gennes[25]. Zener mengembangkan teori *double exchange* untuk menjelaskan pengukuran magnetik dan transport dalam deretan valensi campuran La_{1-x}A_xMn_{1-x}³⁺Mn_x⁴⁺O₃ dimana A = Ca²⁺, Sr²⁺, Pb atau Ba²⁺. Dalam teorinya ini Zener mengasumsikan bahwa:

- a. pertukaran antar atomik sangat kuat sehingga hanya terdapat konfigurasi ferromagnetik dimana spin dari masing-masing muatan pembawa arahnya sejajar terhadap spin ionik lokal.
- b. elektron yang berpindah tidak merubah arah spinnya ketika berpindah, mereka dapat berpindah dari satu ion ke ion selanjutnya hanya jika spin ionik dari keduanya tidak antiparallel.
- c. ketika terjadi lompatan, maka keadaan energi dasar menjadi lebih rendah karena muatan pembawa dapat berpartisipasi dalam ikatan.

Doping dari ion divalen pada kisi trivalen (La^{3+}) mengakibatkan terjadinya sistem valensi campuran $La^{3+}_{1-x}A^{2-}_{x}Mn^{3+}_{1-x}Mn^{4+}_{x}O_{3}$ (dimana A = Ca^{2+} , Sr^{2+} , Pb atau Ba²⁺). Untuk mempertahankan kenetralan elektron, defisiensi dari muatan positif yang dihasilkan oleh doping divalen x memaksa sejumlah x manganese untuk mendonasikan elektronnya untuk menjadi tetravalen. Anggaplah

konfigurasi dimana ion Mn^{3+} dan Mn^{4+} berada disisi lain oksigen. Dalam konfigurasi ini Mn^{3+} memiliki empat elektron di level t_{2g} dan e_g sedangkan Mn^{4+} memiliki tiga elektron di level t_{2g} dan sebuah *hole* di level e_g seperti yang ditunjukkan pada gambar 2.4. spin dari elektron e_g dari ion Mn^{3+} dan Mn^{4+} berada dalam arah yang sama seperti yang ditunjukkan dalam gambar 2.5. Aturan atomik Hund mengatur bahwa empat elektron dalam ion manganese harus menunjuk ke arah yang sama untuk meminimalkan tolakan elektrostatik. Sekarang elektron e_g A₁ dari Mn^{3+} lompat membawa spinnya dan menggantikan elektron O_2 yang memiliki arah spin yang sama kemudian elektron dari O_2 lompat ke ion Mn^{4+} . Mekanisme transfer ini diperbolehkan oleh aturan Hund seperti yang ditunjukkan dalam gambar 2.5. sehingga terdapat transport total melewati Mn^{3+} dan Mn^{4+} melalui oksigen dengan menjaga arah spinnya sejajar. Hal ini menjelaskan mengapa material ini bersifat ferromagnetik dan konduktor.

Gambar 2.5 Penggambaran *double exchange* diantara Mn³⁺ dan Mn⁴⁺ melalui campur tangan anion oksigen dan menunjukkan bahwa diijinkan terjadi lompatan

2.3 Pengaruh Kisi Pada Material Perovskite Manganites

Kestabilan struktur perovskite sangat bergantung terhadap ukuran dari ion yang mengisi kisi A dan kisi B. jika terdapat ketidakcocokan diantara ion kisi A dan kisi B dan ruang dimana ion tersebut mengisi maka struktur perovskite akan terdistorsi. Goldschmidt [21] mendefisikan faktor toleransi sebagai berikut:

$$t^* = \frac{r_A + r_O}{\sqrt{2}(r_B + r_O)}$$

Dimana r_A dan r_B adalah rata-rata jari-jari dari ion yang mengisi kisi A dan kisi B, dan rO adalah jari-jari ionik oksigen. Perovskike kubik ideal memiliki nilai $t^* = 1$. Jika t^* sedikit bergeser dari nilai 1 maka atom-atom akan bergeser dari posisi idealnya untuk meminimalkan energi bebas sehingga strukturnya terdistorsi. Oksida perovskite yang stabil memiliki faktor toleransi yang berada pada rentang $0.89 \leq t^* \leq 1.02$. deviasi yang semakin besar membuat strukturnya mengalami perubahan.

Material dasar dari keluarga lanthanum manganite, LaMnO₃ memiliki struktur orthorhombic tipe O'. lanthanum manganite yang didoping memiliki struktur yang lain dari bahan dasarnya bergantung terhadap sifat dari dopan, derajat kebebasan doping, temperatur, dan lain-lain. Untuk La_{1-x}Ca_xMnO₃ strukturnya mengalami perubahan menjadi ortorhombik tipe O. sedangkan untuk Lanthanum manganite yang didoping oleh strontium strukturnya menunjukkan adanya transisi dari ortorhombik tipe O' menjadi tipe O disekitar konsentrasi doping x≈0.1 tetapi untuk x≤0.175 strukturnya berubah menjadi rhombhohedral.

Double exchange dan sifat-sifat fisika dari material ini sangat dipengaruhi oleh perubahan kisi yang diakibatkan oleh adanya doping. Berbagai deviasi dari struktur perovskite kubik yang ideal dapat mengakibatkan reduksi sudut ikatan Mn-O-Mn dari 180° atau perubahan panjang ikatan, keduanya secara langsung mempengaruhi double exchange. Dibeberapa perovskite, overlap diantara orbital d kisi B dan orbital p atom oksigen secara kuat dipengaruhi oleh tekanan kimia internal yang dibangkitkan oleh subtitusi pada kisi A dengan ion yang memiliki jari-jari yang berbeda. Berkurangnya $\langle r_A \rangle$ menurunkan temperatur transisi (T_c) dan meningkatkan magnetoresistif secara dramatis di dekat Tc[30]. Konduksi elektronik meliputi perpindahan muatan diantara orbital d manganese dan orbital p oksigen, dan elemen matriks b (yang menggambarkan lompatan elektron diantara kisi Mn), overlap p-d sangat sensitif terhadap perubahan geometri (sudut dan panjang ikatan) yang diakibatkan oleh variasi dari ukuran ion kisi A atau pemberian tekanan eksternal. Asal mula dari tekanan kimia internal adalah adanya ketidakcocokan ukuran yang muncul ketika ion kisi A terlalu kecil untuk mengisi jaringan tiga dimensi dari oktahedra MnO₆. Lebih dari sekedar kontraksi sederhana dari jarak ikatan, lebih kecilnya ukuran ion yang mengisi kisi A menyebabkan oktahedra berputar dan mengurangi kelebihan ruang disekitar kisi A yang menyebabkan tetha $< 180^{\circ}$ seperti yang ditunjukkan dalam gambar 2.6

Gambar 2.6 Skema representasi pengaruh ukuran ionik kisi A terhadap amplitude lompatan diantara dua ion Mn

2.4 Pengaruh doping Fe terhadap sifat magnetik dan transport pada manganite

Penggantian sebagian ion Mn dalam campuran $La_{1-x}A_xMnO_3$ (A= Ca, Sr, dll) dengan berbagai unsur lain seperti Ti, Cu, Ni, Co, Fe,.. dapat memberikan kita informasi penting mengenai sifat alami pada system ini.

Hasil penelitian yang sudah dilaporkan oleh beberapa peneliti [1,2,26] menunjukkan bahwa dengan penggantian sebagian ion Mn dengan unsur seperti Ti dan Cu menyebabkan resistivitas bahan meningkat, temperature Curie begerser ke temperature yang lebih rendah, menurunnya rasio MR, temperature transisi logam-insulator bergeser ke temperatur yang lebih rendah. Perubahan sifat transport listrik dan magnetik ini disebabkan karena berkurangnya jumlah ion Mn³⁺ dan perubahan struktur sehingga mengubah panjang serta sudut ikatan Mn-O-Mn yang berperan terhadap mekanisme DE.

Doping ion Fe dipilih karena ion Fe memiliki jari-jari yang sama dengan ion Mn[31]. Struktur Kristal dari material perovskite ini cenderung tidak mengalami perubahan dengan diberikannnya doping Fe, sehingga kita dapat mengabaikan pengaruh perubahan struktur. Dengan demikian kita dapat mempelajari perubahan sifat transport listrik dan magnetik pada material ini berdasarkan konfigurasi elektronik dan magnetik. Hasil penelitian Tiwari[32] menunjukkan bahwa sampel $La_{0.7}Sr_{0.3}Mn_{1-x}Fe_xO_3$ (x≤0.25) bersifat insulator di seluruh rentang temperature untuk doping Fe diatas 0.25.

Gambar 2.7 resisitivitas listrik sampel La_{0.7}Sr_{0.3}Mn_{1-x}Fe_xO₃ (x≤0.25)[32]

Gambar 2.8 Struktur dari $La_{0.67}Ca_{0.33}Mn_{1-x}Fe_xO_3$ (a) plot kurva XRD (b)

Gambar 2.9 Data magnetisasi untuk sampel La_{0.7}Sr_{0.3}Mn_{1-x}Fe_xO₃ (x=0; 0.05)[37]

Tabel 2.1 Temperatur Curie $La_{0.7}Sr_{0.3}Mn_{1-x}Fe_xO_3$ (x ≤ 0.25) 3

Compound	<i>T</i> _C (K)	$ \Delta S_M^{\max} $ (J/kgK)	ΔH (kOe)
La _{0.7} Sr _{0.3} MnO ₃	374	1.78	20.0
$La_{0.7}Sr_{0.3}Mn_{0.95}Fe_{0.05}O_{3}$	343	2.40	20.0
$La_{0.7}Sr_{0.3}Mn_{0.93}Fe_{0.07}O_{3}$	296	2.2	20.0
$La_{0.7}Sr_{0.3}Mn_{0.90}Fe_{0.10}O_{3}$	260	1.7	20.0
$La_{0.7}Sr_{0.3}Mn_{0.85}Fe_{0.15}O_{3}$	180	1.4	20.0
$La_{0.7}Sr_{0.3}Mn_{0.80}Fe_{0.20}O_{3}$	94	0.6	20.0

BAB III

METODE PENELITIAN

3.1 Tempat dan Waktu Penelitian

Semua proses pembuatan sampel dilakukan di Laboratorium Fisika Universitas Indonesia, Depok yang meliputi pembuatan preparat, proses milling, kalsinasi dan sintering. Selanjutnya karakterisasi XRD dilakukan di Laboratorium Fisika Universitas Islam Negeri, Ciputat. Karakterisasi mikrostruktur dengan SEM dilakukan di laboratorium Teknik Metalurgi Universitas Indonesia, Pengukuran Resistivitas dilakukan di Batan Serpong. Pembuatan sampel dan penelitian dilaksanakan antara bulan September 2011 hingga Maret 2012.

3.2 Metode Penelitian

Metode yang digunakan dalam penelitian ini adalah metode eksperimen yang meliputi proses pembuatan paduan La_{0.67}Sr_{0.33}Mn_{1-x}Fe_xO₃, karakterisasi sifat struktur dan sifat magnetik, hingga analisis hasil eksperimen. Metode pembuatan sampel yang digunakan adalah metode *mechanical alloying*. Beberapa tahapan proses yang umumnya dilakukan dalam metode reaksi padatan ini diantaranya proses pencampuran dan penghalusan bahan dengan cara di *milling*, pembuatan pellet dengan cara dikompaksi, kemudian perlakuan panas (kalsinasi dan sintering) dengan menggunakan tungku pemanas (*furnace*).

Setelah sampel selesai dibuat, tahap selanjutnya adalah melakukan karakterisasi. Beberapa peralatan karakterisasi yang digunakan adalah XRD (*X-Ray Diffraction*), SEM (*Scanning Electron Microscopy*), kedua peralatan ini digunakan untuk mempelajari struktur kristal dan struktur mikro pada sampel, dan peralatan FPP (*Four Point Probe*) untuk mengukur resistivitas sampel.

3.3 Persiapan peralatan

Berikut ini merupakan beberapa peralatan yang digunakan dalam proses pembuatan paduan $La_{0.67}Sr_{0.33}Mn_{1-x}Fe_xO_3$

• Alkohol

Digunakan untuk membersihkan peralatan yang digunakan sehingga dapat meminimalisir adanya pengotor pada sampel yang dibuat.

- Spatula
 Digunakan untuk mengambil bahan
- Timbangan digital

Digunakan untuk menimbang massa dari bahan dasar yang digunakan ataupun sampel yang telah dibuat dengan ketelitian mencapai 0.0001 gram

• Kertas timbang

Digunakan sebagai tempat untuk meletakkan bahan yang akan ditimbang

• Plastic klip

Digunakan untuk menyimpan bahan atau sampel.

Silicon gel

Digunakan untuk mencegah terjadimya oksidasi pada sampel yang telah dibuat.

• Planetary Ball Mill (PBM) dan vial PBM

Digunakan untuk mereduksi ukuran partikel dan membuat campuran menjadi homogen

Peralatan kompaksi

Digunakan untuk memadatkan sampel menjadi bentuk pellet (silinder).

• Tungku pemanas (*Furnace*)

Digunakan untuk melakukan proses pemanasan pada sampel yang berupa proses kalsinasi dan sintering

- Spektroskopi difraksi sinar-x (XRD)
 Digunakan untuk mengetahui fasa-fasa yang terbentuk pada sampel dan menghitung ukuran butir paduan La_{0.67}Sr_{0.33}Mn_{1-x}Fe_xO₃..
- Spektroskopi Scanning Electron Microscope (SEM)
 Dugunakan untuk mengetahui bagaimana struktur mikro pada masing-maisng paduan La_{0.67}Sr_{0.33}Mn_{1-x}Fe_xO₃.
- Four Point Probe (FPP)
 Digunakan untuk mengukur resistivitas masing-masng paduan
 La_{0.67}Sr_{0.33}Mn_{1-x}Fe_xO₃.

