EMBEDDING PROGRAMMING LOGICS IN HOL
THEQREM PROVER

A, Azurat, |.S.W_B. Prasetya, and S.D.Swiersira

Institule of Information and Computing Sciences V4 ‘/
Utrecht Universily, P.O.Box 80,089
3508 TB Ulrecht , the Netherlands
email : {ade,wishnu,doaitse}@es.uunl

ABSTRACT

HOL is a theorem prover based on a higher order
logic. Ils expressive logic makes il suitable for embedding
propramming logics. Compared to other theorem provers,
HOL is atiraclive because of ils familiar and intuitive
lopic and because il is highly programmable. In this paper
we will cornpare a number of cornmonly used embedding
approaches in HOL and oulline their strength and
weakness. We will also outline a new allermative called
hybrid embedding that combines lhe sirength of other
approaches, though some price will have to be paid.

L INTRODUCTION

Program verilication 1s a larpe, ledious, and quite often
complicale task, It is tao error prone if done without the
computer aid. In the formal verificalion community,
implementing a lopic in a compuler is ofien called
mechanizing, the logic and (he implementation is called
the mechanization of the lopic. Once a logic is
mechanized, proof checking becomes aulomalic. Proof
aulomation ability (the computer autornatically constructs
proofs) can subsequenily be built on top of a
mechanizalion.

Embedding is a special mechanization technigue. An
embedding of a logic L1 in another logic Lz is the semantic
encoding of Li in the language of L2, intended lo allow
iools for L2 1o be extended to L1 [8). So if L2 is already
mechanized, the mechanizalion alse exiends to Li.
Typically the inference rules of L1 will be represented as
formulas of L2 This gives another advantage of
embedding, namely that it is possible to venly the
soundness of those inference rules with respect to the
semnantics of L1 in terms of L2, This is very useful when
experimenting with new and complicaled logics.

Theorem provers such as HOL, PVS, and COQ are
essentially mechanizations. They are however special
because their logics are very expressive, and therefore are
excellent (0 be used as “hosts” for embedding. HOL is
especially altractive because it is based on a very familiar
and intuitive logic and because it is easy for the users (o
build customized proof utilities.

JURNAL ILMU KOMPUTER DAN TEKNOLOGI INFORMASI, VOL. 2 NO. 1, MEI 2002

‘They are various ways 1o do embedding. For example,
we can dislinguish them into so-called shallow and deep
embedding{5], Deep embedding embeds a logic
completely, whereas shallow embedding only does this
partially. Consequently, we can do less wilh shallow
embedding, but il is also easier o construct. In some
embedding of programming logics, programs vanables are
represented by [irst class values in the hest logic.
Depending on what we wan! 1o use a logic for, this can be
an imporiant aspecl, For example, program
transformations, composilion, and refinements are oflen
constramed by conditions which require first class
representation ol program variables 1o formulate. On the
other bhand, approaches in which variables are not
represented as first class values Iypically produce cleaner
representalions, This paper will give a comparison
belween these approaches. As it \ums oul, none of these
appreaches can be considered as ideal for HOL. One of
the problems is

HOL's limited lype system. This is unfortunate
because, as said, HOL has scveral aspects which for
implementors are very allraclive. Therefore a new
alternative called hybrid embedding will be oullined. It
can be easily buill as an extension of HOL, It does not
have the problems of the other approaches, althcugh some
price will have to be paid.

Seclion 2 describes the running example we will use o
compare (he embedding approaches. Section 3, 4 and 5
discuss the approaches and their problems. All
ambeddings larpet HOL as the host logic. We will
however strip irrelevant HOL notalional deiails from the
code, Section 6 outlines an allernative approach. Finally
Section 7 gives some conclusion.

2. RUNNING EXAMPLE: VSPL

Consider a very simple programming logic—
abbreviated VSPL- described in Fipure 1. VSPL
programs are either a skip, an assignment, or a nested
conditional. VSPL two lypes of values, namely Boolean
and Integer. The logic is the standard Hoare logic. VSPL
will be our running example.

