AKURASI WAVELENGHT-DISPERSIVE X-RAY FLOURESCENCE

H. Widyatmoko

Geologisches Institut der Universität zu Köln, Zülpicher Straße 49, 50674 D-Köln, Deutschland

E-mail: greencenter@cbn.net.id

Abstrak

X-ray Fuorescence spectrometry semakin sering digunakan dalam bidang geokimia. X-Fuorescence spectrometry dikategorikan menjadi dua yakni – WDXRF (wavelenght – dispersive X- ray fluorescence spectrometer) dan EDXRF (energy-dispersive X – ray fluorescence spectrometer). WDXRF dapat berbentuk sebagai sequential spectrometer, simultaneous spectrometer atau kelebihan dari kelebihan keduanya dikombinasikan menjadi satu perangkat yakni hibrid instrument. Masing-masing instrumen XFA mempunyai karakteristika dan kekhusussan dalam penggunaan. Penelitian ini menggunakan sequential spectrometer PW 1450 untuk menganalisis major, minor and trace elements dalam sample. Untuk mengkalibrasi PW 1450 digunakan 30 standar internasional dan 66 standar dari Institut für Mineralogie der Uni. Köln, Germany, yang telah diketahui konsentrasi masing-masing unsurnya. Interelement dan matrix effects dihilangkan dengan cara mencocokkan matrix pada sample dan standar, pengenceran, penambahan konsentrasi unsur-unsur yang dimaksud dalam jumlah tertentu, dan koreksi secara matematik pada saat analisis sedang berlangsung. Ujicoba pada dua sampel dan deskripsi statistik dengan standard deviation dan coefficient of variant menunjukkan bahwa XFA cukup akurat untuk beberapa unsur terutama unsur mayor, tetapi untuk Mg, Ca, K, Na, P, S, Co, Rb, Zn, Ni, Ba, Pb sensivitasnya masih lebih rendah dibandingkan dengan Atomic Absorpsion Spectrometer (FES), Inductively Coupled Plasma (ICP) dan photometer.

Abstract

Wavelenght-Dispersive X-Ray Flourescence Accuration. X-Fuorescence spectrometry is a method, which is increasingly applied in the geochemical analysis. X-Fuorescence spectrometry is classified under two categories -WDXRF (wavelenght - dispersive X-ray fluorescence spectrometer) and EDXRF (energy-dispersive X - ray fluorescence spectrometer). WDXRF can be configured as a sequential spectrometer, a simultaneous spectrometer or a hibrid instrument, which combines the advantages of the simultaneous and sequential spectrometers into one instrument. Each instrument is different in some characteristics, and each has applications for which it is specifically suited. In this investigation sequential spectrometer PW 1450 was used to analyze the major, minor and trace elements in the samples. The standards used in calibrating the PW 1450 for the analysis of all samples are materials of known composition (30 international standards and 66 standards from Institut für Mineralogie der Uni. Köln, Germany). Interelement and matrix effects are treated by matrix matching of samples and standards, dilution, preconcentration of the element of interest, and mathematic corrections during data analysis. The examination of two samples and the statistic description using standard deviation and coefficient of variant show that the XFA is accurate enaugh for many elements, especially for the major elements, but for Mg, Ca, K, Na, P, S, Co, Rb, Zn, Ni, Ba, Pb in comparison with Atomic Absorpsion Spectrometry (AAS), Flame Emission Spectrometer (FES), Inductively Coupled Plasma (ICP) and photometer it is less sensitive. It is possible to devaluate the errors by using coefficient of variant and standard deviation.

Keywords: XFA, examination, samples, statistic, accurate.

1. Pendahuluan

Hingga kini analisis konsentrasi unsur suatu bantuan masih banyak menggunakan metode kimia basah. Metode ini selain mahal, tidak praktis dan *labor intensive*. Karena ini metode analisis kering dengan teknik X-Ray Flourescence Analysis atau disingkat RFA semakin banyak digunakan dalam geokimia [1–5]. Untuk menganalisis major, minor dan trace elements cukup hanya 1gram sampel. Problem utama metode ini adalah perbedaan konsentrasi yng sangat besar antara major dan minor elements. Terutama untuk analisis

unsur-unsur yang terikat pada senyawa silikat dan oksida pada batuan magma, metamorf maupun sedimen, dengan beberapa pengecualian misalnya bauxit dan karbonat [5-7]. Untuk itu masih dibutuhkan metode lain seperti FAAS [8,9], FES [10], ICP-AES [11], *Spectral Photometer* maupun metode konvensional seperti gravimetri [12]. Tingkat akurasi XFA hanya dapat diketahui dengan membandingkan dengan teknik lain seperti AAS, FES, ICP, Photometer dan bahkan dengan metode konvensional seperti gravimetri.