3.4 Persiapan Bahan

Bahan dasar yang digunakan untuk pembuatan sampel dalam penelitian ini adalah La2O₃, SrCO₃, MnCO₃, dan Fe₂O₃. Berikut ini merupakan spesifikasi dari bahan-bahan dasar yang digunakan.

No	Nama Senyawa	Formula Kimia	Mr (gram/mol)	Produk	Kemurnian
1	Lantanum Oxide	La ₂ O ₃	325,790	Merck	99,5 %
2	Strontium Carbonat	SrCO ₃	147,628	Aldrich	98,0 %
3	Mangan Carbonat	MnCO ₃	114,946	Aldrich	99,9 %
4	Ferrit Oxide	Fe ₂ O ₃	159,681	Sigma Aldrich	99,0 %

Pada penelitian ini akan dibuat lima buah paduan dengan rumus kimia $La_{0.67}Sr_{0.33}Mn_{1-x}Fe_xO_3$ dengan x= 0; 0.05; 0.1; 0.15; 0.5. Massa bahan dasar untuk pembuatan masing-masing sampel dihitung secara stoikiometri dengan menggunakan persamaan reaksi kimia sebagai berikut.

a)
$$\frac{Untuk \ x = 0}{La_2O_3 + SrCO_3 + 3MnCO_3}$$
$$\rightarrow 3La_{0,67}O_{0,33}MnO_3 + 2CO_2 + 2CO_3$$

b) Untuk
$$x = 0.05$$

 $6,67 La_2O_3 + 6,67 SrCO_3 + 19 MnCO_3 + 0.5 Fe_2O_3$
 $\rightarrow 20 La_{0,67}O_{0,33}Mn_{0,95}Fe_{0,05}O_3 + 10 CO_2$
 $+ 15,67 CO + 1,4167 O_2$

c) Untuk x = 0,10

$$6,67 La_2O_3 + 6,67 SrCO_3 + 18 MnCO_3 + Fe_2O_3$$

 $\rightarrow 20 La_{0,67}O_{0,33}Mn_{0,9}Fe_{0,1}O_3 + 10 CO_2$
 $+ 14,67 CO + 1,167 O_2$
d) Untuk x = 0.15

$$\begin{array}{rcrr} 6,67 \ La_2 O_3 + & 6,67 \ SrCO_3 + & 17 \ MnCO_3 + & 1,5 \ Fe_2 O_3 \\ \\ \rightarrow & 20 \ La_{0,67} O_{0,33} Mn_{0,85} Fe_{0,15} O_3 + & 10 \ CO_2 \\ \\ & + & 13,67 \ CO \ + & 0,9167 \ O_2 \end{array}$$

e) Untuk x = 0,50

$$6,67 La_2O_3 + 6,67 SrCO_3 + 10 MnCO_3 + 5 Fe_2O_3$$

 $\rightarrow 20 La_{0,67}O_{0,33}Mn_{0,5}Fe_{0,5}O_3 + 8 CO_2$
 $+ 8,67 CO + 0,167 O_2$

Persamaan reaksi untuk membentuk paduan $La_{0,67}Sr_{0,33}Mn_{1-x}Fe_xO_3$ secara umum dapat ditulis sebagai berikut :

$$A La_2O_3 + B SrCO_3 + C MnCO_3 + D Fe_2O_3$$

$$\rightarrow E La_{0,67}O_{0,33}Mn_{1-x}Fe_xO_3 + FCO_2 + HCO$$

$$+ IO_2$$

Untuk mendapatkan masing-masing 15 gram sampel, maka rumus stoikiometri yang digunakan untuk menentukan masing-masing bahan dasar adalah sebagai berikut :

$$Massa \ La_2O_3 = \frac{A}{E} \times \frac{15 \ gram}{Mr \ La_{0,67}O_{0,33}Mn_{1-x}Fe_xO_3} \times Mr \ La_2O_3 \times \frac{1}{Kemurnian}$$

$$Massa \ SrCO_{3} = \frac{B}{E} \times \frac{15 \ gram}{Mr \ La_{0,67}O_{0,33}Mn_{1-x}Fe_{x}O_{3}} \times Mr \ SrO_{3} \times \frac{1}{Kemurnian}$$

$$Massa \ MnCO_{3} = \frac{C}{E} \times \frac{15 \ gram}{Mr \ La_{0,67}O_{0,33}Mn_{1-x}Fe_{x}O_{3}} \times Mr \ MnCO_{3}$$
$$\times \frac{1}{Kemurnian}$$

$$Massa \ Fe_2O_3 = \frac{D}{E} \times \frac{15 \ gram}{Mr \ La_{0,67}O_{0,33}Mn_{1-x}Fe_xO_3} \times Mr \ Fe_2O_3 \times \frac{1}{Kemurnian}$$

Dimana massa relatif (Ar) untuk masing-masing atom adalah:

Strontium = 87,670 gr/mol
 Karbon = 12.011 gr/mol
 Oksigen = 15.999 gr/mol
 Mangan = 54.938 gr/mol
 Lanthanida = 138.92 gr/mol
 Titanium = 47.900 gr/mol

dengan menggunakan rumus stoikiometri tersebut diperoleh massa bahan dasar untuk masing-masing sampel sebagai berikut:

No		Massa Bahan Dasar (gram)				
	Nama Senyawa	La ₂ O ₃	SrCO ₃	MnCO ₃	Fe ₂ O ₃	
1	La _{0,67} Sr _{0,33} Mn O ₃	7,3158	3,3153	7,6735	0	
2	$La_{0,67}Sr_{0,33}Mn_{0,95}Fe_{0,05}O_{3}$	7,3143	3,3146	7,2883	0,2689	
3	La _{0,67} Sr _{0,33} Mn _{0,9} Fe _{0,1} O ₃	7,3128	3,3139	6,9033	0,5376	
4	$La_{0,67}Sr_{0,33}Mn_{0,85}Fe_{0,15}O_3$	7,3113	3,3133	6,5185	0,8063	
5	La _{0,67} Sr _{0,33} Mn _{0,5} Fe _{0,5} O ₃	7,3010	3,3086	3,8290	2,6839	

3.5 Diagram Alir Penelitian

3.5.1 Proses Pencampuran dan Milling

Setelah semua bahan dasar ditimbang, proses selanjtnya adalah proses pencampuran dan penghalusan bahan dengan cara *di-milling* dengan menggunakan peralatan *Planetary Ball Mill* (PBM). Proses ini bertujuan untuk mereduksi ukuran partikel dan membuat campuran menjadi homogen sehingga dapat mempermudah reaksi pembentukan fasa La_{0.67}Sr_{0.33}Mn₁. _xFe_xO₃. Bahan-bahan dasar La₂O₃, MnCO₃, SrCO₃, dan Fe₂O₃ dicampur dalam vial PBM yang berisi bola-bola yang terbuat dari bahan *stainless steel* (SS) dimana perbandingan massa bola dengan bahan dasar adalah 10:1. Vial ini kemudian diletakkan dalam peralatan PBM yang terdapat di laboratorium preparasi Universitas Indonesia dengan *run time* 30 menit, *of time* 5 menit, dan *on of cycle* 1 kali. Masing-masing sampel di*-milling* selama 15 jam (total *run time*).

3.5.2. Proses Pemadatan (kompaksi)

Setelah sampel *di-milling*, tahap selajutnya adalah proses pemadatan (kompaksi) menggunakan peralatan kompaksi hidrolik yang berada di labaoratorim preparasi Universitas Indonesia. *Die* (cetakan) yang digunakan berbentuk silinder dengan diameter 2.5 cm dan ketebalan pellet ± 0.5 cm. Proses kompaksi dilakukan dengan cara memberikan tekanan sebesar 8 ton dan ditahan selama 5 menit. Proses pemadatan ini bertujuan untuk memperluas kontak permukaan antar partikel sehingga proses pembentukan fasa menjadi lebih optimal

3.5.3 Perlakuan Panas

Sampel yang sudah di kompaksi selanjutnya diberikan perlakuan panas (*heat treatment*) berupa kalsinasi dan sintering. Proses kalsinasi dilakukan dengan cara memanaskan sampel pada suhu 800°C selama 8 jam, proses ini bertujuan untuk menghilangkan unsur karbon yang terdapat dalam campuran (*decarbonization*) dan menghilangkan unsur-unsur pengotor yang lain. setelah di kalsinasi semua sampel kemudian di sintering pada suhu

 $1200^{o}C$ selama 12 jam, proses ini bertujuan untuk membentuk fasa $La_{0.67}Sr_{0.33}Mn_{1\text{-}x}Fe_{x}O_{3}.$

Gambar 3.1 proses kalsinasi dan sintering

BAB IV

HASIL DAN PEMBAHASAN

4.1 Hasil

Setelah proses pembuatan sampel selesai, maka tahap selanjutnya adalah karakterisasi melakukan untuk mengetahui karakteristik dari senvawa $La_{0.67}Sr_{0.33}Mn_{1-x}Fe_xO_3$ (x = 0; 0.05; 0.1; 0;0.15; 0.5). Karakterisasi yang dilakukan diantaranya karakterisasi XRD, SEM dan pengukuran resistivitas. Karakterisasi XRD dilakukan untuk mengetahui fasa serta struktur kristal yang terbentuk. Karakterisasi SEM dilakukan untuk mengetahui bagaimana pengaruh doping Fe terhadap struktur mikro pada masing-masing sampel. Pengukuran resistivitas dilakukan untuk menyelidiki bagaimana pengaruh pemberian doping Fe terhadap sifat elektrik material perovskite La_{0.67}Sr_{0.33}MnO₃. Berikut ini disajikan hasil karakterisai pada masing-masing sampel yang kemudian akan dilanjutkan dengan pembahasan terkait dengan sifat-sifat yang muncul pada senyawa ini.

4.1.1 Karakterisasi XRD

Gambar 4.1 kurva XRD senyawa La_{0.67}Sr_{0.33}Mn_{1-x}Fe_xO₃

Universitas Indonesia

Gambar 4.1 menunjukkan pola XRD dari senyawa La_{0.67}Sr_{0.33}Mn_{1-x}Fe_xO₃ yang diukur pada temperatur ruang. Seluruh sampel La_{0.67}Sr_{0.33}Mn_{1-x}Fe_xO₃ ini telah membentuk fasa tunggal dengan struktur kristal rombhohedral (R -3 c) [1,20,26] dan bebas dari pengotor. Untuk mengetahui besaran-besaran yang terkait dengan struktur kristal dari masing-masing sampel seperti *space group*, parameter kisi, posisi serta pengisian (*occupancy*) dari masing-masing atom maka dalam penelitian ini dilakukan analisis kuantitatif dengan menggunakan perangkat lunak GSAS (*General Structure Analysis* Sistem). Berikut ini merupakan parameter-parameter yang digunakan untuk melakukan analisis kuantitatif dengan menggunakan perangkat lunak GSAS yang dikutip dari salah satu jurnal publikasi internasional [26] yang diperlihatkan pada tabel 4.1.

nonomoton kini	Atom	Posisi atom			
parameter kisi	Atom	X	Y	Z	
SG = R - 3 c	La	0	0	0.25	
a = b = 5.5023 Å	Sr	0	0	0.25	
c = 13.3569 Å	Mn	0	0	0	
$\alpha = \beta = 90^{\circ}$	Fe	0	0	0	
$\gamma = 120^{\circ}$	0	0.4556	0	0.25	

Tabel 4.1 Parameter yang digunakan untuk melakukan analisis GSAS

Dalam gambar 4.7 hingga 4.11 ditampilkan hasil analisis GSAS untuk masing-masing sampel berupa kurva perbandingan eksperimen dengan kurva kalkulasi serta kurva chi² (χ -factor).

Gambar 4.2 Hasil refinement GSAS sampel La_{0.67}Sr_{0.33}MnO₃

Universitas Indonesia

Gambar 4.5 Hasil refinement GSAS sampel La_{0.67}Sr_{0.33}Mn_{0.85}Fe_{0.15}O₃

Gambar 4.6 Hasil refinement GSAS sampel La_{0.67}Sr_{0.33}Mn_{0.5}Fe_{0.5}O₃

	- A				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Samuel		Parameter K	isi	$V_{olumo}(Å^3)$	2	wRp	
Samper	a (Å)	b (Å)	c (Å)	volume(A)	χ		
0	5.50	5.50	13.36	350.036	1.707	0.0945	
0.05	5.50	5.50	13.35	349.741	1.648	0.0697	
0.1	5.51	5.51	13.37	351.523	1.697	0.0712	
0.15	5.50	5.50	13.36	350.099	1.532	0.0644	
0.5	5.51		13.38	351.691	1.542	0.0619	

Tabel 4.2 hasil refinement GSAS sampel La_{0.67}Sr_{0.33}Mn_{1-x}Fe_xO₃

hasil *refinement* Rietveld ini menunjukkan adanya kesesuaian dengan data input yang diberikan, kriteria numeris yang digunakan untuk menentukan hasil *fitting* (pencocokan) terbaik adalah nilai χ -factor (chi²). Nilai χ -factor yang dianggap sesuai dengan data inputnya berada dalam rentang 1,2 sampai 1,7. Dari tabel 4.2 terlihat bahwa sampel yang dibuat memiliki secara umum memiliki nilai χ -factor sekitar 1,5 hingga 1.7 sehingga dapat disimpulkan bahwa sampel yang dibuat telah membentuk fasa tunggal dengan struktur kristal Rombhohedral dengan *space group* R -3 c.