18

EMBEDDING PROGRAMMING LOGICS IN HOL THEOREM PROVER (A, Asurad el al)

I. Grammar:
Stmi 1 skip

\ Variable .= Ixpr

| if Fxpr then Stmt else Stmr
Ixpr 0 Expr=Ixpr

| Fxpr ™ Fxpr

| Fxpr — Iocpr

| fxpr + Expr

| = Expr

| Variablc

Spec 1 {lxpr)} St {Ixpr)
| [£xpr]
2. Inference rules:
1P =0l

Skip Rule _
{1} skip {0}

[P = Q1 x))
{PYx:= E O}

Assipnment Rule

{P A g}AlO), {F A -5} B{O)
{P} if g then A else BlO}

Jf-then-¢lse Rule

Figure 1: ¥8P1,

3. SHALLOW-F EMBEDDING

This section will show a shallow embedding of VSPL
in HOL using an approach where VSPL voriables are
represenied by first class HOL values. This embedding
will be called Shallow-F embedding.

3.1. Semantic

Shallow embedding concenirates on how the
semantics of the guest logic can be represented in a
thecrem prover, It is less concerned with various synlactic
structures and constrainis of the guest logic.

A slale of a program al a given momenl describes the
values of the program’s variables al that moment. We can
represent a stale by a funclion (rom variables 1o values,
We can use siring to represent varables (aclually,

variables’ names). This representation is quile simple and

is used by many others, e.g. [2, 7, 10, 13]. Allemnatively,
one can also use lisis to represent states.

Since VSPL only has two kind of values, booleans and
integers, we can represent VSPL values in HOL with the
foltowing HOL data type:

Code 3.1

datatype Value IB =
fromInt int | fromBool bool

JURNAL 1LMU KOMPUTER DAN TEKNOLOGI INFORMASI, VOL, 2 NO. 1, MEI 2002

However, il we use this specilic datatype the resulting
embedding of VSPL inference rules will only work on that
specific represenlalion of dala values: they cannot be
reused il one decides 1o extend VSPL with new types of
data values, To allow reuse, we can represenl VSPL data
values with a HOL type variable | which can taler be
inslantiated by a concrele HOL type. Alternalively, we
can represenl VSPL dala values by a specific HOL Lype
Value whose property is now left unspecilied. Whenever
we introduce a new VSPL type X we also add a function
that injecis X into Value. Both approaches are almost
equivalenl, however the second approach is sliphtly more
flexible, so we will [ocus on il. Below we define the
semaniic domains of VSPL:

Dehnition 3.2 ; Semantic domains of VSPL
type State = string = Value
type Expr = State =2 Value
type Pred = State =2 bool
type Stmt = State = State

We can now deline the HOL semantics of YSPL
slalemenls:

Definition 3.3 : Semantics of Stmt

SKIP ={s.5)

IFg THEN AELSEB =(s.il[(gs)thenAselseBs)
x ASGE = (w. i[v=xthen Eselses
v))

where s is of type Slate.

1, Skip-rule
|- {P ==>Q)=—>HOASKIP P Q
2. Cond-rule.
|-HOA A (P AND g) Q AHOA B (P AND NOTg) Q
=

HOA (IF g THEN AELSE B) P Q

3. Assign-rule
|- VALID {p IMP (g o {x ASG E)))
=
HOA (x ASGE)pgq

Figurc 2: VSPL's inference rules in HOL

3.2. Inferences Rules

VSPL's inference rules can be represented by HOL
formulas, Figure 2 shows the resulling HOL theorems,
representing VSPL’s inference rules. Proving them is
quile easy.