Secara umum intensitas sinar X yang menembus suatu benda adalah sesuai dengan hukum Lambert $I = I_0 e^{-\mu xt}$ (I = Sinar yang menembus benda, I_0 = intensitas sinar, t = tebal benda, μ = koefisien Absorpsi). Jika terjadi *matrix intererences* maka konstante koefisien $\mu_m = \mu_x/\rho$ (ρ = density of the element)

Emisi Sinar X yang berasal dari sampel karena penyinaran harus dipilah-pilah dengan kristal analisator ke dalam spektrum panjang gelombang sehingga sinar X yang spesifik dari setiap unsur dapat diukur secara terpisah.

Untuk menganalisis sinar X digunakan dua macam teknik. Wavelengt-dispersive X-ray fluorescence (WDXRF) spectrometer dan energy-dispersive X-ray fluorescence (EDXRF) spectromemeter.

Untuk mencatat sinar X yang diinginkan digunakan *Scintillation detector* dan *gas flow proportional detector*. Keduanya mencakup panjang gelombang 0,2–10 Å (*Scintillation* 0.2–2 Å dan *gas flow detector* 2–10 Å). Wilayah mencatat unsur dengan nomor atom 12 – 60 (Mg – Nd) yakni transisi elektron dari kulit atom L, M dan N ke kulit atom K). Untuk bilangan atom 33 hingga 92 atau As – U mencatat transisi elektron dari M, N ke L.

Jenis sinar X dari unsur–unsur yang berat berhimpitan terlalu dekat. Sedangkan dari unsur ringan tidak. Untuk memilah-milah sinar X yang letaknya terlalu dekat digunakan kristal analisator dengan d (*distance between lattice panes in the crystal*) yakni 2 d = 8.742 Å. Perlu ditekankan di sini bahwa penggunaan kristal analisator dengan konstante *lattice* yang diketahui, maka setia garis spektrum sesuai dengan sudut θ pada persamaan Bragg (n. $\lambda = 2$ d sin θ). Pada saat pengukuran spektrometer dievakuasi, untuk meminimalkan absorpsi gelombang panjang dari udara.

Intensitas sinar karakteristik suatu unsur adalah proporsional konsentrasinya.

2. Metode Penelitian

Unsur-unsur dalam dua sampel (BX-N.XLS dan NBS-1C.XLS) yang secara kuantitatif telah dianalisis dengan FAAS Spectr. AA-40 Fa. VARIAN, ICP-AES OPTIMA 3000 Fa. Perkin Elmer, FES Corning 455 dan Spectral Photometer PMQ II Fa. Zeiss di analisis dengan *Wavelengt–Dispersive Sequential Automatic XFA* - PW 1450.

Untuk analisis RFA maka langkah pertama adalah mengeringkan sampel yang telah digiling lembut pada suhu 105°C selama 3 jam dan kemudian memasukannya ke dalam desikator. Setelah dingin sampel tersebut ditimbang sebanyak 1 gram dan dicampur dengan 1.7 gram NH₄NO₃, 0.05 gram NH₄J dan 6 gram Litetraborat (spectromelt). Sampel yang telah dicampur ini dimasukan ke dalam Pt-Crucible, dipanaskan pada suhu yang tidak begitu tinggi (tekanan gas propan sekitar 2,2 atmosfer) selama 5 menit agar sulfida dan arsenat tidak menguap dan merusak *Pt-crucible*. Setelah itu baru dilangsungkan pemanasan suhu tinggi yaitu 1200°C (tekanan propan 2,8) selama 6 menit. Akhirnya Ptcrucible yang berisi sampel yang telah meleleh ini didinginkan secara mendadak dengan tekanan udara (suhu sekitar 20°C) agar tidak terjadi proses rekristalisasi. Hasilnya adalah glass bead. Sebelum dianalisis dengan RFA glass bead ini ditimbang dahulu, untuk menentukan LOI (Loss on Ignition).

Analisis menggunakan perangkat RFA buatan Philips jenis "*PW 1450 Sequential Automatic X-Ray Spectrometer*". Untuk itu digunakan program *Oxiquant*-*Program X 40 dari Philips*. Untuk kalibrasi digunakan 30 standar internasional. Penelitian ini menggunakan 30 standar internasional (Tabel 1) dan 66 standar yang telah dianalisis pada bulan Agustus 2002 – Februari 2003 di Laboratorium Mineralogisches Institut der Uni Köln (Tabel 2).