Dengan menggunakan Ukuran butir rata-rata dari senyawa ini dihitung dengan menggunakan persamaan Debye [23], dengan cara mengukur besarnya *full width half maximum* (FWHM) pola difraksi sinar-x pada masing-masing sampel. Hasil pengukuran ukuran butir rata-rata ini dapat dilihat dalam tabel 4.3 berikut ini.

Ukuran butir (nm)
78
54
51
46
61

Tabel 4.3 Ukuran butir rata-rata sampel La_{0.67}Sr_{0.33}Mn_{1-x}Fe_xO₃

Dari hasil perhitungan ukuran butir ini terlihat bahwa penambahan dopan Fe kedalam senyawa $La_{0.67}Sr_{0.33}MnO_3$ cenderung membuat ukuran butir semakin mengecil.

4.1.2 Karakterisasi SEM

Karakterisasi dengan menggunakan peralatan SEM (*Scanning Elektron Microscope*) dilakukan agar kita dapat melihat bagaimana struktur mikro dari sampel yang dibuat setelah melalui proses pemanasan.

Universitas Indonesia

Gambar 4.7 Foto SEM sampel La_{0.67}Sr_{0.33}Mn_{1-x}Fe_xO₃ perbesaran 4000x (a) x=0, (b) x=0.05, (c) x=0.1, (d) x=0.15, dan (e) x=0.5

Dalam gambar 4.7 diperlihatkan hasil foto SEM untuk masing-masing sampel dengan perbesaran 4000x. Hasil foto SEM untuk semua sampel memperlihatkan terbentuknya partikel-partikel. Sampel paduan $La_{0.67}Sr_{0.33}Mn_{1-}$ _xFe_xO₃ ini bersifat *porous*, hal ini terlihat dari adanya pori-pori yang terbentuk. Dari hasil foto SEM ini terlihat kecenderungan semakin mengecilnya ukuran partikel dengan bertambahnya konsentrasi doping Fe [26].

4.1.3 Pengukuran resistivitas

Hasil pengukuran resistivitas untuk masing-masing paduan $La_{0.67}Sr_{0.33}Mn_{1-x}Fe_xO_3$ dengan diberikan medan eksternal sebesar 0.128 kOe dan diukur pada temperatur ruang (293K) untuk variasi arus masukan 1mA, 5mA dan 10mA ditampilkan dalam gambar 4.8.

Sampel (x)	Resistivitas (Ohm.cm)						
	1 mA	5 mA	10 mA				
0	0.83	0.827	0.828				
0.05	2.59	2.575	2.555				
0.1	5.76	5.735	5.448				
0.15	7.12	7.113	6.900				
0.5	272.68	215.783	217.293				

Tabel 4.4. Pengukuran resistivitas sampel La_{0.67}Sr_{0.33}Mn_{1-x}Fe_xO₃

Gambar 4.8. Pengaruh doping Fe pada sampel La_{0.67}Sr_{0.33}Mn_{1-x}Fe_xO₃ untuk arus masukan sebesar 1mA, 5mA dan 10mA (T=300K, H =0.13 KOe)

Ketiga plot yang ditampilkan pada gambar 4.8 menunjukkan adanya perubahan nilai resistivitas akibat penambahan doping Fe untuk variasi arus masukan 1mA, 5mA, dan 10mA. Hasil pengukuran ini menunjukkan semakin besar doping Fe membuat resistivitas bahan semakin meningkat, dari ketiga plot tersebut juga terlihat bahwa nilai dari resistivitas meningkat dengan tajam untuk doping Fe sebesar 0.5.

4.2 Analisis dan Pembahasan

4.2.1 Pengaruh doping Fe terhadap struktur La_{0.67}Sr_{0.33}Mn_{1-x}Fe_xO₃ (x= 0; 0.05; 0.1; 0;0.15; 0.5)

Seperti yang telah diketahui bahwa sifat-sifat yang muncul pada suatu bahan sangat dipengaruhi oleh struktur dari bahan tersebut, dimana bahan yang sama namum memiliki struktur yang berbeda dapat memiliki sifat yang berbeda. Beberapa peneliti melaporkan bahwa pemberian doping yang berbeda pada kisi La material perovskite manganite LaMnO₃ menyebabkan material tersebut dapat memiliki sifat listrik dan magnetik yang berbeda pula [11,12,16]. Perbedaan ini disebabkan karena perbedaan ukuran ionik dari unsur yang dijadikan doping membuat panjang serta sudut ikatan Mn-O-Mn mengalami perubahan, Banyaknya konsentrasi doping pun mempengaruhi sifat dan karakteristik dari material perovskite manganite ini. Urushibara et al melaporkan bahwa untuk material LaMnO₃ yang diberikan doping Sr pada kisi Mn menyebabkan struktur dari material ini berubah dari kubik menjadi Orthorhombik kemudian menjadi Rombhoheral sesuai dengan konsentrasi doping yang diberikan, yang dapat dilihat dalam gambar 4.9 [27].

Gambar 4.9 perubahan struktur akibat doping Sr pada kisi La campuran LaMnO₃

Dari plot diatas dapat kita ketahui bahwa untuk pemberian doping Sr sebesar 33% pada campuran LaMnO₃ membuat struktur kristalnya berubah dari kubik menjadi Rombhohedral. Hasil yang sama juga didapatkan oleh penulis untuk sampel La_{0.67}Sr_{0.33}MnO₃ yang diperkuat oleh sampel hasil *refinement* Rietveld dengan menggunakan perangkat lunak GSAS (tabel 4.2).

Pemberian doping pada kisi Mn dengan beberapa unsur seperti Ti, Mg, Cu, dan Li [1,8,16] dilakukan untuk memahami bagaimana mekanisme transfer elektrik dan magnetik pada material perovskite manganite ini. Dari hasil yang telah dilaporkan oleh beberapa peneliti diketahui bahwa pemberian doping tersebut mengakibatkan terjadinya distorsi pada struktur kristalnya, hal ini disebabkan karena ukuran ion dari unsur yang menjadi doping lebih besar ataupun lebih kecil dibandingkan dengan ion Mn sehingga mengubah sudut serta panjang ikatan Mn-O-Mn yang pada akhirnya akan mempengaruhi mekanisme *double exchange* yang bertanggung jawab terhadap sifat transfer elektrik dan magnetik. Pola difraksi sinar-x (gambar 4.1) mengindikasikan bahwa senyawa $La_{0.67}Sr_{0.33}Mn_{1-x}Fe_xO_3$ membentuk fasa tunggak dengan struktur rombhohedral. Dari hasil *refinement* GSAS untuk sampel $La_{0.67}Sr_{0.33}Mn_{1-x}Fe_xO_3$ dengan variasi konsentrasi doping x= 0; 0.05; 0.1; 0;0.15; dan 0.5 yang ditampilkan pada tabel 2 terlihat bahwa parameter kisinya cenderung tidak megalami perubahan, sehingga dapat disimpulkan bahwa pemberian doping Fe hanya memberikan pengaruh yang kecil terhadap konstanta kisi.

Gambar 4.10 Pengaruh doping Fe terhadap parameter kisi sampel $La_{0.67}Sr_{0.33}Mn_{1-x}Fe_xO_3$ (x= 0; 0.05; 0.1; 0;0.15; 0.5)

Hal ini dapat dijelaskan dengan melihat perbandingan ukuran ionik dari ion Fe dengan ion Mn, berdasarkan literatur diketahui bahwa ion Fe memiliki jarijari ionik sekitar 0.63 Å yang hampir sama dengan jari-jari ionik ion Mn [2]. Dengan demikian subtitusi ion Fe pada kisi Mn tidak merusak struktur Kristal, konsekuensinya adalah kita dapat mengabaikan pengaruh perubahan kisi terhadap sifat elektrik dari material $La_{0.67}Sr_{0.33}Mn_{1-x}Fe_xO_3$.

4.2.2 Pengaruh doping Fe terhadap struktur mikro $La_{0.67}Sr_{0.33}Mn_{1-x}Fe_xO_3$ (x= 0; 0.05; 0.1; 0;0.15; 0.5)

Hasil foto SEM yang ditunjukkan pada gambar 4.7 memperlihatkan bahwa seluruh sampel $La_{0.67}Sr_{0.33}Mn_{1-x}Fe_xO_3$.bersifat porous (*berpori*). Dalam gambar SEM tersebut juga terlihat bahwa pemberian doping Fe ke dalam senyawa $La_{0.67}Sr_{0.33}MnO_3$ membuat ukuran partikel cenderung semakin mengecil dengan

bertambahanya konsentrasi doping Fe, namun besarnya ukuran partikel yang terlihat dari hasil foto SEM memiliki nilai yang lebih besar dibandingkan dengan hasil perhitungan ukuran butir dengan menggunakan persamaan Schereer (tabel 4.3), hal ini disebabkan karena adanya interaksi yang kuat antar butir sehingga terbentuk partikel dengan ukuran yang lebih besar yang kita lihat pada gambar SEM.

Selama proses sintering terjadi difusi atom-atom melalui mikrostruktur. Difusi ini disebabkan oleh gradien dari potensial kimia (atom berpindah dari daerah dengan potensial kimia tinggi ke potensial kimia yang rendah) sehingga terjadi pertumbuhan butir (grain growth) dari fasa baru. Terdapat dua hal yang dapat menghambat proses pertumbuhan butir selama proses sintering yaitu adanya ion terlarut (solute ion) atau pemberian doping dan partikel halus dari fasa kedua (fine second phase particles)[30]. Jika sebuah dopan ditambahkan ke dalam suatu material, dalam hal ini ion Fe disubtitusikan ke dalam senyawa La_{0.67}Sr_{0.33}MnO₃, maka ion tersebut akan cenderung melekat ke bagian batas butir (grain boundary). Perubahan konsentrasi dopan pada batas butir akan menghambat pergerakan pada batas butir ketika batas butir mencoba bergerak. Konsentrasi asli dari ion terlarut disekitar batas butir bersifat asimetris di kebanyakan kasus. Ketika batas butir mencoba bergerak, konsentrasi pada sisi yang berlawanan dari pergerakan batas butir akan memiliki konsentrasi yang tinggi dan oleh karena itu potensial kimianya juga menjadi tinggi. Peningkatan potensial kimia ini akan berperilaku seperti gaya balik terhadap gradien potensial kimia asli yang menjadi penyebab terjadinya perpindahan batas butir. Berkurangnya netto potensial kimia akan mengurangi kecepatan batas butir sehingga proses pertumbuhan butir juga terhambat.

4.2. 3 Pengaruh doping Fe terhadap resistivitas senyawa La_{0.67}Sr_{0.33}Mn₁. _xFe_xO₃ (x= 0; 0.05; 0.1; 0;0.15; 0.5)

Gambar 4.13 memperlihatkan secara jelas bahwa penambahan doping Fe membuat resistivitas senyawa La_{0.67}Sr_{0.33}MnO₃ meningkat. Dalam pembahasan sebelumnya telah diketahui bahwa mekanisme *double exchange* bertanggung jawab terhadap munculnya sifat ferromagnetik dan konduksi logam pada bahan ini, penggantian sebagian ion Mn dengan ion Fe menyebabkan senyawa $La_{0.67}Sr_{0.33}MnO_3$ cenderung bersifat isolator dan antiferromagnetik. Hasil eksperimen memperkirakan bahwa kisi Mn^{3+} yang sekarang diisi oleh ion Fe³⁺ secara efektif tidak lagi berpartisipasi terhadap proses *double exchange*. Mekanisme dimana Fe³⁺ menghalangi proses *double exchange* secara murni muncul dari struktur elektronik material tersebut

Dalam oksida perovskite, level 3*d* dari ion Mn dan Fe terbagi menjadi $t_{2g\uparrow}$, $e_{g\uparrow}$, $t_{2g\downarrow}$ dan $e_{g\downarrow}$ karena adanya medan kristal dan kopling Hund yang kuat. Konfigurasi elektronik dari Fe³⁺ adalah $t_{2g\uparrow^3} e_{g\uparrow^2}$, untuk Fe⁴⁺ dan Mn³⁺ konfigurasinya $t_{2g\uparrow^3} e_{g\uparrow^1}$, dan untuk Mn⁴⁺ konfigurasinya adalah $t_{2g\uparrow^3}$. Untuk ionion ini, pita $t_{2g\uparrow}$ terisi penuh, pita $t_{2g\downarrow}$ dan $e_{g\downarrow}$ kosong, dan pita $e_{g\uparrow}$ yang dapat mengakomodasi 2 elektron memainkan peranan yang penting. Dalam sistem campuran Mn dan Fe , lebar dan energi dari pita $e_{g\uparrow}$ mengontrol distribusi elektron dari ion Mn dan Fe. Jonker[28] telah mempelajari konduktivitas listrik dari manganite yang didoping oleh Fe (La_{0.85}Ba_{0.15}Mn_{1-x}Fe_xO₃) dan menunjukkan bahwa untuk 0<x<0.85 maka di dalam sistem terdapat ion Fe³⁺, Mn³⁺, dan Mn⁴⁺ dan untuk 0.85<x<1 maka di dalam sistem terdapat ion Fe³⁺, Fe⁴⁺ dan Mn⁴⁺. Dengan hasil penelitian yang dilakukan oleh Jonker, peneliti mengasumsikan bahwa di dalam senyawa La_{0.67}Sr_{0.33}Mn_{1-x}Fe_xO₃ dengan 0≤x≤0.5 hanya terdapat ion Mn³⁺, Mn⁴⁺ dan Fe³⁺

Gambar 4.11 skema struktur pita senyawa (a) $La_{0.7}Sr_{0.3}MnO_3$ dan (b) $La_{0.7}Sr_{0.3}Mn_{1-x}Fe_xO_3$ [32].