Passing theorems o HOL's Modus Ponens inference
rule will have the same effect as invoking Lhe inference
tules they represent. Since (VSPL) inference rules are

19

represented as (heorems, it means they have 1o be proven
firsi. So, no inference rule can be embedded if it cannot be
proven lo be derivable [rom ils semantics in HOL. So,
embedding is very safe,

3.3. Representing and Verifying Program
Consider the foltowing VSPL expression:

Example 3.4 :
bA~(x+1=)

One may expecl to represent lhe expression in HOL wilh:

Code 3.5;
(5. s ANDNOT (As. 5 ™"+ | =5 "y")

However this is not type correct. It requires states {the s)
1o be functions retuming boolean values (as in s "b") as
well as inlegers (as in s "x™ + 1). Moreover, we have
decided states are functions from State to Value.
Forlunately we have lefl the properly of Value
unspecified in the semantics. We can now say (hai it is
large enough lo conlain booleans and integers, We then
add the needed consiruclors to construcl a Value from a
boolean or integer and the corresponding and desiructors:

Drefinition 3.6 ; Construclors and Destruclors of Vahie
FromInt int % Value
fromBool : bool 2 Value
toInt : Value = int
toBool : Value = bool

In addition, we have 1o impose that each from-
function forms an injection and that its counterpart (the
corresponding to— funclion} is ils inverse. The expression
in Example 3.4 can now be represented correcily by:

Code 3.7 :
(s. (loBool 0 5) "b"™
AND
NOT(s. (1oInt 0 5) "x" + 1 = (1olnt 0 5) "y")

Unlortunately, the use of constructors and destruciors
clutters the represeniation to the point that it becomes
unreadable, even for a simple program. Consider the
following simple VSPL specificalion:

Example 3.8 :
{6 A—~(x=y)}
iflx=yhenx=x+lelsey=y+1
(b A-(x+1=3)}

Hereisits i'epresenlalion in HOL:

JURNAL ILMU KOMPUTER DAN TEKNOLOGI INFORMASI, VOL. 2 NO. 1, MEI 2002

Code 3.9:
HOA
(IF (\s. (tolnt 0 5) "x" = (tolnl 0 8} "v™)
THEN ("x" ASG (fromint o (:s. (lolnt 0 5) "x" + 1)))
ELSE ("y" ASG (frominl o (s. (1olnt 0 8} "y + 1))
((\s. {toBool 0 5) "b") AND
NOT(s. (lolnl o s} "x" = (toInl 0 5) "¥y")}
{(%s. (10lnt 0 5) "b") AND
NOT(s. (tolnt 0 5) "x” + 1 = (tolnt 0 5) "y"))

Here is another inconvenience. Consider again the
VSPL expression in Example 3.5, Il in VSPL b is
intended lo be an inleger vanable, then the expression is
not correctly typed in VSPL. However, ils represenlation
in HOL (Code 3.7) is a correcily lyped HOL expression,
repardless ihe intended YSPL 1ype of b. x, and y. S0, we
cannot rely on HOL's own type sysiem lo type check
VSPL sentences. A dedicated type checker for VSPL will
have to be built, either externally, or embedded inHOL.

shallow-F embedding also has a problem in
representing nested types, like array or list. Suppose we
now exlend the type of VSPL such that il allows (nested)
lists. Unless we wanl to rcpreseni each level of nesling
with a concrete HOL type, the obvious way to represent
VSPL Lype list in HOL is with the HOL type t list
where 1 is a type variable represcnling an arbitrary (ype.
However, we slill need the from- and to— [unclions. In
particular, the fxrom—- funclion has (o imjecl the type t
list into Value. Since t can be any lype, il is nol
possible in HOL 1o construct such an injeclion (else we
will be introducing the Russel paradox in HOLY) [6],

Recall that in the shallow-F embedding program
variables have first class HOL representalion (jn our
example, they are represented by HOL sirings). This is an
advantage when the embedded logic is intended 1o support
program {ransformations (note that programs compositicn
and refinement are special cases of transformations) since
they are ofien consirained by conditiens on the used
program variables,

For example, consider the following transformation. 1t
slates thal we can safely weaken the puard g “hofan i £-
then-else slatecment by dropping the h provided the
else branch can realize the post-condition if h does not
hold:

Example 3.10 =

{P}if g then else 4 else B {0}
{P A=k} B{O}
{P}if g A hthen A4 else B{0}

However we can also assert something stronger. The
following rule stales that il is sufficient to show (hal the
else branch does not modify any (free) variables of the

20

EMBEDDING PROGRAMMING LOGICS [N HOL THEOREM PROVER (A, Arsural et al)

post-condition Q when h does not hold:
Example 3.11:
{P}if g then A else B {(O}
Q is confined by V
B preserves V when —h
P A-h>q]
{P} if g Al then A else B{Q)

Given a predicate QQ and a sel of variables V , Q is
conlined by V means that V is a sel of the [ree varables in
Q. A preserves V when —h means that the aclion A will
not change any variable in V when —h holds. 1t is quite
obvious, that 10 defline the semantics of conflined and
reserves we will need first class representation of
variables —see [4]) for their formal deflinition.