Untuk persiapan analisis AAS, ICP, FES dan Photometer digunakan metode Kasper (1981)[6]. Kedalam gelas teflon yang masing-masing telah berisi 0,1 gram sampel -N.XLS dan NBS-1C.XLS, dimasukkan 1 ml air sebagai pelembap dan kemudian 1ml aqua regia dan 6 ml HF (40 %). Setelah ditutup rapat gelas teflon dimasukkan kedalam autoklav dikunci rapat dan dipanaskan 110°C dalam lemari pengering selama 90 menit. Setelah didinginkan larutan dimasukkan ke dalam 150 ml gelas PTX yang berisi 2,8 gram kristal H₃BO₃ dan 20 ml air. Setelah diaduk dengan pengaduk magnet sekitar 5 menit maka seluruh H₃BO₃ telah larut merata sehingga larutan menjadi jernih. Kemudian larutan dipindahkan ke dalam 250 gelas labu dari plastik.

Untuk analisis total Fe, Mg, Ca, Na dan K maka dari larutan tersebut diambil sebanyak 25 ml dan dimasukkan ke dalam gelas labu ukuran 200 ml. Untuk menghilangkan interference maka ke dalam larutan dimasukkan 2 ml larutan Cs (10 %). Larutan Cs dibuat dengan mencampur 25,33 gram CsCl dengan air di dalam

GXR – 1 – 6	TS – ZGI,	BE – N	DT – N	GS – N	SY – 3	GH	IPT 32	IPT57	DTS
AN – ZGI	SW – ZGI	UB – N	BX – N	SY – 2	ACE	PCC	IPT53	MA-N	MRG
SO - 1/1 - 4/1	GSP								

Tabel 1. 30 Standar Internasional

Tabel 2. Standar dari Mineralogisches Institut der Uni Köln

No.	Standar									
1	GXR-1 Jasperoid	DTS Dunit	JB-2 Basalt IPT-32							
2	GXR-2 Boden	JR-2 Rhyolit	BE-N Basalt	IPT-53						
3	GXR-3 Ablagerung	SY-2 Syenit	BB Basalt	IPT-57						
4	GXR-4	SY-3 Syenit	BR Basalt	PB						
5	GXR-5 Boden	DT-N Disthen	BM-ZGI Basalt	C-146						
6	GXR-6 Boden	FK-N K-Feldspat	MRG Gabbro	TW						
7	SO-1/1 Boden	NBS-99A Alkali Fsp	GM-ZGI Granit	KK						
8	SO-2/1 Boden	PCC Peridotit	MA-N Granit	-399-/JOANN						
9	SO-3/1 Boden	ST1-AB Oxidmixtur	GA Granit	NBS-1C						
10	SO-4/1 Boden	ST2-AB Oxidmixtur	GH Granit	-ENO-						
11	TS-ZGI Tonschiefer	ST3-AB Oxidmixtur	GS-N Granit	FF-4						
12	NBS-88B Dolomit	CA1-AM Oxidmixtur	GM-ZGI Granit	D1B2						
13	BCS-368 Dolomit	CA2-AM Oxidmixtur	GSP Granodiorit	D1B5						
14	KK-CKD Kaolinit	KK-CKD Kaolinit CA3-AM Oxidmixtur		D1BK1						
15	UB-N Serpentinit	UB-N Serpentinit AN-ZGI Anhydrit		-ECO-						
16	SW-ZGI Serpentinit	BaH Bauxit	8-1-06							
17	SPS-CKD/1 Blassand	BX-N Bauxit	609-1							