Universitas Indonesia

Nominal stoikiometri dari senyawa La_{0.67}Sr_{0.33}Mn_{1-x}Fe_xO₃ ini adalah $La_{06.7}^{3+}Sr_{0.33}^{2+}Mn_{0.33}^{4+}Mn_{06.7-x}^{3+}Fe_x^{3+}O_3$. Di dalam pita $e_g \uparrow$ Mn yang memiliki kapasitas dua elektron terdapat (0.67-x) elektron, sehingga hanya (0.67-x)/2 bagian saja yang terisi. Lebar dari pita e_g^{\uparrow} Mn adalah sekitar 1eV. Sehingga energy Fermi bernilai (0.67-x)/2 eV diatas pita e_g [↑] Fe. dalam sistem ini x bernilai 0.05 hingga 0.5 sehingga energy Fermi berada sekitar 0.085 - 0.31 eV diatas pita $e_g \uparrow$ Fe. diagram energy ini secara jelas menunjukkan bahwa lompatan elektron diantara Fe dan Mn terhalang karena tidak adanya ruang kosong dalam pita $e_g \uparrow$ Fe. ruang kosong yang tersedia hanyalah pita $t_{2g}\downarrow$ Fe yang terletak diatas pita $e_g\uparrow$ Fe. Chainani et al^[35] melaporkan bahwa senyawa LaFeO3 bersifat isolator dengan celah (gap) intrinsic bernilai sekitar 2.0 eV, yang berarti bahwa pita $t_{2g}\downarrow$ Fe terletak sekitar 2.0 eV diatas pita e_s^{\uparrow} Fe atau berada 1.69 – 1.915 eV diatas permukaan Fermi pada sistem yang peneliti amati, sehingga lompatan elektron dari Mn ke Fe tidak dapat terjadi bahkan pada temperature ruang. Karena ion Fe³⁺ menggantikan ion Mn⁴⁺, maka doping Fe menyebabkan berkurangnya rasio dari Mn³⁺/Mn⁴⁺ (populasi lompatan elektron) sehingga mengurangi terjadinya mekanisme double exchange yang pada akhirnya mereduksi sifat ferromagnetik dan meningkatkan resistivitas bahan.

Berdasarkan penelusuran literatur, diketahui bahwa terdapat beberapa hal yang dapat mengakibatkan resistivitas dari suatu bahan meningkat, salah satunya ditinjau dari segi mikrostruktur sampel. Salah satu fitur yang dapat kita amati pada mikrostruktur sampel adalah ukuran, bentuk, serta konektivitas antar butir.

Dalam penelitian ini, penulis meneliti bagaimana pengaruh ukuran butir terhadap resistivitas senyawa $La_{0.67}Sr_{0.33}Mn_{1-x}Fe_xO_3$. Berbagai macam penelitian telah dilakukan oleh beberapa peneliti untuk melihat keterkaitan antara batas butir (*grain boundary*), konektivitas antar butir (*grain connectivity*) dan ukuran butir (*grain size*) terhadap resistivitas untuk berbagai macam jenis paduan [7-12,15,16]. Dalam hasil penelitiannya, Yang J et al [12] melaporkan bahwa resistivitas pada sampel $La_{0.9}Te_{0.1}MnO_3$ meningkat dengan berkurangnya ukuran butir, mereka menyatakan bahwa hal ini disebabkan karena meningkatnya tinggi dan lebar dari *tunneling barrier* dengan berkurangnya ukuran butir. Munculnya potensial penghalang diantara butir disebabkan karena (i) jarak antar butir tidak cukup dekat, (ii) permukaan butir terkontaminasi, dan (iii) lingkungan Mn pada bagian permukaan butir tidak sama dengan bagian dalam butir[38].

Hal yang serupa juga dilaporkan oleh Ning Zhang [17], dalam penelitiannya ia mempelajari penerobosan antar muka (*interfacial tunneling*) pada *granular* perovskite La_{0.85}Sr_{0.15}MnO₃ dimana permukaan diantara butir-butir yang berdekatan serta jarak antar butir memiliki peranan terhadap besar dan tinggi dari potensial penghalang yang menghalagi perpindahan elektron dari satu butir ke butir lain yang berdekatan. Untuk mendapatkan rumusan resistvitas pada sistem butiran perovskite berpori, Ning Zhang berasumsi bahwa

- (1) Sebuah *grain* perovskite dapat dibagi menjadi bagian inti (*body*) dan permukaan (*surface*), dimana resistivitas dari kedua bagian ini adalah ρ_b dan ρ_t .
- (2) Interaksi *double exchange* merupakan satu-satunya hal yang menyebabkan terjadinya proses konduksi dalam butiran perovskite.
- (3) Temperatur Curie dibagian permukaan lebih rendah dibandingkan dengan temperatur Curie di bagian inti.

Gambar 4.12 skema ilustrasi dua butir perovskite yang dipisahkan oleh penghalang antargrain dimana a = 2w + d/2 merupakan lebar penghalang

Gambar 4.13 menunjukkan hasil pencocokan teori yang dikemukakan oleh Ning Zhang [17] dengan hasil eksperimen, dari hasil ini terlihat bahwa semakin kecil ukuran butir maka resistvitas dari bahan semakin meningkat. Dalam keadaan ferromagnetik, perovskite berperilaku seperti logam. Dalam pengertian ini, sebuah granular perovskite merupakan sebuah granular ferromagnetik mirip dengan granular logam transisi. Namun, pembentukan dari penghalang antar butir pada granular perovskite sedikit berbeda dengan granular logam transisi karena tidak ada material non-magnetik yang dapat menjadi potensial penghalang diantara butir ferromagnetik muncul pada granular perovskite, antarmuka diantara butirbutir yang bertetangga harus dipertimbangkan sebagai sebuah penghalang. Konfigurasi magnetik di permukaan butir bersifat lebih acak dibandingkan dengan bagian inti, hal ini berdasarkan fakta bahwa (1) struktur kisi di permukaan bersifat amorf dan konfigurasi dari material yang seperti itu sangat sensitif terhadap struktur, (2) karena banyaknya jumlah ikatan yang menguntai atau tidak ada bilangan koordinasi muncul di permukaan, sehingga kopling antar ion magnetik di permukaan lebih lemah dibandingkan dengan di inti. Hal ini menyebabkan interaksi *double exchange* menjadi lebih lemah di bagian permukaan dibandingkan dengan berkurangnya ukuran butir menyebabkan luas permukaan butir semakin besar sehingga semakin banyak luasan daerah yang memiliki konfigurasi magnetik yang tidak teratur yang mengakibatkan tinggi dan lebar dari potensial penghalang semakin besar, sehingga menghalangi elektron untuk berpindah ke butiran terdekat yang lain. Hal ini mengakibatkan resistivitas sampel meningkat.

BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Dari hasil penelitian yang penulis lakukan mengenai pengaruh doping Fe terhadap mikrostruktur dan resistivitas material perovskite $La_{0.67}Sr_{0.33}Mn_{1-x}Fe_xO_3$ dengan konsentrasi doping x = 0; 0.05; 0.1; 0.15; dan 0.5 diperoleh beberapa kesimpulan sebagai berikut:

- Telah didapatkan fasa tunggal senyawa La_{0.67}Sr_{0.33}Mn_{1-x}Fe_xO₃ dengan konsentrasi doping x = 0; 0.05; 0.1; 0.15; dan 0.5 dengan struktur kristal Rombhohedral (R-3c)
- Pemberian doping Fe pada kisi Mn dalam campuran La_{0.67}Sr_{0.33}MnO₃ tidak mengubah struktur kristal
- 3. mikrostruktur sampel bersifat *porous* (berpori) dan ukuran butir cenderung mengecil dengan bertambahnya doping Fe
- 4. Penambahan doping Fe mengakibatkan resistivitas senyawa La_{0.67}Sr_{0.33}MnO₃ meningkat dengan meningkatnya konsentrasi doping. Hal ini disebabkan karena penambahan doping Fe menghambat pergerakan elektron karena elektron $e_g \uparrow$ Mn³⁺ tidak dapat berpindah ke $t_{2g} \downarrow$ Fe³⁺ sehingga melemahkan interaksi *double exchange*.
- 5. Resistivitas bahan cenderung meningkat dengan berkurangnya ukuran butir, hal ini disebabkan karena potensial penghalang yang berada pada batas butir semakin tinggi dan lebar.

5.2 Saran

Penelitian yang penulis lakukan menitikberatkan pengaruh doping Fe terhadap mikrostruktur dan resistivitas material perovskite $La_{0.67}Sr_{0.33}Mn_{1-x}Fe_xO_3$ dengan x = 0; 0.05; 0.1; 0.15; 0.5. Banyak sekali sifat dan karakteristik dari material ini yang belum di eksplorasi oleh penulis karena keterbatasan alat, sehingga dalam penelitian ini penulis hanya dapat melakukan pengukuran pada temperatur ruang.

Beberapa sifat transfer listrik dan magnetik yang bisa dieksplorasi pada bahan ini diantaranya hubungan antara resistivitas dengan temperatur serta pengukuran magnetisasi terhadap temperatur, dimana dengan mengetahui hubungan ini kita dapat mengetahui transisi fasa elektrik maupun magnetik yang terjadi pada bahan ini. Teori untuk menjelaskan berbagai sifat yang muncul pada bahan ini juga dapat dikembangkan sehingga didapatkan pemahaman yang lebih mendalam pada bahan ini.

DAFTAR PUSTAKA

- [1] El-Hagary, M, Y.A. Shoker, et. Al, (2008), *Structural and magnetic properties of* polycrystalline $La_{0.67}Sr_{0.23}Mn_{1-x}Cu_xO_3$ ($0 \le x \le 0.5$) manganites. Journal of Alloys and Compounds, 17434
- [2] Hu, Jifan, Hongwei Qin, et.al, (2002), Enhancement of room temperature magnetoresistance in La_{0.67}Sr_{0.23}Mn_{1-x}Ti_xO₃ manganites. Journal of material Science and Engineering B90,146-148.
- [3] Dinesen, Anders Reves, (2004), magnetocaloric and magnetoresistive properties of La_{0.67}Ca_{0.23-x}Sr_xMnO₃, Denmark: Riso National Laboratory.
- [4] Zener, Clarence, (1951), Interaction between the d-Shells in the Transition Metals. II. Ferromagnetic compound of Manganese with Perovskite Structure, Physical Review vol 82 number 3, 403-405
- [5] Millis, A. J., P. B. Littlewood, and B. I. Shraiman (1995). Double exchange alone does not explain the resistivity of La_{1-x}Sr_xMnO₃. Physical Review Letters, 74 (25), 5144–5147.
- [6] Hwang, H. Y., S.-W. Cheong, P. G. Radeaelli, M. Marezio, and B. Batlogg (1995). Lattice effects on the Magnetoresistance in Doped LaMnO₃. Physical Review Letters, 75 (5), 914–917.
- [7] Wei, Luo, Zhu Lin-Li, et al. (2009). *Grain size effect on electrical conductivity and giant magnetoresistance of bulk magnetic polycrystalline*. Chin. Phys. Lett. Vol 26 No 11 117502
- [8] Kutty. T.R.N, John Philip. Grain size-dependent electrical transport properties in La_{0.75}Sr_{0.25}Mn_{1-x}Mg_xO_{3±8} ceramics. 2002. Material research Bulletin 37 (2002) 33-48.
- [9] Hueso L.E, J. Rives. *Tuning of colossal magnetoresistance via grain size change in* La_{0.67}Ca_{0.33}MnO₃. 1999. Journal of Applied Physics vol 86 number 7.
- [10] Muthuselvam, I.Panner, R.N. Bhowmik. (2012). Grain size dependent magnetization, electrical resistivity and magnetoresistance in mechanically milled La_{0.67}Sr_{0.33}MnO₃. Journal of Alloys and Compounds 511 (2012) 22-30.