4. SHALLOW-R EMBEDDING

This seclion will briefly show ancther shallow
embedding approach where (concrete) slales are
represented by records (allematively, although less
sophisticaled, one can use tuples). For example, consider a
program P with two variables, namely b and x, A stale of
P in which the value ol b is true and the value of x i5 0 can
be represenied by the {ollowing record in HOL: <| b=T;
x=0 [> Notice that b and x are the feld names of the
record. They are not {irst class HOL value, So we cannot,
[or example, prove in HOL that <| b=T; x=0 |> aclually
contains a field called x {although we can stili access the
value slored in any field),

The approach produces cleaner representations of
programs and specificalions and is used by many, for
example as in [12, I, 9].

The shallow-R embedding requires a slighily different
semaniic domains. As in the shallow-F embedding, the
type Pred tepresenls predicales, and Stmt represents
stalements. However, they are now parameierized by a
type variable s which represents the type of states of an
arbitrary VSPL programs;

Definition 4.1 : Semanlic domains
type 's Pred = 's < bool
type ‘s Stmt = s 2 's

With the excepiion of assignment, VSPL statements,
VSPL boolean operators and VSPL inference rules can be
defined in the same way as the shallow-F embedding,
though they should now be defined in terms of the new
semantic domains.

As for the assipnment, the target variable cannol be
concretely represenled in the shallow-R embedding. For

JURNAL ILMU KOMPUTER DAN TEKNOLOGI INFORMASI, VOL. 2 N0, 1, MEI 2002

example, the VSPL assignment x = x+1 is represented by
the slate transition [unclion: (s. s with x = s.x + 1),
Given a record 5 (representing a state). this funclion
updates the letd x with its otd value {(s.x) plus 1. We now
redeline ASG as follows:

Definition 4.2 : Semantics of Assignment

ASGf=T

The inference rule for assignment now looks like this in
HOL:

Delinition 4.3 ; Assign Rule
[-VALID (p IMP (g o))=—>HOA (ASGf)pgq

We can now represeni the VSPL specification in Example
3.8 as follows:

Code 4.4 ;
HOA
(IF (5. 5.x = 5.¥)
THEN (ASG (\s. s withx = (s.x + 1}))
ELSE {(ASG (s. s withy :==(s.y + {}})))
{(\s. 5.b) AND NOT (s. s.x =5.y))
((s. s.b) AND NOT (s.s.x+ 1 =5y))

where s is assurned 10 have a record type, which have al
least b, x, and y as fields. Compared to the shallow-F
embedding representation, this one is apparently cleancr.
shaltow-R embedding can also reuse much of HOL's
type checking Lo do ils own type checking. Consider again
the YSPL expression in Example 3.4. Ifb is intended 1o be
an integer variable, the expression is nol type correct in
VSPL. Recall that in the shallow-F embedding, HOL will
not be able 1o see this, unless a VSPL iype checker is
explicitly included in the embedding. In the shallow-R
embedding, the expression will be represented by:

((\s. 5.b) AND NOT (s s.x + 1 =s.%))

Since b is intended 10 be an inleger variable in VSPL, we
should choose a represenialion where the slales are
represenled by records where the field b has the type
inleger. So, s.b above retuns an integer. However, AND
expecls a boolearn, so the expression is also not lype
correct in HOL, and hence rejected.

shallow-R embedding also has no problem in
representing nested types {e.g. list and army) The
problem occurs in the shallow-F embedding because it
uses an intermediate lype Value to represent all possible
forms of VSPL values shallow- R embedding does nol
need such an intermediale representation However, the
shallow-R embedding also has ils drawback:

1. The fact that variable names is not represented by
first class HOL values means that we will nol be

21

able to embed program {ransformation nues
where variables names have lo be treated as [irsl
class values, such as the transformation rule in
Example 3,11.