Tabel 3. Teknik analisis pada standar acuan

Unsur	Metode	λ (nm)	Standar µg/ml	Fuel	t
Si	FAAS	220,8	50, 100, 150	$C_2H_2 - N_2O$	4
Ti	ICPS	368.52	5, 10, 20, 50	Argon	
Al	FAAS	309,3	10, 20, 50	$C_2H_2 - N_2O$	4
Fe	FAAS	248,3	2.5, 5, 10	C_2H_2 – &air	4
Mn	FAAS	279,5	1, 3, 5	C_2H_2 – &air	3
Mg	ICPS	285,2	0.25, 0.5, 1	C_2H_2 – &air	3
Ca	ICPS	422,7	2.5, 5, 10	$C_2H_2 - N_2O$	4
Na	FES	589,0	0.5, 1, 2.5	C_2H_2 – &air	3
K	FES	768	0.5, 1, 2.5	C_2H_2 – &air	2
Р	S P	410	1, 2, 5, 10, 15		
S	S P	420	0-50		
Sc	ICPS	361.38	0.10, 0.15, 0.20	Argon	3
V	ICPS	311.07	0.1, 0.3, 0.5, 1, 1.5	Argon	3
Cr	FAAS	357,9	2 - 8	C_2H_2 – &air	3
Mn	FAAS	279,5	1, 3, 5	C_2H_2 – &air	3
Со	FAAS	240,7	3 - 12	C_2H_2 – &air	3
Ni	FAAS	232	3 - 12	C_2H_2 – &air	3
Cu	FAAS	324,7	2 - 8	C_2H_2 – &air	3
Zn	FAAS	213,9	0.4 -1,6	C_2H_2 – &air	3
Rb	FAAS	780	0.1, 0.3, 0.5, 1	$C_2H_2 - N_2O$	3
Sr	ICPS	407.77	1, 2, 3	Argon	3
Y	ICPS	371.03	0.2, 0.3, 0.5	Argon	3
Zr	ICPS	339.20	0.5, 1, 2	Argon	5
Ba	ICPS	455.40	1, 2, 3	Argon	3
La	ICPS	398.852	0.3, 0.4, 0.5	Argon	5
Pb	AAS	217	5-10	Acetylene&air	3

Cannel Code	Reporting name	Print. Seq	Units	Lower Conc. Limits	Upper Conc. Limits	Meas Time	Corrections drift	Corrections KG	Corrections overl
K	K2O	8	%	0.05	15.00	40	Y		
Ca	CaO	7	%	0.30	65.00	40	Y		
Р	P2O5	10	%	0.100	2.000	100	Y		Y
S	SO3	11	%	0.200	12.000	100	Y		Y
Na	Na2O	9	%	0.15	8.00	100	Y		Y
Mg	MgO	6	%	0.20	60.00	100	Y		Y
Al	Al2O3	3	%	0.50	100.00	40	Y		
Si	SiO2	1	%	0.50	100.00	40	Y		
Ga	Ga	21	ppm	10	150	200	Y	Y	
Zn	Zn	20	ppm	20	1000	100	Y	Y	
Cu	Cu	19	ppm	25	7500	100	Y	Y	
Ni	Ni	18	ppm	10	3000	100	Y		
Fe	Fe2O3	4	%	0.20	55.00	40	Y		Y
Со	Со	17	ppm	10	200	200	Ŷ		Y
Mn	Mn	16	ppm	40	50000	100	Y		Y
Cr	Cr	15	ppm	15	5000	100	Y		Y
V	V	14	ppm	15	2000	100	Y	Y	
Ti	TiO2	2	%	0.01	6.00	40	Y		Y
Sc	Sc	13	ppm	10	150	200	Y		Y
Ва	Ba	29	ppm	50	5000	200	Y		Y
La	La	30	ppm	15	2000	200	Y		Y
Pr	Pr	32	ppm	5	300	200	Y	Y	
Nd	Nd	33	ppm	10	750	750	Y		Y
Ce	Ce	31	ppm	10	2000	200	Y		Y
Sm	Sm	334	ppm	5	150	200	Y	Y	
As	As	22	ppm	15	5000	100	Y	Y	
Мо	Мо	28	ppm	5	500	100	Y	Y	
Nb	Nd	27	ppm	4	400	100	Y	Y	
Zr	Zr	26	ppm	10	1000	100	Y	Y	
V	V	25	ppm	5	1000	100	Y	Y	
Sr	Sr	24	ppm	-10	2000	100	Y		Y
U	U	37	ppm	5	1000	200	Y	Y	
Rb	Rb	23	ppm	10	4000	100	Y		Y
Th	Th	36	ppm	10	1500	100	Y	Y	
Pb	Pb	35	ppm	10	1200	100	Y	Y	
LOI	LOF	12	%						

Tabel 4. Universität Köln FB Geowissenschaften Inst. F. Mineralogie 20.10.2002; 10:31 Oxiquant spinner: In Delay: 10 s

labu berukuran 200 ml. Penentuan konsentrasi menggunakan AAS, ICP-AES, FES dan SP (Tabel 3).

Masalah utama metode RFA adalah perbedaan konsentrasi yang terlalu besar antara unsur utama dan unsur langka dalam suatu sampel batuan. Hasil analisis Mineralogisches Institut der Uni. Köln menunjukkan bahwa koefisien korelasi K, Mg, Ca, Mn, Ti, P Sr, Rb, Y, Zr, Nb sampel pada Tabel 2 terhadap standar internasional (Tabel 1) adalah + 0.98. Sedangkan untuk

 TiO_2 dan Y adalah + 0.94 dan + 0.92. Kesalahan relatif untuk major elements antara 1 hingga 10 % sedangkan untuk *minor elements* 11 hingga 20 %. Sehingga tingkat kesalahan relatif sekitar setengah dari konsentrasi terendah setiap unsur (Tabel 4)

3. Hasil dan Pembahasan

Hasil analisis XFA menunjukkan tingkat kesalahan terjadi pada unsur dengan konsentrasi di bawah lower

limit optimal range yakni Mg, Ca, Na dan S dengan konsentrasi 0.03, 0.2, 0.08 dan 0,05 % (Tabel 5) sedangkan batas terendah kemampuan XFA adalah 0.2, 0.3, 0.15, 0.1, 0.2 % (Tabel 4).