- [11] Hossain Akhter, A.K.M, L.F.Cohen, et al. (1999) Influence of grain size on magnetoresistance properties of bulk La_{0.67}Ca_{0.33}Mn_{3-δ}. Journal of Magnetism and magnetic materials 192 (1999) 263-270.
- [12] Yang. J, B.C. Zhao, R.L. Zhang, et al. *The effect of grain size on electrical transport and magnetic properties of* La_{0.9}Te_{0.1}MnO₃.
- [13] R.D. Sanchez, J. Rivas, et al. (1996) Giant magnetoresistance in fine particle of La_{0.67}Ca_{0.33}MnO₃ synthesized at low temperature. Appl. Phys. Lett. 68 134
- [14] Ning Zhang, Weiping Ding, Wei Zhong, Wei Yang, Youwei Du, (1997). Structure-dependent change of magnetism in the magnetic oxide La_{0.85}Sr_{0.15}MnO₃. J. Phys: Condens. Matter 9 4281
- [15] Gupta, A. G.Q. Gong, Gang Xiao, et al. (1996). Grain-boundary effect on the magnetoresistance properties of perovskite manganite films. 1996. Phys.Rev B vol 54 number 22.
- [16] Wang, X.L, P. Gehringer, W. Lang, et al. (2001). Effect of grain connectivity and density on the magnetoresistance in Ca or Li doped lanthanum manganites. Solid state Communication 117 53-56
- [17] Zang, Ning. (1997). *Tunnel-type giant magnetoresistance in the granular perovskite* La_{0.85}Sr_{0.15}MnO₃.. Phys.Rev B vol 56 number 13.
- [18] Sebastian, Litti, A.K. Shukla, and J. Gopalakrishnan. (2000). La_{0.9}Sr_{0.1}Ga_{0.8}M_{0.2}O_{3- δ} : *Transition metal substituted derivatives of lanthanum-strontium-gallium-magnesium (LSGM) perovskite oxide ion conductor*. Bull. Matter. Sci., vol. 23, No. 3 pp. 169-173.
- [19] Goodenough J.B. A. Wold, R.J. Arnott, and N.Menyuk. (1961). Relationship between crystal symmetry and magnetic properties of ionic compounds containing Mn³⁺. Physical Review vol 124 number 2.
- [20] Zhang. J.H, X.J. Fan, Xiong, and X.G. Li. (2000) Fe doping effects on the magnetic and transport properties in La_{0.67}Sr_{0.33}Mn_{1-x}Fe_xO₃ .2000. Solid state Comm 115 531-534.
- [21] Goldschimdt, V. (1958). Geochemistry. Oxford University Press
- [22] P.W Akins, Physical Chemistry, Oxford University Press, 1990

- [23] B.D. Cullity. 2001. *Element of X-ray diffraction*, Third Edition. Massachusets: Addison Wesley Publishing Company Inc
- [24] Anderson, P.W, H. Hasegawa. (1959). *New approach to the theory of superexchange interaction*. Phys.Rev. 115, 2-13
- [25] Anderson, P.W, H. Hasegawa. (1955). *Consideration on double exchange*. Physical Review Vol.100 no.2 p.675-681
- [26] Kallel, N. G. Dezanneau. et al. (2003). Structure magnetic and electrical behavior of La_{0.7}Sr_{0.3}Mn_{1-x}Ti_xO₃ with 0≤x≤0.3. Journal of magnetism and magnetic material 261 (2003) 56-65.
- [27] Urushibara, A. Y. Moritomo, et al. (1995). *Insulator-metal transition and giant magnetoresistance in* La_{1-x}Sr_xMnO₃. Phys. Rev B Vol 51 number 20.
- [28] G. H. Jonker. (1954). Semiconducting properties of mixed crystals with perovskite structure. Physica vol 20 issues 7-12 p.1118-1122
- [29]CUI Yu-jian et al. (2004). Study of transport behavior for Fe-doping La0.67Sr0.33MnO3 perovskite manganese. Journal of Zhejiang University SCIENCE 5 (5) 603-608
- [30] Mitchell, Brian S. (1962). An introduction to material engineering and science for chemical and material engineers. USA : John Willey & Sons Inc.
- [31] R.D, Shannon. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32 751-767.
- [32] Tiwari Ashutosh, K.P. Rajeev. (1999). *Metal-Insulator Transition in* $La_{0.7}Sr_{0.3}Mn_{1-x}Fe_xO_3$. J Appl Phys 86 5175
- [33] M.M. Xavier Jr, F.A.O. Cabral, J.H. de Araujo et al. (2004). Reentrant spin glass behavior in polycrystalline La_{0.7}Sr_{0.3}Mn_{1-x}Fe_xO₃. Mat. Research. Vol 7, No2, 355-357.
- [34] J.M. Barandiaran, F.J. Bermejo et al. (2007). *Spin disorder in Fe-doped manganites*. Journal of Non-crystalline solid 353 757-762
- [35] A Chainani, M. Mathew, and D.D Sarma. (1993). *Electronic structure of La*₁₋ $_xSr_xFeO_3$. Phys Rev B vol 48 14 818.

- [36] S.K. Barik, C. Krisnamoorthi, R. Mahendiran. (2011). Effect of Fe substitution on magnetocaloric effect in La_{0.7}Sr_{0.3}Mn_{1-x}Fe_xO₃ (0.05≤x≤0.20). Journal of Magnetism and Magnetic Materials 323 1015–1021
- [37] Alka V Deskmukh et al. (2009). Effect of iron doping on electrical, electronic and magnetic properties of La_{0.7}Sr_{0.3}MnO₃. J.Phys d. Appl Phys 42 185410 (5pp).
- [38] A.de Andres et al. (1999). Conduction channels and magnetoresistance in polycrystalline manganites. Phys Rev B. vol 60 no.10 7328-7334.

LAMPIRAN

PERALATAN YANG DIGUNAKAN

• Timbangan digital

• Planetary Ball Mill (PBM) dan vial PBM

• Peralatan kompaksi

• Tungku pemanas (*Furnace*)

٠

• Spektroskopi difraksi sinar-x (XRD)

Pengambilan data XRD dilakukan dengan difraktometer XRD SHIMADZU-7000 yang menggunakan radiasi Cu K α yang terdapat di laboratorium fisika Universitas Islam Negeri Ciputat dengan rentang sudut 2 θ dari 20° sampai 100°.

Spektroskopi Scanning Electron Microscope (SEM)

• Four Point Probe (FPP)

Peralatan ini terdiri dari dua buah *current source* untuk memberikan arus pada koil dan sampel dengan merek thubythandar. Untuk mengukur arus digunakan μ voltmeter dengan merek Keithley dan pengatur arus konstan dengan merek Yokogawa.

FPP ini terdiri dari 4 kabel keluaran dimana duakabel dihubungkan dengan voltmeter dan 2 kabel lainnya dihubungkan dengan sumber arus konstan. Sedangkan sumbera arus DC dihubungkan dengan koil elektromagnetik yang akan digunakan sebagai sumber pembangkit medan magnet.

Kemudian dari balik voltmeter dan sumber arus DC dihubungkan dengan computer mealui panel depan IEEE-488 GPIB. Sedangkan alat control suhu dihubungkan dengan computer melalui chart serial 232. Peralatan ini dikontrol melalui computer dengan program Borlad C. Dengan menggunakan peralatan FPP ini kita dapat juga mengukur besarnya rasio magnetoresistansi pada suatu bahan. Skema dari peralatan ini dapat dilihat pada gambar berikut

LAMPIRAN

HASIL DIFRAKSI SINAR X BAHAN DASAR

File: LA203.DI 28-apr-2012 11:04 _____ File created with PowDLL. Nikos Kourkoelis (nkourkou@cc.uoi.gr) Sample identification: Data measured at: 0-jan-2044 **:04:00 Diffractometer type: Tube anode: Generator tension [kV]: 35 Generator current [mA]: 30 Wavelength Alpha1 [•]: 1.54056 Wavelength Alpha2 [•]: 1.54439 Intensity ratio (alpha2/alpha1): 0.500 Thin film collimator: YES Scatter slit (0.1 mm): NO Monochromator used: Start angle [ø2é]: 10.020 79.980 End angle [ø2é]: Step size [ø2é]: 0.020 Maximum intensity: 1648.360 Time per step [s]: 411.200 Type of scan: Scan mode: 0.000 Fixed angle: Smooth factor: Weights and Levers: Intensities converted to: FIXED Minimum peak tip width: 0.00 Maximum peak tip width: 1.00 Peak base width: 2.00 Minimum significance: 0.75 Number of peaks: 24 Angle d-value d-value Peak width Peak int Back. int Rel. int Signif. [ø2é] [counts] [counts] [ø2é] à1 [•] à2 [•] [8] 15.750 5.6220 5.6360 0.160 1648 100.0 11.72 289 17.245 5.1378 5.1506 0.280 276 0.3 0.94 4 27.350 3.2582 3.2663 0.200 853 199 51.7 14.58 28.075 3.1757 74.3 3.1836 0.180 1225 193 10.15 30.420 2.9360 2.9433 0.240 174 0.84 17 1.0

188

56

538

85

169

142

135

130

11.4

3.4

32.7

5.1

1.53

4.81

3.48

1.75

0.060

0.320

0.140

0.140

31.685

36.170

39.670

42.425

2.8216

2.4814

2.2701

2.1289

2.8286

2.4875

2.2758

2.1341

47.170	1.9252	1.9300	0.240	79	121	4.8	3.49
48.345	1.8811	1.8858	0.200	204	119	12.4	1.99
48.840	1.8632	1.8678	0.220	365	119	22.1	6.91
50.075	1.8201	1.8246	0.320	52	117	3.1	4.15
55.440	1.6560	1.6601	0.320	92	104	5.6	7.20
56.455	1.6286	1.6326	0.240	49	104	3.0	2.27
57.870	1.5921	1.5960	0.320	23	102	1.4	1.31
58.920	1.5662	1.5701	0.400	20	100	1.2	1.97
64.100	1.4516	1.4552	0.360	56	102	3.4	5.48
65.120	1.4313	1.4348	0.400	19	104	1.2	1.48
69.725	1.3476	1.3509	0.120	48	94	2.9	1.81
71.190	1.3234	1.3267	0.480	13	94	0.8	1.96
72.940	1.2959	1.2991	0.480	7	94	0.4	1.33
75.910	1.2524	1.2555	0.320	18	104	1.1	0.97
77.700	1.2280	1.2310	0.440	49	114	3.0	4.94

Kurva XRD bahan dasar La₂O₃

File: MNCO3.DI

22-dec-2011 12:45

_____ File created with PowDLL. Nikos Kourkoelis (nkourkou@cc.uoi.gr) Sample identification: Data measured at: 0-jan-2044 **:04:00 Diffractometer type: Tube anode: Generator tension [kV]: 35 Generator current [mA]: 30 Wavelength Alpha1 [•]: 1.54056 Wavelength Alpha2 [•]: 1.54439 Intensity ratio (alpha2/alpha1): 0.500 Thin film collimator: YES Scatter slit (0.1 mm): NO Monochromator used: Start angle [ø2é]: 10.020 End angle [ø2é]: 79.980 Step size [ø2é]: 0.020 Maximum intensity: 1927.210 Time per step [s]: 411.200 Type of scan: Scan mode: Fixed angle: 0.000 Smooth factor: Weights and Levers: Intensities converted to: FIXED Minimum peak tip width: 0.00 Maximum peak tip width: 1.00 Peak base width: 2.00 Minimum significance: 0.75 Number of peaks: 14

Angle	d-value	d-value	Peak width	Peak int	Back. int	Rel. int	Signif.
[øze]	al [•]	az [•]	[020]	[Counts]	[COUNTS]	[]	
24.330	3.6553	3.6644	0.160	729	888	37.8	5.76
31.415	2.8452	2.8523	0.100	1927	936	100.0	3.74
37.540	2.3939	2.3998	0.160	282	930	14.6	1.81
41.445	2.1769	2.1823	0.100	292	924	15.2	0.90
44.890	2.0175	2.0225	0.120	52	930	2.7	0.88
45.155	2.0063	2.0113	0.120	253	930	13.1	1.30
49.690	1.8333	1.8378	0.160	90	924	4.7	1.00
51.770	1.7644	1.7688	0.360	353	930	18.3	11.42
60.120	1.5378	1.5416	0.280	108	924	5.6	2.92
63.830	1.4570	1.4607	0.320	61	924	3.2	1.18
67.680	1.3832	1.3867	0.240	61	924	3.2	2.66
72.280	1.3061	1.3093	0.120	44	912	2.3	0.79
76.090	1.2499	1.2530	0.400	12	912	0.6	0.84
78.015	1.2238	1.2268	0.240	29	912	1.5	1.13

File: SRCO3.DI 22-dec-2011 12:44 _____ File created with PowDLL. Nikos Kourkoelis (nkourkou@cc.uoi.gr) Sample identification: Data measured at: 0-jan-2044 **:04:00 Diffractometer type: Tube anode: Generator tension [kV]: 35 Generator current [mA]: 30 Wavelength Alpha1 [•]: 1.54056 Wavelength Alpha2 [•]: 1.54439 Intensity ratio (alpha2/alpha1): 0.500 Thin film collimator: YES Scatter slit (0.1 mm): NO Monochromator used: Start angle [ø2é]: 10.020 End angle [ø2é]: 79.980 Step size [ø2é]: 0.020 Maximum intensity: 6528.640 Time per step [s]: 411.200 Type of scan: Scan mode: Fixed angle: 0.000 Smooth factor: Weights and Levers: Intensities converted to: FIXED 0.00 Minimum peak tip width: Maximum peak tip width: 1.00 Peak base width: 2.00 Minimum significance: 0.75 Number of peaks: 38

Angle [ø2é]	d-value à1 [•]	d-value à2 [•]	Peak width [ø2é]	Peak int [counts]	Back. int	Rel. int	Signif.
11.155	7.9253	7.9450	0.480	24	718	0.4	0.85
12.935	6.8384	6.8554	0.800	74	778	1.1	1.08
20.410	4.3477	4.3585	0.100	412	973	6.3	2.35
21.135	4.2001	4.2106	0.120	164	980	2.5	1.29
25.235	3.5263	3.5350	0.140	6529	1056	100.0	28.55
25.870	3.4411	3.4497	0.140	3091	1063	47.4	16.54
29.660	3.0095	3.0170	0.120	437	1076	6.7	2.60
31.580	2.8307	2.8378	0.080	361	1082	5.5	1.55
34.590	2.5910	2.5974	0.200	185	1082	2.8	2.14
35.185	2.5485	2.5549	0.140	870	1082	13.3	6.63
36.260	2.4754	2.4816	0.140	973	1089	14.9	6.53
36.585	2.4542	2.4603	0.200	1640	1089	25.1	22.02
39.845	2.2606	2.2662	0.120	86	1082	1.3	0.75