2. Two programs P and @ with different set of
variables must be represenied using stales with
di_erent record types. To compose P and Q, we
musl consiruct a new record type which can
accommodale the vanables of both program and
subsequently introduce funclions lo inject the
state space of the oripinal P and Q into the new
state space. If we do a lol of composition, lhis
will clutter the representation (Unforunately
HOL does nol support extended record, which
will elirninate ihis problem. See For example |9]).

5. DEEP EMBEDDING

Shallow embedding does not represent every aspecl of
the embedded logic, For example, as in Sections 3 and 4,
slatements are fypically represented in HOL by functlions.
It is possible then, to prove in HOL whether two
programs, which are just compositions of funclions, are
equivalent. It is not however possible to prove in HOL, for
exarnple, that a propram contains & [east N assignments.

One can make a deeper embedding by making more
aspects of the embedded logic explicit in the guest logic.
Obviously a deeper embedding is more powerful, but, as
we will discuss later, it also has its own problems, It is
di_cull to say where the border between shallow and deep
embedding exactiy lies. Bul one can safely say (hat a
representation of a logic L1 in Lz such thal every aspect of
Li can be given semantics, and therefore analyzed, in Lzis
deep embedding.

So-called dala type is usually nsed to deeply embed a
lanpuage in HOL. Dala type is a data representation
methed common in functional languages. Using a data
type D one can conveniently represents the context free
grammar of a language L. Each of value of D will
represent the complete syntactical of the corresponding
sentence of L. Consider again the VSPL example. Here is
a fraction of the HOL data types represenling ils grammar:

datatype A_stmt =
8kip
| Asg string A expr
| IfThenElse A _expr A stmt A_stmt

HOL values of 1ype A_stml represents VSPL
statements. However, HOL does not know yet what the
relation belween A_simi-values and programs. We have lo
define so-called semanlic functions that define (he
intended rmeaning those values. For example, like this:

JURNAL ILMU KOMPUTER DAN TEKNOLOGI INFORMASI, VOL. 2 NO. t, ME] 2002

Definition 5.1 :

MSt Skip SKIP

MSt [(Asg x e) X ASG (MEx e)
Hst (1EThenElse g A B) =

IF {toBool o MEx g) THEN M5t A ELSE MSt
B

o

where SKIP, ASG, and IF-THEN-ELSE are HOL
constants as delined in the shaltow-F embedding {Section
3) and MEx is the semantic function {or the corresponding
deep embedding representation of VSPL expressions.
Nolice that the semantic funclion MSi aclually iranslates
our deep embedding representation of stalements to their
shallow embedding representation. In general, we can
view an embedding as to consists of layers where each
layer is more powerful than the layers beneath i, and is
defined semantically in terms of the latter.

Note also that the semantics of assignment cannot be
expressed in lerms of shallow-R embedding. Constder the
Tollowing atlempt Lo do so;

MSt {Asg x e} = {(\s. s with x := MEx
e s)

Note that the x in Asg x e is a HOL wvalue More
specifically, it is a HOL siring representing the name of
some VSPL variable. On ihe other hand, the x inside the
lambda expression refers (o a field name of a record.
Although the field has the same name as the other x, HOL
cannol compare an ordinary HOL value againsl arecord’s
field name. Field names are simply not [irst class HOL
values.

Nolice that given a slalemenl, which is now a value ol
HOL type A_simi, it is now possible in HOL to, for
example, count the number of assignments in it and prove
properiies about il.

As said, HOL data lypes can represent the complete
context free grammar of the embedded logic. This gives
another advantape, namely that it becomes easier 1o write
the parsers and pretty prinlers to interface the embedding
with the concrete synlax of the embedded logic L {11).
This will allow the users {0 interface with the embedding
in the language of L iwsell, rather than in lerms of
embedded representations which are quile unreadable for
human In prnciple, il is also possible o embed the
parsers and other syntax driven tools (such as a type
checker) for L in HOL. The advanlage is that their
comreciness can also be verified {though il does not mean
that it can be easily done).