Secara umum RFA cukup memadai untuk menganalisis unsur Si, Ti, Al, Fe, Mn, Ni, Cr, V, Zr dan Sr (Tabel 5 dan 7). Sedangkan Co masih dalam batas toleransi (Tabel 5 dan 7). Akurasi rendah terutama terjadi pada unsur-unsur dengan titik didih di bawah 1200°C, misalnya Na (883 °C), K (776 °C), Rb (713 °C), Mg (1102 °C), P (280 °C) dan S (444,6 °C). Unsur-unsur tersebut telah menguap pada tahap pembuatan *glass bead* yang membutuhkan pemanasan 1200°C.

Rata-rata konsentrasi total 101.03 % (konsentrasi total minimum 99.88 % dan maksimum 101.93 %), simpangan baku (SD) total 0.76 % dan *coefficient of varian*t (CV) 0.75 % pada Tabel 5 menunjukkan tingkat akurasi tinggi analisis XFA. Tetapi untuk unsur Mn, Mg, Ca, K, Na, P, S, Co, Rb, Ba dan La XFA menujukkan kepekaan yang lebih rendah dibandingkan metode lainnya (AAS, FES, Photometer, ICP). Hal ini terlihat pada konsentrasi hasil pengukuran XFA yang lebih rendah dibandingkan metode non XFA (Tabel 5) dan nilai CV yang tinggi (Tabel 6). Secara signifikan hasil XFA pengukuran terhadap unsur-unsur tersebut

menunjukkan konsentrasi lebih rendah. Secara keseluruhan simpangan baku pengulangan pengukuran XFA (kecuali La 45 %, Co, 7.8 % dan Ba 4 %) adalah rendah (Tabel 6). Analisis XFA secara umum menunjukkan konsentrasi lebh rendah dibandingkan dengan AAS, FES, ICP maupun Photometer, kecuali pada unsur Si, Al, Fe, V dan Zr (Tabel 6).

Rata-rata konsentrasi total atau tingkat keakuratan pada Tabel 7 adalah 91.1 % (simpangan baku 6.9%). Tingkat keakuratan paaa keenam pengukuran ulangan secara berurutan adalah 84.86 %, 85.48 %, 86.78 %, 95. 8 %, 98.46 % dan 100.7 %. Ini sangat berpengaruh terhadap akurasi masing-masing unsur. Pada sampel ini simpangan baku masih rendah kecuali Ca (6.882) dan Co (16.278 %) yang konsentrasinya sangat rendah (1 ppm). Coefficient of variant (Tabel 8) seluruh pengukuran ulangan XFA menunjukkan tingkat kesalahan yang sangat tinggi Mn (36.5 %), Mg (13.8 %), Ca (16 %), Na (111.7 %), P (31 %), S (19 %), Co (137.5 %), Rb (15.7 %), Ni (22 %), Cr (53 %), V (43 %), Zr (16 %), Rb (5.7 %), Sc (35 %), Y (11 %), Ba (11 %), La (11 %) dan Pb (46 %). Tingkat kesalahan ini kemungkinan disebabkan oleh LOI pada saat sample preparation (39.9 %) (Tabel 7). Secara umum hasil analisis XFA menunjukkan konsentrasi yang lebih rendah (Tabel 7).