41.390	2.1797	2.1851	0.140	475	1082	7.3	5.50
43.065	2.0987	2.1039	0.100	135	1076	2.1	0.93
44.140	2.0500	2.0551	0.140	1648	1076	25.2	13.13
45.700	1.9836	1.9886	0.120	635	1076	9.7	4.15
46.650	1.9454	1.9503	0.120	424	1069	6.5	3.17
47.745	1.9033	1.9081	0.120	745	1069	11.4	5.29
49.950	1.8243	1.8289	0.080	416	1063	6.4	1.02
50.330	1.8115	1.8160	0.160	234	1063	3.6	1.36
51.725	1.7658	1.7702	0.160	102	1063	1.6	1.25
53.105	1.7232	1.7274	0.320	56	1056	0.9	1.34
55.110	1.6651	1.6693	0.280	59	1050	0.9	2.41
56.755	1.6207	1.6247	0.200	69	1050	1.1	1.20
57.305	1.6064	1.6104	0.100	185	1050	2.8	1.28
58.890	1.5669	1.5708	0.120	188	1043	2.9	1.57
59.890	1.5431	1.5470	0.200	180	1043	2.8	2.74
61.555	1.5053	1.5091	0.320	29	1037	0.4	0.79
62.895	1.4764	1.4801	0.320	55	1037	0.8	1.52
63.955	1.4545	1.4581	0.060	177	1030	2.7	1.02
65.415	1.4255	1.4291	0.320	69	1030	1.1	1.22
66.730	1.4006	1.4041	0.240	52	1030	0.8	1.99
72.070	1.3094	1.3126	0.160	112	1024	1.7	1.49
73.715	1.2842	1.2874	0.120	135	1024	2.1	1.26
75.190	1.2626	1.2657	0.120	86	1024	1.3	2.04
76.075	1.2501	1.2532	0.120	74	1024	1.1	1.23
77.655	1.2286	1.2316	0.160	100	1024	1.5	1.30

Kurva XRD bahan dasar SrCO₃

File: FE2O3.DI

_____ File created with PowDLL. Nikos Kourkoelis (nkourkou@cc.uoi.gr) Sample identification: Data measured at: 0-jan-2044 **:04:00 Diffractometer type: Tube anode: Generator tension [kV]: 35 Generator current [mA]: 30 Wavelength Alpha1 [•]: 1.54056 Wavelength Alpha2 [•]: 1.54439 Intensity ratio (alpha2/alpha1): 0.500 Thin film collimator: YES Scatter slit (0.1 mm): NO Monochromator used: Start angle [ø2é]: 10.020 End angle [ø2é]: 79.980 Step size [ø2é]: 0.020 Maximum intensity: 2070.250 Time per step [s]: 411.200 Type of scan: Scan mode: 0.000 Fixed angle: Smooth factor: Weights and Levers: Intensities converted to: FIXED Minimum peak tip width: 0.00 Maximum peak tip width: 1.00 Peak base width: 2.00 Minimum significance: 0.75 Number of peaks: 18

Angle	d-value	d-value	Peak width	Peak int	Back. int	Rel. int	Signif.
[ø2é]	à1 [•]	à2 [•]	[ø2é]	[counts]	[counts]	[%]	
24.235	3.6694	3.6786	0.100	818	1347	39.5	3.21
31.415	2.8452	2.8523	0.120	71	1490	3.4	0.80
33.215	2.6950	2.7017	0.180	2070	1498	100.0	22.95
35.690	2.5136	2.5199	0.140	1391	1529	67.2	10.19
40.920	2.2036	2.2091	0.060	484	1552	23.4	4.40
49.520	1.8392	1.8437	0.080	576	1568	27.8	2.46
50.235	1.8147	1.8192	0.120	0	1568	0.0	1.01
54.135	1.6928	1.6970	0.080	552	1576	26.7	2.51
54.275	1.6887	1.6929	0.060	296	1576	14.3	0.96
57.670	1.5971	1.6011	0.080	117	1584	5.6	0.92
62.520	1.4844	1.4881	0.100	335	1584	16.2	2.76
64.060	1.4524	1.4560	0.080	328	1592	15.8	1.73
64.235	1.4488	1.4524	0.060	164	1592	7.9	0.97
69.715	1.3477	1.3511	0.640	19	1584	0.9	0.76
70.805	1.3296	1.3329	0.240	19	1576	0.9	0.84

xxvi

72.005	1.3104	1.3137	0.080	112	1576	5.4	2.49
75.605	1.2567	1.2598	0.320	45	1576	2.2	0.81
77.975	1.2243	1.2274	0.400	18	1584	0.9	0.82

LAMPIRAN

DATA XRD PADUAN

File: LSMO.DI _____

10-jun-2012 16:12

Data measured at:	1-jan-1980 11:30:00
Diffractometer type: Tube anode: Generator tension [kV]: Generator current [mA]: Wavelength Alpha1 [•]: Wavelength Alpha2 [•]: Intensity ratio (alpha2/alpha1): Thin film collimator: Scatter slit (0.1 mm): Monochromator used:	Xx 0 0 1.54060 0.00000 0.000 YES NO NO
Start angle [ø2é]:	10.000
End angle [ø2é]:	99.920
Step size [ø2é]:	0.020
Maximum intensity:	1722.250
Time per step [s]:	0.000
Type of scan:	STEP
Intensities converted to:	FIXED
Minimum peak tip width:	0.00
Maximum peak tip width:	1.00
Peak base width:	2.00
Minimum significance:	0.75
Number of peaks:	22

Angle	d-value	d-value	Peak width	Peak int	Back int	Rel int	Signif
rmgrc [~26]				[compto]	Lack. Inc	ro. 1	orgniri.
[øze]	ai [•]	az [•]	[øze]	[counts]	[Counts]	[8]	
22.800	3.8971	0.0000	0.140	380	177	22.1	4.32
32.415	2.7598	0.0000	0.120	1722	182	100.0	6.46
32.600	2.7445	0.0000	0.140	1482	182	86.1	6.35
40.040	2.2500	0.0000	0.160	299	182	17.4	5.99
40.375	2.2321	0.0000	0.120	94	180	5.5	1.06
46.125	1.9664	0.0000	0.120	18	177	1.0	0.92
46.645	1.9457	0.0000	0.120	635	174	36.9	4.65
52.705	1.7353	0.0000	0.400	37	172	2.2	2.32
57.975	1.5895	0.0000	0.120	350	166	20.3	2.54
58.360	1.5799	0.0000	0.100	128	166	7.4	1.11
67.920	1.3789	0.0000	0.200	86	161	5.0	2.65
68.390	1.3706	0.0000	0.080	102	161	5.9	1.00
72.915	1.2963	0.0000	0.320	21	159	1.2	0.91

xxviii

77.420 77.775 82.140	1.2317 1.2270 1.1725	0.0000 0.0000 0.0000	0.200 0.120 0.240	59 69 22	161 164 164	3.4 4.0 1.3	1.43 1.13 1.41
86.555	1.1237	0.0000	0.160	34	169	2.0	1.10
86.850	1.1206	0.0000	0.120	23	169	1.3	0.88
91.445	1.0759	0.0000	0.960	6	169	0.3	1.26
95.520	1.0405	0.0000	0.200	56	169	3.3	1.61
95.890	1.0374	0.0000	0.120	56	169	3.3	1.44
96.390	1.0334	0.0000	0.080	34	169	2.0	1.23

File: LSMF02.DI

File created with PowDLL. Nikos Kourkoel:	is (nkourkou@cc.uoi.gr)
Sample identification:	
Data measured at:	0-jan-2044 ^^:04:00
Diffractometer type: Tube anode: Generator tension [kV]: Generator current [mA]: Wavelength Alpha1 [•]: Wavelength Alpha2 [•]: Intensity ratio (alpha2/alpha1): Thin film collimator: Scatter slit (0.1 mm): Monochromator used: Start angle [ø2é]: End angle [ø2é]: Step size [ø2é]: Maximum intensity: Time per step [s]: Type of scan: Scan mode: Fixed angle: Smooth factor: Weights and Levers:	35 30 1.54056 1.54439 0.500 YES NO 20.020 99.980 0.020 3080.250 411.200
Intensities converted to:	FIXED
Minimum peak tip width: Maximum peak tip width: Peak base width: Minimum significance: Number of peaks:	0.00 1.00 2.00 0.75 27

Angle	d-value	d-value	Peak width	Peak int	Back. int	Rel. int	Signif.
[ø2é]	à1 [•]	à2 [•]	[ø2é]	[counts]	[counts]	[%]	
23.115	3.8446	3.8542	0.120	605	282	19.6	4.22
30.250	2.9521	2.9594	0.240	15	299	0.5	0.87
32.730	2.7339	2.7407	0.100	2673	303	86.8	4.58
32.925	2.7181	2.7249	0.140	3080	306	100.0	13.00
38.665	2.3268	2.3326	0.240	34	296	1.1	0.89
40.330	2.2345	2.2400	0.120	480	299	15.6	4.29
40.665	2.2168	2.2224	0.060	240	299	7.8	0.93
47.010	1.9314	1.9362	0.140	1109	306	36.0	10.05
47.145	1.9261	1.9309	0.080	548	306	17.8	0.95
52.810	1.7321	1.7364	0.120	90	299	2.9	1.30
53.025	1.7256	1.7299	0.160	94	299	3.1	1.12

ххх

58.345	1.5803	1.5842	0.120	615	303	20.0	4.52
58.710	1.5713	1.5752	0.120	303	303	9.8	3.59
58.890	1.5669	1.5708	0.060	156	303	5.1	0.96
68.300	1.3722	1.3756	0.080	172	296	5.6	0.94
68.730	1.3646	1.3680	0.080	225	296	7.3	1.62
68.925	1.3612	1.3646	0.060	112	296	3.6	0.98
73.315	1.2902	1.2934	0.160	36	299	1.2	0.88
77.790	1.2268	1.2298	0.100	94	296	3.1	0.86
78.095	1.2227	1.2258	0.160	142	296	4.6	1.67
78.405	1.2187	1.2217	0.120	71	296	2.3	0.96
82.515	1.1681	1.1710	0.240	36	296	1.2	2.23
86.865	1.1204	1.1232	0.060	71	292	2.3	0.89
87.700	1.1119	1.1146	0.400	26	292	0.8	1.10
95.800	1.0381	1.0407	0.160	81	299	2.6	1.25
96.240	1.0346	1.0371	0.120	81	299	2.6	1.03
96.710	1.0308	1.0333	0.120	77	299	2.5	1.40

xxxi

Pengaruh doping..., Frilla Renty Tama Saputra, FMIPA UI, 2012
File: LSMF03.DI

_____ File created with PowDLL. Nikos Kourkoelis (nkourkou@cc.uoi.gr) Sample identification: Data measured at: 0-jan-2044 **:04:00 Diffractometer type: Tube anode: Generator tension [kV]: 35 Generator current [mA]: 30 Wavelength Alpha1 [•]: 1.54056 Wavelength Alpha2 [•]: 1.54439 Intensity ratio (alpha2/alpha1): 0.500 Thin film collimator: YES Scatter slit (0.1 mm): NO Monochromator used: Start angle [ø2é]: 20.020 End angle [ø2é]: 99.980 Step size [ø2é]: 0.020 Maximum intensity: 2480.040 Time per step [s]: 411.200 Type of scan: Scan mode: Fixed angle: 0.000 Smooth factor: Weights and Levers: Intensities converted to: FIXED Minimum peak tip width: 0.00 Maximum peak tip width: 1.00 Peak base width: 2.00 Minimum significance: 0.75 Number of peaks: 21

Angle	d-value	d-value	Peak width	Peak int	Back. int	Rel. int	Signif.
[ø2é]	à1 [•]	à2 [•]	[ø2é]	[counts]	[counts]	[응]	
23.175	3.8348	3.8444	0.140	445	262	18.0	3.20
32.775	2.7302	2.7370	0.120	2480	303	100.0	5.48
32.990	2.7129	2.7197	0.140	2275	303	91.7	9.58
40.380	2.2318	2.2374	0.120	412	310	16.6	3.04
40.745	2.2127	2.2182	0.120	202	310	8.1	1.92
47.055	1.9296	1.9344	0.160	967	306	39.0	10.89
53.080	1.7239	1.7282	0.120	85	299	3.4	1.14
58.385	1.5793	1.5832	0.080	586	299	23.6	1.72
58.760	1.5701	1.5740	0.100	276	299	11.1	1.38
68.325	1.3717	1.3751	0.140	144	296	5.8	2.36
68.805	1.3633	1.3667	0.100	219	296	8.8	1.86
73.280	1.2907	1.2939	0.400	23	296	0.9	1.54
77.830	1.2262	1.2293	0.160	94	296	3.8	1.19

xxxii

78.145	1.2221	1.2251	0.160	130	296	5.2	1.28
82.585	1.1673	1.1702	0.160	32	299	1.3	0.83
86.905	1.1200	1.1228	0.120	49	289	2.0	1.04
87.705	1.1118	1.1146	0.400	16	292	0.6	0.96
91.615	1.0743	1.0770	0.640	8	296	0.3	1.65
95.710	1.0389	1.0415	0.120	69	296	2.8	0.82
96.170	1.0351	1.0377	0.160	96	296	3.9	1.40
96.735	1.0306	1.0331	0.120	58	299	2.3	2.18

File: LSMF04.DI

File created with PowDLL. Nikos Kourkoel	is (nkourkou@cc.uoi.gr)
Sample identification:	
Data measured at:	0-jan-2044 **:04:00
Diffractometer type: Tube anode: Generator tension [kV]: Generator current [mA]: Wavelength Alpha1 [•]: Wavelength Alpha2 [•]: Intensity ratio (alpha2/alpha1): Thin film collimator: Scatter slit (0.1 mm): Monochromator used:	35 30 1.54056 1.54439 0.500 YES NO
Start angle [ø2é]: End angle [ø2é]: Step size [ø2é]: Maximum intensity: Time per step [s]: Type of scan: Scan mode: Fixed angle: Smooth factor: Weights and Levers: Intensities converted to:	20.020 99.980 0.020 2641.960 411.200 0.000 FIXED
Minimum peak tip width: Maximum peak tip width: Peak base width: Minimum significance: Number of peaks:	0.00 1.00 2.00 0.75 21