Despile being more powerlul than shallow embedding,
deep embedding has ils own drawback. Programming
languages and their logics lend to evolve afier sometlime.
Some old features may be extended for some
improvement. If we add a new language construct 1o a
deeply embedded logtc L, its representing HOL data types
have to be extended (oo, along with their semantic

22

EMBEDDING PROGRAMMING LOGICS IN HOL THEOREM PROVER (A. Azural et al.)

deeply embedded logic L, ils representing HOL daia types
have 1o be extended loo, along with lheir semantic
functions. Unfortunately, this will cause the old inference
rules of L, which are embedded in HOL as theorems, 10 be
no longer valid. So we will have 10 prove them all over
again. Worse yet, because of the exlension, some of the
old proofs may now [ail, so we have to 'debug’ lhem,
which can be quiie time consuming.

Like in the shallow-F embedding, we also cannot use
HOL’s own lype checker to check il for example, a
A stmt valoe actually represent a well (yped VSPL

statement. A dedicated VSPL type checker will have 1o be
built,

6. AN ALTERNATIVE:
HYBRID EMBEDDING

Recall thal the embedding of a logic Ly in another
lopic L2 is aciually the representation of Lt tn L2, In
contrast 1o embedding, the direct mechanization of a losic
L. on some programming logic M is the implementation of
L directlly on M (so, not through an embedding), Tn
embedding, inference rules are embedded by proving
them [irsl. In direct mechamzation the rules are simply
coded in M. compared 1o embedding, direct
mechanization ©o_ers maximum power. since we can
simply code down any inference rule that we want, It
oflers minimutn mainlenance, since we do not have 1o
debug any prool, which can be quite costly. in case we
change L. On the other hand, embedding, in particular
deep embedding, offers maxinmum securily.

Suppose the logic L2 is mechanized in a propramming
language M. Hybrid embedding is an allemative
mechanization approach. Tt embeds a part of L1 in L2 and
directly mechanize the rest in M. Hybrid embedding
combines the power of direct mechanization and the
safety of embedding, Since only parl of Li is embedded,
changing L1 will also incur less maintenance work,
Because of this combination hybrid embedding is more
suilable for mechanizing an indusirial scale programming
logic,

For example, the hybrid embedding of VSPL in HOL.
which is mechanized in ML, may consisl of a shallow-F
embedding as described in Section 3 and a set of data
types representing VSPL's syniax and a set of semanlic
lunctions (such as the dala type A_stmt representing
VSPL statements and (he funciion Mst that maps
A stmt values lo their shallow-F embedding sernantics)
in the style of deep embedding as shown in Section 5.
However, unlike in the deep embeddinp, these data types
and semantic functions are no longer HOL values. They
are now implemented directly in ML. For example, il
becomes possible 1o circumvent the problem of
representing nesled lypes encounlered in Ihe shallow-F

JURNAL ILMU KOMPUTER DAN TEKNOLOGI INFORMAS!, VOL, 2 NO. 1, MEI 2002

embedding ~the solution is rather loo lechnical 1o explain,
see [4). On Ihe alther hand, we will nol be able 10. for
example, prove that the semantic funclion Mst is
monolenic,

Although directly coded (unembedded) inference rules
are in principle unsale, il is still possible 10 extend the
code of such a rule so that ils invocation generates a host
logic proof 1o validate the resull of the invocation. In this
way we can make such a rule safer. For some rules, it may
even be possible 1o nol only validale their resulls, but
completely verily them.

7. CONCLUDING REMARKS

We have discussed a number of embedding methods. The
following table summarizes their strength and weaknesses

‘Vable | Comparison of crabedding methods. ™= and "+ inalicile
weak/strong poinL " anl *+" indicate weakerfsironger poinl.