Metode	1 dan 2	Metod	e 1	Metode 2 = RFA dan rata-rata analisis 1, 2, 3, 4 dan 5							
unsur	Unit	Alat	Konsentrasi	1	2	3	4	5	6	Rata-rata	
Si	%	FAAS	6.15	7.56	7.59	7.63	7.61	7.69	7.69	7.63	
Ti	%	ICP	2.5	2.18	2.19	2.2	2.19	2.34	2.35	2.24	
Al	%	FAAS	54	54.8	55.26	55.16	54.9	55.08	54.87	55.01	
Fe	%	FAAS	23.35	22.27	23.09	22.35	23.07	23.08	23.13	22.83	
Mn	ppm	FAAS	0.05	0.04	0.04	0.04	0.04	0.03	0.04	0.04	
Mg	%	ICP	0.03	0.06	0.11	0.14	0.13	0.15	0.5	0.18	
Ca	%	ICP	0.2	0.16	0.16	0.16	0.16	0.18	0.18	0.17	
Κ	%	FES	0.09	0.06	0.06	0.05	0.06	0.07	0.07	0.06	
Na	%	FES	0.08	0.36	0.37	0.42	0.41	1.11	1.11	0.63	
Р	%	SP	0.13	0.13	0.13	0.13	0.13	0.13	0.12	0.13	
S	%	SP	0.05	0.02	-0.03	0.02	-0.01	-0.2	-0.17	-0.06	
LOI				12.17	12.17	12.17	12.17	12.17	12.17	12.17	
Total				99.88	101.2	100.53	100.93	101.89	101.77	101.03	
Zn	ppm	FAAS	80	75	76	78	80	74	77	76.67	
Ni	ppm	FAAS	190	189	189	187	192	189	188	189.00	
Cr	ppm	FAAS	290	288	293	286	289	288	291	289.17	
Со	ppm	FAAS	35	49	38	53	34	50	51	45.83	
V	ppm	ICP	345	347	348	346	344	347	344	346.00	
Zr	ppm	ICP	580	586	585	583	584	585	583	584.33	
Sr	ppm	ICP	115	108	99	112	105	109	110	107.17	
Rb	ppm	FAAS	10	7	2	7	10	6	7	6.50	
Sc	ppm	ICP	60	58	56	56	59	57	56	57.00	
Y	ppm	ICP	125	122	123	122	124	122	121	122.33	
Ва	ppm	ICP	50	45	40	35	36	39	33	38.00	
La	ppm	ICP	370	380	350	355	352	355	251	340.50	
Pb	ppm	AAS	142	135	135	136	133	132	136	134.50	

Tabel 5. Sampel kode BX-NXL

Unsur	Unit	Metode 1	Metode 2	SD 2	F %	SD 1	CV 2	CV 1	CV 1 - CV2
Si	%	6.15	7.63	0.053	-0.002	1.045	0.696	15.174	14.478
Ti	%	2.5	2.24	0.080	0.001	0.183	3.585	7.705	4.120
Al	%	54	55.01	0.182	0.000	0.715	0.331	1.312	0.982
Fe	%	23.35	22.83	0.405	0.000	0.367	1.776	1.587	-0.188
Mn	ppm	0.05	0.04	0.006	0.002	0.007	14.434	15.713	1.280
Mg	%	0.03	0.18	0.159	-0.051	0.107	87.619	101.333	13.714
Ca	%	0.2	0.17	0.010	0.002	0.024	6.197	12.856	6.660
K	%	0.09	0.06	0.008	0.003	0.020	12.207	26.419	14.212
Na	%	0.08	0.63	0.373	-0.069	0.389	59.128	109.552	50.424
Р	%	0.13	0.13	0.004	0.000	0.001	3.181	0.912	-2.269
S	%	0.05	-0.06	0.098	0.022	0.079	-158.693	-1353.604	-1194.912
LOI			12.17						
Total			101.03	0.761			0.754		
Zn	ppm	80	76.67	2.160	0.000	2.357	2.818	3.009	0.191
Ni	ppm	190	189.00	1.673	0.000	0.707	0.885	0.373	-0.512
Cr	ppm	290	289.17	2.483	0.000	0.589	0.859	0.203	-0.655
Со	ppm	35	45.83	7.834	-0.003	7.660	17.092	18.953	1.862
V	ppm	345	346.00	1.673	0.000	0.707	0.484	0.205	-0.279
Zr	ppm	580	584.33	1.211	0.000	3.064	0.207	0.526	0.319
Sr	ppm	115	107.17	4.622	0.001	5.539	4.313	4.986	0.673
Rb	ppm	10	6.50	2.588	0.004	2.475	39.822	29.998	-9.824
Sc	ppm	60	57.00	1.265	0.001	2.121	2.219	3.626	1.407
Y	ppm	125	122.33	1.033	0.000	1.886	0.844	1.525	0.681
Ba	ppm	50	38.00	4.290	0.002	8.485	11.288	19.285	7.997
La	ppm	370	340.50	45.196	0.001	20.860	13.273	5.872	-7.402
Pb	ppm	142	134.50	1.643	0.001	5.303	1.222	3.836	2.614
Catatan	: Meto	de $1 = FAAS$,	FES, ICP, SP	; Metode 2	2 = XFA; SD	1 = standar	deviasi Me	tode 1 terhada	ap metode 2 ; $SD2 =$
Standar	deviasi a	analisis 1, 2, 3,	4, 5 dan 6 pad	a metode 2	2; COV 1 = 0	Coefficient o	of variant me	tode 1 terhada	ap metode 2 ; COV 2
= Coeffic	cient of	variant 1, 2, 3,	4, 5 dan 6 pad	a metode 2	2; F% = Seli	sih konsent	rasi metode 1	dan 2 dalam	persen
				Tabel 7	Sampal kad	NRS VI			
				Taber 7.	Samper Kou	CIADO.ALS	,		