Angle	d-value	d-value	Peak width	Peak int	Back. int	Rel. int	Signif.
[ø2é]	àl [•]	à2 [•]	[ø2é]	[counts]	[counts]	[%]	
23.115	3.8446	3.8542	0.140	445	306	16.9	3.62
32.700	2.7363	2.7431	0.120	2642	331	100.0	4.65
32.920	2.7185	2.7253	0.100	2218	335	84.0	3.98
40.325	2.2347	2.2403	0.080	488	335	18.5	1.07
40.705	2.2148	2.2203	0.120	156	335	5.9	2.00
46.955	1.9335	1.9383	0.200	1018	339	38.5	18.37
53.025	1.7256	1.7299	0.120	83	328	3.1	0.95
58.145	1.5852	1.5892	0.080	420	331	15.9	1.32
58.310	1.5811	1.5850	0.120	586	331	22.2	3.25
58.680	1.5720	1.5759	0.080	228	331	8.6	2.25
68.170	1.3745	1.3779	0.100	119	328	4.5	0.97

xxxiv

68.685 73.280 77.695 78.035 82.370 86.755 87.685	1.3654 1.2907 1.2280 1.2235 1.1698 1.1215 1.1120	1.3688 1.2939 1.2311 1.2266 1.1727 1.1243 1.1148	0.060 0.240 0.120 0.120 0.320 0.100 0.320	210 27 100 139 36 58 22 79	324 328 328 328 324 324 324 324	8.0 1.0 3.8 5.3 1.4 2.2 0.8	2.04 1.18 2.38 0.89 1.28 0.83 0.83
87.685 95.645	1.1120	1.1148	0.320 0.240	22 79	324 324 324	0.8	0.85
96.070 96.650	1.0359 1.0313	1.0385 1.0338	0.160 0.160	86 58	328 328	3.3 2.2	1.22 1.06

File: LSMF05.DI

File created with PowDLL. Nikos Kourkoel	is (nkourkou@cc.uoi.gr)
Sample identification:	
Data measured at:	0-jan-2044 **:04:00
Diffractometer type: Tube anode: Generator tension [kV]: Generator current [mA]: Wavelength Alpha1 [•]: Wavelength Alpha2 [•]: Intensity ratio (alpha2/alpha1): Thin film collimator: Scatter slit (0.1 mm): Monochromator used:	35 30 1.54056 1.54439 0.500 YES NO
Start angle [ø2é]:	20.020
End angle [ø2e]: Step size [ø2é]:	99.980
Maximum intensity: Time per step [s]: Type of scan:	3047.040 411.200
Fixed angle:	0.000
Smooth factor:	
Weights and Levers: Intensities converted to:	FIXED
Minimum peak tip width: Maximum peak tip width:	1.00
Peak base width:	2.00
Minimum significance:	0.75
Number of peaks:	19
11 6	

Angle	d-value	d-value	Peak width	Peak int	Back. int	Rel. int	Signif.
[ø2é]	à1 [•]	à2 [•]	[ø2é]	[counts]	[counts]	[응]	
				1000			
23.145	3.8397	3.8493	0.140	645	353	21.2	5.86
32.725	2.7343	2.7411	0.160	2704	365	88.7	10.75
32.925	2.7181	2.7249	0.140	3047	365	100.0	10.53
40.330	2.2345	2.2400	0.120	445	361	14.6	3.50
40.710	2.2145	2.2200	0.120	182	361	6.0	1.47
46.965	1.9331	1.9379	0.140	1024	361	33.6	10.11
53.010	1.7260	1.7303	0.160	83	357	2.7	0.84
58.285	1.5817	1.5857	0.160	576	357	18.9	7.24
58.655	1.5726	1.5765	0.080	237	357	7.8	0.81
68.175	1.3744	1.3778	0.200	117	357	3.8	1.53
68.660	1.3658	1.3692	0.140	159	361	5.2	1.91

xxxvi

73.210	1.2918	1.2950	0.400	29	357	1.0	1.41
77.670	1.2284	1.2314	0.060	112	361	3.7	1.11
77.990	1.2241	1.2272	0.120	130	357	4.3	1.16
82.425	1.1691	1.1720	0.640	24	357	0.8	1.64
86.660	1.1225	1.1253	0.120	45	369	1.5	1.50
95.555	1.0402	1.0427	0.120	85	361	2.8	1.21
95.895	1.0374	1.0399	0.160	90	361	3.0	1.68
96.520	1.0323	1.0349	0.200	50	365	1.7	0.97

LAMPIRAN

PERHITUNGAN UKURAN BUTIR

1. Standardisasi Alat

Pada awal percobaan dilakukan standarisasi alat untuk mengetahui dan mengurangi kesalahan akibat faktor instrumen, dengan sampel standar sillikon yang memiliki pundak yang sangat sempit dan intensitas puncak tinggi. Berkut ini merupakan data XRD dari silikon:

No	2	Int rel	FWHM (deg)	FWHM (rad)
1	28.4497	100	0.1354	0.002363176
2	47.3174	68	0.1273	0.002221804
3	56.141	29	0.1349	0.002354449
4	69.1453	7	0.1313	0.002291617
5	76.408	16	0.1311	0.002288127
6	88.059	17	0.1385	0.002417281
7	94.9826	11	0.1383	0.00241379
8	106.7388	5	0.1568	0.002736676
9	114.1278	10	0.1579	0.002755875

2. Mencari nilai hkl dari masing-masing puncak pada masing-masing sampel

Nilai hkl dari masing-masing sampel diperoleh dari refinement dengan menggunakan perangkat lunak GSAS (*General Structure Analysis System*). Berikut ini merupakan nilai hkl dari masing-masing paduan La_{0.67}Sr_{0.33}Mn_{1-x}Fe_xO₃.

 $La_{0.67}Sr_{0.33}MnO_3$

2θ eks (deg)	Int. rel	h	k	1
22.8	22.1	1	0	-2
32.415	100	1	1	0
32.6	86.1	1	1	0

xxxviii

40.04	17.4	2	0	2	
40.375	5.5	2	0	2	
46.125	1.0	2	0	-4	
46.645	36.9	2	0	-4	
52.705	2.2	2	1	-2	
57.975	20.3	3	0	0	
58.36	7.4	2	1	4	
67.92	5.0	2	2	0	
68.39	5.9	2	2	0	
72.915	1.2	3	1	2	
77.42	3.4	3	1	-4	
77.775	4.0	3	1	-4	/ 1
82.14	1.3	4	0	-2	· J
86.555	2.0	4	0	4	_
86.85	1.3	4	0	4	
91.445	0.3	3	2	-2	
95.52	3.3	4	1	0	
95.89	3.3	4	1	0	
96.39	2.0	3	1	8	

 $La_{0.67}Sr_{0.33}Mn_{0.95}Fe_{0.05}O_{3}$

2θ eks (deg)	Int. rel	h	k	-1	
23.115	19.6	1	0	-2	
32.73	86.8	1	1	0	
32.925	100	1	0	4	
40.33	15.6	2	0	2	
40.665	7.8	0	0	6	
47.01	36	2	0	-4	
47.145	17.8	2	0	-4	
52.81	2.9	2	1	-2	
53.025	3.1	1	1	6	
58.345	20.0	2	1	4	
58.71	9.8	1	0	-8	

xxxix

58.89	5.1	1	0	-8
68.3	5.6	2	2	0
68.73	7.3	2	0	8
68.925	3.6	2	0	8
73.315	1.2	3	0	6
77.79	3.1	3	1	-4
78.095	4.6	2	1	-8
78.405	2.3	2	1	-8
82.515	1.2	4	0	-2
86.865	2.3	4	0	4
95.8	2.6	3	2	4
96.24	2.6	3	2	4
96.71	2.5	1	1	12

 $La_{0.67}Sr_{0.33}Mn_{0.9}Fe_{0.1}O_{3}$

	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -				
2 θ eks (deg)	Int. rel	h	k	1	
23.175	18.0	1	0	-2	
32.775	100.0	1	0	4	
32.99	91.7	1	0	4	
40.38	16.6	2	0	2	
40.745	8.1	0	0	6	
47.055	39.0	2	0	-4	
53.08	3.4	1	1	6	
58.385	23.6	1	0	-8	
58.76	11.1	1	0	-8	
68.325	5.8	2	2	0	
68.805	8.8	2	0	8	
73.28	0.9	3	0	6	
77.83	3.8	3	1	-4	
78.145	5.2	2	1	-8	
82.585	1.3	2	2	6	
86.905	2.0	4	0	4	
87.705	0.6	0	0	12	

91.615	0.3	2	1	10
95.71	2.8	4	1	0
96.17	3.9	3	1	8
96.735	2.3	1	1	12

$La_{0.67}Sr_{0.33}Mn_{0.9}Fe_{0.1}O_{3}$

2θ eks (deg)	Int. rel	h	k	1	
23.115	16.9	1	0	-2	
32.7	100.0	71	0	4	
32.92	84.0	1	0	4	
40.325	18.5	2	0	2	
40.705	5.9	0	0	6	
46.955	38.5	2	0	-4	
53.025	3.1	1	1	6	
58.145	15.9	2	1	4	
58.31	22.2	2	1	4	
58.68	8.6	1	0	-8	
68.17	4.5	2	2	0	
68.685	8.0	2	0	8	
73.28	1.0	3	0	6	
77.695	3.8	3	- 1	-4	
78.035	5.3	2	1	-8	
82.37	1.4	4	0	-2	
86.755	2.2	4	0	4	
87.685	0.8	0	0	12 -	
95.645	3.0	4	1	0	
96.07	3.3	3	1	8	1
96.65	2.2	1	1	12	

 $La_{0.67}Sr_{0.33}Mn_{0.5}Fe_{0.5}O_{3}$

2θ eks (deg)	Int. rel	h	k	1
----------------------	----------	---	---	---

23 145	21.2	1	0	_2]
23.143	21.2	1	0	-2	
32.725	88.7	1	0	4	
32.925	100.0	1	0	4	
40.33	14.6	2	0	2	
40.71	6.0	0	0	6	
46.965	33.6	2	0	-4	
53.01	2.7	2	1	-2	
58.285	18.9	2	1	4	
58.655	7.8	1	0	-8	
68.175	3.8	2	2	0	
68.66	5.2	2	0	8	
73.21	1.0	3	0	6	
77.67	3.7	3	1	-4	/ / No
77.99	4.3	2	1	-8	
82.425	0.8	2	2	6	
86.66	1.5	4	0	4	
95.555	2.8	4	1	0	
95.895	3.0	3	1	8	
96.52	1.7	1	1	12	

3. Penentuan sudut yang digunakan untuk menghitung ukuran butir

Langkah selanjutnya dilakukan perhitungan butir. Untuk melakukan perhitunan ini dibuat asumsi bahwa strain pada arah orientasi dominan (*preferred orientation*) pada bidang 110 untuk sampel $La_{0.67}Sr_{0.33}MnO_3$ dan bidang 104 untuk sampel $La_{0.67}Sr_{0.33}Mn_{1-x}Fe_xO_3$ dengan x = 0; 0.05; 0.1; 0.15; dan 0.5 adalah yang paling maksimum, sehingga strain pada bidang yang tegak lurus dengan arah orientasi dominan (*preferred orientation*) mendekati 0. Untuk itu dilakukan perhitungan sudut yang dibentuk antara bidang-bidang dengan bidang yang memiliki arah orientasi dominan (*preferred orientation*) dengan rumus berikut:

$$\cos\phi = \frac{\frac{h_1h_2 + k_1k_2}{a^2} + \frac{l_1l_2}{c^2}}{\sqrt{\left(\frac{h_1 + k_1}{a^2} + \frac{l_1}{c^2}\right)\left(\frac{h_2 + k_2}{a^2} + \frac{l_2}{c^2}\right)}}$$

Dengan bidang preferred orientation dan nilai parameter kisi untuk setiap penambahan doping Fe, maka sudut antar bidang dapat dihitung. Hasil perhitungan sudut untuk masing-masing paduan dapat dilihat dalam tabel berikut ini.