Criteria Shallow- | Shallow- | Deep | Hybrid
F R
Works Efford + + - -
Readability - - + T
Salety + + H _
Exiensibility & - - —-— +
Maintenance
Nesled ivpe - - - 4
Type checking - ++ + ¥
Program + _ - [n
Transformation |

Hybrid embedding, despite being less secure than
embedding, is still safer than mechanization without
embedding. It is power{ul and requires low mainlenance.
It is swilable For mechanizing indusirial scale
programming logic.

We are currently experimenting this approach in a lool
called xMECH [3]. The tool is essentially a hybrid
ecmbedding ol a logic For distributed systems. The logic
features a PROMELA like programming lanpuape, a
higher order expression language, and a UNITY siyle
specification language, The host logic is HOL. So far, we
are satisfied with the approach. The work is still on-going,
as we are experimenting with ways Lo improve ils
security,

REFERENCES

[11 Sten Aperholm, Mechanizing Program Verification
in HOL, Master’s thesis, Compuier Science
Department Aarhus Universily, 1992.

[2} Flemming Andersen, 4 Theorem Prover for UNITY
in Higher Order FLogic. PhD lhesis, Technical

23

141

(31

16]

17}

JURNAL ILMU KOMPUTER DAN TEKNOLOQG! INFORMASL, VOL. 2 NO. 1, MEI 2002

Report on Xmech., Fechnical Report UU-C8-2002-
008, Institute of Information and Compuling
Sciences Utrechl Universitly, P.O.Box 30,089 3508
TB Utrecht The Netherlands, January 2002.

A. Azratl and 1.5.W.B. Prasetya, A Survey on
Embedding Programming Logic in A Theorem
Prover, Technical Report UU-C$-2002-007,
Instilute ef Information and Computing Sciences
Utrecht University, P.Q.Box 80.089 3508 TB
Utrecht The Netherlands, January 2002,

R. Boullon, A. Gordon, M.J.C. Gordon, I, Herbert,
and J. van Tassel, Experiecnce With Embedding
Hardware Descriplion Languages in HOL, In Proc.
of the International Conference on Theorem
Provers in Circuit Design: Theory, Pracviice and
Fxperience, pages 129-156, WNijmegen, 1992
North-Holland,

Twan Laan, The fivolution of Type Theory in Logic
And Mathematics, PhD thesis, Technische
Universileil Eindhoven, 1997,

M.J.C. Gordon, Mechanizing Programming Logics
in Higher-order Logic, In G.M, Birtwistle and P A,
Subrahmanyam, edilors, Current JTrends in
Hardware Verification and Auwtomaiic Theorem
Proving (Proceedings of the Workshop on
Hardware Verification), pages 387-439, Banll,
Canada, 1988. Springer-Verlag, Berlin.

i8)

9]
119]
3);

[12]

(134

C'esar Mu noz and John Rushby, Structural
Embeddinps: Mechanization With Method, In
Jeannetie Wing and Jim Woodcock, edilors, FM99;
The World Congress in Formal Methods, volume
1708 of Lecture Notes in Computer Science, papes
452-471, Toulouse, France, sep 1999. Springer-
Verlag.

Lawrence C. Paulson, Mechanizing UNITY in
Isabelle, ACM Transactions on Computational
Logic, 1(1):3-32, July 2000.

[.S, W B, Prasetya, Mechanically Supported Design
of Seif-stabilizing Algorithms, PhD thesis, Utrecht
University, 1995.

§. D. Swierstra and P. Azero, Altrtbule Grammars
in The Functional Style, In Proceedings of the
812000, Chapman-Halil, 1998.

J. von Wright and K. Sere, Program
Transformations and Refinements in HOL, In Myla
Archer, Jennifer J. Joyce, Karl N. Leviti, and
Phillip J. Windley, edilors, Proceedings of the
International Workshop on the HOL Theorem
Proving System and its Applications, pages 231~
241, Los Alamilos, CA, USA, August 1992, IEEE
Computer Society Press,

Tanja Vos, Unity in Diversity: A Siratified
Approach to the Verification of Disiributed
Algorithm, PhD thesis, Utrecht University 2000.

24