Tabel 6. Sampel kode BX-NXL

Metod	Metode 1 dan 2 Metode 1 Metode 2 = RFA dan rata-rata analisis 1, 2, 3, 4 dan 5							5		
unsur	Unit	Alat	Konsentrasi	1	2	3	4	5	6	Rata-rata
Si	%		6.78	6.81	6.71	6.78	6.95	6.76	6.79	6.80
Ti	%		0.07	0.06	0.06	0.07	0.07	0.07	0.07	0.07
Al	%		1.25	1.09	1.06	1.06	1.19	1.15	1.15	1.12
Fe	%		0.56	0.5	0.5	0.51	0.49	0.54	0.59	0.52
Mn	ppm		0.02	0.01	0.01	0.01	0.02	0.02	0.02	0.02
Mg	%		0.42	0.43	0.48	0.46	0.36	0.38	0.34	0.41
Ca	%		50.25	35.51	36.21	37.43	46.58	48.96	50.52	42.54
Κ	%		0.29	0.28	0.28	0.28	0.28	0.3	0.28	0.28
Na	%		0.02	0	0	0	0.03	0.04	0.03	0.02
Р	%		0.04	0.02	0.03	0.02	0.04	0.04	0.04	0.03
S	%		0.32	0.25	0.24	0.26	0.19	0.32	0.32	0.26
LOI				39.9	39.9	39.9	39.9	39.9	39.9	39.90
Total	%			84.86	85.48	86.78	95.8	98.46	100.07	91.91
Zn	ppm		28	25	24	23	26	25	24	24.50
Ni	ppm		14	16	16	13	8	13	13	13.17
Cr	ppm		19	14	15	2	25	25	27	18.00
Со	ppm		1	2	44	13	2	4	6	11.83
V	ppm		6.5	9	7	3	9	7	3	6.33
Zr	ppm		16	11	16	15	11	16	15	14.00
Sr	ppm		262	241	242	248	250	242	248	245.17
Rb	ppm		13	16	19	13	14	17	13	15.33
Sc	ppm		8	6	4	2	5	4	3	4.00
Y	ppm		6	8	6	7	8	8	7	7.33
Ва	ppm		90	88	75	65	75	73	65	73.50
La	ppm		4	5	4	5	5	4	5	4.67
Pb	ppm		5	2	5	6	3	2	3	3.50

Unsur	Unit	Metode 1	Metode 2	SD 2	F %	SD 1	CV 2	CV 1	CV 1 – CV 2
Si	%	6.78	6.80	0.081	0.000	0.014	1.191	0.208	-0.983
Ti	%	0.07	0.07	0.005	0.000	0.002	7.746	3.449	-4.297
Al	%	1.25	1.12	0.054	0.001	0.094	4.861	7.967	3.106
Fe	%	0.56	0.52	0.038	0.001	0.027	7.215	5.012	-2.203
Mn	Ppm	0.02	0.02	0.005	0.003	0.004	36.515	20.203	-16.312
Mg	%	0.42	0.41	0.057	0.000	0.008	13.890	1.992	-11.898
Са	%	50.25	42.54	6.882	0.002	5.455	16.180	11.759	-4.421
Κ	%	0.29	0.28	0.008	0.000	0.005	2.882	1.644	-1.237
Na	%	0.02	0.02	0.019	0.002	0.002	111.714	12.856	-98.857
Р	%	0.04	0.03	0.010	0.002	0.006	31.048	16.444	-14.604
S	%	0.32	0.26	0.050	0.002	0.040	19.013	13.738	-5.275
LOI			39.90						
Total	%		91.91	6.957			7.569		
Zn	ppm	28	24.50	1.049	0.001	2.475	4.281	9.428	5.147
Ni	ppm	14	13.17	2.927	0.001	0.589	22.230	4.338	-17.891
Cr	ppm	19	18.00	9.592	0.001	0.707	53.287	3.822	-49.465
Со	ppm	1	11.83	16.278	-0.108	7.660	137.559	119.382	-18.177
V	ppm	6.5	6.33	2.733	0.000	0.118	43.145	1.837	-41.308
Zr	ppm	16	14.00	2.366	0.001	1.414	16.903	9.428	-7.475
Sr	ppm	262	245.17	3.920	0.001	11.903	1.599	4.694	3.095
Rb	ppm	13	15.33	2.422	-0.002	1.650	15.796	11.646	-4.150
Sc	ppm	8	4.00	1.414	0.005	2.828	35.355	47.140	11.785
Y	ppm	6	7.33	0.816	-0.002	0.943	11.134	14.142	3.008
Ba	ppm	90	73.50	8.479	0.002	11.667	11.537	14.272	2.735
La	ppm	4	4.67	0.516	-0.002	0.471	11.066	10.879	-0.187
Pb	ppm	5	3.50	1.643	0.003	1.061	46.948	24.957	-21.991
Catatan Standar	: Meto	de 1 = $FAAS$,	FES, ICP, SP	; Metode	2 = XFA;	SD1 = stan	dar deviasi N	Aetode 1 terhad	lap metode 2 ; $SD2 =$
- Coeffi	cient of	variant 1 2 3	4, 5 dan 6 pa	da metode	$2 \cdot E \% = 9$	– <i>Coefficie</i> Selisih kons	entrasi metod	e 1 dan 2 dalan	ap metoue 2, COV 2