2θ (rad)	h1	k1	11	h2	42	12	Parame	ter Kisi	င္လာေရ	d(rad)	d(deg)
20 (140)	111	K1	11	112	K2	12	a (m)	c(m)	- τος φ	ψ(1αα)	φ(ueg)
22.8	1	1	0	1	0	-2	5.50E-10	1.34E-09	0.545905	0.993328	56.9135
32.415	1	1	0	1	1	0	5.50E-10	1.34E-09	1	0	0
32.6	1	1	0	1	1	0	5.50E-10	1.34E-09	1	0	0
40.04	1	1	0	2	0	2	5.50E-10	1.34E-09	0.653875	0.858101	49.16559
40.375	1	1	0	2	0	2	5.50E-10	1.34E-09	0.653875	0.858101	49.16559
46.125	1	1	0	2	0	-4	5.50E-10	1.34E-09	0.545905	0.993328	56.9135
46.645	1	1	0	2	0	-4	5.50E-10	1.34E-09	0.545905	0.993328	56.9135
52.705	1	1	0	2	1	-2	5.50E-10	1.34E-09	0.89026	0.472881	27.09409
57.975	1	1	0	- 3	0	0	5.50E-10	1.34E-09	0.707107	0.785398	45
58.36	1	1	0	2	1	4	5.50E-10	1.34E-09	0.763918	0.701433	40.18916
67.92	1	1	0	2	2	0	5.50E-10	1.34E-09	-1	0	0
68.39	1	1	0	2	2	0	5.50E-10	1.34E-09	1	0	0
72.915	1	1	0	3	1	2	5.50E-10	1.34E-09	0.865574	0.5245	30.05165
77.42	1	1	0	3	1	-4	5.50E-10	1.34E-09	0.793328	0.65454	37.5024
77.775	1	1	0	3	1	-4	5.50E-10	1.34E-09	0.793328	0.65454	37.5024
82.14	1	1	0	4	0	-2	5.50E-10	1.34E-09	0.692589	0.805724	46.16457
86.555	1	1	0	4	0	4	5.50E-10	1.34E-09	0.653875	0.858101	49.16559
86.85	1	1	0	4	0	4	5.50E-10	1.34E-09	0.653875	0.858101	49.16559
91.445	1	1	0	3	2	-2	5.50E-10	1.34E-09	0.955976	0.297828	17.06426
95.52	1	1	0	4	1	0	5.50E-10	1.34E-09	0.857493	0.54042	30.96376
95.89	1	1	0	4	1	0	5.50E-10	1.34E-09	0.857493	0.54042	30.96376
96.39	1	1	0	3	1	8	5.50E-10	1.34E-09	0.61951	0.902678	51.71963

La_{0.67}Sr_{0.33}Mn_{0.5}Fe_{0.5}O₃

2θ (rad)	h1	Ŀ1	11	h2	12	12	Parame	ter Kisi	cos d	d(rad)	h(deg)
20 (140)	111	K1	11	112	K2	12	a(m)	c(m)	ς τος φ	φ(ιαα)	ψ(ucg)
23.115	1	0	4	1	0	-2	5.50E-10	1.34E-09	-0.14279	1.714078	98.20944
32.73	1	0	4	1	1	0	5.50E-10	1.34E-09	0.366969	1.195047	68.47117
32.925	1	0	4	1	0	4	5.50E-10	1.34E-09	1	0	0
40.33	1	0	4	2	0	2	5.50E-10	1.34E-09	0.805347	0.634535	36.3562
40.665	1	0	4	0	0	6	5.50E-10	1.34E-09	0.854791	0.545649	31.26339
47.01	1	0	4	2	0	-4	5.50E-10	1.34E-09	-0.14279	1.714078	98.20944
47.145	1	0	4	2	0	-4	5.50E-10	1.34E-09	-0.14279	1.714078	98.20944
52.81	1	0	4	2	1	-2	5.50E-10	1.34E-09	0.140162	1.430172	81.94279
53.025	1	0	4	1	1	6	5.50E-10	1.34E-09	0.924155	0.391977	22.45866
58.345	1	0	4	2	1	4	5.50E-10	1.34E-09	0.880689	0.493481	28.2744
58.71	1	0	4	1	0	-8	5.50E-10	1.34E-09	-0.66718	2.301217	131.85
58.89	1	0	4	1	0	-8	5.50E-10	1.34E-09	-0.66718	2.301217	131.85
68.3	1	0	4	2	2	0	5.50E-10	1.34E-09	0.366969	1.195047	68.47117
68.73	1	0	4	2	0	8	5.50E-10	1.34E-09	1	0	0
68.925	1	0	4	2	0	8	5.50E-10	1.34E-09	1	0	0
73.315	1	0	4	3	0	6	5.50E-10	1.34E-09	0.94401	0.336216	19.26377
77.79	1	0	4	3	1	-4	5.50E-10	1.34E-09	0.041792	1.528992	87.60479
78.095	1	0	4	2	1	-8	5.50E-10	1.34E-09	-0.44655	2.033697	116.5222
78.405	1	0	4	2	1	-8	5.50E-10	1.34E-09	-0.44655	2.033697	116.5222
82.515	1	0	4	4	0	-2	5.50E-10	1.34E-09	0.335938	1.228195	70.37039
86.865	1	0	4	4	0	4	5.50E-10	1.34E-09	0.805347	0.634535	36.3562
95.8	1	0	4	3	2	4	5.50E-10	1.34E-09	0.747949	0.72583	41.58701
96.24	1	0	4	3	2	4	5.50E-10	1.34E-09	0.747949	0.72583	41.58701
96.71	1	0	4	1	1	12	5.50E-10	1.34E-09	0.922769	0.39559	22.66563

 $La_{0.67}Sr_{0.33}Mn_{0.9}Fe_{0.1}O_{3}$

2θ (rad)	h1	k1	11	h2	k2	12	Parame	ter Kisi	cos φ	φ(rad)	φ(deg)
20 (lau)							a(m)	c(m)			
23.175	1	0	4	1	0	-2	5.51E-10	1.34E-09	-0.14307	1.714354	98.22525

32.775	1	0	4	1	0	4	5.51E-10	1.34E-09	1	0	0
32.99	1	0	4	1	0	4	5.51E-10	1.34E-09	1	0	0
40.38	1	0	4	2	0	2	5.51E-10	1.34E-09	0.805331	0.634562	36.35775
40.745	1	0	4	0	0	6	5.51E-10	1.34E-09	0.854859	0.545518	31.25589
47.055	1	0	4	2	0	-4	5.51E-10	1.34E-09	-0.14307	1.714354	98.22525
53.08	1	0	4	1	1	6	5.51E-10	1.34E-09	0.924189	0.391891	22.45368
58.385	1	0	4	1	0	-8	5.51E-10	1.34E-09	-0.66734	2.30143	131.8622
58.76	1	0	4	1	0	-8	5.51E-10	1.34E-09	-0.66734	2.30143	131.8622
68.325	1	0	4	2	2	0	5.51E-10	1.34E-09	0.36689	1.195132	68.47605
68.805	1	0	4	2	0	8	5.51E-10	1.34E-09	1	0	0
73.28	1	0	4	3	0	6	5.51E-10	1.34E-09	0.944014	0.336202	19.26297
77.83	1	0	4	3	1	-4	5.51E-10	1.34E-09	0.041547	1.529237	87.61884
78.145	1	0	4	2	1	-8	5.51E-10	1.34E-09	-0.44678	2.033955	116.537
82.585	1	0	4	2	2	6	5.51E-10	1.34E-09	0.838758	0.575799	32.99085
86.905	1	0	4	4	0	4	5.51E-10	1.34E-09	0.805331	0.634562	36.35775
87.705	1	0	4	0	0	12	5.51E-10	1.34E-09	0.854859	0.545518	31.25589
91.615	1	0	4	2	1	10	5.51E-10	1.34E-09	0.972706	0.234176	13.41731
95.71	1	0	4	4	1	0	5.51E-10	1.34E-09	0.503369	1.043303	59.77684
96.17	1	0	4	3	1	8	5.51E-10	1.34E-09	0.957612	0.292202	16.74196
96.735	1	0	4	1	1	12	5.51E-10	1.34E-09	0.922804	0.395501	22.66052

 $La_{0.67}Sr_{0.33}Mn_{0.85}Fe_{0.15}O_{3}$

20	h1	k1	11 h2 k2		12	Parame	Parameter Kisi		(rad)	d(deg)	
20			**				a (m)	c(m)	του φ	φ(παα)	(ucg)
23.115	1	0	4	1	0	-2	5.50E-10	1.34E-09	-0.14319	1.714484	98.23271
32.7	1	0	4	1	0	4	5.50E-10	1.34E-09	1	0	0
32.92	1	0	4	1	0	4	5.50E-10	1.34E-09	1	0	0
40.325	1	0	4	2	0	2	5.50E-10	1.34E-09	0.805324	0.634575	36.35848
40.705	1	0	4	0	0	6	5.50E-10	1.34E-09	0.854891	0.545456	31.25235
46.955	1	0	4	2	0	-4	5.50E-10	1.34E-09	-0.14319	1.714484	98.23271
53.025	1	0	4	1	1	6	5.50E-10	1.34E-09	0.924204	0.39185	22.45133
58.145	1	0	4	2	1	4	5.50E-10	1.34E-09	0.880715	0.493426	28.27121
58.31	1	0	4	2	1	4	5.50E-10	1.34E-09	0.880715	0.493426	28.27121

58.68	1	0	4	1	0	-8	5.50E-10	1.34E-09	-0.66742	2.301531	131.868
68.17	1	0	4	2	2	0	5.50E-10	1.34E-09	0.366853	1.195173	68.47834
68.685	1	0	4	2	0	8	5.50E-10	1.34E-09	1	0	0
73.28	1	0	4	3	0	6	5.50E-10	1.34E-09	0.944017	0.336196	19.2626
77.695	1	0	4	3	1	-4	5.50E-10	1.34E-09	0.041432	1.529353	87.62546
78.035	1	0	4	2	1	-8	5.50E-10	1.34E-09	-0.44689	2.034077	116.544
82.37	1	0	4	4	0	-2	5.50E-10	1.34E-09	0.335676	1.228474	70.38636
86.755	1	0	4	4	0	4	5.50E-10	1.34E-09	0.805324	0.634575	36.35848
87.685	1	0	4	0	0	12	5.50E-10	1.34E-09	0.854891	0.545456	31.25235
95.645	1	0	4	4	1	0	5.50E-10	1.34E-09	0.503318	1.043362	59.78024
96.07	1	0	4	3	1	8	5.50E-10	1.34E-09	0.957617	0.292185	16.74099
96.65	1	0	4	1	1	12	5.50E-10	1.34E-09	0.92282	0.395459	22.65811

 $La_{0.67}Sr_{0.33}Mn_{0.5}Fe_{0.5}O_{3}$

20 (1)		k1	11	h2	1.0	10	Parameter Kisi			17.1	
2θ (rad)	nı				к2	12	a(m)	c(m)	cos ¢	φ(rad)	φ(deg)
23.145	1	0	4	1	0	-2	5.51E-10	1.34E-09	-0.14232	1.7136	98.18207
32.725	1	0	4	1	0	4	5.51E-10	1.34E-09	1	0	0
32.925	1	0	4	1	0	4	5.51E-10	1.34E-09	1	0	0
40.33	1	0	4	2	0	2	5.51E-10	1.34E-09	0.805375	0.634489	36.35352
40.71	1	0	4	0	0	6	5.51E-10	1.34E-09	0.854673	0.545876	31.27639
46.965	1	0	4	2	0	-4	5.51E-10	1.34E-09	-0.14232	1.7136	98.18207
53.01	1	0	4	2	1	-2	5.51E-10	1.34E-09	0.140525	1.429805	81.92179
58.285	1	0	4	2	1	4	5.51E-10	1.34E-09	0.880658	0.493547	28.27815
58.655	1	0	4	1	0	-8	5.51E-10	1.34E-09	-0.66691	2.300848	131.8289
68.175	1	0	4	2	2	0	5.51E-10	1.34E-09	0.367106	1.1949	68.46272
68.66	1	0	4	2	0	8	5.51E-10	1.34E-09	1	0	0
73.21	1	0	4	3	0	6	5.51E-10	1.34E-09	0.944002	0.33624	19.26515
77.67	1	0	4	3	1	-4	5.51E-10	1.34E-09	0.042216	1.528568	87.58048
77.99	1	0	4	2	1	-8	5.51E-10	1.34E-09	-0.44614	2.033249	116.4966
82.425	1	0	4	2	2	6	5.51E-10	1.34E-09	0.838637	0.576019	33.00348
86.66	1	0	4	4	0	4	5.51E-10	1.34E-09	0.805375	0.634489	36.35352
95.555	1	0	4	4	1	0	5.51E-10	1.34E-09	0.503666	1.042959	59.75716

95.895	1	0	4	3	1	8	5.51E-10	1.34E-09	0.957583	0.292301	16.74762
96.52	1	0	4	1	1	12	5.51E-10	1.34E-09	0.92271	0.395744	22.67448

4. Menghitung ukuran butir dari masing-masing sampel

Dari hasil perhitungan sudut yang dibentuk antara bidang orientasi dominan dengan bidang dari masing-masing puncak pada seluruh sampel, kita cari bidang yang membentuk sudut yang hampir tegak lurus dengan bidang orientasi dominan. Langkah selanjutnya adalah mennghitung besarnya harga lebar setengah puncak dari masing-masing sampel (β_{eks}), kemudian menghitung besarnya koreksi pelebaran instrumental untuk mendapatkan lebar puncak yang sesungguhnya (β_{ub}) dengan menggunakan rumus

$$\beta_{ub} = \sqrt{\beta_{eks}^2 - \beta_{ins}^2}$$

Ukuran butir dari paduan $La_{0.67}Sr_{0.33}Mn_{1-x}Fe_xO_3$ dapat dihitung dengan menggunakan persamaan Scherrer sebagai berikut:

$\sigma = \frac{0.9\lambda}{\beta_{ub}\cos\theta}$

hasil perhitungan butir dari masing-masing paduan $La_{0.67}Sr_{0.33}Mn_{1-x}Fe_xO_3$ dapat dilihat pada tabel berikut

				and the second	the second se		
sampel	20 (°)	β _{eks} (°)	β_{eks} (rad)	β_{ins}	β_{ub}	λ (m)	$\sigma\left(\text{m}\right)$
X=0	46.645	0.169	0.0029	0.0022	0.00194	1.54E-10	7.78269E-08
X=0.05	77.79	0.228	0.0040	0.0023	0.003256	1.54E-10	5.47178E-08
X=0.1	77.83	0.239	0.0042	0.0023	0.003488	1.54E-10	5.109 17E-08
X=0.15	77.695	0.256	0.0045	0.0023	0.003838	1.54E-10	4.6389E-08
X=0.5	77.67	0.213	0.0037	0.0023	0.00293	1.54E-10	6.07501E-08