Tabel 8. Sampel kode NBS.XLS

4. Kesimpulan

Dari hasil analisis dapat disimpulkan bahwa tingkat akurasi teknik XFA cukup tinggi terutama untuk unsurunsur Si, Ti, Al, Cr, V, Zr, Y yang sangat resisten terhadpa pelapukan. Dengan demikian hasil analisis XFA dapat dikorelasikan dengan modal analisis mineral-mineral berat yang sangat berperan dalam petrografi misalnya mineral zirkonium. Teknik AAS untuk Zn, Ni, Cr, Co, Pb, teknik ICP untuk Ca, Sr, Rb, La, FES untuk K, Na menunjukkan kepekaan yang lebih tinggi dari XFA. Untuk unsur dengan nomor atom kecil dan titik didih rendah Na, K, Rb, Mg, P dan S. Sampel dengan LOI tinggi menunjukkan tingkat kesalahan yang tinggi. Untuk itu dibutuhkan perlakuan khusus. Untuk unsur dengan konsentrasi rendah (konsentrasi ppb) butuhkan perlakuan khusus. Sampel preparation dapat nondestructive, berlangsung cepat dan tidak labor intensive

Daftar Acuan

 J.R. Lindsay, R.R. Larson, H.J. Rose Jr., R.W. Werre, Abstract book of 176 th. Annual Meeting, American Chemical Society, U.S.A, 1978.

- [2] J.E. Taggart Jr., J.R. Lindsay, J.S. Wahlberg, In: P.W. Lipman, D.R. Mullineus (Eds.) The 180 Eruption of Mount St Helens, U.S. Geological Survey Proffessional Paper 1250, Washington, 1981.
- [3] R. Tertian, F. Claisse, Principles of Quantitative X-Ray Fluorescence Analysis, Wiley – Heyden, New York, 1982.
- [4] J.E. Taggart Jr., J.R. Lindsay, B.A. Scott, D.V. Vivit, A.J. Bartel, K.C. Stewart, Analysis of Geologic Materials by Wavelengt-Dispersive X-Ray Fluorescence Spectrometry, U.S. Geological Survey, Washington, 1987.
- [5] S. Otmar, E. Cora, H. Urban, X-Ray Flourescence Analysis off Major and Trace Elements in Geological Materials, Forschung Entwicklung Projekte, Messe-Exponate der Uni Frankfurt, Frankfurt.
- [6] H. U. Kasper, Sonderveröff. Geol. Inst. Univ. Köln 41 (1981) 109.
- [7] B. Ayranci, Schweiz. Mineral. Petrogr. Mitt. 57 (1977) 299.
- [8] B. Welz, Atomabsorptions-Spektroskopie 3, Verlag Chemie, Weinheim, 1983.
- [9] R.W. Lee, N. Güven, Chem. Geol. 16 (1975) 53.

- [10] H. Heinrichs, A.G. Hermann, Praktikum der Analytischen Geochemie, Springer-Verlag, Berlin, 1990.
- [11] G.L. Moore, Introduction to Inductively Coupled Plasma Atomic Emission Spectrometry, Elsevier, Amsterdam, 1989.
- [12] H.H. Rump, H. Krist, Laborhandbuch für die Untersuchung von Wasser, Abwasser und Boden, VCH Verlagsgesellschaft, Weinheim, 1987.

